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To the Student

This would normally be called a “preface,” but in our experience, students of-
ten skip sections with that title. We wanted to indicate what we assume about
you, the reader, and how we think that you should use this book. First, we
need to define what we mean by “student.” The need for this book became ap-
parent to us when we were teaching an undergraduate computational biology
course to seniors and first-year master’s or Ph.D. students at the University
of Southern California. We have structured the book for use in an upper-level
undergraduate teaching program. However, we recognize that “student” may
be used in the broader sense to include anyone who wishes to understand the
basics of computational biology. This might include investigators in medical
schools or computer scientists who want to expand their knowledge of this
exciting field.

Persons from a variety of disciplines develop an interest in computational
biology. They may be biologists, applied mathematicians, computer scientists,
and persons working in the biotechnology industry. Because of the variety of
backgrounds from which students may be drawn, we cannot assume that any
reader will have all of the necessary background. If we tried to supply all of the
necessary background for all likely readers, this book would be prohibitively
long (and expensive!). This means that you will probably need to supplement
your reading with outside sources. For example, persons with backgrounds
in applied mathematics may find Chapter 1 too telegraphic in style. They
will need to use the supplementary biology texts indicated at the end of that
chapter. Some current biology students may have limited computer skills and
no programming skills. For them, we provide an appendix outlining the R
statistics environment.

The latter point requires amplification. If you are studying computational
biology, you should learn how to perform some simple computations. If you
come from a computer science background, you will be proficient in UNIX and
will be familiar with string-manipulation languages such as Perl and one or
more versions of C. In contrast, some biology students may not know what
commands can be issued at a UNIX prompt. How can we write a book that
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employs computations that have the feel of “real” ones (computations beyond
the hand calculator) without imposing a steep learning-curve barrier on those
biology students? We have tried to solve this problem by using R.

R is a statistics environment that is available for free download and use
with Windows, Macintosh, and Linux operating systems. It functions very much
like the S-PLUS statistics package, which may be available to you already at
your specific institution. R and S-PLUS provide an extensive suite of functions
for statistics calculations. We are using R in lieu of C for computations because
of its wide availability, because the input/output is simpler, and because the
commands can be run interactively, which eases the writing of functions (pro-
grams). This means that you don’t need to first write a text file, compile the
program, and then test it, going through this three-step process repeatedly
until the program is debugged. However, if R is used for large-scale computa-
tions such as analysis of bacterial genomes (10° bp or more), be sure that you
have available a large amount of memory or the computation time may be ex-
cessively long. For big problems, faster, more efficient programming languages
such as versions of C can be incorporated into R.

You need to know how to actually implement the concepts in computa-
tional biology if you really want to understand them. Therefore, in many
chapters we have included examples of computations using R. We encourage
everyone to become familiar enough with R that the logic behind these compu-
tations is evident. We realize that this may be challenging for students lacking
programming experience, but it really is necessary to learn how to visualize
problems from a computational standpoint. To illustrate probabilistic mod-
els, we have performed a number of simulations. If you can’t visualize how
to simulate data given a probabilistic model, do you really understand the
model?

Finally, we emphasize that the material in this book does not represent the
definitive word on any of the topics covered. It is not a treatise on statistics or
algorithms in computational biology. It is not an overview of “bioinformatics,”
although we treat some of the most important topics in that discipline. This
book is not a compendium of useful Web sites with instructions on where you
should point and click your mouse. However, in Appendix B we do provide
some useful URLs to help you get started. This is not a book “about” ge-
nomics. To keep focused on the principles and strategies of the computations,
we are not concerned with proving theorems and discussing the subtleties of
the mathematics and statistics. If you are interested in more detail, you can
refer to some of the literature cited at the end of the chapters. This book is a
“roll up your sleeves and get dirty” introduction to the computational side of
genomics and bioinformatics. We hope to provide you with a foundation for
intelligent application of the available computational tools and for your in-
tellectual growth as new experimental approaches lead to new computational
tools.

We think that this field of endeavor is exciting and fun. Our hope is that
we shall whet your appetite to learn more about what you are introduced to
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here. In every case, there is much more already known and far more left to be
discovered. We hope that you enjoy learning about it.

R.C.D., S.T., and M.S.W.
March 2005

Conventions and Resources

Terms in bold type are defined in the Glossary. Illustrations that are dupli-
cated in the color insert are noted in the grey-scale versions appearing at the
appropriate locations in the text. Computational examples throughout the
text are enclosed in grey boxes. They are not required for the primary expo-
sition of the material, but we encourage the reader to study the computational
examples to see how the principles can be applied. Data sets and supplemen-
tary material are available for download at http://www.cmb.usc.edu.

Further Reading

A number of books for further reading are listed below. These are examples of
books that we have found to be particularly useful. Other high-quality books
have not been listed because of space limitations. Note that a variety of excel-
lent monographs are available online at the National Center for Biotechnology
Information (NCBI) Web site: http://www.ncbi.nih.gov/entrez/query.
fcgi?db=Books.

Baxevanis AD, Ouellette BFF (2001) Bioinformatics: A Practical Guide to
the Analysis of Genes and Proteins (2nd edition). New York: Wiley-
Interscience.

Brown TA (ed) (2002) Genomes (2nd edition). New York: John Wiley & Sons.

Durbin R, Eddy SR, Krogh A, Mitchison G (1999) Biological Sequence Analy-
sis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge: Cam-
bridge University Press.

Everitt BS, Dunn G (2001) Applied Multivariate Data Analysis (2nd edition).
London: Arnold Publishers.

Ewens WJ, Grant GR (2001) Statistical Methods in Bioinformatics. New York:
Springer-Verlag.

Strachan T, Read A (2003) Human Molecular Genetics, (3rd edition). New
York: Garland Science/Taylor & Francis Group.
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1

Biology in a Nutshell

The goal of computational genomics is the understanding and interpretation
of information encoded and expressed from the entire genetic complement of
biological organisms. The complete inventory of all DNA that determines the
identity of an organism is called its genome. Biological systems are compli-
cated, interacting multivariate networks. They can be considered at a number
of different levels, ranging from populations of organisms to molecules. At
the present time, computational biology emphasizes biological phenomena at
levels of complexity ranging from molecular to cellular, though other levels in
the hierarchy are also explored, especially in evolutionary contexts. The na-
ture, anatomy, structure, physiology, biochemistry, and evolutionary histories
of organisms define the types of problems to be solved. There are significant
medical and evolutionary reasons to emphasize understanding human biology.
Understanding the biology of other organisms, a worthy goal in its own right,
also serves as a guide for interpreting the human genome and gene expression.

In this brief introduction we can only outline some key biological principles.
For more details consult the monographs and Web sites listed at the end of
the chapter.

1.1 Biological Overview

Zoos do not give a correct impression of what life on Earth is like because
they over-represent mammals and other vertebrates. Organisms range from
bacteria to multicellular plants and animals, and these organisms may employ
a variety of strategies for extracting energy from their environment, ranging
from reducing dissolved sulfate to produce HsS and ultimately pyrite (fool’s
gold), to photosynthesis, to aerobic respiration. Some organisms can exist at
temperatures near the boiling point (at atmospheric pressure) or below the
freezing point of water. Others may be found in rocks 3 km below Earth’s
surface (lithotrophic bacteria) or flying over the Himalayas (snow geese).
Nevertheless, analysis of ribosomal RNA sequences suggests that there are
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three major related domains of organisms: eubacteria (organisms such as
Escherichia coli or Bacillus subtilis), Archaea (bacteria notable for the ex-
treme environments in which they can live), and eukaryotes (organisms with
true nuclei, hierarchically structured chromosomes complexed with histones,
and membrane-bound organelles—organisms such as humans or fungi). Rela-
tionships between these groups and between their representative members are
indicated in Fig. 1.1. Two of the three major domains of life are prokaryotic
(eubacteria and archaebacteria).

Prokaryotes do not contain a true nucleus or membrane-bound organelles,
and their DNA is not as highly structured as eukaryotic chromosomes. Given
the wide range of environments bacteria can inhabit and their abundance from
the ancient past up to the present, bacteria as a group are considered to be
the most successful life form on this planet.

Among the eukaryotes, there is an abundance of unicellular forms, called
protists. Most of these are marine organisms. Ultrastructural and molecular
data indicate that different types of protists may differ from each other more
than plants differ from animals. Nevertheless, the unicellular eukaryotes are
conventionally lumped into a kingdom called “Protista.” Major multicellular
groups are fungi, plants, and animals. There are about 300,000 described
species of plants and about 1,000,000 described species of animals. This is a
biased sample of the planet’s biodiversity. Among animals, mammals represent
a rather small number of species. There are about 5000 species of mammals,
but there are three times as many known species of flatworms. Three-quarters
of all described animal species are insects. In terms of numbers of species,
insects might be considered the most successful form of land animal.

There are similarities shared by all organisms on this planet:

— The basic unit of life is the cell.

— Chemical energy is stored in ATP.

— Genetic information is encoded by DNA.
— Information is transcribed into RNA.

Fig. 1.1 (opposite page). Phylogenetic relationships among organisms (panel A)
and among animals (panel B). Ancestor-descendant relationships are shown as a
tree (see Chapter 12) with shared common ancestors corresponding to nodes to the
left of descendant groups. The tree has been greatly simplified. Any given “twig” on
the right can be further split to indicate descendant groups in more detail. There is
usually a bifurcation at each node, but in those cases for which the branching or-
der is unknown, there may be three (or more) descendant groups emanating from a
particular node. Panel B indicates groupings of animals based upon body plans (bila-
teria), processes of embryological development (protostomes or deuterostomes), and
physiological or anatomical features. Ecdysozoa shed their outer covering, lophotro-
chozoa share a type of feeding appendage or larval type, and chordata possess a
notochord at some stage of development. Data from Pennisi (2003) and Knoll and
Carroll (1999).
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— There is a common triplet genetic code (with a few exceptions).

— Translation into proteins involves ribosomes.

— There are shared metabolic pathways (e.g., glycolysis), with steps cat-
alyzed by proteins.

— Similar proteins are widely distributed among diverse groups of organisms.

These shared properties reflect the evolutionary relationships among organ-
isms, which can be useful for understanding the significance of shared bio-
logical processes. For example, there are relationships between the pathways
for bacterial photosynthesis with photosynthesis seen in cyanobacteria and
plants. Some characters, such as the basic biochemical pathways, are so cen-
tral to life that they are found in nearly all organisms. Processes such as
replication, DNA repair, and glycolysis (extraction of energy by fermentation
of glucose) are present and mechanistically similar in most organisms, and
broader insights into these functions can be obtained by studying simpler or-
ganisms such as yeast and bacteria. It is unnecessary to start all over again
from scratch in trying to understand functions encoded in genomes of new
experimental organisms.

For efficient study, biologists have typically focused on model organisms
that conveniently embody and illustrate the phenomena under investigation.
Model organisms are chosen for convenience, economic importance, or medical
relevance. Studies on such organisms are often applicable to other organisms
that might be difficult to study experimentally. For example, the generation
of antibody diversity in humans is equivalent to the process that can be genet-
ically studied in mice. It was initially surprising to discover that developmen-
tal genes (hox genes) controlling segment specification in Drosophila (fruit
flies) were mirrored by similar genes in mammals, including humans. Model
organisms include bacteria such as E. coli and B. subtilis (now joined by
many other bacteria whose genomes have been sequenced), fungi such as the
yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, simple ani-
mals such as the nematode Caenorhabditis elegans, insects such as Drosophila
melanogaster (fruit fly), rapidly reproducing vertebrates such as Danio rerio
(zebrafish) and mice (Mus musculus), and plants such as Arabidopsis thaliana
(mustard weed). In addition to these are agriculturally important plants and
animals (e.g., corn, or Zea mays) and of course humans (for medical reasons).

After this brief description of the complexity and scope of biological sys-
tems and organisms, in the rest of this chapter we will turn to those levels of
complexity most pertinent to computational biology. First, we discuss cells,
and we follow that with an introduction to informational macromolecules. We
close by indicating some of the experimental methods that define the structure
and scope of computational approaches.
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1.2 Cells

Except for viruses, all life on this planet is based upon cells. Cells typically
range in size from 2x107%m to 20x10~%m in diameter (some cells, such
as neurons, can be much larger). Cells sequester biochemical reactions from
the environment, maintain biochemical components at high concentrations
(which facilitates appropriately rapid reaction rates), and sequester genetic
information. As mentioned above, structurally there are two different types
of cells: prokaryotic and eukaryotic. Prokaryotes have cell membranes and
cytoplasm, but the DNA is not separated from the cytoplasm by a nuclear
membrane. Instead, the DNA is condensed into the nucleoid, which is less
highly structured than eukaryotic chromosomes and appears as a disorganized
“blob” in thin sections viewed by electron microscopy. Prokaryotes also lack
membrane-bound organelles such as mitochondria and chloroplasts. Prokary-
otic cells are typically small, and they may have generation, or doubling, times
as short as 20-30 minutes. Eukaryotes (fungi, flies, mice, and men) have a
true nucleus and membrane bound organelles. Most eukaryotes have observ-
able mitochondria, where major steps in aerobic respiration occur. Plant
cells may contain chloroplasts, where plant photosynthesis occurs. They also
may have prominent vacuoles and cell walls composed of cellulose. The typi-
cal doubling time of eukaryotic cells from complex organisms is significantly
longer than it is for prokaryotes: for a mammalian cell in tissue culture, this
is about 24 hours (although some cells, such as neurons, may not divide at
all).

Cells are organized into a number of components and compartments
(Fig. 1.2). The plasma membrane—the “face” that the cell shows to the out-
side world—is decorated with transporter proteins capable of moving particu-
lar classes of molecules into and out of the cell. Because of their more compli-
cated structure, eukaryotic cells have a more complex spatial partitioning of
different biochemical reactions than do prokaryotes. For example, translation
of particular mRNA molecules (ribonucleic acid copies of DNA coding for pro-
teins) occurs on the endoplasmic reticulum, and processing of polypeptides
may occur in the Golgi apparatus. The cellular cytoskeleton (composed of
microtubules, microfilaments, and other macromolecular assemblages) aids in
the trafficking of proteins and other cellular components from point to point
in the cell. Respiration (the production of the energetic molecule ATP by
oxidation of carbon compounds in the presence of oxygen) is localized on the
membranes of mitochondria. All of these features imply that particular pro-
teins may be localized for function in some compartments of the cell, but not
others.

The simplest “food” requirements are seen with bacteria. For example,
E. coli can grow in water containing ammonium chloride, ammonium ni-
trate, sodium sulfate, potassium phosphate, and magnesium sulfate (NH,CI,
NH4NO3, NagSO4, KHoPOy, and MgSOy, respectively) at pH 7.2 with glu-
cose as the sole source of carbon and energy. The water usually contains other
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Golgi Endoplasmic reticulum Ribosomes

Cytoplasm

Plasma membrane

Nuclear pore

Nuclear envelope
Chromosome

Microtubules  Microfilaments, Mitochondrion
Cytoskeleton

Fig. 1.2. Some major components of an animal cell (not necessarily drawn to scale).
Some features (e.g., intermediate filaments, centrioles, peroxisomes) have not been
depicted. In multicellular organisms, cells are frequently in contact and communi-
cation with other cells in tissues, but intercellular junctions and contacts with the
extracellular matrix are not shown.

necessary metal ions in trace amounts. These substances flow into the cell
through the inner and outer membranes. From a single type of sugar and
inorganic precursors, a single bacterial cell can produce approximately 10°
bacteria in approximately 20 hours; E. coli is also capable of importing other
organic compounds into the cell from the outside, including other types of
sugars and amino acids, when available.

To grow animal cells (e.g., human cells) in tissue culture, it is necessary to
supply not only glucose and inorganic salts but also about a dozen amino acids
and eight or more vitamins (plus other ingredients). Eukaryotic cells must
import a large variety of components from the outside environment (matter
flow). Because eukaryotic cells typically are 10 times larger in linear dimen-
sion than prokaryotic cells, their volumes are approximately 10% larger than
volumes of prokaryotic cells, and diffusion may not suffice to move molecules
into, out of, or through cells. Therefore, eukaryotic cells employ mechanisms
of protein and vesicle transport to facilitate matter flow.

Another defining characteristic of eukaryotes is the machinery required for
managing the genome during mitosis and meiosis (described below). Unlike
prokaryotes, eukaryotes package their DNA in highly ordered chromosomes,
which are condensed linear DNA molecules wrapped around octamers of pro-
teins called histones. Since there are often many chromosomes, mechanisms
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to ensure that each daughter cell receives a complete set are needed. This
involves formation of the mitotic spindle, which includes microtubules that
also contribute to the cell cytoskeleton. In addition, regulatory mechanisms
are required to coordinate mitosis with DNA synthesis and the physiological
state and size of the cell. These are fundamental processes that are shared by
all eukaryotic cells.

This section has briefly presented a variety of information about the struc-
ture and biochemistry of cells. The DNA, RNA, and protein sequences with
which computational biologists deal are important primarily because of the
functions that they have within the cell. As we shall see, relating functions to
macromolecules and sequences is one of the problems addressed in computa-
tional biology.

1.3 Inheritance

1.3.1 Mitosis and Meiosis

Each eukaryotic chromosome contains a single duplex DNA molecule bound
with histone proteins to form a macromolecular complex. The sequences of
bases contained on chromosomal DNA molecules are the result of a set of
evolutionary processes that have occurred over time. These processes are in-
timately connected with how the chromosomes recombine and how they are
copied during the DNA synthesis that precedes cell division.

Prokaryotes are typically haploid when they are not actively dividing,
and they often (but not in every instance) have a single circular chromoso-
mal DNA containing 105107 bp (base pairs) of DNA. The DNA is typically
inherited wvertically, meaning that transmission is from parent to daughter
cells. Under conditions of rapid growth or prior to cell division, there may
be multiple copies of all or part of the prokaryotic chromosome, and except
for low-frequency replication errors, their DNA sequences are usually identi-
cal. In such circumstances, recombination does not produce new assemblages
of genes. Inheritance is clonal in the sense that descendants are more or less
faithful copies of an ancestral DNA. This seemingly static mode of inheritance
can be modified by transposable elements, by conjugation systems, and by ac-
quisition of external DNA (transformation), but these interesting phenomena
are beyond the scope of this introduction.

Sexual organisms such as mammals are usually diploid, which means that
they contain N pairs of chromosomes (visible by light microscopy as stained
chromatin). If the haploid chromosome number of an organism is IV, the body
(somatic) cells of that organism contain 2N chromosomes. There are two
functional types of chromosomes: autosomes, which are not associated with
sex determination, and sex chromosomes. Humans, for example, have 22 pairs
of autosomes and two sex chromosomes: two X chromosomes for females, and
one X + one Y for males. During the reproductive cycle of sexual organisms,
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the germline tissues produce haploid sex cells, or gametes: ova from females
and spermatozoa from males. Fusion of the gametes after mating produces a
zygote, which will undergo development to form a new organism.

The sexual cycle involves an alternation between cells having 2N chromo-
somes or N chromosomes:

Parent 1: 2N — Gamete 1: N
+ — Zygote: 2N
Parent 2: 2N — Gamete 2: N

The process of replication and reduction of chromosome numbers from 2N
to N is called meiosis, which is confined to germline cells. Meiosis reduces the
number of chromosomes by half because one chromosome doubling is followed
by two cell divisions. Growth and development of the zygote is largely through
a repeated process of chromosome doubling followed by one cell division—a
process called mitosis. Cells destined to become germline cells are ordinarily
subject to different sets of controls than typical body, or somatic cells. Mito-
sis of somatic cells is not genetically significant except for contributions that
those cells may make to reproductive success (e.g., mitosis leading to colorful
plumage in some male birds). Genetic mechanisms operate primarily during
the formation and fusion of gametes.

Figure 1.3 follows two chromosomes during meiosis. Particularly important
processes occur during prophase I, the beginning of the first meiotic division.
As a result of the DNA synthesis that occurred during interphase, each chro-
mosome has already been duplicated to generate a pair of sister chromatids.
(Chromatids are precursors of chromosomes that have not yet been separated
by meiosis.) Corresponding chromosomes from each parent (maternal and
paternal copies of chromosome 7, for example) align with each other, and re-
combination occurs between corresponding maternal and paternal chromatids
(i.e., between nonsister chromatids). Recombination is a process of break-
ing and joining chromosomes or DNA, and when this occurs at corresponding
regions of a pair of similar molecules, the result is an exchange of these regions
between the two molecules. This type of recombination is so-called homologous
recombination—recombination between nearly identical sequences.

Overview of meiosis (See Fig. 1.3)

Step A: Chromatids from corresponding partner chromosomes from each par-
ent recombine. Step B: Recombining chromosome partners (called bivalents)
line up in the middle of the cell in preparation for the first meiotic cell divi-
sion. Step C: Bivalents break apart, and one chromosome of each type moves
to the opposite poles of the dividing cell. One or both chromatids may be
recombinant. Step D: Completion of the first meiotic division produces two
cells, each containing a haploid number of chromosomes, but each chromo-
some has two chromatids. Step E: Chromosomes line up at the center of the
cell in preparation for the second meiotic division. Step F: During the second
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meiotic division, bivalents in each duplicated chromosome are split, and one
of each type is directed to one of the two daughter cells. The resulting cells
are haploid with respect to chromosome number, and they contain only one
genome equivalent.

Chromosomes are replicated only once, prior to prophase I. Thus there
are four copies of each chromosome per cell at the beginning of a process
that, through two cell divisions, will increase the number of cells by 22.
Metaphase I/anaphase I leads to separation of homologous chromosomes,
while metaphase II /anaphase II leads to separation of sister chromatids.
Recombination (prophase I) may involve multiple crossovers with both chro-
matids. Note that at anaphase I and anaphase II, chromosomes originating
from one parent need not migrate to the same pole: assortment is indepen-
dent and random. Only one of the meiosis II products becomes the egg in
vertebrate females.

1.3.2 Recombination and Variation

Recombination between nonsister chromatids has extremely important genetic
consequences. The frequencies and constraints of this process determine the
genetic map, the haplotypes, and blocks of conserved synteny. (We will
define these terms in the next paragraphs.) These are properties important
in genetics, population genetics, and genome analyses. Each DNA or chromo-
some may contain alternative forms of given genes (an alternative form of a
particular gene is called an allele of that gene). As a result of recombination
during meiosis, the allele combinations in the gamete chromosomes are usu-
ally different from the combinations found in parental chromosomes. Thus,
each gamete produced by parents drawn from a population represents a novel
combination of alleles that were present in the population, and the resulting
variation produced in successive generations is evolutionarily “tested” against
the environment. Another source of variation is the production of new alleles
by mutation (change in base sequence; see below). Moreover, it is possible for
normal recombination processes to “derail,” leading to insertions, deletions, or
duplications of longer stretches of chromosomal DNA sequence. These changes
also are raw material for evolutionary change.

Chromosomes analyzed during genome projects display features that re-
flect recombination processes. One of the first tasks is to establish a corre-
spondence between the DNA sequence and the genetic map. The genetic
map records the order of genes and the approximate distances between them
on their respective chromosomes. Genes are identified in classical genetics by
particular mutations, sometimes called genetic markers. The order of genes is
determined by genetic crosses (intentional mating of organisms having mutant
genes), and the distances are measured in terms of recombination frequencies
(often measured in centimorgans). A centimorgan corresponds to a recom-
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1.3 Inheritance 11

bination frequency of 1%, which means that two markers or genes that appear
together on the same chromosome are separated from each other by recom-
bination at a frequency of 0.01 during meiosis. Recombination is more likely
to separate two distant markers than two close ones, and the recombination
frequency between two markers is related to the physical distance separat-
ing them. Genes that tend to be inherited together are said to be genetically
linked. If genetically linked alleles of several genes on a chromosome are so
close together that they are rarely separated by recombination, this constel-
lation of alleles may persist for a long period of time. Particular combinations
of alleles carried on single chromosomes are called haplotypes, and frequen-
cies of various haplotypes within a population characterize the structure of
populations and can allow reconstruction of the evolutionary history of a pop-
ulation.

Over a longer timescale, recombination may shuffle the genetic maps of re-
lated species. For example, if species B and C are both descendants of ancestor
A, the order of genes on the chromosomes of B and C might not be identical.
Nevertheless, there may be groups of linked genes on a single chromosome in
B and that also are linked on a particular chromosome of C. This circum-
stance is called conserved synteny (Fig. 1.4A; see Glossary for alternative
definition). If the order of a set of genes is the same in both B and C, this
set of genes is described as a conserved segment, and if high-density “land-
marks” appear in the same order on a single chromosome in each of the two
species, this set of landmarks defines a syntenic segment. (In some contexts,
conserved segments and syntenic segments are also referred to as conserved
linkages or collinear gene clusters). A set of adjacent syntenic segments is
called a syntenic block, which may contain inversions and permutations
of the syntenic segments of C compared with B (Fig. 1.4B). The numbers
and sizes of such syntenic blocks are revealed when genome sequences of two
organisms are compared, and these blocks are signatures of the evolutionary
events separating B and C from A. It is possible to compare genomes of several
related organisms and make inferences about their evolutionary relationships
(i.e., comparative degrees of relatedness). One of the significant computational
problems is the construction of phylogenetic trees based upon sequences or
gene orders.

Even if there were no recombination, the DNA of the gametes would differ
from the DNA of the parent cells because of errors that occur at low frequency
during DNA replication. These errors occur at a frequency of 1076-10710 per
base pair for each cell division (depending upon the cell, the genome, and
the DNA polymerase involved). If the errors occur within a gene, the result
may be a recognizable mutation (alteration of the base sequence in a normal
gene or its control elements). Base changes at the DNA sequence level do not
always lead to recognizable phenotypes, particularly if they affect the third
position of a codon (three successive bases of DNA that encode a particular
amino acid during translation). As a result of mutations occurring over time,
a position in the DNA (whether in genes or in other regions of the genome)
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A. Conserved synteny
Chromosome i, species B

928 91 93
|

Chromosome j, species C

B. Syntenic blocks and segments

Chromosome i, species B T T T

958948 | 918928 938

Chromosome j, species C
94 95c | 91c 92c Yac

Syntenic block

Fig. 1.4. Co-occurrence of genes or landmark sequences within single chromosomes
or chromosome regions when chromosomes from each of two different organisms are

compared. Panel A: Conserved synteny. In this case, ggi, ..., g3 represent genes in
species B that have homologs gc1, ..., gcs in species C. Panel B: Syntenic segments
and syntenic blocks. In this case, ggi, ..., gps and the similar sequences in species C

refer to landmark sequences on the genome, which can be more numerous than genes
to produce a higher marker density. Syntenic segments are conceptually similar to
conserved segments, except that in the latter case there may be microrearrangements
undetected because of the low marker density.

may contain different base pairs in different representatives of a population,
and this variation can be measured at particular nucleotide positions in the
genomes from many members of that population. This variation, when it
occurs as an isolated base-pair substitution, is called a single-nucleotide
polymorphism, or SNP (pronounced “snip”).

1.3.3 Biological String Manipulation

As indicated above, DNA is not immutable. During the copying or replication
process, errors can occur (hopefully at low frequency, but at significantly
high frequency in the case of reverse transcription of the HIV genome, for
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example). In the human genome, the substitution rate at each nucleotide
position averages ~ 2.2x 1079 per year (MGSC, 2002). The genome sequences
of contemporary organisms contain a record of changes that have occurred
over time. The types of changes that may have occurred include:

Deletion: Removal of one or more contiguous bases.

Insertion: Insertion of one or more contiguous bases between adjacent
nucleotides in a DNA sequence. This is often associated with insertion of
transposable elements.

Segmental duplication: Appearance of two or more copies of the same
extended portion of the genome in different locations in the DNA se-
quence.

Inversion: Reversal of the order of genes or other DNA markers in a
subsequence relative to flanking markers in a longer sequence. Within a
longer sequence, inversion replaces one strand of the subsequence with its
complement, maintaining 5 to 3 polarity.

Translocation: Placement of a chromosomal segment into a new se-
quence context elsewhere in the genome.

Recombination: In vivo joining of one DNA sequence to another. When
similar sequences are involved, this is called homologous recombination.
Point mutation: Substitution of the base usually found at a position
in the DNA by another as a result of an error in base insertion by DNA
polymerase or misrepair after chemical modification of a base.

Results from some of these processes are diagrammed in Fig. 1.5. Point
mutation is closely related to processes of DNA replication and repair for
the generation or fixation of mutations. The other processes may also involve
DNA copying, but they also involve other processes of DNA breaking and
joining. Figure 1.6 makes an analogy between these processes and the menu
for a computerized text editor, indicating the enzymes that may be involved
in the various steps.

1.3.4 Genes

In the nineteenth century, Gregor Mendel observed that units of inheritance
are discrete. A gene is now usually defined as a DNA segment whose infor-
mation is expressed either as an RNA molecule or as a polypeptide chain
(after translation of mRNA). Genes usually are found at defined positions on
a chromosome, and such a position may be referred to as a locus. (A locus
may correspond to a gene, but there are some loci that are not genes.)
Genes are identified biologically (i.e., in organisms studied in laboratories)
when a mutation occurs that alters a phenotype or character. Characters are
properties of an organism that can be observed or measured, and the pheno-
type corresponds to a particular state of a character. For example, a mutation
in FEscherichia coli may render the organism incapable of using lactose as a
carbon source, or a mutation in Drosophila melanogaster may cause the eye
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Fig. 1.5. Processes modifying multiple positions on a duplex DNA molecule. Al-
though modifications of small numbers of basepairs are depicted, such modifications
can involve much larger stretches of DNA (thousands to millions of bp or more).
The processes named below the bottom molecule apply if the top molecule repre-
sents the starting condition. If the initial molecule were the one at the bottom, the
DNA segment marked as “insertion” would be a “deletion” at the corresponding
position in the top molecule. If it is unknown which molecule represents the initial
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state, such an insertion or deletion is called an “indel.”
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Fig. 1.6. The DNA text-editing “menu” (left) and associated enzymes.
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color to change from red to white. In the latter case, the character is eye
color, and the phenotype is red eye color. However, genes and phenotypes are
not always in one-to-one correspondence. For example, in FE. coli there are
seven genes involved in the biosynthesis of the amino acid tryptophan from
a precursor molecule. Mutations in any of these seven genes might lead to a
Trp~ phenotype (which requires the addition of tryptophan for growth in the
minimal medium). Similarly, a phenotype such as height or stature in Homo
sapiens is controlled by a number of different genes, this time in a quantitative
rather than all-or-none manner.

A given gene (corresponding to a particular locus) may have alternative
forms called alleles, as described in Section 1.3.2. These alleles differ in DNA
sequence, and these differences lead to differences in amino acid sequence. For
example, individuals affected by sickle cell anemia have a beta-globin gene
in which the glutamine normally present as the sixth amino acid residue is
replaced by valine. This altered beta-globin gene is one allele of beta-globin,
and the normal gene (wild-type gene) is another allele. There are other beta-
globin alleles in the human population.

Genes are transcribed from DNA to form RNA molecules (including
mRNA, a very important class of RNA). The DNA strand that is comple-
mentary to the mRNA is called the template strand, while the DNA strand
whose sequence corresponds to the mRNA sequence is called the coding
strand. DNA features (elements) found 5’ relative to the coding sequence
are considered to be “upstream,” and elements that occur 3’ relative to the
coding sequence are referred to as “downstream.” Diagrams of prokaryotic
and eukaryotic genes are presented in Fig. 1.7.

Prokaryotic genes have a number of component elements. Going in the 5’
to 3’ direction relative to the direction of transcription, we encounter sites
for binding proteins that control expression of the gene, a promoter where
transcription initiates, the uninterrupted coding sequence (that eventually
is translated into an amino acid sequence), and translational terminators.
Sometimes the coding sequences for two or more polypeptide chains will be
transcribed in succession from the same promoter, and such genes are said
to be polycistronic. (Cistrons are identified by a particular type of genetic
test, but they roughly correspond to coding sequences for polypeptide chains.)
Polycistronic genes are relatively common in prokaryotes.

Eukaryotic genes are much more complicated than prokaryotic genes. They
contain exons, which are segments of gene sequences that are represented in
the processed mRNA. All segments of the coding sequence that will eventu-
ally be translated into protein appear in exons. Introns are noncoding DNA
segments that separate the exons, and the RNA corresponding to introns is
removed from the initial transcript by an excision process called splicing.
Eukaryotic genes have more extensive control regions that include binding
sites for transcription factors and enhancer sequences (that together regulate
the level of transcription) and the “core” promoter where the transcription
complex assembles. Eukaryotic transcription terminates nonspecifically down-



'x0q Surdueduoooe oy} 9os ‘uordrIosep 99o[duod 9I0UW © 10y "OUe3 JIJOATIRNNH :{ [PURJ "oUe3 JIJOAIRNOI] Y
[ourq ‘seousnbes Surpoo o1} 0} SAIYR[SI POJRIIPUL oIk (UMOYS 10U ¥HA Yy ‘OVN ‘DLY) suopod dojs pue 1Ie)s I0] sedouanbes yN( o[eos
0} jou are s3uroeds pue sozIs N ‘PajedIpul aIe (soxoq oe[q) seousnbas 1ojoword 2100 10 (sexoq Ao13) seousnbes A1oje[n3oy -puer)s
(W0190(,, 97} UO $8INYeSJ TRJIUUIS 0} PUOASIIIOD dUI[ ) MO[oq SoxX0q o[rym ‘puei)s ,dojy, oY) uo jusssid seousnbes Surpoo 0} puodserrod
ouI[ YDe[q PI[OS 91} A0 SOXO( YA (U] 3or[q [eu0ZLIOY) YN (I Xo[dnp ul sousS orjoLreyne pue ds1j04resjord Jo saInjoniyg 4 T S

m<<<<<< [ NNN\\N - | T T Y Z VYNyw

' S

M<<<<<< [NN\N\\N | 11 | B NN | L VNyw
S

(s3ueLieA 321|ds aAnewIR)e 7) Buplds

d1n.e

41n.s
AL 1 1 ) O —1 Y VNyw-a.d
' S
uonippe y-Ajod ‘buidded pua s ‘uondudsues)
9 uox® G UOXd FUOXd € UOXd T uoxd | Uoxd
7L
[NNN\N .| [ N— | LI LI  I— CW O/ o
+ + + VVL G uonul  uonul € uonul Z uonui Luonul oy
sdols uondudsuel] + < +
aus " uondalp uondudsuel) uels
v-Ajod uondudsuel] q
[ 1= IS } VNYWw diuosisidAjod
€ S
uondudsuel]
uondallp uondudsuel|
—_— >
Jausn gausn VELED)
|
I T TT T
+ Vvl 51V Vvl OIV V5L 51V gausn
dois uonduosues) -

<%

uondaip uondudsuel]



1.3 Inheritance 17

stream of the DNA “signal” that specifies the post-transcriptional addition of
a string of A residues at the 3’ end of the message. (The addition of these A
residues is called polyadenylation.)

Organization of prokaryotic and eukaryotic genes (See Fig. 1.7)

Prokaryotic genes

Genes in bacteria are normally close together and may be organized as operons
(Genes A, B, and C) or may be individually transcribed (Gene D). Gene D
is transcribed from the strand opposite to genes A, B, and C. Transcription
(5" to 3’ polarity with respect to the coding sequence) is initiated at promoter
sequences, with initiation controlled by one or more operator sequences (grey
boxes) to which repressor proteins bind. The mRNA product of the ABC
operon (bottom of panel A) is ready for immediate translation.

Eukaryotic genes

The eukaryotic gene schematically depicted in panel B has transcription factor
binding sites (grey boxes) upstream of the promoter. Promoter regions may
be extensive, and introns may also be long, as indicated by the interruptions
in the black line. The gene illustrated contains six exons and five introns.
Exons 1 and 6 contain regions that will not be translated (5 UTR in exon 1
and 3’ UTR in exon 6, hatched boxes). Transcription does not terminate at
a unique position (vertical arrows). The immediate product of transcription
is a pre-mRNA (grey line with open boxes) that is modified at the 5 and 3
ends. The poly-A tail is added to the end of the message after transcription
has occurred. Splicing removes the introns to produce mature mRNA species
that are ready for translation. Alternative splicing may or may not occur, but
when it does, a single gene region may be responsible for two or more different
(related) polypeptide chains (mRNA 1 and mRNA 2).

With the arrival of the “genome era,” genes can now be identified by
analyzing DNA sequence. For prokaryotes, this may be relatively easy because
the average prokaryotic gene is around 1000 bp long, and approximately 90%
of a typical prokaryotic genome codes for gene products. For eukaryotes, this
can be a significant computational problem because eukaryotic genes usually
are much larger, are interrupted by several introns (in higher eukaryotes), and
occur as a much smaller fraction of their genomes (around 1.2% in the case
of H. sapiens). For example, the average human gene is about 27,000 bp in
extent and contains 9-10 exons of average length 145 bp. The rest of the gene
region corresponds to extensive control regions, untranslated regions, and the
intronic regions, which may be thousands of base pairs in extent.

1.3.5 Consequences of Variation: Evolution

In the last two sections, we described types of change that can occur in DNA
sequences, and we alluded to the biochemical mechanisms leading to these
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changes. The result of such processes occurring in a large number of inter-
breeding individuals is genetic variation within the population (i.e., a lo-
calized collection of individuals in a species that reproductively transmits
genes). This means that different versions (alleles) of the same gene may be
found within the population. Some members of that species may be more re-
productively successful than others, depending on their genetic constitution
(genotype). Every organism’s genotype is tested against environmental con-
ditions through the phenotypes specified by that genotype. The conditions
that a population experiences allow some genotypes to be more efficiently
transmitted to the succeeding generations, leading to enrichment of some al-
leles at the expense of others. This process is called natural selection. The
change in population gene or allele frequencies over time is called evolution.

There are two related statistical and computational problems in dealing
with populations: (1) characterization of genetic variation within and between
populations in terms of allele frequencies or nucleotide sequence variation, and
(2) analysis of the trajectory of population parameters over time. These two
approaches are practically and conceptually interwoven. The first activity,
which is the concern of population genetics, employs gene or locus frequency
measurements taken from samples of populations alive today. Population ge-
netics is usually (but not always) concerned with variation within species over
relatively shorter periods of time. The second activity, known as molecular
evolution, invokes evolutionary models to describe molecular (often sequence)
data in a parsimonious manner. Molecular evolution usually (but not always)
focuses on variation among species or higher-level taxa over comparatively
longer periods of time. The key idea in evolutionary thought is that all species
are related by descent from shared, common ancestral species that lived at
some time in the past. These relationships are often represented in terms of
phylogenetic trees (see Chapter 12). Thus, today’s human and chimpanzee
populations arose from the same ancestral primate population that existed
about 6 million years ago, while humans and mice arose from an ancestral
population that existed 80-85 million years ago (dates are estimated by a
combination of molecular and fossil evidence). However, there were popula-
tions of organisms in the past that left no contemporary descendants (e.g.,
hadrosaurs, or “duck-billed” dinosaurs): they have become extinct. The biota
of today are as much a result of extinction as of speciation. More than 99%
of all species that have ever lived are now extinct. On average, species exist
for about 2—4 million years before they succumb to extinction (some species
last for much shorter, others for much longer times). Causes of extinction
are varied and unpredictable. The organisms on Earth today resulted from
a particular sequence of environmental conditions that occurred in a unique
temporal sequence on this one planet. This pattern of evolution was not pre-
dictable and is not repeatable.
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1.4 Information Storage and Transmission

An important segment of computational biology deals with the analysis of
storage and readout of information necessary for the function and reproduc-
tion of cells. This information is used to code for structural proteins (e.g.,
cytoskeletal proteins such as actin and tubulin) and catalytic proteins (e.g.,
enzymes used for energy metabolism), for RNA molecules used in the transla-
tional apparatus (ribosomes, transfer RNA), and to control DNA metabolism
and gene expression.

An organism’s genome (defined at the beginning of the chapter) is, ap-
proximately, the entire corpus of genetic information needed to produce and
operate its cells. As indicated above, eukaryotic cells may contain one, two, or
three types of genomes: the nuclear genome, the mitochondrial genome, and
the chloroplast genome (in plants). The vast majority of eukaryotes contain
both nuclear and mitochondrial genomes, the latter being much smaller than
the nuclear genome and confined to mitochondria. When one speaks of “the
X genome” (e.g., “the human genome”), the nuclear genome is usually the
one meant. Mitochondrial and chloroplast genomes in some ways resemble
genomes of the prokaryotic symbionts from which they were derived.

The information flow in cells (already alluded to above) is summarized
below.

1 2
DNA «——— RNA 3, protein
4

The processes are identified as follows:

1. DNA replication, where a DNA sequence is copied to yield a molecule
nearly identical to the starting molecule;

2. Transcription, where a portion of DNA sequence is converted to the cor-
responding RNA sequence;

3. Translation, where the polypeptide sequence corresponding to the mRNA
sequence is synthesized;

4. Reverse transcription, where the RNA sequence is used as a template for
the synthesis of DNA, as in retrovirus replication, pseudogene formation,
and certain types of transposition.

Most biological information is encoded as a sequence of residues in linear,
biological macromolecules. This is usually represented as a sequence of Roman
letters drawn from a particular alphabet. Except for some types of viruses,
DNA is used to store genomic information. RNA may be used as a temporary
copy (mRNA) of information corresponding to genes or may play a role in the
translational apparatus (tRNA, spliceosomal RNA, and rRNA). Proteins are
polypeptides that may have catalytic, structural, or regulatory roles.
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1.4.1 DNA

The genomes of free-living (nonviral) organisms are composed of DNA. The
subunits (nucleotides) of these macromolecules are deoxyribonucleotides of
four types: deoxyadenosine 5’-phosphate (&), deoxycytidine 5-phosphate (C),
deoxyguanosine 5’-phosphate (G), and thymidine 5'-phosphate (T). The 5" po-
sition on the sugar of each nucleotide is connected via a phosphate group to
the 3’ position on the sugar of the immediately preceding nucleotide. Each
DNA strand has a 5’ end, corresponding to the phosphate group attached to
the 5" position on the sugar molecule of the first nucleotide, and a 3’ end,
corresponding to the -OH group at the 3’ position on the sugar of the last nu-
cleotide. For double-stranded DNA (Fig. 1.8), the two strands are antiparallel,
which means that the two polynucleotide chains have opposite orientations or
polarities. Base-pairing rules are usually observed: A base pairs with T and G
base pairs with C (Fig. 1.9). Two strands whose sequences allow them to base
pair are said to be complementary. A duplex DNA molecule can thus be rep-
resented by a string of letters drawn from {A, C, G, T}, with the left-to-right
orientation of the string corresponding to the 5’ to 3’ polarity. The other
strand is implied by the base-pairing rules. If the string corresponds to a sin-
gle strand, then this should be explicitly stated. If a strand is written in the
3’ to 5’ direction, then this should be explicitly indicated. DNA molecules are
encountered with numbers of bases or base pairs ranging from ~20 (oligonu-
cleotide primers) to hundreds of millions (panel A of Table 1.1). For example,
the DNA molecule in human chromosome 1 has a size of 285,000,000 base
pairs. The number of bases or base pairs may be colloquially referred to as
“length,” and units may be given in kilobases (kb = 1000 bases or base pairs)
or megabases (Mb = 1,000,000 bases or base pairs).

The organization of DNA in cells can be considered at four different struc-
tural levels: constituent nucleotides, DNA, chromatin, and chromosomes. As
an indicator of scale, the “length” of a nucleotide is approximately 1 x 10~ m.
The diameter of the DNA helix is 2 x 107 m, and the pitch of the helix is
3.4 x 1072 m. In eukaryotes, the DNA is wrapped around histones to form nu-
cleosomes (diameter 11x10~%m). The chain of nucleosomes is further wrapped
into higher-order structures that constitute the chromosomes, which are lo-
cated in the nucleus. A typical nucleus might have a diameter of 0.5 x 107 m
and would represent approximately 10% of the cell volume. Notice that a
DNA molecule may be orders of magnitude longer than the diameter of the
cell that contains it. For example, the length along the contour of the DNA
in human chromosome 1 is approximately 9.5cm (!), while the cell diameter
is approximately 1073 cm. The small diameter of the DNA helix and the hi-
erarchical packing of the nucleosome structures allow packing of these long
molecules into nuclei.
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minor major
groove groove

3.6 nm

Fig. 1.8. Structure of duplex DNA. Ribbons represent the phosphodiester back-
bones of the two antiparallel strands, and the rectangular elements in the middle of
the duplex represent the stacked base pairs. Connections of these base pairs to the
phosphodiester backbone are not indicated. The gradients in size of the rectangles
indicate that sometimes the base pairs are being viewed “edge-on” and other times
“end-on” as they lie at different degrees of rotation about the helix axis. The major
and minor grooves and relevant dimensions are indicated. Major and minor grooves
are distinguished from each other by the spacing between the two phosphodiester
backbones and the depth from the outside of the molecule to the edges of the base
pairs.

1.4.2 RNA

RNA differs from DNA in two primary ways: the residues contain hydroxyl
groups at the 2’ position of the sugar (and thus are not “deoxy”), and
uracil (U) replaces the thymine base T. Thus RNA molecules are composed of
the monomers adenosine 5’-phosphate, cytidine 5-phosphate, guanosine 5'-
phosphate, and uridine 5-phosphate. RNA is written as a string of Roman
letters drawn from the alphabet {A, C, G, U}, with the left-to-right orientation
corresponding to the 5’ to 3’ polarity. In most cases, RNA is encountered as a
single strand, but often it will form intrastrand base pairs to form secondary
structures that may be functionally important. RNA secondary structures are
the result of intrastrand base pairing to form sets of “hairpins” and loops. The
prediction of secondary structures for RNA molecules is a significant compu-
tational problem that takes into account free energies of base-pair formation
and constraints on loop sizes. Duplex RNA molecules can be functional, either
as genomes of some viruses or as interfering RNA (RNAi) that helps regulate
gene expression in plants and animals. Sizes of RNA molecules typically range
from approximately 100 to a few thousand nucleotides (not bp)—see panel B
of Table 1.1.

1.4.3 Proteins

As indicated above, proteins are directly involved in the functioning of the cell.
They are polypeptides, composed of strings of amino acid residues polymerized
with the loss of one HoO molecule per joined pair of amino acid residues. They



Table 1.1. Examples of DNA, RNA, and protein molecules. DNA molecules differ
primarily by base composition and length and are structurally similar (but not
identical) to each other. RNA molecules differ by length, base composition, and
secondary and tertiary structure. Proteins are much more structurally diverse: the
data represent only a sample of the diversity of structure types for proteins. Identical
protein types from different organisms may differ in sequence; see the accession
numbers for the source organism.

A: DNA
Name (GenBank acc. num.) Number of bp Base composition
(%G + C)
Mouse mtDNA 16,295 36.7
(NC 001569)
Bacteriophage A 48,502 49.9
(J02459)
E. coli K-12 chromosome 4,639,221 50.8
(U00096)
Human chromosome 1 285,000,000 41.0
B: RNA
Name (GenBank acc. num.) Number of nt Base composition
(%G + C)
tRNAA1.(M26928) 73 60.3
18S rRNA(X04025) 1826 53.8
HIV-1 (AF443114) 9094 41.9
C: Protein
Name (PDB acc. num.) Polypeptides ~ Number of Molecular
(number/molecule)  residues weight
Ribonuclease A (1FS3) A (1) 124 13,674
Total: 1 124 13,674
Hemoglobin (2HCO) A (2) 141 15,110
B (2) 146 15,851
Total: 4 574 61,922
Ubiquinol oxidase (1FFT) A (1) 663 74,359
B (1) 315 34,897
C (1) 204 22,607
D (1) 109 ?
Total: 4 1291 148,000 (est)
Glutamine synthase (1FPY) A (12) 468 51,669

Total: 12 5616 620,028
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Fig. 1.9. Structure of Watson-Crick base pairs. Only relevant atoms are indicated.
Junctions between straight segments in the rings correspond to locations of carbon
atoms. The -CH3 of T is called a methyl group. Broken lines connecting A and T or G
and C correspond to hydrogen bonds that help stabilize the base pairs. Grey arrows
pointing toward atoms on the rings indicate that these atoms are hydrogen bond
acceptors, and grey arrows pointing away correspond to hydrogen bond donors. Only
donors and acceptors on the major groove edges of the base pairs are shown. The
bonds extending to the sugar residues in the phosphodiester backbone are on the
minor groove side of the base pairs.

are usually represented as a string of letters drawn from an alphabet of twenty,
written in the direction from the amino-terminal to the carboxy-terminal ends:

NHy-AEGLV- - - WKKLAG-COOH
This also may be written as
NHjs-Ala-Glu-Gly-Leu-Val-- - - -Trp-Lys-Lys-Leu-Ala-Gly-COOH

using the three-letter abbreviation for the amino acid residues. Each polypep-
tide chain usually corresponds to a gene. Polypeptides in proteins usually have
between 50 and 1000 amino acid residues, with 300 to 400 residues being the
typical average length of polypeptides in many organisms. For small proteins
(often in the range 100 to 200 amino acid residues), the active molecule may
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be composed of a single polypeptide chain, but many proteins are composed of
a precisely defined set of polypeptide chains. The simplicity of representation
of polypeptides as a string of letters belies the profound structural complexity
of protein molecules: the prediction of protein structure from the amino acid
sequence is a difficult computational and theoretical problem.

Panel C of Table 1.1 lists some examples of proteins, illustrating the ranges
in size and numbers of polypeptides. The sequence of amino acid residues
constitutes the primary structure. There are a limited number of types of sec-
ondary structures (involving interactions between nearby amino acid residues
on the same polypeptide chain), including alpha helix and beta pleated sheet.
Secondary structure elements may combine to form a particular fold of a
polypeptide segment. There are thought to be 1000-2000 different types of
folds. Each individual polypeptide chain is folded into a particular three-
dimensional structure (called tertiary structure). It is a general observation
that complex proteins are often composed of multiple polypeptide subunits.
Sometimes these are all identical, as is the case with glutamine synthase (12
identical polypeptide chains), but in other cases these subunits are all differ-
ent (e.g., ubiquinol oxidase; see Table 1.1C). The aggregate structures formed
from multiple polypeptide chains are called quaternary structures.

1.4.4 Coding

The DNA alphabet contains four letters but must specify polypeptide chains
with an alphabet of 20 letters. This means that combinations of nucleotides
are needed to code for each amino acid. Dinucleotides are combinations of
two: AA, AC, AG,..., TC, TG, TT. There are 42, or 16, possible dinucleotides—
not enough to code for all 20 naturally occurring amino acids. Trinucleotides
(triplets) are combinations of three nucleotides: AAA, AAC, AAG, ..., TTC, TTG,
TTT. There are 43, or 64, possible trinucleotides. The genetic code is a triplet
code, and the code triplets in mRNA are called codons. These may be written
in their DNA form with T instead of U (when looking for genes in DNA) or
in their RNA form with U instead of T (when we are concerned about the
actual translation from mRNA). Triplets that specify “stop translation” are
UAG, UGA, and UAA. Translational starts usually occur at an AUG codon, which
also specifies the amino acid methionine. One representation of the genetic
code is given in Appendix C.2.

Since there are three stop codons out of 64 triplets, there are 61 triplets
coding for the 20 amino acids. This means that amino acids may be specified
by more than one triplet. For example, leucine (Leu) is encoded by CUG, CUA,
CUC, and CUU. As we will see later, these codons are not used with equal
frequencies in various genes and organisms, and the statistics of codon usage is
a characteristic that can sometimes be used to distinguish between organisms.

Successive amino acid residues in a polypeptide chain are specified by the
sequence of triplets. For example, if the first amino acid is specified by a triplet
beginning at nucleotide ¢ in the mRNA, the second one will be specified by
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the triplet beginning at nucleotide ¢ + 3, and the third one will be specified
by the triplet beginning at nucleotide ¢ + 6, and so on. But what determines
the location of the initial triplet at i? Prokaryotes contain a hexanucleotide
at the 5" end of the mRNA that sets the stage for translation beginning with
the next AUG. Eukaryotes have a 5’ cap structure, and translation begins at
the next AUG of the mRNA.

When examining DNA for protein-coding regions, we initially look for
open reading frames (ORFs). An ORF (pronounced “orf”) is a stretch of
sequence that does not contain stop codons. In a random DNA sequence that
is 50% G+C, on average one would expect a stop codon to occur after a stretch
of 21 codons. The median exon size for humans is about twice as large as this
(122bp), and for prokaryotes the average gene size is approximately 1000 bp,
so longer-than-average ORFs are indications of possible protein-coding re-
gions. As a first approximation to gene recognition in prokaryotes, one looks
for (1) an AUG start codon followed by (2) an open reading frame long enough
to code for a reasonably sized polypeptide (> 50 amino acid residues) and
having (3) the characteristic codon usage frequencies. The ORF ends at one
of the three stop codons. As we will see later, gene recognition in eukary-
otes requires much more analysis to replace point (2) above. Duplex DNA
contains six possible reading frames, as illustrated in Fig. 1.10: three on the
“top” strand and three on the “bottom” strand. When searching for genes in
DNA, we must examine all six reading frames.

1.5 Experimental Methods

Data used in computational biology often can be traced back to a few micro-
liters of an aqueous solution containing one or more types of biological macro-
molecules. The methods for studying biological materials determine the types
of data available and the computational approaches required. The structures
of DNA, RNA, and proteins were presented in Section 1.4. Here we discuss
these types of molecules from an experimental perspective. As computational
biologists, we should clearly understand what quantities are measured and
how the measurements are made. It is appropriate to examine the raw data
(e.g., output from a sequencing machine, autoradiogram, pattern of restriction
fragments on a gel) to help understand the type and quality of the data.

1.5.1 Working with DNA and RNA

Most DNA and RNA molecules, regardless of their source, have similar prop-
erties and can be purified by using only minor variations from a standard
set of protocols: alkaline minipreps (appropriate for DNA, not RNA), ultra-
centrifugation in CsCl gradients, or ethanol precipitations, for example. The
experimental approaches depend on the amounts and molecular sizes of each
type of macromolecule in a typical cell.
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We can calculate the abundance of a 1000 bp segment of single-copy DNA
in diploid eukaryotic cells. Taking each base pair of the sodium salt of DNA
to have a molecular mass of 662, and recognizing that there are two copies
of each molecule per cell, we calculate that 103 bp of single-copy DNA in a
genome corresponds to about 2 x 107!® grams of DNA/cell. A 1 liter cul-
ture of mammalian cells grown in suspension (at about 10¢ cells/mL in a
tissue culture flask, higher in a bioreactor) would contain 2 x 107 g of this
1000 bp region. In contrast, a DNA segment of similar length in mitochondrial
DNA (mtDNA, present at 103-10* copies/mammalian somatic cell) will be at
least a thousand times more abundant. The molecular sizes also matter. A
1000bp DNA segment of eukaryotic DNA from a particular chromosome is
part of a long, linear DNA molecule that cannot be easily purified without
fragmentation, which destroys long-distance relationships to other regions of
the molecule. In contrast, a similar length segment in mitochondrial DNA can
be easily purified on an intact molecule because the mtDNA molecules are
small, circular molecules that can be purified without fragmentation.

For routine molecular biology procedures (e.g., restriction mapping, in
vitro mutagenesis), a laboratory technician requires about 10~7 to 10~8 g of
DNA. Because only small quantities of any particular nuclear DNA sequence
are isolated directly (see above), DNA is often amplified. The most common
amplification methods are the polymerase chain reaction (PCR) and cloning.
PCR employs in vitro enzymatic DNA synthesis in repeated cycles, such that
if amount A of a DNA is originally present, after n cycles the amount present
will be approximately A2™. With extreme care to exclude contaminating DNA,
it is technically possible to amplify as little as one molecule (!) by PCR.
There is no DNA repair system to correct polymerase copying errors during
PCR; consequently, after repeated cycles of amplification, some of the copies
will have slightly altered sequences compared with the original, unamplified
molecules.

Cloning (see Fig. 1.11) involves enzymatic joining of the desired DNA
sequence to a cloning vector and its propagation in a convenient host organ-
ism (bacteria, yeast, or eukaryotic cells in culture). The cloning vector is a
DNA molecule chosen to have appropriate replication properties (copy num-
ber, control of copy number), insert size, and host specificity (vectors must
be matched to the host cell) for producing the desired amount and length of
DNA product. If a genome is being analyzed, the genome may be represented
as collections of clones, called libraries. In genome sequencing projects, clone
collections based upon three different types of cloning vector are not uncom-
mon. The number of clones to be collected and stored may range from 10*
to 107, depending upon the genome size of the organism being analyzed, the
chosen vector, and the cloned fragment size. This of course raises practical
issues of physically archiving the clones (e.g., sample storage in freezers) and
recording pertinent descriptive information about each (e.g., cloning vector,
date prepared, shelf location in a particular freezer).
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Microarray studies of gene expression focus on types and amounts of dif-
ferent RNA species in cells or tissues (see Chapter 11). Mammalian genomes
may have ~25,000 genes, which corresponds to 25,000-75,000 or more pos-
sible different mRNA species when alternative splice variants are taken into
account. Different mRNA species can have very different levels of abundance,
and they are often unstable (some may be degraded in vivo within seconds
to minutes). mRNA molecules are extremely unstable in vitro as well. Unlike
DNA, they are sensitive to alkaline hydrolysis. Stable ribonucleases present in
cells (and on laboratory apparatus and fingerprints of technicians who don’t
wear protective gloves) represent an even bigger problem. Sequences repre-
sented on mRNA molecules can be enzymatically converted to DNA form by
in vitro reverse transcription using retroviral reverse transcriptases. Since the
DNA strands that are reverse-transcribed are complementary to the mRNA
molecules, these products are referred to as cDNA (Fig. 1.11, right). Such
molecules may not contain copies of the complete mRNA sequence, however.
The molecules are usually converted to duplex cDNA for eventual manipula-
tion (e.g., cloning). Collections of cloned cDNAs representing transcripts from
a particular cell type are called cDNA libraries. Of course, cDNA molecules
can be further amplified by PCR as required.

Sometimes short DNA sequences (~200 nucleotides) are obtained from
large collections of cDNA clones to provide sequence labels for genes expressed
under a particular set of conditions for a particular cell or tissue type. These
short sequences are called expressed sequence tags (ESTs). The sequences of
ESTs can be used to design PCR primers that can assist in mapping these
sequences to genomic locations.

1.5.2 Working with Proteins

Different proteins can have substantially different abundances. For example,
proteins such as histones or cytoskeletal proteins are abundant in cells and are
readily purified. Other proteins have very low abundances (< 100 molecules
per cell). Unlike DNA and RNA (represented as cDNA), currently there is no
method for amplifying rare proteins in a cell extract. To obtain rare proteins

Fig. 1.11 (opposite page). Capturing genetic information in genomic or cDNA
libraries. After extraction or conversion to DNA, DNA fragments are cloned and in-
troduced into an appropriate host organism for propagation. Either DN A molecules
or clones may be archived for future use. cDNA clones are usually small because
mRNA from which ¢cDNA is derived is usually hundreds of nucleotides to a few
thousand nucleotides in length. Genomic clones may have small inserts (~2kb, use-
ful for DNA sequencing), intermediate-sized inserts (10 kb, useful for DNA sequence
assembly), or large inserts (100-300 kb, useful for long-range sequence assembly).
Molecules in the appropriate size range are produced by a size selection step prior
to cloning. Different cloning vectors are required for different insert sizes.
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directly from cells, it may be necessary to employ many liters of cell culture
and multiple purification steps to obtain even 10~2 g of purified protein. Large
amounts of a particular protein can be obtained by cloning its coding sequence
(possibly derived from a full-length cDNA) onto an expression vector—a
vector with a promoter (constitutive or inducible) and sequences specifying
the addition of polyA to transcripts. Large amounts of the desired protein
are produced from such clones because of the increased gene copy number
and increased transcription rate. However, a polypeptide chain produced in
this manner may or may not be properly processed, folded, glycosylated, or
assembled if it is expressed in a nonnative cell type.

If a particular protein has never before been purified, protein biochemists
know a number of procedures to try (e.g., precipitation by (NHy4)2SOy, ion-
exchange chromatography, high-pressure liquid chromatography, molecular
sieve chromatography, etc.), but in general multiple steps are required, each
of which must be optimized before milligram amounts of purified and active
protein can be produced. During purification, proteins that function as parts
of macromolecular complexes may be separated from other proteins in the
complex and thus may lose biological activity. In addition, proteins dena-
ture (lose their natural structure) more readily than do nucleic acids. This
can occur because of binding to surfaces (a problem particularly in dilute solu-
tions), oxidation of sulfhydryl groups, unfolding at elevated temperatures, or
exposure to detergents. (Nucleic acids are indifferent to detergents.) Similarly,
some membrane proteins may be difficult to purify in soluble form because of
their hydrophobic character.

A lack of amplification methods (short of expression cloning) and the wide
range of protein properties determined by the various possible amino acid se-
quences influence methods for studying proteins. Two-dimensional polyacry-
lamide gel electrophoresis (2DE) is an established method for displaying (in
principle) any cellular proteins in cell lysates or cell fractions (Fig. 1.12).
Sample preparation disrupts the protein structures, producing a solution of
denatured polypeptide chains. Therefore, functional proteins composed of
multiple polypeptide chains (e.g., RNA polymerases) are “deconstructed” to
their constituent polypeptides. Separation of the polypeptides on the poly-
acrylamide gel matrix depends upon two different properties associated with
each polypeptide chain: the molecular mass and the isoelectric point (pI).
Molecular mass is the summation of the molecular masses of the constituent
amino acid residues, and since polypeptides generally differ in length and com-
position, each polypeptide species has a characteristic molecular mass. The
isoelectric point of a protein or polypeptide is the pH at which its average
charge is zero. The isoelectric point is related to the amino acid composition
by the number and kind of acidic and basic residues that the polypeptide
chain or protein contains. An excess of basic residues leads to a pl greater
than 7.0, and an excess of acidic residues leads to a pl less than 7.0.

With 2DE (Fig. 1.12), the protein mixture is first resolved into a series
of bands by isoelectric focusing, which is electrophoresis in a stationary
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pH gradient (i.e., a pH gradient for which the pH at any position is time-
invariant). Proteins having an isoelectric point of 8, for example, migrate to
that point in the pH gradient where the pH is 8 and then stop migrating
because their average charge is zero at that point. Proteins whose isoelectric
point is 4.5 migrate to the position in the pH gradient where the pH is 4.5.
Isoelectric focusing is performed in a “tube gel” (typical tubes are 0.3 cm in di-
ameter and 15 cm long) or on plastic-backed gel strips containing immobilized
pH gradients. After the bands have been formed by isoelectric focusing, the gel
or strip is equilibrated with a solution containing the strong detergent SDS.
SDS is negatively charged. All polypeptides bind SDS at approximately the
same mass of SDS/mass of protein, and they become extended and negatively
charged with approximately the same charge-to-mass ratio in solution. The
gel or strip is then placed on a slab gel, perpendicular to the direction of the
electric field to be applied. Electrophoresis through the slab polyacrylamide
gel resolves polypeptides based upon their extension in space, which is related
to the molecular mass. After the electrophoresis step, spots corresponding to
individual polypeptides can be visualized by staining or by autoradiography
or phosphorimaging (if proteins were labeled with radioisotopes). Figure 1.13
shows an example of a stained gel. With typical protein loads, up to 1000 to
1500 polypeptides can be resolved in two dimensions.

Often, we wish to detect a specific macromolecule in the presence of others.
For DNA and RNA, this is relatively easy because Watson-Crick base pairing
is a specific and efficient mechanism for a probe DNA molecule to “recognize”
a molecule containing the complementary sequence. However, there currently
are no easy methods for detecting specific protein sequences, except for meth-
ods using antibodies and antibody-like molecules. These and similar methods
are powerful and sensitive but are experimentally demanding, as described in
the box below.

Antibodies and specific protein recognition

Antibodies (Ab) or immunoglobulins are proteins that are produced by
vertebrate immune systems to bind “foreign” molecules that may be present
in the body (e.g., bacteria). A complex combinatorial process produces anti-
bodies that are capable of binding virtually any specific antigen (a molecule
that elicits the immune response) that the organism might encounter. Usually
(but not always), an antibody that recognizes and binds to antigen x will not
recognize and bind to antigen y, and vice versa.

There are two labor-intensive steps in the production of antibodies: pro-
duction of the antigen and production of the antibody. We have already dis-
cussed earlier the issues related to purification of proteins to be used as anti-
gens. The second issue, antibody production, can be attacked in different ways.
Traditionally, antibodies are made by repeated injection of an antigen into
rabbits or goats and bleeding the animals several weeks later. This produces
a sample of polyclonal antibodies (a mizture of different immunoglobu-
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Fig. 1.13. Proteins extracted from yeast resolved by two-dimensional gel elec-
trophoresis and visualized by silver staining. Molecular weights are in kilodaltons.
Over 1000 spots were detected, corresponding to about 20% of all yeast genes. The
abundance of proteins in the gel is approximately proportional to the spot intensity.
Reprinted, with permission, from Gygi SP et al. (1999) Molecular and Cell Biology
19:1720-1730. Copyright 1999, the American Society for Microbiology. All rights
reserved.

lin species directed against the antigen). The different immunoglobulins may
“recognize” or bind to different specific regions of the antigen (different pro-
tein domains, for example). Different regions of the antigen recognized by
distinct antibody species are called epitopes. A preferable but more expen-
sive and time-consuming procedure is to produce a monoclonal antibody,
which is a single immunoglobulin species that recognizes a single epitope. In
this procedure, a mouse is immunized with the antigen, and cells from the
spleen (where antibody-producing cells mature) are removed and fused with
an “immortal” multiple myeloma (tumor) cell line. This produces hybrid cell
lines (hybridomas), and individual hybridoma cell lines may produce a single
antibody directed toward a single epitope from the original antigen. Such cells
can be used to produce the antibody in tissue culture, or they can be injected
into mice to produce the desired antibody in vivo. This procedure obviously
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entails costs for vivarium facilities and for a hybridoma tissue culture facility.
The procedure usually requires a few months.

An alternative to monoclonal antibodies are probe molecules identified by
phage display approaches. With phage display, DNA encoding the antibody
binding regions is cloned into one of the coat protein genes of a filamentous F.
coli bacteriophage such as fd or M13. When the mature phage is produced, it
“displays” the antigen binding region on its surface. From a mixture of bacte-
riophages that recognize a large number of antigens, a phage species capable
of recognizing a particular antigen can be purified after repeated amplification
and enrichment steps. This approach only requires standard cloning and bio-
chemical expertise, but of course it still requires purified antigen. Production
of antibodies can also be avoided by using small polypeptides specifically de-
signed by protein engineering for specific protein binding, and such technology
is commercially available (e.g., Affibody AB, Sweden).

1.5.3 Types of Experiments

In general, questions addressed by computational biology are subsets of the
overall question, “How do cells and organisms function?” We may think of
the larger question as being composed of three components:

— Characterizing the genome;

— Identifying patterns of gene expression and protein abundance under dif-
ferent conditions;

— Discovering mechanisms for controlling gene expression and the biochem-
ical reactions in the cell.

We expand on these topics in the introductions to subsequent chapters, but
here we provide an overview. Computational biologists should be concerned
about experimental details because computational approaches must be tai-
lored to the structure of the experimental data.

Genomes can be characterized by genetic and physical mapping, analyz-
ing evolution of single-copy and repeated DNA sequences, identifying genes
and their organization, and building inventories of genes by type. This is the
realm of restriction mapping, cloning, DNA sequencing, pattern recognition,
and phylogenetic tree building. Each of these topics is addressed in a subse-
quent chapter. Typically, DNA is isolated from an appropriate representative
strain or lineage of a particular type of organism and cloned as shown in
Fig. 1.11 (left). Clones stored in libraries may be digested with restriction
endonucleases (individually or in combination) to produce maps of the var-
ious clones. Alternatively, the ends of the cloned inserts may be sequenced
directly. Depending upon the purpose of the experiment, the clones may be
screened by hybridization to find those having sequences similar to particular
probe sequences (e.g., to DNA from a gene of interest). Ultimately the result
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is the sequence of a DNA molecule annotated for any genes or regulatory sig-
nals (e.g., transcription factor binding sites) that it may contain. Comparison
with similar gene regions in model organisms may provide insight into gene
function. Investigators interested in those genes associated with a particular
genetic disease may focus on a few genes, but with genome sequencing ap-
proaches, the entire panoply of genes is examined, usually in an evolutionary
context.

Gene expression studies seek to measure the amounts of mRNA or protein
species in a particular cell or tissue type under a particular set of physiological
conditions. The transcriptome is the entire collection of transcripts, and the
proteome is the entire collection of proteins for a particular cell and set of
conditions. The transcriptome is studied by a variety of methods for measuring
(directly or indirectly) mRNA levels, including spotted microarray exper-
iments, “gene chip” experiments, serial analysis of gene expression (SAGE),
and total gene expression analysis (TOGA). For eukaryotes, this may in-
volve purification of RNA and preparing cDNA (Fig. 1.11, right). Each cDNA
clone corresponds to a particular expressed sequence (mRNA). For spotted
microarrays, gene or intergenic DNA samples spotted onto solid substrates
are hybridized to labeled cDNA mixtures prepared from mRNA extracts (see
Chapter 11). Proteomes can be analyzed by resolving protein extracts from
cells by using 2DE and subjecting particular polypeptides to tandem mass
spectrometry. Array technologies also are being devised to identify and quan-
tify protein species in cell extracts.

Gene regulation may depend upon sites on DNA that bind regulatory
proteins and also can depend upon protein-protein interactions. Sites on DNA
that bind regulatory proteins can be identified on a DNA fragment by gel-
shift or footprinting methods. Gel-shift experiments are lower-resolution
electrophoretic assays that depend upon the retardation (“gel-shift”) of DNA-
protein complexes relative to DNA having no bound protein. Alternatively,
“footprinting” methods may be used to locate the position and extent of the
binding region. These methods rely on reagents that cleave DNA within one
or the other of the two strands. Proteins bound to the DNA protect it from
cleavage. Fragmented DNA strands are resolved by gel electrophoresis, and the
“footprint” is the region of the gel lacking cleaved fragments. Protein-DNA
complexes formed in vitro can also be investigated by immunoprecipitation of
complexes using antibodies specific for the bound protein.

Gene regulation can also depend upon protein-protein interactions, which
can be studied in vivo by using yeast “two-hybrid” genetic systems. Protein-
protein interactions can also be studied in vitro by chemical cross-linking.
To detect proteins that interact with protein P, the extract containing it
and possible binding partners is subjected to chemical cross-linking. Then
reagents that specifically bind to P (a specific antibody, for example) are used
to purify complexes containing P, and reversal of cross-linking releases proteins
interacting with it. Such data are helpful for identifying the components and
connectivity of protein interaction networks.
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The particular combination of experiments employed will depend upon
the reason for the study. The study may be part of an investigation of a par-
ticular genetic disease conducted in a medical school, or it may have been
initiated within a biotechnology company to produce a profitable therapeutic
agent. The study might be a comparison of a particular set of genes among a
variety of organisms or might encompass the entire genome of a single organ-
ism. A wide range of methods derived from genetics, chemistry, biochemistry,
and physics may be applied to each individual problem or project. Computa-
tional biologists should be aware of concepts associated with a wide range of
disciplines.
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2.1 The Biological Problem

Consider the DNA sequence shown below:

TGATGATGAAGACATCAGCATTGAAGGGCTGATGGAACACATCCCGGGGCCGGAC
TTCCCGACGGCGGCAATCATTAACGGTCGTCGCGGTATTGAAGAAGCTTACCGTA
CCGGTCGCGGCAAGGTGTATATCCGCGCTCGCGCAGAAGTGGAAGTTGACGCCAA
AACCGGTCGTGAAACCATTATCGTCCACGAAATTCCGTATCAGGTAAACAAAGCG
CGCCTGATCGAGAAGATTGCGGAACTGGTAAAAGAAAAACGCGTGGAAGGCATCA
GCGCGCTGCGTGACGAGTCTGACAAAGACGGTATGCGCATCGTGATTGAAGTGAA
ACGCGATGCGGTCGGTGAAGTTGTGCTCAACAACCTCTACTCCCAGACCCAGTTG
CAGGTTTCTTTCGGTATCAACATGGTGGCATTGCACCATGGTCAGCCGAAGATCA
TGAACCTGAAAGACATCATCGCGGCGTTTGTTCGTCACCGCCGTGAAGTGGTGAC
CCGTCGTACTATTTTCGAACTGCGTAAAGCTCGCGATCGTGCTCATATCCTTGAA
GCATTAGCCGTGGCGCTGGCGAACATCGACCCGATCATCGAACTGATCCGTCATG
CGCCGACGCCTGCAGAAGCGAAAACTGCGCTGGTTGCTAATCCGTGGCAGCTGGG
CAACGTTGCCGCGATGCTCGAACGTGCTGGCGACGATGCTGCGCGTCCGGAATGG
CTGGAGCCAGAGTTCGGCGTGCGTGATGGTCTGTACTACCTGACCGAACAGCAAG
CTCAGGCGATTCTGGATCTGCGTTTGCAGAAACTGACCGGTCTTGAGCACGAAAA
ACTGCTCGACGAATACAAAGAGCTGCTGGATCAGATCGCGGAACTGTTGCGTATT
CTTGGTAGCGCCGATCGTCTGATGGAAGTGATCCGTGAAGAGCTGGAGCTGGTTC
GTGAACAGTTCGGTGACAAACGTCGTACTGAAATCACCGCCAACAGCGCAGACAT
CAACCTGGAAGATCTGATCACCCAGGAAGATGTGGTCGTGACGCTCTCTCACCAG
GGCTACGTTAAGTATCAGCCGCTTTCTGAATACGAAGCGCAGCGTCGTGGCGGGA

Given this sequence, there are a number of questions we might ask:

—  What sort of statistics should be used to describe this sequence?

— Can we determine what sort of organism this sequence came from based
on sequence content?

— Do parameters describing this sequence differ from those describing bulk
DNA in that organism?
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—  What sort of sequence might this be: Protein coding? Centromere? Telo-
mere? Transposable element? Control sequence?

This chapter approaches these sorts of questions from three different per-
spectives, all of which are united by considering words. These are short strings
of letters drawn from an alphabet, which in the case of DNA is the set of letters
A, C, G, and T. A word of length k is called a “k-word” or “k-tuple”; we use
these terms interchangeably. For example, individual bases are 1-tuples, di-
nucleotides are 2-tuples, and codons are triplets, or 3-tuples. GGGT is a 4-word
or 4-tuple.

DNA sequences from different sources or regions of a genome may be dis-
tinguished from each other by their k-tuple content. We begin by giving illus-
trations and examples of how word frequencies can vary within and between
genomes. Second, we take a closer look at computational issues pertaining to
words, starting with the seemingly obvious one about how to count words and
how words can be located along a string. This includes describing their distri-
bution in terms of a probabilistic model. Finally, we discuss various statistics
that have been used to describe word frequencies.

2.2 Biological Words: k = 1 (Base Composition)

We consider first the frequencies of individual bases. For free-living organisms
(in contrast with some bacteriophages and other viruses), DNA is typically
duplex. This means that every A on one strand is matched by a T on the
complementary strand, and every G on one strand is matched by C on the
complementary strand. In other words, the number of A residues in the genome
equals the number of T residues, and the number of G residues equals the
number of C residues. This applies to the duplex DNA: as we will see later,
the number of G or A residues on one strand need not equal the number of C
or T residues (respectively) on the same strand. This statement is illustrated
below:

5'-GGATCGAAGCTAAGGGCT-3' Top strand: 7G,3C
3/-CCTAGCTTCGATTCCCGA-5" Duplex molecule: 10 G, 10 C

Considering G or C for this particular duplex DNA, it suffices to report
the fraction fr(G+C) of G+C, knowing the individual base frequencies will be
fr(G+C)/2. Also, fr(A+T) = 1 — fr(G4C), so only a single parameter is required
to describe the base frequencies for duplex DNA. (That is, there are four
variables, fr(4), fr(C), fr(G), and fr(T), and there are three relations among
them, fr(A) = fr(T), fr(G) = fr(C), and fr(A+T) = 1 — fr(G+C).)

Since the early days of molecular biology (before cloning and DNA se-
quencing), base composition has been used as a descriptive statistic for
genomes of various organisms. The fraction fr(G4+C) of bulk DNA can be
determined either by measuring the melting temperature of the DNA, T,,,
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or by determining the buoyant density of the DNA in a CsCl gradient us-
ing equilibrium ultracentrifugation. Both methods can reveal the presence of
genome fractions having different base compositions, and in the case of ultra-
centrifuge measurements, bands of genomic DNA adjacent to the main band
and differing from it in base composition may be described as “satellites.”

Table 2.1 presents the base compositions of DNA from a few organisms,
indicating the range over which this statistic can vary. Obviously, there are
constraints on base composition imposed by the genetic code: long homopoly-
mers such as --- AAAAA --- (fr(G+C) = 0) would not encode proteins having
biochemical activities required for life. We see more about this when we con-
sider k = 3 (codons).

Table 2.1. Base composition of various organisms. Bacterial data taken from the
Comprehensive Microbial Resource maintained by TIGR: http://www.tigr.org/
tigr-scripts/CMR2/CMRHomePage . spl.

Organism %G+C  Genome size (Mb)
Eubacteria
Mycoplasma genitalium 31.6 0.585
FEscherichia coli K-12 50.7 4.693
Pseudomonas aeruginosa PAO1  66.4 6.264
Archaebacteria
Pyrococcus abyssi 44.6 1.765
Thermoplasma volcanium 39.9 1.585
Eukaryotes
Caenorhabditis elegans 36 97
(a nematode)
Arabidopsis thaliana 35 125
(a flowering plant)
Homo sapiens 41 3,080

(a bipedal tetrapod)

Another point will be visited in a later chapter: the distribution of individ-
ual bases within the DNA molecule is not ordinarily uniform. In prokaryotic
genomes in particular, there is an excess of G over C on the leading strands
(strands whose 5" to 3’ direction corresponds to the direction of replication
fork movement). This can be described by the “GC skew,” which is defined as
(#G — #C ) /(#G + #C), calculated at successive positions along the DNA for
intervals of specified width (“windows”); here, #G denotes the number of Gs
and so on. As will be seen later, this quantity often changes sign at positions
of replication origins and termini in prokaryotic genomic sequences. This is
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another example of how a relatively simple statistic based on k-tuples with
k =1 can be informative.

In the sections that follow, we develop some probabilistic and statistical
approaches for describing the base composition, dinucleotide composition, and
other aspects of DNA sequences. To do this, it is most convenient to describe
the DNA in terms of a single strand in a given 5’ to 3’ orientation. The other
strand of the duplex is formed by taking its complement.

2.3 Introduction to Probability

This is a good point to introduce some necessary basic ideas of probability.
We build on these ideas as we progress through this and later chapters. In
this section, we use the nucleotide sequence on a single strand as an example.
For definiteness, we assume that this sequence is written in a given 5 to 3’
direction. We are often interested in deciding whether particular patterns of
bases appear unusually often in a given sequence; such sequences might be of
biological significance. To address such problems, we need a way to measure
our “surprise” about the frequency of particular patterns, and to do this we
use a probabilistic model for the sequence.

One way to specify such a probability model is to describe a method for
simulating observations from the model. This means that we must specify the
probabilistic rules the computer uses to produce the next letter in the simu-
lated sequence, given the previous letters. We can then think of the sequence
as the output of a machine (or simulation algorithm). Here is a simple set of
rules that specify a probability model:

(a) The first base in the sequence is either an A, C, G, or T with probability
Da, Pe, P, P, respectively.

(b) Suppose the machine has generated the first r bases. To generate the
base at position r + 1, the machine pays no attention to what has been
generated before and spits out A, C, G, or T with the probabilities given in
(a) above.

A run of the simulation algorithm results in a sequence of bases, and
different runs will typically result in different sequences. The output of a
random string of n bases will be denoted by L1, Lo, ..., L,, where L; denotes
the base inserted in position 7 of the sequence. It is conventional to use small
letters to denote the particular sequence that resulted from a run; we may
observe Ly = l1,Ls = la,...,L, = [, for a particular simulation. In the
next sections, we outline some basic probabilistic and statistical language
that allows us to analyze such sequences.

2.3.1 Probability Distributions

Suppose that on a single step our machine produces an output X that takes
exactly one of the J possible values in a set X = {21, z2,...,2,}. In the DNA
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sequence example, we have J = 4 and X = {A,C,G, T}. We do not typically
know with certainty which value in X will be produced by our machine, so
we call X a discrete random variable. (Note the font used to distinguish
bases from random variables.) The term discrete refers to the fact that the
set of possible values is finite. Now suppose that the value z; occurs with
probability p;, 7 = 1,2,...,J. We note that each p; must be greater than or
equal to 0, and the p; must sum to 1; that is,

P1,p2,.--,PJ 207
prt+pet--+pr=1

We call the collection p1,...,ps the probability distribution of X, and we

write
P(X:Z‘J) :pj,jz 1,2,...,J.

In this book, we always use the symbol P to denote probability. For example,
the first base L in our model for a DNA sequence has probability distribution

P(Ly =A) =pa,P(L1 =C) = pe, P(L1 = G) = p,P(L1 =T) =pr.  (2.1)

Note that some textbooks use the term probability mass function of the ran-
dom variable instead of probability distribution, defined above. The probability
distribution allows us to compute probabilities of different outcomes in the fol-
lowing way. If S is an event (that is, a subset of X'), then the probability that
S occurs, written P(X € ), is calculated as

P(X eS)= ij

jix; €S

The term j : z; € S isread “j such that z; isin S.” For example, if S = {G, C},
then P(X € S) = pg + pc.
In the following sections, we study the probability distribution of the num-

ber of times a given pattern occurs in a random DNA sequence Ly, Lo, ..., Ly,
and we’ll make our patterns one base long to begin with. To address this ques-
tion, we define a new sequence X1, Xo,..., X, by
1,if L; = A,
Xi = {0, otherwise. (22)

The number of times N that A appears is then the sum of the Xs:
N=X;+Xo+ -+ X,. (2.3)

Starting from the probability distribution (2.1) of the L;, we can find the
probability distribution of each of the X; as follows:

P(X; =0) = P(Li:COrGorT):pc—f-pc—i-pT:1—PA~ (2.4)
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Different “runs” of our machine produce strings having different values of N.
We ultimately wish to know what a “typical” value of N might be, which
means we need to know its probability distribution. To find the probability
distribution of N is more complicated because we need to know how the
individual outputs from our machine are related to each other. This is the
topic of the next section.

2.3.2 Independence

According to our simple DNA sequence model, the probability distribution of
the base in position r + 1 does not depend on the bases occupying positions
r,...,2,1. This captures the notion that outputs from the machine do not
influence each other (you might like to ponder whether this is likely to be true
in a DNA sequence). In this section, we formalize the notion of independence

for a collection of discrete random variables X1, X5, ..., X,,. Capturing this
notion in a definition is a little complicated.
Discrete random variables X1, Xo,..., X, are said to be independent if,

forr=2,3,...,n,

P(X“ = (Ll,Xiz = a,2,...,Xi = (LT) =

™

P(Xi, = a1)P(Xy, = az) - P(X;, = a,)

for all subsets {i1,d2,...,%,} of {1,2,...,n} and for all possible values
ai,...,a,. In particular, if X1,..., X, are independent, we can calculate the
probability of a set of outcomes by using the multiplication rule for probabil-
ities of independent events: for events A;, i =1,2,...,n, we have

P(X;€A,....X,€A,) =P(X; € A))P(Xs € Ay)---P(X,, € A,). (2.5)

For the DNA sequence model outlined in the introduction, the L; are indeed
independent, and so the probability of obtaining the sequence ly,1s, ... 1, is
given by the product of the probabilities of each I,

P(Ly=1l1,...,L,=1,) =P(L1 =1)P(Ls = 13)---P(L,, = 1), (2.6)

where the terms on the right-hand side are determined by the probability
distribution of a single base given in (2.1).

In the last section, we introduced a sequence of discrete random variables
X1,...,X, that counted whether the bases in the sequence L, Lo, , L,
were A or not. It is intuitively clear that if the L; are independent of one
another, then so too are the X; defined in (2.2). You should check this from
the definition. While it is sometimes possible to check whether a collection
of random variables X1, X5, ..., X, are independent, it is more common to
assume independence and then use the multiplication rule (2.5) to calculate
probabilities of different outcomes. Random variables that are independent
and have the same probability distribution are said to be independent and
identically distributed; in what follows, we use the abbreviation “iid.” For
further discussion of dependent random variables, see Exercise 8.
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2.3.3 Expected Values and Variances

In this section we describe measures of location (or central tendency) and
spread for random variables that take on numerical values. Suppose that X
is a discrete random variable taking values in X, a subset of (—oo,00). We
define the expected value (or mean or expectation) of X by

EX = ij =xj) =x1p1 + Tap2 + -+ TP (2.7)

In this book, the symbol E will always be used to indicate expected value or
mean. For the random variables X; defined in (2.2) with distribution given in
(2.4), we have

EX;, =1Xxpy+0x(1—ps) =pa. (2.8)

If we know the expected value of the random variable X, then it is easy to
calculate the expected random variable Y = c¢X for any constant ¢; we obtain

EY =cEX.

The random variable N in (2.3) counts the number of times the base A
appears in the sequence L1, Lo, ..., L,. We do not yet know the probability
distribution of IV, but we can compute its expected value in another way. We
use the fact that the mean of the sum of the Xs is the sum of the means of
the Xs. That is, for any random variables X7, X5, ..., X,, we have

E(Xy + Xo+ -+ X,) = EX; + EX3 + - + EX,,. (2.9)

It follows from this and the result in (2.8) that the expected number of times
we see an A in our n bp sequence is

EN =EX, +EXs + - - + EX,, = nEX1 = npy. (2.10)

The expected value of a random variable X gives a measure of its location;
values of X tend to be scattered around this value. In addition to this measure
of location, we need a measure of spread: Is X closely concentrated about its
expected value, or is it spread out? To measure spread, we use a quantity
called the variance. We define the variance of X by

J
> =z — 1)’ps (2.11)

Jj=1

VarX = E(X — p)?

where = EX is defined in (2.7). It can be shown that

J
VarX = EX? — 1% = Zx?pj — 12 (2.12)
j=1
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a formula that sometimes simplifies calculations. For the random variables X;
in (2.4), we see that

VarX; = [12 x py + 0% x (1 — pa)] — pa® = pa(1 — pa). (2.13)

The (positive) square root of the variance of X is called its standard
deviation and is denoted by sd(X). If X is multiplied by the constant c,
then the variance is multiplied by ¢?; that is, if Y = ¢X

VarY = Var(cX) = ¢? Var(X).
The standard deviation of Y is then given by
sdY = sd(cX) = |¢]sd(X).

To calculate the variance of the number N of A s in our DNA sequence, we
exploit the fact that the variance of a sum of independent random variables
is the sum of the individual variances; that is, if Xq,..., X, are independent
random variables,

Var(X; + -+ X,,) = Var(Xy) + - - - + Var(X,,). (2.14)
When this rule is applied to N, we find from (2.13) that
VarN = nVarX; = npy(1 — pa). (2.15)

Equations (2.14) and (2.15) give two statistics that describe features of the
probability distribution of N mentioned at the end of Section 2.3.1.

2.3.4 The Binomial Distribution

The expected value and variance of a random variable such as N are just two
(of many) summary statistics that describe features of its probability distri-
bution. Much more information is provided by the probability distribution
itself, which we show how to calculate in this section.

To do this, notice that P(X; = z1,...,X,, = z,) is the same for any
T1,Z2,...,T, containing the same number of 1s. Furthermore, the fact that
the X; are iid means that we can use (2.5) to see that if there are j 1s in
T1,T2,...,T,, then the probability of that sequence is p?(1 — p)"~7, where,
for typographical convenience, we have written p = p,. Finally, to compute
the probability that the sequence contains j A s (i.e., that N = j), we need
to know how many different realizations of the sequence x1, xs, ..., x, have j
1s (and m — j 0s). This is given by the binomial coefficient (?), defined by

(?) N j!(nni DY (2.16)
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where j! = j(j —1)(j —2)---3-2-1, and by convention 0! = 1. It now follows
that the probability of observing j A s is

P(N = j) = (?)pj(l—p)"_j,j:0,1,2,...,71. (2.17)

The probability distribution in (2.17) is known as the binomial distri-
bution with parameters n (the number of trials) and p (the probability of
success). The mean of N, which can also be calculated using (2.17) and (2.7),
is given in (2.10), and the variance of N is given in (2.15).

2.4 Simulating from Probability Distributions

To understand the behavior of random variables such as N, it is useful to
simulate a number of instances having the same probability distribution as
N. If we could get our computer to output numbers Ny, No,..., N, having
the same distribution as IV, we could use them to study the properties of this
distribution. For example, we can use the sample mean

NZ(N1+N2+"'+Nn)/TL (2.18)

to estimate the expected value p of N. We could use the sample variance

2 1 < 2
s2 = n_IZ(Ni—N) (2.19)
=1
to estimate the variance o2 of N, and we can use a histogram of the values of
Ni,..., N, to estimate the probability of different outcomes for N.

To produce such a string of observations, we need to tell the computer
how to proceed. We need the computer to be able to generate a series of
random numbers that we can use to produce Ny, ..., N,. This is achieved by
use of what are called pseudo-random numbers. Many programming languages
(and the statistical environment R we use in this book is no exception) have
available algorithms (or random number generators) that generate sequences
of random numbers Uy, Us,, ... that behave as though they are independent
and identically distributed, have values in the unit interval (0, 1), and satisfy,
for any interval (a,b) contained in (0, 1),

Pla<U; <b)=b—a.

Random variables with this property are said to be uniformly distributed on
(0,1). This last phrase captures formally what one understands intuitively:
any number between 0 and 1 is a possible outcome, and each is equally likely.
Uniform random numbers form the basis of our simulation methods. From
now on, we assume we have access to as many such Us as we need.
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To illustrate the use of our random number generator, we will simulate an
observation with the distribution of X in (2.2). We can do this by taking a
uniform random number U and setting X; = 1if U < p = p, and 0 otherwise.
This works because the chance that U < p is just p. Repeating this procedure
n times (with a new U each time) results in a sequence X7, Xo, ..., X, from
which N can be computed by adding up the Xs.

We can use a similar approach to simulate the sequence of bases L1, Lo, . . .,
L,,. This time we divide up the interval (0,1) into four intervals with endpoints
at pa, pa + pc, Pa + pc + pg, and py + pc + pe + pr = 1. If the simulated U lies in
the leftmost interval, set Ly = A; if it is in the second interval, set L; = C; if it
is in the third interval, set L1 = G; and otherwise set L; = T. Repeating this
procedure with a new value of U each time will produce a sequence of bases
Li, Lo, ..., L,. Fortunately, we do not have to write code to implement this
approach, as it is included in R already as the sample function. The details
are given in the box below.

Computational Example 2.1: Simulating a DN A sequence

The sample function can be used to generate many sorts of samples. The
function has the form

sample (x,n,replace=TRUE,pi)
# x = list of values to be sampled
# n = number of samples required
# replace=TRUE means sampling with replacement
# pi = probability distribution for the list in x

Here is an application that generates ten outcomes from the probability dis-
tribution in (2.4) with p4 = 0.25:

> pi<-c(0.25,0.75)

> x<-c(1,0)

> sample(x,10,replace=TRUE,pi)
[T 1000001110

We can use a similar approach to generate a DNA sequence according to
our simple iid model. First, we code the basesasA=1,C=2,G6=3,and T =
4 and assume that each base is equally likely. To simulate 10,000 bases under
this model and look at the first 15 bases, we can use

> pi<-c(0.25,0.25,0.25,0.25)
> x<-c(1,2,3,4)
> seq<-sample(x,10000,replace=TRUE,pi)
> seq[1:15]
[11 444411232422111
It is sometimes convenient to be able to use the same string of random num-

bers more than once (for example, when preparing examples for this book!).
To do this, you can use
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set.seed(int)

where int is an integer seed. Try generating two DNA sequences without using
set.seed() and then by calling set.seed (100) before each run. Compare the
outputs!

By looking through a given simulated sequence, we can count the number
of times a particular pattern arises (for example, the one-letter pattern A
considered earlier) and so, by repeatedly generating sequences and analyzing
each of them, we can get a feel for whether or not our particular pattern is
“unusual.” We illustrate this by simulating observations having the binomial
distribution with p = 0.25 and n = 1000. Recall that under our uniform base
frequency model for DNA, this is the distribution of the number of A s in the
sequence of length n. R can perform binomial simulations, as described in the
box below.

Computational Example 2.2: Simulating binomial random variables

R has a number of built-in functions for simulating observations from standard
distributions. To generate 2000 observations from a binomial distribution with
n = 1000 trials and success probability p = 0.25, we can use

> x <~ rbinom(2000,1000,0.25)
The sample mean (see (2.18)) of our simulated values can be found using

> mean(x)
[1] 249.704

This value is in good agreement with the mean of N, which is y = np = 250.
The variance of the replicates (see (2.19)) can be found using the square of
the sample standard deviation:

> sd(x)"2
[1] 183.9734

Once more, this is in good agreement with the theoretical value of o2 =
np(l — p) = 187.5. To plot the histogram, we use

> hist(x,xlab="Number of successes",main="")

The result is shown in Fig. 2.1.

Later in the book, a number of statistical concepts are introduced by use
of simulation. For now, we answer another question about the frequency of
the pattern A in a sequence. Suppose then that we have a sequence of length
1000 bp and assume that each base is equally likely (and so has probability
0.25). How likely is it to observe at least 280 A s in such a sequence? There
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Fig. 2.1. Histogram of 2000 replicates of a binomial random variable having n =
1000 trials and success probability p = 0.25.

are three ways to attack this problem: by using the distribution in (2.17), by
simulation, and by an approximation known as the Central Limit Theorem.
We discuss the first two approaches here and the third in Section 3.4.

For the first approach, the probability we need to calculate is given by

1000

P(N >280) = » (10],00) (1/4)7(1 — 1/4)1000—3, (2.20)

=280

A computer algebra program such as DERIVETM gives the answer 0.01644. The
second approach is to simulate a large number of random variables having the
distribution of IV and calculate how many times the values are greater than or
equal to 280. In 10,000 runs of this procedure (see Exercise 4), 149 values were
at least 280, so the estimate of the required probability is 149/10, 000 ~ 0.015,
in good agreement with the theoretical value of ~ 0.016.

2.5 Biological Words: k = 2

If I; is a nucleotide at position 4, then a dinucleotide is l;l;+1 (5" to 3’ po-
larity implied). Since [; is drawn from an alphabet of four bases A, C, G, T,
there are 16 different dinucleotides: AA, AC, AG, ..., TG, GG. Since the sum of
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the dinucleotide frequencies is 1, just 15 of them suffice to give a complete
description of the dinucleotide frequencies in a single-stranded molecule. Di-
nucleotides are important in part because physical parameters associated with
them can describe the trajectory of the DNA helix through space (DNA bend-
ing), which may have effects on gene expression. Here we concentrate only on
their abundances.

Now suppose we model the sequence L1, Lo, ..., L, using our iid model
with base probabilities given by (2.1). Since the bases are behaving indepen-
dently of one another, we can use the multiplication rule (2.5) for probabilities
to calculate the probabilities of each dinucleotide 7175 as

P(Ll =T, Li+1 = TQ) = PriPry- (221)

For example, under the independence model, the chance of seeing the dinu-
cleotide AA is ps2, and the chance of seeing CG is pepe.

To see whether a given sequence has unusual dinucleotide frequencies com-
pared with the iid model, we compare the observed number O of the dinu-
cleotide riry with the expected number given by E = (n — 1)p,, pr,. (Note
that n— 1 is the number of dinucleotides in a string of length n.) One statistic
to use is
(O - E)?

PR
The rationale for using this statistic is as follows. If the observed number
is close to the expected number (so that the model is doing a good job of
predicting the dinucleotide frequencies), X2 will be small. If, on the other
hand, the model is doing a poor job of predicting the dinucleotide frequencies,
then X2 will tend to be large.

All that remains is to determine which values of X? are unlikely if in fact
the model is true. This turns out to be a subtle problem that is beyond the
scope of this book, but we can at least give a recipe. For further details, see
Exercise 10.

X? = (2.22)

(a) Calculate the number ¢ given by

_J1+2p,, — 3p%1, if vy = ro;
1 - 3pr1pr2; lf ™ # r2.

(b) Calculate the ratio X?/c, where X? is given in (2.22).
(c) If this ratio is larger than 3.84, conclude that the iid model is not a good
fit.

If the base frequencies are unknown, the same approach works if the fre-
quencies fr(A), fr(C), fr(G), and fr(T) are estimated from the data. Table 2.2
presents the observed values of X?2/c for the first 1000 bp of two organisms,
E. coli (GenBank ID NC 000913) and Mycoplasma genitalium (GenBank 1D
1L43967). It can be seen that E. coli dinucleotide frequencies are not well-
described by the simple iid model, whereas the M. genitalium sequence is not
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as bad. As one might have expected, given the biological nature of genomic
sequences, there are some dinucleotides whose frequencies differ significantly
from what would be expected from the iid model.

Table 2.2. Observed values of X?/c for the first 1000 bp of each genome. For E. coli,
the base frequencies were taken as (0.25, 0.25,0.25, 0.25), whereas for M. genitalium
they were (0.45, 0.09, 0.09, 0.37), close to the observed frequencies. Significant values
are in bold.

Observed X?/c for
Dinucleotide  E. coli M. genitalium

AA 6.78 0.15
AC 0.05 1.20
AG 5.99 0.18
AT 0.01 0.01
CA 2.64 0.01
CC 0.03 0.39
CG 0.85 4.70
CT 4.70 1.10
GA 2.15 0.34
GC 10.04 1.07
GG 0.01 0.09
GT 1.76 0.61
TA 5.99 1.93
TC 9.06 2.28
TG 3.63 0.05
TT 1.12 0.13

2.6 Introduction to Markov Chains

As we can see from Table 2.2, real genomes have sequence properties more
complicated than those described by our simple iid model. A more complicated
probabilistic model is required to capture the dinucleotide properties of real
genomes. One approach is to use a Markov chain, a natural generalization
of a sequence of independent trials. Many applications of Markov chains in
computational biology are described in Durbin et al. (1998). Suppose that we
examine a sequence of letters corresponding to the genome of an organism. If
we focus on position n, we realize that the character at that position might
be dependent upon the letters preceding it. For example, human DNA has a
lower than expected frequency of the dinucleotide 5’-CG-3': if we have a C at
position ¢t —1, then the probability of a G at position ¢ will be lower than might
be expected if the letter at position t — 1 were A, G, or T. To make these ideas
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precise, we make use of more ideas from probability, particularly the notion
of conditional probability.

2.6.1 Conditional Probability

We consider events, which are subsets of the sample space (2. In the earlier
examples, events were usually defined in terms of outcomes of random vari-
ables, so that {2 corresponds to the set X of possible outcomes of a single
experiment. In particular, P(£2) = 1, and

P(A) + P(A°) = 1,

for any event A, where A¢ denotes the complement {2 — A of A. For two events
A and B, we define the intersection of A and B, written A N B, as the set of
elements in 2 belonging to both A and B. The union of A and B, written
AU B, is the set of elements of {2 belonging to either A or B (and possibly
both). The conditional probability of A given B, denoted by P(A | B), is
defined by

(AN B)
P(B)

when P(B) > 0 (and, by convention, = 0 if P(B) = 0). The term P(A N B) is
read “probability of A and B.”

A number of useful consequences derive from this definition, among them
Bayes’ Theorem, which states that

PA|B)=" (2.23)

A| B)P(B)

BB | A) = P(A) (2.24)

Suppose next that By, Bs, ..., By form a partition of £2:

(a) The B; are disjoint (i.e., B; N B; = 0 for i # j)
(b) and exhaustive (i.e., By UByU---U By = 2).

Another useful identity is known as the law of total probability: for any event
A, and a partition By, ..., By,

k
P(A)=> P(ANB)
i=1

k
=Y P(A| B)P(B)). (2.25)

=1

A number of applications of these results are given in the exercises at the end
of the chapter.
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2.6.2 The Markov Property

We study a sequence of random variables {X;,t = 0,1,2,...} taking values
in the state space X. For example, X; might be the letter in position ¢ of a
DNA sequence, and the state space is the set X = {A,C,G, T}. The sequence
{X¢,t > 0} is called a first-order Markov chain if the probability of finding
a particular character at position ¢ + 1 given the preceding characters at
positions ¢, ¢ — 1, and so forth down to position 0 is identical to the probability
of observing the character at position ¢ + 1 given the character state of the
immediately preceding position, t. In other words, only the previous neighbor
influences the probability distribution of the character at any position. More
formally, {X;,t > 0} is called a first-order Markov chain if it satisfies the
Markov property,

PXip1 =7 Xe =19, Xem1=1—1,...,Xo =10) =P(Xeg1 =J | Xe =1),

for t > 0 and for all 4, 5,441, ...,79 € X. Markov chains of order k correspond
to the case where the conditional distribution of the present position depends
on the previous k positions. We do not consider higher-order Markov chains
in this book.

We consider Markov chains that are homogeneous, which means the prob-
ability P(X¢41 = j | X; = 4) is independent of the position ¢ in the sequence.
For example, P(X;11 = G | X; = C) is the same throughout the sequence if
the Markov chain is homogeneous. The probabilities common to all positions
are denoted by p;;,

Dij :P(Xt+1 :j|Xt:i), i,jGX.

The p;; are the elements of a matrix P called the one-step transition matriz
of the chain. In the matrix P below, we show what the transition matrix
would look like for DNA. Each row corresponds to one of the possible states
at position ¢ (i.e., row 1 corresponds to X; = A), and each column corresponds
to the possible state at ¢t + 1 (X;11 = A,C,G, or T):

Paa Pac Pag Pat
P= Pca Pcc Peg Pet
Pca Pec Pee PeT
Pra Prc Pre PtT

As we indicated, if the Markov chain is homogeneous, then this transition
matrix applies all along the chain. Since after any position there must be
one of the characters from X, we see that } . p;; = 1 for each value of i.
If all the rows in P were identical, then the next position from any starting
position would have the same distribution, regardless of the identity of the
character at the current position. This corresponds to the iid model we used
in Section 2.3.2.
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The transition matrix tells us the probabilities that apply as we go from the
state at position ¢ to the state at position t+1. For example, if X; = A, then the
probability that X; 1 = Gis py¢. But how do we start the chain? To completely
specify the evolution of the Markov chain, we need both the transition matrix
and the initial probability distribution, m. The initial probability distribution
can be written as a row vector whose elements are

m=P(Xog=1),i € X.

In the case of DNA, the 7; are the initial probabilities (at position 0) of A, C,
G, and T.

To find the probability distribution for the states at position 1 (represented
by row vector (1)), we use the law of total probability as follows:

P(Xy =j) = > P(Xo=1i,X1 =)
ieX
=) P(Xo = i)P(X; = j|Xo = i)
ieX

ieX

You may recognize this as the product of the row vector m with the matrix
P, so that (in matrix notation)

) = 7P

To compute the probability distribution for the states at position 2 (repre-
sented by row vector 7)), we first note that P(Xs = j|Xo = i) is the i, jth
element of the matrix PP = P2. This is another application of the law of
total probability,

kEX

=Y P(Xy = j|X1 =k, Xo = i)P(X, = k| Xo =)
kex

=Y P(Xy = j|X1 = k)P(X; = k| X = i)
kex

= Z PikDPkj

keXx
= (PP)j,

as required. (Note that the second line follows from the definition of condi-
tional probability, the third from the Markov property.) Copying the argument
that leads to (2.26) then shows that the elements of 7(?) are given by
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TP = P(Xz = j) = Y m(P2)y.
This can be generalized to the tth position, giving

P(X; =j) = Zﬂi(Pt)ip

where the elements (P');; correspond to the elements of the matrix generated
by multiplying the transition matrix by itself ¢ times (a total of ¢ factors). This
expression gives the probability distribution, P(X; = j), at any position ¢.

It is possible that the distribution 7(*) is the same for every t. This is called
a stationary distribution of the chain. This occurs when

T = Zﬂ'ipij for all j

In matrix notation, this condition is m = wP. If X also has 7 as its distribu-
tion, then 7 = 7 P! and
]P(Xt = ]) = Tj.

This shows that X; then has the same distribution for every ¢. Note that this
does not contradict the dependence of the state at t on the state at ¢t — 1.

2.6.3 A Markov Chain Simulation

To illustrate the use of a Markov chain, we use the observed dinucleotide fre-
quencies of M. genitalium to determine the parameters of a Markov model.
The observed dinucleotide relative frequencies are given below; each row spec-
ifies a base, and each column specifies the following base:

A C G T
0.146 0.052 0.058 0.089
0.063 0.029 0.010 0.056 (2.27)
0.050 0.030 0.028 0.051 | -
0.087 0.047 0.063 0.140

H Qo Q=

The individual base frequencies (the base composition) may be calculated
from the matrix by summing across the rows. We obtain p, = 0.345,pc =
0.158, pe = 0.159, and pr = 0.337. To estimate the AA element of the transition
matrix P of the chain, we note that

P(X;=AX; 1 =4) _0.146

—P(X, = A| Xi1 = A) = ~
Pa = PX = A [ X =8) P(X,_, = A) 0.345

= 0.423.

In this calculation, we used the observed dinucleotide frequency matrix to find
the proportion 0.146 of the dinucleotide AA and the base frequency vector to
find the proportion 0.345 of A. The same estimation procedure can be done
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for the 15 other entries of P, and we arrive at an estimated transition matrix

of
A C G T

0.423 0.151 0.168 0.258
0.399 0.184 0.063 0.354
0.314 0.189 0.176 0.321
T \0.258 0.138 0.187 0.415

)
I
Qo=

The rows sum to unity, to within rounding error, as they should. The smallest
matrix element (peg = 0.063) corresponds to placing G at a position given C at
the previous position. For our initial distribution 7, we assign vector elements
just using the base composition:

m = (0.345,0.158,0.159,0.337).

Now we are ready to simulate a sequence string that resembles M. geni-
talium DNA, at least in terms of dinucleotide frequencies. We don’t expect
it to look like actual M. genitalium DNA because our probabilistic model is
still likely to be too simple: the model is capable of generating the correct
proportions of k-tuples with k¥ = 1 and k = 2, but it does not include the
“machinery” for simulating k-tuple frequencies for £ > 2. The details are
given in Computational Example 2.3.

Computational Example 2.3: Simulating a string having character-
istics of Mycoplasma DNA

We generate a sequence having 50,000 positions. We code the bases as follows:
A=1,C=2,G=3, and T = 4. By using numbers instead of characters, we
can use logical operators (==, !=, >, ...) in our analysis of the sequence.
The values for the transition matrix and 7w were presented above. We simulate
the sequence with the aid of R (Appendix A). First, we write an R function
(program) to generate the sequence. For this function, we supply the following
input variables (arguments): the transition matrix P, 7, and n, the length of
the string to be generated. We also supply a vector x containing the characters
to be sampled. A function that will simulate the sequence is presented below:

> markovl <- function(x,pi,P,n){

# x = vector [1 2 3 4] representing A, C, G, T, respectively
# pi = the probability distribution for X0: (1x4 row vector)
# P = transition matrix (4x4)

# n = length of simulated sequence

# Initialize vector to contain simulated sequence

mg <- rep(0,n)

# Produce initial element

mg[1] <- sample(x,1,replace=TRUE,pi)

for(k in 1:(n-1)){
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mg [k+1]<-sample(x,1,replace=T,P[mglk],])

return(mg)

}

3

Lines prefixed by # are comments and are not executed. The R library function
sample () is employed to generate an element to be placed at position 7 + 1
given a particular letter at ¢. Use the help(sample) command at the R prompt
for documentation for this function. Note particularly how the probability
distributions pi and P[i,], the rows of the transition matrix, are employed
for each use of sample (). Each application of markovi will produce a different
string (check this), but the overall properties of each string should be similar.
To input the parameters in the simulation, we use:

> x <- c(1:4)
> pi <- c(.342,.158,.158,.342)
> P <- matrix(scan(),ncol=4, nrow=4,byrow=T)

1:
5:
9:

13:
17:

.423
.399
.314
.258

.151
.184
.189
.138

# Loading parameters

.168 .258
.063 .354
.176 .321
.187 .415

# enter "return" here to end input

Application of markov1 uses the following:

> tmp<-markovl(x,pi,P,50000)

Checking the simulation output

We can check the base composition (remembering that C is represented by 2
and G is represented by 3) of the generated sequence:

> length (tmp[tmp[I1==11)

[1] 16697

> length(tmp [tmp[]1==2])
[1] 8000

> length(tmp [tmp[]==3])
[1] 7905

> length (tmp [tmp []==4])

[1] 17398

> (8000+7905) / (16697+8000+7905+17398) # compute fr(G+C)
[1] 0.3181

This compares favorably with the value 31.6% G+C given in the transition
matrix. Now we check whether tmp contains an appropriate fraction of CG

dinucleotides:
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count=0

for(i in 1:49999){ # 49999 because i+1 undefined for 50000
if (tmp[il==2 && tmp[i+1]==3)

count<-count+1}

+ + Vv VvV

> count

[1] 482

> count/49999
[1] 0.0096

From (2.27), the relative abundance of the CG dinucleotide in M. genitalium
is 0.010, whereas the string produced by the Markov model contains CG at a
relative abundance 0.0096. This matches the observed data well. You should
verify that other dinucleotide relative abundances are correctly predicted by
your simulation. Evidently, the Markov model provides a good probabilistic
description of the data for M. genitalium DNA.

2.7 Biological Words with k = 3: Codons

As mentioned in Chapter 1, there are 61 codons that specify amino acids and
three stop codons. Since there are 20 common amino acids, this means that
most amino acids are specified by more than one codon. This has led to the use
of a number of statistics to summarize the “bias” in codon usage. An example
of such a statistic is shown later. To show how these codon frequencies can
vary, consider the specific example of the E. coli proteins. Table 2.3 displays
the predicted and observed codon relative frequencies for three (out of 20)
particular amino acids found in 780 genes of E. coli. (At the time this work
was done, no complete genome sequences were available for any organism.)
The predicted relative frequencies are calculated as follows.

For a sequence of independent bases L1, Lo, ..., L, the expected 3-tuple
relative frequencies can be found by using the logic employed for dinucleotides
in (2.21). We calculate the probability of a 3-word as

P(L; =r1,Liy1 =72, Liya =13) =
P(Ll = Tl)P(Li+1 = TQ)]ID(Li+2 = 7‘3). (228)

This provides the expected frequencies of particular codons. To get the entries
in Table 2.3, we calculate the relative proportion of each of the codons making
up a particular amino acid. Using the base frequencies from Table 2.1, we find
that

P(TTT) = 0.246 x 0.246 x 0.246 = 0.01489,

while
P(TTC) = 0.246 x 0.246 x 0.254 = 0.01537.
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It follows that among those codons making up the amino acid Phe, the ex-
pected proportion of TTT is

0.01489 —0.492.
0.01489 + 0.01537

Allowing for approximations in the base frequencies of F. coli, this is the value
given in the first row of the second column in Table 2.3.

Table 2.3. Comparison of predicted and observed triplet frequencies in coding
sequences for a subset of genes and codons from F. coli. Figures in parentheses
below each gene class show the number of genes in that class. Data were taken from
Médigue et al. (1991).

Observed
Gene Class I Gene Class 11

Codon Predicted (502) (191)

Phe TTT 0.493 0.551 0.291
TTC 0.507 0.449 0.709

Ala GCT 0.246 0.145 0.275
GCC 0.254 0.276 0.164

GCA 0.246 0.196 0.240

GCG 0.254 0.382 0.323

Asn  AAT 0.493 0.409 0.172
AAC 0.507 0.591 0.828

Médigue et al. (1991) clustered the different genes into three groups based
on such codon usage patterns, and they observed three clusters. For Phe
and Asn different usage patterns are observed for Gene Class I and Gene
Class II. For Gene Class II in particular, the observed codon frequencies differ
considerably from their predicted frequencies. When Médigue et al. checked
the gene annotations (names and functions), they found that Class II genes
were largely those such as ribosomal proteins or translation factors—genes
expressed at high levels—whereas Class I genes were mostly those that are
expressed at moderate levels.

A statistic that can describe each protein-coding gene for any given or-
ganism is the codon adaptation index, or CAI (Sharp and Li, 1987). This
statistic compares the distribution of codons actually used in a particular
protein with the preferred codons for highly expressed genes. (One might also
compare them to the preferred codons based on gene predictions for the whole
genome, but the CAI was devised prior to the availability of whole-genome
sequences.) Consider a sequence of amino acids X = xy, s, ..., 2, represent-
ing protein X, with z; representing the amino acid residue corresponding to
codon k in the gene. We are interested in comparing the actual codon usage
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with an alternative model: that the codons employed are the most probable
codons for highly expressed genes. For the codon corresponding to a particu-
lar amino acid at position k in protein X, let pi be the probability that this
particular codon is used to code for the amino acid in highly expressed genes,
and let g correspond to the probability for the most frequently used codon of
the corresponding amino acid in highly expressed genes. The CAI is defined

as
I 1/L
H pk/Qk] .
k=1

In other words, the CAI is the geometric mean of the ratios of the probabilities
for the codons actually used to the probabilities of the codons most frequently
used in highly expressed genes. An alternative way of writing this is

CAl =

log(CAI) = Z log(pr/qr).-

This expression is in terms of a sum of the logarithms of probability ratios, a
form that is encountered repeatedly in later contexts.

For an example of how this works, consider the amino acid sequence from
the amino terminal end of the himA gene of E. coli (which codes for one of the
two subunits of the protein IHF: length L = 99). This is shown in Fig. 2.2, and
below it are written the codons that appear in the corresponding gene. Un-
derneath is a table showing probabilities (top half) and corresponding codons
(in corresponding order) in the bottom half. The maximum probabilities (the
gr) are underlined. The CAI for this fragment of coding sequence is then given
by

1.000 0199 0.038 0.035 1Y%

x >< >< DY
1.000 0.469 0.888  0.468

The numerator of each fraction corresponds to pg, the probability that the
observed codon in the himA gene sequence would actually be used in a highly
expressed gene. If every codon in a gene corresponded to the most frequently
used codon in highly expressed genes, then the CAI would be 1.0. In E. coli,
a sample of 500 protein-coding genes displayed CAI values in the range from
0.2 to 0.85 (Whittam, 1996).

Why do we care about statistics such as the CAI? As we will see in Chap-
ter 11, there is a correlation between the CAI and mRNA levels. In other
words, the CAI for a gene sequence in genomic DNA provides a first approx-
imation of its expression level: if the CAI is relatively large, then we would
predict that the expression level is also large.

If we wanted a probabilistic model for a genome, k = 3, we could employ a
second (or higher)-order Markov chain. In the second-order model, the state
at position ¢+ 1 depends upon the states at both ¢ and £ — 1. In this case, the
transition matrix could be represented by using 16 rows (corresponding to all

CAl =



M A L T K A E M S E Y L F
ATG GCG CTT ACA AAA GCT GAA ATG TCA GAA TAT CTG TTT
1.000]0.469[0.018[0.451]0.798] 0.469] 0.794[1.00d 0.428[0.794[ 0.193 0.018[0.228
0.057|0.018|0.468[0.202| 0.057| 0.206 0.319]0.206| 0.807 0.018|0.772
0.275(0.038[0.035 0.275 0.033 0.038
0.199(0.033[0.046 0.199 0.007 0.033
0.007 0.037 0.007
0.888 0.176 0.888

ATG |GCT |TTA |ACT |AAA|GCT |GAA (ATG| TCT |GAA| TAT| TTA |TTT

GCC |TTG|ACC|AAG|GCC|GAG TCC|GAG| TAC| TTG |TTC

GCA |CTT |ACA GCA TCA CTT

GCG |CTC|ACG GCG TCG CTC
CTA AGT CTA
CTG AGC CTG

Fig. 2.2. Example of codon usage patterns in E. coli for computation of the codon
adaptation index of a gene. The probability for the most frequently used codon in
highly expressed genes is underlined.

possible dinucleotide states for ¢ — 1 and ¢) and four columns (corresponding
to the possible states at position ¢ 4+ 1). We do not explore this further here.

2.8 Larger Words

The number and distributions of k-tuples, & > 3, can have practical and
biological significance. Some particularly important k-tuples correspond to
k = 4,5,6, or 8. These include recognition sites for restriction endonucleases
(e.g., 5'-AGCT-3' is the recognition sequence for endonuclease Alul, 5'-GAATTC-
3’ is the recognition sequence for EcoRI, and 5-GCGGCCGC-3’ is the recog-
nition sequence for NotI). The distribution of these k-tuples throughout the
genome will determine the distribution of restriction endonuclease digest frag-
ments (“restriction fragments”). These distributions are discussed in Chap-
ter 3. There are also particular words (e.g., Chi sequences 5’-GCTGGTGG-3' in E.
coli, k = 8) that may be significantly over-represented in particular genomes
or on one or the other strands of the genome. For example, Chi appears 761
times in the E. coli chromosome compared with approximately 70 instances
predicted using base frequencies under the iid model. Moreover, Chi sequences
are more abundant on the leading strand than on the lagging strand. These
observations relate in part to the involvement of Chi sequences in general-
ized recombination. Another example is the uptake sequences that function
in bacterial transformation (e.g., 5-GCCGTCTGAA-3’ in Neisseria gonorrhoeae,
k = 10). Other examples of over-represented k-tuples can be found in the re-
view by Karlin et al. (1998). Some sequences may be under-represented. For
example, 5'-CATG-3’ occurs in the E. coli K-12 chromosome at about 1/20 of
the expected frequency.
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k-words (k > 4) are also useful for analyzing particular genomic subse-
quences. At the end of the next chapter, we illustrate how 4-word frequencies
can be used to quantify the differences between F. coli promoter sequences
and “average” genomic DNA.

2.9 Summary and Applications

In the cases k = 1, 2, and 3 above, we saw that frequencies of words or
statistics derived from them (GC skew for k = 1) were not as predicted from the
independent, identically distributed base model. This is no surprise: genomes
code for biological information, and we would therefore not expect the iid
model to provide an accurate description for real genomes. The frequencies
of k-tuples have a number of applications. We already mentioned that GC
skew can be used to predict locations of replication origins and termini in
prokaryotes. Prokaryotes also may engage in gene transfer, and local genome
regions having aberrant base compositions may indicate genome segments
acquired by lateral transfer. For eukaryotes, gene regions may have on average
a different base composition than regions outside genes (e.g., human genes are
relatively GC-rich compared with the genome as a whole).

For k = 3, we saw that different gene classes have different codon usage fre-
quencies. In general, the distribution of codon usage differs from organism to
organism. The codon usage pattern of an anonymous DNA sequence from an
organism can be compared against the overall usage pattern for that organism
to help determine whether the reading frame being analyzed probably is, or is
not, a protein-coding region. In Sections 2.5 and 2.7, words were described in
terms of probabilistic models. Sometimes the observed frequencies of k-words
can be used to make inferences about DNA sequences. For example, suppose
that we were given a sequence string that hypothetically could be a portion
of a candidate exon or prokaryotic gene:

GACGTTAGCTAGGCTTTAATCCGACTAAACCTTTGATGCATGCCTAGGCTG

Simply by noting the stop codons (underlined) in all three reading frames,
and knowing that a typical bacterial gene contains, on average, more than
300 codons, or that the typical human exon, for example, contains around 50
codons, we can make a reasonable inference that this string does not code for
a protein.

k-tuple frequencies can assist in classifying DNA sequences by content,
such as predicting whether an unannotated sequence is coding or noncod-
ing. Because coding sequences commonly specify amino acid strings that are
functionally constrained, we would expect that their distribution of k-tuple
frequencies would differ from that of noncoding sequences (e.g., intergenic or
intronic sequences). Consider in-frame hexamers (k = 6). There are 4096 of
these 6-tuple words. We can already predict from known polypeptide sequence
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data that some 6-tuples will be infrequent. For example, the pair of residues
Trp-Trp in succession is not common in protein sequences, which implies that
the corresponding dicodon hexamer, TTGTTG, is likely to be relatively infre-
quent in coding sequences. Alternatively, we could use k = 3 and compute the
CAI within open reading frames to identify those that might correspond to
highly expressed genes (i.e., CAI close to 1.0). k-tuple frequencies and other
content measures such as the presence of particular signals (see Chapter 9)
are among the statistical properties employed by computational gene-finding
tools.
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Exercises

Exercise 1. The base composition of a certain microbial genome is pg =
pc = 0.3 and py = pr = 0.2. We are interested in 2-words where the letters
are assumed to be independent. There are 4 x 4 = 16 2-words.

(a) Present these 16 probabilities in a table. (Do your 16 numbers sum to
1.07)

(b) Purine bases are defined by R = {A, G} and pyrimidine bases by Y = {C, T}.
Let E be the event that the first letter is a pyrimidine, and F the event
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that the second letter is A or C or T. Find P(E),P(F),P(EUF),P(ENF),
and P(F°).
(c) Set G={CA, cC}. Calculate P(G | E), P(F | GUE), P(FUG | E).

Exercise 2. For three events A, B, and C show that P(ANB | C) = P(A |
BnC)P(B|C).

Exercise 3. The independent random variables X and Y have the following
expectations: E(X) = 3,E(X?) = 12,E(Y) = 5, and E(Y?) = 30. Find

(a) E(X +Y),E(2X + 1), E(2X + 0.3Y) and E(2X — 0.3Y).
(b) VarX, VarY, Var(2X +5), Var(X +Y), Var(5X + 7Y), Var(5X — 7Y, and
Var(5X + 7Y + 1600).

Exercise 4. Suppose N has a binomial distribution with n = 10 and p = 0.3.

(a) Using the formula (2.17), calculate P(N = 0),P(N = 2),E(N), and VarN.

(b) Using R and Computational Example 2.2, simulate observations from N.
Use the simulated values to estimate the probabilities you calculated in
(a), and compare with the results in (a).

(¢) Now use R to simulate observations from N when n = 1000 and p = 0.25.
What is your estimate of P(N > 280)7 (See (2.20).)

Exercise 5. Verify the terms in the first row of the transition matrix P pre-
sented in Section 2.6.3. Describe how you would use the sequence of M. geni-
talium to produce this matrix.

Exercise 6. Find the stationary distribution of the chain with transition ma-
trix P in Section 2.6.3; that is, solve the equations m = wP subject to the
elements of 7 begin positive and summing to 1. Compare 7w to the base com-
position of M. genitalium, and comment.

Exercise 7. Using the values for P in Section 2.6.3, compute P?, P4 and P%.
(Remember to use %*% as the matrix multiplication operator in R, not *.)
What quantities are the row entries approaching? This distribution is called
the limiting distribution of the chain. Compare to the results of Exercise 6.

Exercise 8. Perform the simulation in Chapter 2.6.3, and verify that the
appropriate dinucleotide frequencies are produced in your simulated string.

Exercise 9. Using the sequence of E. coli (GenBank ID NC 000913) and the
method in Section 2.6.3, find the dinucleotide frequencies and the estimated
transition matrix. (Hint: Download the sequence in FASTA format from the
NCBI website, and convert letters to numbers using a text editor.)

Exercise 10. In this example, we use R to verify the distribution of the statis-
tic X? given in (2.22), as used in Table 2.2. To do this, first choose a pair of
bases 172, and calculate the appropriate value of ¢ by following the recipe
after (2.22) for the given base frequencies p = (p1,...,ps). Now use R to
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repeatedly simulate strings of 1000 letters having distribution p, calculate O
(the number of times the pair of letters 172 is observed) and E, and hence
X?/c. Plot a histogram of these values, and compare it to the theoretical dis-
tribution (which is the x? distribution with 1 degree of freedom). Remark:
This simulation approach provides a useful way to estimate percentage points
of the distribution of any test statistic.

Exercise 11. The genome composition 7 of E. coli can be computed from Ta-
ble 2.1. Take the first 1000 bps of the E. coli sequence you used in the previous
exercise. We are going to use a variant of (2.22) to test if this 1000 bp sequence
has an unusual base composition when compared with 7. The statistic to use

1S
4

xX2=>%" (Oi — Ei)Z, (2.29)

where O; denotes the number of times base i is observed in the sequence, and
E; denotes the expected number (assuming that frequencies are given by 7).

(a) Calculate O; and E;,i = 1,...,4, and then X2

(b) Values of X2 that correspond to unusual base frequencies are determined
by the large values of the x? distribution with 4—1 = 3 degrees of freedom.
Using a 5% level of significance, are data consistent with = or not? [Hint:
percentage points of the x? distribution can be found using R.]

Exercise 12. In this exercise we have two random variables X and Y which
are not independent. Their joint probability distribution is given in the fol-
lowing table:

Y
1 3 6 9
20.11 0.05 0.20 0.08
X 30.200.020.00 0.10
70.00 0.05 0.10 0.09

The values of X are written in the first column and the values of Y in the
first row. The table is read as P(X =7&Y = 6) = 0.10, and so on.

(a) Find the marginal distribution of X and Y. (That is, P(X = 2),P(X =

3),....)
(b) Write Z = XY Find the probability distribution of Z.

(¢) The covariance between any two random variables is defined by
Cov(X,Y)=E(X - EX)(Y —EY).
Show that Cov(X,Y) =E(XY) - EX x EY.

(d) Find EX,EY, 0% = VarX, o? = VarY, and Cov(X,Y) for the example in
the table.
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(d) The correlation coefficient p is defined by pxy = Cov(X,Y)/oxoy.
It can be shown that —1 < p < 1, the values £1 arising when Y is a linear
function of X. Verify this last statement.

(e) Calculate p for the example in the table.

Exercise 13. Using R, simulate n pairs of observations (X;,Y;),t =1,2,...,n
from the distribution in the table in Exercise 12.

(a) From these observations calculate the estimates X,Y,s%, and s2. (see
(2.18), (2.19)).
(b) Calculate the estimate sgqy of Cov(X,Y) defined by

1 - - -
2 _ o -
SX,)y = n—1 Z(Xz X)(Y; =Y).
=1
(c) Calculate the estimate r of the correlation coefficient p viar = s% y/(sx sy).
(d) Compare the estimated covariance and correlation obtained for different

values of n with the theoretical values obtained in Exercise 12.
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Word Distributions and Occurrences

3.1 The Biological Problem

Suppose that we wanted to obtain a sample of DNA that contained a specific
gene or portion of a gene with very little other DNA. How could we do this?
Today, given a genome sequence, we could design PCR primers flanking the
DNA of interest and by PCR could amplify just that segment. Prior to the
development of rapid genomic sequencing technologies, the process was much
more complicated.

DNA is a macromolecule. That means that DNA molecules can have very
high molecular weights. Because DNA can be long (for example, the DNA
in human chromosome 1, at 225,000,000bp, is 7.65cm long) but is only 20
x1078 cm thick, it is easily broken by hydrodynamic shear. Such a long
molecule cannot be transferred from one tube to another without breakage
during pipetting. This was found to be a problem even with smaller molecules
(e.g., 50,000 bp). The result of shearing is a collection of DNA fragments that
are not broken at the same position, so that molecules containing the gene of
interest intact might be very rare. What would be desirable is a method for
cutting out the DNA at reproducible locations on the larger molecule together
with a method for amplifying this DNA segment. Restriction endonucleases
provided the means for precisely and reproducibly cutting the DNA into frag-
ments of manageable size (usually in the size range of 100s to 1000s of base
pairs), and molecular cloning provided the method for amplifying the DNA
of interest (Section 1.5.1). The clone containing the DNA of interest could be
identified by hybridization of a probe DNA (known to contain the sequence
of interest) to DNA from bacterial colonies (if the DNA had been cloned into
plasmid vectors) or from plaques (if a bacteriophage cloning vector had been
used).

The cloned DNA fragment can be put in context with other fragments
(which themselves can be subsequently analyzed) by creating a type of physi-
cal map called a restriction map. A restriction map is a display of positions
on a DNA molecule of locations of cleavage by one or more restriction en-
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donucleases. It is created by determining the ordering of the DNA fragments
generated after digestion with one or more restriction endonucleases. The re-
striction map is useful not only for dissecting a DNA segment for further anal-
ysis but also as a “fingerprint” or bar code that distinguishes that molecule
from any other molecule. Even a list of fragments and their sizes can serve as
a kind of fingerprint. Given a sufficiently large collection of mapped clones, it
is possible to build up a restriction map of the DNA from which the clones
were derived by matching restriction site patterns at the ends of the inserts.
Again, remember that cloning puts DNA of manageable size into vectors that
allow the inserted DNA to be amplified, and the reason for doing this is that
large molecules cannot be readily manipulated without breakage.

The overall process can be summarized as shown in Figure 3.1: given
a DNA molecule, digest the DNA with one or more restriction endonucle-
ases to generate the particular set of fragments dictated by the sequence of
that molecule; determine the sizes of the product fragments by acrylamide or
agarose gel electrophoresis; and then, using one or more techniques, infer the
locations of sites (or equivalently, the order of fragments) in the original DNA
molecule.

When the Human Genome Project was originally contemplated, it was
supposed that a physical map would first be constructed so that appropri-
ate restriction fragments (of known location) could then be sequenced. In
the strictest “top-down” approach, we would first construct a high-resolution
genetic map, then clone the DNA into large insert vectors such as yeast arti-
ficial chromosomes (YACs) or bacterial artificial chromosomes (BACs), sub-
clone the inserts of these into cosmids, which would then be fingerprinted
after restriction endonuclease digestion, and then subclone the cosmid inserts
into plasmids for sequencing (Section 8.4.3). The location of any sequence on
the genome would then be determined by tracing back from plasmid to cos-
mid to YAC, taking into account the restriction map of inserts at each step.
This did not take into account the powerful computational tools that would
later become available, which then made possible random, shotgun sequencing
approaches (sequencing randomly chosen small insert clones, followed by com-
putational sequence assembly). Restriction enzyme digests are still employed
in the shotgun method to assess the contents of the collection of BACs, but
prior physical mapping is not required.

Although restriction mapping is not as central as it once was for genome
analysis, workers at the bench still use restriction mapping to evaluate the
content of clones or DNA constructs of interest, so it is still important to
talk about locations and distributions of restriction endonuclease recognition
sites. This chapter presents the probabilistic basis for analyzing this kind of
problem. In addition, the last section shows how word occurrences can be used
to characterize biologically significant DNA subsequences.
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Undigested Molecule

D ¥ A VF¥Gtv ¢ ¥+ EV B
Digest with
restriction Construct
endonuclease restriction map
Products:
A
B
C
- 5.0, 3.5, 3.0,
L — 2.5, 2.0, 1.5,
E Determine sizes by 0.5 kb
F gel electrophoresis

G

Fig. 3.1. Restriction endonuclease digestion (one enzyme) and the corresponding
physical map for a linear molecule. Fragments are labeled in order of decreasing
size, as would be observed after gel electrophoresis. Restriction sites are indicated by
vertical arrows. The order of fragments (D, A, F, G, C, E, B) is originally unknown.
A variety of techniques may be employed to determine this order.

3.1.1 Restriction Endonucleases

Bacteria contain genes for a remarkable collection of enzymes, restriction en-
donucleases. Here is the setting for their discovery. Bacteriophage lambda
grows well on the F. coli strain K-12. However, only a very small percentage
of bacteriophages grown on strain K-12 can grow well on E. coli strain B.
Most of the phage DNA that infects strain B is inactivated by fragmentation.
However, those few bacteriophages that infect E. coli B successfully produce
offspring that can infect E. coli B (but not K-12) with high efficiency.

The reason for these observations is that the host DNA in E. coli B is mod-
ified (by methylation) in a particular manner. The invading DNA is not modi-
fied in this particular way, and consequently it is broken down. In 1970, Hamil-
ton Smith found that a restriction enzyme that he was studying (HindII)
caused cleavage of double-stranded DNA in a short specific nucleotide se-
quence. Methylation of a base in the sequence prevented this cleavage. The
recognition sequence for HindII is
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5/-GTY'RAC-3'
3/-CAR YAG-5'

and its methylated form is

5'-GTYR™6AC-3/
3'-CAR™OYAG-5'

Arrows indicate the position of cleavage at this site. HindII is an example of
a Type II restriction endonuclease (Types I and III are also known). Type II
enzymes cleave DNA within the recognition sequence. In the case of HindIl,
the third position (top strand) can be either pyrimidine (Y = C or T) and
the fourth position can be either purine (R = A or G). Because the cleavages
on the two strands are directly opposite, blunt ends are generated by HindIIl
cleavage, and this enzyme is not used as much in cloning as are other enzymes.

Type II restriction endonucleases that recognize four to eight specific bases
are known. Sometimes the specific sequences in the recognition sequence are
separated by one or more bases whose identities are indeterminate. For exam-
ple, Sfil recognizes and cuts within the sequence 5-GGCCNNNNNGGCC-3' (N can
be A, C, G, or T). For the sizes of DNA fragments typical in laboratory cloning
experiments, enzymes that recognize six base-pair sequences have been com-
monly used. For example, EcoRI recognizes and cleaves (within the context
of DNA on both sides of the sequence—mnot shown below)

5/-G'AATTC-3' — 5'-G 4 5-AATTC-3/
3/-CTTAAG-5' 3/-CTTAA-5' G-5'

It will not cleave

5'-GA™OATTC-3/
3/-CTTAA™6G-3/

The particular usefulness of the Type II enzymes was the production of
extensions (in this case, the 5" extension AATT), which aided efficient cloning.
With synthetic adapter and linker technologies now available, this is less of a
consideration. More than 600 restriction endonucleases of different types (I,
II, or IIT) have been described, and over 200 are commercially available.

3.1.2 The Problem in Computational Terms

As described in Chapter 2, the genome of an organism can be represented as a
string Lq,..., L, drawn from the alphabet X = {a1, az2,as3,a4} = {A,C,G, T},
where n is the number of base pairs. Given such a string, there are a number
of questions that might arise.

— If we were to digest the DNA with a restriction endonuclease such as
EcoRI, approximately how many fragments would be obtained, and what
would be their size distribution?
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— Suppose that we observed 761 occurrences of the sequence 5'-GCTGGTGG-3’
in a genome that is 50% G+C and 4.6 Mb in size. How does this number
compare with the expected number (see Section 2.8)7 How would one find
the expected number? Expected according to what model?

This chapter provides some tools for answering these sorts of questions.
We model the underlying sequence as a string of independent and identically
distributed letters (Section 2.3.2) and use this model to find the probability
distribution of the number of restriction endonuclease cleavage sites and the
distribution of fragment sizes of a restriction digest. We then inquire about the
expected frequencies of runs of letters (such as AAAAAA- - - A tracts). These can
be important because of their occurrence in promoter regions. In Chapter 4,
we describe the reverse of the digestion problem: Given a set of fragments
without knowing the DNA sequence, how do we assemble the physical map?

3.2 Modeling the Number of Restriction Sites in DNA

3.2.1 Specifying the Model for a DNA Sequence

If we are given a DNA sample, we usually know something about it—at least
which organism it came from and how it was prepared. This means that usu-
ally we know its base composition (%G+C) and its approximate molecular
weight (especially for bacteriophage or plasmid DNA). In this section, we
inquire about the number and distribution of restriction endonuclease recog-
nition sites and about the distribution of resulting restriction fragment lengths
after digestion by a specified restriction endonuclease. To describe this math-
ematically, we need a model. Since our information about the DNA is limited,
we select the simplest possible model for our DNA sequence: iid letters.

3.2.2 The Number of Restriction Sites

Now that we know the sequence model, we can proceed with analysis of our
restriction site problem (e.g., the number and distribution of sites). We have
modeled the DNA sequence as a string of iid letters at positions 1, 2,... n.
Restriction endonuclease recognition sequences have length ¢t (4, 5, 6 or 8
typically), and ¢ is very much smaller than n. To begin, our model is going
to assume that cleavage can occur between any two successive positions on
the DNA. This is wrong in detail because, depending upon where cleavage
occurs within the n bases of the recognition sequence (which may differ from
enzyme to enzyme), there are positions near the ends of the DNA that are ex-
cluded from cleavage. (Also, because the ends of DNA molecules may “fray” or
“breathe” for thermodynamic reasons, sites at the ends of molecules may not
be cleaved.) However, since ¢ is much smaller than n, the ends of the molecule
do not affect the result too much, and our approximation that cleavage can
occur between any two positions produces a result that is nearly correct.
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We again use X; to represent the outcome of a trial occurring at position
i, but this time X; does not represent the identity of a base (one of four
possible outcomes) but rather whether position 4 is or is not the beginning of
a restriction site. That is,

X, = { 1, if base ¢ is the start of a restriction site, (3.1)

0, if not.

We denote by p the probability that any position ¢ is the beginning of a
restriction site. The outcomes are then

X — 1, with probability p,
* 71 0, with probability 1 — p.

If this were a coin-tossing experiment, “heads” might be coded as 1, “tails”
might be coded as 0, and X; would represent the outcome of the ith toss. If
the coin were fair, p would be equal to 0.5. For the case of restriction sites on
DNA, p depends upon the base composition of the DNA and upon the identity
of the restriction endonuclease. For example, suppose that the restriction en-
donuclease is FEcoRI, with recognition sequence 5-GAATTC-3’. (The site really
recognized is duplex DNA, with the sequence of the other strand determined
by the Watson-Crick base-pairing rules.) Suppose further that the DNA has
equal proportions of A, C, G, and T. The probability that any position is the
beginning of a site is the probability that this first position is G, the next one
is A, the next one is A, the next one is T, the next one is T, and the last one is C.
Since, by the iid model, the identity of a letter at any position is independent
of the identity of letters at any other position, we see from the multiplication
rule (2.6) that

p = P(GAATTC) = PP(G)P(A)P(A)P(T)P(T)P(C) = (0.25)% ~ 0.00024.

Notice that p is small, a fact that becomes important later.

The appearance of restriction sites along the molecule is represented by the
string X1, Xo,..., X, and the number of restriction sites is N = X7 + X5 +
-+« + X, where m = n — 5. The sum has m terms in it because a restriction
site of length 6 cannot begin in the last five positions of the sequence, as
there aren’t enough bases to fit it in. As we noted earlier, such end effects
are not significant when the sequence is long, so for simplicity of exposition
we take m = n in what follows. What really interests us is the number of
“successes” (restriction sites) in n trials. If X7, X5, ..., X,, were independent
of one another, then the probability distribution of N would be known from
the result in Section 2.3.4. N would have a binomial distribution (2.17) with
parameters n and p; the expected number of sites would therefore be np and
the variance np(1 — p). We remark that the X; are not in fact independent
of one another (because of overlaps in the patterns corresponding to X; and
X1, for example). The binomial approximation often works well nonetheless.
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Probabilities of events can be computed using the probability distribution
in (2.17), but as we saw in Section 2.3.3, this can be cumbersome. In the
following sections, we describe two other approximations that can be used for
computing probabilities for the number of successes in a binomial experiment.
Before doing this, we assess how well our very simplified model behaves by
comparing its predictions with data from bacteriophage lambda.

3.2.3 Test with Data

To test the adequacy of the iid model for the DNA sequence and the distribu-
tion of restriction sites, we compare the number of sites predicted under the
model with the observed number of restriction sites (based upon the exper-
imentally measured DNA sequence). For this comparison, we use restriction
endonucleases that recognize four base-pair sequences because this allows easy
comparison for most or all of the 16 possible 4 bp palindromes. (Remember
that most restriction endonucleases having an even-numbered recognition se-
quence display inverted repetition in that sequence, so there are only two
independently variable sites for a 4 bp palindrome; therefore the number of
different 4 bp palindromes is 42 = 16.) In the example in Table 3.1, the lambda
DNA sequence is 48,502 bp long, and we use a model with the observed duplex
DNA frequencies py = pr = 0.2507, pc = pg = 0.2493.

Table 3.1. Comparison of observed and expected numbers of restriction enzyme
cleavage sites for bacteriophage lambda DNA. (The data were taken from GenBank
nucleotide sequence file NC 001416 and from the New England Biolabs online catalog
(http://www.neb.comRestriction Maps/Frequencies of Restriction Sites).

Enzyme Recognition P EN VarN Observed

sequence number
Alul AGCT 0.00391 190 189 143
Bfal CTAG 0.00391 190 189 13"
BstUI CGCG 0.00386 187 186 157
Haelll GGCC 0.00386 187 186 149
Hpall CCGG 0.00386 187 186 328"
Mbol GATC 0.00391 190 189 116"
Msel TTAA 0.00395 192 191 195
NlalIl CATG 0.00391 190 189 181
Rsal GTAC 0.00391 190 189 113"
Taql TCGA 0.00391 190 189 121"

Recall that the standard deviation is the square root of the variance, which
in all cases above is around 14. In most cases, the observed number of sites
is approximately as predicted, suggesting that the iid model adequately de-
scribes the number of restriction sites for lambda DNA. There are five enzymes
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(indicated by *) whose site numbers in lambda are well over three standard
deviations away from the predicted value. If this were consistently observed
for other bacteriophages of F. coli and for the E. coli chromosome, then we
might hypothesize that the deficiency of these recognition sequences may re-
flect some biochemical feature of the organism (e.g., peculiarities of the DNA
repair system).

3.2.4 Poisson Approximation to the Binomial Distribution

In preparation for looking at the distribution of restriction fragment lengths,
we introduce an approximate formula for P(N = j) when N has a binomial
distribution with parameters n and p. Recall that for the restriction site ex-
ample, p depends upon the particular restriction endonuclease and upon the
base composition of the DNA. For example, we showed above for EcoRI that
p = 0.00024 for DNA that equal frequencies of the four bases. For a molecule
that is 50,000 bp long, there would be 50,000 x 0.00024 = 12 sites expected
according to our model. Notice that because p is very small, the number of
sites is small compared with the length of the molecule. This means that
VarN = np(1 — p) will be very nearly equal to EN = np. Contrast this with
a fair coin-tossing experiment, where p = 0.5. In that case, if we were to per-
form, say, 300 coin tosses, we would have EN = 300 x 0.5 = 150, which is
much larger than VarN = 300 x 0.5 x (1 — 0.5) = 75. In what follows, we
assume that n is large and p is small, and we set A = np.
In (2.17), we saw that for 7 =0,1,...,n,

n! , .
AP (L=p)

FNV=D= 0

Now we massage the equation algebraically, factoring the various terms and
canceling in a manner that will seem reasonable a bit later. First, write

v =j)=""" 1)(7}@2)_'];55" Iy,

Note that there are j terms involving n in the numerator. In the cases in
which we are interested, the expected number of sites is small compared with
the length of the molecule (so values of j that are relevant are small compared
with the length of the molecule, n). This means that

nin—1)(n—-2)---(n—j—1)~n/ and (1—p)’ ~ 1.

Substituting these approximations into the equation for P(N = j) and using

A = np, we get
. np)’ . N A"
]P’(N:]);:z(],)) 1-p)"=" <1— ) .
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Now recall a result from calculus that, for any =z,

lim (1 — x)n =e "

n— oo n

Since n is large (often more than 10%), we replace (1 — A\/n)" by e™* to get
our final approximation in the form
M\
4!
Some of you will recognize that this is the formula for the Poisson proba-

bility distribution with parameter A\ = np. We say that a random variable N
taking values in {0,1,2,...} has a Poisson distribution with parameter A if

P(N=j)~" e j=0,1,2,....

bV
L€
7!
It can be shown that EN = VarN = X for the Poisson distribution (see
Exercise 1.

]P)(N:]) = _kvj :071;27"' . (32)

Computational Example 3.1: Poisson approximation for the bino-
mial

We have just illustrated the well-known result that the binomial distribution
can be approximated by the Poisson distribution if np is small or of moderate
size and p is small. To show how this approximation may be used, we estimate
the probability that there are no more than two EcoRI sites in a DNA molecule
of length 10,000, assuming equal base frequencies.

Earlier we calculated that p = 0.00024 in this case. Therefore A = np is
calculated to be 2.4. The problem is to calculate P(N < 2). Using the Poisson
distribution in (3.2), we get

0 1 2
P(N < 2) ~ 3! e M 4 ?! e M+ 2! e~ 0.570.
This can also be evaluated using the R command ppois, which gives the
distribution function of the Poisson random variable.

> ppois(2,2.4)
[1] 0.5697087

In other words, more than half the time, molecules of length 10,000 and uni-
form base frequencies will be cut by EcoRI two times or less.

3.2.5 The Poisson Process

There is a more general version of the Poisson distribution that is very useful.
It generalizes n into “length” and p into “rate.” The mean of the corresponding



76 3 Word Distributions and Occurrences

Poisson distribution is length x rate. We suppose that events (which were
restriction sites above) are occurring on a line at rate y; then

e M (ul)*

P(k events in (z,z +1)) = il

 k=0,1,2,... .

If there is more than one interval, the lengths of the intervals simply add,

e ) (s + 1y))*

P(k events in (z,x+11)U(y,y+12)) = k!

, k=0,1,2,...,
as long as the intervals are disjoint (i.e., z < x + 11 <y <y +la).

Poisson processes have events occurring “uniformly” along the line. It is
easy to generalize the idea to area or volume. For example, lightning strikes
might occur in a county according to a Poisson process. Then g might be in
units of strikes per square foot (i.e., events/area), and | would be in units of
square feet (area).

3.3 Continuous Random Variables

In the previous section, we saw that the probability of finding N = j restric-
tion sites in a molecule could be represented by the binomial distribution or
the Poisson distribution. These are discrete distributions since N takes on in-
tegral values. To calculate the probability that N takes on a range of values,
for example P(N < k), we calculate a sum,

k

P(N <k)=> P(N =j).
j=0

When a random variable X can take on any value in an interval, we call X
continuous. The probabilistic behavior of X is then determined by its prob-
ability density function f(z), —0co0 < & < co. The function f satisfies

[ee]
f(z) >0 for all z, and / flz)dz = 1. (3.3)
— 00
To compute the probability that X takes values in a set A, we use
P(X € A) :/ f(z)dz;
A

in particular, when A is an interval (a, b], we have

Pla < X <b) = /bf(x)dx.
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The mean EX of a continuous random variable X with density f is defined
as

EX :/ xf(z)dz, (3.4)
and the variance of X is calculated as
Va() = [ o= [ i (39

where p = EX. These definitions are the analogs of those in (2.7) and (2.11),
respectively.

In Section 2.4, we met our first continuous random variable, the one dis-
tributed uniformly over (0,1). A random variable U is said to have the uni-
form distribution on (a,b) if its density function is

L < b
f(x)z{b—a’“<“’— ’ (3.6)

0, otherwise.

It is easy to verify that EU = (a + b)/2 and Var U = (b — a)?/12; see Exer-
cise (2).

In the following chapters, we meet several other continuous random vari-
ables. It is convenient at this point to introduce two important examples, the
exponential and the normal. The exponential random variable with parameter
A has probability density function

Ae M x> 0;
flz) = {O, otherwise. (3.7)

If X has the exponential distribution with parameter A, then
b
Pla < X <b) = / Ae Mdx = e — e,

The mean of X is

EX :/ zhe Mdx = 1/,
0

while -
EX? = / 22 he M dz = 2/)2.
0

It follows that VarX = 1/\%.
The random variable Z is said to have a standard normal distribution if
its probability density function is given by

]. 1,2

o=, eH

,—00 < z < 00. (3.8)
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The probability ®(z) that Z < z is given by

qazngasza@m, (3.9)

and the probability that Z lies in the interval (a,b) is
b
PW<Z§®2/¢@®2©@—¢@,@<&

The function ®(z) cannot be written in closed form, but its values can be
computed numerically. For our purposes, we can use R to do this computation.
As shown in the box below, we find for example that

P(—1.96 < Z < 1.96) = 0.95,

and

P(Z>-1)=1-®(—1) ~ 0.841.
If Z has the standard normal distribution, we write Z ~ N(0,1). It can be
shown that if Z ~ N(0, 1), then EZ =0, VarZ = 1.

If Z ~N(0,1), the random variable X = 1 4+ 07 is said to have a Normal
distribution with mean y and variance o?; we write X ~ N(u, 0?) in this case.
To calculate probabilities for such X, we use the fact that if X ~ N(u,o?),
then Z = (X — p)/o ~ N(0, 1). That is,

]P(X<x):IP><X_“<x_“):@(‘r—“).

g g g

For example, if X ~ N(1,4), then

1.96 — 1
P(X < 1.96) = ® ( ) ) = $(0.48) ~ 0.684
and 1.96 — 1
P(X < —1.96) = & (_ 5 B > = ®(—1.48) ~ 0.069,
so that

P(—1.96 < X <1.96) = 0.684 — 0.069 = 0.615.

These calculations can be performed simply in R, as shown in the box below.

Computational Example 3.2: Using R to compute probabilities for
the normal distribution

To calculate probabilities for the standard normal distribution, we use the R
function pnorm(z), which calculates

prorm(z) = ®(2) = /j o(2)dz.
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> pnorm(1.96,0,1) - pnorm(-1.96,0,1) # P(-1.96 < Z < 1.96)
[1] 0.9500042

> 1 - pnorm(-1) # P(Z > -1

[1] 0.8413447

To calculate probabilities for the normal random variable X with mean
p = m and standard deviation ¢ = s, we use the function pnorm(x,m,s),
where P(X < z) = pnorm(x,m, s). For example,

> pnorm(1.96,1,2)

[1] 0.6843863

> pnorm(-1.96,1,2)

[1] 0.06943662

> pnorm(1.96,1,2) - pnorm(-1.96,1,2)
[1] 0.6149497

as shown in the text.

The concept of independence of continuous random variables X1, ..., X,
is just the same as in the discrete case; the formal definition is given in (2.5).
3.4 The Central Limit Theorem
In this section we give another useful approximation that allows us to calculate
probabilities. This result, known as the Central Limit Theorem, applies
to sums or averages of independent, identically distributed random variables.

Assume that X, X», ..., X,, are iid with mean p and variance o2, and denote
their sample average by X,,, where

1
X, = n(X1+~-+Xn).
From (2.9) and (2.14), we know that
EX, = ,u,Vaan = ’ ’
n
and therefore that
X, — X, —
]E( M):O,Var( 'u)zl.
o/vn o/
The Central Limit Theorem states that if the sample size n is large,

Xn—1 N (g
P(a< o/ /n <b>~<I>(b) O (a), (3.10)
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the approximation improving as the sample size increases. The terms on the
right involve the standard normal distribution function in (3.9). We note that

Xpn—p _ D Xi —np
a/\/n o\/n ’

obtained by multiplying the top and bottom of the left-hand side by n. This
gives a version of the Central Limit Theorem for sums:

P <a < Zim X b) ~ B(b) — (a). (3.11)
ov/n
To show the Central Limit Theorem in action, we use simulated binomial
data (see Figure 2.1). In the box below, we show how to use R to superimpose
the standard normal density (3.8) on the histogram of the simulated values.
In each case, we standardize the simulated binomial random variables by
subtracting the mean and then dividing by the standard deviation.

Computational Example 3.3: Illustrating the Central Limit Theo-
rem

First, we generate 1000 binomial observations with n = 25, p = 0.25, and then
standardize them.

> bin25 <- rbinom(1000,25,0.25)

> 26 % 0.25 # Calculate the mean

[1] 6.25

> sqrt(25 * 0.25 * 0.75) # Calculate standard deviation

[1] 2.165064

> bin25 <- (bin25 - 6.25)/2.1651 # Standardize observations

Density
2

Q.0

Fig. 3.2. Histogram of 1000 standardized replicates of a binomial random variable
with n = 25 trials and success probability p = 0.25. The standard normal density is
superimposed.
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In Fig. 3.2 we plot a histogram of the observations and then superimpose
the standard normal density. The code to achieve this is given below.

> hist(bin25,xlim=c(-4,4),ylim=c(0.0,0.4) ,prob=TRUE,
+ xlab="Sample size 25",main="")
> x<-seq(-4,4,0.1) # Generate grid of points

# from -4 to 4 in steps of 0.1
> lines(x,dnorm(x))

Now we return to the question posed at the end of Section 2.4: What is
the probability that a random, uniformly distributed DNA sequence of length
1000 contains at least 280 A s? That is, we want to estimate the quantity
P(N > 280) when N has a binomial distribution with parameters n = 1000
and p = 0.25. We saw in (2.3) that N is the sum of iid random variables, so
we can use (3.11) to estimate P(N > 280).

To do this, we calculate the mean and standard deviation for N in (2.3)
having n = 1000, obtaining

E(N) = nu = 1000 x 0.25 = 250,
and
1 3
sd(N) = v/no = \/1000 X X, 13.693.

Hence

N —250 _ 280 — 250

> =
P(N 2 280) P( 13.693 ~ 13.693

> ~P(Z > 2.19) = 0.014.

This is in good agreement with the theoretical result 0.016 cited earlier.

3.4.1 Confidence Interval for Binomial Proportion

In Section 2.4, we used simulation to estimate a proportion. The parameter of
interest was p = P(IN > 280). In n = 10,000 repeated simulations of 1000 bp
under the iid model with equal base frequencies, we observed 149 occasions
where the number N of As in the sequence exceeded 280. Each of these we
can call a “success” and the remaining trials “failures.” How accurately have
we estimated the success probability p?

To answer this question, we can use the Central Limit Theorem again.
Write p for the observed proportion of successes in the 10,000 trials. Using
our results about the binomial distribution, we know that the expected value
Ep = p, and Varp = p(1 — p)/10,000. Given the large number of trials, we
know that

p—p

P|—-1.96 < < 1.96 | =~ 0.95.
/p(1 —p)/10,000
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Given that the sample size is very large, we expect p = p, so that

pl-196< , PP <1.96 ) ~0.95
V/B(1 = $)/10,000

as well. This statement can be rewritten in the form

i p(1 —p) i L-P)
1P><p 1.96\/ 10,000 <p<p—|—1.96\/ 10,000 | ~ 095

This says that if we repeat our whole simulation many times, the random

interval
. p(1—p) . p(1—p)
—1 1. 12
(p 96\/ 10,000 P 96\/ 10, 000 (3.12)

will cover the true value p about 95% of the time. We call this a 95% confidence
interval for p. In our example, we got p = 0.0149 and a 95% confidence interval
of (0.0125,0.0173), which does indeed cover the true value of p = 0.0164.

To obtain confidence intervals with confidence levels other than 0.95, all
that has to be done is to replace the value 1.96 in (3.12) with the appropriate
value found from the standard normal distribution. For example, for a 90%
confidence interval use 1.645.

Computational Example 3.4: p-values It is common practice in much of

statistics to measure one’s surprise about the outcome of a series of experi-
ments by reporting the p-value of the result. The p-value is the probability
of obtaining a result more extreme than the value observed in the experi-
ment. For example, suppose we tossed a fair coin 100 times and observed that
the number of heads N (which has a binomial distribution with parameters
n = 100 and p = 0.5) was 65. Then the p-value would be

P(N > 65) ~ P(Z > 3) ~ 0.0013,

where Z has a standard normal distribution. This result follows from the Cen-
tral Limit Theorem and the fact that IV has mean 50 and standard deviation
5.

Sometimes p-values are two-sided. In the coin-tossing example, we would
calculate the probability that values more than three standard deviations from
the mean are observed. The p-value in this case would be 2 x 0.0013 ~ 0.003.

3.4.2 Maximum Likelihood Estimation

In Section 2.6.1, we gave a simple method for estimating the transition ma-
trix of a Markov chain from a sequence of observations of that chain. This
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is an example of parameter estimation, which arises frequently in statistical
applications. The setting usually involves trying to find “good” values for the
parameters of a probability model using a set of observations. We illustrate
one method of parameter estimation in the context of estimating a binomial
proportion.

In this case, the (unknown) parameter of interest is the success probability,
p. We estimated this in the previous section by using the observed proportion
of successes in the n trials—obviously a sensible thing to do. Here we provide
another rationale for this choice based on the method of maximum likelihood.
Suppose then that we observed k successes in n tosses of a coin with success
probability p. For a given value of p, the chance of this observation is

L(p) = <Z>pk(1 —p)" .

Note that we are treating k as fixed here. (It was the value we observed in
the experiment.) The maximum likelihood approach estimates the parameter
p by using that value of p that maximizes the likelihood function L(p).

Elementary considerations show that the value of p that maximizes L(p)
also maximizes the log-likelihood function I(p) = log L(p); the latter is often
a simpler function to optimize. To maximize

l(p) = log (Z) + klogp + (n — k) log(1 — p),

we solve the equation

dl
) _y,
dp
obtaining the equation
k' n—k
— =0.
p 1-p

The solution of this equation is obtained as p = k/n, the observed fraction
of successes in the n trials. The value p = k/n is called the maximum like-
lihood estimator (MLE) of the parameter p. In this case, the maximum
likelihood method has given the same estimator as we derived intuitively ear-
lier. (We note that we should check that p does indeed give a mazimum of the
likelihood function. You should check that if you compute the value of dzl(f )
at the point p = p, you get a negative value, as required.)

The maximum likelihood approach for parameter estimation is one of the
basic methods in statistics. The general scheme is to write down the likelihood
function, the probability (or the probability mass function) of the observa-
tions, viewed as a function of the unknown parameters in the model and then
maximize over the parameters. This can sometimes be done by simple calculus
but more often involves numerical approaches. This aspect is not discussed
further in this book, but we note that many statistics packages have flexible
tools for such numerical analysis; R is no exception.
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3.5 Restriction Fragment Length Distributions

We assume that restriction sites occur according to a Poisson process with
rate A per bp. Then the probability of k sites in an interval of length [ bp is

e A

P(N=k) ="

, k=0,1,2,... . (3.13)
We can also calculate the probability that a restriction fragment length X is
larger than x. If there is a site at y, then the length of that fragment is greater
than z if there are no events in the interval (y,y + ). From (3.13), this has
probability

-z

P(X > z) = P(no events in (y,y +x)) =e %, > 0.

It follows that N
P <a) = [ Sy =1-e,
0

and the density function for X is then
f(x) =Xe ™z >0.

Hence, recalling (3.7), the distance between restriction sites has an exponential
distribution with parameter \; the mean length is 1/\.

3.5.1 Application to Data

To develop intuition about what this means, let’s look at a specific example:
the result of digesting bacteriophage lambda with Alul. We already used this
example for comparison with our model for estimation of the expected number
of fragments (Table 3.1). The restriction fragment lengths and a histogram of
these lengths are shown in Fig. 3.3. The data come from the New England
Biolabs catalog; check the links at http://www.neb.com.

We see that there are more fragments of shorter lengths and that the
number having longer lengths decreases, as predicted by the model. We can
also estimate the proportion of fragments we would expect to see with lengths
greater than d = 1000 bp (say). For the model used in Table 3.1, we have
n = 48,502, p = 0.003906, so that x = d/n = 0.0206 and A = np = 189.45.
Thus the probability of a fragment being longer than 1000 bp is e™** =
e=3-903 = 0.020.

Notice from Fig. 3.3 that in the lambda data there were ten fragments
with lengths greater than 1000 bp, whereas we would have predicted 143 x
0.020 = 2.9. There is some evidence that our simple probability model does
not describe the longer fragments very well. In the next section, we describe
a simulation approach that can be used to study fragment lengths generated
by far more complicated probability models.
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Fig. 3.3. Fragments produced by Alul digestion of bacteriophage lambda DNA.
Panel A: Lengths of individual fragments. Panel B: Histogram of fragment sizes.

3.5.2 Simulating Restriction Fragment Lengths

In the preceding section, we showed that the restriction fragment length dis-
tribution should be approximately exponential, and we demonstrated that a
particular real example did indeed resemble this distribution. But what would
we actually see for a particular sequence conforming to the iid model? In other
words, if we simulated a sequence using the iid model, we could compute the
fragment sizes in this simulated sequence and visualize the result in a manner
similar to what is seen in the actual case in Fig. 3.3. The details of this R
exercise are given in Computational Example 3.5.

Computational Example 3.5: Simulating restriction site distribu-
tions

We assume the iid model for the sequence, with uniform base probabilities
py = pc = pe = pr = 0.25. Comparison with the data for lambda DNA
in Table 3.1 shows that this approximation is not too bad. We generate a
sequence having 48,500 positions (close to the length of lambda DNA). As
earlier, we code the bases as follows: A=1, C=2, G=3, and T=4. The following
is the result of an R session simulating the sequence:

> x<-c(1:4)
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> propn<-c(0.25,0.25,0.25,0.25)

> seq2<-sample(x,48500,replace=T,prob=propn)
> seq2[1:15]

[11 224214343132114

> length(seq2[])

[1] 48500

The first line defines a vector with elements 1, 2, 3, and 4. The second line
defines the probabilities of each base, corresponding to our probability model.
The third line samples 48,500 times with replacement according to the fre-
quencies in propn. The last two commands show that the simulation did run
(for the first 15 elements) and the length of our simulated iid sequence string
in which we seek restriction sites. Other base frequencies can be simulated by
changing the entries in propn.

Locating the restriction sites

The following function operating under R will identify the restriction sites in
a sequence string, with bases coded numerically:

> rsite <- function(inseq, seq){

# inseq: vector containing input DNA sequence,
# A=1, C=2, G=3, and T=4
# seq: vector for the restriction site, length m
# Make/initialize vector to hold site
# positions found in inseq
xxx <- rep(0, length(inseq))
m <- length(seq)
#To record whether position of inseq matches seq
truth<-rep(0, m)

# Check each position to see if a site starts there.
for(i in 1:(length(inseq) - (length(seq) - 1))) {
for(j in 1:m) {

if (inseq[i + j - 1] == seql[jl) {

truth[j] <- 1 # Record match to jth position.

}
}
if (sum(truth[]) == m){# Check whether all positions match
xxx[i] <- 1 # Record site if all positions match
}
truth <- rep(0, m) # Reinitialize for next loop cycle

¥

# Write vector of restriction site positions stored in xxx
L <- xxx[xxx > 0]

return(L)
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The restriction sites we look for are for Alul, AGCT. We code this as [1 3 2
4], and then use the rsite function to find the sites and write the result into
alu.map.

> alul <- c(1,3,2,4)
> alu.map <- rsite(seq2,alul)

The nested loops cause this to take a bit of time to run. The output is the
initial positions of all of the Alul sites in the simulated sequence. Checking
the output (length and first ten terms):

> length(alu.map)

[1] 184

> alu.map[1:10]

[1] 645 915 1076 1790 1836 1957 2100 2566 2881 2980

Note that the prediction from the mathematical model was 190 sites: We
found 184 for this particular string. (To estimate the expected number, we
would need to simulate many strings and report the mean number of sites
detected.) We judge that the model agrees well with the simulation (so far!).

Obtaining and displaying fragment lengths and fragment length distribution

We obtain the fragment lengths by subtracting positions of successive sites.
Since the molecule is linear, we need to deal with the ends. The function
flengthr, written in R, does these things for us.

> flengthr < - function(rmap, N){

#rmap is a vector of restriction sites for a linear molecule

# N is the length of the molecule
frags<-rep(0, length(rmap))

# Vector for subtraction results: elements initialized to O
rmap<-c(rmap,N)

# Adds length of molecule for calculation of end piece.
for(i in 1:(length(rmap)-1)){
frags[i] < - rmap[i+1]-rmap[il}
frags <- c(rmap[1],frags) # First term is left end piece
return(frags)

3

> alu.frag <- flengthr(alu.map,48500)

> alu.frag[1:10]

[1] 645 270 161 714 46 121 143 466 315 99

The two lines above run the function and display the first ten fragment lengths.
You can verify that the second element in alu.frag is the difference between
the first two elements in alu.map.
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> max(alu.frag(])
[1] 1475

> min(alu.fragl[])
(11 5

The four lines above display the largest and smallest fragments.

> length(alu.fragl[])
[1] 185

> sum(alu.frag[])3.2
[1] 48500

A.
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Fig. 3.4. Fragments predicted for an Alul digestion of simulated DNA. Panel A:
Lengths of individual fragments. Panel B: Histogram of fragment sizes.

The first two lines verify that the number of fragments is what it should be.
(n sites in a linear molecule generate n + 1 fragments.) The second two lines
show that the fragment sizes sum to the length of the molecule. These results
are expected if the function does what it should do. The data in alu.frag
are plotted in Fig. 3.4, as was done in Fig. 3.3.

The particular simulated sequence that we generated yields a distribution
of restriction fragment lengths that looks similar to the distribution observed
for bacteriophage lambda DNA fragments (Fig. 3.3). However, note the dif-
ferent scales for the ordinates in the lower panels for the two figures and the
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greater number of large fragments in the case of bacteriophage lambda DNA.
To determine whether the distribution for lambda DNA differs significantly
from the mathematical model (exponential distribution), we could break up
the length axis into a series of “bins” and calculate the expected number of
fragments in each bin by using the exponential density. This would create
the entries for a histogram based on the mathematical model. We could then
compare the observed distribution of fragments from lambda DNA (using the
same bin boundaries) to the expected distribution from the model by using
the x? test, for example. Further details are given in Exercise 13.

3.6 k-word Occurrences

The statistical principles learned in this and the previous chapter can be
applied to other practical problems, such as discovering functional sites in
promoter sequences. Recall from Section 1.3.4 that promoters are gene re-
gions where RNA polymerase binds to initiate transcription. We wish to find
k-words that distinguish promoter sequences from average genomic sequences.
Because promoters are related by function, we expect to observe k-words that
are over-represented within the promoter set compared with a suitable null
set. These k-words can help identify DNA “signals” required for promoter
function. (DNA signals are described in detail in Chapter 9.) Using the ap-
proaches of Chapter 2, we determine expected k-word frequencies and compare
them to the observed frequencies. Distributions presented in this chapter are
used to test whether over-represented k-words appear with significantly higher
frequencies.

Consider N promoter sequences of length L bp, which we denote by S;
for i = 1,...,N (Table C.2). The null set might consist of N strings of L
iid letters, each letter having the same probability of occurrence as the letter
frequencies in genomic DNA as a whole. For the purposes of the discussion
here, we take a small word size, k = 4, so that there are 256 possible k-words.
With no a priori knowledge of conserved patterns, we must examine all 256
words. We ask whether there are an unusual number of occurrences of each
word in the promoter regions.

For the 49 promoter sequences shown in Table C.2 in Appendix C, we first
evaluate the most abundant observed k-words and their expected values for
k = 4 using R for the computation described in Computational Example 3.6.
The expectation of each word according to the null (iid) model is easy to
calculate if words are overlapping. For example, if X, denotes the number of
occurrences of word w in the whole set of sequences, then for w = ACGT,

P(w = ACGT) = papcpepr
E(# times w appears in S;) = (L — 4 + 1)papepepr

and the expected number of occurrences in N such sequences is
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E(Xw) = N(L — 4 + 1)papcpepr- (3.14)

Computational Example 3.6: Counting k-words in promoter se-
quences

The data in Table C.2 are stripped of row labels, and A, C, G, and T are
coded numerically as 1, 2, 3, and 4 separated by spaces, as has been our usual
practice. The result is saved as a text file, Ec.table.txt, which is then read
into a matrix in R:

>ec.prom<-matrix(scan("Ec.table.txt") ,nrow=49,byrow=T)
Read 2499 items

We must first decide to what we wish to compare the promoters. In this ex-
ample, we compare them with the average E. coli sequence, and in an exercise
you will compare them with sequences having the promoter base composition.
The base frequencies for the F. coli genome are, for A, C, G, and T, respectively,
(see Table 2.1):

> prob.ec
[1] 0.246 0.254 0.254 0.246

These values are employed for calculating the expected value of each k-word
and later for simulating sequences under the null model.

Since we are concerned with k-words having k = 4, it is convenient to
store the results of our calculations in four-dimensional arrays. We can think
of these as four different three-dimensional arrays, each labeled 1, 2, 3, 4, but
this visualization is not required for handling the array objects under R. We
represent the word size, k, as w in this function, so w = 4 in our example.
Because the base frequencies are, in general, all different, the expected word
frequencies are not all identical. The code to generate the expected frequencies
is:

> expectéd.ec<-array(rep(0,4"w), rep(4,w))
> for(di in 1:4){
for(j in 1:4){
for(k in 1:4){
for(m in 1:4){
expect4[i,j,k,m]<-
+ 48%49xprob.ec[i]*prob.ec[j]l*prob.ec[k]*prob.ec[m]
}rr}

The number 49 corresponds to N, the number of sequences, and 48 comes
from L —w+ 1 =51 —4+ 1, where 51 is the number of bases listed for each
string. The expected frequency of each k-word is read from the corresponding
array element. For example, if the word is GATC, the coded word is repre-
sented as 3142, and the expected frequency of that word is contained in the
expect4[3,1,4,2] array element. The function below is used to perform the
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word count, accumulating the total counts for each word in a four-dimensional
array, tcount. The plug-in portion is included for the computation to be per-
formed in the next box. For counting only, we could “comment out” all lines
in the plug-in, and delete the ncount in the return() statement. For now,
we just concentrate on tcount.

Ncount4<-function(seq,w){
#w=length of word
tcount<-array(rep(0,4"w), rep(4,w))
# array[4x4x4x4] to hold word counts, elements set to zero
ncount<-array(rep(0,4"w), rep(4,w))
# array[4x4x4x4] holds number of sequences with one or
# more of each k-word
N<-length(seq[1,]) #Length of each sequence
M<-length(seq[,1]) #Number of sequences
R R R
#Count total number of word occurrences
for(j in 1:M){ #looping over sequences
jcount<-array(rep(0,4"w), rep(4,w))
#array to hold word counts for sequence j
for(k in 1:(N-w+1)){ #looping over positions
jcount [seqlj,k],seqlj,k+1],seqlj,k+2],seq[j,k+3]]1<-
jcount [seqlj,k],seql[j,k+1],seqlj,k+2],seqlj,k+3]]+1
#adds 1 if word at k,k+1,k+2,k+3 appears in sequence j
}
tcount<-tcount+jcount
#Add contribution of j to total
HEFH B HAFH RS EHE R
#Plug-in: add 1 to ncount if word occurs >= once in j
for(k in 1:4){
for(l in 1:4){
for(m in 1:4){
for(n in 1:4){
if (jeount [k,1,m,n] !=0){
ncount [k,1,m,n]<-ncount[k,1l,m,n]+1}
}
}
}
}
HESFH A
}
return(tcount,ncount)

3

The word count is performed on the promoter sequences:
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> prom.count<-Ncount4 (ec.prom,4)
> sum(prom.count$tcount)
[1] 2352

The last two lines verify that the expected number of words have been counted:
48 x 49 = 2352. Note that since two items are being returned from the com-
putation, we must specify which item in the list we require; in this case,
prom.count$tcount. The most frequently occurring word appears 33 times:

> max (prom.count$tcount)
[1] 33

We find that ten words appear more than 20 times in this set of promoter
sequences:

>(1:256) [prom. count$tcount [prom.count$tcount[,,,]1>20]]
[1] 23 22 21 21 23 24 24 25 22 33

By inspection, we identify these words in the output of the array contents and
tabulate the result in Table 3.2. Expected values are taken from corresponding
elements of expect4.

Table 3.2. Observed and expected k-word frequencies in E. coli promoter sequences
for k = 4. Expected values were computed under the iid null model where py = pr =
0.246 and ps = pc = 0.254. Only the ten most abundant words, based on the total
number of apperances in all promoter sequences, are shown. Example promoter
sequences are shown in Table 9.2.

Word  Observed frequency  Expected frequency

TTTT 33 8.6
CATT 25 8.9
AATT 24 8.6
TAAT 24 8.6
ATTG 23 8.9
TGAA 23 8.9
ATAA 22 8.6
ATTT 22 8.6
TTTA 21 8.6
ATTC 21 8.9

These results suggest that promoters have unusual word composition com-
pared with the iid null model. These words are composed mostly of As and
Ts, the most frequent letters in the promoter set. We must determine whether
these elevated abundances are statistically significant.
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If a k-word is to be identified as significantly over-represented in promoters
compared with the null set, we need to know the expected number of occur-
rences, E(X,,), and the standard deviation of this number. In other words,
we need to know how the values X,, are distributed. A computational ap-
proach is to repeatedly simulate sets of IV iid sequences, perform the word
counts, and then produce a histogram of the observed values of X,, for each
word w. The resulting distributions for each word might not be normal, but
we could determine thresholds such that an appropriately small fraction of
observations (0.001, for example) fall outside this range. If the distributions
of the X, were approximately normal, then a significance level of three stan-
dard deviations would correspond to a probability of approximately 0.0013. If
there were N = 100 sequences, the expected number of words that are three
or more standard deviations above the mean would therefore be 0.13.

We do not simply compute E(X,) and Var(X,,) from first principles
because both E(X,,) and Var(X,,) depend on how the words are counted.
For example, if £k = 4, what is X, for w = AAAAA? If word overlaps are
allowed, X,, = 2, whereas if word overlaps are not allowed, X,, = 1. If
pa = pc = pe = pr = 0.25 and word overlaps are allowed, E(X,,) is iden-
tical for each word of length k (see (3.14), but if overlaps are not allowed,
E(X,) in general differs for different words having the same k. With either
way of counting words, Var(X,,) is not the same for each word. There are
basically two approaches for word counting. One is to count all occurrences of
the word in the whole set of N regions S; as we did above, and the second is
to count the number of promoter sequences in which the word occurs at least
once.

The simple, naive basis we use for deciding whether w occurs with unusual
frequency is to take each word w and tabulate the number of promoter se-
quences N, in which the word occurs at least once. This alternative statistic
conforms to the normal approximation of the binomial distribution. First, we
simulate 5000 sequences with letter probabilities corresponding to the E. coli
genome. We use the simulations to estimate

pw = P(w occurs at least once in a 51-letter sequence)
__ # of sequences in which w appears at least once
~ 5000 '

The reason for using “at least once” is that the word may appear at multiple
locations in the promoter, with only one occurrence at a particular location
being sufficient for function.

The simulation provides an estimate of p,, that can be used with the nor-
mal approximation of the binomial with n = 49 trials and success probability
Pw- Let NV, denote the number of promoter sequences in which w appears at
least once. Then the statistic

_ Nw - 49pw
\/49pw (1 - pw)

w
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has approximately an N(0, 1) distribution, which allows p-values to be com-
puted for each word w. The results of this simulation are shown in Computa-
tional Example 3.7.

Computational Example 3.7: Number of promoter sequences con-
taining at least one frequent k-word and statistical significance

Step 1: Compute the number of promoter sequences, N,,, containing each
k-word

This time, we want to count the number of promoter sequences that contain
at least one occurrence of each word. This quantity is computed by the plug-
in in the function provided in Computational Example 3.6. The series of four
“for” loops in the plug-in examines counts for all words found in sequence j
and adds 1 to appropriate elements of ncount if a word appears, regardless of
the number of times it appears. The desired counts of sequences N,, for any
desired k-word k1mn are extracted from the result of the previous computation,
which is a list, as prom.count$ncount [k,1,m,n]. For example, the number
of promoter sequences containing at least one instance of AAAA is

> prom.count$ncount[1,1,1,1]
[1] 13

We check the maximum value for V,, among all k-words.
> max (prom.count$ncount)
[1] 20 #Maximum value of Nw among all k-words
Step 2: Computation of py
This is done by simulation. We simulate 5000 sequences, each 51 nucleotides
long and having the base composition of average E. coli DNA.

> ec.sim<-matrix(nrow=5000,ncol=51)

> for(i in 1:5000){

+ ec.sim[i,]<-sample(x,51,replace=T,prob.ec)
+

}

Remember that x is [1,2,3,4] and prob.ec is given in Computational Exam-
ple 3.6. To get the data needed for p,,, we again apply the function Ncount4 ():

> sim.count<-Ncount4(ec.sim,4)

This may take a while to run since there are nested loops operating on 5000
sequences. The values of p,, for the most abundant words listed in Table 3.2
are calculated as shown below for AAAA:

> sim.count$ncount[1,1,1,1]/5000
[1] 0.1238
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The results for all words are presented in Table 3.3. Because the simulated
sequences were based on chromosomal values for base frequencies, which are
all nearly the same, the fraction of sequences for which each word appears
should also be about the same.

Step 3: Computing p-values

We can use N,, and p,, computed above to calculate Z,, and then compute the
desired p-value using the R function pnorm (previously used in Section 3.3).
This is because Z,, is expected to follow (approximately) a normal distribu-
tion:

> Nw<-c(19,20,20,20,20,19,19,19,17,16) # See step 1

> pw
[1] 0.1238 0.1680 0.1710 ... 0.1660 0.1626 0.1736

(From Step 2 above.) We compute Z,, for the ten top-scoring k-words:

> options(digits=4)

> Zu<- (Nw-49*pw) /sqrt (49*pw* (1-pw))

> Zw

[1] 5.610 4.497 4.409 ... 4.172 3.497 2.826

Calculate the one-tailed p-value:

> 1-pnorm(Zw)
[1] 1.011e-08 3.452e-06 5.185e-06 2.328e-06
[6] 1.641e-06 1.589e-05 1.510e-05 1.510e-05
[9] 2.353e-04 2.354e-03

Table 3.3. Number of E. coli promoter sequences, N, containing indicated k-words
for k = 4. Data for the ten most abundant words listed in Table 3.2 are shown. For
the meaning of other quantities, see the text. The last column corresponds to p-
values associated with each N,,. Entries not significant at level 0.001 (one-tailed
test) are indicated in italics.

Word N, DPw L P(X > Zw)

TTTT 19 0.124 5.610 1078

CATT 20 0.168 4.497 0.000003
AATT 20 0.171 4.409 0.000005
TAAT 20 0.165 4.580 0.000002
ATTG 20 0.163 4.652 0.000002
TGAA 19 0.166 4.160 0.000016
ATAA 19 0.166 4.172 0.000015
ATTT 19 0.166 4.172 0.000015
TTTA 17 0.163 3.497 0.000235
ATTC 16 0.174 2.826 0.00235}
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Notice that N, is lower than the number of overall occurrences shown in
Table 3.2, as would be expected. From prior knowledge of E. coli promoters,
we already expected that words contained within TATAAT would be abundant.
Note that TAAT appears in about 40% of the listed promoters, as does ATAA.
Testing for the occurrence and significance of TATA is left as an exercise.

Why did we earlier refer to this analysis as naive? This comes from the
strong correlation between word counts, especially that which comes from
word overlaps. If, for example, we knew that AAAA occurred in a particular
string 49 times out of 51, then the end of the string of As must be a letter not
equal to A. Of these, pr/(pr + pc + pe) are expected to be Ts. That means that
we expect at least 49 X pr/(pr+pc+pe) occurrences of AAAT. In addition, there
are occurrences of AAAT where the preceding letter was not an A. Taking all
word overlaps into account in a rigorous statistical analysis is beyond the scope
of this book, but you now know that N,, has different variances depending on
w and that correlation between words is important.

Functional k-words are generally more complicated and more extensive
than the example above, and in practice values to be used for k are not
known in advance. Certainly k = 4 is too small; nevertheless, larger functional
k-words can be decomposed into sets of characteristic 4-words. For promoters,
k = 6 is a more realistic choice. In addition, our idea of counting exact occur-
rences does not correspond to what is observed in biological systems (e.g., not
all promoters contain exact matches to the most frequent 4-words). However,
it is often the case that exact word analysis has allowed researchers to make
the initial pattern discovery. The approach above is not limited to exact word
analysis, however. We could, for example, use k = 6 letter words and allow
up to two mismatches in the definition of “occurrence.”

In Chapter 9, we illustrate how to describe signals of arbitrary length based
upon patterns of letter occurrences observed among a set of aligned subse-
quences. The approach described in the current chapter could be extended
to yield a complementary description of such signal sequences. We could im-
plement this for the promoter data set by making histograms of positions at
which each over-represented k-word occurs relative to the transcriptional start
sites at +1. Any “signal” that appears within a window centered at position x
relative to the transcriptional start site would then be represented by a word
decomposition yielding the observed k-words preferentially mapping within
that window (Galas et al., 1985).

References

Galas DJ, Eggert M, Waterman MS (1985) Rigorous pattern-recognition
methods for DNA sequences. Journal of Molecular Biology 186:117-128.



Exercises 97

Exercises

Exercise 1. Suppose that N has a Poisson distribution with parameter .

(a) Show that the probabilities in (3.2) sum to 1. [Hint: This uses the expan-
sion of e* that you learned in calculus.]

(b) Use the same expansion (by taking the first and second deriviatives) to
show EN = A and VarN = A\

Exercise 2. Verify that if U has the uniform distribution on (a,b), then EU =
(a+0b)/2 and Var U = (b — a)?/12.

Exercise 3. Verify the formula (3.5) for calculating the variance.

Exercise 4. Use R to plot the probability density (3.7) of an exponential
random variable for values of A = 0.5,1.0,5.0.

Exercise 5. For the exponential distribution (3.7) calculate the mean and
variance. [Hint: Use integration by parts.]

Exercise 6. For a distribution with probability density function f(x) = :;xz
for 0 < 2 < 2 and f(x) = 0 elsewhere, find P(0 < X < 1),EX,EX?, and
VarX.

Exercise 7. Suppose Z has a standard normal distribution.

(a) Find P(-1 < Z <1),P(-1 < Z <2),P(-2< Z < —1),P(~00 < Z < 1).
(D) P(Z < a) = 0.45 and P(0 < Z < b) = 0.45, find a and b. [Hint: Use

gnorm in R.]

Exercise 8. In a certain genome the bases appear to be iid and pg = 0.3.
Define the (binomial) count of the number of Gs in the first 1000 bases as
N=X;+ Xo+ -+ Xi1000-

(a) Give the mean and variance of N.

(b) Approximate, using the Central Limit Theorem, P(0 < N < 329) and
P(285.5 < N < 329).

(¢) Produce a histogram for 1000 replicates of N and compare the results
with those of (b).

Exercise 9. A discrete random variable taking values 0,1, ... is said to have
a geometric distribution with parameter p if

P(N=k)=(1-p)p"t k=1,2,....

a. Suppose that X is exponential with parameter A, and define a new random
variable N by
N=Fkifk-1< X<k

Show that N is geometric, and identify p.
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b. Show that the mean EN of the geometric is 1/(1 — p), and calculate the
variance. [Hint: One way to do this is to complete the steps below:

EN:X:’C(l—p)p’“‘l=(1—13)2:;19’“:(1—19)51 <Zpk> S
k=1 o P p \i=

For the variance, differentiate twice.]

c. The geometric arises as the distribution of the number of tosses up to and
including the first tail in a sequence of independent coin tosses in which
the probability of a head is p. Use this to calculate the distribution of N.
Can you derive EN using the waiting time analogy?

Exercise 10. Suppose N is binomial with n = 1000 and success probability
p. Find a 90% confidence interval for p using p = N/1000 when N = 330.
What are Ep and Var p?

Exercise 11. Assume that X, Xo,..., X, are iid random variables having
the exponential distribution with parameter A. Find the maximum likelihood
estimator of .

Exercise 12. Suppose X = Xy, Xi,...,X,, are observations on a Markov
chain with transition matrix P = (p;;) and let n(4, j) be the number of times
that state ¢ is followed by state j in the sequence X. Find the maximum
likelihood estimator of the elements p;; in terms of the n (4, j). [Hint: See the
discussion in Section 2.6.3.]

Exercise 13. Use the value of p computed for Hpall in Table 3.1. Compute
A = 1/p for the parameter of the corresponding exponential distribution, using
the approach of Section 3.3.

a. For the bins [0, 100), [100,200), [200, 300), [300, 400), [400, 500), [500, 600),
[600, 00), compute the theoretical probability of each bin.

b. Use the probabilities from (a) and the expected number of fragments from
an Hpall digestion of bacteriophage lambda to calculate the expected
number of fragments in each of the seven bins.

c. Compute the X2 value analogous to (2.29) on page 64 for these observed-
expected data. The number of degrees of freedom for the approximate x?2
distribution of X? is equal to 7 — 1 = 6.

d. Does the exponential distribution fit these data?



4
Physical Mapping of DNA

4.1 The Biological Problem

In contrast with genetic maps, physical maps of genomes or genome segments
(e.g., chromosomal DNA) relate genome positions to each other using phys-
ical distances measured along the DNA helix axis. Distances between posi-
tions are often expressed in base pairs (bp) or multiples thereof (for example,
kilobases (kb)—bp x 1000). Large-scale physical maps are useful for some
genome sequencing strategies, and they are even more important when study-
ing genomes that have not been sequenced. However, sequencing “factories”
can now churn out so much sequence per day that for small genomes it is
easier and faster to determine the genome DNA sequence and identify the
restriction sites computationally.

Markers on the physical map (discussed in detail in Section 13.4.2) al-
low investigators to retrieve particular regions of interest for further study.
Restriction endonuclease (or restriction enzyme) cleavage sites represent one
type of physical marker. Genetic markers (defined by mutations in genes)
may affect the sizes of restriction fragments, leading to a correspondence be-
tween a genetic and a physical marker. Examples are mutations that destroy
a restriction site (a restriction site polymorphism), or deletions, insertions, or
inversions. Other types of markers are portions of a gene sequence. The pres-
ence of such markers can be detected by hybridization reactions, even if the
complete DNA sequence is unknown. Sequences that are not part of genes can
be used as physical markers, and these include segments of DNA containing
variable numbers of tandem repeats and sequence-tagged sites, or STSs.
The presence of a particular STS is revealed by the presence of PCR reac-
tion products obtained by use of a particular primer pair so chosen that they
allow amplification of DNA from only one location in a particular genome.
Obviously, the ultimate physical map is the DNA sequence.

In Chapter 3, we discussed the properties of restriction digest products
within the context of eventually constructing a restriction map. Recall that a
restriction map is a display of positions on a DNA molecule that can be cleaved
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by one or more restriction endonucleases and that this is one particular ex-
ample of a physical map of a genome. As we will see below, reconstructing
a restriction map from the restriction digest products can be computation-
ally very hard. Laboratory workers circumvent this complexity by a number of
experimental techniques, including use of multiple restriction enzymes, end la-
beling of DNA prior to digestion, analysis of incompletely digested end-labeled
products, and hybridization. They also may employ genetic variants of the
molecules being mapped (ones containing insertions, deletions, or inversions).
Laboratory workers usually perform map construction by using a massively
parallel, cranially mounted neural network (the brain). Optical mapping is
an experimental strategy that preserves fragment order after digestion, but it
requires nonstandard laboratory equipment in addition to more sophisticated
statistical tools to allow for fragment length measurement errors and products
of incomplete digestion.

As indicated in Chapter 3, DNA molecules can be too long to be handled
conveniently without breakage. For this reason, genomes are intentionally frag-
mented into pieces of appropriate size for cloning into convenient cloning vec-
tors. For example, pieces cloned into lambda vectors may be approximately
20kb in length, those cloned into cosmids will be approximately 40kb in
length, and those cloned into BACs may be in the range of 100-300kb. The
inserts in these vectors can be individually mapped (the large-map problem
is broken down into a large number of more tractable small-map problems).
Then the genome map is built up by merging the maps of the constituent
cloned inserts. One of the experimental issues is how many clones must be
characterized before the genome map merges into a single continuous seg-
ment.

Physical maps can be informative for comparisons among organisms. For
example, most unicellular eukaryotes and all multicellular animals and plants
have organelles called mitochondria, which contain circular DNA molecules.
The orders of the approximately 37 genes in the mitochondria of various ani-
mals have been determined, and they are not identical. A model to describe
differences in order is based on breakage/rejoining or reversal of DNA seg-
ments, leading to permutations of the gene order. It should be possible to
model this process in a manner that predicts animal phylogeny (branching
pattern connecting lineages of organisms to common ancestors). This also
has relevance when comparing bacterial strains with each other. For example,
there are strains of Escherichia coli that are nonpathogenic and others that
are pathogenic. There are species of Yersinia that give rise to epidemics of
plague and others that do not. By comparing genomes (including gene or-
ders), it is possible to reconstruct steps in the evolutionary history of these
organisms that may provide insights into mechanisms of pathogenicity. We
discuss permutations of gene order in the next chapter.
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4.2 The Double-Digest Problem

This is an older, classical problem in computational biology, but we neverthe-
less describe it here to reinforce previous concepts and to provide experience
with computationally complex problems. We will work with an idealized ver-
sion of the problem that still illustrates the computational challenges.

4.2.1 Stating the Problem in Computational Terms

Given the sizes of restriction fragments from digestion of a DNA molecule by
restriction endonucleases A, B, and a combination of those enzymes, A + B,
reconstruct the order of restriction sites in the undigested molecule:

Products generated by digestion with A, sorted by increasing size,
={a1,az2,...,a,};

Products generated by digestion with B, sorted by increasing size,
= {bl, bg, ceey bm},

Products generated by digestion with A + B, sorted by increasing size,
={c1,¢2,- ., Cmin—1}-

The solution is a list of positions for cleavage by A or B such that the fragment
set {c1,¢2,. .., Cmin—1} is generated.

4.2.2 Generating the Data

A sample of DNA is “digested” with a restriction enzyme until all sites on
every molecule are cut. Agarose gel electrophoresis gives a way to separate
DNA fragments (which are negatively charged) by their lengths. The molecules
migrate through the porous agarose a distance proportional to the negative
logarithm of their lengths; big pieces hardly move, and small pieces fall like
stones. This principle also allows DNA to be sequenced, a topic we treat later.
The approximate fragment lengths are determined and listed in order of size.
The problem is to reproduce the order of the pieces in the original DNA.
That is, gel electrophoresis gives us the set of lengths unordered relative to
the actual location in the DNA. For example, digesting phage lambda DNA
(48,502 bp) with EcoRI gives the following lengths (in kb): 3.5, 4.9, 5.6, 5.8,
7.4, and 21.2. The correct order on the lambda genome is 21.2-4.9-5.6-7.4—
5.8-3.5.

If the molecule has been sequenced, we can also learn this ordering by
downloading the sequence from a database and searching the string for occur-
rences of GAATTC. How are restriction maps of uncharacterized DNA molecules
determined experimentally?
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4.2.3 Computational Analysis of Double Digests

As we indicated above, one experimental approach to the restriction mapping
problem is to select another enzyme, digest with that enzyme, and finally
digest with a combination of both enzymes. Inferring the two-enzyme map
of the DNA from the resulting data is called the double-digest problem
(DDP). Here is a simple example for a linear molecule digested with enzymes
A and B (in these examples, fragment sizes are taken to be integers):

Products produced from digestion with A : {2,4};
Products produced from digestion with B : {1,5};
Products produced from digestion with A + B: {1,1,4}.

This “toy” problem can be solved by inspection. The “ends” in the double
digest must be 1 and 4. This is because the shorter of the fragments produced
at each end by digestion with A or B must lie wholly within the larger of the
end fragments produced by A or B. This observation solves the problem. The
solution is

A: | 2 4 |
B: T 5 |

In general, there are (2!)(2!) = 4 different potential maps or orderings for this
problem (two orderings for A fragments and two for B fragments), and each
ordering has a biologically indistinguishable reversal. That is,

A: 2 4 and A: 4 2
B: 1 5 B: 5 1

are reversals of each other. They correspond to reading fragment orders from
one end of the molecule or the other.
It is easy for these problems to become more complex:

Products produced from digestion with A : {3,4,5};
Products produced from digestion with B : {2,4,6};
Products produced from digestion with A + B : {1,1,2,3,5}.

Obviously, 5 must be at the end, and therefore 6 must be also. This is because
there must be a fragment at each end from the A or B digests that is not
cleaved after double digestion. Fragment 5 must lie within 6 since 6 is the
only B fragment large enough to contain it. Since in this problem only integer
values are allowed, one end of 5 must match one end of 6, which means that
5 is an end fragment from the A digest and 6 is an end fragment from the B
digest:

(two fragments)—5

(two fragments)—6

Having determined the two end fragments, we have only four possibilities
left to consider:
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A 345 345 435 435
or or or

B: 246 426 246 426

The last one is eliminated because it would produce too few double-digest
pieces. The techniques used in these two examples obviously depend on the
small sizes of the problems.

A more systematic method to predict the double-digest products is as
follows: (1) take the fragment lengths, (2) produce maps of positions, (3)
interleave the positions, and (4) take successive differences. For example, the
digests above correspond to a molecule that is of length 12. The first map
position is taken as 0, and the last position is 12. Starting at 0, successive
positions on the map are produced by adding the lengths of fragments, starting
from the left end:

Fragment ordering —— Map positions —— Interleaved positions
345 03712 0236712
246 02612

Successive differences:
2—-0,3-2,6-3,7—-6,12-7 — 2, 1,3, 1,5

(This is a solution because the correct double-digest products are produced.)
Now we try another ordering:

Fragment ordering —— Map positions —— Interleaved positions
345 03712 0346712
426 04612

Successive differences:
3—-0,4—-3,6—4,7—-6,12—7 — 3,1,2, 1,5

(This is another solution!)
Now try the putative map positions of one of the other possibilities:

Fragment ordering —— Map positions —— Interleaved positions
435 04712 0246712
246 02612

Successive differences:
2—-0,4—-2,6—4,7—-6,12—7 — 2,2, 2 1,5

This does not correspond to the observed products of double digestion, so
this pair of fragment orders is rejected. The remaining possible ordering also
fails to agree with the double-digest data, as you can verify for yourself.
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The solutions to the double-digest problem are:

A: 345 anditsreversal 543
B: 246 642

and
A: 345 anditsreversal 543

B: 426 624

4.2.4 What Did We Just Do?

Basically, we decided to try all orderings of each digestion product and to find
out whether the predicted double digest fits the data. Here is an outline of
the method. We assume that no cut site for A coincides with a cut site for B.

(1) Input fragment sizes:

a1, as,...,a, (n —1 cuts),
b1,bay ..., by (M — 1 cuts),
€1,C2y -+ s Cman—1 (M +n — 2 cuts).

(2) Produce position maps:
0,a1,a1 +asz,...,a1+as+---+a, =1L,
0,b1,b1 +b2,...,b1 +bs+ -+ by, = L.
(3) Merge and put into order.
(4) Then take differences of adjacent numbers in (3).
(5) Check whether output of (4) is equal to ¢1,ca, ..., Cmtn—1-

When we solved our first tiny problems, we used special tricks for the
data we had. Then we created a general approach to DDP that is correct and
systematic.

What is the space efficiency? By this we mean memory commitments in
our computer. For each map check, we needed space proportional to n + m.
In addition, we need to save all correct permutations, and that we cannot
estimate. The map check requires space proportional to (n 4+ m).

Our examples were all small problems. How complicated can things get
with this approach? That is, what is the time efficiency? The number of pos-
sible orderings of the A fragments is n!, and the number of possible orderings
of the B fragments is m!, and so there are n! x m! different combinations
of position maps in (2) that require testing. As n and m become larger, the
number of possibilities to test becomes huge!

n 1 2 4 6 8 10
nl 1 2 24 720 40,320 3,628,800

This means that a problem with ten A fragments and ten B fragments would
yield over 10'® subproblems (2) through (4) to be analyzed. A very simple
data set becomes computationally large very fast.
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4.3 Algorithms

We now turn to specifying a method for solving computational problems such
as DDP. The description of such a specification is called an algorithm. It
should be kept in mind that this is a slightly higher level than computer code,
although algorithms can and should result in code.

First of all, we need a set of basic operations such as addition, multiplica-
tion, etc. Next we describe some important aspects of algorithms (see Skiena,
1998).

(1) The input to and output from an algorithm must be precisely specified.
(In the DDP, the input is three unordered lists (of integers), each of which
must sum to the same number. The output is all orderings of the first two
lists that solve the DDP.)

(2) The algorithm must consist of a well-defined series of operations.

(3) The algorithm must stop after a finite number of steps.

Finally, we must consider the notions of correctness and efficiency. Cor-
rectness is a mathematical issue of proving that the algorithm does what it
should do. The DDP as we set it up takes a multiple of n! x m! x (n + m)
operations. This is an example of the time efficiency or time complexity of
an algorithm. The computational time complexity of an algorithm with in-
put data of size n is measured in “big O” notation and is written as O(g(n))
if the algorithm can be executed in time (or number of steps) less than or
equal to Cg(n) for some constant C. For example, adding up the numbers
ai,as, . ..,a, can be accomplished in time O(n) by the following method. Set
S =0. Then for j =1,2,...set S =S+ a;. On step n, S equals the desired
sum. More generally, an algorithm has polynomial time complexity if g(n) is
a polynomial, and if g(n) = a x b" for a > 0 and b > 1, the algorithm has
exponential time complexity.

Our method for DDP is correct but hardly efficient. Can we find a more
efficient method that is also correct, say one that takes at most a multiple
of nm or even n + m steps? The answer is very likely to be no. Here is the
reason.

There is a famous problem called the traveling salesman problem
(TSP). Cities 1,2,...,n are located with various flights connecting them.
The TSP is to find an ordering of cities i1 — 4o - - - — i, — i1 so that all cities
are visited and the total route length is minimized. An example is shown
below:

Detroit
Seattle T Boston

f\\)

Chicago
Denver

Los Angeles Dallas Atlanta
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If the salesman starts in Seattle and follows the itinerary shown, is the trip
shown shorter than if he were to end the trip by going from Dallas to Denver
and then to Los Angeles and Seattle? This problem (in general) is one of the so-
called NP-complete problems that have equivalent computational difficulty. It
is unknown whether there is a polynomial method for solving these problems,
but the universal belief is that there is no such method. The DDP is one of
these problems without a known polynomial algorithm.

One more aspect of studying and implementing algorithms is space effi-
ciency. As described above, our DDP algorithm has time efficiency O(n! m! (n+
m)) (Problem 6). Space efficiency is measured in the same “big O” notation.
We remark that in Section 4.2.4 there was an algorithm for taking fragment
permutations and producing the double digest lengths. That algorithm can
be implemented in O(n + m) time and space. We have not described how to
generate all n! m! pairs of permutations!

4.4 Experimental Approaches to Restriction Mapping

When applying computational methods to biological problems, sometimes it
is better to invest more effort in computational approaches, and other times
it is easier to generate a different data set in the laboratory. We just showed
that the double-digest problem rapidly becomes extremely complicated even
for modest numbers of fragments. Even a small microbial genome containing,
for example, 1000 EcoRI fragments and 1000 HindIII fragments, if analyzed
as described above, would require analysis of an astronomically large number
of subproblems. This effort can be avoided by using a different experimental
approach.

In the examples above, molecules were digested to completion, so that
all fragment orderings were completely disrupted. There are two experimen-
tal approaches that retain ordering information. Optical mapping (Cai et al.,
1995) involves stretching individual DNA molecules onto a solid substrate,
digesting them on the substrate, and then observing the ordered digestion
products by fluorescence microscopy. Lengths of the product fragments (rela-
tive to included size standards) can be measured from recorded images in the
microscope field, and lengths can also be determined from fluorescence intensi-
ties. This is particularly useful when employed with restriction endonucleases
such as Notl that generate very large fragments.

Another approach that preserves order information employs intentional
incomplete digestion, as illustrated in Fig. 4.1. At first consideration, this
might seem to make analysis worse because if n fragments are produced by
complete digestion, the total number of fragments produced by incomplete
digestion of a linear molecule is (Problem 8)

("2
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Undigested
4 2 8 1
: : : —o D
Completely digested
4
|
2
—
8
1
—o A
Incompletely digested
4 2
2 8
I 1 i
8 1
[ +—o B
4 2 8
— ° o C

Fig. 4.1. Using incomplete digestion as an aid to restriction mapping. The molecule
to be mapped is labeled at one end (filled circle) with a radioisotope. By autoradiog-
raphy or the use of a phosphorimager, only radioactively labeled fragments (A, B, C,
and D) will be detected after resolution by gel electrophoresis. The size increments
separating each successive fragment starting with the end fragment correspond to
the distance to the next restriction site.

The experimental “trick” (Smith and Birnstiel, 1976) is to radioactively label
(directly or indirectly) one end of the molecule. In Fig. 4.1, the filled circle
marks the labeled end fragment.

The mixture of completely and incompletely digested products can be
resolved electrophoretically, and the sizes of the radioactive fragments can
be measured (for example, after autoradiography of the dried gel or using
a Southern blot, or with the help of a phosphorimager). Scoring only the
labeled fragments (only they appear on the autoradiogram) eliminates the
background of incomplete digestion products that do not include the indicated
end fragment. Now we list the labeled fragments in order of size:

0 1 9 11 15

This includes the map of restriction site positions measured from the
right end!

In what was then an experimental tour de force, Kohara et al. (1987)
applied this approach for constructing a restriction map of the E. coli genome
for several different restriction enzymes. They mapped clones in a lambda



108 4 Physical Mapping of DNA

library and then assembled the larger map by overlap. This general process,
which in some form is used in most genome analyses, will be discussed in
the next section. In the case of Kohara et al., individual lambda clones were
indirectly end-labeled by hybridizing radioactive end probes to incomplete
digests of cloned DNA that had been transferred to membranes by Southern
blotting.

4.5 Building Contigs from Cloned Genome Fragments

4.5.1 How Many Clones Are Needed?

We indicated previously that analysis of genomes often proceeds by first break-
ing them into pieces. This is because genomes of free-living (nonviral) organ-
isms are much larger than the sizes of inserts in most cloning vectors. For
example, microbial genomes usually have genome sizes G > 0.5 x 105 bp,
and for mammalian genomes, G > 10° bp are usual. In contrast, capacities of
cloning vectors are on the order of 10* bp for lambda or cosmid vectors and 10°
to 105 bp for BAC and YAC vectors, respectively. This means that genomes
will be represented by genomic libraries, which are collections of clones that
contain a given genome represented piecewise as inserts in a specified cloning
vector.

How many clones N should there be in the library? This depends upon
the following parameters:

G = genome length in bp,

L = length of the clone insert in bp,

f = probability that any chosen base pair is represented in the library.
Suppose that we were to select one clone. The probability that a particular
base is recovered in that clone is just the fraction of the genome contained in

the clone, L/G. The probability that any particular base is not in the clone
(i.e., is not “covered” by the clone) is

P(not covered, one clone) =1— L/G. (4.1)

The probability that any particular base is not covered after N independent
clones have been selected is therefore

P(not covered, N clones) = (1 — L/G)V. (4.2)

If f. is the probability that a base is covered after IV clones have been drawn,
then
1 — f. = P(not covered, N clones) = (1 — L/G)". (4.3)

We can solve (4.3) for N (after taking the logarithm of both sides) to
yield an expression for estimating the number of clones needed in the library
in terms of the probability f. that any base will be covered (e.g., f. = 0.95):
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L e
—_— — :
[—— : : _ —
0 ! 1 1 ! ! ! G

Fig. 4.2. Coverage of a genome of length G represented by a genomic library,
with inserts of length L for each clone. Some areas of the genome (shaded) may
be represented multiple times in the library, whereas others are represented once or
not at all. The coverage is the average number of times that each position in the
genome is represented in the library. Broken lines indicate limits of the three contigs
(gap-free assemblies of genome segments represented by two or more clones) shown.

N =log(1 — f.)/log(1 — L/G). (4.4)

Computational Example 4.1: How many clones?

How many cosmid clones are required in a library representing the E. coli
genome such that f. = 0.957

We know that G = 4.6 x 10°bp and L = 4 x 10* (for cosmids). Hence,
from (4.4), N = log(1 — 0.95)/log(1 — 4 x 10%/4.6 x 10°) = 343 clones.

From Computational Example 4.1, we can calculate that the amount of
DNA represented in the clones is 343 clones x 4 x 10*bp/clone = 14 x 10° bp.
This is about three times the size of the E. coli genome. Some portions of the
genome are represented multiple times and some not at all, but, on average,
any position will be represented (covered) approximately three times in this
particular library (see Fig. 4.2 for an explanation).

The coverage (the number of times, on average, that any base pair b is
contained in inserts belonging to members of the library) is defined as

¢c=NL/G. (4.5)
Equation (4.3) can be rewritten in terms of coverage:
1-f.=0-L/G)N =01~ (NL/G)/N)N =(1—¢/N)N =~e™¢.  (4.6)

Thus we find that
fe=1—e"" (4.7)

The amount of coverage required to achieve different probabilities of in-
cluding any particular base pair is

c 1 2 3 4 5
fe 0.632 0.865 0.950 0.982 0.993

From this, we see that if we want to have a 99% chance of having a locus of
interest in our library, we will need to clone five genome equivalents.
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From Exercise 7, we will discover that nearly half a million lambda clones
would be required to represent mammalian genomes with a reasonable degree
of completeness, and from the table above, we see that half again as many
clones would be needed for f. to be 0.99. Actually handling libraries of this size
(e.g., propagating clones, distributing clones, arraying clones on hybridization
filters) is very labor-intensive, requiring robotics for manipulating the clones
and databases for recording clone inventory and annotation.

As we randomly select more and more clones, we do eventually begin to fill
in the gaps shown in Fig. 4.2, but at late stages of this process, each successive
clone, picked at random, is far more likely to fall into a region already covered
than it is to fall into a region of the genome that has not been covered at all. At
that point, a better approach is to switch to a directed experimental strategy
for gap closure—the process of covering regions not previously covered.

4.5.2 Building Restriction Maps from Mapped Clones

As is the case for complete digestion with restriction enzymes, the cloning
process disrupts the ordering of the cloned segments. The inserts are gener-
ated either by shearing the DNA or by restriction digestion, and usually the
inserts are size-selected before ligation to the vector sequences. Size selection
is needed particularly for vectors that accept inserts in a particular size range.
For example, lambda vectors accept inserts ranging from 9kb to 20kb, and
cosmid vectors require inserts of length L ~ 40kb. When individual clones are
selected, their positions on the genome are unknown, and we must build up
the complete restriction map from pieces of it. Developing a larger segment of
the map from data for smaller segments is called the “bottom-up” approach,
which we will discuss in greater detail in Chapter 8.

Using techniques such as the incomplete digestion method (Fig. 4.1), the
restriction map of individual clones can be determined. If the inserts in two
different clones contain some of the same restriction sites (i.e., generate re-
striction fragments of the same length), then the inserts may share a region
in common (they overlap), and a larger, contiguous mapped region can be
recognized by extending the physical map on both sides of the region of over-
lap (Fig. 4.3A). A contig is a genome segment represented by two or more
overlapping clones. A contig is part of a larger physical map, and its material
representation is a particular set of clones. If the genomic library is very large,
nearly all of the clonable portions (heterochromatin is difficult to clone) will
be represented by clone inserts, and most regions will be represented many
times on different clones, as shown in Fig. 4.3C.

The desired outcome is to place each clone in its correct genome location,
as shown in Fig. 4.3C. A typical step in the process for achieving that outcome
is illustrated in Fig. 4.3A. The question is, “How rapidly will the map approach
completion as coverage c increases?” When should we stop picking clones at
random and move to directed gap closure? These questions can be answered
using Poisson statistics, which were introduced in Chapter 2.
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4.5.3 Progress in Contig Assembly

Figure 4.3B illustrates the possible situations encountered for assembly of
contigs. The process is dependent on recognizing overlaps (Fig. 4.3A), and it
should be evident that some overlaps are too short to recognize (Fig. 4.3B, 3
and 4). This could occur if the overlap is shorter than the average fragment size
generated by the restriction endonuclease employed in mapping, for example.
Also, because of the experimental error in measuring restriction fragment
lengths, identical fragments might not be recognized as such. Moreover, it is
possible to generate similar-sized fragments from inserts from totally different
parts of the genome. For this reason, it is usual to demand size matches among
several fragments from each clone before declaring that two clones overlap.

In Fig. 4.3B, clones 1 and 2 represent a contig that can be recognized,
while clones 3 and 4 represent a contig that cannot be recognized. Clone 5
is a singleton. These three blocks of sequence (two contigs and a singleton)
correspond to fixed points in the genome in a “sea” of genomic DNA. Contigs
(those that are apparent and those not recognized) together with singletons
constitute “islands.”

To analyze progress in contig assembly, we list again the parameters
pertaining to the problem (some of which are identical to the ones used in
Section 4.5.1):

N = number of clones;

L = length of insert in each clone;

G = genome length;

{2 = minimum amount of overlap required for detection of that overlap;
0 = fraction of L corresponding to (2; 2 = 0L.

Overlaps can be detected only if they exceed {2 = 6 x L. Smaller overlaps are
undetected by the experimenter. As before, the coverage is c = NL/G.

Now we develop expressions for the number of islands observed for a given
value of c¢. We start by examining the distributions of clone inserts along the
genome. (Any island must start with one particular clone.) Of course, now we
are distributing intervals along the genome instead of positions. We can use
our previous formalism if we locate each interval (cloned insert) by specifying
the position of one end. We will pick the left end (we could have chosen the
right), and once the position of the left end on the genome is specified, the
remaining L—1 base pairs are located to the right of this position in succession.

When analyzing restriction sites, we didn’t know at first how many of them
there were, and we had to calculate A, the probability that any position on
the genome is the beginning of a restriction site. But now we know that N
clones have been drawn, so we can say immediately that the probability that
any genome position corresponds to the left end of a clone is A = N/G = ¢/L
(i.e., in G base pairs the expected number of clone ends is E(Yy) = G)). Thus
we have “converted” a known number (NN) of clones into a random variable
with expectation M. According to the Poisson distribution, for example,
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P(Number of left ends in an interval of length z = k)
_ (x/\)ke—x)\ _ (xC/L)ke—mc/L

k! k!

where x is the length of the interval along a DNA segment.

Now let’s think about the number of apparent islands that will be observed.
We have to use the word “apparent” because some clone pairs will actually
overlap but not sufficiently to detect—they will be counted is if they were two
islands instead of one. We will enumerate the number of islands by counting
their right ends. This is the same as the number of clones that are at the right
end of an island. Let I" be the expected number of islands. Then

(4.8)

I' = NP(A clone is at the right end of an island). (4.9)

Our problem is solved if we can calculate the probability that a clone is at
the right end of an island. We can see what this probability is if we consider
the diagram of a particular clone insert shown below (let’s name it 8G11—the
clone in row G, column 11 of microtitre plate 8):

8G11 (1-6L) | 6L

What is the probability that clone 8 G11 is at the right end of an island? If there
is another clone whose left end lies within L of the right end of clone 8G11,
we can’t tell whether there are any clones to the right of it. However, if the
left end of a clone does lie within the segment of length (1 — )L diagrammed
above, we can be sure that clone 8G11 is not at the right end of an island.
The probability that the left end of another clone does not lie in the interval
of length (1 — 6)L (i.e., the probability that 8G11 is at the right end of a
contig) is given by (4.8), with k =0 and « = (1 — 8)L. The expected number
of islands then becomes

I'= Ne~(U=OLN/G — Ne=(1=0)c (4.10)

To obtain an expression convenient for plotting, multiply and divide the
expression on the right by L/G to obtain

I'=(G/L)(ce=(1=9e), (4.11)

This result is the number of islands expected as a function of coverage and 6
for given values of G and L.

The results for different values of 6 are plotted in Fig. 4.4. The verbal
explanation for the shapes of the curves is as follows. When the mapping is
started, there are no islands. At the beginning, as we draw each new clone for
mapping, it is more likely to be a singleton (at that stage) than to overlap a
clone already drawn, so the number of islands begins to climb. As the number
of clones examined increases, existing contigs begin to increase in length as
clones overlap their ends. So, later in the process, an ever-increasing propor-
tion of the genome is being spanned by contigs. Any new clones that fall inside
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6=0.65

0.4 0.6 0.8 1.0

Expected Number of Islands (in G/L)

0.2

0 2 4 6 8
Genome Equivalents = ¢

Fig. 4.4. Expected number of islands as a function of coverage for different values
of fractional overlap, 0, required to reliably detect that overlap.

an existing contig do not add to the number of contigs or islands. Some clones
will overlap the left end of one contig and the right end of another, causing the
contigs to merge. This means that the number of contigs and islands begins
to drop later in the process. Eventually, the number of islands is expected to
approach the final value of I" = 1 (all clones merged into the single contig
representing the entire genome). But the approach to I' = 1 gets slower and
slower as ¢ increases. This is because, at the later stages of the process, most
of the genome has been spanned, and the probability that a random clone will
fall in the small gaps between the large contigs gets smaller and smaller.

We can estimate the number of “singletons,” clone inserts not overlapping
others, by using the same argument. A clone insert C is a singleton if there
is no other clone whose left end falls in the interval of length (1 — 0)L at the
left end of C (probability = e~(1=9)¢) and there is no other clone whose right
end falls in the interval of length (1 —6)L to the right of C. This has the same
probability as for the left end, so the joint probability that there is no other
clone whose left end falls in the intervals (1—6)L to the left and to the right of
C is e2(1-0)c (the product of the two identical probabilities). The predicted
number of singletons is then
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# of singletons = Ne 2(1=0)¢, (4.12)

Computational Example 4.2: Reality check

Kohara et al. (1987) produced a complete restriction map for E. coli by us-
ing a random clone-mapping strategy employing inserts contained in lambda
cloning vectors. The parameters were

N =1025, L=1.55x10% G =4.7x10°.

The problem is to calculate the numbers of islands and singletons and compare
them with the experimental results.

Overlap was detected by analysis of restriction sites for eight different en-
zymes mapped in each of the clone inserts. Six consecutive sites were required
to declare overlaps. Since they calculated that the eight enzymes that they
used would cut the genome in 9700 locations, the average number of cleavage
sites in any one 15.5 kb insert would have been about 32.

Calculated results

c=NL/G=338; 0=06/32~0.19.

From (4.11), we calculate
I' = (303)(3.38)(e~2%%) = 66.3 islands.
From (4.12), we calculate
# of singletons = (1025) x ¢~ 2(170-19(3:38) — 4 3,
Ezxperimental results

Kohara et al. (1987) reported 70 islands, seven of which were singletons. The
agreement between theory and experiment is excellent given the statistical
sampling of clones. Olson et al (1986) reported another early example of this
restriction mapping strategy.

4.6 Minimal Tiling Clone Sets and Fingerprinting

For some purposes (e.g., various shotgun sequencing strategies—see Chap-
ter 8), it is not necessary to generate a complete restriction map. Instead, we
seek a representation of the genome as a set of ordered clones that minimally
overlap and yet include all of the genome sequence. Such a set of clones is
called a minimal tiling clone set (Fig. 4.3C). It is certainly possible to
produce such a set from a large library whose inserts have all been mapped,
but this is not needed in general.
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One way to produce a minimal tiling set is by fingerprinting the clones
(Wong et al., 1997). A fingerprint of a clone insert is the set of fragments or
fragment sizes produced from digestion by one or more restriction enzymes.
Different inserts will produce different fingerprints. As we indicated above,
shared fragments from mapped inserts can be used to build contigs. With
fingerprinting, the mapping step is skipped, and overlaps between two clones
are declared when they share the requisite number of fragments whose sizes
match within experimental error. With this procedure, restriction fragments
are “binned” and partially ordered, even though the clones have not been
completely mapped.

For example, suppose a digest of clones A, B, and C by the same restric-
tion enzyme or combination of enzymes yields the fragment clone fingerprints
indicated below. (Fragment sizes in kb are listed in order of size, and insert
sizes are compatible with typical lambda cloning vectors. Assume that enzyme
cleavages occur at the boundaries between the insert and vector sequences and
that vector fragments have been removed from the list.)

A B C

7.0 6.0 6.0
5.0 4.0 5.0
3.5 3.0 4.0
3.0 2.5 3.0
2.0 2.0 2.0
1.0 1.5 1.0

1.0

Notice that A and C share fragments of sizes 5.0, 3.0, 2.0, and 1.0 kb. C and B
share fragments of sizes 6.0, 4.0, 3.0, 2.0, and 1.0. If four matching fragments
suffice to declare overlaps, then the following sets of fragment clusters are
defined:

A:(7.0,3.5) (5.0,3.0,2.0,1.0)

C: (5.0,3.0,2.0,1.0)(6.0,4.0)

B: (6.0,4.0,3.0,2.0,1.0)(2.5, 1.5)
C:  (5.0)(6.0,4.0,3.0,2.0,1.0)

We don’t know the order of the fragments enclosed in parentheses: we
have arbitrarily listed them in order of decreasing size. But we have defined
groups of fragments that occur as neighbors (in some undetermined order)
in the restriction map. Since A and B both overlap C and share fragments
3.0, 2.0, and 1.0, we see that we can overlap all three clones. The particular
clusters defined by each pair of clones allow us to further reduce the sizes of
unmapped clusters:



References 117

A:(7.0,3.5) 5.0 (3.0,2.0,1.0)
C: 5.0 (3.0,2.0,1.0) (6.0,4.0)
B: (3.0,2.0,1.0) (6.0,4.0) (2.5,1.5)

The result is a partial restriction map of the region represented on these clones,
and this map was obtained by using the clone fingerprints without mapping
the individual clone inserts:

(7.0,35) 5.0 (3.0,2.0,1.0) (6.0,4.0) (2.5,1.5)

Given these clones and the mapping result, the region could be represented
by clones A and B only. They would be the minimal tiling clone set for this
region:

A:(7.0,3.5) 5.0 (3.0,2.0,1.0)

B: (3.0,2.0,1.0) (6.0,4.0) (2.5,1.5)

In this toy example, we had only three clones to compare. In actuality, there
is experimental error in determining fragment sizes, and the number of clones
in the library may be very large. This could make the fingerprinting process
tedious because there would be N(N — 1)/2 fingerprint comparisons to be
made. If the library contained 100,000 clones, this would involve about 5 x 10?
comparisons in all.

It is possible to reduce the labor of producing a minimal tiling clone set by
prescreening the library for clones that overlap. We will describe this in more
detail in Chapter 8, but we note here that it is relatively easy to determine
the sequences for about 500 bp into the insert from each end of the segment
cloned. With this sequence, we can design PCR primers that will amplify
DNA between them whereever that sequence is present and, in particular,
within the inserts in overlapping clones. We would then start with clone X
and design primers for its “right” end. By using appropriate pooling schemes,
it is relatively easy to identify other clones that overlap the right end of X
because an amplified product can be produced from the appropriate clone
pools. Those are the only clones that need to be fingerprinted to determine
the ones that have minimal overlap with the right end of X. If the left end of
Y overlaps the right end of X, then we can design primers for the right end
of Y, screen the library for clones that overlap its right end, fingerprint those
clones, and continue the process until we have produced a minimal tiling path
clone set. What we have just described is equivalent to employing sequence-
tagged connectors to generate a minimal tiling clone set like those used for
clone-by-clone shotgun sequencing (Chapter 8).
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Exercises

Exercise 1. Given the products of digestion with A, B, and A 4+ B shown
below, determine the restriction map(s). Assume that the molecule is linear
and that the sizes of digestion products are integers.

Products produced from digestion with A : {8,9,10};
Products produced from digestion with B : {4,5,8,10};
Products produced from digestion with A + B: {1,1,4,4,8,9}.

Exercise 2. Try to determine the restriction map of a linear molecule that
generates the following data:

Products produced from digestion with A : {3,5,6,6,8};
Products produced from digestion with B : {2,3,4,4,4,4,7};
Products produced from digestion with A + B: {1,1,1,2,2,2,3,3,4,4,5}.

Write a description of what you did. Calculate the number of possible or-
derings. Don’t test all possible orderings unless you are using a computer
program!

Exercise 3. In Section 4.2.1, the products by digestion with A + B number
n +m — 1. Show that this is correct. What is the number of A + B products
if A and B have one cut site in common?

Exercise 4. Download the A DNA sequences and determine to the base pair
the exact length of the FcoRI restriction fragments. Note that since FcoRI
is not a blunt end cutter you must describe your convention for measuring
“length.”
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Exercise 5. Prove that n., the total number of fragments produced by an
incomplete digest of a linear DNA molecule, is ngos = (”';1), where n is the
number of fragments produced in a complete digest. [Hint: The middle term
can be obtained by writing down an index number for each site along left and
top sides of a square and considering how many ways there are to choose pairs

of sites that bracket an undigested segment.|

Exercise 6. Show that the method to solve DDP has time complexity n!m! x
(n+m).

Exercise 7. Repeat the calculation done in Computational Example 4.1, f. =
0.95, for the human genome, G = 3.2 x 10°, and for lambda inserts of length
20 kb.

Exercise 8. Show that the number of partial digestion fragments from a
molecule that has n complete digestion fragments is (”';1).

Exercise 9. The equation (4.6) for f. is for a point locus. Find the probability
that you would clone an entire locus of length [ at least once in N random
clones of length L (where [ < L).

Exercise 10. What is ¢ for 500,000 A-clones of the human genome? How
many A-clones are required to represent 99% of the human genome?

Exercise 11. For complete digestion of a molecule with n restriction sites,
there are n + 1 restriction fragments. For incomplete digestion, let p = P(any
site is cut). If all cuts of one molecule are independent, find P(digestion of a
molecule results in k fragments), 1 < k <n+ 1.

Exercise 12. Show that if NV — oo, then ¢ — 0o, and evaluate lim, .o, I =
lim Ne—¢(=9) Explain this result, given that complete coverage of the genome
(¢ — 00) should produce one island. Can you correct formula (4.10)?
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Genome Rearrangements

5.1 The Biological Problem

Genomes of living organisms consist of genes and noncoding DNA arranged
in particular orders on one or more chromosomes. Eukaryotes usually have
several pairs of linear chromosomes (humans have 23 pairs in each somatic
cell), but prokaryotes typically have only one or a few circular (sometimes
linear) chromosomes. The order of genes (or sets of genes) along a particular
chromosome of a particular species is ordinarily conserved, and the list of
genes or physical markers along a genome, together with the distances between
these genes or markers, is called either a genetic or physical map, depending
upon the units in which distances are measured. For each species, there is a
particular genetic map that distinguishes it from other species. For example,
even though the mouse (Mus musculus) contains most of the same types of
genes found in humans, the genetic map of the mouse differs from that of
humans. This is illustrated in Fig. 5.1 for human (Homo sapiens) chromosome
Hsa6, which contains blocks of DNA sequences corresponding to portions of
six different mouse chromosomes.

Clearly, segments of DNA in the two species were rearranged with respect
to each other during their independent descent from a common ancestor. If
blocks of sequences are excised from one location and inserted into another,
those sequences are said to have been translocated. On the other hand, it is
possible that the chunks of sequence in a syntenic block (Fig. 1.5) remain
together but are permuted in one organism relative to the other. An example
of permutation is blocks 1-2-3 of Hsa6 in Fig. 5.1, which appear in the order
3-1-2 in the mouse chromosome Mmul3. Sometimes sequences in the genome
of an organism are duplicated elsewhere in the same genome (either on the
same or on a different chromosome). For example, it is estimated that around
5% of the human genome (exclusive of transposable elements; see Chapter 14)
consists of duplicated sequences (Bailey et al., 2002). Segmental and whole-
genome duplications are discussed in Chapter 14.
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5.1 The Biological Problem 123
5.1.1 Modeling Conserved Synteny

When comparing genomes of two organisms such as mice and humans, we
sometimes observe local similarities in the gene content and gene order. If two
or more genes that occur together on a single chromosome in organism B also
occur together on a particular chromosome in organism C, this occurrence
is an example of conserved synteny (see Fig 1.4 in Chapter 1). As shown in
Fig. 5.1, the gene orders may or may not be conserved within syntenic blocks
that are distributed among different chromosomes in a related organism. We
will use a simple example to show how such patterns can arise by genome
rearrangement.

Figure 5.2 shows four different ancestral “chromosomes,” each distin-
guished by a different color. Each ancestral chromosome is of identical size,
and each has ten “genes” 0,1, ..., 9. Each number/color combination repre-
sents a unique gene. This means that 2-green is not the same gene as 2-red.
The telomeres are indicated by a single slash, /. We will model an evolutionary
process indicated in the following diagram:

- - - - Descendant B
inversion 1 inversion 2

Ancestor A—

- - - - Descendant C
inversion 3 inversion 4

To model the genome rearrangements, we line up the A chromosomes in
tandem and then invert different portions of this combined string in two in-
dependent steps to obtain chromosomes of Descendant B. The same process
is repeated by inverting different segments to produce Descendant C. By in-
version, we mean that we take a portion of the sequence of genes and reverse
their order relative to the surrounding genes. For example, if the middle three
genes represented by 1 2 & 4 5 were inverted, the result would be 1 4 & 2 5.
Inversions of chromosomal regions are well-documented in most organisms for
which there are genetic data.

Fig. 5.2 (Following page). [This figure also appears in the color insert.] Model
producing conserved synteny in descendant chromosomes B and C after independent
inversion steps starting with ancestral chromosome A. Telomeres (/) divide the
“genes” (numbered) into four chromosomes. Chromosomes are placed end-to-end
before inversions (reversals) are performed to simulate translocation. Two inversion
steps on the path leading to B and two inversion steps on the path leading to C are
sufficient to generate syntenic relationships resembling those seen in Fig. 5.1.



Ancestor A:

1234567890/1234567890/1234567890/
Inversion 1

1234567890/12345677654321//098890/

Inversion 2
123 /098890/12345677654321/0987654
Chromosomes of Descendant B:
Bl /12345677654321/
B2 /0987654

B3 /123
B4 /098890/

Ancestor A:

M1234567890/1234567890/1234567890/

Inversion 3
1234567890/123456789 /10987654321//0

Inversion 4
/12345678 987654321//09 /10987654321//0
Chromosomes of Descendant C:
Clil /12345678 987654321/
C2 /0987654321/

C3 /0
cC4 /09

Relationships between chromosome C1 and chromosomes B1—-B4:

B2 /09[87654 B1 /12345677654321/
~<¢

_—

C1 123la5678f498f7654321/|

B3 123[3 B4 /098fBdo/
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Conserved synteny occurs when two or more genes occur together on any
chromosome of Descendant B and on any chromosome of Descendant C. For
example, 0-black and 9-black occur together on chromosome C4, and they
also occur together on chromosome B2. O-red and 5-green appear together on
chromosome C3, but they do not appear together on any of the B chromo-
somes. This is not a conserved synteny. In the modelled example (Fig. 5.2,
bottom), C1 shares regions of conserved synteny (and syntenic blocks) with
B1, B2, B3, and B4.

Inversions of the type shown in this example can produce results like those
illustrated in Fig. 5.1. The difference between Fig. 5.1 and our illustrative
model is that in Fig. 5.1 each colored region represents many genes—not just
one (i.e., 18-purple in Fig. 5.1 may contain hundreds of genes or more). Also
Hsa6 has segments that are syntenic with six mouse chromosomes. The ob-
served arrangements of genes on vertebrate chromosomes resemble what we
would see if a process similar to the one modelled had occurred. In the example
modeled, placing chromosomes end-to-end and then inverting segments corre-
sponds to a translocation if the two breakpoints associated with the inversion
fall within two chromosomes and to an inversion if they both fall within only
one chromosome.

The model just considered should not be taken as the actual mechanism
for chromosome evolution. It merely illustrates how one type of rearrangement
process can produce results similar to what is observed in contemporary eu-
karyotic chromosomes. However, rearrangements like these have been observed
in closely related contemporary species. For example, human chromosomes 1
and 18 have large inversions compared with the corresponding chimpanzee
chromosomes, and chimpanzee chromosomes 12 and 13 together contain ma-
terial that is located in human chromosome 2 (see Olson and Varki, 2003, for
a review comparing chimpanzees and humans). Chromosome rearrangements
thus may be used to help track evolutionary processes.

5.1.2 Rearrangements of Circular Genomes

As we mentioned above, bacteria often have circular chromosomes. Circu-
lar chromosomes are also found in mitochondria and chloroplasts. Remember
that mitochondria and chloroplasts are organelles that are thought to have
been reduced from eubacterial endosymbionts. These organelles contain many
copies of their respective genomes. For example, human mitochondria contain
approximately 103-10* DNA circles, each about 16,000 bp long and containing
37 genes. Circular chromosomes or organelle DNAs of related organisms may
not have identical gene arrangements. Because of their circular structures, it
is possible to invert segments of circular chromosomes by a single crossover
event, which produces an inversion, a permutation of the original sequence
with two novel junctions, or breakpoints. When this occurs repeatedly, con-
siderable “shuffling” of the gene orders may occur.
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One of the most interesting applications of computational biology is the
reconstruction of phylogenies of organisms (see Chapter 12). This is often ac-
complished by using the actual DNA sequences of genes or gene segments. Hu-
man mtDNA sequences have been used to reconstruct the ancestor-descendant
relationships leading to contemporary human populations (see, for example,
Fig. 12.2). Organellar DNAs are particularly useful sources of ancient DNA
samples because the copy numbers of mtDNA sequences are thousands of
times more abundant than particular sequences from nuclear DNA. But one
problem with organellar DNA and other small circular DNAs is that they may
have high mutation rates, which makes it hard to establish with confidence
the time separating distantly-related gene homologs. One way of dealing with
this problem is to delineate blocks of conserved genes, or conserved segments.
Evolutionary relationships are then analyzed in terms of these conserved seg-
ments rather than the actual DNA sequence. In this chapter, we will show
how genome sequences can evolve by inversion (which we will be calling these
reversals), and we will be estimating the distance between two genomes
by using the number of reversals required to convert the order of conserved
segments in one genome into the order found in the other. A set of distances
relating a collection of genomes can be used to construct phylogenetic trees,
which are graphs of ancestor-descendant relationships between these genomes.
These are discussed in detail in Chapter 12.

5.2 Permutations

5.2.1 Basic Concepts

To begin, we analyze rearrangements of linear, unichromasomal genomes (vi-
ral, organellar, bacterial), with each segment representing a group of con-
tiguous genes (a conserved segment). As noted, many of these genomes are
circular but have an analog linear genome, as otherwise the analysis is need-
lessly complicated. Because each conserved segment contains several genes, we
can define an orientation for each segment. Before we deal with orientation,
we first discuss the analysis of ordered elements, g1, go, ... ¢g,. In Section 5.3,
each of these elements g; will be identified with conserved segments, and the
permutation G will be identified with a particular genome.

The identity permutation of these elements is defined as the permutation
in which the indices increase in numerical sequence:

I: g1 9293 ... gn.

The elements may also appear as a permutation of the elements in the identity
permutation. For example, if n = 7, permutation G might have elements in
the following order:

G: g3 97 92 g6 94 91 Gs-
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For simplicity, we represent this particular permutation by just listing the
index numbers,
G: 3726415,

and we represent the identity permutation similarly:
I: 1234560T7.

How can we transform G into I? One way is to pick up the numbers one
or more at a time and drop them into the correct position. The equivalent
biological process is translocation. Transformation of G to I by translocation
is diagrammed as:

A R 1234567
As indicated above, a common way for DNA molecules to rearrange is by
inversion. The equivalent term in computer science is reversal. An example
of a reversal performed on I is illustrated below, where the interval 3 4 5 is
reversed:
12 54367

The order of the elements in the box is reversed from the order in which
they were found in the identity permutation. In general, if we are given a
permutation:

g1 92 93 --- Gi—-1 9i Gi+1---9j-1 Gj Gj+1---Gn,
a reversal of the interval [i, j] yields the permutation
g1 92 93 -+ 9i1 195 gj—1---Git1 Gi] Gjt1---Gn-

The order of the elements in brackets has been reversed. Adjoining ele-
ments may represent either an adjacency or a breakpoint.

grkg; = Adjacency if j =k £1,
gkgj = Breakpoint if j # k£ 1.
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Since in the second string immediately above g;_ is followed by g;, there is one
breakpoint after g;—i. Similarly, since g; is followed by g;4+1, there is another
breakpoint just before g;j+1. The inversion has produced two breakpoints.

Let’s now return to our previous example G =3 7 2 6 4 1 5. We want this
to represent a circular array of permuted elements. This means that the first
element in our linear representation is connected to the last element. If the first
element is in the correct position, then we do not consider it to be preceded
by a breakpoint, even if the last element is not yet in the correct position.
(We don’t want to count the same breakpoint twice.) By our definition of
breakpoint shown above, you can see that there are seven breakpoints. In-
stead of transforming G to I by transposition of elements, we can effect this
transformation by successive inversions (reversals) of two or more elements
(brackets enclosing the elements to be inverted in each step):

G: [37 2 6 4 1]5
1 break-point removed (the one
preceding the first element)
1[4 6 217 3 5

1 break-point removed
ﬂ 2 break-points removed

2 break-points removed

1 break-point removed
(the connection to 1 counted in
I: 123456 7 first step)

As we see from this example, we have removed the seven breakpoints that
were in the original sequence. It should be clear that the maximum number
of breakpoints that can be removed by a reversal is 2. Note that the reversals
do not always remove two breakpoints.

We define d(G, I) as the minimum number of reversals required to convert
G into I. Notice that reversals destroy breakpoints during the transformation
process. If the number of breakpoints in G is b(G), then it should be clear that

d(G,I) > b(G)/2.
Also, each reversal can remove at least one breakpoint, so
d(G,I) < b(G)

and it follows that
b(G)/2 < d(G,I) < b(G).

Let’s check this against the example that we just used. We should recognize
that there is a breakpoint just before 3 in G (that element should have been
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1 if there had been no breakpoint). Using the same reasoning, there is also
a breakpoint after the last element. In fact, b(G) = 8, and d(G,I) > 8/2.
We know that it will take at least four reversals to transform G to I. In the
illustration, we employed five reversals.

What is the greatest number of reversals required to transform the most
unfavorable permutation G to I (worst-case scenario)? What is the least num-
ber of reversals it would take to transform G to I?7 We can easily estimate
what the greatest number of reversals (worst case) would be. We can imagine
that you start from this worst-case permutation by reversing the set of ele-
ments from the initial one in the permutation up to and including g;. This
puts g1 in front. Then reverse all elements beginning with the second in the
permutation up to and including g. Continue the process until the identity
permutation is achieved. In the worst case, we will have to do this for n — 1
elements. We don’t have to do a separate operation for g, because if the first
n—1 elements are sorted as described, then n automatically falls into the last
position. It can be shown that, for some permutations, the least number of
reversals required is (n + 1)/2. Thus we have

(n+1)/2<d(G,I) <n-—1.
Examples of the worst case are
Gi13=31527496118121013

and
G14=31527496118 131012 14.

5.2.2 Estimating Reversal Distances by Cycle Decomposition

Given X and Y, which are permutations of the same letters, how can we
determine d(X,Y)? We describe a graphical method for doing this, and as an
example (to keep the graphs simple) we estimate the reversal distance between
F and I, where

F: 12453 I: 12345.

First, extend each permutation by adding 0 before the first element and n + 1
after the last element, where n is the number of elements. These changes do not
alter the reversal distances between the permutations because the elements
are in their correct positions.

F': 0124536 I': 0123456.

Each element index corresponds to a vertex of the graph, and lines connecting
the vertices are called edges. First, we connect all adjacent vertices of I with
black edges:

F': 0 1 2 4 ) 3 6

Now, in the same way, connect all of the adjacent I’ vertices with grey edges.
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n0/AX

The diagram above is called a graph, T'(F”, I'). This type of graph is said to
be balanced because the number of black edges at each vertex is equal to the
number of grey edges. It can be decomposed into cycles that have edges with
alternating colors and that don’t share edges with other cycles (i.e., they are
edge-disjoint). We do not give an algorithm for this decomposition, which in
general is a challenging problem. We define ¢(F, I') as the maximum number of
alternating, edge-disjoint cycles into which I'(F, I) can be decomposed. There
are four in this case, and they are shown in the following diagram:

A /)

T(F"I"):

0=—1 I 5=——3—¢
1—2 4=—5

The reason that we did this is that for most of the usual and interesting bio-
logical systems, the equality holds for the next expression for reversal distance
between two permutations X and Y:

dX,Y)>n+1—¢X,Y)=d(X,Y).

The general problem, just like the TSP, is NP-complete. In the case of per-
mutation F', the number of elements n was equal to 5, and we found that
¢(F,I) = 4. This means that d(F, ) = 2. In other words, we should be able to
transform F' into the identity permutation with just two reversals. They are
shown below (again, we reverse the order of elements between the brackets):

F: 1 2[4 5]3

J

1 2[5 4 3]

J

I: 12345
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5.2.3 Estimating Reversal Distances Between Two Permutations

Up to now, we have been determining the reversal distance d(G,I) between
permutation G and the identity permutation I. Now suppose that we have
the two permutations F' and H, with the following elements:

F: 12453 H: 14352.

The distance between F and H, d(F, H) and d(F, H), is calculated just as
was done above, except that this time the second set of edges will not be drawn
connecting vertices in increasing numerical order but instead in the order
in which these vertices appear in H. For simplicity, we again represent each
element by its numerical index and, as before, we extend each permutation
by prefixing it with 0 and by adding n + 1 at the end (6 in this case). We
connect the vertices of F' with black edges, taking vertices in succession as
they appear in F. Then we add grey edges between vertices, taking them in
the order in which they appear in H. The result is:

N %N

The decomposition of this graph into the maximum number of edge-disjoint
cycles is:

T(F'H: 0

/\ 2 4 /\3—6

Q=1 S=—3

l=—2 4 m—5

Since T'(F’, H') can be decomposed into a maximum of four cycles, d(F, H) =
54+1—4 = 2, and we expect that F' can be transformed into H with two
reversals. This is shown in the following diagram:
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5.3 Analyzing Genomes with Reversals of Oriented
Conserved Segments

In the previous section, we showed how to analyze permutations. When we
start to analyze genomes, the elements are now genes (or sets of genes in
an interval that contains no breakpoints), and these have orientation. Gene
orientation might be indicated by transcription direction, which might be
denoted as “+7 if it is transcribed left to right in a particular map as drawn
and “—7” if it is transcribed right to left. Genes «, 3, and ~ might appear
in one genome in an order 4+« 403+ but in another genome in the reverse
order —y —f3 —a. These might represent conserved segment g;, which would be
represented as +g; = +a+0 +7 in the former case and as —g; = —v -0 —«
in the latter case.
For example, consider the two genomes J and K below:

J: +g1 +g95 —g2 +93 +ya K: +g1 —g3 +g92 +92 —9s.

These could be represented graphically as (again, employing only the subscript
labels):

J: 1 5 2 3 4
> > < > >

K: 1 3 2 4 5
> < > > <«

As before, we are seeking the reversal distance d(J, K), which is the minimum
number of reversals needed to convert J to K. But now when we do reversals
to sort the segment orders, we must also keep track of the orientations of the
conserved segments to make sure that both gene order and orientation are
correct. Just as we did before, we calculate d(J, K) by constructing an edge-
colored graph and then counting the maximum number of alternating cycles
into which the graph can be decomposed. But we must modify the procedure
to keep track of the orientations of the conserved segments. (As noted above,
the genome rearrangement problem with unsigned segments is NP-complete.
Although signed segments would appear to make the problem more difficult,
actually there is an O(n?) algorithm! Further discussion of this is beyond the
scope of this chapter.)
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To track the orientation of conserved segment 4, label its left end (tail) ia
and its right end (head) ¢b. If genome J has n conserved segments, there are
now 2n elements representing their ends, thus specifying their location and
orientation. We prefix the list of elements in J with 0 and add element n+1 to
the right end as before to yield a total of 2n + 2 elements. Genomes J and K
are each represented by a particular permutation of the same 2n 4+ 2 elements,
and the approaches described in the previous section can now be applied. Our
example above now becomes

J: 0 la 1b 5a 5b 2b 2a 3a 3b 4a 4b 6,
K: 0 la 1b 3b 3a 2a 2b 4a 4b 5b 5a 6.

Now we create an edge-colored graph, but we only draw edges where ad-
jacent conserved segments are connected (i.e., we won’t draw edges between
the ends of the same conserved segment, ia and ib). We designate edges be-
tween conserved segments in J with black lines and edges between conserved
segments in K with grey lines.

I'(J,K):

N\ N\

0=—1la 1lb=—5a 5b=—2b 2a=—3a 3b=—4a 4b=—56

The decomposition of this graph into edge-disjoint alternating cycles is:

N\ N\

0=—1a 2a=—3a

lb=—5a 5b=—2b 3b=—4a 4b=—6

We find that there are three such cycles, and thus we calculate the reversal
distance between J and K:

dJ,K)=n+1-c(J,K)=5+1-3=3.

We then expect to be able to transform J to K by using three reversals.
These are shown in the following diagram (with [ ] indicating set of conserved
segments being reversed):



134 5 Genome Rearrangements

J: 1 [ 5 2 3 4 ]
> ><ﬂ > >
1 [ 4 3 2 1.5
> < <ﬂ > «
1 [ 2 3 1 4 5
> < > > <

[\)<:|

1 3 4 5
— > > —>

We notice that the alternating color edge-disjoint decomposition into the
maximum number of cycles is now easy. This is a general property of the anal-
ysis of signed reversals. It is accomplished by choosing an edge and following
the alternating edge-vertex path until returning to the beginning. There are
no choices to make. A challenging problem became easy with the addition of
biological detail.

Let’s remember again at this point why we are going through all of this.
What we are extracting is the set of d(X,Y) from a collection of related
genomes. These are pairwise differences, or distances. It turns out that if we
have a collection of m genomes and all of the m(m — 1)/2 pairwise differences
between them, we can build a phylogenetic tree that reveals the relationships
among the genomes. This sort of approach has been used by different investiga-
tors to analyze mitochondrial genomes (Sankoff et al., 1992) and herpesvirus
genomes (Hannenhalli et al., 1995). A discussion of approaches to genome
reconstruction is provided by Bourque and Pevzner (2002).

Computational Example 5.1: Determination of reversal distance
d(X,Y) between genome X and genome Y

Given two related genomes containing the same set of conserved segments,
but in different orders and orientations:

Step 1: Label the ends of each conserved segment i as ia and b, for all [ < i <
n, where n is the number of conserved segments. These labeled ends
will be the vertices of the graph.

Step 2: Write down in order the ends of the oriented conserved segments in
the sequence that they occur in genome X.

Step 3: Add 0 at the beginning of the permutation representing genome X,
and add n 4+ 1 at the end of the permutation.

Step 4: Repeat steps 2 and 3 for genome Y.
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Step 5: Connect vertices from different fragments with a black line if they are
joined in genome X. Connect vertices from different fragments with a
grey line if they are joined in genome Y. (No connections will be made
for ia and ib.)

Step 6: Decompose the graph generated in step 5 into the maximum number
of edge-disjoint alternating cycles. This number is ¢(X,Y).

Step 7: Compute the reversal distance, the minimum number of reversals of
one or more conserved segments needed to transform one genome into
the other: d(X,Y) =n+1—¢(X,Y).

5.4 Applications to Complex Genomes

The illustrations above applied to unichromosomal linear genomes, which can
be generalized to circular genomes of eukaryotic organelles and many bacte-
ria. Relating multichromosomal organisms by genome rearrangements is much
more complicated, although this has been done for humans and mice. We will
illustrate these more complex problems without going into detail. Genome re-
arrangements are also discussed in Chapter 14. We continue to use the mouse
and human genomes as examples (MGSC, 2002; Pevzner and Tesler, 2003).

5.4.1 Synteny Blocks

In the first and second sections of this chapter, we discussed conserved synteny
and conserved segments (see also Fig. 1.5 and Fig. 14.8). We need to be
a bit more precise to accommodate the data. According to one definition
(see Section 14.3 for other definitions), a conserved segment is a region
found in two genomes in which homologous genes retain the same order and
relative map position in both genomes. Does it follow that conserved segments
contain no gene rearrangements? It is estimated that there are about 25,000
mammalian genes in genomes of about 3 x 10° bp. This means that, on average,
conserved segments that include three genes would exceed 300,000 bp. Is it
possible that there have been rearrangements in intervals of size 200,000 to
1,000,000 bp that would not be detected in conserved segments?

The availability of sequenced genomes makes possible more precise mea-
sures of conserved synteny and conserved segments, based upon a higher den-
sity of physical markers. Regions of local similarity between two sequenced
genomes can be readily identified (sequence similarity and alignment are dis-
cussed in the next chapter). Suppose that subsequence f; in genome F' is
similar to subsequence g; in genome G, and that (a) alignment of f; to G
yields g; as the highest-scoring alignment and that (b) alignment of g; to F'
yields f; as the highest-scoring alignment (i.e., f; and g; are reciprocal “best
hits”). The subsequences f; and g¢; can be used as sequence anchors or
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landmarks to aid in comparing the two genomes. In principle, there can be
many more sequence anchors than there are genes and, unlike genes, their
identification is uninfluenced by errors in gene annotation (e.g., incorrectly
identifying a gene in F' as an ortholog of a gene in G—see Chapter 14 for how
orthologs are identified). In a recent study relating the mouse and human
genome organizations, nearly 560,000 genome anchors were employed.

Whereas conserved segments were defined above in terms of genes, synteny
blocks can also be defined in terms of anchors. A syntenic block is a set of
sequence anchors that appear together (but not necessarily in the same order)
in the genomes from two different organisms. Because there are so many more
anchors than there are genes, the synteny blocks are based upon much finer
partitioning of the chromosome than are conserved segments defined by genes.
Conserved segments may contain short inversions or other types of microrear-
rangements that are not detected by mapping with sequence anchors. Synteny
blocks can be used to define macrorearrangements relating two chromosomes
by approaches similar to those we have discussed above (Pevzner and Tesler,
2003).

5.4.2 Representing Genome Rearrangements

The methods we have discussed for single chromosomes have relied on making
what were, in effect, one-dimensional diagrams. When comparing two chro-
mosomes or genomes, it is possible to represent the relationships by using
two-dimensional diagrams, with each axis representing the synteny blocks for
each organism. The projection of the two-dimensional graph onto either axis
produces a unidimensional diagram of the type that we have employed up to
now. Figure 5.3 shows an example of a two-dimensional diagram comparing
the human and mouse X chromosomes. The problem to be solved is exactly
the same as the one that we have discussed in the unichromosomal case: de-
termining the distance between the chromosomes by enumerating the number
of reversals required to convert the order of synteny blocks found in mice into
the order found in humans. This is of course just a part of the larger problem,
identifying the total rearrangement distance between the complete genomes.
Exercise 9 illustrates cycle decomposition in two dimensions.

To demonstrate how the observations recorded in Fig. 5.3 could have
arisen, we perform a simple simulation.

Computational Example 5.2: Simulating genome rearrangements

Using R, provide an ordered set of 100 anchor loci for genome x. This might
represent the ancestral genome. We will not perform any rearrangements on
X.

x<-c(1:100)

Next we provide an ordered set of 100 anchor loci for genome y:
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Fig. 5.3. Synteny blocks shared by human and mouse X chromosomes. The arrow-
head for each block indicates the direction of increasing coordinate values for the
human X chromosome. Reprinted, with permission, from Pevzner P and Tesler G
(2003) Genome Research 13:37-45. Copyright 2003 Cold Spring Harbor Laboratory
Press.

y<-c(1:100)

We now transform genome y into genome y4 through a series of four reversal
steps of our choice, saving each intermediate genome y1, y2, and y3. y2 is
produced by applying a second reversal to y1, which resulted from the first
reversal, and so on.

yi<-y
y1[11:75]<-y1[75:11]
#Reversal of interval 11 to 75 inclusive in y

y2<-y1
y2[15:30]<-y2[30:15]
#Reversal of interval 15 to 30 inclusive in yl
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y3<-y2
y3[55:80]<-y3[80:55]
#Reversal of interval 55 to 80 inclusive in y2

y4<-y3
y4[70:90]<-y4[90:70]
#Reversal of interval 70 to 90 inclusive in y3

Now we plot the results on a single plot with three rows of two

columns (mfrow=c(3,2)) and using “.” as the print character for each point
(pCh=" " ) .

par(pin=c(2.5,2.5), mfrow=c(3,2),pch=".")
plot(x,y, main="A.")
plot(x,yl, main="B.")
plot(x,y2, main="C.")
plot(x,y3, main="D.")
plot(x,y4, main="E.")

The results of this simulation are plotted in Fig. 5.4. We can see step by step
how a graph such as the one shown in Fig. 5.3 can be generated by reversals.

We note in passing that these graphs are analogous to the “dot plots”
that will be discussed in Chapter 7. In that chapter, the plots are of k-word
matches in two different sequence strings. Here, the plots are of synteny blocks
in two different genomes. Interpretations in terms of diagonals are very similar
in both cases.

5.4.3 Results from Comparison of Human and Mouse Genomes

Mouse and human genomes have been compared by Pevzner and Tesler (2003),
who also present an extremely complicated multichromosomal breakpoint
graph. They identified 281 synteny blocks (within stated gap and size crite-
ria), and they concluded that the order of the mouse genome synteny blocks
can be converted into the order seen in the human genome by 245 genome
rearrangements: 149 inversions, 93 translocations, and 3 fissions. Mice and
humans share a common ancestor estimated to have lived about 83 million
years ago. Since that time, there have been about 1.5 rearrangements occur-
ring per million years of evolutionary time separating the two species (245
rearrangements < (2 x 83 million years); the factor of 2 reflects the fact that
evolution is occurring in both lineages).

As more mammalian genomes are sequenced, comparisons of their se-
quence organizations will provide additional measures of genetic distance,
which can be used together with DNA sequence differences to delineate evo-
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Fig. 5.4. Simulation of rearrangement of a single chromosome by reversals. An-
chor loci are plotted along axes. Panel A represents chromosomes x and y in
the unrearranged states. Chromosomes yl, y2, y3, and y4 in panels B through
E are related to chromosome y by one reversal relative to the previous genome
(e.g., yl has one reversal compared to y, y2 has one reversal compared to yl,
etc.).
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lutionary relationships. General approaches for genome comparisons are de-
scribed in Chapter 14.
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Exercises

Exercise 1. For X =1234567andY =2314657, (a) find the break-
points, (b) find the breakpoint graph, and (c) perform the cycle decomposition
of the breakpoint graph.

Exercise 2. Taking z = 1 2 3 4 5 6 as the “reference genome” find the
breakpoint graph for y =315 2 6 4. What is d(X,Y)?

Exercise 3. Taking X =+1 +2 +3 +4 +5 + 6 as the reference genome,
find the breakpoint graph fory =43 —1 +5 +2 —6 +4

Exercise 4. Find a set of reversals for the “n — 1”7 distance for Gy3 (Sec-
tion 5.2). Do the same thing for G4.

Exercise 5. Find the cycle decomposition of Gy =3 15 2 7 4 6, for which
the reversal distance is 7 — 1 = 6.
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Exercise 6. Given G : 2 4 5 3 1, a set of reversals that transform G to the
identity permutation I is
G: [2 45 3 1]

J

1 [3 5 4 2]

{

12 [4 5 3]

{

12 3 [5 4]

{

I: 1 23 45

Show by cycle decomposition that this set of reversals does not correspond
to the minimum d(G, I).

Exercise 7. The two-dimensional plot shown in Fig. 5.4D can be expressed
as a one-dimensional graph using the conventions in Section 5.3. Recall that
in the simulation that led to Fig. 5.4D, sequence x was not rearranged.

a. Label the ends of the ith line segment ia and b using the order and orien-
tation of segments in x to determine the values of ¢ and the assignments
a or b.

b. Make a diagram showing y3 as a set of oriented arrows with the appro-
priate labelling. (For the purposes of this problem, the arrows can all be
of the same length. See Section 5.3.)

c. Draw a graph corresponding to the oriented sequence blocks in part b
of this problem, and perform a cycle decomposition to verify that the
computed reversal distance agrees with the actual number of reversals
used to produce Fig. 5.4D (Computational Example 5.2).

Exercise 8. Reproduce Fig. 5.4D, except this time allow enough space to add
a point labeled 0 in the lower left-hand corner and a point labeled 8 in the
upper right-hand corner, with a gap separating these points from the first
and last oriented segments, respectively. Shorten segments 1-7, and add the
labeling as in Exercise 7a.

a. Project all 4a and b onto the y3 axis. (Each point should be separated
from its neighbors by a space because the segments were shortened above.)
Connect adjacent points with broken lines, except for points belonging to
the same line segment.

b. Using solid line segments, connect the ends of segments 1-7 in the order
of appearance in x (i.e., connect ib to (i + 1)a, etc.), and project these
solid line segments as arcs onto the y3 axis.
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c. Compare the results of parts a and b of this problem with the graph that
you drew in Exercise 7c. Are they the same (except for the lengths of
edges connecting the points)?

Exercise 9. This exercise shows how to perform cycle decomposition in two
dimensions, again using Fig. 5.4D. Redraw Fig. 5.4D just as you did in Exer-
cise 8, with points 0 and 8 added, and ia and b labels.

a. In the two-dimensional area, use solid lines to connect adjacent segments
in the order that they occur in x. (Connect 0 to la and 7b to 8 with arcs
that are concave downward.)

b. Use broken lines to connect adjacent segments in the order that they occur
in y3. (Connect 0 to la and 7b to 8 with arcs that are concave upward)

c. Now remove all segments 1-7 (corresponding to our not connecting the
ia and ib vertices when 7 is the same). Decompose the composite set of
broken and solid lines into disjoint cycles. (Cycles will contain both solid
and broken lines.) Use the number of cycles to compute d(x,y3). Does
this agree with the result of Exercise 7c and the number of reversals used
to produce y3 in the simulation?

Exercise 10. Use the approach of Exercise 9 to compute the distance sepa-
rating the human and mouse X chromosomes (Fig. 5.3). (To prevent confusion,
make all segments the same length, so that their projections on the coordinate
axes would be separated by gaps.)

Exercise 11. GRIMM is the genome rearrangements Web server that com-
putes optimal rearrangement scenarios relating a source and destination
genome. It is available at http://www-cse.ucsd.edu/groups/bioinformati
cs/GRIMM.

a. Represent genomes x and y4 in Fig. 5.4E as oriented arrows (see Exer-
cise 7). Input x as the source genome and y4 as the destination genome
into GRIMM and run the application. Do you get the same rearrangement
scenario as was actually employed to generate Fig. 5.4E? Do you obtain
the same number of reversals?

b. Check your answer to Exercise 10 by applying GRIMM to the data in
Fig. 5.3.
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Sequence Alignment

6.1 The Biological Problem

Much of biology is based on recognition of shared characters among organisms,
extending from shared biochemical pathways among eukaryotes to shared
skeletal structures among tetrapods. The advent of protein and nucleic acid
sequencing in molecular biology made possible comparison of organisms in
terms of their DNA or the proteins that DNA encodes. These comparisons
are important for a number of reasons. First, they can be used to establish
evolutionary relationships among organisms using methods analogous to those
employed for anatomical characters. Second, comparison may allow identifi-
cation of functionally conserved sequences (e.g., DNA sequences controlling
gene expression). Finally, such comparisons between humans and other species
may identify corresponding genes in model organisms, which can be geneti-
cally manipulated to develop models for human diseases.

Genes or characters in organisms B and C that have evolved from the
same ancestral gene or character in A are said to be homologs. Similar char-
acters that result from independent processes (i.e., convergent evolution) are
instances of homoplasy. Examples are the dorsal fins of sharks and whales.
We are most interested in homologies because they usually exhibit conserved
functions. Since organisms have greater or lesser degrees of evolutionary re-
lationships, we anticipate that homologs will be found for most genes in or-
ganisms that are evolutionarily close. Thus, we might expect that mice would
have homologs of human genes for immunoglobulins but would not expect
such genes to occur in bacteria.

It is important to distinguish between sequence homology and sequence
stmilarity. Suppose that genes g and g are homologs derived from gene g,
in organism A. They will have independently accumulated mutations along
the paths A — C and A — B. If the divergence between these two lineages was
relatively recent, then the coding sequences for gg and g, will display the same
character at most positions in their corresponding DNA or protein sequences.
If the divergence between lineages was more remote in time, there will be a
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lesser correspondence in characters at each position. Similarity refers to the
degree of match at corresponding positions in the two sequences. This is often
expressed as a percentage. Similarity is an expected consequence of homology,
but when comparing two short sequences, it is possible for similarity to occur
by chance. Similarity does not necessarily imply homology.

Identification of homologs makes it possible to trace evolutionary patterns
of genes, which may or may not be identical to the patterns of the species that
contain them (see Fig. 12.7). Suppose that genes gp and g, are homologous.
They normally will have the same function. Suppose that gz in species B
has undergone a number of duplication events to produce gg1, 859, -- -, E5n-
Selection for function may require that one of these copies (gg;, for exam-
ple) retains the ancestral function, but then ggs,...,gg, can evolve either
to lose function or possibly acquire new but related functions. Sequence ho-
mologs from two different species that share the same function (g and gp,
in the example above) are called orthologs. Homologs of gene copies that
have evolved within a species (e.g., any two of gg;,...,8p,) are said to be
paralogs. Paralogy arises from independent evolutionary events affecting a
gene within one species but not the corresponding gene in a related species.

An important activity in biology is identifying DNA or protein sequences
that are similar to a sequence of experimental interest, with the goal of finding
sequence homologs among a list of similar sequences. By writing the sequence
of gene g, and of each candidate homolog as strings of characters, with one
string above the other, we can determine at which positions the strings do
or do not match. This is called an alignment. As we shall see, there are
many different ways that two strings might be aligned. Ordinarily, we expect
homologs to have more matches than two randomly chosen sequences.

However, this seemingly simple alignment operation is not as simple as it
sounds. Consider the examples below (matches are indicated by -, and — is
placed opposite bases not aligned):

ACGTCTAG 2 matches
.. 5 mismatches (6.1)
ACTCTAG- 1 not aligned

We might instead have written the sequences

ACGTCTAG 5 matches
..... 2 mismatches (6.2)
-ACTCTAG 1 not aligned

We might also have written

ACGTCTAG 7 matches
ce e 0 mismatches (6.3)
AC-TCTAG 1 not aligned
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Which alignment is “better”?
Next, consider aligning the sequence TCTAG with a long DNA sequence:

.. . AACTGAGTTTACGCTCATAGA. . . (6.4)
T---CT-A--G

We might suspect that if we compared any string of modest length with an-
other very long string, we could obtain perfect agreement if we were allowed
the option of “not aligning” with a sufficient number of letters in the long
string.

Clearly, we would prefer some type of parsimonious alignment—one that
does not postulate an excessive number of letters in one string that are not
aligned opposite identical letters in the other. We have seen that there are
multiple ways of aligning two sequence strings, and we may wish to compare
our target string (target meaning the given sequence of interest) to entries
in databases containing more than 107 sequence entries or to collections of
sequences billions of letters long. How do we do this? The present chapter
focuses on alignment of two sequences with each other. This can be done
using the entire strings (global alignment) or by looking for shorter regions
of similarity contained within the strings that otherwise do not significantly
match (local alignment). We briefly discuss multiple-sequence alignment
(alignment of more than two strings) at the end of this chapter.

Our approach is guided by biology. It is possible for evolutionarily related
proteins and nucleic acids to display substitutions at particular positions (re-
sulting from known mutational processes). Also, it is possible for there to be
insertions or deletions of sequences (less likely than substitution). In total,
the DNA sequence can be modified by (Section 1.3.3):

— Substitution (point mutation)
— Insertion of short segments

— Deletion of short segments

—  Segmental duplication

— Inversion

— Transposable element insertion
— Translocation

The latter four processes often involve DNA segments larger than the coding
regions of genes, and they usually don’t affect the types of alignment presently
under discussion. The first three processes are important in aligning targets
whose sizes are less than or equal to the size of coding regions of genes, and
these will be explicitly treated in the alignment processes. Insertions and/or
deletions are called indels. In (6.3) above, we can’t tell whether the string
at the top resulted from the insertion of G in ancestral sequence ACTCTAG
or whether the sequence at the bottom resulted from the deletion of G from
ancestral sequence ACGTCTAG. For this reason, alignment of a letter opposite
nothing is simply described as an indel.
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Before proceeding, note that we may align nucleic acids with each other
or polypeptide sequences with each other. The latter case raises a number of
additional issues because of constraints on protein structures and the genetic
code, so it will be discussed in the next chapter.

6.2 Basic Example

Before proceeding to a rigorous description, we will introduce the “flavor” of
the process with a simple “toy” example. Suppose that we wish to align WHAT
with WHY. Our goal is to find the highest-scoring alignment. This means that
we will have to devise a scoring system to characterize each possible alignment.
One possible alignment solution is

WHAT
WH-Y

We need a rule to tell us how to calculate an alignment score that will,
in turn, allow us to identify which alignment is best. Let’s use the following
scores for each instance of match, mismatch, or indel:

identity (match) +1
substitution (mismatch) — 1
indel =y

The minus signs for substitutions and indels assure that alignments with
many substitutions or indels will have low scores. We define the score S as
the sum of individual scores at each position:

S(WHAT/WH—Y) =1+1—0 — pu.

There is a more general way of describing the scoring process (not nec-
essary for “toy” problems such as the one above). We write the target se-
quence (WHY) and the search space (WHAT) as rows and columns of a ma-
trix:

= W H A T

LN
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We have placed an x in the matrix elements corresponding to a particular
alignment shown. We have included one additional row and one additional
column for initial indels (—) to allow for the possibility (not applicable here)
that alignments do not start at the initial letters (W opposite W in this case).
We can indicate the alignment above as a path through elements of the matrix
(arrows). If the sequences being compared were identical, then this path would
be along the diagonal. Other alignments of WHAT with WHY would correspond
to paths through the matrix other than the one shown. Each step from one
matrix element to another corresponds to the incremental shift in position
along one or both strings being aligned with each other, and we could write
down in each matrix element the running score up to that point instead of
inserting x.

- W|H|A|T
_| o0

W 1

H 2 [2-8

Y 2-8-l

What we seek is the path through the matrix that produces the greatest
possible score in the element at the lower right-hand corner. That is our “des-
tination,” and it corresponds to having used up all of the letters in the search
string (first column) and search space (first row)—this is the meaning of global
alignment.

Using a scoring matrix such as this employs a particular trick of thinking.
For example, what is the “best” driving route from Los Angeles to St. Louis?
We could plan our trip starting in Los Angeles and then proceed city to city
considering different routes. For example, we might go through Phoenix, Al-
buquerque, Amarillo, etc., or we could take a more northerly route through
Denver. We seek an itinerary (best route) that minimizes the driving time.
One way of analyzing alternative routes is to consider the driving time to
a city relatively close to St. Louis and add to it the driving time from that
city to St. Louis. Three examples for the last leg of the trip are shown be-
low.

City 1 (Tulsa) \

City 2 (Topeka) 2 &% St Louis
I3

City 3 (Little Rock)

We would recognize that the best route to St. Louis is the route to St.
Louis from city n + the best route to n from Los Angeles. If D, Do,
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and D3 are the driving times to cities 1, 2, and 3 from Los Angeles, then
the driving times to St. Louis through these cities are given by D; +
t1, Do + to, and D3 + t3. Suppose that the driving time to St. Louis
through Topeka (City 2) turned out to be smaller than the times to St.
Louis through Tulsa or Little Rock (i.e., Do + t2 were the minimum of
{D;y + t1, Dy + t2, D3 + t3}). We then know that we should travel through
Topeka. We next ask how we get to Topeka from three prior cities (not
shown), seeking the route that minimizes the driving time to City 2. Ana-
lyzing the best alignment using an alignment matrix proceeds similarly,
first filling in the matrix by working forward and then working backward
from the “destination” (last letters in a global alignment) to the starting
point. This general approach to problem-solving is called dynamic program-
ming.

The best alignment is revealed by beginning at the destination (lower right-
hand corner matrix element) and working backward, identifying the path that
maximizes the score at the end. To do this, we will have to calculate scores
for all possible paths into each matrix element (“city”) from its neighboring
elements above, to the left, and diagonally above. To illustrate, suppose that
we want to continue an ongoing alignment process using WHAT and WHY and
that we have gotten to the point at which we want to continue the alignment
into the shaded element of the matrix above. We have now added row and
column numbers to help us keep track of matrix elements.

o 1 2
- | W | H
O_
1 W
A case b
2 H
case a

There are three possible paths into element (3, 3) (aligning left to right
with respect to both strings—Iletters not yet aligned written in parentheses):

Case a. If we had aligned WH in WHY with W in WHAT (corresponding to element
(2, 1)), adding H in WHAT without aligning it to H in WHY corresponds
to an insertion of H (relative to WHY) and advances the alignment from
element (2, 1) to element (2, 2) (horizontal arrow): (WH(AT)

(WwH)- (Y)

Case b. If we had aligned W in WHY with WH in WHAT (corresponding to element

(1, 2)), adding the H in WHY without aligning it to H in WHAT corre-
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sponds to insertion of H (relative to WHAT) and advances the alignment

from element (1, 2) to element (2, 2) (vertical arrow):
(WH) - (AT)
(WH (V)
Case ¢. If we had aligned W in WHY with W in WHAT (corresponding to el-
ement (1,1)), then we could advance to the next letter in both
strings, advancing the alignment from (1, 1) to (2, 2) (diagonal arrow
above): (WH(AT)
(WH ()

Note that horizontal arrows correspond to adding indels to the string written
vertically and that vertical arrows correspond to adding indels to the string
written horizontally.

Associated with each matrix element (z, y) from which we could have come
into (2, 2) is the score S, , up to that point. Suppose that we assigned scores
based on the following scoring rules:

identity (match) +1
substitution (mismatch) -1
indel -2

Then the scores for the three different routes into (2,2) are

Case a: S22 =521 — 2,
Case b : 52’2 = 51’2 - 2,
Case ¢ : So9=511+1.

The path of the cases a, b, or ¢ that yields the highest score for Sy 5 is the
preferred one, telling us which of the alignment steps is best.

Using this procedure, we will now go back to our original alignment matrix
and fill in all of the scores for all of the elements, keeping track of the path into
each element that yielded the mazximum score to that element. The initial row
and column labeled by (—) corresponds to sliding WHAT or WHY incrementally
to the left of the other string without aligning against any letter of the other
string. Aligning (—) opposite (—) contributes nothing to the alignment of
the strings, so element (0,0) is assigned a score of zero. Since penalties for
indels are —2, the successive elements to the right or down from element
(0,0) each are incremented by —2 compared with the previous one. Thus
So,1 is —2, corresponding to W opposite —, Sy o is —4, corresponding to WH
opposite —-, etc., where the letters are coming from WHAT. Similarly, S ¢ is
—2, corresponding to - opposite W, Sy ¢ is —4, corresponding to -- opposite
WH, etc., where the letters are coming from WHY. The result up to this point is
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- W H A T
o - 0 |-2 |-4|-6|-8
1 W |-2
2 H |-4
3 Y |-6

Now we will calculate the score for (1,1). This is the greatest of Sp0 + 1
(W matching W, starting from (0, 0)), So1 — 2, or S1,0 — 2. Clearly, Soo+ 1 =
0+ 1 =1 “wins”. (The other sums are —2 — 2 = —4.) We record the score
value +1 in element (1, 1) and record an arrow that indicates where the score
came from.

o - 0 |-2 |-4|-6|-8
1 W |-2 |+1
|
¥
2 H |-4 |-1
3 Y |-6

The same procedure is used to calculate the score for element (2,1) (see
above). Going from (1,0) to (2,1) implies that H from WHY is to be aligned
with W of WHAT (after first having aligned W from WHY with (—)). This would
correspond to a substitution, which contributes —1 to the score. So one pos-
sible value of Sy 1 = S1,0 —1 = —3. But (2,1) could also be reached from
(1, 1), which corresponds to aligning H in WHY opposite an indel in WHAT (i.e.,
not advancing a letter in WHAT). From that direction, Sg 1 = S11 — 2 =
1 —2 = —1. Finally, (2, 1) could be entered from (2,0), corresponding to
aligning W in WHAT with an indel coming after H in WHY. In that direction,
S21=520—2=—4—2=—6. We record the maximum score into this cell
(S2,1 = S1,1 —2 = —1) and the direction from which it came.

The remaining elements of the matrix are filled in by the same procedure,
with the following result:
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0o - 0 |-2 -4 | -6 | -8
1w [-2 +}“’—1_"—3"’—5
v ]
2 H|-a [-1 [T27d0 22
|
K
3 Y |-6 -3 0 1 -1
The final score for the alignment is S5 4 = —1. The score could have been

achieved by either of two paths (implied by two arrows into (3, 4) yielding
the same score). The path through element (2, 3) (upper path, bold arrows)
corresponds to the alignment

WHAT
WH-Y

which is read by tracing back through all of the elements visited in that path.
The lower path (through element (3, 3)) corresponds to the alignment

WHAT
WHY -

Each of these alignments is equally good (two matches, one mismatch, one
indel).

Note that we always recorded the score for the best path into each element.
There are paths through the matrix corresponding to very “bad” alignments.
For example, the alignment corresponding to moving left to right along the
first row and then down the last column is

WHAT - - -
- - -~ WHY

with score —14.

For this simple problem, it was unnecessary to go through all of these
operations. But when the problems get bigger, there are so many different
possible alignments that an organized approach such as the one shown here
is essential. Biologically interesting alignment problems are far beyond what
we can handle with a No. 2 pencil and a sheet of paper.
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6.3 Global Alignment: Formal Development

We will now recapitulate the development described in the previous section
in a more direct and formal manner. We are given two strings, not necessarily
of the same length, from the same alphabet:

A =aja2a3- - an,
B = bibsbs---b,,.

Alignment of these strings corresponds to consecutively selecting each letter
or inserting an indel in the first string and matching that particular letter or
indel with a letter in the other string, or introducing an indel in the second
string to place opposite a letter in the first string. Graphically, the process is
represented by using a matrix as shown below for n = 3 and m = 4:

0 1 2 3 4

- bl bz b3 b4
o - ->
1 a; -
2 a, |
¥
3 a,

The alignment corresponding to the path indicated by the arrows is

b1 b2 bz bs -

- ap - az as

(6.5)

Any alignment that can be written corresponds to a unique path through
the matrix. The quality of an alignment between A and B is measured by a
score, S(A, B), which is large when A and B have a high degree of similarity. If
letters a; and b; are aligned opposite each other and are the same, they are an
instance of an identity. If they are different, they are said to be a mismatch.
The score for aligning the first 7 letters of A with the first j letters of B is

Sij =S (arag---a;,bibz---bj). (6.6)

S;.; is computed recursively as follows. There are three different ways that the

by

alignment of aiag - - - a; with b1bs - --b; can end:
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Case a: (a1 ag -+ a;)) —
(b1 b2 -+ bj—1) by
Case b: ai as o Qi—1) a;
(a1 az 1) (6.7)
(b1 by -+ bj) -,
Case c: (a1 az -+ a;—1) a
(b1 b2 -+ bj—1) by
where the inserted spaces “—” correspond to insertions or deletions (“indels”)
in A or B. Scores for each case are defined as follows:
s(ai, bj) = score of aligning a; with b, (6.8)
(=+41ifa; =b;,—p <0if a; # b;, for example),
s(ai, —) = s(—,bj) = —d < 0 (for indels). (6.9)

With global alignment, indels will be added as needed to one or both
sequences such that the resulting sequences (with indels) have the same length.
The best alignment up to positions ¢ and j corresponds to the case a, b, or ¢
in (6.7) that produces the largest score for .S; ;:

Si—1,j—1 + s(ai, b;) Case ¢
Si’j = max Si—l,j -4 Case b. (610)
Sij—1—20 Case a

The “max” indicates that the one of the three expressions that yields the
maximum value will be employed to calculate S; ;. Except for the first row
and first column in the alignment matrix, the score at each matrix element
is to be determined with the aid of the scores in the elements immediately
above, immediately to the left, or diagonally above and to the left of that
element, as indicated in (6.10). The scores for elements in the first row and
column of the alignment matrix are given by

Sio=—i6, So;=—jd. (6.11)

The score for the best global alignment of A with B is S(A4, B) = Sy, m, and
it corresponds to the highest-scoring path through the matrix and ending at
element (n, m). It is determined by tracing back element by element along
the path that yielded the maximum score into each matrix element.

Computational Example 6.1: Alignment scores

What is the maximum score and corresponding alignment for aligning A =
ATCGT with B = TGGTG? For scoring, take s(a;,b;) = +1 if a; = b;, s(a;,
b;) = —1if a; # bj, and s(a;, —) = s(—,b;) = —2.

Step 1: Write down the alignment matrix using B along the top and A in a
column at the side.
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Step 2: Fill in the first row and first column by using (6.11).

0 1 2 3 4 5

- T G G T G
0 - 0 |-2 |-4 |-6 [-8 [-10
1 A |-2
2 T [-4
3 C |-6
4 G |-8
5 T [-10

Step 3: Fill in all matrix elements using the scoring rules of (6.10) and keeping
track of the path into each element that was employed. Sometimes two
paths will yield equal scores.

0 1 2 3 4 5
- T G G T G
0 - 0 -2 -4 -6 -8 -10
$——> = N N\
1 A —% 1453 U550y 159
2 T i 1 2 4 4 6
[ J N
T T3
3 C -6 -3 -2 -3 -5 -5
| | T
T T3
4 G | -8 -5 -2 -1 -3 -4
| | RN
¥ 4 ¥
5 T -10|-7 -4 -3 0

Step 4: Read out the alignment, starting at (5, 5) and working backward.
For clarity, arrows corresponding to the path for the highest-scoring
alignment are drawn with heavier lines.

The matrix elements corresponding to the last three steps in the alignment
below are shown by corresponding shading.

A: A T C|G||T
B: - T G |G||T
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6.4 Local Alignment: Rationale and Formulation

Often proteins are multifunctional. Pairs of proteins that share one of these
functions may have regions of similarity embedded in otherwise dissimilar
sequences. For example, human TGF-§ receptor (which we will label A) is
a 503 amino acid (aa) residue protein containing a protein kinase domain
extending from residue 205 through residue 495. This 291 aa residue segment
of TGF-3 receptor is similar to an interior 300 aa residue portion of human
bone morphogenic protein receptor type II precursor (which we will label B), a
polypeptide that is 1038 aa residues long. This type of situation is diagrammed
as

I
A _— 3} —

J

B -

where regions of similarity I, J are indicated by the boxes. With only partial
sequence similarity and very different lengths, attempts at global alignment
of two sequences such as these would lead to huge cumulative indel penalties.
What we need is a method to produce the best local alignment; that is, an
alignment of segments contained within two strings (Smith and Waterman,
1981).

As before, we employ an alignment matrix, and we seek a high-scoring path
through the matrix. However, this time the path will traverse only part of the
matrix. Also, we do not apply indel penalties if strings A and B fail to align
at the ends. This means that instead of having elements —id and —j¢ in the
first row and first column, respectively (—d being the penalty for each indel),
all the elements in the first row and first column will now be zero. Moreover,
since we are interested in paths that yield high scores over stretches less than
or equal to the length of the smallest string, there is no need to continue paths
whose scores become too small. Therefore, if the best path to an element from
its immediate neighbors above and to the left (including the diagonal) leads
to a negative score, we will arbitrarily assign a 0 score to that element. We
will identify the best local alignment by tracing back from the matrix element
having the highest score. This is usually not (but occasionally may be) the
element in the lower right-hand corner of the matrix.

The mathematical statement of the problem is as follows. We are given
two strings A = ajasas . ..a, and B = bybsbs . ..b,,. Within each string there
are intervals I and J that have similar sequences. I and J are intervals of A
and B, respectively. We indicate this by writing I C A and J C B, where
“C” means “is an interval of.” The best local alignment score, M (A, B), for
strings A and B is

M(A, B) = max{S(I,J): I C A,J C B} (6.12)
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where S(I, J) is the score for subsequences I and J and S((, @) = 0. Elements
of the alignment matrix are M; ;, and since we are not applying indel penalties
at the ends of A and B, we write

Mi,O = MO,j =0. (613)

The score up to and including the matrix element M; ; is calculated by
using scores for the elements immediately above and to the left (including the
diagonal), but this time scores that fall below zero will be replaced by zero.
The scoring for matches, mismatches, and indels is otherwise the same as for
global alignment. The resulting expression for scoring M; ; is

M1 -1+ s(as, b;)

R Mi—1; =29
M; ; = max M, 1 -6 (6.14)
0

The best local alignment is the one that ends in the matrix element having
the highest score:

max{S(I,J):I C A,J C B} = max M, ;. (6.15)
0

Thus, the best local alignment score for strings A and B is

M(A, B) = max M, ;. (6.16)
i

Computational Example 6.2: Local alignment

Determine the best local alignment and the maximum alignment score for A
= ACCTAAGG and B = GGCTCAATCA. For scoring, take s(a;,b;) = +2 if a; = bj,
s(ai, bj) = —1, a; # b;, and s(a;, —) = s(—,b;) = —2.

Step 1: Write down the alignment matrix using B along the top and A in a
column at the side.

Step 2: Fill in the first row and first column by using (6.13).

Step 3: Then fill in all matrix elements using the scoring rule (6.14), keeping
track of the paths into each element. For clarity, we have included
below only the arrows around the highest-scoring path. Observe what
happens for Ms 7. Regardless of whether this is entered from above,
from the left, or diagonally from the left, the scoring rule would have
yielded —1 were it not for the requirement that all elements be non-
negative, as indicated in (6.14).

Step 4: The local alignment ends at M7 (shaded box), which contains the
maximum alignment score (6). Read out the alignment, starting at
M7 9 and working backward along the directions of entry into each
cell until an element containing zero is encountered.
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0 1 3 4 5 6 7 10

- G C T C A A A
0 - 0 0 0 0 0 0 0 0
1 A 0 0 0 0 0 2 2 2
2 c 0 0 2 0 2 0 1 0
3 c 0 0 2 1 2 1 0 1
4 T 0 0 0 4 2 1 0 2
5 A 0 0 0 2 3 4 3 3
6 A 0 0 0 0 1 5 6 3
7 G 0 2 0 0 0 3 4 1
8 G 0 2 2 0 0 1 2 2

The resulting local alignment is enclosed in the box below:

A:
B:

A C
G G

CT-AA
CTCAA

G G -
T CA

Most local alignment programs only report the aligned regions of A and B,
that is, the sequences shown in the box above.

6.5 Number of Possible Global Alignments

We have shown how to identify rigorously the highest-scoring alignment. Ob-
viously, for strings of lengths n and m, we had to compute three scores going
into (n — 1)(m — 1) cells and to take a maximum. This means that 4nm com-
putations were required (including the trivial first row and first column). In
the “big O” notation (Section 4.3), this means that computation time will be

O(mn).

Now we ask a separate question: How many possible global alignments
are there for two strings of lengths m and n? This is the same thing as ask-
ing how many different paths there are through the alignment matrix (ex-



158 6 Sequence Alignment

cluding backward moves along the strings). We recognize that any alignment
that has any practical meaning will have matched some of the letters in one
string with some of the letters in the other. The number of matched pairs
will be less than or equal to the smaller of m and n. We can count the num-
ber of alignments, #A, by summing the number of alignments having one
matched pair, the number of alignments having two matched pairs, and so
on up to min(m, n) matched pairs. Examples of some of the 12 alignments
of A = ajasasas and B = b1bobs having one matched pair are shown be-
low.

- - a1 G2 Aas a4 - a1 a2 a3 a4 - - ap - a2 as a4
by by by - - - by by - - - b3 by - by - - b3

The number of alignments, #A, is the sum of the numbers of alignments
having 1, 2, 3, ... and min(m, n) matched pairs. To count the number of ways
of having k aligned pairs, we must choose k letters from each sequence. From
A this can be done in (}) ways, and from B this can be done in (') ways.
Therefore

min(m, n)
H#A = Z (# of alignments having exactly k matched pairs)
k=0

min{mn} o\ (6.17)
> ()G

k=0
=1+nm+ (n7n2!)!2! x (min?l)m T

The “1” is the number of ways of choosing no letters from n letters and m
letters, nm is the number of ways of choosing one letter from n letters and one
letter from m letters (the number of alignments having one matched pair),
etc. The result turns out to have a simple expression:

=5 GGl o

k=0

The latter equality requires some manipulation, which is provided at the end
of this chapter. For the special case for which m = n,

H#HA = <2:) = (2n)!/(n))?. (6.19)

(6.19) can be approximated by using Stirling’s approximation

z! ~ (2m) 241 /2 e

When this is applied to (6.19), we obtain
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#A ~ 22"/ \/rn. (6.20)

This approximate value for the number of alignments can also be rationalized
in the following simple manner. We are given two strings of equal length,
A=ayas...a, and B =0b1bs...b,. For each of the letters in A, we have two
choices: align it opposite a letter in B or add an indel. This makes 2™ ways
of handling the letters in A. Similarly, for B there are two ways of handling
each letter, for a total of 2™ ways of handling the letters in B. Since the
decision “align or add indel” is made for every letter in both strings, the total
number of choices for both strings (the approximate number of alignments)
is 27 x 2" = 227,

For a simple problem of A = ajasasay4 aligned with B = b1b2b3, n+m =7,
min(m, n) = 3, and the exact number of alignments is

#A = ("+m> = (4+3) = 71/(41 31) = 35. (6.21)

m 3

For longer strings, the number of alignments gets very large very rapidly. For
n = m = 10, the number of alignments is already 184,756. For n = m = 20,
the number of alignments is 1.38 x 10'!. For m = n = 100, there are ~22%0
possible alignments. In more familiar terms (using log;, z = log, = X log, 2),
log1((22%9) = log,(229°) x log;o(2) = 200 x (0.301) ~ 60. In other words,
#A when aligning two strings of length 100 is about 10%°. This is an as-
tronomically large number. For example, the Sun weighs 1.99 x 1033 grams.
Each gram contains roughly 12 x 1023 protons and electrons, which means
that the Sun contains about 24 x 10%% elementary particles. It would take
400 stars the size of our Sun to contain as many elementary particles
as there are alignments between two equal-length strings containing 100
characters.

Clearly, we need to have ways of further simplifying the alignment process
beyond our O(nm) method, and this is the topic of the next chapter.

Proof of equality (6.18)

The hypergeometric distribution pertains to the sampling (without replace-
ment) of a binary population. If there are m “successes” in a population of
size N, the probability of drawing k successes in a sample of size h is given

s (3)(11)/C)

This is called the hypergeometric distribution. In our situation, the population
is the total number of letters that must appear in the global alignment, N =
m + n. Therefore,

sesmnen= ()2 (1)
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This also holds in particular for h = n:

semnen= () 5)/)

Since g(k;n, m, m+n) is the probability for a particular value of k, summing
over all values of k will yield unity:

2 otk =3 (WG () =2

From the definition of (Z), it is clear that (nf k) = (Z) Thus,

(6= (")

which is the right-hand side of (6.18) when n = min(m,n).

6.6 Scoring Rules

We have used alignments of nucleic acids as examples, but one very important
application of alignment is protein alignment, for which scoring is much more
complicated. At this point, we address briefly the issue of assigning appropri-
ate values to s(a;,b;), s(a;, —), and s(—,b;) for nucleotides. We address the
scoring for amino acids in the next chapter.

Considering s(a;, b;) first, we write down a scoring matrix containing
all possible ways of matching a; with b;, a;, b; € {A,C,G,T} and write in
each element the scores that we have used for matches and mismatches in the
examples above.

bj:
A c G T
A 1 -1 -1 -1
c -1 1 -1 -1
ai:
G -1 -1 1 -1
T -1 -1 -1 1

This scoring matrix contains the assumption that aligning A with G is just
as bad as aligning A with T because the mismatch penalties are the same in
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both cases. However, studies of mutations in homologous genes indicate that
transition mutations (A — G,G — A, C — T, or T — C) occur approximately
twice as frequently as do transversions (A — T, T — A, A — C, G — T, etc.).
Therefore, it may make sense to apply a lesser penalty for transitions than
for transversions since they are more likely to occur (i.e., related sequences
are more likely to have transitions, so we should not penalize transitions as
much). The collection of s(a;,b;) values in that case might be represented in
the matrix below:

bj:
A c G T
A 1 -1 |-0.5] -1
c -1 1 -1 |-0.5
aj:
G |-0.5] -1 1 -1
T -1 |-0.5] -1 1

A second issue relates to the scoring of gaps (a succession of indels). Are
indels independent? Up to now, we have scored a gap of length k (see (6.11))
as

w(k) = —ko. (6.22)

However, insertions and deletions sometimes appear in “chunks” as a result
of biochemical processes such as replication slippage at microsatellite repeats.
Also, deletions of one or two nucleotides in protein-coding regions would pro-
duce frameshift mutations (usually nonfunctional), but natural selection might
allow small deletions that are integral multiples of 3, which would preserve
the reading frame and some degree of function. These examples suggest that
it would be better to have gap penalties that are not simply multiples of the
number of indels. One approach is to use an expression such as

w(k) =—a—B(k—1). (6.23)

This would allow one to impose a larger penalty for opening a gap (—«) and
a smaller penalty for gap extension (—f for each additional base in the gap).

6.7 Multiple Alignment

Now that we have explained methods for aligning two sequences, the issue
of aligning three or more sequences naturally arises. It might be that we
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have many sequences of orthologous genes from different organisms, and we
are interested in the relationships between these sequences. Sometimes genes
within an organism arise from duplications and the history of the duplications
(along with the associated functions) must be inferred. How are the methods
we have constructed in this chapter generalized?

It turns out to be almost obvious how to generalize the dynamic pro-
gramming methods. We will indicate how this is done for three sequences.
The basic idea in the pairwise case was to have a recursion for the end of
the alignment. Recall that A = ajaz...a; and B = b1by...b; have align-
ments that can end in three possibilities: (—,b;), (as,b;), or (a;, —). In other
words, the alignments end in an indel or aligned letters. The number of al-
ternatives for aligning a; with b; can be calculated as 3 = 22 — 1, which
can be understood as follows. There are two things that you can do at
the ith position of sequence A: align or employ an indel. There are two
things that you can do at the jth position of sequence B: align or employ
an indel. Therefore there are 22 alternatives for two sequences. However,
“align” is the same event for both sequences, so we subtract 1 from 22 to
obtain the number of distinct combinations. If we now introduce a third se-
quence cics . .. cg, the three-sequence alignment can end in one of seven ways
(7 =2% - 1): (aia s _)a (_a bja _)a (_a s Ck)7 (_7 bja Ck)7 (ai7 ™ ck)7 (ai7 ij _)7
and (a;, b, cx). In other words, the alignment ends in 0, 1, or 2 indels. This
fundamental term in the recursion is no problem, except that it must be done
in time and space proportional to the number of (i, j, k) positions; that is the
product of the length of the sequences i x j x k. This dramatic increase in
running time and storage requirements continues as we increase the number
of sequences, so that this method is practical for small problems only. Hence
the bioinformatics community has found heuristic solutions.

One class of methods for speeding up the calculation employs pairwise
alignments in an incremental fashion: the most similar pair is placed into a
fixed alignment, and then the other sequences are included in a stepwise fash-
ion. One of the most used and practical programs to perform global multiple
alignment is CLUSTALW (Thompson et al., 1994). That program proceeds
by computing all pairwise alignments, estimating a tree (or cluster) of re-
lationships using those alignment scores (see Section 10 for a discussion of
clustering), and then collecting the sequences into a multiple alignment us-
ing the tree and pairwise alignments as a guide for adding each successive
sequence.

Another approach developed in recent years uses hidden Markov mod-
els (HMMs) and has proven quite effective (see, e.g., www.cse.usc.edu/
research/compbio/sum.html).
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6.8 Implementation

We used short sequences in the illustrations to keep the computations minimal.
For real problems with realistically long sequences (hundreds of amino acid
residues to thousands of base pairs long), substantial computational resources
may be required. In fact, there are commercially available computers contain-
ing application-specific integrated circuits specifically tailored for dynamic
programming applications. The Smith-Waterman pairwise local alignment is
available in a number of commercial software packages and at various Inter-
net sites. One example is the MPsrch tool from the European Bioinformatics
Institute (http://www.ebi.ac.uk/MPsrch).

The computations for global and local alignments are presented in pseu-
docode in Computational Example 6.3. Although the code looks simple, re-
member that these computations may require large amounts of memory for
numerous operations. Consequently, alignment that relies exclusively on dy-
namic programming approaches tends to be slow. In the next chapter, we will
discuss alignment methods that are less accurate but much faster.

Computational Example 6.3: Pseudocode for global and local align-
ment.

Global alignment

Input sequences A, B
Set S; 0 <+ —dt for all ¢
Set Sp,j <+ —4dj for all j
fori=1ton
j=1tom
Si,j — maX{Si_Lj — (5, Sz’—l,j—l + 8(@1', bj), S@j_l — (5}
end
end

Local alignment

Input sequences A, B
Set Mi,O = M(),j =0 for all i,j
fori=1ton
j=1tom
Mi’j — maX{Mi,Lj - 5, Mi,1’j71 + s(ai, bj), Mi’j,1 - 57 0}
end
end
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Exercises

Exercise 1. Another approach to counting alignments is from the recursion
formula B(n,m) = B(n—1,m)+B(n,m—1)+B(n—1,m—1), where B(n,m)
is the number of alignments of ajas - - - a,, with bibs - - - by,. Using B(0,0) =0
and B(i,0) =1 = B(0,7) (all ¢ and 5), use a matrix to find B(5,5). Compare

this number with 0
A= .
#4=(3)

Exercise 2. Using Stirling’s approximation, we found an approximation for
#A, the number of alignments. Apply that formula to n = m = 1000. Why

didn’t we simply compute
2000
1000

Exercise 3. If we use a gap penalty g(k) = —10k, we observe that all optimal
alignments of strings A and B are identical for all values of the mismatch
penalty p when p > 20. Explain why this is true.

Why is B(5,5) larger?

exactly on our computer?

Exercise 4. A score for global alignment of ajas - - - a,, with b1bs - - - by, is £ —
uF — §G, where E is the number of matches, F' is the number of mismatches,
and G is the number of deleted letters. Evaluate this expression for p = —1
and 6 = —1/2.

Exercise 5. Equation (6.10) gives the recursion equation for global alignment
of two sequences. Generalize it to an equation for global alignment of three
sequences. You will require a function s(a, b, c) where any of the letters can
be a blank or “-".

Exercise 6. Go to the alignment server at http://www.cmb.usc.edu and
perform local sequence alignment of the following two sequences:
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>sequencel
TCAGTTGCCAAACCCGCT
>sequence?2
AGGGTTGACATCCGTTTT

a. First set alpha = beta = 1000, and perform the alignment using the
Single score option, with Match score = 10, and with Mismatch Penalty
score = 10, 7,5, or 3. Observe the effect of reducing the Penalty score by
examining the ten highest-scoring alignments for each case. What trend
do you observe? Explain this trend.

b. Now with Match score = 10 and Mismatch Penalty score = 10, explore
the effect of changing alpha from 15 to 10, and then to 5 (holding beta at
the default setting of 3). What trend do you observe? Explain this trend.

Exercise 7. Using the alignment server at http://www.cmb.usc.edu, per-
form global sequence alignment of the following two sequences:

>sequencel
TCAGTTGCCA
>sequence?2
AGGGTTGACA

Use Match score = 10, Mismatch Penalty score= 10, alpha = 15, and beta
= 3. Repeat the alignment using the same Match score and Mismatch Penalty
score as above, but with alpha = beta = 10.

Exercise 8. For the same sequences used in Exercise 7, calculate the align-
ment matrix with traceback using alpha = beta = 5, Match score= 10, and
Mismatch Penalty score = 10. Compare your optimal alignments with those
from Exercise 7.

Exercise 9. Download sequences contained in accession numbers P21189 and
NP 143776.1 from the NCBI GenBank database. Using the alignment server
available at http://www.cmb.usc.edu, perform the following alignments.

a. Perform global alignment using “blosum62” as the penalty matrix (see
Section 7.5.2) and the default indel settings (alpha = 15, beta = 3).
Examine your result: Can you discern a region that likely will produce a
high-scoring local alignment?

b. Perform local alignment on the same sequences. Did the result from local
alignment agree with your prediction based upon the global alignment?

c. Use the contiguous sequence from 1Q8I (remove indels) that resulted from
the local alignment with NP 143776. 1 as query for an NCBI BLAST search
(Chapter 7) of the non-redundant databases. Are any putative conserved
domains found? Check your output to see whether there are significant
hits to Danio or Arabidopsis sequences.
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Exercise 10. Download gene sequences for histone H2a contained in acces-
sion numbers Z48612 (S.cerevisiae) and BC001193.1 (H. sapiens) from the
NCBI GenBank database. (In the case of Z48612, use the “Find” function of
your browser to find the annotated gene for H2a, and then click on the “Gene”
link.) Supply these sequences in FASTA format to the alignment server avail-
able at http://www.cmb.usc.edu.

a. Perform a global alignment, using “Single Score” for type of scoring and
default parameters otherwise. Examine the result, and try to identify a
region that you would predict to have the highest-scoring local alignment.

b. Now perform local alignment using the same two sequences and the same
parameters. Were you able to predict the region with high-scoring local
alignment from the global alignment output? Why or why not?



7
Rapid Alignment Methods: FASTA and BLAST

7.1 The Biological Problem

In the last chapter, we indicated how alignment could be performed rigorously
and some of the reasons for performing it. In this chapter, we consider the
practicalities of the alignment process, and we demonstrate how it can be
speeded up. The need for accelerated methods of alignment is connected with
the potentially large number of possible alignments between two sequences
(Section 6.5) and with the very large sizes of the databases that must be
searched. Why is it necessary to search large databases?

Remember that alignment involves a query or target sequence and a
search space. The query sequence typically comes from the organism that
is under investigation. The investigator will have obtained the sequence of
a portion of the genome and usually seeks information about its possible
function either by direct experimentation or by comparing this sequence with
related sequences in other organisms. Direct experimentation on a gene of
interest (query) in an arbitrary organism may be difficult for a number of
reasons. For example, some organisms are difficult to grow in the laboratory
(such as certain types of marine bacteria). Other organisms can be grown
but may have little genetic or biochemical data (such as the nine-banded
armadillos, which can serve as an animal model for leprosy). Or, there may
be organisms that are experimentally refractory (we can’t perform arbitrary
genetic crosses with Homo sapiens, for example) or expensive to work with
(such as chimpanzees, which are endangered, expensive, and have relatively
long generation times).

A solution to this type of problem is to seek comparisons with genes
from a number of model organisms—organisms chosen for intensive ge-
nomic, genetic, or biochemical studies (Section 1.1). Examples of traditional
model organisms are Escherichia coli (a bacterium), Saccharomyces cerevisiae
(baker’s yeast), Caenorhabdidlis elegans (a nematode “worm”), Drosophila
melanogaster (fruit fly), Arabidopsis thaliana (a flowering plant—“mustard
weed”), and Mus musculus (the common mouse). Others are being added to
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the list as sequencing projects expand. Because of extensive genetic and bio-
chemical study over several decades, many of the genes, gene products, and
functions of gene products are known for these model organisms. Because of
the evolutionary relationships among organisms, we ordinarily expect that a
gene from other experimental organisms may have homologs in the genomes
of one or more model organisms. For example, the homeotic genes that act
during the development of human embryos have homologs with Drosophila
homeotic genes, and in some cases these genes have the same functions. The
important point is that a target gene is likely to have a function similar or re-
lated to functions of a homolog in one or more model organisms. This means
that we can (judiciously) attach to the target gene part of the functional
annotation associated with homologs in model organisms.

The problem is to search in protein or DNA sequence databases for se-
quences that match (to a significant degree) the sequence of interest. These
databases contain many entries and large numbers of letters. For example,
at the time this book was written, there were over 2 million nonredundant
entries accessible using the BLAST server at NCBI (Appendix B), and these
contained over 10'° letters. In recent years, the amount of DNA sequence in
databases has been growing exponentially. From the discussion in the previous
chapter, we can readily see that the rigorous alignment method described in
the previous chapter is too demanding in memory and computation time for
routine searching of large databases: the time to compute an alignment be-
tween a string of length n and a string of length m was seen to be proportional
to n x m. We need something faster.

So far, we have been talking about performing an alignment between a sin-
gle query sequence and sequences in databases. What happens if we are per-
forming a whole-genome shotgun sequence assembly of a eukaryotic genome?
We’ll present more about shotgun sequencing later, but for now we need to
know that typically the sequencing includes “reads” of about 500bp from
both ends of each insert in a small plasmid library (insert size 1-3kb). Typ-
ically, enough clones are generated to cover the genome 5x or more. So for
a mammal having 3 x 10°bp in its genome, 1x coverage by plasmids with
3kb inserts would involve 10° clones, and 5x coverage would involve 5 x 10°
clones. With two sequence reads per clone, the total number of sequence reads
is 107. To look for overlaps during sequence assembly, every read would, in
principle, need to be compared with (aligned with) every other read. For N
reads, there are N(N — 1)/2 pairwise comparisons. This means that there
are 5 x 1013 comparisons to perform, each of which would require 4 x (500)2
computations if done by dynamic programming. In this case, rapid methods
are necessary because of the very large numbers of comparisons that must be
made (in principle, any sequence “read” against every other sequence read
and its complement).
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7.2 Search Strategies

One way to speed up sequence comparison is by reducing the number of se-
quences to which any candidate sequence must be compared. This can be
done by restricting the search for a particular matching sequence to “likely”
sequence entries. The logic of the overall process is easily understood if we
visualize each sequence to be analyzed as a book in an uncataloged library.
Given a book like this one, how could we tell what books are similar just
based on word content? The present book has words such as “probabilistic,”
“genome,” “statistics,” “composition,” and “distribution.” If we picked up a
book at random from an uncataloged library and did not find these words
(as might be the case if we had picked books by Jane Austen or Moses Mai-
monides), we would know immediately that there is no need to search further
in Sense and Sensibility or The Guide of the Perplezed for help in computa-
tional biology.

We can reduce the search space by analyzing word content (see Sec-
tion 3.6). Suppose that we have the query string I indicated below:

bR A4

I: TGATGATGAAGACATCAG

This can be broken down into its constituent set of overlapping k-tuples. For
k = 8, this set is

TGATGATG
GATGATGA
ATGATGAA
TGATGAAG

GACATCAG

If a string is of length n, then there are n — k 4+ 1 k-tuples that are produced
from the string. If we are comparing string I to another string J (similarly
broken down into words), the absence of any one of these words is sufficient
to indicate that the strings are not identical. If T and J do not have at least
some words in common, then we can decide that the strings are not similar.

We already know that when P(A) = P(C) = P(G) = P(T) = 0.25, the prob-
ability that an octamer beginning at any position in string J will correspond
to a particular octamer in the list above is 1/4%. Provided that J is short, this
is not very probable, but if J is long, then it is quite likely that one of the
eight-letter words in I can be found in J by chance. Therefore, the appear-
ance of a subset of these words is a necessary but not sufficient condition for
declaring that I and J have at least some sequence similarity.
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7.2.1 Word Lists and Comparison by Content

Rather than scanning each sequence for each k-word, there is a way to collect
the k-word information in a set of lists. A list will be a row of a table, where
the table has 4% rows, each of which corresponds to one k-word. For example,
with k£ = 2 and the sequences below,

J=CCATCGCCATCG
I=GCATCGGC

we obtain the word lists shown in Table 7.2. Thinking of the rows as k-words,
we denote the list of positions in the row corresponding to the word w as
L,(J) (e.g., with w = CG, Lgg(J) = {5,11}). These tables are sparse, since
the sequences are short, but serve to illustrate our methods. They can be
constructed in a time proportional to the sum of the sequence lengths.

One approach to speeding up comparison is to limit detailed comparisons
only to those sequences that share enough “content,” by which we mean k-
letter words in common. The statistic that counts k-words in common is

n—k+1m—k+1

YD X,
i=1  j=1

where Xivj =1if IiIi+1 .« -Ii+k—1 = Jij+1 .« -Ji+k—1 and 0 otherwise. The
computation time is proportional to n x m, the product of the sequence
lengths. To improve this, note that for each w in I, there are #L,(J) oc-
currences in J. So the sum above is equal to

D (#Lw(D) X (#Lu(1)).

w

This equality is a restatement of the relationship between multiplication
and addition(!). This second computation is much easier. First we find the
frequency of k-letter words in each sequence. This is accomplished by scanning
each sequence (of lengths n and m). Then the word frequencies are multiplied
and added. Therefore, the total time is proportional to 4* + n + m. For our
sequence of numbers of 2-word matches, the statistic above is

02402402 4+2%x142x142x04+2x140°4+0°+1x24+0x1
+024+02+2%x140240%2=10

If 10 is above a threshold that we specify, then a full sequence comparison can
be performed. (Low thresholds require more comparisons than high thresh-
olds.) This method is quite fast, but the comparison totally ignores the relative
positions of the k-words in the sequence. A more sensitive method would be
useful.
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7.2.2 Binary Searches

Suppose that I and J contain the k-words listed in Table 7.1. How do we find
the first word in list I, TGAT, within list J? In this example, we can find the
matches by inspection. But what would we do if the lists were 500 entries
long, and composed of words of & = 107 Rather than just scanning down a
list from the top, a better way to find matching entries is a binary search.
Since list J (of length m) is stored in a computer, we can extract the entry
number m /2, which in this example is entry 16, GACA. Then we proceed as
follows:

Step 1: Does TGAT occur after entry 16 in the alphabetically sorted list? Since
it occurs after entry 16, we don’t need to look at the first half of the
list.

Step 2: In the second half of the list, does TGAT occur after the entry at
position m/2 + m/47? This is entry 24, TCGA. TGAT occurs after this
entry, so we have now eliminated the need to search in the first 3/4
of the list after only two comparisons.

Step 3: Does TGAT occur after entry 24 but before entry 29?7 (We have split
the last 1/4 of the list into two m /8 segments.) Since it is before 29
and after 24, we only examine the four remaining entries.

Steps 4 and 5: Two more similar steps are needed to “zero in” on entry 25.

Had we gone through the whole list, 25 steps would have been required to
find the word. With the binary search, we used only five steps. This process
is analogous to finding a word in a dictionary by successively splitting the
remaining pages in half until we find the page containing our word. (Try
it! We found the page containing “quiescent” after ten splits of pages in a
dictionary having 864 pages.)

In general, if we are searching a list of length m starting at the top and
going item by item, on average we will need to search half the list before we find
the matching word (if it is present). If we perform a binary search as above, we
will need only log,(m) steps in our search. This is because m = 21°82(™) and
we can think of all positions in our list of length m as having been generated
by log,(m) doublings of an initial position. In the example above, 32 = 2°, so
we should find any entry after five binary steps. In the dictionary experiment,
finding the entry should have required ten steps (nine-letter word, 2° = 512,
and 2'0 = 1024—nine “splits” are not enough since 864 > 512).

7.2.3 Rare Words and Sequence Similarity

For the method described in Section 7.2.1, if k is large the table size can
be enormous, and it will be mostly empty. For large k, another method for
detecting sequence similarity is to put the k-words in an ordered list.

To find k-word matches between I and J, first break I down into a list of
n —k+ 1 k-words and J into a list of m — k 4+ 1 k-words. Then put the words
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Table 7.1. Ordered word lists of query sequence I and sequence J to which it is
to be compared. Numbers beside each 4-word indicate the position of each word in
the list. Binary searches reduce the search space by half for each iteration, checking
whether the search word from I is in the remaining first or second half.

I

TGAT

GATG

ATGA

J

AAAT 1 GATG 17
AATC 2 GATT 18
AATG 3 GGAT 19
ACAA 4 GGGA 20
ATCC 5 GTCG 21
ATGA 6 TCAC 22
ATGT 7 TCCG 23
ATTT 8 TCGA 24
CAAA 9 TGAT 25
CCGA 10 TGGG 26
CGAA 11 TGTC 27
CGAC 12 TTGG 28
CGTT 13 TTTA 29
CTTT 14 TTTC 30
GAAT 15 TTTG 31
GACA 16 TTTT 32

in each list in order, from AA...A to TT...T. This takes time nlog(n) and
mlog(m) by standard methods which are routinely available but too advanced
to present here. Let’s index the list by (W (i), Pw(i)),i =1,...,n—k+1 and
V(j),Pv(j)),7=1,...,m—k+ 1, where, for example, W () is the ith word
in the ordered list and Pw(i) is the position that word had in I

We discover k-word matches by the following algorithm which basically
merges two ordered lists into one long ordered list. Start at the beginning of
one list. So long as that element is smaller than the beginning of the second
list continue to add elements from that list. When this is no longer the case,
switch to the other list. Proceed until reaching the end of one of the lists.
During this process we will discover all k-words that are equal between the
lists, along with producing the merged ordered list. Because the positions in
the original sequences are carried along with each k-word, we will know the
location of the matches as well. Obviously matches longer than length £ will
be observed as successive overlapping matches.
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7.3 Looking for Regions of Similarity Using FASTA

FASTA (Pearson and Lipman, 1988) is a rapid alignment approach that com-
bines methods to reduce the search space (it depends on k-tuples) and Smith-
Waterman local sequence alignment, as described in the previous chapter. As
an introduction to the rationale of the FASTA method, we begin by describ-
ing dot matrix plots, which are a very basic and simple way of visualizing
regions of sequence similarity between two different strings. We have already
alluded to them in Section 5.4.

7.3.1 Dot Matrix Comparisons

Dot matrix comparisons are a special type of alignment matrix with positions ¢
in sequence I corresponding to rows, positions j in sequence J corresponding to
columns, and sequence identities indicated by placing a dot at matrix element
(4,4) if the word or letter at J; is identical to the word or letter at I;. An
example for two DNA strings is shown in Fig. 7.1A. In this example, the
string CATCG in I appears twice in J, and these regions of local sequence
similarity appear as two diagonal arrangements of dots: diagonals represent
regions having sequence similarity.

When I and J are DNA sequences and are short, the patterns of this type
are relatively easy to see. When I and J are DNA sequences and very long,
there will be many dots in the matrix since, for any letter at position j in J,
the probability of having a dot at any position ¢ in I will equal the frequency
of the letter J; in the DNA. For 50% A+T, this means that on average 1/4
of the matrix elements will have a dot. When I and J are proteins, dots
in the matrix elements record matches between amino acid residues at each
particular pair of positions. Since there are 20 different amino acids, if the
amino acid frequencies were identical, the probability of having a dot at any
particular position would be 1/20.

7.3.2 FASTA: Rationale

The rationale for FASTA (Wilbur and Lipman, 1983) can be visualized by
considering what happens to a dot matrix plot when we record matches of
k-tuples (k > 1) instead of recording matches of single letters (Fig. 7.1 B and
C). We again place entries in the alignment matrix, except this time we only
make entries at the first position of each dinucleotide or trinucleotide (k-tuple
matches having £ = 2 (plotted numerals 2) or k& = 3 (plotted numerals 3).
Notice how the number of matrix entries is reduced as k increases. By looking
for words with k£ > 1, we find that we can ignore most of the alignment matrix
since the absence of shared words means that subsequences don’t match well.
There is no need to examine areas of the alignment matrix where there are
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A. 7. B. .
CCATCGCCATTCG CCIATICGCCATCG
G . G 2
C C 21 2.
A All—%2 2
T T 2 2
I:C I:C 5 N
G G
G G 2
C C
C.
J:

CCIATCIGCCATTCG

N 3

—3 S,

QOO QOHX OO

Fig. 7.1. Dot matrix plots showing regions of sequence similarity between two
strings (diagonal lines). Panels A, B, and C are plots for k-tuples k = 1, 2, and 3,
respectively. Typical k-tuples used for plotting a particular element are indicated by
boxes.

no word matches. Instead, we only need to focus on the areas around any
diagonals.

Our task is now to compute efficiently diagonal sums of scores, 5, for
diagonals such as those in Fig. 7.1B. (The method for forming these scores
is explained below.) Consider again the two strings I and J that we used in
Section 7.2.1. There are 7 x 11 = 77 potential 2-matches, but in reality there
are ten 2-matches with four nonzero diagonal sums. We index diagonals by
the offset, [ =i — j. In this notation, the nonzero diagonal sums are S;1 =1,
So =4, S5 5 =1, and S_g = 4. It is possible to find these sums in time
proportional to n + m + #{k-word matches}. Here is how this is done.

Make a k-word list for J. In our case, this is the list for J in Table 7.2.
Then initialize all row sums to 0:

¢ —-10 —
Se 0

—-2-10123456
0 00000000

-8 —-7—-6—-5—-4-3
00 0 00
Next proceed with the 2-words of I, beginning with ¢ = 1, GC. Looking in

the list for J, we see that Lgc( J)={6}, so we know that at = 1—6 = —5 there
is a 2-word match of GC. Therefore, we replace S_5 =0 by S_5 =0+1=1.
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J

AA
AC
AG
AT
CcA
cc
G
CcT
GA
GC 6

GG

GT

TA

C 4, 10
G

T

SIS IO
— =1 00 ©

—

I

AA
AC

AG

AT 3
CcA 2
cc

ca 5
CT

GA

e 1,7
GG 6
GT

TA

TC 4
TG

TT
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Next, for i = 2, CA, we have L¢y(J)={2,8}. Therefore replace So_2 = Sy = 0
by So =0+ 1, and replace So_g = S_g = 0 by S_g = 0+ 1. These operations,
and the operations for all of the rest of the 2-words in I, are summarized below.
Note that for each successive step, the then current score at S; is employed:
Sy was set to 1 in step 2, so 1 is incremented by 1 in step 3.

i=1,GC
i=2,CA
i=3, AT
i =4, TC
i =5, CG

Loo(J)={6}

Lea(3)={2,8}

Ly (J)={3,9}

LTc(J):{4,10}

LCG(J):{5,11}

l=1—-6=-5
S_5:0—>S_5=0+1:1
[=2-2=0
So=0—Sy=0+1, and

l=2-8=-6
S 6=0—-S_=0+1
l=3-3=0
S():l—>50=1+1=2
l=3-9=-6

Sg=1-5¢g=14+1=2
l=4-4=0
50:2—>S()=2+1=3
[=4-10=-6
S—6:2_>S—6:2+1:3
[=5-5=0
So=3—>5=3+1=4
l=5-11=-6
S—6:3_>S—6:3+1:4



176 7 Rapid Alignment Methods: FASTA and BLAST

i=06,GG Le(J)={@} Lge(J) is the empty set: no sums
are increased

1=17, GC Lcc(J)={6} l=7—-6=1
S51=0—-5=0+1=1

The final result for scores of the diagonals at various offsets is

¢-10-9-8-7-6-5-4-3-2-10123456
S 00004100004100000

Notice that we only performed additions when there were 2-word matches.
The algorithm that we employed is indicated in pseudocode in Computational
Example 7.1.

Computational Example 7.1: Pseudocode for diagonal sums of
scores

Set Sy« O0foralll—-m</f<n-1
Compute L, (J) for all words w
fori=1ton—k—1
w <—IiI7;+1...IZ‘+k,1
for j € L (J)
l—i—3j
Se— Se+1
end
end

It is possible to find local alignments using a gap length penalty of —gz
for a gap of length x along a diagonal. Let A, be the local alignment score
and S; be the maximum of all of the A;’s on the diagonal. Then the scoring is
done as follows, after initializing A, < 0,5y < 0, for each element (i, j) along
the diagonal £ = ¢ — j, beginning at i = 1:

Ap+1ifa; = bj+l
Ag < Inax Ag — g if a; 7é bj+l
0
Sy — max{Sy, As}

Five steps are involved in FASTA:

1. Use the look-up table to identify k-tuple identities between I and J.

2. Score diagonals containing k-tuple matches, and identify the ten best di-
agonals in the search space.

3. Rescore these diagonals using an appropriate scoring matrix (especially
critical for proteins), and identify the subregions with the highest score
(initial regions).
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4. Join the initial regions with the aid of appropriate joining or gap penalties
for short alignments on offset diagonals.

5. Perform dynamic programming alignment within a band surrounding the
resulting alignment from step 4.

To implement the first step, we pass through I once and create a table of
the positions i for each possible word of predetermined size k. Then we pass
through the search space J once, and for each k-tuple starting at successive
positions j, “look up” in the table the corresponding positions for that k-
tuple in I. Record the 4, j pairs for which matches are found. We have already
illustrated this process for 2-words in Section 7.2.1. The i, j pairs define where
potential diagonals can be found in the alignment matrix.

FASTA step 2 is identification of high-scoring diagonals. If I has n letters
and J has m letters, there are n + m — 1 diagonals. (Think of starting in
the lower left-hand corner, drawing successive diagonals all the way up to the
top of the column representing J (m diagonals). Then continue rightward,
drawing diagonals through all positions in I (n diagonals). Since you will have
counted the first position twice, you need to subtract 1.) To score the diag-
onals, calculate the number of k-tuple matches for every diagonal having at
least one k-tuple. Scoring may take into account distances between matching
k-tuples along the diagonal. Note that the number of diagonals that needs to
be scored will be much less than the number of all possible diagonals. Identify
the significant diagonals as those having significantly more k-tuple matches
than the mean number of k-tuple matches. This means, of course, that we
should set a threshold, such as two standard deviations above the mean. For
example, if the mean number of 6-tuples is 5 4+ 1, then with a threshold of
two standard deviations, you might consider diagonals having seven or more
6-tuple matches as significant. Take the top ten significant diagonals.

In step 3, we rescore the diagonals using a scoring table and allowing iden-
tities shorter than k-tuple length. We retain the subregions with the highest
scores. The need for this rescoring is illustrated by the two examples below.

I: CCATCGCCATCG (Number 4-tuple matches: 0)
J: ccAaAACGCAATCA
I':CCATCGCCATCG
J': ACATCAAATAAA

In the first case, the placement of mismatches spaced by three letters means
that there are no 4-tuple matches, even though the sequences are 75% identi-
cal. The second pair shows one 4-tuple match, but the two sequences are only
33% identical. Rescoring reveals sequence similarity not detected because of
the arbitrary demand for uninterrupted identities of length k.

Step 4 is joining together appropriate diagonals that may be offset from
each other, as might occur if there were a gap in the alignment (i.e., vertical or
horizontal displacements in the alignment matrix, as described in the previous



178 7 Rapid Alignment Methods: FASTA and BLAST

chapter). Diagonal d; is the one having k-tuple matches at positions i in
string I and j in string J such that ¢ — j = [. As described earlier in this
chapter, | = i — j is called the offset. Offsets are explained pictorially in
Fig. 7.2. Alignments are extended by joining offset diagonals if the result
is an extended aligned region having a higher alignment score, taking into
account appropriate joining (gap) penalties.

Step 5 is to perform a rigorous Smith-Waterman local alignment. This
can be restricted to a comparatively narrow window extending 4w to the
right and —w to the left of the positions included within the highest-scoring
diagonal (see Fig. 7.3D).

7.4 BLAST

The most used database search programs are BLAST and its descendants.
BLAST is modestly named for Basic Local Alignment Search Tool, and it
was introduced in 1990 (Altschul et al., 1990). Whereas FASTA speeds up
the search by filtering the k-word matches, BLAST employs a quite different

123456 78 910
I: L AITF S

J: L ATIS T

LAIFLWRTWS

L j=1, i=1, i-3j=0
A j=2, i=2, 1-3=0
I j=3, i=3, 1—-3=0
S
W j=5, 6=1, i-j=1
K
T =7, i=8, i-j=
W j=8, i=9, i-j=
T

Fig. 7.2. Illustration of offset diagonals. The first three letters for the alignment
between I and J as drawn have no offset. Corresponding diagonal do is drawn in
black. Farther down I and J, there are additional matches that are offset from each
other (residues enclosed by ellipses). These define another diagonal, di, that is offset
from the first one (grey line). Such offsets may indicate indels, suggesting that the
local alignments represented by the two diagonals should be joined to form a longer
alignment.
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Fig. 7.3. Illustration of FASTA steps 2-5. Panel A: Identify diagonals sharing k-
tuples (step 2). Panel B: Rescore to generate initial regions (step 3). Panel C: Join
initial regions to give the combination having maximum score (step 4). Panel D:
Perform dynamic programming in a “window space” or “band” centered around the
highest-scoring initial region (step 5).

strategy. This can be summarized in two parts: the method for finding local
alignments between a query sequence and a sequence in a database, and the
method for producing p-values and a rank ordering of the local alignments
according to their p-values. High-scoring local alignments are called “high
scoring segment pairs,” or HSPs. The output of BLAST is a list of HSPs
together with a measure of the probability that such matches would occur by
chance.

7.4.1 Anatomy of BLAST: Finding Local Matches

First, the query sequence is used as a template to construct a set of sub-
sequences of length w that can score at least T when compared with the
query. A substitution matrix, containing neighborhood sequences, is used
in the comparison. Then the database is searched for each of these neighbor-
hood sequences. This can be done very rapidly because the search is for an
exact match, just as our word processor performs exact searches. We have not
developed such sophisticated tools here, but such a search can be performed in
time proportional to the sum of the lengths of the sequence and the database.

Let’s return to the idea of using the query sequence to generate the neigh-
borhood sequences. We will employ the same query sequence I and search
space J that we used previously (Section 7.2.1):
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J=CCATCGCCATCG
I=GCATCGGC

We use subsequences of length k = 5. For the neighborhood size, we use all 1-
mismatch sequences, which would result from scoring matches 1, mismatches
0, and the test value (threshold) T' = 4. For sequences of length k¥ = 5 in the
neighborhood of GCATC with 7' = 4 (excluding exact matches), we have:

A A C A A
C »CATC, G<¢ G »ATC, GC{ G pTC, GCA{ C »C, GCAT<( G
T T T G T

Each of these terms represents three sequences, so that in total there are
14 (3 x 5) = 16 exact matches to search for in J. For the three other 5-word
patterns in I (CATCG, ATCGG, and TCGGC), there are also 16 exact 5-words, for
a total of 4 x 16 = 64 5-word patterns to locate in J.

A hit is defined as an instance in the search space (database) of a k-word
match, within threshold T, of a k-word in the query sequence. There are
several hits in I to sequence J. They are

5-words in I~ 5-words in J  J position(s) Score

CATCG CATCG 2,8 5
GCATC CCATC 1 4
ATCGG ATCGC 3 4
TCGGC TCGCC 4 4

In actual practice, the hits correspond to a tiny fraction of the entire search
space. The next step is to extend the alignment starting from these “seed” hits.
Starting from any seed hit, this extension includes successive positions, with
corresponding increments to the alignment score. This is continued until the
alignment score falls below the maximum score attained up to that point by a
specified amount. Later, improved versions of BLAST only examine diagonals
having two nonoverlapping hits no more than a distance A residues away from
each other, and then extend the alignment along those diagonals. Unlike the
earlier version of BLAST, gaps can be accommodated in the later versions.

With the original version of BLAST, over 90% of the computation time
was employed in producing the ungapped extensions from the hits. This is
because the initial step of identifying the seed hits was effective in making this
alignment tool very fast. Later versions of BLAST require the same amount
of time to find the seed hits and have reduced the time required for the
ungapped extensions considerably. Even with the additional capabilities for
allowing gaps in the alignment, the newer versions of BLAST run about three
times faster than the original version (Altschul et al., 1997).

7.4.2 Anatomy of BLAST: Scores

The second aspect of a BLAST analysis is to rank-order the sequences found
by p-values. If the database is D and a sequence X scores S(D, X) = s against
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the database, the p-value is P(S(D, Y) > s), where Y is a random sequence.
The smaller the p-value, the greater the “surprise” and hence the greater the
belief that something real has been discovered. A p-value of 0.1 means that
with a collection of query sequences picked at random, in 1/10 of the instances
a score that large or larger would be discovered. A p-value of 10~5 means that
only once in a million instances would a score of that size appear by chance
alone.

There is a nice way of computing BLAST p-values that has a solid math-
ematical basis. Although a rigorous treatment is far beyond the scope of
this book, an intuitive and accurate account is quite straightforward. In a
sequence-matching problem where the score is 1 for identical letters and —oo
otherwise (i.e., no mismatches and no indels), the best local alignment score
is equal to the longest exact matching between the sequences. In our n x m
alignment matrix, there are (approximately) n x m places to begin an align-
ment. Generally, an optimal alignment begins with a mismatch, and we are
interested in those that extend at least ¢ matching (identical) letters. We set

p = P(two random letters are equal).

The event of a mismatch followed by ¢ identities has probability (1 — p)pt.
There are n x m places to begin this event, so the mean or expected number
of local alignments of at least length ¢ is nm(1 — p)pt. Obviously, we want
this to be a rare event that is well-modeled by the Poisson distribution (see
Chapter 3) with mean

A =nm(l - p)p',
SO

P(there is local alignment ¢ or longer) =~ 1 — IP(no such event)

=1 —exp(—nm(1 —p)p").
This equation is of the same form used in BLAST, which estimates
P(S(D,Y) = s) ~ 1 — exp(—nmAe?),

where v > 0 and 0 < & < 1. There are conditions for the validity of this
formula, in which « and £ are estimated parameters, but this is the idea! (In
BLAST output, the last quantity is called an E-value.)

The take-home message of this discussion is that the probability of find-
ing an HSP by chance using a random query sequence Y in database D is
approximately equal to E.

7.5 Scoring Matrices for Protein Sequences

The alignment scores obviously depend on the scoring matrices. We discussed
scoring matrices for DNA in Section 6.6. Now we seek a method to score
alignments between proteins X and Y such as
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X =...NVSDVNLNK ...
Y =...NASNLSLSK...

We need to assign scores for the alignment of residues at any particular po-
sition, such as the one underlined above. In other words, we need to find the
probability pe» of “matching” amino acid a with amino acid b. The values
of the py will differ depending on the identities of a and b. For example,
the score at the position indicated in this example should take into account
the hydrophobic character shared by valine and leucine, which conserves the
properties (and possibly the function) of the two proteins.

7.5.1 Rationale for Scoring: Statement of the Problem

We are given two sequences, A = ajas...a, and B = biby...b,, of equal
length. The alignment will be over the entire set of letters in each sequence
(i.e., a global alignment). No gaps are employed in our simple illustration,
although as we have seen, FASTA and BLAST do allow gaps. We seek to
devise a scoring scheme based on the probabilities of matching amino acid
a with amino acid b. We use an approach that we will also employ later
when describing signals in DNA (Section 9.2.1). We take the ratio of two
probabilities: the probability that the sequence strings match (match model
M) and the probability that the sequence strings were chosen at random
(random model R). The probability of having X and Y given the random

model is
P(A,B|R) an,qu,,

where ¢, is the probability of occurrence of the amino acid of the type x; in a
collection of proteins, irrespective of position. The model above assumes that
the identity of x; is independent of the identity of x;_;.

What is the probability of having these two sequences according to the
“match” model? By “match” we recognize explicitly that amino acids at cor-
responding positions may have degrees of relationship based upon how much
divergence has occurred since the two strings evolved from a common ances-
tor. In other words, we won’t simply be assigning a single score value for all
matches and identical penalties for mismatches. We define p,;, as the proba-
bility of finding an amino acid of type a aligned with an amino acid of type b
given that they have both evolved from an ancestor who had ¢ at that position
(¢ = a,b, or something else). This probability is

P(A,B | M) =[] pas.-

The score S is obtained by taking the ratio of probabilities under the two
models—match relative to random sequences. This ratio is

]P(A7B | M) _ Hipaibi _ H < Pa;b; >
P(AvB | R) Hq, qa; Hi ab; Ga; qb;
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We define the score S as
P(A,B | M)> = (pa.b > -
S =1lo =) lo ) =) s(ag, bs),
g2< P(A, B | R) ; g2 Qa, O, p ( )

which indicates that we are adding together scores for aligning individual
amino acid pairs a and b:

s(a, b) :10g2<pab >

qaqb

The p,,p, are extracted from collections of data, as described in the next
section.

7.5.2 Calculating Elements of the Substitution Matrices

What we ultimately wish to find is a substitution matrix, whose compo-
nents are the scaled scores s(a, b) for aligning amino acid a with amino acid b,

A R N D .- v
A s(A,A)
R s(R,A) s(R,R)
N s(N,A) s(N,R) s(N,N)
D s(D,A) s(D,R) s(D,N) s(D,D)

V s(V,4) s(V,R) s(V,N) s(V,D) --- s(V,V)

where s(a,b) = s(b,a). (Letters labeling rows and columns are single-letter
amino acid codes, listed so that the amino acid names are in alphabetical
order: A = alanine, R = arginine, etc.)

The first substitution matrix set to be devised was the PAM (point ac-
cepted mutation) family (e.g., PAM100) (Dayhoff et al., 1978). With PAM100,
for example, the pyps used to obtain the s(a,b) values are calculated so that
they correspond to an average of 100 changes per 100 amino acid residues.
(Note that there will still be sequence similarity after 100 changes per 100
residues since some residues will not have mutated at all, others will have
changed repeatedly, and still other residues will back-mutate to their original
identity.) These were evaluated by multiplying together matrices of probabili-
ties, the originals of which depended upon a set of proteins that had diverged
by a fixed amount. Now the preferred substitution matrices are the BLOSUM
set (BLOcks SUbstitution Matrices: Henikoff and Henikoff, 1992). BLOSUM
matrices are based on aligned protein sequence blocks without assumptions
about mutation rates. BLOSUM45 is similar to PAM250. BLOSUM62 (com-
parable to PAM160) is commonly used (Table 7.3).

Earlier, we developed an equation for calculating the s(a, b), and it requires
das Qb, and pgp. It is obvious that the ¢, (and ¢,) can be obtained just by
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Table 7.3. BLOSUMG62 scoring matrix for scoring protein alignments.
Data are in half-bits. For the meaning of single-letter TUPAC-IUB amino
acid symbols, see Appendix C.1 (or http://www.fruitfly.org/blast/
blastFasta.html). Less commonly used symbols are * = translational stop, B =D
or N, and Z = E or Q. Data in this table are from http://www.ncbi.nlm.nih.gov/
Class/FieldGuide/BLOSUM62.txt.

AR N D C Q E G H I L K M F P S8 T W Y V B Z X =«

A 4-1-2-2 0-1-1 0-2-1-1-1-1-2-1 1 0-3-2 0-2-1 0-4
R -1 5 0-2-3 1 -2 0-3-2 2-1-3-2-1-1-3-2-3-1 0-1-4
N-2 0 6 1-3 0 0 0 1-3-3 0-2-3-2 1 0-4-2-3 3 0-1-4
D -2-2 1 6-3 0 2-1-1-3-4-1-3-3-1 0-1-4-3-3 4 1-1-4
c 0-3-3-3 9-3-4-3-3-1-1-3-1-2-3-1-1-2-2-1-3-3-2-4
Q-1 1 0 0-3 5 -2 -3-2 1 0-3-1 0-1-2-1-2 0 3-1-4
E-1 0 0 2-4 5 -2 -3-3 1-2-3-1 0-1-3-2-2 1 4-1-4
G 0-2 0-1-3-2-2 6-2-4—-4-2-3-3-2 -2 -2-3-3-1-2-1-4
H-2 0 1-1-3 0 0-2 8-3-3-1-2-1-2-1-2-2 2-3 0 0-1-4
I -1-3-3-3-1-3-3-4-3 4 2-3 1 0-3-2-1-3-1 3-3-3-1-4
L -1 -2-3-4-1-2-3-4-3 4 -2 2 0-3-2-1-2-1 1-4-3-1-4
K-1 2 0-1-3 1 1-2-1-3-2 5-1-3-1 0-1-3-2-2 0 1-1-4
M -1-1-2-3-1 0-2-3-2 1 2-1 -2-1-1-1-1 1-3-1-1-4
F -2-3-3-3-2-3-3-3-1 0 0-3 0 -4 -2-2 1 3-1-3-3-1-4
pPp-1-2-2-1-3-1-1-2-2-3-3-1-2—-4 7-1-1-4-3-2-2-1-2-4
S 1-11 0-1 0 0 0-1-2-2 0-1-2-1 4 1-3-2-2 0 0 0-4
T 0-1 0-1-1-1-1-2-2-1-1-1-1-2-1 1 5-2-2 0-1-1 0-4
w-3-3-4-4-2-2-3-2-2-3-2-3-1 1-4-3-211 2 -3 —-4-3 -2 —4
Yy -2-2-2-3-2-1-2-3 2-1-1-2-1 3-3-2-2 2 7-1-3-2-1-4
v 0-3-3-3-1-2-2-3-3 3 1-2 1-1-2-2 0-3-1 4-3-2-1-4
B -2-1 3 4-3 0 1-1 0-3-4 0-3-3-2 0-1-4-3-3 4 1-1-4
z-1 0 0 1-3 3 4-2 0-3-3 1-1-3-1 0-1-3-2-2 1 4-1-4
x 0-1-1-1-2-1-1-1-1-1-1-1-1-1-2 0 0-2-1-1-1-1-1-4

*
|
N
|
W~
|
=~
|
N
|
=~
|
'S
|
'S
|
N
|
'S
|
N
|
'S
|
'S
|
~
|
'S
|
N
|
'S
|
'S
|
~
|
'S
|
N
|
'S
|
'S
|
N
[

counting the number of occurrences of each amino acid type in an appropriate
collection of protein sequences, and then dividing by the total number of amino
acids represented. But we are still left with the problem of where to obtain
the pqp. There are a number of repositories of protein data that are extremely
useful for obtaining both types of quantities:

SWISS-PROT (http://au.expasy.org/sprot/)
This is an annotated database of protein sequences, that is minimally
redundant (multiple entries for the same sequence are avoided) and heav-
ily cross-indexed with other protein databases. At this time, there are
about 154,000 protein sequences representing 57 x 106 letters in this
database.
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PROSITE (http://www.expasy.ch/prosite/)
This is a database of protein families and signature motifs (characteristic
short sequence patterns) that characterize these families. Approximately
1700 families and domains are archived.

BLOCKS (http://blocks.fhcrc.org/)
This is a compilation of the most highly conserved regions for pro-
teins in PROSITE. Here are listed multiply aligned, ungapped, conserved
segments characteristic of each protein family. Examples are shown in
Fig. 7.4.

Block PR0O0851A

ID XRODRMPGMNTB; BLOCK

AC PR0O0851A; distance from previous block=(52,131)

DE Xeroderma pigmentosum group B protein signature

BL adapted; width=21; seqgs=8; 99.5%=985; strength=1287

XPB_HUMAN |P19447 (74) RPLWVAPDGHIFLEAFSPVYK 54
XPB MOUSE |P49135 ( 74) RPLWVAPDGHIFLEAFSPVYK 54
P91579 ( 80) RPLYAPDGHIFLESFSPVYK 67
XPB_DROME‘Q0287O ( 84) RPLWVAPNGHVFLESFSPVYK 79
RA25_YEAST|Q00578 (131) PLWISPSDGRIILESFSPLAE 100
Q38861 ( 52) RPLWACADGRIFLETFSPLYK 71
013768 (90) PLWINPIDGRIILEAFSPLAE 100
000835 (79) RPIWVCPDGHIFLETFSAIYK 86
!/

Block PR00851B

ID XRODRMPGMNTB; BLOCK

AC PR0O0851B; distance from previous block=(65,65)

DE Xeroderma pigmentosum group B protein signature
BL adapted; width=20;segs=8; 99.5%=902; strength=1435

XPB_HUMAN‘P19447 ( 160) TVSYGKVKLVLKHNRYFVES 68
XPB_MOUSE‘P49135 ( 160) TVSYGKVKLVLKHNRYFVES 68
P91579 ( 166) TQSYGKVKLVLKHNKYYVES 85
XPB_DROME | Q02870 (170) TLSYGKVKLVLKHNKYFIES 77
RA25 YEAST|Q00578 ( 217) TISYGKVKLVIKHNRYFVET 100
Q38861 (138) TANYGKVKLVLKKNRYFIES 90
013768 (176) TVSYGKVKLVLKKNRYFIES 72
000835 ( 165) TQSYGKVKLVLQKNKYFVES 87

//

Fig. 7.4. Examples of sequence blocks from the Blocks database. In this case,
two different blocks from the same set of proteins are presented. All proteins are
related to a human gene associated with the DNA-repair defect xeroderma pigmen-
tosum (leading to excessive sensitivity to ultraviolet light). Reprinted, with per-
mission, from the Blocks database (http://blocks.fhcrc.org/). Copyright 2003
Fred Hutchinson Cancer Research Center. Data for entry PR00851 adapted from
the Prints database. (http://www.bioinf .man.ac.uk/dbrowser/PRINTS).
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7.5.3 How Do We Create the BLOSUM Matrices?

Mechanics for enumerating the occurrences of various types of paired amino
acids (as a preliminary to calculation of p,) are as follows. Each block consists
of n aligned sequences each having w residues. For each column in a block
(archived in the Blocks database), we count the number of pairwise matches
and mismatches for each amino acid type. In column 3 of the block shown
below (underlined residues) we find that the number of pairwise matches of
LwithLis4d+3+2+4+1=10or 5(5—1)/2. (Matches of L in a sequence to
itself are not counted.)

RPLWVAPD...
RPLWVAPD...
RPLYLAPD...
RPLWVAPN...
PLWISPSD...
RPLWACAD...
PLWINPID...
RPIWVCPD...

The enumeration of matches between all leucine (L) residues in the same
column can be understood by the matrix below, which applies to the indicated
column:

LLLLWLUWI
L—+++ +

—++ +
—+ 4
- 4+

H==C =0 -
I

From this we see that the total number of pairwise matches per column is
equal to the number of “4” entries in the triangular area above the diagonal.
If we take the total number of entries in the matrix (n?), subtract the number
of entries on the diagonal (n), and divide by 2 (to avoid counting the match
of Ly with Ly as both L1Ly and LoL;), we obtain a total of n(n —1)/2 possible
pairings. Each block then provides w x n(n — 1)/2 possible pairings, and we
count the number of pairings of each type for more than 24,000 blocks. We
keep a running total of the number of each kind of pairing.

Now make a matrix for the number of occurrences f,;, for each pairing of
each type:
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A R N D --- V
A faa
R faa frr
N fua fur fuy
D fo.a for fou fop

v fV,A fV,R fV,N fV,D T fV,V

We can use these fu; to calculate pyp using the following equation:

20 a
Pab = fab/ZZfab~

a=1b=1

Notice the limits on the summation in the denominator. Think of the first sum-
mation as extending over rows and the second over columns. Since pep = Pra,
we are interested in the diagonal together with the terms below it. Therefore,
the second summation (performed for each row a) needs only to proceed up
to column a, as indicated. The denominator is the total number of pairwise
matches, including residue a with itself.

Using the same reasoning as above, the number of terms below the diagonal
is 20(20 — 1)/2 = 190. The number of terms on the diagonal is 20, so there
are 210 distinct pqps. We get the estimated probability for each amino acid,
Ga, based on its frequency of occurrence in the whole collection of blocks:

20 20 a
Ga = Z <fab/zz.fub> .
b=1 a=1b=1
Then we take s(a,b) = logy(pab/qags)- In practice, these values are rounded off
and scaled. So, for BLOSUM, the scores are reported in half-bits:
s(a,b) [half-bits] = 2s(a,b).

There is one more matter to deal with: How do we “tune” the matrix to
the amount of sequence divergence we are expecting in our similarity search?
This has to do with how we count pairs in blocks. Consider Fig. 7.5, where the
tips of the dendrogram indicate the identity of the amino acid at a particular
position in members of a block of eight sequences.

Obviously, there is a group of four sequences that are very similar to each
other that have L at that position. Should we count the top four examples as
separate individuals for evaluating the f;;7 Normally, clustering is performed
for the sequence entries in the blocks (clustering will be discussed in Chap-
ter 10), and contributions from sequences that cluster at similarities greater
than some specified cutoff (broken line) are averaged. In this case (where all
letters are identical), the effect would be that of replacing four Ls with one L
prior to counting the number of pairwise matches. Moving the cutoff to lower
levels of similarity produces a BLOSUM matrix whose entries correspond to
greater amounts of evolutionary separation.
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Similarity
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Fig. 7.5. Calculating f,; as a function of evolutionary distance. The dendrogram
(branching pattern) is based upon the evolutionary distance between the proteins
from which the sequences in a particular block were taken. The single-letter amino
acid codes on the right represent those amino acids present at a particular position
in the sequences constituting the sequence block. If we are concerned with recently
diverged proteins, each of the four L residues in the cluster at the top should be
counted separately. If the concern is with more distantly related proteins (with
distance indicated by the dotted cutoff line), then the cluster of four L residues
should only be counted as one instance of L instead of four.

Computational Example 7.2: Using BLOSUM matrices
Score the alignment

MQLEANADTSYV

LQEQAEAQGEM
Using the BLOSUM62 scoring matrix (Table 7.3), we see that

S=2+5-3-44+44+0+4+0-2+0+1
=7 (half-bits).

Now that we have seen how to obtain and use BLOSUM matrices, we
should examine Table 7.3 to make sure that the scores make biological sense.
The largest score (11 half-bits) is for conservation of tryptophan (W) in two
sequences. Tryptophan is a relatively rare amino acid, so there should be a
larger “reward” when it appears at corresponding positions in an alignment
of two sequences. The lowest scores are —4 for aligning a translational stop *
with any other amino acid or some unfavorable alignments such as D opposite
L. The low score in the latter case can be understood because aspartic acid
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(D) codons GAC and GAU are at least two mutations away from those of leucine
(L)(UUA, UUG, CUA, CUC, CUG, CUU) and because the properties of D (polar and
negatively charged) are quite different from those of L (nonpolar and neutral).
In contrast, aligning isoleucine (I) opposite leucine produces a positive score
of 2 half-bits. All three codons for isoleucine (AUA, AUC, AUU) are only one
mutation away from a leucine codon, and isoleucine has the same properties
as leucine (nonpolar and neutral). Thus it is relatively easier to produce this
mutation, and the mutation is more likely to be tolerated under selection. In
summary, if the alignment is between chemically similar amino acids, the score
will be positive. It will be zero or negative for dissimilar amino acid residues.
Also, when aligning an amino acid with itself, scores for aligning rare amino
acids are larger than scores for aligning common ones.

7.6 Tests of Alignment Methods

At this point, we should remind ourselves why we are performing alignments in
the first place. In many cases, the purpose is to identify homologs of the query
sequence so that we can attribute to the query annotations associated with its
homologs in the database. The question is, “What are the chances of finding
in a database search HSPs that are not homologs?” Over evolutionary time, it
is possible for sequences of homologous proteins to diverge significantly. This
means that to test alignment programs, some approach other than alignment
scores is needed to find homologs. Often the three dimensional structures of
homologs and their domain structures will be conserved, even though the
proteins may have diverged in sequence. Structure can be used as a criterion
for identifying homologs in a test set.

A “good” alignment program meets at least two criteria: it maximizes
the number of homologs found (true positives), and it minimizes the number
of nonhomologous proteins found (false positives). Another way to describe
these criteria is in terms of sensitivity and specificity, which are discussed
in more detail in Chapter 9. In this context, sensitivity is a measure of the
fraction of actual homologs that are identified by the alignment program,
and the specificity is a measure of the fraction of HSPs that are not actually
homologs. Brenner et al. (1998) tested a number of different alignment ap-
proaches, including Smith-Waterman, FASTA, and an early version of BLAST.
They discovered that, at best, only about 35% of homologs were detectable
at an error frequency of 0.1% per query sequence.

An intuitive measure of homology employed in the past was the percent-
age of sequence identity. The rule of thumb was that sequence identities
of 25%—30% in an alignment signified true homology. Brenner et al. em-
ployed a database of known proteins annotated with respect to homology/non-
homology relationships. Their results are shown in Fig. 7.6. Figure 7.6B shows
percentage identity plotted against alignment length for proteins that are not
homologs. For comparison, a threshold percentage identity taken to imply
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similar structure is plotted as a line (see Brenner et al., 1998 for details). The
point is that for alignments 100 residues in length, about half of the nonho-
mologous proteins show more than 25% sequence identity. At 50 + 10 residues
of alignment length, there are a few nonhomologous proteins having over 40%
sequence identity. A particular example of this is shown in Fig. 7.6A. This
serves as a reminder of why methods providing detailed statistical analysis of
HSPs are required (Section 7.4.2).
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Exercises

Exercise 1. Find “serendipity” in a dictionary using splits as described
in the text. How many splits were required? Compare this number with
|log, (# pages)|. Suppose that each split divided the pages remaining into
thirds instead of halves. What is the formula relating the number of steps to
the number of pages in that case?

Exercise 2. In Section 7.2.1, it was suggested that the statistic

Z(#Lw (1) x (#Lw(J))

w

could be used to determine quickly whether I and J share sufficient sequence
similarity to justify a “full-bore” dynamic programming alignment. For DNA
with k = 3, length(I) = 100, length(J) = 1000, indicate how you could
use simulation with iid letters to set a threshold value for this statistic, for
deciding when to employ dynamic programming.

Exercise 3. Suggest an alternative to FASTA for rapidly searching a large
search space J >> I using the approach in Section 7.2.1. Would you need to
modify your method for setting the threshold?

Exercise 4. For the sequences I = GCATCGGC and J = CCATCGCCATCG, find
matching 4-words shared by I and J, as described in Section 7.2.3. Do this
by making a table similar to Table 7.2, but only listing 4-words that actually
occur in I or J. (Otherwise, the table would have 4* = 256 rows!)

Exercise 5. Compute the average number of non-empty elements in a dot
matrix comparison for £k = 1, with I and J both drawn from a human DNA
sequence (41% G+C).

Exercise 6. Given strings X and Y, each having differing base compositions,
write out the formula for calculating p = P(two random letters are equal),
defined in Section 7.4.2. Clearly define the symbols that you use.

Exercise 7. For I = TTGGAATACCATC and J = GGCATAATGCACCCC, make dot
matrices for the k-tuple hits for k=1, 2, and 3.

Exercise 8. The F. coli F plasmid transfer origin region contains the sequence

I:
5/-ATAAATAGAGTGTTATGAAAAATTAGTTTCTCTTACTCTCTTTATGATATTT
AAAAAAGCG-3/

The TraY protein has been shown to bind to a region some 1600 bp away at
a site that contains the sequence

J:
5/-TAACACCTCCCGCTGTTTAT-3’
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Perform dot-matrix analyses for £ = 1 and k& = 2 to locate in I a subsequence
that is similar to J. This identifies a potential binding site for TraY in se-
quence I. [Hint: Use R to construct a matrix having dimensions determined
by the lengths of J and I, initialize elements to zero, and then substitute the
appropriate elements with the number 1 to indicate matches. Produce two
matrices: one for £ =1 and another for k = 2.

Exercise 9. For I = GTATCGGCGC and J = CGGTTCGTATCGTCG, make a 2-word
list for J. Then execute the FASTA algorithm (Example 7.1) beginning with
S; = 0. Compute S; as you go through I, beginning at ¢ = 1 and the 2-word
GT, and ending at i = 9.

Exercise 10. To search J = CGGTTCGTATCGTCG for matches to TTCG within
one mismatch, first make a list of all possible matches. How many matches
are there within a single mismatch neighborhood of TTCG? [Hint: There is one
exact pattern, and there are 3 x 4 = 12 single-mismatch patterns.]

Exercise 11. Download AB125166 and X68309 from the NCBI nucleotide
databases (see Appendix B for the URL). Edit both sequences so that they
contain the first 1000 positions in FASTA format. Then perform a Smith-
Waterman local alignment using resources at http://www.cmb.usc.edu/, set-
ting mismatch and gap parameters at 1000, and requesting return of the top
100 alignments.

a. How many alignments are there of length ¢ > 87

b. Use the expression for A in Section 7.4.2 to compute the expected number
of alignments of length at least 8 for sequences of this size (see Exercise 4
for computing p).

c. Use R to simulate ten pairs I and J of iid sequences having the same base
compositions as in the first 1000 nucleotides of AB125166 and X68309.
Then perform the Smith-Waterman alignment on each of the 10 pairs,
and calculate the average number of alignments of length at least 8. Com-
pare your result with those from part a and part b above, and explain
agreements or disagreements.

d. The probability that there is a local alignment of length ¢ or more is
approximately

1 — exp[—nm(1 — p)pf].
Calculate the probability (called a p-value) for ¢ = optimal alignment
score in part a. What do you conclude from this p-value? Explain your
answer carefully.

Exercise 12. Using only the data contained in the two blocks shown in
Fig. 7.4, compute frr and prg as defined in Section 7.5.3. [Hint: Only columns
that contain two or more instances of an R residue need be considered.

Note: Because the computation above uses only a tiny sample of the total
number of blocks available, the result computed here is not expected to lead
to a score that agrees with the one in a BLOSUM matrix.
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Exercise 13. To test the probability of irrelevant hits from a BLAST search,
download the first two paragraphs of Jane Austen’s EFmma from a Web page
located with a search engine of your choice. Remove all spaces and punctua-
tion, and then replace letters “0” and “u” by “a” (alanine) and letters “b”,
“x7, 497, and “z” by “g” (glycine). This should yield a string having about
500 characters. Add a first line >emma to convert to FASTA format, and then
run WU-BLAST?2 for proteins on the server at the European Bioinformatics
Institute (see Appendix B). What are the E values and percentage identi-
ties for the top three sequences? How do these compare with real biological

sequences?



8
DNA Sequence Assembly

8.1 The Biological Problem

The ultimate physical map of a genome is its sequence. For free-living organ-
isms, genomes may be represented by strings of 5 x 10° to 100 characters,
depending upon the genome size of the organism. However, current sequencing
technologies allow accurate reading of no more than 500 to 800 bp of contigu-
ous DNA sequence. This means that the sequence of an entire genome must
be assembled from collections of comparatively short subsequences. This pro-
cess is called DNA sequence assembly. These sequences are often, but not
always, generated from relatively short (~2kb) inserts contained in M13 or
small plasmid vectors. Obviously, experimental strategies are needed to con-
vert a collection of sequences derived from large numbers of small inserts to
the complete genome sequence. There have been two general approaches.
One approach, which was assumed to be optimal at the start of the Human
Genome Project, is called the top-down (or map-based) approach. In its
strictest form, the idea is to clone the genome into a hierarchy of libraries
having successively smaller inserts (e.g., making a YAC library having a low-
resolution restriction map, cosmid libraries from each YAC with a higher-
resolution restriction map, and small plasmid libraries from each cosmid).
The location of each clone relative to the restriction map of the larger-insert
clone from which it was derived is tracked. At the end, the small-insert clone
can be sequenced, and the map position of the sequence can be obtained by
tracing back up the hierarchy of mapped inserts. In this case, much of the
sequence assembly problem is solved by the prior restriction mapping.
Another approach to mapping is the bottom-up approach, in which a
small-insert library is used to assemble the restriction map of a larger region
by detecting overlaps of inserts to build contigs. We have already discussed this
approach to restriction mapping in Chapter 4. But suppose that, instead of
having a restriction map of the cloned inserts, we knew their DNA sequences.
Just as with contig assembly from the restriction mapping data, we can detect
overlaps with sequences in other inserts and assemble a sequence rather than a
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restriction map. It is this process that we will be discussing in this chapter. The
process of producing the sequence of a DNA segment (perhaps a genome) from
a large number of randomly chosen sequence reads derived from it is called
shotgun sequencing. Whole-genome shotgun (WGS) sequencing has
produced a rapid expansion in our knowledge of genomes. As we will see at
the end of this chapter, hybrid strategies combining elements of both the
top-down and bottom-up approaches are often useful in actual practice.

8.2 Reading DN A

For many years, determining DNA sequence was extremely difficult. The first
rapid sequencing method was developed by Maxam and Gilbert (1977). This
approach is a traditional analytical one in the sense that it depends upon
chemically breaking down a more complicated molecule into smaller pieces,
which are then analyzed. Though revolutionary for its time, this method has
now been largely superseded by the Sanger dideoxy sequencing method
(Sanger et al., 1977), which employs the counterintuitive approach of analysis
by synthesis. The Sanger approach is easier to automate and is the basis for
high-throughput, high-volume sequencing “factories.”

This method depends upon the properties of DNA polymerases and the
biochemistry of DNA synthesis. Rather than breaking down a duplex molecule
into fragments to be sequenced, we start with a single-strand molecule and
manufacture fragments whose sizes depend upon the actual DNA sequence.
We need to recall the biochemical requirements for DNA synthesis in vitro:
a DNA template, a primer, four deoxynucleoside triphosphates (precursors
of the DNA to be synthesized—dATP, dCTP, dGTP, and dTTP), and DNA
polymerase in appropriate buffers.

8.2.1 Biochemical Preliminaries

The template is the DNA sequence to be copied (in this case, sequenced).
This is supplied as a cloned insert in a small plasmid or bacteriophage. Bacte-
riophage M13 was originally used as the cloning vector for sequencing because
it produced single-stranded circular molecules that could be used directly as
templates. Later, M 13 replication origins were incorporated into small plasmid
vectors (yielding vectors called “phagemids”). Single-strand phagemid DNA
circles could then be produced from a bacterial growth culture by adding an
M13 helper phage to provide the necessary phage replication genes. Sanger
dideoxy sequencing can also be performed on duplex plasmid or phagemid
substrates by denaturing the DNA. It is not necessary to remove the opposite
(nontemplate) strand.

DNA polymerases are able to synthesize DNA by adding deoxynucleoside
triphosphates to a pre-existing 3'-0H on a DNA strand that is base-paired to
a template. Such a short DNA strand (RNA in vivo) is called a primer. The
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Sanger method employs synthetic primers that are complementary to DNA
immediately adjacent to the cloned insert. For some vectors, these have been
called universal sequencing primers. Since the primers are complementary to
vector sequences—not to insert sequences—the same primer can be employed
for different clones (i.e., custom primer synthesis for each clone is not needed).
Different primers are available for the two sides of the cloning site into which
the insert is placed. This allows sequencing from either end of the insert (i.e.,
from opposite strands of the insert since DNA is antiparallel). For reasons we
explain later, it is often useful to track which strand (i.e., which primer) was
used for every read of sequence generated.

Deoxynucleoside triphosphates are the precursors for DNA synthesis. Re-
member that “deoxy” means that, unlike RNA precursors, DNA precursors
lack an -0H group at the 2’ position of the ribose (sugar) portion of the
molecule. During DNA synthesis, the 5’ end of the dXTP (dXTP means any
deoxynucleoside triphosphate) is joined to the 3’ end of the growing chain,
with the elimination of pyrophosphate, yielding a product chain extended by
one more residue, whose new 3’ end is available for the next addition. The
identity of the incorporated dXTP is determined by the template and the
Watson-Crick base-pairing rules: if the template contains a T residue, then
dATP is used by the polymerase to extend the chain; if the template contains
a C residue, then dGTP is used to extend the chain, and so on.

DNA polymerases are the enzymes that can catalyze template-directed
DNA synthesis. Other enzymes, such as AMV reverse transcriptase, may
sometimes be employed as well. Many polymerases (E. coli DNA polymerase I
being a classic example) contain ezonuclease activities: they are capable also
of digesting DNA ahead of the growing chain, or going back and digesting
the growing chain itself. These capabilities are called, respectively, 5 — 3
exonuclease and 3’ — 5’ exonuclease activities. Because these are irrelevant for
DNA sequencing, commercial sequencing polymerases have been genetically
engineered to remove these activities if present. One commercial sequenc-
ing polymerase is Sequenase®, which is an engineered version of phage T7
DNA polymerase. It lacks the normal 3’ — 5’ exonuclease activity. Sequenc-
ing polymerases are selected or engineered to be highly processive (adding
many residues to the growing chain without falling off the template), to be
relatively insensitive to template secondary structure (to prevent “stalling”),
and to be able to efficiently use nonconventional substrates when required
(e.g., thio-dXTPs or dideoxynucleoside triphosphates—ddXTPs). Other ther-
mostable polymerases derived from Thermus aquaticus (Taq polymerases) are
used in cycle sequencing protocols, which require periods at elevated temper-
atures.

This may seem like a lot of “fussy” biochemical detail, but the quality of
the sequence depends upon things such as the particular template and poly-
merase that are employed. Unresolved problems for any particular sequencing
run may require computational methods for “teasing out” the actual sequence.
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Proper attention to biochemical matters will maximize the length of unam-
biguous sequence produced from each sequencing reaction.

8.2.2 Dideoxy Sequencing

Sanger dideoxy sequencing employs chain-terminating dideoxynucleoside tri-
phosphates, ddXTPs, to produce DNA molecules extending from the primer
into the template and stopping at positions specific to the ddXTP and to
the type of template residue with which it base-pairs. The reaction products
are then resolved on polyacrylamide gels for size analysis. The method is
illustrated in Fig. 8.1. In this illustration, we assume that an appropriate
fluorescent or radioactive label has been applied to the primer and that four
separate reactions are performed, one to identify positions of each of the four
bases in the DNA. We indicate later other formats for setting up the reactions.

In an ordinary polymerization reaction containing all four dXTPs and no
ddXTPs, polymerization continues from the primer sequence all the way to the
5" end of the template (if the enzyme is processive enough and there are enough
reagents in the reaction mixture) (Fig. 8.1B). With dideoxy sequencing, each
reaction solution is “doped” with a small amount of an appropriate dideoxynu-
cleoside triphosphate. For the “A” reaction shown in the figure, a small amount
of ddATP is included in addition to dATP. As polymerization proceeds along
the many templates in the reaction solution, most of the time the polymerases
will pick up a dATP from solution and insert A opposite T, leaving a 3’-0H to
allow continued growth of the chain. Occasionally, however, the polymerases
will insert a ddATP opposite T, and when this happens, there is no 3’-0H, and
that particular chain can no longer grow—it is terminated (Fig. 8.1C). A ter-
mination can, in principle, occur opposite any T in the template, and different
chain lengths are produced in terminations that have occurred in different
positions. Because there are so many templates in the reaction solution, there
will be many terminated chains for each possible position.

Figure 8.1D shows the types of terminated molecules sorted by size
from largest to smallest. Polyacrylamide gel electrophoresis physically sorts
molecules by size, with the largest near the origin (top) of the gel and the

Fig. 8.1 (opposite page). Principles of Sanger dideoxy chain-termination sequenc-
ing. The primer sequence and its complement are enclosed in the grey boxes. Results
for the “A” sequencing reaction are illustrated. A and T are in uppercase boldface
type, and bases that are not involved in this specific chain-termination reaction are
all in lowercase type. Panel A: Template DNA with hybridized primer: substrate
for copying by DNA polymerase. Panel B: Product of DNA polymerization if no
dideoxynucleoside triphosphates are added. Panel C: Different products produced
after DNA synthesis, with termination occurring at various locations as a result of
incorporation of ddATP. The * indicates a dideoxy residue. Panel D: Newly synthe-
sized products sorted in order of decreasing size.
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smallest nearer the exit point (bottom). Each band or peak on the gel corre-
sponds to the collection of reaction product molecules that have terminated
at the same position on the template, and the spacing between one band or
peak and the next is related to the number of nucleotides separating successive
A residues in this illustration. (Note the similarity between this concept and
that of the Smith-Birnstiel restriction-mapping approach discussed in Chap-
ter 4.) Similar separate sequencing reactions are performed to generate bands
terminated at C, G, and T (in the newly synthesized strands), corresponding
to the bases shown in lowercase on the template.

For simplicity, we describe the analysis of products by using vertical slab
gels. In actual practice, automated capillary sequencers are now employed for
large-scale sequencing. If the reaction solutions are loaded onto a gel, one
in each of four lanes, after electrophoresis, four sequencing “ladders” corre-
sponding to positions of A, C, G, or T are produced, as shown in Fig. 8.2A. The
shortest fragment corresponds to termination near the 3’ end of the primer.
Since the DNA sequence is conventionally written 5" — 3, we therefore start
with the short fragments and read up, switching to whichever lane has a band
the next increment up. This is continued until the resolution is poor or until
compressions hide the actual number of bands. Currently, this limit is reached
after reading 500 to 800 bases. An autoradiogram corresponding to an actual
sequencing slab gel (using a different template) is shown in Fig. 8.2B.

With automated sequencing, four different fluorescent dyes are employed,
one for each ddXTP employed. In that case, the reaction products can be
pooled and resolved in a single lane or channel, as shown in Fig. 8.2C. We

Fig. 8.2 (opposite page). [This figure also appears in the color insert.] Read-
ing DNA sequences. Panel A: Idealized data from four sequencing reactions, with
products resolved by electrophoresis on a polyacrylamide slab gel. The sequence
being determined corresponds to a portion of the sequencing reaction diagrammed
in Fig. 8.1. The top and bottom bands in the “A” lane correspond to the top and
bottom products, respectively, listed in Fig. 8.1D. Thin arrows indicate the order in
which lower bands are to be noted during the readout of the DNA sequence. Panel
B: Results of a sequencing experiment employing a radioactively labeled product
detected by autoradiography. Notice how closer band spacing and high band inten-
sities complicate the reading of the upper portions of the gel. Also notice that the
lanes are not parallel: those on the right are skewed. Panel C: Graphical display of
output from an automated DNA sequencer, with different colors corresponding to
differing fluorescent labels on each of the ddXTPs: red = A, green = C, black = G,
and blue = T. The abscissa corresponds to the time of electrophoresis. Upper panel:
Uncorrected intensity data showing spillover between different color channels. Lower
panel: Color-corrected output of intensity data shown in the upper panel. Notice how
color correction restores the Cs that were apparently missing in the upper panel at
positions 115 and 130. Panel C provided by Prof. Lei Li, University of Southern
California.
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discuss the use of capillary gels in high-throughput sequencing in the next
section.

What we need to know for the next section is that sequences may be from
either strand and that they will typically be 500-800bp long. The problem
addressed in the next section is how to use a very large collection of sequences
from different templates, all derived from the same genomic DNA, to reconsti-
tute the genomic sequence from the collection of individual sequence “reads.”

8.2.3 Analytical Tools: DNA Sequencers

When slab-gel technologies were first employed, the advantages of being able
to run many samples in parallel were immediately evident. For sequencing
with radiolabeled substrates, however, four lanes were typically employed for
each substrate being analyzed (one each for A, C, G, and T). Slab gels typically
draw large amounts of current during electrophoresis, which places limits on
the voltage that can be applied. Excessive voltages lead to high current, which
in turn can heat the gel to the point that the buffer boils or the glass plates sur-
rounding the slab crack. Either of these events ends the experiment. Slab gels
are very fragile and hard to handle without tearing; moreover, the procedures
required to pour the gels are difficult to automate. Analysis by phosphorimag-
ing or autoradiography is slow and requires an additional digitizing step to
locate band positions for eventual analysis. Because measurements are made
at a single time point (the end of the “run”), the larger fragments will not
have migrated as far as the smaller ones and thus are not resolved as well. In
those regions of the gel near the origin, bands are compressed together and
unreadable.

Capillary array electrophoresis has alleviated these problems. Instead of a
slab gel, a set of gel-filled capillaries (75 um inside diameter and 40 cm long,
for example) is employed. The small inside diameter of the capillaries reduces
the current, and the large surface-to-volume ratio improves heat dissipation,
so that higher voltages (e.g., 10,000V rather than 1000V) can be employed.
This allows shorter run times. Unlike in the slab gel approach, the measure-
ments in capillaries are made continuously (i.e., at many time points) at one
position—at or near the exit point from the capillary. This means that larger
fragments can be resolved over the full length of the capillary, although the
longer time required for them to exit the capillary allows broadening of the
bands because of diffusion. Capillary sequencers are highly automated with
respect to loading samples, recharging the gel matrix in the capillaries, and
acquiring data. Depending upon the resolution required, a typical automated
sequencer can produce about 600-800 bases of readable sequence in a 1 hour
run, and witha turnaround time of less than an hour, it can perform more
than 20 such runs per day. With a “typical” 96 capillary array sequencer, this
works out to more than 96 x 700 x 20 ~ 1,000, 000 bases per day per instru-
ment. Some automated sequencers employ 4 x 96 = 384 capillaries, and these
instruments have capacities approaching 3,000,000 bases per 24 hour day.
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With capillary sequencers, DNA polymerization products employing all
four terminators (ddATP, ddCTP, ddGTP, ddTTP) are resolved in the same
capillary. Products from each of the four reactions are labeled with a different
dye. The readout consists of a fluorescent signal with emission wavelengths
characteristic of each type of dye. An example of the output is graphed in
Fig. 8.2C. Fluorescent dyes can be attached to the primer (dye primer), in
which case four different reactions are required if the same primer sequence
is used. The four reaction product solutions are mixed prior to electrophore-
sis. Fluorescent dyes can also be attached to the ddXTPs (dye terminator),
which allows all four sequencing reactions to be conducted in the same re-
action tube. Dyes and polymerases have been optimized so that the dye-
ddXTP compounds are incorporated into the growing chain with compara-
ble efficiencies. In general, each of the four fluorescent dyes might require
a different wavelength for optimal excitation. However, by adding a second
“donor” dye and using fluorescence energy transfer to an “acceptor”dye that
discriminates between reaction products, it is possible to use a single excit-
ing wavelength appropriate to the donor dye. Excitation is done with a laser
that either illuminates samples exiting from all capillaries simultaneously, or
scans across the array repeatedly, illuminating the exiting samples individu-
ally. The light produced by fluorescence is split into four different wavelength
ranges (channels), and the intensity in each channel is recorded as a function
of time.

8.3 The Three-Step Method: Overlap, Layout, and
Multiple Alignment

Determining the sequence of bases in biological sequences is a long and chal-
lenging problem, and an important component is computational. As the pre-
vious discussion indicated, the data typically are randomly located reads that
are short compared with the target (i.e., the unknown DNA to be sequenced
or determined). The orientation (5" to 3’ or 3’ to 5’) relative to a map con-
vention is unknown, and the reads are of good quality but not perfect. In this
section, we present the usual method of sequencing, which as noted above is
colorfully called shotgun sequencing. There are three computational steps in
the process of shotgun sequencing as usually performed: pairwise comparison,
layout, and multiple alignment. Pairwise overlap alignment (i.e., align-
ments involving the ends of two sequence strings) produces scores that are
used as indicators of genomic overlap. Those scores can be used to obtain
clusters of reads with mutually consistent overlap scores. Finally, the layout is
used as a basis for multiple alignment that produces the consensus sequence.
It is a mistake to think the entire target sequence will be determined even if
the assembly is perfect. The random location of the reads makes the coverage
of the target follow the statistical distribution of oceans and islands as de-
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scribed in Chapter 4. Each of the three steps is briefly described below, and
then a small example is presented for illustration.

If there are n reads, the read set must be augmented by the reverse comple-
ments of the DNA sequence from each read so that the set of potential reads
is 2n in size. The job of pairwise comparison is to look for potential overlaps.
This means that for every two reads r and s from the set of n original reads,
there are two comparisons: read r versus read s, and read r complemented, 7*,
compared with read s. (You should check that this includes all four possibili-
ties for the arrangement of read overlaps in the actual genome sequence.) The
Drosophila whole-genome shotgun assembly had 3 x 10° reads of 500 bases.
This means there were approximately 10'® comparisons to perform. How dif-
ficult are the comparisons? Computational Example 8.1 presents an extension
of the local alignment algorithm to handle this problem. In fact, for situations
such as the Drosophila project mentioned, this algorithm is too costly in time:
if each comparison takes time proportional to 500? (the cost of a dynamic
programming comparison), then the total time complezity for all comparisons
is proportional to 2.5 x 10'®, which is not practical with current computer
technology. Instead scientists have found ways to speed up and shortcut the
comparisons.

The overlap alignment algorithm is presented in pseudocode in Compu-
tational Example 8.1. It is a modification of the local alignment algorithm,
but the “0” in the recursion is left out. The details of the logic are not pre-
sented here, but it is similar to the various dynamic programming alignment
algorithms (Chapter 6). An alignment matrix (elements O;;) is employed for
each alignment. The best overlap according to the scoring scheme is given as
the largest number in the rightmost column and bottom row of the alignment
matrix.

Computational Example 8.1: Pseudocode for overlap alignment

Input sequences A, B
Set O;0 = Op,; =0 for all 7, j
fori=1ton
forj=1tom
Oi,j = maX{Oi_Lj — (5, Oi—l,j—l + s(ai, bj), Oz’,j—l - (5}
end
end
Best overlap = max{O; m,,On ;;1 < i <n,1 <j<m}

Now we turn to the layout phase of shotgun sequence assembly. Having a
matrix of pairwise comparisons is just the beginning. With the pair of reads
r and s, there are four ways they can fit into an assembly: r vs. s, 7" vs. s,
r vs. s*, and r* vs. s*. We group all these pairwise comparisons into clusters
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based on their scores. If, for example, two reads r and s of length 500 have
scores that indicate overlap of approximately 400 bases, then if 7 has a score
indicating a 300 base overlap with a third read ¢, then ¢ must have at least a
200 base overlap with s; otherwise the pairwise scores are inconsistent with a
genomic layout. Fixing the orientation of one of the pairs of reads determines
the orientation for the remaining reads in the cluster.

Finally, there is the problem of determining the consensus sequence
from the layout. It might be imagined that this is an easy job, and it would
be if the sequences were perfectly aligned. Unfortunately, as with many com-
putational problems in biology, this is almost never the case. Instead, se-
quencing errors, fragments incorrectly clustered, and the approximate nature
of the initial alignment all make this problem most challenging. A greedy
procedure (which recursively “grabs” solutions close to a local optimum; see
www.nist.gov/dads/HTML/greedyHeuristic.html) allows an initial align-
ment, if desired, in the following manner. The highest-scoring overlap can be
fixed and the sequences aligned. Then the sequence with the highest overlap
score with any member of this cluster can be added, and so on. The identity
of the base at any position is then taken to be the majority letter in the re-
sulting multiple alignment. Of course, this is only the beginning of producing
a consensus sequence since the alignment is very unlikely to be correct.

To illustrate these ideas, we take a “toy” example through the assembly
process. The DNA to be sequenced is short (70 bases), and the reads are 8
bases long. This sequence is taken from an earlier example (Section 2.1) along
with enough 3’ and 5" sequences (7 bases) on both ends, underlined in the
example below, so that the full 70 bases can be covered (if reads overlap the
ends). The reads are random in position and orientation, and the problem
is so small that we must take 100% accuracy in our reads. As we will see,
assembly is still not an entirely easy task. The DNA represented by the “top
strand” sequence is

5'— CAGCGCGCTGCGTGACGAGTCTGACAAAGACGGTATGCGCATCGTGATTGAAGTG
AAACGCGATGCGGTCGGTGAAGTTGTGCT — 3’

Table 8.1 gives the 20 reads and their reverse complements (5’ to 3’ ori-
entation for both). The reads, which are a subset of all possible reads, were
chosen at random locations in the sequence and in random orientations (i.e.,
some correspond to the complement of the strand shown).

Next, we present a 20 x 20 overlap matrix (Fig. 8.3) that indicates which
fragments or their complements overlap by more than a prespecified number of
letters. In location (k,!) with k < I, the entry is the number of bases of overlap
for r, versus r;, and if £ > [ the entry is the number of bases of overlap of 7,
with ;. No diagonal entries are made because alignments of a sequence with
itself are uninformative. If the best overlap is less than 3, it is not entered.
This is because, for iid letters, overlaps of two random letters happen 1/2
the time, and two-letter overlaps happen 1/8 of the time. (This calculation
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Table 8.1. Twenty reads and their reverse complements

No. Read Read™

1 CATCGTGA TCACGATG
2 CGGTGAAG CTTCACCG
3 TATGCGCA TGCGCATA
4 GACGAGTC GACTCGTC
5 CTGACAAA TTTGTCAG
6 ATGCGCAT ATGCGCAT
7 ATGCGGTC GACCGCAT
8 CTGCGTGA TCACGCAG
9 GCGTGACG CGTCACGC
10 GTCGGTGA TCACCGAC
11 GGTCGGTG CACCGACC
12 ATCGTGAT ATCACGAT
13 GCGCTGCG CGCAGCGC
14 GCATCGTG CACGATGC
15 AGCGCGCT AGCGCGCT
16 GAAGTTGT ACAACTTC
17 AGTGAAAC GTTTCACT
18 ACGCGATG CATCGCGT
19 GCGCATCG CGATGCGC
20 AAGTGAAA TTTCACTT

is for the two ends, doubling the chances. Actually, the probability of a two-
letter overlap is 1/8 — 1/256; see Exercise 2.) Considering that there is also
another reversed comparison, effectively doubling this probability, two-letter
overlaps occur too frequently to be of interest. Three-letter overlaps happen
between two fragments by chance with probability approximately 2 x 1/64.
This probability and an equal number for the reversed comparison imply that
there will be approximately one spurious overlap per fragment. This noise level
we can handle. Making the overlap requirement four letters would restrict us
from assembling much sequence, although what we would produce would likely
be accurate.

Now that we have the overlap matrix (from the pairwise comparison step),
we turn to the layout and alignment steps. As you will see, in this small
example we combine them into one process. First, we examine the matrix for
significant overlaps. Obviously, read 1 has two substantial overlaps of 7 bases
with reads 14 and 12. They are

GCATCGTG 14
CATCGTGA 1
ATCGTGAT 12

This layout and alignment is completely consistent and believable. We are
beginning to assemble the DNA text. Next, we incrementally add overlaps to
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Fig. 8.3. Overlap matrix for sequence assembly. Rows and columns correspond to
sequence reads, where the numerical entries are the number of positions (or score)
of the match (overlap) between the reads. Only scores greater than or equal to a

threshold of three are shown.

the array in a greedy fashion, including reads 19, 6 (or 6*), 7*, and 13*. The

alignment is

GACCGCAT
ATGCGCAT
GCATCGTG
CATCGTGA
ATCGTGAT
GCGCATCG
CGCAGCGC

CGCATCGTGAT

7*
6=6"
14
1
12
19
13*

and we have determined 11 bases of sequence. Underlined bases at the left
ends of reads 6, 7", 19 and 13* are ambiguous, and it is now easy to see
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why the process of sequencing is challenging. We have good evidence for the
sequence 11bp and cannot call the other letters with any confidence, even
with error-free sequencing.

Moving on to the overlap from reads 10 and 11, by the same greedy tech-
nique, we obtain

CGGTGAAG 2

GTCGGTGA 10

GGTCGGTG 11

ATGCGGTC 7
ATGCGGTCGGTGAAG

Since we have no contradictions, we use the entire span of 15 bases. Finally,
we identify overlaps for reads 17 and 20.

AGTGAAAC 17
AAGTGAAA 20
AAGTGAAAC

As there are no other consistent overlaps (the 10-4 overlap is not compatible
with the others), we only get a 9 base determination.

This small example shows us how a sequence can be incrementally assem-
bled from smaller fragments and illustrates some of the difficulties of assembly.
In addition, only part of the sequence is determined from these data. After all,
the coverage is 20 x 8/70 = 2.28. At a coverage of 10 we would with reasonable
probability recover most of the 70 bp.

8.4 High-Throughput Genome Sequencing

Shotgun sequencing approaches, including the whole-genome shotgun ap-
proach, are currently a central part of all genome-sequencing efforts. These
methods require a high level of automation in sample preparation and analysis
and are heavily reliant on the power of modern computers. In this, section we
present a number of facets of these approaches.

There is an interplay between substrates to be sequenced (genomes and
their representation in clone libraries), the analytical tools for generating a
DNA sequence, the sequencing strategies, and the computational methods.
The key underlying determinant is that we can obtain high-quality continu-
ous sequence reads of up to 500 to 800 bases with current technology. This
represents a tiny fraction of either a prokaryotic or eukaryotic genome. The
sequence reads are the primary data. As indicated above, the computational
problem in large measure is defined by the need to assemble a larger whole
from a large number of small parts. DNA reads come from clones containing
different insert sizes. Because eukaryotic genomes contain repeated sequences
that may be longer than the average sequence read, strategies employing dif-
ferent sizes of cloned inserts have been used to produce an unambiguous se-
quence assembly. The strategies used will, in turn, determine what fraction
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of each clone is sequenced and the coverage of the genome required for each
type of clone.

8.4.1 Computational Tools

The problems of sequence assembly were illustrated in Section 8.3. It is beyond
the scope of this book to discuss at length the details of sequence assembly
software. We can, however, indicate some of the typical features. We start
with processing the data that are produced by the sequencing instruments.

Given automated sequencers that produce sequences at the rate of 0.5 to
1.0 megabases per day, clearly base calling must be automated. Base call-
ing is the process of identifying which base corresponds to each position in
a sequence read. The sequence traces produced experimentally are not per-
fect: they depend upon template quality and purity, reaction parameters, and
the particular sequence of the template. For example, inverted repetitions,
particularly in regions having high levels of G residues, can cause peaks to
migrate anomalously, leading to compressions (individual peaks migrating to-
gether as an unresolved, larger peak). Also, sometimes the template may have
homopolymer “runs” (TTT---T, for example) at which “slippage” of the poly-
merase can occur. This may lead to a manifold of additional low-intensity
bands. Short fragments may produce bands having anomalous mobility be-
cause of the effects of dyes attached to terminating ddXTPs. There sometimes
may be “spillover” of light from the emission spectrum of one dye into the
wavelength range of another, causing the instrument to report peaks in more
than one channel at a particular position. Some of these types of problems
are illustrated in Fig. 8.2C.

Commercial sequencing instruments are typically “bundled” with base-
calling software. The independently developed base-calling application Phred
illustrates the required features of such an application (Ewing et al., 1998).
The trace processing portion of Phred proceeds through four different steps.
First, it determines idealized predicted peak locations for a given trace based
upon peaks that appear to have regular spacing. Second, it identifies ob-
served peaks as those in the trace that exceed a minimum threshold peak
area. Some of these are multicomponent peaks that will eventually be split
and assigned in the third step. Third, observed peaks are matched to pre-
dicted locations. Those peaks that have aberrantly large areas compared with
their neighbors are split into two or more peaks that are assigned to the pre-
dicted peak locations. Finally, missing peaks are accounted for from among
previously uncalled peaks. A very important feature of Phred is that it as-
sociates with each base a probability p that the base call is in error. The
probability p depends upon things such as peak spacings, peak resolution,
and areas of uncalled peaks. The quality of each base call is described by
the quality score (), which is defined as Q =—10 log;, p. For example, if the
probability that a particular base is called in error is 0.001, the quality score
Q is 30.
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Once the output of the sequencing machines has been written into data
files, the data are ready for assembly. There are a number of sequence assem-
blers available. A common assembler often used together with Phred is Phrap
(“phragment assembly program” or “phil’s revised assembly program:”; Green,
1999). Others are the CAP assemblers (a recent version, CAP3, is available
from Huang (Huang and Madan, 1999)), the TIGR Assembler (The Institute
for Genome Research (TIGR), 1995), and the Whole-genome Assembler used
by Celera (Myers et al., 2000). For references to other assemblers such as
EULER and ARACHNE, see Venter et al. (2003). Sequence assemblers have
differing levels of complexity, but there needs to be provision somewhere in
the assembly pipeline for the following processes:

— Screening out vector sequences or chimeric reads;

— Trimming off unreliable base calls from each read (at both 3’ and 5’ ends);

— Computing overlaps between pairs of reads, using the highest-quality por-
tions of each read;

— Screening out doubtful overlaps (i.e., those not having minimum length,
minimum percentage identity, minimum similarity score, or having too
many discrepancies in areas where the base quality is high);

— Constructing contigs; and

— Producing a consensus sequence by multiple sequence alignment with re-
liability scores at each position.

The input data to the assembler include the sequence files for each read
and the corresponding files of quality scores. Examples of such files for the
TIGR assembler are shown in Fig. 8.4. By providing the quality scores in a
second file, the assembler can use high-quality base calls even if there are a
few low-quality ones farther in from the ends. The alternative is aggressive
trimming of the sequence to include only regions composed exclusively of high-
quality base calls. This would shorten the read length and correspondingly
increase the required clone coverage. Parameters that must be supplied to the
assembler are things such as (TIGR, 1995):

—  Minimum length of overlap between pairs that will be considered for as-
sembly;

—  Minimum percentage of identity within overlap of two fragments to be
considered for assembly;

— Length of oligomers used in rapid similarity search;

— Information parameters for each read (e.g., clone identification and
whether it is a forward or reverse read).

The output is the consensus assembled sequence with the reliability score at
each position.

The actual computational resources for performing sequence assembly can
be substantial, for reasons indicated in Section 8.3. The banded-search ap-
proach similar to that used in FASTA speeds the computation of overlaps,
but the assembly still can be time-consuming. In 2001, the human genome



A. Sequence file

Direction of Begin End
sequencing high-quality| |high-quality
reaction base call base call

Minimum, maximum,
and mean insert
lengths
1

>ATRNAOLTF 3000 4000 3500 29 586

GTAANAAAGTGCTCTTGCGGAAGCCTTGAATGGTTCGCTGCTAAAGCTGCGAGCTGGCCA
TTGCAATGTTCTTAGAAAAACACGAACTTATCGGAGAGTGTCGTTACTGCGAGCTGTTGC
CGGTCGGTTTTCTCTGACAACTGCTGAAGCAGCTGCTTGATGTCGTCGAGGGTGGAGGTT
TAGTCGCCGGAACTCTGACCGTCGGTGTTGCTCATGGTGAATTGATCGTTGCTCTGAAGT

B. Quality file

>ATRNAOLTF

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O OO
00 00 00 00 15 00 00 00 00 00 00 25 23 33 31 23 23
00 00 00 28 28 23 23 23 23 23 23 45 40 37 32 28 28
19 32 45 38 37 18 18 00 00 00 00 25 34 36 36 34 34
34 34 31 31 31 34 34 34 37 37 41 41 45 45 37 37 37
27 37 37 40 40 34 34 34 34 37 37 37 40 45 37 34 34

25 27 25 30 25 23 22 18 21 23 26 26 33 35 22 18 00
00 00 00 15 26 23 18 00 00 00 00 00 18 21 30 30 30
34 37 37 34 34 33 33 28 28 28 37 32 32 19 19 19 30
22 19 00 00 00 21 25 37 37 37 37 37 37 37 37 37 37

34 38 27 21 00 00 00 21 20 26 29 29 31 29 26 24 15

00 00 00 00 00 00 00 18 19 27 23 00 00 21 21 00 0O

00 00 20 21 15 15 17 17 26 23 25 18 28 17 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 17 00 00 OO
00 00 00 00 00 00 00 00 00 00 00 16 17 26 24 21 24
19 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO
00 16 16 15 21 17 15 00 00 00 17 00 00 00 00 00 0O

00 00 00 00 00 00 00 00 00 19 00 00 00 00 00 00 OO

Fig. 8.4. Sequence and quality files used in sequence assembly. The sequence file
(panel A) is in FASTA format. Relevant parameters are listed in the header line of the
sequence file. The quality file (panel B) contains a @ score for each position listed in
the sequence file. “00” indicates base calls that are unreliable. The figure shows only
portions of the quality file, taken at increasing distances from the position of the
primer. Reproduced and reprinted, with permission, from The Institute for Genomic
Research (TIGR). Copyright (©)2003 The Institute for Genomic Research (TIGR).
For details, visit http://www.tigr.org/software/assembler/helpfile.html.
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sequence assembly required 20,000 hours of CPU time and 500 GB of storage,
with the use of forty, four-processor machines, each having 4 GB of RAM,
running in parallel. Half of this time was employed in computing the overlaps
between reads (Venter et al., 2002, 2003).

8.4.2 Genome-Sequencing Strategies

As we indicated earlier, the type of data and available computational resources
dictate which strategies are feasible. All strategies require cloning, and strate-
gies commonly employ shotgun sequencing at some level. The differences in
strategies lie in the use of clone mapping, and the point at which random shot-
gun sequencing is initiated. Three particular strategies are: the clone-by-clone
shotgun approach, shotgun sequencing of BACs joined into a minimum tiling
path by sequence-tagged connectors, and whole-genome shotgun (WGS) as-
sembly. These three methods are illustrated in Fig. 8.5. For bacterial genomes,
the WGS method alone is often sufficient. For larger genomes, elements of all
three approaches can be blended in hybrid strategies. For a good review of
these strategies, see Green (2001).

The whole-genome shotgun assembly (Fig. 8.5C) was first employed with
viral genomes (Anderson, 1981; Gardner et al., 1981; Sanger et al., 1982). As
we indicated earlier, a large number of randomly selected small-insert clones
are used to generate sequences at appropriately large levels of sequence cov-
erage. Sequence coverage is the average number of times any given genomic
base is represented in sequence reads. This worked quite well for small, un-
complicated genomes such as the cauliflower mosaic virus (8031 bp) and bacte-
riophage lambda (48,502 bp). This method also has been employed for cloned
fragments from larger genomes in the clone-by-clone shotgun approach. At
the inception of the Human Genome Project, a WGS approach to the entire
genome (i.e., sequence many randomly-chosen clones without any prior phys-
ical or genetic mapping) did not appear to be feasible. This was because of
the known abundance of repeats that would lead to ambiguous assemblies and
the limitations in sequence production and computing.

When the Human Genome Project was first proposed, it was assumed
that some aspects of a top-down approach would be required in a “divide
and conquer” strategy represented by the clone-by-clone shotgun approach
(Fig. 8.5A). The idea was to construct a high-resolution genetic map, a low-
resolution physical map from large-insert clones (originally YACs but later
BACs), and a high resolution physical map based on cosmids. Cosmids in a
minimum tiling path could then be used as substrates for random shotgun
sequencing.

An intermediate approach that avoids the need for mapping (Fig. 8.5B)
employs large-insert BAC clones and sequence-tagged connectors (Venter et
al., 1996). For this method, the entire genome is cloned into a BAC library,
and the ends of the BACs are sequenced. The BAC end sequences are the
sequence-tagged connectors, so-called because these sequences can be used to



A. Three-stage divide-and-conquer

Genome

Large-insert
BAC library

Intermediate-insert
cosmid library

Small-insert - — —
plasmid library

B. Shotgun sequencing of connected BACs
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C. Whole-genome shotgun sequencing
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Fig. 8.5. Strategies for genomic sequencing. Panel A: Clone-by-clone three-stage
divide-and-conquer approach. Panel B: Sequencing of BACs joined by sequence-
tagged connectors (STCs). Panel C: Whole-genome shotgun sequencing.
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identify other BACs that overlap sequenced ends. For example, PCR reactions
designed to amplify unique sequences at the ends of a BAC can be used to
screen the BAC library for other clones that overlap the ends. Combined with
restriction digest fingerprinting, this process can generate a minimum tiling
set of BAC clones, as discussed in Section 4.6. Each BAC clone (insert size
about 150kb) can then be subjected to random shotgun sequencing.

In actual practice, hybrid strategies are useful, especially for model or-
ganisms for which prior genetic mapping and cloning have been undertaken.
Hybrid strategies can blend (in different proportions) the clone-by-clone shot-
gun and the WGS approaches. For example, we could use the WGS method
to provide small contigs at high levels of sequence coverage, and these could
be further assembled based upon partial assemblies of large-insert clones that
perhaps had been shotgun-sequenced at lower coverage (see below). Because a
clone-by-clone shotgun approach will usually have generated a minimal tiling
set of clones, hybrid strategies employing this approach will reduce the likeli-
hood of unfilled gaps in the sequence that might result from using the WGS
approach exclusively. The optimal proportion of clone-by-clone to WGS ap-
proaches will depend upon the genome.

The assembly of the brown Norway rat genome (Rat Genome Sequenc-
ing Project Consortium, 2004) is a good example of one hybrid strategy. The
several operations were actually conducted in parallel, but conceptually they
included the following steps. A set of BAC contigs was generated based upon
fingerprinting of the almost 200,000 BACs. The resulting fingerprint contig
map was used to select a subset of BACs that were individually shotgun se-
quenced at low sequence coverage (depth approximately 1.8). These sequence
reads are thus binned in the genome region contained in the corresponding
BAC insert, but the read depth is not sufficient for assembly of the whole
BAC insert sequence. In parallel, however, WGS sequencing to a depth of 7x
sequence coverage had been performed. The low-coverage sequences binned in
each BAC could be used as probes to “fish” for overlapping sequences in the
larger set of WGS sequencing reads. The resulting set of reads belonging to
each BAC (binned low-coverage reads+ overlapping reads identified among
the higher-coverage WGS sequence reads) were then assembled together to
produce a set of “enriched” BACs, or “eBACs.” Based upon sequence over-
laps, the set of eBACs were then assembled into contigs (“bactigs”) and into
higher-order assemblies (scaffolds; see below) in the usual way.

8.4.3 Whole-Genome Shotgun Sequencing of Eukaryotic Genomes

Whole-genome shotgun sequencing clearly is a viable approach for small
genomes, such as viral genomes. But it was not clear that this approach would
be feasible for larger genomes. In particular, there were doubts that it was
appropriate for vertebrate genomes in general and the human genome in par-
ticular (Green, 1997). Part of the reason for this pessimism had to do with the



"A[quuasse 91} Ul PapN[oul aIe jer[} 9ouanbas anbrun jo soyo)ails om) jo uoryeinuriod Ul }[NSal IOPIO
1091100UT 9} UT POIISIA SOOIIIDA “PYSLI o) Je A[qUISSSR 9T} U] ‘S9DILI0A INOJ [[B HISIA 0} [1e] 210JaIot) pue ([ ], YIIm pojeqe] oull UIy?})
oouenbos o1} Jo suorprod 930[ep g [pued ul sorjquiesse Yjog wo[qoid red URIUO)TUIRH S} 0} UOIN[OS Je[norred aUO 03 SPUOdSaLIod
(p-0-q-e) A[quiesse 1091100 o1, "¢ [oued Ul seT[quIesse a7 soyeIpsn[l A[resryderd [ [oued IYSLI oY) UO UMOYS Se P PUR & UsMII(
eouenbas a1y Jo suoryrod anuuied 10 939[ep Arul 10 ‘939 o1} U0 uUmOys sk (p/e yeador o9yrsoduroo o[3uls e 10J 1deoxo) seousnboes pajeadal
JO D0[q oI17Uo 1) 9)9[op AR SPEAI 90ULNDAs oY) YIIM JUI)SISU0D SAI[qUIdSSY ¢ [oued ‘([)eslllopun soUl[ 1I0Ys) speal aouenbas o)
Aq peuureds aq 0} Suo[ 00} are seduanbes pajeador oy T, *(Surpeys juaIeyIp Sulavy soUI] ULYOI] 10 PI[os) seouanbas anbrun £q pajeredas
oIe p-e soouanbos pojeador oy, 1y [ourRd ‘seousnbes pojeaodor Jo 00USIINOO0 9Y) WOI SUMNSOI SOI[qUISSSE OAIIRUINTY Q'8 Siq

CELTTITTTTT “She]




216 8 DNA Sequence Assembly

nature of eukaryotic genomes. It had been known for a long time that eukary-
otic genomes contain repeated sequences. Physical biochemical methods had
established that many copies of several families of repeated sequences were
present in Drosophila and human genomes. For example, the human genome
consists of about 45% repeated sequences, with over a million copies of Alu ele-
ments alone (International Human Genome Sequencing Consortium (IHGSC),
2001). This creates a problem for DNA sequence assembly, as illustrated in
Fig. 8.6.

We imagine a region of the genome containing four copies of a repeated
sequence, labeled a, b, ¢, and d (Fig. 8.6A). The repeats may not be precisely
identical in their sequence but have diverged over time to various extents from
a consensus sequence. When random shotgun sequencing of this genome seg-
ment is performed, the resulting fragments no longer indicate the connectivity
of the unique sequences between the repeated sequences. This is because some
repeats are sufficiently long that they cannot be completely spanned by a se-
quence read. In attempting to reconstitute the original sequences from the
individual fragments, we find that there are a number of possible ways of as-
sembling the sequence. Some of these connections may “collapse” a portion of
the genome, deleting unique sequences that should have been included in the
assembly (Fig. 8.6B). The problem is redrawn as a Hamiltonian path prob-
lem in Fig. 8.6C. The Hamiltonian path problem is to find a path through a
graph such that each vertex (a repeated sequence in this case) is visited only
once. There are no efficient algorithms for solving the Hamiltonian path prob-
lem, which is NP-complete (See Section 4.3). We illustrate in Fig. 8.6C the
correct path (thin line) and incorrect paths (thick lines or paths that delete
some unique sequences) for the examples in Fig. 8.6B. How then can we hope
to perform a whole-genome sequence assembly from a random shotgun ap-
proach if there can be 10° to 10° vertices?

We saw already in the case of the double-digest problem (Chapter 4) that
difficult computational problems sometimes can be avoided by imaginative
experimental designs (e.g., the Smith and Birnstiel mapping method). Al-
tered experimental designs also made it possible to apply WGS approaches
to eukaryotic genomes. The first eukaryotic test case for this method was
the assembly of the Drosophila melanogaster genome (Meyers et al., 2000),
and the methods developed there have been extended to the human genome
(Venter et al., 2001). The key experimental feature of these approaches is the
use of multiple clone libraries, each having different sizes of inserts, and with
tracking of sequences from both ends of each cloned insert.

We need to step back for a moment to recall the approaches used in the
first WGS sequencing of a free-living organism, Haemophilus influenzae (Fleis-
chmann et al., 1995). Bacterial genomes are easier subjects for WGS sequence
assembly because they are about 1/100 to 1/1000 the size of typical vertebrate
genomes and because they have few repeated sequences. Even for H. influen-
zae, two different libraries were employed: a small plasmid library with size-
selected inserts approximately 2kb in size and a lambda library with inserts
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about 15-20kb in size. The sequence assembly was aided by the following
experimental design features:

— Two libraries—one small-insert and one larger-insert—were employed.

— Sequences from both ends of the inserts were obtained, and these end-
sequence pairs were tracked for use in assembly.

— The insert sizes in the libraries were confined to a relatively narrow size
range.

The small-insert library provided the templates for generating the high levels
of sequence coverage necessary to include most of the genomic sequences. The
large-insert library aided in closing gaps in the sequence, and, most impor-
tantly, the end reads from the large inserts, when each lay in a different contig,
provided data on the distance and orientation of these contigs relative to each
other.

These approaches were extended and refined in their application to the
Drosophila genome (Adams et al., 2000; Meyers et al., 2000) and the human
genome (Venter et al., 2001). The methods had to be refined to accommo-
date the larger fraction of repeated sequences (about 3.1% in the Drosophila
genome and about 45% in the human genome). We use the details for the
Drosophila project because they are simpler but typical of both. Three dif-
ferent libraries were prepared for the Drosophila sequencing project: a 2kb
insert high-copy-number plasmid library (8x clone coverage); a 10kb insert
low-copy-number plasmid library (7x clone coverage); and a 130kb insert
BAC library (13x clone coverage). (This may be a good time to review the
concept of coverage, discussed in Section 4.5.1.) In most cases, sequence reads
were obtained from both ends of each insert. Such reads are called mate
pairs or paired-end sequences. In total, the raw data consisted of 3.2 mil-
lion reads plus the clone and mate information for each. Note that there are
two types of coverage. Clone coverage corresponds to the average number
of genome equivalents contained within the collection of complete inserts rep-
resented in each library. Clone coverage need not be the same for the different
libraries. As we indicated earlier, sequence coverage corresponds to the av-
erage number of times each base position is represented in the collection of
all sequence reads. Note that sequence coverage is less than clone coverage
because only a fraction of each insert is represented in the mate pairs. Before
sequences of mate pairs are used for assembly, they are trimmed to leave only
sequences with sufficient quality, and they are screened to remove contami-
nating sequences (e.g., vector sequences or E. coli sequences) and possibly to
set aside reads from some of the repeated sequences.

The first phase of the assembly is alignment of sequence reads. The align-
ments must meet predetermined criteria. For example, Drosophila and human
sequence assemblies required overlaps that were at least 40 bases in length
and 94% identical. The products of this initial “overlap” phase of sequence
assembly are unitigs. A unitig is a small contig composed of sequence reads
that have been unambiguously assembled. (The overlaps are uncontested—
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there are no contradictory overlaps.) In the human sequence assembly, each
unitig consisted of about 30 overlapping sequence reads. Some of these unitigs
are a result of assembling multiple copies of repeated sequences. These “over-
collapsed” unitigs are recognized by significantly larger-than-average read
depth or sequence coverage, and they are not used in the assembly. The
remaining unitigs are called U-unitigs, which contain unique sequences, al-
though they may include repeated sequences at their ends.

The next phase is to assemble U-unitigs into larger contigs. Remember
that contigs are continuous stretches of sequence; therefore, unitigs and U-
unitigs are contigs. Contigs reported by the sequence assembler are larger
contigs composed of U-unitigs that have been placed and oriented based upon
mate pairs from clones that “bridge” between them (see Fig. 8.7). These
larger contigs, in turn, are assembled into scaffolds. A scaffold is a set of
contigs that have been ordered and oriented such that the approximate spacing
between them is known. Again, the mate pair reads, particularly those from
the larger-insert clones, are used to produce the scaffolds. There still may be
gaps resulting from a region of the genome not sequenced or from repeated
sequences that were set aside earlier during the identification of U-unitigs.

The ultimate goal of a genome sequence assembly is a finished sequence—
an ungapped listing of all consensus bases in the genome together with a
high-quality score for each base. In practice, we may need to be content with
an assembly of euchromatin only since clones containing heterochromatin may
not be stable. The initial published genome sequence of Drosophila represented
only 120 Mb of the 180 Mb genome because 1/3 of the Drosophila genome is
heterochromatin. The initial version of a genome sequence, performed at low
sequence coverage, is called a draft sequence. A prefinished sequence is
a consensus assembly with gaps and some low-quality consensus scores, but
with the desired high level of sequence coverage. Production of a finished se-
quence from a prefinished sequence is a slow process specifically tailored (not
automated) to the particular deficiencies of each problematic region in the
prefinished sequence. Filling the gaps may require directed approaches such
as chromosome walking. Regions having low-quality scores may require rese-
quencing either by using appropriately placed custom-synthesized primers or
perhaps by using altered sequencing substrates (e.g., 7-deaza dGTP or dITP)
to alleviate peak compression problems.

We mentioned earlier the difficulties posed for genome sequence assem-
bly by repeated sequences. We indicated that the repeated sequences corre-
sponded to vertices in a Hamiltonian path problem, that is NP-complete. From
the subsequent experimental description, it should be evident how problems
with repeats were avoided by experimental design. By focusing on U-unitigs,
we focused on edges—mot vertices. Most of these edges are unique sequences.
By using large-insert clones, it is possible to correctly orient and place the
edges into scaffolds. The edges (U-unitigs) may include portions of flanking
repeated sequences at their ends, so they provide guidance for the process of
adding back the repeated sequences that may have been set aside either be-
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cause of initial screening or as collapsed unitigs. The experimental approaches
transformed the problem from one that was difficult to solve computationally
to one that was amenable to brute force, large-scale approaches.

Whole-genome shotgun sequencing is now widely used for determining the
DNA sequences of both prokaryotic and eukaryotic genomes. As described in
this chapter, libraries are used to provide sequences from both ends of the
genomic inserts. Using different length inserts allows many of the problems
of repeated sequences in the genome to be solved. It is no surprise that DNA
containing long nearly-identical repeats may not be properly assembled. In
She et al. (2004) it was shown that repeats longer than 15kb and over 97%
similar were not always resolved; therefore, the whole genome shotgun se-
quencing produced an assembly shorter than the true genome. They recom-
mend a mixed strategy of first a whole-genome shotgun sequence assembly to
produce a draft sequence, followed by BAC analysis. An example of such a
hybrid strategy was discussed in Section 8.4.2.
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Exercises

Exercise 1. The first four lanes (reading left to right) in Fig. 8.2B correspond
with sequencing reactions (for a single template) supplied with ddA, ddC,
ddG, and ddT, respectively. What is the DNA sequence indicated by these
four lanes?

Exercise 2. Assume that we are given sequences composed of independent
letters of uniform probability. Two sequences overlap by three letters in two
different configurations. Show that the probability of at least one three-letter

exact overlap is
1N /1\°
2 — .
4 4

Exercise 3. For A = CAAACGTCT and B = AGGCTAAA, perform overlap align-
ment as in Computational Example 8.1 (by hand) using +2 for match, —1
for mismatch, and —2 for every indel letter. Show the matrix and all optimal
overlap alignments.

Exercise 4. Show by example that comparison of read r and r complemented
(r*) versus read s includes all of the four possible comparisons of r and r*
with s and s*.
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Exercise 5. In Fig. 8.6C, two alternative assemblies of a genomic segment
containing four repeated sequences are diagrammed graphically.

a. For this example, calculate the total number of possible assemblies con-
sistent with the sequence reads.

b. For the case in which reads from all of the unique regions are included,
the assembly can be described as a Hamiltonian path problem. Diagram
all possible assemblies that begin at a and end at d.

Exercise 6. A whole genome of 150 Mb is to be sequenced. A small-plasmid
library (average insert size 3 kb) providing 5X insert coverage ( = clone cov-
erage) and a BAC library (average insert size 150kb) providing 15x insert
coverage are prepared for sequencing. If sequencing reads of length 700 nt are
generated from both ends of all inserts in both libraries, compute the average
sequence read coverage for the genome.

Exercise 7. The coverage of a sequencing project is the mean X\ of a Poisson
distribution. It turns out that the Poisson random variable is the depth of
coverage along the genome. Using this idea and the result from Exercise 6,
compute the expected fraction of the genome uncovered. What is the fraction
of the genome covered by three or more reads? Convert these fractions into
bp for the project.

Exercise 8. The function o.1lap (which can be downloaded from http://www.
cmb.usc.edu) constructs the portion of an overlap matrix resulting from com-
paring direct reads r; and r; with each other, recording any matches below
the diagonal of the overlap matrix.

a. Modify this function so that it will create the portion of the overlap ma-
trix above the diagonal, corresponding to alignment of direct reads ri to
complementary reads 7;.

b. The code fragment

#test for overlap of j with left end of i
s<-0 #Initialize counter
for(q in 0: (m-1)){
if (inseql[j, (k+q)]==1le[q+1])
{s<-s+1}

does not impose a penalty for mismatches when computing score s. Is a
mismatch penalty needed in this application? Why or why not?

Exercise 9. Download the set of 40 sequence reads (8 nucleotides long each)
in the file r.reads.txt from http://www.cmb.usc.edu. Perform the se-
quence assembly using o.lap and your modification of o.lap (Exercise 8)
to create the overlap matrix. Use m =4 and t = 0.8.
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a. For any sequence i, it is possible that sequences j that appear in the
overlap matrix do not correctly overlap. How can you reduce this problem?

b. Do you assemble a single contig? What does this indicate?

c¢. The reads were not annotated with respect to the clones from which they
came. If they had been, you might have detected mate pairs (paired-end
reads). Suppose that you were told that reads 2 and 23* are from the same
clone and 70 bp apart. How would this affect your sequence assembly?

Hints
The following code will be useful:

# Function for reverse complement of string:

r.star<-function(r){

#function to produce the reverse comp. of r.

#r is a string (vector) of length n

b<-c(4:1) #complements of 1,2,3,4
r.rev<-r[length(r[]):1] #reverses sequence

s<-r.rev

s[1<-bl[r.rev[]] #replaces w/ complementary "letters"
return(s)

3

Syntax for extracting nonzero entries of overlap matrix (using sequence 9 as
an example):

> (1:40) [tmp[9,]!=0]
[11 237

All sequences that overlap with sequence 9
> ¢c(((1:40) [tmp[9,]1!=01),((1:40) [tmp[,9]!=01))
Output of overlapping sequences

r.reads[c(((1:40) [tmp[9,]!=0]), ((1:40) [tmp[,9]1!=01)),]

Exercise 10. This problem examines the effects of coverage and parameters
on the assembly result.

a. Sample r.reads without replacement, taking 25 of the sequences. Perform
the assembly again as in Exercise 9 (with the same values of m and ).
How does this affect the sizes of the assembled contigs and the number of
islands?

b. Using the full set of 40 sequence reads, what is the result of changing m
from 4 to 5 with ¢t = 0.9?
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Signals in DNA

9.1 The Biological Problem

We consider a signal to be a DNA or RNA sequence pattern that is recognized
by a protein or other molecule (or, for RNA, sometimes another region of the
same molecule). Binding sites for proteins on DNA are important examples
of signals, and in this chapter we focus on these signals. Particular instances
of the sequence pattern may be represented by a sequence of letters in the
pertinent alphabet (e.g., A, C, G, T for DNA), but for signals recognized by
proteins, this is an approximation: proteins actually recognize specific atoms
or groups of atoms on bases or base pairs. “Recognize” usually means binding
in the thermodynamic sense. This may be strong binding, as in the case of re-
pressors binding to operators, or binding may be transient, as with restriction
endonucleases. Examples of common signals in DNA are:

— Restriction endonuclease recognition sequences (e.g., GAATTC for FcoRI).

— Binding sites for regulatory proteins: These proteins may function as re-
pressors (e.g., cI protein of bacteriophage lambda, which binds to the cor-
responding operator), may regulate gene expression in response to physio-
logical conditions of the cell (e.g., CRP protein, the cAMP receptor protein
of E. coli), or may be eukaryotic transcription factors such as the glucocor-
ticoid receptor (which binds to the GRE or glucocorticoid receptor element
under appropriate conditions).

— Elements within replication origins and termination regions in genomes.

— Promoters: These are sites that determine where transcription is initiated.
There are different classes of promoters, depending upon the type of RNA
polymerase (eukaryotes) or type of specificity factor (prokaryotes) that
acts at these sites. Within any particular class of promoters, individual
examples have been fine-tuned by evolution to provide the appropriate
level of transcription for the genes that they control. This means that pro-
moter sequences display a much greater degree of sequence variability than
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is observed for other signals (such as restriction endonuclease recognition
sequences).

9.1.1 How Are Binding Sites on DNA Identified Experimentally?

Often the starting point is a cloned or PCR~amplified piece of DNA that is
hypothesized to contain a binding site for a particular protein (e.g., a region
near the 5 end of a gene, such as the lac promoter region). In most cases
of interest, the DNA is duplex rather than single-strand. To determine ex-
perimentally whether a particular protein binds, it is also necessary to have
purified (or partially purified) binding protein (e.g., CRP protein) stored in
the freezer.

One way to identify whether a protein-binding site is present or absent
on the DNA fragment is an electrophoretic mobility-shift assay (or gel-
shift assay). In this experiment, duplex DNA in an appropriate buffer for
protein binding is mixed with the binding protein and incubated to allow
formation of the DNA-protein complex. The reaction mixture is then loaded
onto a polyacrylamide gel, and electrophoresis is performed with naked DNA
(no protein supplied) run in an adjacent lane. Binding of the protein to the
DNA reduces the mobility of the DNA fragment relative to its mobility when
there is no bound protein. The resulting shift in the position of the protein-
bound fragment is visible after staining the gel. The amount of shifted complex
depends upon how much protein was supplied and on its binding equilibrium
constant.

Footprinting experiments can locate the positions of protein-binding sites
on DNA molecules. In one implementation of this approach, duplex DNA con-
taining the binding site is labeled at one end (on one strand) and is allowed to
bind the protein, which covers a small segment of the DNA. The complex is
then briefly treated with a nonspecific cleavage reagent such as DNase I, which
cuts only in regions of the molecule not protected by the protein. Hydroxyl
radicals can also be used for nonspecific cleavage. Each of the many DNA
molecules in solution may be cleaved at one or more positions not covered by
the protein. By electrophoresis of the treated DNA on a denaturing gel of the
type used for analyzing DNA sequencing reaction products, single-strand frag-
ments whose lengths extend from the labeled end to the various cleaved sites
are resolved from each other, generating a “ladder” of bands having different
lengths. The cleaved positions are located throughout the DNA except for
that portion of the DNA that was protected by the bound protein. The region
in the ladder where there are few (or fainter) bands is called the footprint.
The location of the footprint is determined from a control “ladder” having
fragments of known size.

Sometimes the investigator may possess proteins known to bind DNA but
not instances of the cognate binding site in a DNA of interest. In that case, it
is possible to retrieve fragments of DNA containing the binding site or sites
by using chromatin immunoprecipitation (ChIP). (ChIP experiments are
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used with other approaches, particularly genomic microarrays, to identify ge-
nomic locations of sites that bind particular proteins.) For example, if we have
purified protein P known to bind to eukaryotic replication origins, it is possible
to produce in rabbits (or rats, mice, or goats) specific antibodies that recognize
protein P (see Section 1.5.2 for a more complete description). To identify DNA
binding sites for P, we first perform in vivo chemical cross-linking of chromatin
proteins, including P, to DNA. The chromatin is then extracted from the cells,
and the DNA in the protein-DNA complexes is fragmented into smaller pieces
(e.g., 500 bp long) by hydrodynamic shearing. Complexes of P with the DNA
to which they are bound are then precipitated by using the anti-P antibodies
(possibly with the aid of a secondary antibody). Cross-linking is reversed, and
the DNA enriched for P-binding sites is purified. The sequence of the binding
sites for P is revealed after cloning, sequencing, and alignment of the DNA.
However, approximately half of the DNA recovered by ChIP does not result
from specifically bound P. This is because the vast excess of proteins that
bind weakly and nonspecifically nevertheless bind somewhat because of their
higher concentrations, thus contributing to experimental “noise.”

9.1.2 How Do Proteins Recognize DNA?

We indicated that a signal is often a short stretch of a nucleic acid sequence
to which one or more proteins may specifically bind. This may be represented
by a string of letters. But what is the signal actually? After all, proteins
cannot “read” Roman letters! Obviously, proteins are sensing chemical groups
exposed on the DNA or RNA.

Proteins can recognize DNA or RNA by hydrogen bonding or electrostatic
interactions with the phosphodiester backbone of the nucleic acid. Also, they
may “read” the sequence of base pairs by hydrogen bond interactions with
the donor and acceptor groups at the edges of the base pairs in the major or
minor grooves. They also may employ hydrophobic interactions mediated by
the methyl group of thymine or may partially intercalate a hydrophobic group
between two base pairs (if the DNA is “kinked”). An example of site-specific
recognition of DNA by the engrailed homeodomain protein is diagrammed in
Fig. 9.1A. This illustrates interactions of specific amino acids with the major
groove, the minor groove, and the phosphodiester backbone (shaded circles).
What really counts for specific protein binding is the ability to recognize the
actual sequence of base pairs, and particular patterns of hydrogen bond donor
and acceptor groups on the edges of base pairs allow discrimination between
them (Fig. 9.1B).

Protein-binding sites on DNA may be simple, as in the case of restric-
tion endonuclease recognition sequences, or they may be complex. They may
have internal symmetry (e.g., inverted repetition of sequence motifs). They
may have highly conserved specific sequence patterns or may tolerate vari-
ation (degeneracy) at particular positions. DNA-binding proteins are com-
monly oligomers (e.g., dimers or tetramers) of smaller polypeptide chains.



228 9 Signals in DNA
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Fig. 9.1. How proteins interact with DNA. Panel A: Interactions between specific
residues of the engrailed homeodomain protein with its binding site. The cylindrical
surface of the DNA has been cut along one of the phosphodiester backbones and
unwrapped for projection onto a plane. Bases A or T are represented by shaded or
unshaded rectangles, respectively. Base pairs that do not specifically interact are
not shown. Note that the bases indicated in the minor groove are the opposite edges
of the same bases appearing in the major groove. Phosphate groups are represented
by circles. Shaded circles represent phosphate groups with which engrailed protein
specifically interacts. Dashed arrows indicate interactions of particular amino acid
residues with specific bases or phosphate groups. Note that there are interactions
between the protein and the bases in both the major and the minor grooves. Un-
derlying data were taken from Kissinger CR et al. (1990) Cell 63:579-590. Panel
B: Locations of hydrogen bond donor groups (arrows pointing away from the struc-
ture) and acceptor groups (arrows pointing toward the structure) on the edges of
the Watson-Crick base pairs in the major groove. Particular sequences create char-
acteristic patterns of donor and acceptor groups, particularly in the major groove.
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Each polypeptide may be capable of binding DNA on its own, but as an
oligomer, the binding strength is increased. If the oligomer is a dimer hav-
ing a “head-to-head” arrangement, then the binding protein will have twofold
rotational symmetry, and therefore the site on the DNA to which it binds
will also have twofold rotational symmetry, recognized as inverted repetition
of the DNA sequence (Fig. 9.2). An example of what is meant by inverted
repetition is the GRE (glucocorticoid receptor element):

5/-NNNNNAGAACANNNTGTTCTNNNNN-3’
3/-NNNNNTCTTGTNNNACAAGANNNNN-5

The underlined bases appear in an opposite direction relative to the laboratory
frame of reference, hence the “inverted” adjective. These repeated bases are on
opposite strands. The two symmetrically disposed strings of conserved bases
in a binding site are called half-sites. Notice that, in this case, the binding
site can be recognized by examining either strand of the DNA for AGAACA.
For sites that lack this symmetry, it is necessary either to scan each strand
separately to find the binding sites on a duplex DNA or scan one strand for
the two strings representing both the site and its complement, thus effectively
examining both the strand and its complement in a single pass.

Figure 9.2 illustrates the relationship between binding protein and binding
site structure using bacteriophage lambda cro protein as a specific example.
cro protein (Cro) can bind to lambda operator sites. Cro is a homodimer
having twofold rotational symmetry. Therefore, the operator also has twofold
rotational symmetry (i.e., it has inverted repeat structure). Moreover, be-
cause each cro protein monomer binds by using an alpha helical region that is
inserted into the major groove, interaction between successive major groove
regions on the same side of the DNA helix places the centers of the half-sites
approximately 10 bp away from each other. (The average helix pitch of B-form
DNA is 10.4 bp.)

The sites recognized by cro protein are summarized in Table 9.1. Observe
that the sequences of the six operator sites are similar, but not identical, and
that the sequences of half-sites comprising the same operator are similar, but
not identical. Obviously, any realistic description of signals in DNA must be
capable of representing this sequence variation.

9.1.3 Identifying Signals in Nucleic Acid Sequences

Given a set of DNA or RNA sequence strings, how can we determine what
signals they encode, and how can we represent these signals? One approach
seeks to gain knowledge of a pattern that has not been previously specified
(an unsupervised approach). This is a daunting, and in strictest terms im-
possible problem. However, we know a good deal about the length and extent
of protein-binding patterns in DNA, as illustrated in the previous section. An
example of unsupervised pattern discovery is identifying k-words that are over-
represented in a set of functional sequences such as promoters. We provided
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Fig. 9.2. How site structure reflects the structure of a binding protein. The binding
protein (Cro in this case) binds head-to-head as a dimer. The individual monomer
components interact with the DNA through the major groove (bottom panel). In-
teraction of the dimer with successive major groove regions on the same face of
the helix implies that the centers of the two interaction regions will be spaced 10
to 11 bp apart—the pitch of B-form DNA. The equivalence of interactions between
helices 3 of both monomers and DNA imposes inverted symmetry within the DNA
sequence to which Cro binds.
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Table 9.1. Binding sites for lambda cro protein at operators in the cI region of
bacteriophage lambda (Gussin et al., 1983). Underlined base pairs separate each site
into two half-sites.

OLl 5 TATCACCGCCAGTGGT AY
33 ATAGTGGCGGTCACCAT-5
Orl 5-TATCACCGCCAGAGGT AJ
3 ATAGTGGCGGTCTCCATH
OL2 5-TATCTCTGGCGGTGTTG3
33 ATAGAGACCGCCACAAGCYH
Or2 5-TAACACCGTGCGTGTTGY
JATTGTGGCACGCACAACH
O3 5-TATCACCGCAGATGGTT-3
3 ATAGTGGCGTCTACCAAF
Or3 5-TATCACCGCAAGGGATAJZ
3 ATAGTGGCGTTCCCTAT-5

an extensive illustration of this in Section 3.6. In that case, we expected there
to be signals in the regions immediately upstream of the 5’ end of transcribed
gene regions, but we did not specify what they were. Also, we did not require
that the signals be present in all members of the set. We were able to identify
over-represented k-words such as TAAT and ATAA that are contained within
TATAAT (—10 region) without alignment or experimental specification of the
signal. Unsupervised methods have been used to identify k-words represent-
ing both known and previously unrecognized regulatory sequences for yeast
genes (Brazma et al., 1998; van Helden et al., 1998). A statistical approach
devised by Bussemaker et al. (2000) can be used to generate a k-word dictio-
nary of regulatory sites or other significant motifs. Unsupervised methods are
not discussed further here, but see Section 14.4.3.

Another approach, supervised learning, includes prior knowledge of the
pattern to be found. For example, multiple instances of a known and aligned
DNA signal can be used to define parameters of probabilistic models describ-
ing that signal. This is the subject of the remainder of this chapter.

9.2 Representing Signals in DN A: Independent Positions

There are several ways of representing signals in DNA, ranging from very
simple to rather complex. The simplest method of representing a binding site
is as a consensus sequence—a string of characters corresponding to the
most common occurrences of bases at each position. This is adequate for sites
such as restriction endonuclease recognition sequences and reasonably good
for sites such as GRE half-sites (examples aligned below).
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Position: 123456
AGAACA
ACAACA
AGAACA
AGAAGA
AGAACA
AGAACT
AGAACA
Consensus: AGAACA

In this particular collection of sites, one of the four bases is much more
likely to occur at any position in the site than any of the three others. (Ex-
ceptions to the consensus base at any position are underlined.) The consensus
sequence is a listing of the preferred bases at each position. If there are po-
sitions at which either of two bases is commonly found, then the consensus
might be written to indicate both possibilities. So, for the example above, we
might write A(C/G)AA(C/G) (A/T) if either of the indicated letters is tolerated
at positions 2, 5, and 6. There are cases, however, where there is much more
sequence variation at some or all of the positions within the binding site.
For such cases, consensus methods are not appropriate and a probabilistic
description is required.

A string of iid letters does not contain signals, except by chance. To gen-
erate a string of iid letters, a base is assigned at each position according to a
probability distribution, which might be represented as a column vector (4 x
1 matrix) whose entries correspond to the probabilities of A, C, G, or T deter-
mined by the overall base composition of the DNA. We described this process
in Chapter 2. In the example of the GRE half-site above, it should be obvious
that there is no single probability distribution for describing the site. Instead,
we must specify (in principle) a different distribution at every single position
(in other words, we are removing the “id” from “iid”). This suggests another
representation of protein-binding sites. We create a matrix of probabilities by
“binding” together (the cbind function in R) the column vectors that repre-
sent the probability distributions (probabilities of each letter for any position)
at each position in a site. Therefore, each element in this matrix represents
the probability of finding a particular base at a given position.

For example, the probability distribution at position 2 for the limited
sample of GRE half-sites listed above, with rows corresponding to A, C, G, and
T, respectively, is

0.00
0.14
0.86
0.00

and the matrix representing all six positions in the half-site is
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1.00 0.00 1.00 1.00 0.00 0.86
0.00 0.14 0.00 0.00 0.86 0.00
0.00 0.86 0.00 0.00 0.14 0.00
0.00 0.00 0.00 0.00 0.00 0.14

where rows ¢ = 1,...,4 correspond to A, C, G, and T, respectively, and columns
j =1,...,6 correspond to the positions within the site. This representation
of the sites is called a positional weight matrix, or PWM. (See Stormo,
2000a for a review of the history of PWMs.) Note that the six lambda operator
half-sites Table 9.1 display more sequence variation at each position than is
seen at any position in the GRE half-sites, and thus the positional weight
matrix provides a much more precise representation of these half-sites than
would a consensus sequence. There are other cases where consensus methods
are very imprecise and inappropriate, such as for promoter sequences.

In preparation for describing and analyzing a signal in DNA, we gather
together and align representatives of that signal (see below). A training set
is a collection of bona fide signals (or sites) used to produce the probabilistic
model. A second set of bona fide signals or sites is necessary for testing the
mathematical description or model. This is called the validation set. Some-
times the construction of the model requires a challenge set of sequences
that are not sites. The challenge set is the one to which the real sequences in
the training set are contrasted, such as a set of “nonsites” to be contrasted
with sites. In some circumstances, we might use a probabilistic model to pro-
duce the challenge set (for example, an iid model or a Markov chain model).
The process of estimating the probability distributions from the training set
is called learning in the machine-learning world.

9.2.1 Probabilistic Framework

Our practical goal is to recognize a signal of length w within a string repre-
senting a DNA sequence. To do this, we parse the sequence using windows
of width w and ask how well the w letters in that window correspond to a
particular signal. This means that we need to assign some type of score to the
sequence in each successive window. We assume that we have a collection of
aligned DNA sequences of the same length w and having no gaps, and that
we know that all members of this collection are sites for binding a particular
DNA-binding protein. How do we assign a score to any particular sequence
to describe its level of correspondence with the training set?

We follow the logical steps presented in Durbin et al. (1998). Given a col-
lection of aligned sites, each of length w, let p,; be the probability of any
particular letter a from {A, C, G, T} at position ¢ measured within a site. Iden-
tities of letters at each position in the sequence are assumed to be independent
of identities of their neighbors. (Remember that since we are talking about
signals, the probability distributions for the letters at each position are not
identical in the general case.)
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The probability of a sequence A = ajas...a, given hypothesis B that it
is a binding site is

P(A|B) = Hpm (9.1)

Suppose that the same sequence was chosen from a random collection of
bases (hypothesis R) with probabilities gq;. (The random model is iid.) Then
the probability of the sequence is given by

P(A|R) = H Gaiy (9.2)

and the odds ratio is given by

H DPai (93)

qaz

The score for the sequence A can be defined as the log of the odds ratio, or
P(A|B -
S =log, ]P’(A|R ZlogQ (Pai/qai) = ; i (9.4)

where s; = logy(pai/qa:) is the contribution to the sequence score of the base
at position i. (Note that we are taking the log to base 2 because eventually we
will be referring to “information” in bits. Note that log,(z) = In(z)/In(2).)

The py; may be used as elements in a positional weight matrix. For the
contrasting iid model, the g,; are independent of position (identically dis-
tributed), so from here on, we just refer to ¢u; as q,. If the base composition
is 50% G+C, then g, = 0.25 for each base for duplex DNA (i.e., ¢, = 0.25 for
all @ in {A,C,G,T}).

Let’s consider a more complex example than those we have considered
previously. Escherichia coli promoters have been recognized to contain con-
served hexamer sequences at approximately —10 and —35 relative to the first
position in the transcript. The consensus for the —10 hexamer is often repre-
sented as TATAAT. Table 9.2 lists nine examples of promoter segments for F.
coli; these are part of a larger data set given in Appendix C.3. Clearly, it is
hard to pick out the -10 hexamer in all cases using the consensus given above,
so we represent the -10 hexamer as a positional weight matrix using compiled
data for a subset of all E. coli promoters (Harley and Reynolds, 1987; Stormo,
1990). First, we create a matrix containing values for counts of each letter at
each position (rows ¢ = 1,...,4 corresponding to A, C, G, and T, and columns
corresponding to positions as before):

9 214 63 142118 8
22 7 26 31 52 13
18 2 29 38 28 5
193 19 124 31 43 216
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Table 9.2. A sample of E. coli promoter sequences. These sequences have been
aligned relative to the transcriptional start site at position +1 (boldface large letter).
Sequences from —40 to +11 are shown. Close matches to consensus —35 and —10
hexamers are underlined. See also Appendix C.3 for additional examples and sources
of the data.

—35 —10 -1

ORF83P1 | | |

CTCTGCTGGCATTCACAAATGCGCAGGGGTAAAACGTTTCCTGTAGCACCG
ada

GTTGGTTTTTGCGTGATGGTGACCGGGCAGCCTAAAGGCTATCCTTAACCA
amnP4

TTCACATTTCTGTGACATACTATCGGATGTGCGGTAATTGTATGGAACAGG
araFGH

CTCTCCTATGGAGAATTAATTTCTCGCTAAAACTATGTCAA CACAGTCACT
aroG

CCCCGTTTACACATTCTGACGGAAGATATAGATTGGAAGTATTGCATTCAC
atpl

TATTGTTTGAAATCACGGGGGCGCACCGTATAATTTGACCGCTTTTTGATG
cai'T

AATCACAGAATACAGCTTATTGAATACCCATTATGAGTTAGCCATTAACGC
clpAP1

TTATTGACGTGTTACAAAAATTCTTTTCTTATGATGTAGAACGTGCAACGC
crrP2-1

GTGGTGAGCTTGCTGGCGATGAACGTGCTACACT TCTGTTGCTGGGGATGG

The sums of the entries in each column are all 242, which is the number
of promoter sequences in this particular data set. The numerical entries in-
dicate an overwhelming preference for A at position 2 and a less pronounced
preference for A at position 5.

We can also represent the data by a matrix containing the relative fre-
quencies of each letter at each position:

0.04 0.88 0.26 0.59 0.49 0.03
0.09 0.03 0.11 0.13 0.21 0.05
0.07 0.01 0.12 0.16 0.12 0.02
0.80 0.08 0.51 0.13 0.18 0.89

Entries in this matrix correspond to entries in the previous one, each divided
by 242. Note that the sums of the entries in each column should be 1.0, and
they are, to within rounding error.

We can also represent the data by a third matrix (used for scoring), con-
taining the corresponding values for log,(pai/qa.). Such a matrix is known as
a position-specific scoring matrix (PSSM-—articulated as “possom”). If
we make the reasonable approximation for E. coli DNA that p, = 0.25 for all
a, the resulting PSSM is:
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—2.75 1.82 0.06 1.23 0.96 —2.92
—1.46 —3.11 —1.22 —0.96 —0.22 —2.22
—-1.75 -4.92 -1.06 —0.67 —1.11 —3.60
1.67 —1.67 1.04 —0.96 —0.49 1.84

Now let’s see how to score a particular sequence string. Take the sequence
ACTATAATCG for example. If we start parsing this from the beginning using
windows of width 6, we score hexamers ACTATA, CTATAA, TATAAT, ...until
we come to the end. The scores s, at each position for TATAAT (matches
with the consensus) are boxed in the matrix above. The score for TATAAT is
S=1.67+182+1.04+1.23+0.96+ 1.84 = 8.56. From (9.4), it is clear that
P(A|B)/P(A|R) = 27, so for TATAAT, P(A|B)/P(A|R) = 377. In contrast, for
ACTATA, § = —2.75—-3.114+1.04 + 1.23 — 0.49 — 2.92 = —9.75.

Suppose that only one base occurred at each position in every example
in the training set (e.g., only T appeared at position 1, only A at position
2, etc.). Then logy(pai/qa) would have been log,(1/0.25) = log,4 = 2 at
each position. The score for the six positions would then have been 12, and
P(A|B)/P(A|R) = 2!2 = 4096. This is the same ratio of probabilities that was
implicit when we were looking for an invariant 6 bp endonuclease recognition
site in DNA (see Section 3.2.2).

A positional weight matrix is a probabilistic description of a protein-
binding site or other signal, with the underlying assumption that the state
or letter at a given position is unaffected by the state or letter at the previous
position. We have emphasized the utility of such matrices for scoring potential
sites within a string containing other DNA. In addition, a PWM (elements
representing probabilities at each position) is a probabilistic model that allows
us to simulate sites, should we wish to do so. When we wanted to simulate a
string of iid letters (see Chapter 2), we used a single vector of probabilities to
generate a letter for each site in a particular simulated sequence. To simulate
a binding site of length w, we use consecutively w probability vectors, each
corresponding to a column in the PWM. This is done in one of the exercises
at the end of this chapter.

9.2.2 Practical Issues

We briefly touch on some practical matters that we have ignored up to now.
The first is aligning the sequences. For E. coli promoters, this was simplified
because the alignment could be approximately fixed relative to the transcrip-
tional start site. (The +1 position is determined experimentally.) For short
patterns or signals embedded in extensive other DNA, alignment is a more dif-
ficult proposition (i.e., finding statistically meaningful short local alignments
in long sequences). Having footprinting data helps to restrict the lengths of
the sequences to be aligned.

A second problem is defining the extent of the site (the value of w). Here,
footprinting data are also extremely helpful. The information content I(X;),
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mentioned in Section 9.4, can be used to determine the size of the sites. The
approach is to calculate I(X;) across the sequence containing the site and to
select those positions where I(X;) is significantly above the background level.

A third problem is that only a limited sample of the total population of
sites is available for use as a training set. This means that the elements p,; of
the positional weight matrix are only estimates of the population values. To
correct for a small sample size, we may compute py; as

_nai+1

Pai = N +4 ) (95)

where ng; is the number of sites having letter a at position ¢, and N is the
total number of sites in the training set. This is particularly necessary when
Nng; = 0 since the log,(pai/qs) term would then be undefined. This equation
provides a correction for small sample sizes by adding a “pseudocount” of 1
for each base at each position. The 4 in the denominator reflects the fact that
a pseudocount of 1 has been supplied for each of {A,C,G,T}. If there were no
observations at all (nq; = N = 0), the result would be p,; = 1/4, which is
what we would have predicted with no prior knowledge of the sites (assuming
equal probabilities of each base at each site).

Finally, note that, for a signal of length w, a positional weight matrix
contains 4w parameters. For a matrix of probabilities, only three entries in
each column are independent since the sum of the four entries must equal
1.0. Therefore, only 3w parameters are independent. If there were only six
members in the training set, there would on average be only two observations
available for estimating each parameter (6w observations +3w independent
parameters). This is such a small sample size that we would not expect the
parameters to be reliably estimated. The number of bona fide sites available
depends on wet-lab experiments, and this number may not be large enough to
provide both training and validation sets of adequate size. Sometimes methods
such as cross-validation (leave one out) are employed to test the predictive
performance of PWMs when the number of sites is too limited to provide both
training and validation sets of adequate size.

In Computational Example 9.1, we reinforce these concepts using the site
to which transcription factor GATA-1 binds. GATA-1 is a transcription factor
that regulates transcription in hematopoietic cells (cells that give rise to blood
cells, such as red blood cells or erythrocytes). The string representing its bind-
ing site has w = 6, and it is represented by the consensus (A/T)GATA(A/G).
Examples of GATA-1 binding sites are listed in the TRANSFAC database
(http://transfac.gbf.de/TRANSFAC/). (The database may list the binding
site embedded in a string of other sequence or may list either of two strands.
We need to perform alignment and record the complements of the sequence
given, as appropriate.) We chose GATA-1 binding sites for this example be-
cause there is a reasonably large number of listed binding sites for estimating
the parameters (49 human sites). These site sequences are listed in Table 9.3.
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Table 9.3. Binding sites for hematopoietic transcription factor GATA-1 from H.
sapiens. Source: TRANSFAC database (http://transfac.gbf.de/TRANSFAC/).

TTATAG AGATAA TGATTA
AGATAT TGATAA AGATAA
AGATAG AGATAA AGATAG
ATATCT AGATAG TGATAT
AGATAG TGATAG AGATAA
AGATAG TGATCA TCAGAG
AGATAG TTATCA AAGTAG
TGATAA AGATGG AGATTA
AGATAA TGATAT TGATAG
AGATAA AGATAG TGATAG
CGATAG TGATAA AGATAC
AGAGTT GGATAC TGATTG
TGATAA AGATAA AGATTA
TGATAA CGATAA AGAATA
AGATGG TGATAG AGATAA
AGATAG AGATAA AGATTA
AGATTG

Computational Example 9.1: PWM representation of GATA-1 sites

We begin by converting the data in Table 9.3 into a numerical representation,
as we have done in earlier chapters. The data are stored in the matrix gata.
The first three entries are:

> gata

[,11 [,21 [,3]1 [,4] [,5] [,6]
[1,] 4 4 1 4 1 3
[2,1 1 3 1 4 1 4
[3,] 1 3 1 4 1 3

We can produce a PWM in terms of probabilities of bases at each site
directly from gata. However, we ultimately want to generate scores according
to (9.4), so we also create a PSSM having elements of the form log,(pai/qa)-
This means that we need the probabilities of each base for genomic DNA.
Since these sites are from human DNA, we use the human base composition,
41% G+C, to produce the “background” probability distribution based upon
the iid model. Vector bg has four elements corresponding to the probabilities
of A, C, G, and T, respectively:

> bg<-c(0.295,0.205,0.205,0.295)
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> bg
[1] 0.295 0.205 0.205 0.295

Now we write a function to compute the PWM, given a matrix of sites
and the background probability distribution as input:

makepwm<-function(x,bg){

# x = matrix of N aligned sites coded numerically

# bg = vector (1x4) of background base frequencies
L<-length(x[1,]) # Number of positions in each site
N<-length(x[,1]) # Number of sites
pwn<-matrix(rep(1,4*L) ,nrow=4)

# pwm initialized to 1 for each matrix element (pseudocounts)
for (j in 1:L){

for (i in 1:N){

k <- x[i,j]
pwm[k,j]l <- puwm[k,jl+1
}

}
N <- N+4 # Denominator for small sample correction
pwn<-pwm/N # PWM in terms of probabilities
log2pwm<-matrix(rep(0,4*L) ,nrow=4,ncol=L)
# Initialize PWM in terms of log(base 2) of p/q
for(i in 1:4){
log2pwm[i,]<-log2(pwm[i,]/bgli])
# Scores for each [nucleotide, position], base 2
}
return(pwm, log2pwm)

}

The “guts” of this function are the lines

for (i in 1:N){

k <- X[I)J]
pwm[k,j] <- pwm[k,j]+1
¥

Here we have used the numeric coding of the sequence to identify k, which
in the second line after the for also specifies the numeric row number corre-
sponding to each base in object pwm. The vectorization in R avoids a set of
commands such as

if(x[i,j1==1) ...pwm[1,jl<-pwm[1,jl+1 ...elseif(x[i,j]l==2)

Notice that we are returning two objects from this function. This produces
an R “list” object, which we call tmp. Objects in the list tmp are extracted
by entering tmp followed immediately by the object name prefixed with the $
sign:
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> tmp<-makepwm(gata,bg)
> tmp$pwm

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.566040 0.037736 0.924530 0.037736 0.698110 0.433960
[2,] 0.056604 0.037736 0.018868 0.018868 0.075472 0.056604
[3,] 0.037736 0.849060 0.037736 0.056604 0.056604 0.396230
[4,] 0.339620 0.075472 0.018868 0.886790 0.169810 0.113210

> tmp$log2pwm

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.94018 -2.9667 1.6480 -2.9667 1.24270 0.55685
[2,] -1.85670 -2.4416 -3.4416 -3.4416 -1.44160 -1.85670
[3,] -2.44160 2.0502 -2.4416 -1.8567 -1.85670 0.95070
[4,] 0.20322 -1.9667 -3.9667 1.5879 -0.79678 -1.38170

(You should check for yourself to see what happens if you enter object name
tmp alone.)

Now we use log2pwm to generate scores for all of the input sites in gata.
To do this, we need a scoring function, which is shown below. This calculates
the score for the first L positions of any input sequence, where L is the site
length, here represented as length(log2pwm[1,]). We invoke this repeatedly
for the set of GATA-1 sites, and later we use it in another function to scan
along a long input sequence.

calcscore<-function(seq,log2pwm){

# seq is a vector representing input DNA numerically

# log2pwm is a PWM (4xL) with elements as log base 2

score <- 0

for (j in 1:length(log2pwm[1,]1)){
score<-score+log2pwm[seq[j], jl}

return(score)

}

Now we calculate scores for all of the GATA-1 sites. First, we extract
log2pwm from tmp as a separate object:

> log2pwm<-tmp$log2pwm
Then we loop calcscore over all elements in gata and store the resulting

scores in gata.score:

> gata.score<-rep(0,length(gatal,1]))

> for(i in 1:length(gatal,1]1)){

+ gata.score[i]l<-calcscore(gatali,],log2pwm)
+

>

3
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> signif(gata.score,2)

[1] 3.67 6.09 8.42 -0.61 8.42 8.42
[11] 5.62 0.60 7.29 7.29 5.32 8.42
[21] 8.42 7.68 4.60 0.59 5.32 5.35
[31] 5.23 7.68 8.03 5.25 8.03 8.42
[41] 5.99 7.68 7.68 5.61 5.64 5.99
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(We use the signif () function to limit the output to two significant figures).
We examine the score distribution graphically:

> hist(gata.score,xlim=c(-12,12),ylim=c(0,0.4),

+ nclass=10, prob=T)

The result is shown in Fig. 9.3. The score distribution is very broad and
asymmetric. Notice that some of the GATA-1 sites have scores below 0. What
would you have expected the average score to be for a set of background
sequences composed of iid letters? We return to this question in the example
after the last section of this chapter. We might wonder whether some of the
GATA-1 sequences in our training set have been misidentified.

<
(=)

Density
0.2 0.3

0.1

0.0

W |

-10 -5 0

gata.score

Fig. 9.3. Histogram of GATA-1 site scores for sites listed in Table 9.3.
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9.3 Representing Signals in DNA: Markov Chains

A PWM represents a signal under the assumption that the identities of letters
at a given position are independent of the identities of letters at the previous
position. The probability distributions in general differ at every position in
the site (i.e., the letters are not identically distributed). We can remove the
condition of independence by using a Markov chain description. We have
already used this in Chapter 2 to describe DNA sequences having dinucleotide
frequencies that departed from the iid predictions. That application assumed
that identities of bases at various positions were not independent but were
identically distributed at all positions (i.e., the same transition matrix was
employed at every position).

The comparison and contrast of the approach in Chapter 2 with the one
used here is illustrated in Fig. 9.4. When we were representing a string with
identical distributions of each letter, we started with an initial probability
distribution 7 and produced the probability distributions at each subsequent
position by multiplication using a single transition matrix, as diagrammed in
Fig. 9.4A. Only one transition matrix was required because we were consid-
ering homogeneous chains. The Markov chain illustrated in the diagram in
Fig. 9.4A is conventionally represented as shown in Fig. 9.5. To represent the
signals, the 7 vector is identified with the vector of probabilities of each state
at the first position, and subsequent probabilities are produced by multiplica-
tion by a succession of (w—1) transition matrices (Fig. 9.4B). Multiplication of
the vector of first position probabilities by matrix 2 produces the probability
distribution at position 2 given the distribution at position 1, multiplication
of the probability distribution at position 2 by matrix 3 produces the prob-
ability distribution at position 3 given the distribution at position 2, and so
on. It should be evident to you that the initial vector and the set of transition
matrices are sufficient to allow simulation of the binding site type to which
they correspond.

It is important to think about the data structure and the number of pa-
rameters. For PWMs, the probabilistic data were summarized in a matrix
that could be produced by binding together column vectors corresponding to
the independent probability distribution at each site. For the Markov chain
representation, we can stack the individual transition matrices to form a three-
dimensional array, or three-dimensional matrix. The R statistics package ac-
commodates this type of data construct. With the Markov chain description,
the number of parameters has increased compared with the positional weight
matrix representation. Remember that each row of a transition matrix con-
sists of the probabilities that the next letter is A, C, G, or T, given the letter
corresponding to the row label. Three of these probabilities are independent,
so 4 x 3 = 12 of the entries in each transition matrix are independent. There
are three independent probabilities in the vector for position 1, and there are
(w—1) transition matrices. Therefore, the number of parameters in this prob-
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A.
Markov chain, identical distributions

Transition matrix

s 2 3 4 5 ...
B.
Markov chain, nonidentical distributions
Transition Transition Transition Transition
matrix 2 matrix 3 matrix 4 matrix 5
LI ] -
LTI i) T BT Tl

b 2 3 4 5 ...

Fig. 9.4. Contrast between the Markov chain representation for positions with
identical probability distributions (panel A) and the model for positions in a sig-
nal (binding site) sequence (panel B). Numbered four-element horizontal rows are
the vectors of probabilities for A, C, G, and T at each position. These vectors are
transformed to vectors at the next position by matrix multiplication by a transition
matrix. In panel A, a single transition matrix is employed. In panel B, a different
transition matrix is required for each successive position.

abilistic description is 3 + 12(w — 1), or for w = 6 a total of 63 parameters (in
contrast with 18 parameters for a conventional PWM representation, w = 6).

In Computational Example 9.2, we represent the GATA-1 sites by using a
Markov chain.
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Fig. 9.5. A graphical representation of the Markov chain model for DNA that does
not contain a signal. Arrows indicate allowable transitions from one state to another,
and associated with each arrow is a probability for that transition. The initial state
is drawn from the initial probability distribution 7. In any chain generated by the
model, state n + 1 is assigned based upon the identity of the state at n and the
probabilities describing the model. The 16 dark arrows correspond to the elements
in the transition matrix and the lighter arrows to the entries in the initial probability
distribution, Fig. 9.4A. (Redrawn from Durbin et al., 1998.)

Computational Example 9.2: Markov chain representation of
GATA-1 sites

Step 1: Preprocess the data

We find it convenient to use logical operators, so we first convert the alpha-
betical characters into numeric values: A= 1, C= 2, G= 3, and T= 4. A space
is placed between each character. This can be done with Perl or with any text
editor. The data may be put in a file called gatalN.txt.

Step 2: Import the data

Read the data into a matrix object defined under R. If you do not use a
UNIX text editor, you may find that formatting elements are picked up by
read.table. Save your file as text only before using read.table.

> gata<-read.table("gatalN.txt", header=F)
Step 8: Make the probability vectors
Produce the vector representing the probability distribution at position 1.

This can be done by simple base counts and using the correction for small
sample sizes given in the last section.
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> length(gatalgatal,1]==1,1])
[1] 29

> length(gatalgatal,1]==2,1]1)
(1] 2

> length(gatalgatal,1]==3,1]1)
[11 1

> length(gatalgatal,1]==4,1])
[1] 17

> vectorn<-c(29,2,1,17)

> vectorn

[1] 29 2 1 17

Now, applying the small sample correction, we estimate the probabilities
from the frequencies and check that the probabilities sum to unity, as they
should:

> vectorl[]<-(vectorn[]+1)/(49+4)

> vectorl

[1] 0.56603774 0.05660377 0.03773585 0.33962264
> sum(vectori[])

(11 1

vectorl represents the probability distribution for the first position of this
collection of GATA-1 binding sites.

Step 4: Produce the transition matrices

We indicate how this is done for matrix2 (used to create the probability
distribution of sites at position 2 given vector1l). In general, we need to read
down each column of gata for columns 2 through 6, evaluating the number
of times that 1, 2, 3, or 4 appears in a column (except the first) given that
each instance is preceded by 1, 2, 3, or 4 in the previous column. We first
do this by hand, to see how it works, and then by using an R function. (You
may wish to revisit Section 2.6, where we used R to implement a first-order
Markov process that generated a sequence having predetermined dinucleotide
frequencies.)

[a.] Initialize a matrix to hold counts, matrix0.

> matrixO<-matrix(nrow=4,ncol=4,rep(0,16))
> matrix0
[,11 [,2]1 [,3] [,4]
[1,] 0 0 0 0
[2,] 0 0 0 0
[3,] 0 0 0 0
[4,] 0 0 0 0
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[b.] Record the following numerical counts in matrixn (4x4): matrixn[1,1]
is the number of times that a 1 in the first column of the gata matrix is
followed by a 1 in the second column for the whole list of binding sites. By
inspection of Table 9.3 (in numerical from), we see that this happens one time
(row 40 of gata), so the [1,1] element is 1.

matrixn[1,2] is the number of times that a 1 in the first column of the
gata matrix is followed by a 2 in the second column. By inspection of Ta-
ble 9.3, we see that there are no instances of this at all, so we record 0 for the
[1,2] element of matrixn.

We do one more entry by hand. matrixn[4,3] is the number of times
that a 4 in the first column of the gata matrix is followed by a 3 in the
second column. There are 14 occurrences of 4 followed by 3, so we record 14
in matrixn element [4,3].

Once we have calculated all of the matrix elements in matrixn, we need to
convert the numerical counts to probabilities to create the transition matrix,
matrixp. Recall that, for transition matrices, the four probabilities in each
row must sum to 1.0. So if the elements in the ath row of matrixn sum to IV,
then the probability value at each element of the transition matrix, matrixp,
is (ng; +1)/(N+4),i =1,2,3,4, if we apply the small sample correction that
we used earlier.

Clearly, all of these operations are much too tedious for hand calculation;
therefore, we write a function in R to perform the job for us:

transmatp<-function(sites,col,matrix0){
#sites = numeric matrix of n binding sites, w positions
#col = column that transition matrix produces
#matrix0 = matrix of counts for n = col, initialized to O
matrixn<-matrix0
for(i in 1:length(sites([,1]1)){
j<-sites[i, (col-1)]
matrixn[j,sites[i,col]l]<-matrixn[j,sites[i,col]l]+1
}
#Change counts to probabilities
matrixp<-matrixn
matrixp<-matrixp+1 #Adds 1 to every element
for(i in 1:4){
matrixp[i,]<-matrixp[i,]/sum(matrixpl[i,])
#Denominator=sum(matrixn[i,])+4
}
return(matrixp, matrixn)

3

> tmp<-transmatp(gata,2,matrix0)

The result of this calculation is shown as an R list object below:
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> tmp$matrixp

[,1] [,2] [,3] [,4]
[1,] 0.06060606 0.03030303 0.8484848 0.06060606
[2,] 0.16666667 0.16666667 0.5000000 0.16666667
[3,] 0.20000000 0.20000000 0.4000000 0.20000000
[4,] 0.04761905 0.09523810 0.7142857 0.14285714

> tmp$matrixn
(,11 [,21 [,3] [,4]
[1,] 1 0o 27 1

[2,] 0 0 2 0
[3,] 0 0 1 0
[4,] 0 1 14 2

> matrix2<-tmp$matrixp #Identical to $matrixp above

matrix?2 is the transition matrix that generates the probability distribu-
tion for the second position given the probability distribution for the first
position given in vectorl. For completeness, we present all of the other ma-
trices calculated for the remaining positions. These are computed in the same
way as for matrix?2.

> matrix3

[,1] [,2] [,3] [,4]
[1,] 0.2000000 0.2000000 0.4000000 0.2000000
[2,]1 0.4000000 0.2000000 0.2000000 0.2000000
[3,] 0.9375000 0.0208333 0.0208333 0.0208333
[4,] 0.5714286 0.1428571 0.1428571 0.1428571

> matrix4

[,1] [,2] [,3] [,4]
[1,] 0.0384615 0.0192308 0.0576923 0.8846154
[2,] 0.2500000 0.2500000 0.2500000 0.2500000
[3,] 0.2000000 0.2000000 0.2000000 0.4000000
[4,] 0.2500000 0.2500000 0.2500000 0.2500000
> matrixb

[,1] [,2] [,3] [,4]
[1,] 0.2000000 0.2000000 0.2000000 0.4000000
[2,] 0.2500000 0.2500000 0.2500000 0.2500000
[3,] 0.3333333 0.1666667 0.1666667 0.3333333
[4,] 0.7200000 0.0800000 0.0600000 0.1400000
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> matrix6

[,1] [,2] [,3] [,4]
[1,] 0.4000000 0.07500000 0.4250000 0.1000000
[2,] 0.4285714 0.14285714 0.1428571 0.2857143
[3,] 0.1666667 0.16666667 0.5000000 0.1666667
[4,] 0.5000000 0.08333333 0.2500000 0.1666667

These five matrices, together with vectoril, provide the Markov chain
representation of the GATA-1 transcription factor binding sites listed in Ta-
ble 9.3. If we wanted, we could use the initial probability distribution vector1
and these transition matrices to simulate GATA-1 binding sites in a manner
similar to the simulation that we did in Section 2.3.3.

One more point needs to be made before we move on: How do we score
a sequence given a representation of the type shown above? Scoring proceeds
in a fashion analogous to the approach used for the PWMs. Convert the
probabilities in the initial probability distribution into log,(pai/¢a) using ¢q
for the genome as a whole (which means that we are comparing sites to an iid
model). Convert the probabilities in the transition matrices into log, (pi;/gi;)
values using ¢;; = ¢; (also assuming an iid model).

Let’s take a specific example using the variable names and notation em-
ployed in the example above. Suppose the sequence to be scored is TGATAA.
The score s; for the first position is logy(pa1/qa), selecting the vector ele-
ment corresponding to position 1 in the initial probability distribution vector,
vectorl. Since we have coded A, C, G, and T, respectively, as 1, 2, 3, and 4,
the element that we require is vector1[4] (corresponding to T). The score
is 81 = log,(vector1[4]/qr). The score for the second position is taken from
the transition matrix corresponding to position 2, matrix2. The element of
matrix2 whose row corresponds to the base that appears at position 1 (T) and
whose column corresponds to the base that appears at position 2 (G) provides
the information needed to compute so = log,(matrix2[4, 3]/q¢). Scores at the
other positions are calculated similarly.

9.4 Entropy and Information Content

Shannon’s entropy is a concept drawn from information theory and sig-
nal processing. It measures the degree of uncertainty associated with a set
of possible outcomes. Given a discrete random variable X with J outcomes
Z1,%2,...,2y having probabilities p(x1),...,p(xs), respectively, Shannon’s
entropy is conventionally defined as

J
H(X) == plz;)logy pla), (9-6)

j=1
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where p(z) log, p(z) = 0 if p(x) = 0.

Now suppose we are looking at a sequence X, Xs,... of iid bases. The
entropy of the ith position is
HX)=— 3 pla)logypla). (9.7)
a€{A,C,G,T}

If the outcomes are equally probable, p(a) = 1/4 and then H(X;) = log,4 = 2.
The uncertainty in this case can be represented by two bits. One bit accounts
for the possibility that a base is a purine (1) or pyrimidine (0), and the other
bit specifies which purine (1 or 0, given that the first bit was 1) or which
pyrimidine (1 or 0, given that the first bit was 0) is present. If we know that
the base at a position is actually an A, for example, then p(a) = 1 if a = A,
and all other p(a) = 0. In this case, H(X;) = 0 (i.e., the uncertainty is zero).

The information is a measure of how much the entropy is reduced after
a “signal” (in this case, resulting from natural selection at a position within
a region of DNA) has been received:

I(Xz) = Hbefore — Llafter- (98)

If the bases at a position had initially been distributed with equal probabilities,
and over the course of time had evolutionarily been fixed to be an A, then
using the calculation above, we see that the information at that position is
now I(X;) = 2 bits.

Another measure of information content (which becomes identical to Shan-
non’s entropy when the probability distribution is uniform) is the relative
entropy, or Kullback-Leibler distance. We start with a set of aligned sites,
where, as before, the probability of finding base a at position 7 is given by
Dai- Let g, represent the background distribution of bases in a genome or in
a random model of a genome. The relative entropy is then defined as

Hpilla)= > pailogs(pai/da)- (9.9)

a€{A,C,G,T}

The || indicates that a distribution p; is being examined relative to a distri-
bution q. Using the log-odds scoring scheme that we employed above, we can
calculate the expectation for the score at any position in the sequence:

E(Sv) = me'Sa = me: 1Og2 (pm/Qa) (910)

In this expression, the p,; correspond to the distribution at position i. We
see that the expected value for the score at any position is the same as the
relative entropy at that position. This provides an intuitive view of the nature
of relative entropy.

Why have we introduced relative entropy and information content? The
major reason is to help define the extent of signals. Remember that an ex-
perimental measure of the extent of a binding site comes from footprinting
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experiments. But how can we decide the extent of a signal in probabilistic
terms given a set of sequences containing that signal? One approach is to plot
information content as a function of position along the set of sequences. The
binding site boundary is taken as that position where the relative entropy
exceeds a particular threshold (e.g., the value of relative entropy exceeded by
no more than 5% of the positions in iid sequences).

The informational perspective has led to a depiction of signals as sequence
logos (Schneider and Stephens, 1990). A sequence logo is a graphical repre-
sentation of a signal in which the total height at each position corresponds to
the relative entropy. The height of each letter at each position is calculated by
multiplying the relative entropy at that position by the frequency of the cor-
responding letter. A logo representing the lambda operator sites (Table 9.1) is
shown in Fig. 9.6. Logos are better visual representations than consensus se-
quences because the logos indicate both the amount of relative entropy at each
position (the height of the stack of four letters) and the relative contribution
of each base (the relative height of the letter) at that position.

m I
= 17

° 1 <A 4 1
A6 LT A

Fig. 9.6. [This figure also appears in the color insert.]| DNA sequence logo of lambda
operator sites. The illustration includes one more position to the right and left of the
sequences shown in Table 9.1. Heights of each letter A, C, G, or T (in bits) represent
the contribution of each letter to the information encoded at each position. The
sequence logo was provided by Dr. Thomas D. Schneider, National Cancer Institute
(http://www.lecb.ncifcrf.gov/~toms/papers/hawaii/lambdacro/).

9.5 Signals in Eukaryotic Genes

Signals are important components of eukaryotic genes. Examples of promoter
signals, transcriptional signals, and mRNA processing signals are provided in
Table 9.4. In Section 9.2, we represented the consensus sequences by writing



9.5 Signals in Eukaryotic Genes 251

down the actual base that is overwhelmingly preferred at each position. In
Table 9.4, we expand the representation by using single-letter codes to describe
different combinations of bases. For example, (A/T) is represented by W, and
(A/G) is represented by R. (See Appendix C.1 for a complete list of the TUPAC-
IUB codes.) With this notation, the GATA-1 consensus can be more flexibly
represented as WGATAR. Lowercase letters are sometimes used to depict a weak
preference for a particular base, with all others appearing at lower frequencies.
The last two positions in the 3’ splice signal are designated by this notation.
These types of designations are not appropriate for gene finding because we
need to be able to generate a score. Positional weight matrices (also called
profiles in this context) or Markov chains are effective representations of
these signals. Examples of these are presented in Chapter 14 (Table 14.3).

Table 9.4. Examples of signals and their consensus sequences in human genes.
For further details about the TATA box see Milanesi and Rogozin (1998) and for
the others see Zhang (1998).

Site Consensus®

-3 —2 -1 0 41 +2 43 +4 +
A

5 +6 +7 +8 +9 +10 +11
TATA box s T W T W W W R s s s s s

S

-4 -3 -2 -1 0 +1 +2 +3 +4
CAAT box R R ¢ C A R K S R

Cap site K C W S Y S S S

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 42 43
Start site S S S S S ¢ R M C A T G R

-3 -2 -1 0 +1 +2 +3 +4 +5
5’ splice signal N A G G T R A G W

-15 —-14 —-13 -12 —-11 —-10 -9 -8 -7 —6 -5 —4 -3 -2 —-1 0 +1
3 splice signal Y Y Y Y Y Yy vy Yy Y Y Y N Y A G g t

! Weaker preferences are indicated by lowercase letters. Locations with prefer-
ences for particular combinations of bases are indicated by IUPAC-IUB codes.
In addition to A, C, G, T,they are R = A or G (purine), Y =T or C (pyrimidine),
S=CorGW=AorT,K=GorT,M=Aor C, and N = any base.

Regulatory sequences control the timing and levels of gene expression
by binding specialized transcription factors. The regulatory regions of genes
can extend tens of thousands of base pairs upstream of the transcriptional
start site, and some sequences (enhancers) can be found either upstream or
downstream of the promoter (sometimes within introns or downstream of the
polyadenylation site). Probabilistic descriptions can be used as an aid to locat-
ing these binding sites (e.g.,the GATA-1 binding site; Section 9.3). Numbers
and locations for k-tuples corresponding to signals such as GATA-1 may pro-
vide similar information about signal content. However, many binding sites
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are quite short, and therefore they are likely to occur by chance in long lengths
of sequence.

Our probabilistic description has not taken into account the distributions
of the sites along the DNA although typical values for locations of GC boxes,
CAAT boxes, and TATA boxes relative to the transcriptional start sites are
known (Chapter 14.4.2). The spacing (or alternatively density) of candidate
transcription factor binding sites is additional information that can be used for
assessing whether they have been correctly identified. This sort of information
can be incorporated in hidden Markov models (not discussed in this book).
Clearly, signals are only one set of features that describe eukaryotic genes,
but they are an important component of gene-finding tools. Eukaryotic gene
finding is discussed at greater length in Chapter 14.

9.6 Using Scores for Classification

We have described how to represent signals in probabilistic terms and how to
produce scores for instances of any signal. The scores can be used to classify
any candidate string into one of two categories: sites or nonsites. There are two
types of errors that can result from this procedure. Let the null hypothesis
‘H be that the sequence to be tested is a site. A Type I error is one that
classifies a site as a nonsite (i.e., a false negative, rejecting H when it is true).
A Type II error is one that classifies a nonsite as a site (a false positive,
failing to reject H when it is false):

Assigned class is:
H is: True False

True correct Type I error

False Type Il error  correct

The performance of a classification method is often described in terms of
sensitivity (Sn, the proportion of actual features detected) and specificity
(Sp, the proportion of predicted features that are real). In terms of Type I
and Type II errors, we have

Sn =1—P(Type I error),
Sp =1 —P(Type II error).

If #TP is the number of true positive predictions, #FP is the number of false
positive predictions, #TN is the number of true negative predictions, and
#FN is the number of false negative predictions, then

#TP _ #IN

SR urp 4 PN PP TN 4 aFP

(9.11)
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Given a training set of sites, scoring produces a distribution of scores for
these sites, shown as an idealized distribution, A, in Fig. 9.7. Given a set
of sequences that are not sites, the same scoring method produces another
distribution, B, that in general overlaps the first one. We can place a cutoff
score C on the graph and classify any sequence with score S > C' as a site and
classify any sequence having S < C' as a nonsite. The area of distribution A to
the left of C represents the fraction of false negative assignments, and the area
of distribution B to the right of C' is the fraction of false positive assignments.
We may move the cutoff lower in an effort to avoid “losing” actual sites, but
we do so at the expense of a greater number of false-positive assignments. We
can move the cutoff to the right to reduce the false-positive assignments, but
then we lose sensitivity.

<
o

0.1

Score S

Fig. 9.7. Idealized illustration of the classification of objects of types A and B
based upon their score distributions. An arbitrary cutoff score midway between the
maximum scores for the two object types is indicated. Objects B having scores larger
than the cutoff score (light shaded area) are incorrectly classified as A, while objects
A having scores below the cutoff score (dark shaded area) are incorrectly classified
as B. If objects are classified to answer the question of whether they are objects
of type A, then the light shaded area corresponds to false positive assignments
and the dark shaded area corresponds to false negative assignments. The cutoff
score can be adjusted up or down (arrows) to minimize false positive assignments
(with correspondingly greater false negative errors) or to minimize false negative
assignments (with correspondingly greater false positive errors).
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In actual practice, we may be scanning an entire genome for a limited
number of sites (e.g., one site per 102 to 10*bp). In this case, the number of
nonsites examined is equal to (G — w) — n, where G is the number of base
pairs in the genome, w is the length of the site, and n is the number of actual
sites. Ordinarily, G >> n, so many more nonsites than sites are scored. The
result is that if we set the cutoff midway between the scores corresponding
to the maxima of the two curves, the number of false positive assignments
will vastly exceed the number of actual sites. For this sort of application, we
might accept a lower sensitivity to achieve higher specificity. If, however, we
are only analyzing the upstream region of a particular gene of interest, then
we might move the cutoff to the left to increase the sensitivity at the expense
of specificity. We make the trade-offs necessary for the problem at hand. We
illustrate these principles in Computational Example 9.3.

Another approach to assessing a classification scheme uses the false dis-
covery rate (FDR), defined to be the expected proportion of false positive
features among those features called positive. This is given by

#FP

FDR~ pp o 4rp’

For details on the calculation of the FDR, see, for example, Storey and Tib-
shirani (2003).

Computational Example 9.3: Classification of sites using GATA-1
PWM

We use the PWM computed in Computational Example 9.1 to illustrate the
classification problem. Remember that we had a training set comprising 49
sites and that these represent a sample of all possible sites. First, we employ
our PWM to simulate 5000 sites and score them to determine the site score
distribution implied by our PWM. Next, we simulate a set of 5000 “back-
ground” sequences of the same length as GATA-1 sites (6 bp) by using the iid
model, and we determine the score distribution of this set. Finally, we examine
FP and FN error rates at different cutoff scores.

Step 1: Simulating GATA-1 sites

Our R function makepwm produced a matrix of probabilities at each position
as one of its two returned objects. This is just what we need to simulate the
sites. The function to do this is:

simmotif<-function (pwm){

# pwm is a PWM matrix of probabilities (4xL)
L<-length(pwm[1,]) #Number of positions in the motif
motif<-rep(0,L) #Create and initialize motif vector
dna<-c(1,2,3,4) #Numeric codes for A, C, G, T
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for (j in 1:L)A{
motif [j]<-sample(dna,l,p=pwml[,j]l)
}

return(motif)

}

We have used sample before, so this function should be clear to you. The
only wrinkle is that for each cycle of the for loop, a different probability dis-
tribution is used, corresponding to each column of pwm. The need for these
probability distributions was anticipated when we devised the makepwm func-
tion. To simulate IV sites, we make an N x 6 matrix and then run simmotif N
times. Remember that the pwm argument that we need is in tmp as tmp$pwm.

> N<-5000

> gata.motifs<-matrix(nrow=N,ncol=6)
> for(i in 1:N){

+ gata.motifs[i,]<-simmotif (tmp$pwm)
+ }

We check some of the simulated sites to make sure that they look reasonable
(compared with the gata object).

> gata.motifs[1:5,]
(,11 [,2] [,3] [,4] [,5] [,6]

[1,] 4 3 1 4 1 3
[2,] 1 3 1 4 1 3
[3,] 4 3 1 4 1 3
[4,] 1 3 1 4 4 3
[5,] 1 4 1 4 3 3

Step 2: Scoring simulated sites

We now wish to generate the score distribution for the simulated sites.
What would we predict for this distribution, based on the training set scores
(Fig. 9.3)? We can employ the calcscore function operating on each row of
gata.motifs to obtain the scores:

> gata.motifs.score<-rep(0,N)

#vector to hold the results of computation
> for(i in 1:N){

+ gata.motifs.scorel[i]<-

+ calcscore(gata.motifs[i,],log2pwm)

}

We can compare this set of scores to the training set by looking at the
means:
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> mean(gata.motifs.score)
[1] 5.094539

> mean(gata.score)

[1] 6.07064

At first, it may seem strange that the simulated motif scores have a smaller
average than those of the training set, but things become clearer when we ex-
amine the score distributions. We produce a histogram of gata.motifs.score
in the usual manner, with the result shown in Fig. 9.8 (solid lines: code sup-
plied later).

Notice that our simulated sites have a score distribution that is skewed
left (as is the training set distribution), and note that the central part of the
distribution has been filled in. This accounts for the lower mean value for the
scores. Remember that the training set is a sample of the set of actual sites.
As an exercise, you can test how much individual samples vary by repeatedly
sampling 49 of the simulated set of 5000 motifs, recomputing the correspond-
ing PWMs, and plotting the resulting scores for each sampling (see Exercise 13
at the end of this chapter) .

Step 3: Simulating the background

We now simulate sequence strings of length /N according to the iid background
model. The function to do this is:

simbg<-function(bg,L){

#bg is a vector of probabilities for A, C, G, T (1x4)
#L = length of sites to be simulated

seq<-rep(0,L)

dna<-c(1,2,3,4) #Numeric codes for DNA
seq<-sample(dna,L,replace=T,p=bg)

return(seq)

3

We apply this function 5000 times in the same manner as we did with
simmotif, and examine the resulting score distribution.

for(i in 1:N){

back.sim[i,]<-simbg(bg,6)

}

back.sim.score<-rep(0,N)

for(i in 1:N){
back.sim.score[i]<-calcscore(back.sim[i,],log2pwm)

“ 4+ VV + + VvV

Now we examine the score distribution for the background and compare
it with the distribution for the simulated motifs:
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> hist(back.sim.score, prob=T,x1lim=c(20,20),
+ ylim=c(0,0.25),1ty=2)

> hist(gata.motifs.score, x1lim=c(-20,20),

+ prob=T,1lty=1,add=T)

The distribution of the background scores (Fig. 9.8, broken lines) is more
nearly symmetric, and the mean is at —6.56. In Computational Example 9.2,
we asked what we might have expected the mean score for the background
distribution to be. In particular, why is it not 0?7 The answer comes from
looking at tmp$log2pwm: 16 of the 24 matrix elements are negative, and their
average value is —2.32. Eight of the 24 matrix elements are positive, and their
average value is 1.14. The iid sites draw more of their positional scores s; from
the negative values.
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Fig. 9.8. Score distributions for GATA-1 sites (solid lines) simulated from the PWM
corresponding to sites in Table 9.3 (scores shown in Fig. 9.3) and for “background”
sequences (broken lines) simulated from an iid model using the base composition of
human DNA.

Now we can examine the false positive and false negative error rates.
To do this, we specify a set of cutoffs from —10 to 48 (encompassing
most of the scores in gata.motifs.score) and calculate the fraction of
gata.motifs.score values below the cutoff (false negative) and the fraction
of back.sim.score values above the cutoff (false positive).

cutoffs<-c(-10:8)
false.neg<-rep(0,19) #Vector to hold calculated values
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for(i in 1:19){
false.negl[il<-length(gata.motifs.score[gata.motifs.score[]
<cutoffs[i]])/N}

false.pos<-rep(0,19) #Vector to hold calculated values
for(i in 1:19){
false.pos[i]l<-length(back.sim.score[back.sim.score[]
>cutoffs[i]]) /N}

> plot(cutoffs,false.neg,type="1",xlim=c(-10,10), ylim=c(0,1))
> points(cutoffs,false.pos,type="1",1ty=2)

o
-

0.8
1

) or false-positive (----)

0.4

Fraction false-negative (

0.0
1

Cutoff Score

Fig. 9.9. False negative errors (fraction of simulated GATA-1 sites identified as
“background”: solid line) and false positive errors (fraction of simulated “back-
ground” sequences identified as GATA-1 sites: broken line) for simulated motifs
and background sequences as a function of cutoff score. The histogram of scores is
shown in Fig. 9.8.

The plot in Fig. 9.9 shows the expected opposite behavior of the false
positive and false negative error rates. If we were to choose a cutoff score of
0.0, we would have a false negative rate of 6.6% and a false positive error rate
of 6.8%. This latter value is deadly for scanning long sequences. For example,
if we were to examine 100,000 base pairs upstream of a particular gene, we
would incorrectly predict approximately 6800 GATA-1 sites (assuming that
human DNA is adequately represented by the iid model).
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As mentioned above, to avoid the “noise” associated with the false positive
error, we might choose to increase the cutoff and accept the concomitant false
negative errors. Ultimately, we might choose a more sophisticated probabilistic
model that includes the expected site distribution (e.g., a hidden Markov
model), but this is beyond the scope of this chapter.
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Exercises

Exercise 1. Write out a duplex DNA sequence that contains the sequence
pattern 5-AGAACA-3" as an inverted repeat. Separate the centers of inverted
repeats by a number of base pairs that places corresponding positions in the
pattern on the same side of the DNA helix.

Exercise 2. Generalize (9.5) to the case for which not all g,; are equal. Will
a single equation suffice?

Exercise 3. Make a plot of Sn and Sp (9.11) versus cutoff scores for simulated
GATA-1 sites using an iid background (see Computational Example 9.3 and
Fig. 9.8). Add the FDR curve to your plot.

Exercise 4. If the samples of sites or non-sites are sufficiently large that small
sample effects are negligible, do Sn and Sp depend upon sample size? Does
the false discovery rate depend upon sample size (i.e., does the computed FDR
apply to a particular analysis or is it a general property for a given cutoff)?

Exercise 5. From the data in Table 9.1, produce a PWM describing the
lambda operator half-sites, and generate a score for each site. Make a his-
togram of the score distribution.

Exercise 6. Use the matrix of probabilities describing the E. coli —10 se-
quence TATAAT (Section 9.2.1 and the R function in Computational Exam-
ple 9.3) to simulate ten such sequences.

Exercise 7. Plot the relative entropy as a function of position for the human
start site represented by the profile or PWM in Table 14.3. Then produce (by
hand, to make sure you understand the principles) a sequence logo represent-
ing this site.

[Hint: One way of creating letters with adjustable widths and heights is to
take screen shots of enlarged letters A, C, G, and T. These can be pasted into
a Microsoft Word document and scaled as needed.]

Exercise 8. Use your PWM from Exercise 5 to simulate 100 lambda operator
half-sites, and also simulate 100 non-sites of the same length using iid letters
with 50% G+C. Create a PSSM for the simulated half-sites. Score the simulated
half-sites and the simulated non-sites, and plot the histograms for each. Select
a cutoff score for discriminating between sites and non-sites, and justify your
choice.
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Exercise 9. Generate 48,502 bp of iid sequence, 50% G+C (see Chapter 2).
Using the PWM from Exercise 8, generate scores for every starting position
of a potential lambda operator half-site using an R function that you cre-
ate. Make a histogram of scores obtained from this sequence, and estimate
the number of half-sites that you would have predicted. [Hint: Compare the
histogram from this problem with the one that you obtained in Exercise 8.]

Exercise 10. Repeat Exercise 9, except instead of using a simulated se-
quence, use the lambda DNA sequence in GenBank file NC 001416. This can
be downloaded in FASTA format from the NCBI Web site (Appendix B).

Exercise 11. Calculate by hand the transition matrix needed to produce the
probability distribution at position 3 for the GATA-1 sites listed in Table 9.3.

Exercise 12. Write an R function for producing the score for an arbitrary
sequence using the Markov chain representation of GATA-1 sites in Compu-
tational Example 9.2.

Exercise 13. To illustrate the effects of sampling variation, take three inde-
pendent random samples each containing 49 simulated GATA-1 sites from the
5000 sites produced in Computational Example 9.3. Compute the three corre-
sponding PWMs, and use each PWM to generate scores for the actual sites in
Table 9.3. Plot the resulting score distributions and calculate the mean score
corresponding to each PWM.

Exercise 14. The code at the end of this exercise will produce all sequence
strings having two differences from a specified input string.

a. Write an R function that will produce all sequences differing from a given
sequence at exactly one position.

b. Generate all sequences that are identical to the promoter —35 consensus
TTGACA or that differ from it at one or at two positions. Use all of these
to create a PWM for the —35 sequence.

c. Use the PWM from part b of this exercise to identify the —35 sequences
in promoters for caiT, damP2, dnaQP2, gapB, melA, and nrd.

Code:

neighbor2<-function(x){
#function to make all 2-neighbors
#x is the input string
out.file<-x #holds result
#First change: l1-neighborhood specification
for(j in 1:6){

for(k in 1:4){

y<-x



262 9 Signals in DNA

if (kl=x[J1){
yljl<-k
#Second change: becomes 2-neighborhood specification
for(m in 1:6){
if (m!=3)1
for(n in 1:4){
z<-y
if(n!=x[m]){
z[m]<-n
out.file<-rbind(out.file,z)
33
13
out.file<-out.file[2:length(out.file[,1]),]
return(out.file)
#contains sequence variants with two changes

Exercise 15. A combinatorial approach to the previous problem is possible.
Show that there are 16 five-letter words in the one-mismatch neighborhood of
GCATC (including GCATC itself). How many of these words begin with G? How
many begin with a letter other than G7 Use this information to produce the
first column of a PWM.

Exercise 16. Indicate how PWMs may be used to define neighborhood se-
quences (Section 7.4.1) to be used for identifying approximate “hits” in the
rapid search method described in Section 7.4.1. Produce the PWM corre-
sponding to the word GCATC with a neighborhood size of one mismatch (Ex-
ercise 15), and state the threshold score T' above which a hit (within one
mismatch) to GCATC will be declared.



10

Similarity, Distance, and Clustering

10.1 The Biological Problem

In this chapter, we explore quantitative approaches to clustering, the process
of identifying groups of like objects. This grouping is based upon similarities or
differences as measured by the characters that the objects possess. Clustering
is closely related to the process of classification, which is assigning objects
into predetermined categories. This assignment to a category is also based
upon the particular states of the characters associated with that object. We
discussed classification in the last chapter and will say a little more at the end
of this chapter. For more extensive discussions of clustering and classification,
see Dunn and Everitt (1982), Everitt and Dunn (2001), and Johnson and
Wichern (2002).

Clustering and classification have a long history in the biological sciences.
About 1.7 million biological species have been described, and tens of mil-
lions of species are thought to exist. Nevertheless, biological diversity becomes
comprehensible because organisms can be classified hierarchically into groups.
This exercise was actively pursued during the eighteenth century by Carolus
Linnaeus, who is well-known for his system of biological nomenclature. By
hierarchical classification, we mean that groups of similar organisms (such a
group being called a taxon—plural: taxa) are subsets of larger groupings.
For example, mammals are a subset of tetrapods (amphibians, reptiles, mam-
mals, and other organisms having four appendages), tetrapods are a subset of
vertebrates (animals with backbones), and vertebrates are a subset of deutero-
stomes (animals whose mouth is formed second during the gastrulation stage
of embryonic development). Classification of organisms is still practiced today
by biologists involved in systematics and by paleontologists. For example, in
classifying dromaeosaurs (bipedal dinosaurs such as Velociraptor), more than
a hundred skeletal characters (e.g., relative sizes of premaxillary teeth, fusion
of tarsal bones) may be employed.

Clustering and classification are equally important for genomic analysis.
For example, spotted microarray or oligonucleotide array technologies are used
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to analyze gene expression as measured by mRNA abundances in cells. In this
case, the objects being clustered usually are genes, and the characters are
relative mRNA abundances measured under particular conditions. In partic-
ular, animal cells in tissue culture might be deprived of serum and then, after
serum is added back, the levels of mRNA species (relative to levels in cells
not deprived of serum) are measured at different time points. Or, the objects
might be genes in human cells, and the characters might be relative mRNA
expression levels in normal cells, cancer cells, or both cell types treated with
an antitumor agent. The purpose of clustering in this case is to identify and
group together (cluster) genes having similar expression patterns. Similar ex-
pression patterns may indicate that the genes participate in similar biological
processes or that they respond to similar biological controls.

Data in the biological world are commonly multivariate. This means that
biological objects and phenomena are associated with a number of variables,
each of which contributes to the observed phenomenon. In both cases de-
scribed above, the data consist of a matrix of m rows of objects (convention-
ally called operational taxonomic units, or OTUs, in evolutionary studies)
and p columns of characters describing those objects. The distinctions between
different objects or operational taxonomic units are based upon the states of
their differing characters. These characters are properties that can take on
different values and can differ among OTUs (for example, fused metatarsals or
relative mRNA abundance 30 minutes after addition of serum). There may be
on the order of 10* objects (genes), each described by states of 10-100 char-
acters. The list of states for each character that describes an object might
be thought of as a vector, and thus clustering and classification may require
descriptions using high-dimensional vector spaces. Such complex multivariate
data require appropriate quantitative approaches.

As an aside, note that clustering and classification are important in fields
other than biology. For example, businesses as represented by their stocks
may be classified into different “taxa,” such as “small cap. value” or “large
cap. growth,” based upon their asset base, business model, and other factors.
For financial lending, criteria (characters) pertaining to prospective borrowers
(e.g., employment, income level, credit history) are employed to generate a
“credit score,” which determines the class into which the prospective borrower
will be classified (credit-worthy or not credit-worthy).

10.2 Characters

Before we discuss measures of similarity or difference and clustering, we need
to examine different types of characters.

1. Qualitative or categorical characters differ in type. For example, the
coat color of mice might be either black (2), brown (1), or white (0).
As a further example, at any particular position in a DNA sequence,
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the state at that position could be A, C, G, or T (coded as 1, 2, 3, or
4, respectively). Even though these states may be coded numerically, no
arithmetic operations (such as multiplication or division) can be applied
to them.

2. Quantitative characters are measured on a numerical scale, and these
may take on either discrete values or continuous values. For example,
the number of hydrogen bond donor or acceptor positions in the major
groove at any position in the DNA will be an integer (discrete). Among
fossil dinosaurs, the number of caudal (tail) vertebrae in a dromaeosaur
skeleton will be an integer (discrete), whereas the length of the tail in
centimeters will be drawn from a continuous distribution.

3. Dichotomous characters may take one of two possible values or states.
For example, if the character is the presence or absence of a Y chromosome
in human cells (qualitative or categorical), then only two possible values
are possible (counting multiple copies of Y in XYY individuals as the
“presence of Y”). Similarly, the character state at any position in a DNA
sequence is either a purine or a pyrimidine. It is possible to convert other
types of quantitative characters into dichotomous ones. For example, if
we were studying arthropods (insects, spiders, crustaceans, millipedes),
we could convert leg numbers into two character states: state 0 (number
of legs not equal to 6) and state 1 (number of legs equal to 6). These states
could be used to distinguish insects from the other arthropod classes.

When dealing with biological strings I and .J, the character states will corre-
spond to the identities of the letters at each position in each string, and I and
J will be said to be similar, with similarity coefficient s;; determined by the
number of character states that match. We may consider strings representing
nucleic acid or protein sequences. An example is shown in Table 10.1. This
shows alignments of portions of primate cytochrome oxidase subunit IIT DNA
sequences for different pairs of primates. A * indicates positions where the
state in the lower member of the pair is identical to the corresponding state
in the string at the top. Positions where the bottom string differs from the top
one are indicated by listing the different states at the appropriate positions. In
this figure, the number of differences and the fractional number of differences
D are listed below each pairwise comparison. The edit distance, or Leven-
shtein distance, is the minimum number of indels or substitutions required
to transform one string into another. The number of differences listed below
each pair corresponds to the edit distance. Obviously, these strings (portions
of corresponding genes) are similar: How should we describe the similarity?
This depends upon the purpose, which is often driven by the biological appli-
cation.

The amino acid sequences corresponding to the gene regions listed in Ta-
ble 10.1 are shown in Table 10.2. Note how the amino acid representation
differs from the representation of the sequences as DNA. First, the C — T
transition distinguishing Hy from Pa, Go, and Ho at position 6 (Table 10.1)
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Table 10.1. Comparisons between a selected region of cytochrome oxidase sub-
unit IT coding sequences (bp 121-180) for different pairs of primates. Hy: Hylobates
(gibbon); Pa: Pan (chimpanzee); Go: Gorilla; Ho: Homo; Po: Pongo (orangutan).

Hy GCCCTCTTCCTAACACTCACAACAAAACTAACCAACACTAACATTACGGATGCCCAAGAA
Pa GCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAGTATTTCAGACGCCCAGGAA
Go GCCCTTTTCCTAACACTCACAACAAAGCTAACTAGCACCAACATCTCAGACGCCCAAGAA
Ho GCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAA
Po GCCCTTTTCCTAACACTCACAACGAAACTCACCAACACTAACATCTCAGATGCCCAAGAG

Hy GCCCTCTTCCTAACACTCACAACAAAACTAACCAACACTAACATTACGGATGCCCAAGAA
Pa stk ok ok ok Tk o ok ok ok ok ok o ok ok ok ok K ok s ok ok ok ok ok ok ok ok ok ok Tk ok Tk sk ok ok G T kok ok Tk AL sk ok Cok ok ok ok Gok ok ok

(9 differences; fractional difference = 0.150)

Hy GCCCTCTTCCTAACACTCACAACAAAACTAACCAACACTAACATTACGGATGCCCAAGAA
Go stk ok ok ok Tk o ok ok ok ok ok ok sk ok ok ok Kok ook ok ok ok ok G ok ok ok ok ok Tk Gk sk ok Cokok sk skok C Tk AL sk ok Cok s ok ok ok ok ok ok ok

(9 differences; fractional difference = 0.150)

Hy GCCCTCTTCCTAACACTCACAACAAAACTAACCAACACTAACATTACGGATGCCCAAGAA
Ho ok ok ok ok Tk ok o koK ok ok ok o kKoK oK ok ok ok Kok ok ok ok o ok ok ok T ok ok Tk ok sk okok ok ok ok G Tk Ak ok Cok ok Tk ok Gok ok ok

(9 differences; fractional difference = 0.150)

Pa GCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAGTATTTCAGACGCCCAGGAA
Go K ok oK oK KK K oK oK oK oK K K ok ok ok Kk ook ok ok ok ok G ok ok ok ok ok ok ok GOk ok Cok A Ckok Gk sk sk ok ok sk sk s ok ok ok ) ok ok

(8 differences; fractional difference = 0.133)

Pa GCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAGTATTTCAGACGCCCAGGAA
Ho 5 oK oK oK K K K ok oK oK oK K K o ok ok oK K K 3 ok ok ok K K o ok ok K K K ok ok ok ok sk ok ok | Gk Gk sk sk ok ok sk ok ok Tk ok sk ok ok ok

(4 differences; fractional difference = 0.067)

Go GCCCTTTTCCTAACACTCACAACAAAGCTAACTAGCACCAACATCTCAGACGCCCAAGAA
Ho ok kKoK ok ok o K KK oK ok o o K KoK oK ok o ok Kok ok ok |k kk ok ok ok [ T ok Tk ok ok ok ok o ok sk ok ok ok ok ok Tk ok Gk ok ok

(6 differences; fractional difference = 0.100)

makes no difference in the amino acid sequence because of degeneracy of the
genetic code (see Chapter 1). Second, the percentage differences between the
different pairs is not the same at the amino acid sequence level as at the
DNA sequence level. In particular, the fractional difference between Hy and
Ho based on these 20 amino acid residues is 0.05, while the difference corre-
sponding to 60 nucleotide residues is 0.15. This is because the gene is under
selection (i.e., selection tends to conserve the sequence of amino acids), and
synonymous changes—those codon sequence changes that do not change the
specified amino acid—are not visible in the amino acid sequence.

When dealing with protein sequences, we might elect to count not amino
acid differences but rather the minimum number of base changes needed to



10.2 Characters 267

Table 10.2. Amino acid sequences from portions of cytochrome oxidase subunit II
from selected primates indicated in Table 10.1.

Hy  ALFLTLTTKLTNTNITDAQE
Pa ALFLTLTTKLTNTSISDAQE
Go  ALFLTLTTKLTSTNISDAQE
Ho ALFLTLTTKLTNTNISDAQE
Po ALFLTLTTKLTNTSISDAQE

Pairwise alignments:

Hy ALFLTLTTKLTNTNITDAQE
Pa Fook kKKK ok ok Rk Sk Sokok kK

(2 differences = 0.10)

Hy  ALFLTLTTKLTNTNITDAQE
GO kxkkkkkkkkkSkokkSkokkk

(2 differences = 0.10)

Hy ALFLTLTTKLTNTNITDAQE
Ho Fokok ok KKK ok ok ok kK Kk Sk ok

(1 differences = 0.05)

Pa ALFLTLTTKLTNTSISDAQE
Go Fok ok KKk Kok ok ok Sk N ok ok ok kK k

(2 differences = 0.10)

Pa ALFLTLTTKLTNTSISDAQE
Ho  sksxskskokkskkokokk Nk kkokokk

(1 differences = 0.05)

Go ALFLTLTTKLTSTNISDAQE
Ho ook ok oKk ok ok ok ok ok N ok ok ok ok Kk k

(1 differences = 0.05)

convert one residue to another. This might correspond to a measure of evo-
lutionary distance between two sequences. But this might not reveal the true
differences. Conversion of Asn to Ser (residue 14 in the Hy/Pa comparison
in Table 10.2) could have been accomplished by one change: AAC — AGC. In
actuality, there were two changes: AAC — AGT (Table 10.1).

Finally, note that what may be relevant biochemically are the chemical
properties of the residues. There are only two types of differences in the amino
acid sequence shown in Table 10.2: Asn replaces Ser (or vice versa), and
Ser replaces Thr. Asn, Ser, and Thr are all uncharged polar amino acids.
These changes are expected to make little difference in the physicochemical
properties of the respective proteins. Despite the differences at the nucleic
acid sequence level and at the amino acid sequence level, each of these protein
regions has an identical string of physicochemical properties,

nnnnpnpp-+nppppnp—np—
where n = nonpolar, p = polar, + = positively charged, and — = negatively
charged amino acid residues.

The obvious conclusion is that there are choices to be made for characters
used to describe objects, and these choices will be dictated by the purpose
for which clustering and classification are undertaken. For example, protein
homologs that diverged from a common ancestor at a very remote time may
be hard to recognize based upon DNA sequence, easier to recognize based
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upon protein sequence, and easier still to recognize based on protein structure
(determined by physical properties of constituent amino acids).

10.3 Similarity and Distance

Similarity and distance are measures of how closely- or distantly-related ob-
jects are based upon a collection of characters that describe those objects.
To illustrate these concepts, we consider an example with which we are all
familiar: relationships among some common animals. Each animal type is an
OTU. Counsider the set of OTUs shown below. They have been scored for
dichotomous characters (1 = present, 0 = absent).

Characters
OTU  Hair Lungs Egg-laying Milk
Dog 1 1 0 1
Turtle 0 1 1 0
Canary 0 1 1 0
Goldfish 0 0 1 0

One measure of similarity between OTUs i and j employs the numbers of
matches and mismatches between their character states. In this case, there
are four characters, and the states for each character may be 0 or 1. The
matches and mismatches are conveniently represented in a table:

OTU j
1 0
OTUila b
Oc d

In this table,

a = the number of characters for which OTUs ¢ and j are both 1,
b = the number of characters for which OTU ¢ is 1 and OTU j is 0,
¢ = the number of characters for which OTU ¢ is 0 and OTU j is 1,
d = the number of characters for which OTUs ¢ and j are both 0.

Note that the number of characters equals a+b+c+d. The simple matching
coefficient is defined as

sij =(a+d)/(a+b+c+d).

For the particular comparison of the canary and goldfish, the table becomes

canary
10
goldfish11 0
01 2
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and s;; = (1 4+ 2)/4 = 0.75. All of the s;; gathered together in a matrix
constitute a similarity matrix. Such a matrix is m x m (where m is the
number of OTUs) and symmetric.

Sometimes negative matches convey no additional information about rela-
tionships. For instance, including feathers as a character would cause the value
of d for pairwise comparisons among dogs, goldfish, and turtles to increase.
(Any two of the three would both score 0 relative to this character.) Does it
really make sense to include an additional character for which all OTUs score
0 if only these three animals are to be compared? For this reason, sometimes
it is preferable to define similarity in terms of Jaccard’s coefficient,

a
Sii = )
Y a4b+c

This similarity coefficient only “counts” characters that are present or that
differ between the two OTUs.

It is sometimes more useful to compare OTUs in terms of dissimilarities
rather than in terms of similarities. The dissimilarity d;; corresponding to
Jaccard’s coefficient is

b+c a+b+c—a

di': = =1—5;;.
7T a4 b+e at+b+ec 5ij

10.3.1 Dissimilarities and Distances Measured on
Continuous Scales

There are desirable properties that dissimilarities d;; may have, and when
they have them they are called distances or metrics. These properties are:

1. Symmetry: d;; = d;; for each 1, j;
2. Distinguishability: d;; # 0 if, and only if, ¢ # j;
3. Triangle inequality: d;; < d;; + di; for each ¢, 7, k.

An example of such a metric or distance is the familiar Euclidean dis-
tance in two dimensions. If OTU ¢ has character values (x;1,x;2) and OTU
j has character values (z;1,x;2), then this distance is given by

dij = \/(1‘11 —x1)% + (w2 — 352)2. (10.1)

This is illustrated in Fig. 10.1A.

In general, we are concerned with many characters (possibly more than
there are letters in the Roman alphabet). Extending our earlier notation, the
values of the p characters for OTU ¢ are denoted by x;1, Zi2, ..., Tip. In this
notation, the first subscript is the OTU or object label and the second sub-
script corresponds to the particular character. We can organize the data into
a matrix with m rows of OTUs and p columns of characters. The Euclidean
distance between OTUs ¢ and j is then defined by
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Fig. 10.1. Illustration of the Euclidean distance between OTU i and OTU j having
two characters (panel A) and of the city-block distance (panel B). In panel B, the
labels A, B, and B’ represent different OTUs.
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An alternative to the Euclidean distance metric is the city-block metric
(sometimes called the “Manhattan” distance), which is defined as

p
dij =Y @i — wjl.

k=1

This measure is analogous to the way that we would measure distances if we
were driving between points in a city laid out in blocks. (We must travel along
the city’s street grid and not the direct route “as the crow flies”.) This means
that if OTU ¢ and OTU j are 2 units apart with respect to character 1, they
are as far apart as if they were 1 unit apart with respect to character 1 and 1
unit apart with respect to character 2 (Fig. 10.1B). If the Euclidean distance
were used in the latter case, the distance would be V2.

The city-block metric makes sense for some applications. Suppose that we
are comparing the following amino acid sequences:

A---PRHLQLAVRN.-. A-..PRHLQLAVRN.-.
B---PRHVLLAVRN:-. B---PRHAQLAVRN---
0001100000 0002000000

Below each pair is the number of mutations in the nucleic acid sequence un-
derlying A needed to produce B or B’. In the case on the left, there have been
two mutations, one at each of two different positions. In terms of mutations,
B and B’ are equally distant from A: two mutations away. In the case on
the right, there have been two successive mutations at the same position. We
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would not want to say that the distance between B and A is v/2, while the
distance between B’ and A is 2.
The generalization of the distance metrics given above is the Minkowski

metric:
P 1/a
dij = E |xik — :Ejk|a .
k=1

Clearly, the city-block metric corresponds to a = 1 and the Euclidean distance
corresponds to a = 2.

10.3.2 Scaling Continuous Character Values

In many applications, such as measuring mRNA expression levels with mi-
croarrays, the character values are drawn from continuous distributions of
possible values. In addition, different characters may not have the same units.
For example, in classifying fossil hominids, we might use height (in meters),
molar surface area (mm?), and cranial volume (cm?). Clearly, trying to calcu-
late Euclidean distance when the coordinates (characters) have different units
is problematic. By scaling coordinate values, they all become dimensionless
and this problem disappears.

Let x;, represent the value of character k corresponding to OTU 4. The
standardized or scaled character values might be written as

ah="% k=1,2,....p,
Sk

where s is the standard deviation of character £ measured over all OTUs.
Division by s ensures that z, is dimensionless. The other important re-
sult of this division is that it adjusts for characters or coordinates that have
much greater variation than the others. Such variation, if not compensated
for by scaling, would give those coordinates undue weight when distances are
calculated—coordinates with the broadest range would dominate the analy-
sis. For the fossil hominid example, it would be silly to have height contribute
more just because it was stated in centimeters rather than meters. The scaling
above eliminates this problem.

The scaling described above was for each column of characters. Sometimes
(for example, in microarray experiments) the set of characters for each object
are all measured on the same dimensionless scale. The characters for each gene
in a microarray experiment might correspond to a time series for which the
expression ratios as a function of time are measured. The actual amplitude of
the measurement at any time point may be less important than the pattern
of values for all points taken as a whole. In this case, the scaling should be
over all time points (characters) for each gene (object). In other words, the
scaling is applied to rows rather than columns.
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10.4 Clustering

There are two general approaches to clustering. Hierarchical clustering
consists of the successive joining together or splitting of individual objects
or groups of objects based upon a measure of similarity or distance between
the objects. This produces a “tree” or dendrogram in which any object is
associated with successively larger groups of objects. Groups or clusters are
arbitrarily defined based upon distance relationships to be described. This
hierarchical structure resembles the hierarchical patterns of phylogenetic re-
lationships among organisms, which are a consequence of their evolutionary
descent from shared common ancestors. The second clustering approach in-
volves optimization, in which the number of groups or clusters is prespecified.
Optimization (nonhierarchical) methods do not construct the clusters based
on pairwise differences between individual objects. Instead, mutually exclu-
sive clusters are formed, with no “subclusters.” We discuss K-means as an
example of this. Assignments of objects to one or another of the predeter-
mined groups are determined in such a way that their distances from cluster
“centers” are minimized. A method such as K-means is not used for classi-
fication of organisms because the biology and observation indicate that their
relationships are hierarchical.

10.4.1 Agglomerative Hierarchical Clustering

Agglomerative hierarchical methods sequentially merge OTUs into clusters
having larger and larger numbers of members by successively grouping those
that are least distant first. In contrast, divisive hierarchical methods sequen-
tially divide larger groups into smaller and smaller clusters with fewer mem-
bers. Here, we will discuss an agglomerative approach only. Agglomerative
hierarchical clustering starts with the m x p matrix of m OTUs measured on
p characters. This is used to calculate an m x m distance matrix using dis-
tance measures such as those described above. The distance matrix is used to
decide which of the OTUs to join first. After the first two OTUs are joined, a
new distance matrix is generated taking into account the newly formed clus-
ter, and the process is continued until all OTUs have been joined to other
OTUs or to clusters. The result is presented as a dendrogram. The process
is summarized in the following steps.

Procedures for agglomerative clustering

1. Start with m clusters, each containing one OTU, and calculate the m x m
symmetric distance matrix D; (entries d;;).

2. Determine from D which of the OTUs (or clusters in later iterations) are
least distant (i.e., find the ¢ and j for which d;; is a minimum, i # j).
Suppose these happen to be clusters (or OTUs) I and J.
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3. Merge I and J into cluster IJ. Form a new distance matrix Dy by deleting
rows corresponding to I and J and columns I and J, and by adding a new
row and column for distances of 1J from all remaining clusters.

(The method for calculating distances between clusters is given in (10.2).)

4. Repeat steps 2 and 3 a total of m — 1 times until a single cluster is formed.

— Record which clusters are merged at each step.
— Record the distances between the clusters that are merged in that
step.

As the steps above are applied, individual OTUs merge with others to
form clusters, and it is necessary to specify what is meant by distance between
clusters. There are a number of possible criteria for merging clusters I and J.
Three clustering criteria, based upon the individual OTUs that belong to I
and J, are

Single linkage: diy =min{d;; :i €L and j € J},
Complete linkage: dry = max{d;; :i € I and j € J}, (10.2)
Group average:  diy = Y1 e dij/(N1Ny),

where Ny and Nj are the numbers of members in clusters I and J, respectively.
NiNj is the number of possible distances between each of the objects in cluster
I and the objects in cluster J. These distinctions are illustrated in Fig. 10.2.

This method is illustrated by using the primate data presented in Ta-
ble 10.1. In that table, the fraction of bases that differed between each se-
quence pair was stated. This edit distance is used to produce our distances, the
d;;. The table of distances between OTUs is given below. Because d;; = ds,
we need only list half of the off-diagonal entries. For the entries on the diag-
onal, d;; = 0. (The distance between an OTU and itself is zero.) The matrix
below represents the initial distance matrix, D;.

OTU Hy Pa Go Ho
Hy O
Dy = Pa 0.150 0
Go 0.150 0.133 0
Ho 0.150 0.067 0.100 0

For illustration, we employ single-linkage clustering, for which the first
cluster is determined by min{d;;}, i # j. Clearly, Pa (Pan troglodytes, the
chimpanzee) and Ho (H. sapiens) have the least pairwise distance: dpa 1o =
0.067 (indicated by the box). So we merge these two OTUs to form the first
cluster (PaHo), and we record the joining of Pa and Ho at distance 0.067. We
then create a new distance or dissimilarity matrix, Do, by deleting rows and
columns corresponding to Pa and Ho and adding a new row and column for
the (PaHo) cluster.
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A.
Cluster | Cluster J

Cluster | Cluster J

Cluster | Cluster J

Fig. 10.2. Methods of defining the distance between clusters. Panel A illustrates
single linkage, panel B complete linkage, and panel C group average linkage.

OTU Hy Go (PaHo)
Hy 0

Go 0.150 O

(PaHo) 0.150 0.100 0

Dy =

The entries in the last row were calculated from the data in Dy as d(papoyw =
min{dpaw, diow }, where W is either Hy or Go. Thus dyy(patio) = min{diypa,
duyto} = 0.15, and dgo(patio) = min{daopa, daono} = 0.10. The next cluster
to form is determined by the minimum entry in the distance matrix D, and
this corresponds to forming the cluster Go(PaHo) at distance 0.10. For the
next iteration, we create distance matrix Ds,
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OTU Hy Go(PaHo)
D3 = Hy 0
Go(PaHo) 0.15 0

where the distance between Hy and the Go(PaHo) cluster is min{duypa,
dHyHo, dHyGo } (=min{0.15,0.15,0.15} from matrix D;). This merges the last
OTUs with the others. The dendrogram representing this clustering is shown
in Fig. 10.3.

Computational Example 10.1: Hierarchical clustering using R

This box illustrates how to perform cluster analysis using R. We use the
primate data once more. The first task is to make a file of the sequence data
shown in Table 10.1; as above, we use just the first four species. The file
primates.txt has 4 rows and 60 columns, coded asa=1,c=2,g=3,t =
4. Having read in the data using

> segs<-matrix(scan("primates.txt") ,nrow=4,byrow=T)

the next task is to compute the distance matrix. In this example, the distance
between two sequences is the proportion of positions at which they differ. The
following function evaluates this distance matrix:

seqdist<-function(x,n)
{
dmat<-matrix(nrow=n,ncol=n)
for(i in 1:n){
for (j in 1:n){
dmat[i,jl<-length(x[j,]1[x[j,]1!'=x[i,11)/length(x[1,]1)}}
return(dmat)
}

> dapes<-seqdist(seqgs,4)
> dapes

[,1] [,2] [,3] [,4]
[1,] 0.00 0.15000000 0.1500000 0.15000000
[2,] 0.15 0.00000000 0.1333333 0.06666667
[3,] 0.15 0.13333333 0.0000000 0.10000000
[4,] 0.15 0.06666667 0.1000000 0.00000000

We note that other distances may be calculated using the R function dist.
The remainder of the clustering is straightforward. For single-linkage cluster-
ing, it results in the dendrogram in Fig. 10.3.

# make dist object from the data
dapesi<-as.dist(dapes, diag=FALSE, upper=FALSE)
#add species labels
SpeCieS=C("Hy","Pa","GO","HO")

vV V V V
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> plclust(hclust(dapesl,"single"),labels=species,xlab="",
+ sub="")

It is possible to draw the dendrogram with all the leaves extending to the
same level (it has the same meaning: the distances at which OTUs join are
the relevant data). Try

> plclust(hclust(dapesl,"single"),labels=species,xlab="",
+ sub="",hang=-1)

0.14
Hy

0.12

Height

0.10

Go

0.08

0.06

P

Fig. 10.3. Dendrogram of single-linkage clustering for primate species.

10.4.2 Interpretations and Limitations of Hierarchical Clustering

The example given above is very simple. If we were clustering a much larger
number of OTUs, the question of number of clusters will arise. Consider the
dendrogram shown in Fig. 10.4. It seems natural to think that there are three
clusters: AB, CD, and EF. This impression is based upon the long distances
separating these clusters from each other and the observation that each of
the pairs (C and D, for example) are less distant from each other than either
of them is from any other OTU. However, we should recognize that the dis-
tance criterion that we use to define the clusters will determine the number
of clusters assigned. If we set the criterion at distances between 0.4 and 0.3,
we would define two clusters. If instead we focused on distances between 0.3
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Fig. 10.4. Dendrogram illustrating numbers of clusters for different distance crite-
ria.

and 0.15, we would define three clusters; the number of clusters is somewhat
arbitrary.

Another issue (mentioned in the previous section) is the reliability of the
particular clustering that has been produced by the procedure. The hierarchi-
cal method has a number of limitations:

1. The choice of distance measure is important. Methods for incorporating an
evolutionary model into the comparison of DNA sequences are discussed
in Chapter 12.

2. There is no provision for reassigning objects that have been incorrectly
grouped. The method proceeds in a bottom-up fashion and, once joined
to a cluster, an OTU remains at that position in the hierarchy.

3. Errors are not handled explicitly in the procedure.

4. No single method of calculating intercluster distances is universally the
best. We need to test the results by using different definitions of inter-
cluster distance. In some “head-to-head” tests, single-linkage clustering is
reportedly least successful and group average clustering tends to do fairly
well. For a review of the problem, see Everitt and Dunn (2001).

5. Single-linkage clustering may tend to join clusters whose centroids are
fairly distant if these clusters are joined by a chain of OTUs.

It is important to know how robust the hierarchical method is in any
particular application. (A statistical method is called robust if it works well for
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a variety of input data and initial parameters.) Reliable data analysis requires
some knowledge of the magnitude experimental error. Operationally, we can
test the topology of the clusters obtained for any particular calculation by
repeating the clustering several times after adding appropriate random errors
to coordinates of all OTUs. If the same groupings of OTUs into clusters is
achieved consistently after repeatedly adding different sets of random errors,
then the solution to the clustering problem is said to be stable. Another test of
the method with m OTUs is to repeat the analysis m times for m — 1 OTUs,
leaving out a different OTU each time. (This is sometimes called a “jackknife”
procedure since we are “flipping out” one of the OTUs like a jackknife blade.)
If the clusters of other OTUs change dramatically with the omission of one
OTU, then we might doubt the reliability of clustering based on that data
set.

The dendrograms resemble phylogenetic trees, which are presented in the
next chapter. A phylogenetic tree is a hypothesis about the genealogical rela-
tionships between organisms based upon shared common ancestors. Dendro-
grams represent the joining of OTUs or clusters based upon pairwise distances
(defined as edit distances in our example) using a stated clustering method.
Except for stating that changes at position i are independent from changes at
position j in the DNA sequence, there was no biology built into the example
above. For phylogenetic trees, it is assumed that each of the two bifurcating
branches represents a trajectory of independent evolution. Accordingly, dis-
tances between two OTUs are apportioned between the two branches (i.e., the
sum of the two branch lengths is proportional to the distance between OTUs).
The branch lengths may be proportional to the number of mutational events
from any node. In phylogenetic trees, internal nodes will correspond to an-
cestors having a set of hypothetical character states. As we will see later,
there are assumptions about nucleotide substitutions and reversions and the
rates at which these occur along each branch. Building phylogenetic trees is
procedurally similar to clustering but with biological models included.

10.5 K-means

We use K-means (Hartigan and Wong, 1979) as an example of an optimiza-
tion method. As we will see, many iterations of the procedure may be required,
so a statistical software package is necessary for anything except “toy” prob-
lems. K-means is a non-hierarchical clustering method that involves prior
specification of the number of clusters, k. It does not require prior computa-
tion of a pairwise distance matrix, because the relevant distance is the dis-
tance of each OTU from the cluster center, or centroid. The rationale is that
OTUs will be allocated into the k clusters such that the within-cluster sums
of squares of distances from cluster centroids (within-ss), summed over all
clusters, will be minimized.
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within-ss, cluster j = Y. d3;, i=1,...,m;,

total within-ss S = Zj > dfj, i=1,...,my0=1,... k.

This is illustrated in Fig. 10.5 for two alternative values of k: k = 2 and
k = 3. Increasing k from 2 to 3 splits the larger cluster at the bottom into
two clusters, leaving the one at the top unchanged. The K-means calculation
involves trying different centroid positions and iteratively testing each OTU
for its distance to one of the centroids. Each OTU is assigned membership
to the cluster whose centroid is closest. Once the cluster memberships are
assigned after each iteration, new centroid positions are calculated, and the
process is repeated.

Fig. 10.5. K-means clustering of 12 objects (filled circles) having two characters.
Clusters for k = 2 (solid lines) and k = 3 (dashed lines) are indicated. Cluster
centers for k = 2 or k = 3 are denoted by open circles or squares, respectively.

It is prudent to plot the data for a visual “reality check.” This is easy if
there are just two dimensions, but if there are many dimensions, we will need
to look at projections of the data on planes defined by coordinate pairs. It
is also useful to repeat the process with different partitions or initial group
centers. This is because some choices of initial partitioning may be bad, and
results may be affected by outliers (OTUs whose coordinates are very different
from those of other OTUs). We should also repeat the process for different val-
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ues of k, unless we have prior information indicating the appropriate number
of clusters.

Procedures for K-means clustering

1. Partition the OTUs into k clusters. (This can be done by random parti-
tioning or by arbitrarily clustering around two or more OTUs.)

2. Calculate the centroids of the clusters.

3. Assign or reassign each OTU to that cluster whose centroid is the closest.
(Distance is calculated as Euclidean distance.)

4. Recalculate the centroids of the new clusters formed after the gain or loss
of OTUs to or from the previous clusters.

5. Repeat steps 3 and 4 for a predetermined number of iterations or until
membership of the groups no longer changes.

As a first example of how this works, we will use a “toy” problem that
can be calculated by hand. We imagine that we have five OTUs, A, B, ...,
E, each described by two characters, 1 and z2, and we want to place the five
objects into two clusters. The data are:

OTU X1 T2
A 11
B 31
C 4 8
D 810
E 96

The data are plotted in Fig. 10.6. We can already see by inspection what the
answer should be (A and B form one cluster, while C, D, and E form another),
but we want to get a feel for how the computation actually works.

Computational Example 10.2: K-means clustering by hand

Step 1. Start by making an arbitrary partition of OTUs into clusters: OTUs
with 21 < 6 will be taken as Cluster I and the others will be taken as Cluster
II. Thus we assign A, B, and C to Cluster I, and D and E to Cluster II.
Step 2. Calculate the centroids for the first definition of clusters. For Cluster
I (defined as A, B, C), this value is 1 = 2.67, zo = 3.33, while for Cluster II
(defined as D, E), the centroid is x; = 8.50, x5 = 8.00.
Step 3. Now calculate the Euclidean distance between each OTU and each of
the two cluster centroids:

d(A, T) =287 d(A, II) = 10.26

d(B,I) =235 d(B, II) = 8.90

d(C,I) =4.86 d(C, II) = 4.50
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12

Fig. 10.6. Plot of data and initial partitioning for a simple hand-calculated example
of K-means clustering. For details, see the text.

d(D, 1) =854 d(D,II) = 2.06
d(E, 1) = 6.87 d(E, II) = 2.06

Step 4. A and B are closer to the centroid of Cluster I than they are to the
centroid of Cluster II, and D and E are closer to the centroid of Cluster II
than they are to the centroid of Cluster I. However, C is closer to the centroid
of Cluster II. Therefore, reassign C to Cluster II. Other OTUs retain their
previous assignments.

Step 5. Calculate centroids for Cluster I’ composed of A and B and Cluster
II’ composed of C, D, and E. For Cluster I’, this new centroid is x; = 2.00,
29 = 1.00, while for Cluster II' the new centroid is &; = 7.00, x5 = 8.00.

d(A,T)=1.00  d(A,II') =9.22
d(B,T) =100  d(B,II') = 8.06
d(C, T) = 7.28 d(C, 1) = 3.00
d(D,1') =10.82  d(D,II') = 2.24

d(E, T') = 8.60 d(E, I1') = 2.83

Since A and B are closer to the centroid of Cluster I’ than to that of
Cluster II’, no reassignment of cluster membership is needed. Similarly, since
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C, D, and E are all closer to the centroid of Cluster I than to the centroid of
Cluster I', no reassignment of cluster membership is needed for them either.
The assignments shown in the boxes above are the final result, which agrees
with our “eyeball” estimate.

As a second example, consider the following living and fossil hominoid
species, each described by two characters: brain mass and body mass. (H. =
Homo, A. = Australopithecus, early and late H. erectus designated by E and
L.)

RAW DATA SCALED DATA
body mass brain mass body mass brain mass
(kg) (g)
H. sapiens 53 1355 H. sapiens 2.708 4.426
H. erectusL 57 1016 H. erectusL 2.913 3.318
H. erectusE 55 804 H. erectusk 2.811 2.626
H. ergaster 58 854 H. ergaster 2.964 2.789
H. habilis 42 597 H. habilis 2.147 1.950
A. robustus 36 502 A. robustus 1.840 1.640
A. boisei 44 488 A. boisei 2.249 1.594
A. africanus 36 457 A. africanus 1.840 1.493
A. afarensis 37 384 A. afarensis 1.891 1.254
P. troglodytes 45 395 P. troglodytes  2.300 1.290
G. gorilla 105 505 G. gorilla 5.366 1.649

The first step is to scale the data by dividing each value in each column of
the raw data by the standard deviation of the entries in that column. Notice
how scaling causes the ranges of the data in the two columns to become more
nearly the same. The effect of this is that both of the variables, brain mass and
body mass, will be weighted approximately equally in the clustering process.
Because K-means clustering in this example is far beyond what is reasonable
to attempt with a hand calculator or spreadsheet application, we provide the
R commands to perform it in Computational Example 10.3.

Computational Example 10.3: K-means clustering using R

This box illustrates the use of R for K-means clustering. We use the primate
data from Section 10.5. First, we import the data from a file and scale them:

> raw.dat<-read.table("Raw_Data")

> scaled.dat<-raw.dat

#Divide column entries by respective column SDs for scaling
> scaled.dat[,1]<-raw.dat[,1]/sqrt(var(raw.dat[,1]))

> scaled.dat[,2]<-raw.dat[,2]/sqrt(var(raw.dat[,2]))
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Next, we perform K-means clustering, with k& = 2. We could either specify the
number of clusters or provide a 2 x 2 matrix identifying initial cluster centers.
We use the latter approach, dividing the data into two groups by a horizontal
line h midway between the extreme values of scaled brain mass. We assign the
average of all values of scaled body mass (scaled.dat[,1]) to the x values
for the initial two cluster centers. The y value for one of the initial cluster
centers is assigned the mean value of scaled brain mass (scaled.dat[,2])
less than h. The y value for the other initial cluster center is taken as the
average value of scaled brain mass less greater than h.

> body<-scaled.dat[,1]
> brain<-scaled.dat[,2]
> h<-mean(c(4.425578,1.254186)) #Average of extreme values
>h
[1] 2.839882 #Horizontal line h(x)=2.839882
> x1<-x2<-mean(body) #x values for both initial clusters
> yl<-mean(brain[brain<h]) #y value for initial cluster 1
> y2<-mean(brain[brain>h]) #y value for initial cluster 2
> in.cent<-cbind(c(x1,x2),c(yl,y2))
#Matrix of coordinates for initial centers
> in.cent

[,1] [,2]
[1,] 2.638996 1.809424
[2,] 2.638996 3.871972

We apply K-means with & = 2 using in.cent, the matrix of coordinates for
initial cluster centers:

> k.dat2<-kmeans(scaled.dat,in.cent,iter.max=10)

> k.dat2

#Cluster to which 0TUs 1:11 each belongs

$cluster

[11 22221111112

$centers #Coordinates of final cluster centers
[,1] [,2]

1 2.044293 1.536704

2 3.352640 2.961708

$withinss

[1] 0.5517516 9.2416832

$size #Number of members in each cluster

[1] 6 5

With k& = 2, we find two clusters, one of which includes the first four species
of Homo together with Gorilla. Notice how the coordinates of the final cluster
centers have changed compared to the initial values. Note also that Gorilla
has a scaled brain mass of 1.649, which means that it originally belonged to
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cluster 1. After K-means, it has moved up to cluster 2. We try again with
k = 3, this time just specifying the number of clusters rather than the initial
cluster centers:

> k.dat3<-kmeans(scaled.dat,3,iter.max=10)

> k.dat3
$cluster
[11 33332222221
$centers
[,1] [,2]

1 5.366268 1.649385

2 2.044293 1.536704

3 2.849233 3.289788

$withinss

[1] 0.0000000 0.5517516 2.0205711
$size

[11] 1 6 4

This is much better, based on reduction of within-cluster sums of squares. A
plot of the data is shown in Fig. 10.7.
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°
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Fig. 10.7. K-means clustering of hominoids based upon scaled brain mass and
body mass. The genera Homo, Australopithecus, Pan, and Gorilla are indicated by
H, A, P, and G, respectively. The three clusters for k = 3 are enclosed by ellipses or
circles, and cluster centers for multimember clusters are indicated by filled circles.
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Gorilla now forms a cluster by itself. In the other two clusters, all members
of genus Homo are indicated by H. We can see that all but one of these form
a separate cluster. On the basis of these characters, H. habilis is clustered
with Australopithecus species. (Analysis using many characters has led some
anthropologists to reclassify H. habilis as A. habilis.)

How many clusters should there be? This number is, to some extent, ar-
bitrary. If we increase k until it equals the number of OTUs, it is possible to
make the within-ss zero! But then we are back where we started: a set of m
unclustered OTUs. One way to decide the appropriate number of clusters is
to repeat the process for several different values of k£ and plot the sum S of
within-ss values (for all clusters) as a function of k. As k increases, we will
observe that S decreases. It is probably not prudent to increase k beyond the
point at which S is showing large decreases. This is illustrated in Fig. 10.8 for
the scaled hominoid data. Note that increasing &k from 2 to 3 produced a large
drop in S, while going from k = 3 to k = 4 produced a much more modest
decrease by splitting off a single-member group. We conclude that k = 3 is an
appropriate choice, consistent with the appearance of the data in Fig. 10.7.

Within sums of squares

T T T T T

2 3 4 5 6
Number of clusters, k

Fig. 10.8. Response of within-cluster sums of squares (summed over all clusters)
to increasing values of k. Data are from clustering of hominoids (results for k = 3
shown in Fig. 10.7). Substantial reduction in within-ss occurs when k is increased
from 2 to 3. Further reductions in within-ss result for values of k larger than 3, but
improvements are comparatively small, and additional single-member clusters are
produced.



286 10 Similarity, Distance, and Clustering

10.6 Classification

We briefly touch upon the classification process, leaving the details to more
advanced studies. We applied the classification process to biological signals
in the last chapter. In that case, we determined a distribution of scores for
bona fide signals and another distribution of scores for the “background”
sequence. Classification as signal or nonsignal was based on how the score of
any sequence compared with a cutoff score, with scores defined in terms of
log-odds ratios. Assignment of a signal to one or the other class was made,
with the sensitivity and specificity of the assignment determined by the score
distributions.

In the context of this chapter, we imagine that we are provided with an
OTU, X, not employed in creating the clusters, and we ask to which of the
clusters that have already been constructed X belongs. For K-means, this is
quite straightforward: we only need to calculate the Euclidean distance from
X to the centroids of each of the k clusters and then assign X to the closest
one. For hierarchical clustering, it is common to add X to all other OTUs and
repeat the clustering. If X falls within one of the previously defined clusters,
and branches of all other defined clusters in the dendrogram are connected
as before, then its membership in a previously defined cluster is established.
However, it may be that the addition of X changes the branching order of
OTUs from two or more clusters (as might happen if they were all very similar
to start with). This would suggest that the original dendrogram was not very
robust. (The application uses the same principle as the jackknife procedure
mentioned above.)
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Exercises

Exercise 1. Present an expression for dissimilarity d;; and its relationship to
s;; when s;; is the simple matching coefficient.
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Exercise 2. Show whether or not distances computed using zjx = (zi —
1K)/ Sk, where py is the mean of character k, will differ from distances com-
puted from z7; (Section 10.3.2).

Exercise 3. Plot the scaled data for H. habilis, A. robustus, A. boisei, A.
africanus, A. afarensis, and P. troglodytes presented in Section 10.5 (the lower
left-hand cluster in Fig. 10.7). Use a ruler to measure distances, and sketch
what you think the hierarchical relationships would be from hierarchical clus-
tering. [Hint: You can check your answer from the results of Exercise 6 below.]

Exercise 4. This exercise explores the consequences of having different char-
acters highly correlated. Suppose that five OTUs A, B, ..., E are being clus-
tered based upon five characters x1, 2, r3, 24, and x5. The matrix of charac-
ters, X, is

T To I3 T4 Is
A 1 1 2 1 3
B 2 3 2 3 6
C 6 8 4 7 2
D 8 9 4 3 1
E 6 6 3 9 9

a. Perform hierarchical clustering of these five OTUs, and note the topology
of the dendrogram.

b. Determine the correlation coefficients for each pair of variables, and rep-
resent values for highly correlated characters by a single column vector
(combining values for each OTU using a statistic of your choice).

c. Now use the composite character defined in part b and the remaining
columns from matrix X to form a new matrix having a lesser number of
characters, and again perform hierarchical clustering. Compare the topol-
ogy of the dendrogram to the one observed in part a.

d. Criticize or defend the approach used in part c.

Exercise 5. With the aid of R, perform hierarchical clustering for the follow-
ing OTUs measured on characters « and y. For dist use method="euclidean"
and for hclust use method="complete". Note with which OTUs C clusters.

z Y
A 1.0 9.0
B 2.0 8.0
C 4.0 6.0
D 5.5 4.5
E 6.5 3.5
F 8.0 2.0

Now repeat the process for all OTUs except D, and observe the cluster
membership of C. Perform a scatter plot for OTUs A,. .. ,F using the plot and
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points functions, and explain why C changed its group membership when D
was omitted.

Note: OTUs arranged like this can create other problems when single-
linkage clustering is used: see Section 10.4.2 and Everitt and Dunn (2001) for
a discussion of chaining.

Exercise 6. Use K-means to cluster the data in Exercise 5, k = 2, first
including all data and then including all OTUs except for D.

a. Does the cluster membership of C change when D is excluded?
b. Try to force OTU C into a cluster with D, E, and F by setting the initial
cluster centers at the coordinates of A and D.

Exercise 7. To test the effects of different measures of intercluster distance,
perform hierarchical clustering on the following OTUs:

x Y
A 10 15
B 1.0 10
C 30 10
D 55 1.0
E 70 10
F 70 20
G 70 50
H 60 6.0
I 80 6.0

a. First perform hierarchical clustering using single-linkage clustering. How
many clusters having three closely related members are there? Which two
clusters are more closely related?

b. Repeat the hierarchical clustering, except this time use complete linkage
clustering. How many three-member clusters are there? Which two of these
three-member clusters are more closely related?

c. Plot the data points, and explain the reasons why a and b above gave
different results. Also, explain with a diagram why the G, H, I clusters
differ for single-linkage and complete-linkage clustering.

Exercise 8. Perform hierarchical clustering using all of the data at the top of
Table 10.1 (see Computational Example 10.1). For characters, first produce
a string 60 characters long that represents the consensus sequence for the
regions shown. Then, for each OTU, score each position that agrees with this
consensus 1 and each position that disagrees 0. This character table should
be used as input to the R function dist using manhattan as the method.
The output of dist should be used as the input of hclust, and the output
of hclust should be used as input for plclust to produce the dendrogram.
Does the addition of Pongo change the relationships among the other OTUs
(Fig. 10.5)7
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Exercise 9. Perform hierarchical clustering using the scaled data for H. ha-
bilis, A. robustus, A. boisei, A. africanus, A. afarensis, and P. troglodytes
presented in Section 10.5. Use the euclidean distance metric and complete
linkage clustering. Repeat the clustering six times more, leaving out a differ-
ent OTU each time. Are the relationships implied by clustering using all of
the data robust?

Exercise 10. As implemented by R, K-means with centers = number of
clusters randomly selects rows of the data matrix as initial cluster centers. Test
the robustness of K-means in R for the scaled hominoid data in Section 10.5
by repeatedly performing the clustering while specifying 2 for centers. What
is there about this data set that produces two different pairs of clusters for
k = 27 Which result is “better”? What do you conclude about the robustness
of K-means with this method of specifying initial cluster centers?

Exercise 11. Suppose that a set of OTUs measured on n characters have
been clustered by K-means into three clusters A, B, and C, with centroids
defined by {a;}, {b;}, and {c¢;}, respectively. Values for within-cluster sums of
squares for A, B, and C are s%, s%, and s2, respectively.

a. Write the statistic(s) that should be calculated for classifying OTU X into
one of the three existing clusters.

b. What statistic(s) could be used to determine whether X should be placed
separately into a cluster different from A, B, or C?
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Measuring Expression of Genome Information

11.1 The Biological Problem

Many biological questions are framed in terms of biochemistry and genetics.
Multicellular eukaryotes have between 10* and 10° genes, many of which code
for enzymes and other proteins involved in biochemical processes and their
control. DNA in somatic cells is the same regardless of tissue type or physiolog-
ical state. (Examples of human cells that differ in DNA content are anucleate
erythrocytes and gametes lacking either X or Y chromosomes.) Even though
all genes are generally found in all cells, not all genes are expressed at any
one time, nor are all genes expressed in every cell. For example, hemoglobin is
not produced in epithelial (skin) cells, and estradiol is not produced in brain
glial cells.

To understand the functions of cells, tissues, and organs in complex or-
ganisms, it is necessary to know what genes are expressed under different
conditions. During the cell cycle (the cellular processes involved in dupli-
cation of chromosomes and cell division), particular sets of genes are turned
on or turned off in a controlled chronological sequence. As we already indi-
cated, genes may be differentially expressed (i.e., have different expression
patterns) in different tissues in the adult plant or animal. A special case of dif-
ferential expression occurs during development, when genes are turned on and
off in an exquisitely choreographed pattern during the stepwise production of
various embryonic stages. At the other end of the spectrum, gene expression
patterns in cancer cells differ from those found in normal cells. Alterations in
expression patterns of normal or cancer cells treated with a pharmaceutical
agent may be a useful guide for assessing that agent’s toxicity or efficacy prior
to initiation of clinical trials.

How can we measure gene expression? One way is simply to analyze what
proteins are present at any particular time. The collection of proteins present
in a particular cell type under a particular set of physiological conditions is
called the proteome. Presently, proteome analysis is not easy to perform in a
highly parallel fashion because of limitations in the technology for identifying
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and quantifying each protein. Another way to analyze gene expression is by
enumerating the abundances of mRNA species in cells. The collection of RNA
species present in a cell type for a particular physiological state is called the
transcriptome. This is much easier to measure in a highly parallel, high-
throughput manner, and such measurements are widely employed in genomic,
clinical, and drug discovery settings. The basic question answered in tran-
scriptome analysis is, “Is the transcript for gene i in cell type A for condition
X more or less abundant than in cell type B for condition Y.” A and B might
be normal and cancer cells, respectively, with conditions X and Y identical. Or
A and B might both be cancer cells, with condition X representing treatment
with 5-fluorouracil and condition Y representing a control.

Transcriptome analysis is widely employed because measurements can be
made using parallel and automatable approaches. Moreover, it is well-known
that significant gene expression control is exerted at the transcriptional level
and at the level of splicing and mRNA processing. But this is not the whole
story: production of the actual gene products can also be regulated at the
translational level and at the level of protein modification and degradation.
Measuring gene expression from assays of transcript abundance is analogous
to measuring the productivity of a law office based upon the number of reams
of paper put through the office copier. There is clearly a relationship between
the numbers of wills and legal briefs produced and the number of copies made,
but it is not a perfect correlation.

Estimates of how well protein levels correlate with mRNA levels dif-
fer, partly because of differences in experimental approaches. As shown in
Fig. 11.1, there is excellent correlation (correlation coefficient » = 0.9) be-
tween protein and transcript amounts for abundant transcripts in yeast cells.
In contrast, protein levels of low-abundance transcripts do not show a high
level of correlation with mRNA levels (correlation coefficient r = 0.2; Gygi
et al., 1999). In contrast, Futcher et al. (1999) obtained r = 0.76 for log-
transformed protein and mRNA abundance data, with no significant differ-
ence in contributions of low- and high-abundance species. For 80 E. coli genes,
the comparison between mRNA and protein levels yielded r = 0.67 (Arfin et
al., 2000). A comprehensive study of the yeast proteome using sensitive anti-
body detection methods (Ghaemmaghami et al., 2003) reported a Spearman
rank correlation coefficient of r = 0.57 between levels of protein and their
corresponding mRNA levels. We point these facts out not as a criticism of
measuring transcript levels but only as a reminder that this is exactly what
is measured: transcript levels—not gene product levels.

11.2 How Are Transcript Levels Measured?

Gene transcript analysis can be performed by using open architecture or closed
architecture approaches. Open architecture methods are independent of prior
experimental data (e.g., genome sequence or EST data; see Section 1.5 for
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Fig. 11.1. Relationship between protein and mRNA abundances. The amounts of
protein per cell for abundant transcripts (more than 75 copies per cell) show a high
degree of correlation with the amount of corresponding mRNA. Correlation between
protein amounts and mRNA levels is much poorer for low-abundance transcripts
(inset box). Reprinted, with permission, from Gygi SP et al. (1999) Molecular and
Cellular Biology 19:1720-1730. Copyright (©) 1999 American Society for Microbiol-
ogy.

a definition of an EST). In contrast, closed architecture approaches focus on
a predetermined set of categorical data (e.g., annotated ESTs). SAGE and
TOGA are examples of open architecture approaches. Both apply particular
cloning and amplification procedures for sampling a portion of each mRNA
sequence. Spotted microarray and oligonucleotide chip technologies are closed
architecture systems in the sense that the probes are determined from prior
knowledge, as represented in sequence and EST databases, for example. In
the case of EST data, someone else did the cloning of the cDNA sequences.
Although we concentrate on the closed systems because they are currently
more extensively employed, we provide a brief description of SAGE and TOGA
here.

TOGA (TOtal Gene expression Analysis) (Sutcliffe et al., 2000) associates
with each detectable mRNA species a digital sequence tag, which depends
upon a particular set of octamer sequences and their distances from the 3’
end of the mRNA. The starting material is polyadenylated mRNA extracted
from any eukaryotic organism. After an initial reverse transcription to pro-
duce ¢cDNA (including a Notl sequence in the primer supplied), digestion with
an enzyme such as Mspl (recognition sequence 5'-C'CGG-3') produces a frag-
ment of characteristic length from the portion of each cDNA adjacent to the
3’ end of the mRNA (Fig. 11.2). These fragments are cloned and subjected
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to further amplification steps, including two PCR reactions. The key is that
while the PCR steps employ a fixed 3’ primer, 5" primers are chosen from one
of 256 possibilities that include the position of the Mspl site and the next four
nucleotides NiNoN3N;. That means that 256 (4%) independent PCR reactions
are performed. Each of these PCR reactions contains pools of product that
share the same octamer sequence tag at the 5 end (5-CCGGN1NoN3N4-3') but
differ in the distance of this tag from the 3’ end (i.e., each N1NoN3Ny probes a
different Mspl site, producing a PCR product whose length differs from the
others). The products within each pool are resolved by gel electrophoresis, and
the fragment lengths and amounts within each reaction sample are measured.
There are typically 20 to 40 peaks resolved per sample, and it is this step
that yields parallel information (sizes) on the products in the product pool.
Endonucleases other than Mspl are used to detect those cDNAs for which the
Mspl site closest to the 3’ end is too distant for unambiguous electrophoretic
detection or size analysis. Note that this method does not produce the en-
tire sequence of the mRNA and that it uses different PCR primers to detect
products having different octamer sequence tags.

SAGE (Serial Analysis of Gene Expression) (Velculescu et al., 1995) is
a more widely used open approach. Like TOGA, it derives local sequence
information from near the 3’ end of the mRNA, but instead of using PCR
for sequence discrimination, SAGE employs DNA sequencing. With SAGE,
c¢DNA corresponding to a polyadenylated mRNA mixture is cleaved with a
restriction endonuclease that recognizes 4bp (Mspl, recognition sequence 5'-
ClCGG-3'or Nlal, recognition sequence 5-GATC!-3/, for example). Such sites
occur, on average, once within the first 256 bp of ¢cDNA upstream of the
3’end. These enzymes are called anchoring enzymes. After purification of the

Fig. 11.2 (opposite page). Principles of TOGA. A set of polyadenylated (zig-zag
lines) transcripts are represented at the top. They contain sites for cleavage by a
tagging restriction endonuclease (or tagging enzyme: box with offset line; only the
site closest to the 3’ end is indicated). The four nucleotides N;NoNsNs immediately to
the 3" (right) side of the tagging enzyme site may vary from molecule to molecule.
Reverse transcription (step 1) using a primer with an added sequence to be used as
a right-end primer in a later step (grey box) yields cDNA versions of the transcripts.
These cDNAs are digested with the tagging enzyme and Notl (step 2). Notl cuts the
right-end primer sequence, but only very rarely in the interval between the tagging
enzyme site and the ends of the cDNAs corresponding to the 3’ ends of the mRNAs.
The digestion products are cloned and amplified (step 3) and then divided into
256 different aliquots, each of which is used as the substrate for a PCR reaction.
Each PCR reaction employs the same right-end primer but a distinctive left-end
primer ending in one of the 256 different nucleotide combinations represented by
N;N,N3Ns. The resulting product molecules are thus distinguished by the tagging
enzyme site +NiN;NsNs and by the distance from the tagging enzyme site to the
c¢DNA end corresponding to the 3’ end of the mRNA. Product sizes are determined
electrophoretically.
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cleaved 3’ ends, the sample is divided into two pools, A and B, each of which
is ligated to an adapter/linker that restores the anchoring enzyme site and
also supplies the recognition site for a Type IIS restriction endonuclease, such
as Fokl or BsmFI (Fig. 11.3). These enzymes are called tagging enzymes. The
Type IIS endonucleases do not cut within their recognition sequences but
instead cut to the right (in the 3’ direction relative to the top strand). BsmF1I,
for example, cuts 10 positions to the right on the top strand and 14 positions
to the right on the bottom strand. The key point is that the cleavage is not
within the recognition sequence but within an adjacent sequence and occurs a
short distance away (10-14 positions), leaving a single-strand overhang. After
filling in the end by in vitro DNA synthesis, the product contains (left to
right) the adapter A (or B), the tagging enzyme site, the anchoring enzyme
site, and a short specific sequence from the cDNA, terminating in a blunt end.
The products generated from the A pool are ligated with products of the B
pool (at their blunt ends), so that the specific sequences are joined tail-to-tail.
PCR primers corresponding to adapters A and B can be used to amplify the
ligated tail-to-tail products, and digestion with the anchoring enzyme “pops
out” a segment called a ditag because it usually contains specific sequences
from two different mRNAs. The ditags are concatenated by ligation and cloned
into small plasmid vectors to yield product inserts consisting of 15 to 25 ditags.
Each ditag has the same length, and it is separated from its neighbors by the
site for the anchoring enzyme. The inserts are sequenced, producing a serial
readout of sequence tags. The 14-word from each half of the ditag corresponds
to a particular mRNA species. The abundance of each mRNA is proportional
to the number of occurrences of its 14-word tag. At 50% G-+C, the probability
of encountering each 14-word starting at any position in a string is (1/4)4,
or about 1 in 2.7 x 108. Since we are looking at sequences on average 256 bp
from the end of the 3’ end of the gene and there are about 3 x 10* genes
in a vertebrate genome, the totality of genes subjected to this process would

Fig. 11.3 (opposite page). Principles of SAGE (Serial Analysis of Gene Expres-
sion). Two ¢cDNA species are shown (black and grey lines) with an associated exten-
sion corresponding to a polyA addition at the 3’ end (zig-zag line). The anchoring
enzyme (box with offset in middle) usually cleaves the cDNA in several locations,
but only the one closest to the 3’ end is shown. The two linkers with distinguishing
sequences at the 5 end (vertical and diagonal hatching) also contain a portion of
the anchoring enzyme sequence and a sequence corresponding to the tagging enzyme
recognition sequence (black box). Cleavage with the tagging enzyme (downward ar-
rows) occurs to the right of the recognition sequence and generates fragments that
are treated to form blunt ends. These fragments are ligated tail to tail (steps 4
and 5). The product (containing the ditag) can be amplified by using primers cor-
responding to the linker-specific sequences. Digestion with the anchoring enzyme
releases the ditag, which is ligated to other ditags from other cDNA molecules in
the sample to form a concatamer that can be cloned and sequenced.
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contribute only about 7.7 x 10% bp of coding sequence. It is evident that there
is a comparatively low probability that two or more messages share the same
14-word tag this close to the 3’ end of the mRNA. In other words, there is a
nearly one-to-one correspondence between a given 14-word and a single gene.

For both TOGA and SAGE, the sequences of the mRNAs are unknown
both at the beginning and at the end; only a small part of the mRNA sequence
is actually determined. Of course, SAGE and TOGA results can be associated
with database entries, but the distinctive feature of these methods is that they
operate without prior sequence information. Both of these methods employ
cloning, amplification, and other biochemical procedures “up front” to create
“subsequence libraries,” and of course they are subject to misincorporation
errors during the PCR steps. For closed architecture approaches, these sorts
of activities had to be undertaken (by somebody else) to supply all of the
EST database entries, but they are invisible to the investigator downloading
sequences from curated databases. SAGE is experimentally accessible to any
laboratory that has facilities for DNA sequencing and for constructing and
handling of small plasmid libraries.

11.3 Principles and Practice of Microarray Analysis

Spotted or oligonucleotide microarrays are by far the most common tools
currently used for gene expression studies. These employ EST and genomic
sequence data (i.e., they rely on other bodies of experimental knowledge), and
they can be performed in a massively parallel fashion. (Over 10* —10° features
on an array can be examined simultaneously.) These features are displayed in
an area whose size is approximately 1-2cm?. Production of microarrays has
become highly automated. Optical detection methods are usually (but not
always) employed, and optical methods typically have high precisions relative
to other methods of data capture. The measured optical signals are readily
exported into computer programs for data analysis.

11.3.1 Basics of Nucleic Acids Used for Microarrays

It is important to distinguish between probes and targets. A probe is a par-
ticular DNA sequence corresponding (complementary) to an mRNA whose
abundance, presence, or absence within a sample is being evaluated. The ac-
tual sequence (especially for oligonucleotide arrays) may be known, but in
any event, each probe is characterized by some unique identifying information
(e.g., annotation with respect to gene, tissue sample, or clone name). The tar-
get is the complex mixture of nucleic acid species being tested for the presence
or absence of sequences related to the probe sequence. In most applications,
it is the cDNA representation of an mRNA sample isolated from a particular
source (e.g., human pancreatic carcinoma cells). In microarray experiments,
the probes are immobilized in a grid of positions on a substrate (usually glass
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or quartz, but sometimes nylon filters). Each gridded probe sample is a fea-
ture, which is indexed by its position within the array. The probe sequences
for spotted microarrays are DNA molecules (> 200 nt in length) that may
be taken from ¢cDNA clones (ESTs), particularly when eukaryotic gene ex-
pression is being studied. PCR may be used to create gene-specific probes for
gene regions that lack introns (e.g., prokaryotic genes, most yeast genes, or
exons). Prior to hybridization, the duplex probe and target DNAs are de-
natured to produce single-stranded molecules suitable for hybridization. For
oligonucleotide microarrays, probes of about 25-60 bases are synthesized in
situ by combinatorial photolithography to produce gene “chips.” (GeneChip®
is a registered trademark of Affymetrix, Inc.)

Eukaryotic mRNAs, which have poly-A extensions on the 3’ end, can be
isolated by using oligo-d(T) columns, and cDNA can be produced from purified
mRNA by reverse transcription (Fig 1.11). The target is a complex mixture
of species (perhaps 10* different species or more) that depends upon the or-
ganism, the tissue, and the physiological condition of the tissue at the time
that the RNA is extracted. Different mRNA species may have very different
abundances. For example, mRNA for housekeeping genes may be present in
many copies, while mRNA for developmental genes may be very low in adult
organisms. Typical methods allow detection of species present at a level of
one transcript per cell in 10° cells (or about 20 pg of transcript per 20 ug of
RNA sample). The target molecules may be radioactively labeled, but now it
is far more common for them to be labeled with fluorescent dyes Cy3 or Cyb.

The specific interaction between probe and target species is based upon
DNA hybridization. Given two single-strand DNA molecules X and Y, it is
possible for them to hybridize or form a duplex if the sequence of X contains
a string of bases that is complementary to all or part of the sequence of
Y. By complementary we mean capable of base pairing in the Watson-Crick
fashion, with the two strands antiparallel. This process is called hybridization
because the two strands need not come from the original duplex molecule.
Hybridization is the reverse of denaturation, which for typical DNA under
ordinary salt conditions, pH 7.0, occurs in the range of 80°C-100°C, depending
upon base composition (lower for lower %G+C). The temperature at which
DNA “melts” (i.e., duplex goes to single-strand) is called T,,,. Hybridization
reactions are typically fastest at about T, — 25°C. Hybridizations can be
performed at lower temperatures by adding denaturants such as formamide
to the hybridization solution. When labeled target molecules hybridize to
a particular feature, the fluorescent label on the target species makes the
feature capable of fluorescence when it is excited by light of an appropriate
wavelength. The amplitude of the signal is proportional to the amount of
hybridized target species. If the species is rare, the signal is correspondingly
faint.
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11.3.2 Making and Using Spotted Microarrays

Much of what has been said up to now applies to both oligonucleotide and
spotted microarrays. Both standardized and custom-designed oligonucleotide
arrays can be produced commercially. However, many investigators prefer the
spotted microarray format because of their ability to customize the arrays
easily and to reduce expense. We focus on spotted microarrays. There is a
considerable body of literature describing how to deal with various sources
of experimental variation in spotted microarray experiments. The general ex-
perimental design is indicated in Fig. 11.4.

The probes are typically spotted onto a treated 1” x 3" glass slide using
a cluster of pins that dip into the wells of a microtitre plate (96 wells are
common, but 384- or 1536-well plates are also available). The wells in the
microtitre plate contain the probe solutions. For 20,000 features, it is necessary
to print from about 200 96-well microtitre trays, so robotic printing is usually
employed. The other reason for using robotics is that very precise printing
(e.g., £2 micron error in spot placement) is required to obtain a high density of
features in a small area. Another method for emplacement of features employs
ink-jet technology, but currently this method is primarily available to firms
providing custom-manufactured arrays and not to individual investigators.

Often we wish to understand how gene expression differs for two differ-
ent conditions (malignant versus normal cells, for example). In these cases,
mRNAs from the two different conditions are extracted, differentially labeled,
and hybridized together to the microarray. Labeling is usually with fluorescent
dyes Cy3 or Cyb, which may be covalently attached to dUTP and employed
as one of the substrates during reverse transcription. Alternatively, reactive
groups may be attached to the dUTP, and the required dye can later be cova-
lently attached to molecules in each sample prior to mixing. Hybridizing the
samples simultaneously ensures that the hybridization conditions are iden-
tical, although, as we shall see later, the dyes may affect the hybridization
efficiencies differently.

The hybridized array is scanned by a slide reader that illuminates the
hybridized spots, stimulating fluorescence characteristic of Cy3 or Cy5. The
Cy3 emission maximum is at about 570 nm (“green”), and the Cy5 maximum
is near 670 nm (“red”). The amount of fluorescence intensity corresponding
to each condition at each microarray feature can therefore be detected. If
c¢DNA derived from RNA expressed during condition X is labeled with Cy3
and cDNA derived from condition Y is labeled with Cy5, an excess of green
over red fluorescence at any feature indicates that the gene corresponding to
that spot is more highly expressed under condition X than under condition
Y. The intensities of light in appropriate wavelength ranges are measured for
pixels over the entire slide and stored in the computer. They are, in effect,
an image of the detected fluorescence intensities. For each spot (feature), it
is necessary to decide over which area of the slide to count the fluorescence
intensity. If the feature has an irregular shape or aberrant size, we may be
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Fig. 11.4. Principles of spotted microarrays. Samples X and Y are cDNA represen-
tations of transcript samples isolated under two different conditions. The same four
particular species are shown for each sample, and their abundances may or may not
differ under the two conditions. Sample X has been labeled with Cy3 (open circles:
produces green fluorescence), and sample Y has been labeled with Cyb5 (filled circles:
produces red fluorescence). The mixture of equal amounts of X and Y is hybridized
to a spotted microarray (four features are indicated). The number of open or filled
circles in each feature represents the amount of Cy3- or Cy5-labeled target species
hybridized. The fluorescence intensities observed for each feature in each of the two
color channels are indicated at the bottom of the illustration.
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counting intensity from a portion of the slide where no cDNA was spotted,
leading to a low reading. Also, there may be residual nonspecific binding of
hybridization solution not attributable to a specific probe. This produces a
fluorescent background intensity, which should be subtracted from the spot
intensities. For this reason, there is automated software for locating the spot,
delineating its boundaries, and measuring the background to be subtracted
prior to recording the intensity at each wavelength.

An example of the application of this technology is shown in Fig. 11.5
(Arbeitman et al., 2004). In this example, mRNA samples from dsd® mutant
D. melanogaster (fruit flies) (labeled with Cy5) and from normal adults (la-
beled with Cy3) were each reverse transcribed to cDNA and labeled with the
indicated fluorophore prior to hybridization. Panel A shows one of 12 blocks
of 24 x 24 features from this particular experiment. Red spots correspond to
genes whose expression is higher in the mutant, and green spots correspond
to genes with reduced expression in the mutant. Panel B illustrates some ar-
tifacts that can appear in such experiments. Because such artifacts can occur,
microarray images must be inspected by humans before data are processed.
(Complete automation is not currently feasible.)

Fig. 11.5. [This figure also appears in the color insert.] Spotted microarray hy-
bridized with target sample representing Drosophila melanogaster transcripts. Red
spots correspond to genes whose expression is increased and green spots to genes
whose expression is decreased in comparison with the control. Yellow spots indicate
no change. Panel A: Normal 24 x 24 block of features. Panel B: Portions of blocks
displaying various artifacts, including a tear in the polylysine coating the glass slide
(vertical jagged brown patch, left section), a possible dust particle (linear feature,
center section), and a possible evaporation artifact from a block near the edge of the
array (yellowish patch with streaks, right section). The greenish fluorescence at the
bottom of the center section came from contaminating material in DNA samples
prepared by nonstandard methods. (Image provided by Dr. Michelle Arbeitman,
University of Southern California.)
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11.4 Analysis of Microarray Data

There are two very different computational issues associated with microarray
analysis. The first is processing of the experimental data to produce a result
that accurately reflects either absolute amounts of transcripts in cells or, more
commonly, the ratios of these amounts under two different experimental con-
ditions. The result of processing the data is a gene expression matrix, one
form of which is composed of n rows, each corresponding to a gene or feature
on a microarray, and m columns, each of which corresponds to a condition
(e.g., a time point) for which expression levels were measured. The content of
each element of the gene expression matrix is either a fluorescence intensity
or a ratio of two fluorescence intensities. The second computational problem
is interpretation of the intensity data in the gene expression matrix to provide
biological insight or as a guide to the design of additional experiments. We
treat the processing of the experimental data in this section and discuss data
interpretation in Section 11.5.

11.4.1 Normalization

Experimental intensity data ordinarily require processing before they are con-
verted to expression matrix entries. The need for this processing is revealed by
control experiments. Consider a control experiment for which a single mRNA
sample is divided into two equivalent portions. One of these is labeled with
Cy3 and the other with Cy5. These two labeled halves of the original sample
are then mixed and hybridized competitively to probes on a microarray. The
concentration of species that can hybridize to any particular probe spot is
identical for each of the two mRNA samples by experimental design. There-
fore, we would expect that the fluorescent intensities detected in the Cy3 and
Cyb5 channels would be identical. They are not: there usually is a dye bias
that needs to be corrected. Dye bias can result from differences in the incorpo-
ration efficiencies for Cy3-dUTP and Cy5-dUTP during reverse transcription,
from differences in hybridization efficiencies for molecules having different dye
labels, and from differences in the fluorescent properties of the two dyes.

Adjusting the data to remove biases from dye labeling or other experimen-
tal parameters is called normalization. In the perfect control experiment
(equal concentrations of each species and no dye bias or other systematic
variation), we would expect a plot of Cy5 intensity versus Cy3 intensity for
spots in a microarray experiment to fall on a straight line having a slope of
1.0. In fact, Cyb5 intensities are systematically lower than Cy3 intensities when
equivalent amounts of sample are present. If we indicate Cy5 intensities by
R (“red”) and Cy3 intensities by G (“green”), a regression of R against G
normally produces a slope k that is less than 1.0. If the regression is linear,
then usually

R=kG,k < 1.0.
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To correct the observed R values so that intensities represent the abundance
of mRNA species in the sample, we should multiply R by 1/k:

Rcorr = kilR

or

logy(R/G) =logy (kG/G) = log, k.

In a “real” experiment, for which mRNA samples were extracted from cells un-
der two different biological conditions, k can be reasonably estimated by linear
regression of R against G for all features. This approximation is called global
normalization. It is valid because most genes are not differentially expressed,
and among the small number of genes that are differentially expressed, roughly
the same number of genes will be up-regulated as down-regulated.

But there is an additional complication: even if there is no change in ex-
pression level for a set of features, the dye bias in log,(R/G) is not constant
but varies as a function of intensity. This type of systematic variation is re-
vealed by “MA plots” (Yang et al., 2002). M is defined as log,(R/G) (i.e.,
log, R—log, G), and A = (log, R+1log, G)/2 = log,(RG) /2. A is the logarithm
(base 2) of the geometric mean of the intensities, corresponding to an average
of the logarithms of the intensities. An example of an MA plot is shown in
Fig. 11.6A, and a plot of the same data after correction is shown in Fig. 11.6C.
When all such appropriate corrections have been made, the average value of
M is 0.0 for all values of A. This is called intensity-dependent normal-
ization. More complicated normalization procedures take into account the
particular pin used to print particular sets of spots and other sources of vari-
ation (Yang et al., 2002). Computational Example 11.1 illustrates global and
intensity-dependent normalization using real data.

Computational Example 11.1: Global and intensity-dependent nor-
malization of microarray data

Step 1: Examining the data

The data we use were collected for the dsz® mutant Drosophila described
above. The array shown in Fig. 11.5A represents one of 11 usable blocks from
this experiment. The data from the scanner appear in a spreadsheet con-
taining 9216 rows of entries (6912 rows with nonzero entries for intensities)
and 43 columns, plus header information. In addition to header information
describing overall conditions of the experiment, the data matrix consists of
columns describing block numbers, columns and rows of spots within blocks,
spot positions, various data related to the means and medians of spot inten-
sities, and background intensities at the two wavelengths. Rows correspond
to different genes or control spots, and rows that are unreliable or that have
zero intensity were “flagged” by the scanning software. The complete data set
can be downloaded from http://www.cmb.usc.edu. We use only the median
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intensities measured at two wavelengths, corrected for background. The data
are preprocessed as described in Appendix C.5 to produce a matrix (5640 x 6)
containing A and M values for plotting. This matrix can also be downloaded
as a text file from the URL indicated. Only unflagged rows are used, and the
columns are, respectively, the spot identity (ID), red intensity, green intensity,
flag, A, and M. The first three rows of data are shown below.

# array.a.m is the data matrix
> array.a.m[1:3,]

Vi V2 V3 V4 a m
1 GHO1040 19404 6040 O 13.402200 1.6837336
2 GHO1059 12628 3352 0 12.667572 1.9135321
3 GHO1066 2236 893 0 10.464610 1.3241881

Step 2: Global normalization factor

We showed above that log,(R/G) is roughly equal to log, k. Therefore, k =
2M  We use the average value of M to determine the normalization factor:

> mean(array.a.m[,6])
[1] 0.2903073

> 2"mean(array.a.m[,6])
[1] 1.222901

This means that the R intensity is, on average, 22.3% greater than the G
intensity for all features, most of which are expected not to differ. For global
normalization, corrected R intensity values should be obtained by multiplying
all R values by 1/1.2229, or 0.8177. It is not necessary to use this normalization
if the intensity-dependent procedure described below is used.

Step 3: Intensity-dependent normalization

We take a quick look at the data as an MA plot:

#Set parameters for plotting three graphs on the same sheet
>par (pin=c(4,2) ,mfrow=c(3,1))

#Initial plot to look at the data

>plot(array.a.m[,5] ,array.a.m[,6] ,pch=".",xlab="A",ylab="M")

The plot (Fig. 11.5A) shows an upward trend in M values for larger values of
A. This systematic error needs to be corrected. We do this by calculating an
“average” curve through the data and subtracting the predicted value at each
A from the actual value. There are two functions in the basic R package that
can be used: lowess () and loess (). The former stands for “locally weighted
scatterplot smoother,” and the latter is a different smoother that locally fits
scatterplots to polynomials. We won’t go into detail here, but you should
check the R documentation for a description of these methods and default
parameter settings.



Fig. 11.6 MA plots showing the effect of intensity-dependent normalization. Panel
A: Data prior to normalization. Panel B: Predicted loess curve based on data in
panel A. Panel C: Data after subtraction of predicted loess values. Note that the
data now cluster around the value M = 0, with a slope of zero. The tight clustering
of data points around the line M = 0 indicates that most genes do not change
their expression levels much under the two conditions compared (dsz” pseudomales
versus dsz null females). (Data supplied by Dr. M. Arbeitman, University of Southern
California.)
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Applying the loess () function:

> MA.ls<-loess(array.a.m[,6] “array.a.m[,5])
#Note argument order: dependent variable is listed first.

> tmp<-predict(MA.ls,array.a.m[,5])

# tmp is a vector of predicted values

# predict is a standard R function

> length(tmp)

[1] 5640

#Checking that correct number of data are returned.

Plot the predicted loess curve (Fig. 12.5B):

> plot(array.a.m[,5],tmp,pch=".",x1lab="A",ylab="M",
+ ylim=c(-8,6)) #Plot with same scale used in first panel.

Apply the correction to the data by subtracting the loess-predicted value from
every M datum:

> MA.norm<-array.a.m

> MA.norm[,6]<-MA.norm[,6]-tmp #Subtracting predicted value
> mean(MA.norm[,6])

[1] -0.003620717

#Check: This should be close to zero after correction.

Plot the corrected data (Fig. 11.6C):

> plot(MA.norm[,5] ,MA.norm[,6],pch=".",xlab="A",ylab="M",
+ ylim=c(-8,6))

Note that the data are now clustered about a line with slope zero and y
intercept zero. Furthermore, note that we did not use globally normalized
data. The procedure automatically places the mean value of all log,(R/G)norm
close to zero.

11.4.2 Statistical Background

In Chapters 2 and 3, we introduced the concepts of mean and variance for
samples drawn from a large population. We also discussed the Central Limit
Theorem, which indicated that as the sample size increases, the probabil-
ity distribution for sample means approaches the normal distribution. When
considering microarray data, there is an additional complication that must be
considered: we probably will not know the standard deviation for the measure-
ment of intensity or intensity ratios for each spot. However, with appropriate
replicate experiments, it is possible to estimate the sample standard deviation.

We should perform a number of replicates for each microarray experiment,
but because of expense or limited samples, this number may be low. As a
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consequence, the estimates of average expression ratio and the standard error
in the expression ratio may not be reliable. The formalism that we discussed
previously employed the population mean and standard deviation. Now we
must manage with the average of a small number of measurements for each
spot instead of a mean and with the sample standard deviation instead of
a population standard deviation. Recall that the estimate of the population
variance based upon a sample is given by

1 n B
2 _ . 2
S= ?Zl(Xl - X)?, (11.1)

where X is the sample mean and n is the sample size. The quantity s is called
the sample standard deviation. For microarray experiments, the number of
replicates, n, will often be a small number much less than 10. Although there
may be on the order of 10* spots on the microarray, the variance for each
spot generally depends upon its mean expression level (Long et al., 2001), so
it may be inappropriate to estimate s2 for any particular feature by including
results from spots having very different expression levels.

It is common to refer to the base or standard condition as the control
and the condition resulting from experimental or other perturbations as the
treatment. Suppose that we are interested in the expression level X; of gene
J in cancer cells (treatment) in comparison with its expression level X§ in un-
affected cells (control). The null hypothesis would be that the expression level
is no different in cancer cells compared with unaffected cells, and we would
want to perform a hypothesis test to determine whether the observed mean
value for X; is significantly different from the mean value for X7. With large
numbers of measurements, the sample estimates of the means and standard
deviations are good approximations to the population values and the distri-
butions of the means are approximately normal, and therefore the hypothesis
could be tested by using the normal distribution in the usual way. When there
are few replicates, however, the normal distribution cannot be used, and in-
stead the distribution of the statistic ¢’ is appropriate for testing whether two
independent means are different:

vt Y ¢
t = X=X (11.2)

2 2
53 + s2
ne Ne

where n; and n. are the numbers of measurements for treatment and control,
respectively, and s. and s; are the respective sample standard deviations for
treatment and control. If the standard deviations of the treatment and control
groups are equal, then the difference between the two means can be tested by
using the more familiar Student’s ¢ statistic,

t= "7 T (11.3)
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where s is the standard deviation estimated from the combined samples. The
t distribution depends upon the sample size, usually expressed in terms of
degrees of freedom. In the expression above, the number of degrees of freedom
is

When the sample sizes are identical, (11.3) reduces to

\/n()_(; — )_(j“)
sv/2 ’

with df = 2n — 2. As the sample size (and number of degrees of freedom)
becomes very large, ¢t approaches a normal distribution.

Some investigators claim that if genes display expression intensity ratios
that differ by some arbitrary factor (e.g., 2) when two different conditions are
compared (e.g., cancer or unaffected), then those genes are differentially ex-
pressed. This approximation can only be reliable if the variances are the same
for measurements across all genes (an unlikely circumstance) and s is suffi-
ciently small. Since this is not usually the case, more careful hypothesis tests
(t tests at a minimum) are required to identify genes whose expressions differ
under the two conditions. If the variances are poorly estimated because of in-
sufficient replication of the experiment, then any inferences made from these
experiments are correspondingly unreliable. Some Bayesian approaches have
been employed for experiments having small numbers of replicates, but this
depends upon having a realistic prior probability distribution. The interested
reader may consult Long et al. (2001) for an example. However, sophisticated
statistical wizardry will not compensate for insufficient replication of experi-
ments.

Microarray experiments involve large numbers of features (spots). This
means that there may be a substantial number of features that appear to reveal
differential expression just by chance. For example, suppose that we have a
microarray having 10* spots and that we have performed three replicates (and
so have 2 x 3 — 2 = 4 degrees of freedom). Taking the average value of the
intensity ratio of X; to be 2 and the average value of the intensity ratio for X7
to be 1 and s = 0.2, we ask how many spots would be predicted to differ by a
factor of two or more by chance. We calculate that t = 6.12. For four degrees
of freedom, the probability that |¢| > 6.12 is around 0.004, which means about
40 spots out of 10,000 will display expression ratios that differ by a factor of
two just by chance when the two conditions are compared. These represent
false positive errors.

This calculation illustrates the general problem of multiple hypotheses
testing: even though the probability of obtaining a false positive result for
any individual spot may be very small, for a large collection of spots there is a
high probability of obtaining a number of false positive results comparable to
the expected number of true positive results. A detailed description of testing
multiple hypotheses is beyond the scope of this book, but as a starting point

t= (11.5)
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for those who wish to explore this issue further, we note that the Bonferroni
correction may be employed. The idea is that if the experiment-wide sig-
nificance level (i.e., the probability of obtaining false-positive results for the
experiment as a whole) is chosen to be apg, then a conservative significance
level « for each of the N = n x m individual features is

a=ag/N.

11.4.3 Experimental Design

Reliable conclusions based upon microarray data require estimates of the vari-
ances for measured intensities or intensity ratios, and the variances depend
upon both the experimental design and the number of experimental repli-
cates. It matters how the replicate measurements are performed (Churchill,
2002; Yang and Speed, 2002). For microarray experiments, three different
types of replication (corresponding to three general sources of variation) can
be imagined.

— Replication of samples: Individual biological organisms, even of the same
species, strain, age, and sex, are not identical. Data from several individu-
als drawn from that population are required to make a reliable conclusion
about a population.

— Replication of sample preparations (technical replicates): Multiple steps
are required to produce the target material for hybridization to an array
of probes, and these preparations may be subject to systematic or random
errors. We already described dye-specific biases (e.g., identical samples
labeled with Cy5 or Cy3 do not produce the same result).

— Replication of slide hybridization and image processing: This takes into
account slide-to-slide variation and variation in the printing of individual
spots.

These different sources of variation have very different contributions to the
overall variance of any given measurement. For example, replicate probe spots
on the same slide yield intensity ratios that have correlation coefficients of
about 0.95, replicate probe spots on different slides hybridized to the same
target sample have correlation coefficients in the range 0.6 to 0.8, and if dif-
ferent sample preparations are used for hybridization, the correlations be-
tween intensity ratios for the same spots measured for different samples may

Fig. 11.7 (opposite page). Influence of experimental design on variance in the
logarithm of the expression ratio for condition A compared with B (log,(X{/XP)).
Target samples are prepared for conditions A, B, and C or control R. Different
experimental designs yield different values of the variance (boxes near the bottom
of each panel) and require different amounts of sample. Of these three protocols,
protocol B yields the lowest variance but requires twice as much sample.
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be only 0.3 (Churchill, 2002). We might suppose that oligonucleotide arrays
would produce more concordant results because of the thoughtful design and
well-defined chemical synthesis of probes. However, direct comparisons of over-
expressed genes identified by using the same sample with two different oligonu-
cleotide array platforms produced agreement in only 4-15% (o = 0.001) or
14-26% (o = 0.01) of the cases (Tan et al., 2003).

Good experimental design principles can help optimize the data that can
be extracted by minimizing the variance for the desired experimental quan-
tity (Fig. 11.7). For example, suppose that we are studying target samples
A and B and have available reference sample R. Let X ]A and X jB be the in-
tensities measured for gene j under conditions A and B. Denote the variance
in logQ(XJA/XjR) as s? (We are assuming the presence of multiple spots for
gene j so that s? can be estimated.) The log of the intensity ratio can be
measured directly as log, (X JA /X JB) if samples A and B are cohybridized in
a single experiment, or the ratio can be obtained indirectly if A and B are
each hybridized independently of each other but in the presence of reference
sample R:

log,(X;*/X7) = logy (X3 /X]") —logy (X7 /X]Y).

The indirect approach requires two experiments, and the variance for that
case is the sum of the variances of the individual experiments:

(s))aB = (s])ar + (57 )BR.

But if we were going to perform two experiments anyway, we could measure
log, (X JA /X JB ) directly in two independent hybridizations. The variance (of the
average) in that case would be (s7)ap/2. The two indicated strategies involve
the same investment in labor and material, yet they yield a fourfold difference
in the variance of the desired quantity. Some specific examples illustrate how
designs can matter.

For example, one common experimental approach is to measure data from
samples A, B, and C relative to sample R. R might be a well-characterized
biological sample created by pooling a number of smaller samples so that the
targets in R all have about the same abundance (yielding the same level of hy-
bridization to all probes). Then we could perform three hybridizations using
mixtures A+R, B+R, and C+R, and measure log, (X /X}), log,(XB/XE),
and log, (X< /XR) for each gene. As we indicated above, if we seek relative
expression levels in samples A and B, B and C, and A and C, those quantities
can be obtained from measurements involving reference sample R by subtrac-
tion of the appropriate log terms, with a variance of 2s? in each case. The
experiments require one sample each of A, B, and C, and three samples of R,
for a total of three hybridizations.

There is another way of setting up the experiment. Instead of using R,
we could employ the following combinations: A+B, B4+C, and A+C. In this
case, there are two measurements that produce relative expression levels of
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A and B: the A+B experiment, measured directly with a variance of s?, and
the indirect measurement comprised of log, (X /X ) —logy(XB/XE), with a
variance of 2s?. The variance for the average of the two measurements (direct
and indirect) is

Sivg = (sairect/l + Si2ndirect/2)/3 = S?(l/l + 2/2)/3 = 0678?

Clearly, performing the series of direct measurements without use of a ref-
erence produces a result having a lower variance. In this case, however, two
samples each of A, B, and C were required, with no samples of R. From the
standpoint of reliability of the estimations, elimination of the reference sam-
ple is preferable in this case, provided that we have enough sample material.
For more complicated experimental designs, see Yang and Speed (2002), from
which the examples above were taken.

11.5 Data Interpretation

In the last section, we discussed processing the experimental data to obtain
reliable intensities or intensity ratios and their variances to produce gene
expression matrices. In this section, we assume that we are given an appro-
priately corrected gene expression matrix and are asked to analyze the data
to provide biological insights. As we shall see, some of the mechanisms for
doing this have already been presented in Chapter 10. The approach for data
analysis is in part dictated by the purposes of the experiment. Among those
purposes are:

— Annotating anonymous genes based upon their expression patterns over a
number of conditions. For example, if under a variety of conditions gene
j shows patterns of expression that are similar to patterns for a set of
other genes whose functions are known, then we might hypothesize that
j functions in a similar pathway and test this hypothesis experimentally.
This is known as “guilt by association.”

— Identifying genes (known or unknown) that are co-regulated and that may
function in the same biochemical pathway. This may lead to new insights
into gene regulation mechanisms and may suggest experiments for ana-
lyzing the promoter regions of co-regulated genes for shared collections of
transcription factor binding sites.

—  Classifying biological specimens (e.g., tumors) based upon their gene ex-
pression patterns. This could lead to identification of a small number of
genetic markers that would be clinically useful for diagnosis.

The analytical approaches fall into one of two categories, distinguished by
whether or not information from outside the microarray experiment is em-
ployed. Supervised methods incorporate this prior knowledge by including
class labels associated with each feature. For example, we might take genes
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of known function (e.g., translation of mRNA, DNA repair) and use their
expression patterns (suitably represented) to classify unannotated genes into
a defined functional category. As another example, the expression patterns
revealed in the mRNA from a collection of tumors might reveal patterns spe-
cific to a particular type and stage of tumor. Unsupervised methods start
with a collection of multivariate data and produce groupings of genes or com-
binations of variables based upon information inherent in the data without
additional outside information. We illustrate unsupervised approaches by clus-
tering methods and principal component analysis (PCA), described below.

The methods for data analysis depend upon the data structure. As we
have indicated, the data are contained in a gene expression matrix whose
entries correspond to intensities or intensity ratios for each feature (i.e., spot
on the microarray). In our discussion so far, we have considered the gene
expression matrix to represent data for n genes measured on m conditions,
with the data for each gene j entered in row j of the matrix. However, if the
purpose of the experiment is tumor diagnosis, it may be of greater interest to
consider m rows of conditions (e.g., m rows of tumor samples) measured over
n genes (i.e., one column for each gene). The types of variables of greatest
concern to the experimenter are called criterion or response variables. In
Chapter 10, the criterion variables were the OTUs. The variables that are
potentially useful for determining the value of the response variable are called
predictor variables or attributes (the characters in Chapter 10). If the
purpose of the experiment is classification of genes, then genes are the response
variables and the conditions under which their expression was measured are
the predictor variables. If the main interest is in classifying conditions or
grouping similar conditions, then the conditions are the response variables
and the genes are the predictor variables. In other words, either the expression
matrix of n genes xm conditions, or its transpose, may be analyzed, depending
upon the purpose of the experiment. For each row of the expression matrix (or
its transpose), the set of predictor variables for that row is called a profile.
These profiles can be used for clustering or classification.

We discuss two general approaches to data analysis: clustering and data
reduction. In both cases, complex data that are hard for the human mind
to comprehend are organized and simplified. For example, arrays containing
10* features measured under 50 conditions contain 500,000 entries of numbers
measured on a continuous scale. Clustering assigns features (genes) into a
smaller number of categories, with all members in any category having similar
profiles. This allows the profiles of sets of individual genes to be summarized
by an average cluster profile. Data reduction may allow either elimination of
a subset of the predictor variables or perhaps formation of combinations of
them that can be used to identify a subset that explains most of the variation
in the data.
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11.5.1 Clustering of Microarray Expression Data

Clustering methods presented in Chapter 10 (e.g., hierarchical clustering and
K-means) can be employed with microarray data to group genes having sim-
ilar expression patterns into clusters. Eisen et al. (1998) were among the first
to use hierarchical clustering to organize microarray data. Recall that with
hierarchical clustering, objects are grouped according to their similarities or
distances. A number of different measures of similarity (or distance), such as
Euclidean distance, could be employed. When comparing expression patterns
of two genes ¢ and j measured over m conditions, we can use the Pearson
product-moment correlation coefficient as a measure of similarity (cf. Eisen
et al., 1998),
(g — ) g5k — 35)
Tij = )
(m —1)s;s;
where g;;, is the expression level for gene 7 under condition k, g; is the av-
erage expression level of gene i, and s; is the standard deviation over all m
conditions. All of the correlation coefficients can be grouped into a correla-
tion matrix, R. (It is evident from Section 10.3.1 in Chapter 10 that there is
a relationship between the correlation coefficient and the Euclidean dis-
tance metric, but we won’t go into further detail on this point.) Note that the
correlation coefficients are closely related to the covariance:
Cov(gir ;) — e (9 = i) 9k = 35)
’ (m—1)
The covariances can be grouped together in a covariance matrix, S. Note
that the diagonal terms of S are the variances of the respective variables.
Either the entries in the correlation matrix R or the covariance matrix S
could be used for clustering, taking only that portion above or below the
diagonal, as we did in Chapter 10. In this case, objects having the greatest
similarity (as measured by the correlation coefficients) or, alternatively, the
smallest distance would be joined first in hierarchical clustering. The matrix
R can be converted into a distance matrix D by changing the signs and adding
1.0 to each of the ry;.

Computational Example 11.2: Clustering of expression data

The data (Appendix C.4) are the mRNA levels for a set of 12 yeast genes
measured at 16 successive time points. We use K-means clustering to deter-
mine how many different expression patterns there are and to group together
genes having similar patterns.

Step 1:

Read the data from a text file into an R matrix from file yeast_dat. We use
the function scan to read the data into a matrix, and then we add the row
names.
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yeast.dat<-matrix(scan("yeast_data") ,nrow=12,byrow=T)
clone.name< c("YGRO27C","YLR259C","YGL189C", "YELO32uw",
+ "YPL240C","YLLO26w","YLR274W","YBR202w" ,"YER131w",

+ "YDR258c","YBLO72c","YBL023c")

dimnames (yeast.dat)<-list(clone.name,NULL)

Step 2:

We are interested in the patterns of expression rather than the absolute
amounts. Therefore, we standardize the data points for each gene by sub-
tracting from each entry the mean value for that gene and dividing by the
standard deviation.

> for(i in 1:12){
+syeast.dat[i,]<-(syeast.dat[i,]-mean(syeast.dat[i,]))/
+sqrt (var(syeast.dat[i,]))

+}

The first few entries of the standardized matrix syeast.dat are shown below.

YGRO27C -1.8475332 -0.448629053 0.42444587 -0.1956358 ...
YLR259C  2.6423248 0.553840762 0.47351445 -1.1330117 ...
YGL189C -0.5141768 -0.994527569 1.25917287 1.5338940 ...
YELO32w -0.3421999 1.040063427 -0.27039405 -0.5396661 ...
YPL240C  3.3712044 1.212655197 0.25669716 -0.2691817 ...

Because of the standardization, the entries for all genes are now all of the
same order of magnitude.

Step 3:

Perform K-means clustering for different values of k:

# k=2
> ckm2<-kmeans(syeast.dat,2,iter.max=10)
> ckm?2
$cluster

[11 111211221112
$centers

[,1] [,2] [,3] [,4] [,5]

1 1.0129085 0.07897436 0.3453561 -0.1251811 0.0009998353. ..
2 -0.7827595 0.35531276 -0.0626123 -0.8963423 -1.0668526992. ..
$withinss

[1] 82.02579 10.34386
$size

[1] 8 4
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As we indicated in Chapter 9, $ is used as a prefix to indicate each item in a
list of objects that are not necessarily of the same type: scalar, vector, matrix,
or data frame. kmeans produces five quantities as output. cluster indicates
the cluster to which each row belongs. centers contains two 16-dimensional
vectors, which are the coordinates of the two cluster centers. withinss is the
within-cluster sum of squares, a measure of how close the members of each
cluster are to the cluster centers. size summarizes the number of members in
each cluster. In this case, cluster 1 has eight members, and from the withinss
values it appears that they are on average more diffusely distributed than are
the members of cluster 2.

For subsequent iterations, we omit centers to conserve space:

# k=3
> ckm3<-kmeans(syeast.dat,3,iter.max=10)
> ckm3
$cluster
[11 212311332123

$centers

$withinss

[1] 5.776459 17.329197 10.343858
$size

[1] 4 4 4

Since the withinss for the third cluster is the same as for the last cluster
with k£ = 2, it is evident that the first cluster obtained with k£ = 2 has been
split in two. Notice how the sum of all three withinss values has fallen as a
consequence of proceeding from k=2 to k=3.

#k=4
> ckm4<-kmeans(syeast.dat,4,iter.max=10)
> ckméd
$cluster
[11 414211334143
$centers

$withinss

[1] 5.776459 0.000000 6.407072 17.329197
$size

[1] 41 3 4

By adding a fourth cluster, all that has happened is that one of the members
of cluster 2 from k£ = 3 has been defined as a cluster having only one member.
(Note that withinss = 0.0.)
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Fig. 11.8. Results of K-means clustering of expression patterns for 12 yeast genes
(Computational Example 11.2). The time course of expression is similar for genes
within each derived cluster.

If this process is repeated for £k = 5 and k£ = 6, we can sum the withinss
values for each value of k and plot them versus k to obtain a plot like Fig. 10.8.
We prefer that value of £ beyond which the withinss does not drop too much
for each additional increment in k. In this case, we choose k = 3.

Step 4:

Plot the data, k = 3, making a separate plot for each cluster (Fig. 11.8). Use
$cluster identifiers to extract appropriate rows of syeast.dat. The three
panels were plotted using
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par (mfrow=c(3,1))
plot(syeast.dat[2,],ylim=c(-3.5,3.5) ,type="1",1ty=1,
xlab="Time Point", ylab="Expression Level")
points(syeast.dat[5,],type="1",1ty=2)
points(syeast.dat[6,],type="1",1ty=3)
points(syeast.dat[10,],type="1",1ty=4)
title("Cluster 1")...

V V.V V + VvV V

The lines beginning with plot and continuing through title are repeated
(with appropriate modifications to the arguments) to produce plots of the
two other clusters. Notice that time courses of members of any particular
cluster have similar patterns, as expected.

Before leaving our computational examples, we mention the
open source software for bioinformatics available in BioConductor
(http://www.bioconductor.org). In particular, this contains a num-
ber of powerful statistical tools for the analysis of microarray data.

11.5.2 Principal Components Analysis

In the example above, we were looking for shared patterns among rows of the
gene expression matrix. As we indicated above, these shared patterns could
be described by a correlation coefficient. It is often observed that there are
correlations between columns of the gene expression matrix. In other words,
there are correlations between the variables used to describe the gene expres-
sion data. For example, if ; corresponds to expression levels or ratios for all
genes at one point in the cell cycle and z; corresponds to expression levels
or ratios for these genes one generation time later, x; may be correlated with
x;. When there are correlations between the experimental variables, it may
be convenient to convert variables {x;} to a new set of variables {y;} that are
uncorrelated. If the y; are appropriately selected so that y; has the greatest
variance and each successive y; accounts for successively lesser amounts of the
variance, it may be possible to represent the data with only the first d vari-
ables y1,¥y2,...,yd4,d < m, thus achieving data reduction. The gene expression
data represented in terms of these new coordinates can then be clustered.
The procedure just described is known as principal components anal-
ysis (PCA). We do not discuss the mechanics of this process but will just
give an idea of the approach, in effect restating more carefully the procedure
described in the previous paragraph. For details, see Everitt and Dunn (2001).
Principal components analysis defines m new variables or components {y;},
with each new variable represented as a linear combination of the m original

ones {z;}:

Yi = Z Qi Tj.
This in effect rotates the coordinate axes so that the variation in the data
occurs only with respect to these new axes, or components. As a consequence
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of the transformation, the covariance matrix S (this time an m x m matrix
whose elements are Cov(x;,x;)) is converted into a diagonal matrix A whose
diagonal elements \;; are the variances corresponding to each component. The
off-diagonal elements of A are all 0, indicating that with this transformation
the newly defined component vectors are uncorrelated in the new coordinate
frame of reference. A is constructed so that the diagonal elements become
smaller as one goes from the first element at the top left to the last element at
the bottom right. This means that A1; represents the largest amount of varia-
tion in the data and \,,,, represents the least amount. The proportion of the
total variation contributed by each component i is given by A;/ > Ai;. Data
reduction can be achieved by examining the diagonal elements and ignoring
those components that contribute little to the total variation. For example,
we might retain the set of d largest components that together represent 90%
of the variation. Other components would be ignored because they do not
contribute much to the variation among genes. An example of this approach
to synchronized yeast cells has been presented by Alter et al. (2000). The
final step is to perform clustering of the genes based upon similarity in their
expression patterns described by the set of variables y;,i =1,...,d.

11.5.3 Confirmation of Results

Microarray experiments are often used to identify genes that should be exam-
ined further by extensive genetic, biochemical, or other “wet lab” approaches.
Since these downstream experiments can involve many person-years of effort,
it is essential to use independent methods to confirm differential expression
of interesting genes identified by microarray experiments. This will help to
eliminate the false positive identifications discussed in Section 11.4.2.

It is beyond the scope of this book to provide detail on this topic, but we
briefly describe real-time (kinetic) PCR. For RNA samples, a reverse tran-
scription (RT) step is employed, and in that case the method is called real-
time RT-PCR. This method for quantifying DNA or RNA has a dynamic
range extending over six orders of magnitude, and after PCR has begun it
can be performed automatically without withdrawing samples from the reac-
tion tube.

Recall that the amount of DNA produced by PCR after any number of
cycles is proportional to the initial amount of the specific DNA or RNA
present (Chapter 1.5.1). After the elongation step in each cycle, duplex DNA is
formed, and this can be detected by enhanced fluorescence of dyes that insert
between the stacked bases of the double helix (a process called intercalation).
During the early stages of the PCR reaction, the amount of duplex doubles
after every cycle, but for molecules at initially low concentrations, their flu-
orescence is insufficient to be detected above the background fluorescence in
solution. Eventually, however, the concentration of the amplified molecules
grows sufficiently for the fluorescence of the solution to begin increasing. The
cycle number at which this occurs is called the threshold cycle.
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DNA or RNA species present at initially low concentrations will require
more cycles before they can be detected, and their threshold cycles will there-
fore be greater than is the case for molecules at high concentrations. Compar-
ison of the threshold cycle number for gene X under treatment and control
conditions with values for a standard curve will provide an independent and
sensitive measure of the expression ratio. Commercial instruments are avail-
able for performing real-time PCR and automatically collecting kinetic data
for 96 samples simultaneously. Methods for quantification other than the one
described above are also available.

11.6 Examples of Experimental Applications

Before considering specific examples of applications, we should revisit the
question of data structure. Recall that the data for experiments using cDNA
or oligonucleotide microarrays are recorded in an expression matrix, often with
rows corresponding to genes and columns corresponding to conditions. The
ordering of the rows may be arbitrary, without any biological significance. We
indicated above that hierarchical clustering can organize the rows by similarity
of expression patterns (based upon distance measures in a high-dimensional
vector space or on correlation coefficients). The columns (corresponding to
different conditions) may or may not have a natural order or grouping. For
example, if each column corresponds to a different specimen of a particu-
lar type of tumor, the order of columns may be arbitrary. Alternatively, if
columns correspond to samples from a time course experiment, such as cells
synchronized by the addition of a growth component previously withheld or
embryos at different developmental stages, then interpretation of the results
is facilitated if the conditions (columns) appear in temporal order. Sometimes
data from several different time course experiments may be aggregated (e.g.,
expression patterns at different times after heat shock or the addition of a hor-
mone), and the order of these groups of conditions may be arbitrary. It can
be useful to cluster not only the genes but also the conditions (vector com-
ponents). Clustering of vector components groups together conditions that
have the same gene expression pattern. We illustrate these concepts with an
artificial example before presenting examples of actual experimental results.
The goal is to present high-dimensional multivariate data in a manner that
can easily be visualized. A conventional way of doing this is to present a color-
coded gene expression matrix after clustering by rows or by rows and columns
(Eisen et al., 1998). For example, degrees of red shading may indicate the ex-
tent of elevation in gene expression, degrees of green shading may represent
the extent of reduction in gene expression, and black may signify no change
relative to the reference state. This is illustrated by the simplified example
in Fig. 11.9 (original data from Table 11.1). In this illustration, four different
grey scale shadings are used to represent levels of gene expression for ten genes
A, B, ..., J under ten conditions i,ii,...,z. In Fig. 11.9A, data have been
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clustered by rows using the R applications dist (,method="euclidean") and
hclust (,method="average") followed by plclust(). The pattern of shad-
ing allows us to recognize the underlying expression patterns immediately, in
contrast with the effort that would be required for numerical comparisons of
each component. We define three clusters of genes, each of whose members
share similar expression patterns.

Table 11.1. Illustrative data for Fig. 11.9. Rows correspond to “genes” in alpha-
betical order, and columns correspond to conditions. Data have been scaled by rows
using the means and standard deviations for each row.

7 % 218 ) v V1 V1t V118 T x

-0.370 -0.370 0.560 1.50 —0.37 —1.300 —1.30 —0.37 0.560 1.50
1.500 0.073 —-0.660 —1.40 —0.66 0.073 1.50 0.80 —0.660 —0.66
1.400 —-0.460 —1.400 —0.46 0.46 1.400 046 0.46 —0.460 —1.40

—0.280 —0.980 0.420 1.10 0.42 —-0.980 —0.98 —0.98 0.420 1.80
1.500 0.810 —0.540 —0.54 —1.20 0.140 1.50 0.14 —1.200 —0.54

-0.078 1.500 —-0.078 —1.60 —0.85 —0.078 0.70 1.50 —0.078 —0.85

—0.980 0.650 1.500 —0.16 —0.98 0.650 1.50 —0.16 —0.980 —0.98

—1.300 -0.520 0.220 1.70 0.97 —-0.520 —1.30 —0.52 0.220 0.97

-0.770 -0.770 2.100 0.19 -0.77 0.190 1.20 0.19 —-0.770 —0.77
1.500 0.700 —0.850 —0.85 —0.85 —0.078 1.50 0.70 —0.850 —0.85
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Figure 11.9B illustrates additional clustering by conditions. The goal here
is to identify groups of conditions i,1i, ..., x whose genes show similar expres-
sion patterns. We achieve this clustering by transposing the expression matrix
(after rows were reordered) and applying the same R functions as we used to
produce Fig. 11.9A. If the conditions were time points during the cell cycle,
then we would expect that time points for successive iterations of each stage
of the cell cycle would cluster together. If the conditions corresponded to sam-
ples from tumors, we would expect like tumor types to be grouped together. If

Fig. 11.9 (opposite page). Graphical representation and clustering of gene expres-
sion data. Panel A: Expression data for genes A, ..., J in Table 11.1 were subjected
to hierarchical clustering as described in the text, and results are displayed as de-
scribed by Iyer et al. (1999), except for the use of a grey scale instead of color.
Expression levels indicated by each shade are indicated by the strip between panels
A and B. Horizontal lines separate three clusters based upon the dendrogram shown
at the left. Panel B: Same data as in panel A, except that the conditions i, i, ...,z
have now also been clustered based upon shared patterns of gene expression. Two
major clusters are seen (dendrogram at top and graphic), each with a characteristic
gene expression pattern (ii¢ appears as a singleton in this example).
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the conditions were samples from different species of animals, we might expect
that conditions would form clusters that reflect the phylogenetic relationships
of those animals. In this example, we see that there are two major groups of
conditions and a singleton.

This simplified introduction sets the stage for examples of gene expression
results. There are thousands of studies reported or in progress, and we discuss
only four to illustrate the type and utility of such experiments.

11.6.1 Gene Expression in Human Fibroblasts

Animal cells growing in tissue culture ordinarily require growth factors. These
are often supplied by adding serum to the growth medium. Human fibroblast
cells isolated from foreskins were cultured in a medium lacking serum, and af-
ter 48 hours serum was restored (Iyer et al., 1999). The cells thus synchronized
with respect to phase in the cell cycle resumed growth, and the expression of
8600 human genes was assessed as a function of time over a 24 hour period.
Genes having like expression patterns were clustered to identify the stages of
the cell cycle during which their expression was elevated or reduced.

Figure 11.10 shows a portion of the clustered data (Eisen et al., 1998). Gene
annotations identified the functions of the genes in the clusters illustrated.
Cluster B (16 genes) represented genes involved in the cell cycle, and Cluster
C (9 genes) consisted of genes involved in the immediate-early response (e.g.,
transcription factors). The commonalities in expression patterns are readily
understood from this type of graphical presentation. In this case, no clustering
of conditions was required because the sampling times correspond to successive
stages in the cell cycle, and only one cell cycle was monitored.

11.6.2 Gene Expression During Drosophila Development

The developmental program of Drosophila follows a typical insect progres-
sion from embryo (E) through larval (L), pupal (P), and adult (A) stages.
Understanding the suites of genes that are coordinately expressed is crucial
to understanding the genetic networks controlling development in insects and
other metazoan animals. Accordingly, expression patterns of 4028 genes were
measured over the entire Drosophila life cycle (Arbeitman et al., 2002).
Clustering of patterns for all 4028 genes was performed based upon their
individual expression patterns at successive developmental time points (clus-
tering by rows; Fig. 11.9A). Members of the resulting clusters of genes were
often functionally related. For example, one cluster was enriched for genes ac-
tive in terminally differentiated muscle (Fig. 11.11). DNA sequences of these
coexpressed genes were analyzed for the presence of binding sites for tran-
scription factors known to be involved in muscle differentiation. The combined
data revealed within this cluster genes whose involvement in muscle terminal
differentiation had not previously been recognized. Expression of terminally
differentiated muscle tissue genes is particularly high in the late embryo/larval
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i

Fig. 11.10. [This figure also appears in the color insert.] Expression of clusters
of genes from serum-deprived fibroblasts for 12 time points after serum is restored.
Each horizontal strip corresponds to the expression profile of one gene. Red or green,
respectively, indicate elevation or depression of gene activity compared with levels
in serum-deprived cells. Portions of the dendrogram resulting from clustering of the
entire set of 8600 genes are indicated at the left. Cluster B includes genes involved
in the cell cycle, and cluster C corresponds to genes involved in the immediate-early
response. Excerpted, with permission, from Eisen MB et al. (1998) Proceedings of
the National Academy of Sciences USA 95:14863-14868. Copyright 1998 National
Academy of Sciences USA.

stage and at the end of the pupal stage. Note the similarity in patterns reading
down the last few columns in stages E and P in Fig. 11.11.

The two “waves” of elevated gene expression evident at the end of the em-
bryonic and pupal stages illustrate for this particular gene cluster the general
result obtained from all 4028 genes clustered by columns (Fig. 11.9B). For
such an analysis, vectors for each time point (containing expression levels at
that time point for all genes) were clustered based on similarity of expres-
sion patterns (illustration not shown). Two large clusters were observed: time
points from the larval stage clustered with time points associated with adults,
and time points associated with the embryo clustered with time points from
the pupal stage. This indicates that similar developmental circuits employ-
ing the same genes may be involved at different stages of the developmental
process.

11.6.3 Gene Expression in Diffuse Large B-cell Lymphomas

Diffuse large B-cell lymphomas are malignancies associated with B-lympho-
cytes (antibody-producing cells of the immune system). Expression profiles
for genes corresponding to more than 20,000 cDNA clones were obtained for
tissue samples taken from 44 human biopsies and were compared with a va-
riety of normal and malignant control samples (Alizadeh et al., 2000). The
B-cell lymphoma samples showed distinctive expression patterns compared
with control samples. Clustering of genes based on their expression patterns
was performed, and then samples were clustered using a subset of the genes
tested. Gene expression patterns for the biopsy samples fell into two distinct
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Fig. 11.11. [This figure also appears in the color insert.] Expression of terminally
differentiated muscle genes during Drosophila development. Graphical conventions
are similar to Fig. 11.10, except that yellow indicates high levels of expression and
blue indicates low levels of expression. The multicolored ribbon at the top spans the
times corresponding to embryonic (E), larval (L), pupal (P), or adult (A) stages of
development. Expression patterns for transcription factors twist and dMef2, known
regulators of muscle development, are indicated immediately below the developmen-
tal stage indicator. Their expression prior to the onset of expression of muscle genes
was anticipated. Reprinted, with permission, from Arbeitman MN et al. (2002) Sci-
ence 297:2270-2275. Copyright 2002 American Association for the Advancement of
Science.

classes: those with characteristic patterns of B-cell germinal centers or those
similar to activated B-cells.

The clinical outcomes for patients treated by multiagent chemotherapy
were monitored and compared with the gene expression patterns of the corre-
sponding biopsy samples. Those patients having lymphomas with expression
patterns like germinal center B-cells had substantially higher 5 year survival
rates (76%) than did patients having lymphomas with the activated B-cell pat-
terns (16%). This expression study identified subclasses of B-cell lymphomas
that had not previously been recognized, and the expression patterns of these
subclasses were correlated with distinct clinical outcomes.
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11.6.4 Analysis of the Yeast Transcriptome Using SAGE

SAGE was used to analyze the S. cerevisiae transcriptome at three different
stages of growth (Velculescu et al., 1997). The 60,000 sequenced SAGE tags
provided estimates of the fractional amounts of each transcript per cell for
transcripts present at levels higher than 0.3 transcripts/cell. These fractions,
together with prior estimates that yeast contains 15,000 mRNA molecules,
indicated that the majority of genes were represented in the transcriptome
at levels of about 1 to 2 mRNA molecules per cell. Indeed, 55% of the total
number of transcripts came from just 160 of the 4665 genes whose transcripts
were detected. To detect transcripts present at very low levels, much higher
levels of “coverage” (number of tags sequenced/mRNA molecules present) are
needed. The advantages of an open architecture (variables not predetermined)
were realized since transcripts corresponding to 160 ORF's that had not been
annotated in the genome were detected. Comparison of expression patterns
at the different growth states indicated that less than 1% of the genes were
differentially expressed. (Using time course data and oligonucleotide arrays,
Cho et al. (1998) found that 6.7% of the yeast genes were differentially reg-
ulated over the course of the cell cycle.) These results confirm the assertion
that usually most genes are not differentially expressed (see Section 11.4.1).

11.7 Protein Expression

Because transcript levels may not accurately represent the concentrations of
their cognate proteins (Section 11.1), direct measurement of protein expression
is desirable. Much current proteome research is directed toward technology
development, so computational and statistical issues have been emphasized to
a lesser extent than has been the case for oligonucleotide- or cDNA-microarray
(collectively, DNA microarray) experiments. For this reason, we provide only
a brief summary of some of the experimental approaches for measuring protein
expression levels.

Studies of the protein complement in cells may be directed toward several
different goals:

— Discovering which known proteins are coordinately regulated;

— Characterizing the abundances of different proteins in particular cells or
cell compartments;

— Comparing protein levels in cells from diseased individuals or in cells
treated with a pharmaceutical agent with protein levels in normal (control)
cells;

— Determining what ligands are bound by different proteins;

— Identifying partners in protein-protein interactions.

Notice that the first three items in this list are similar to the goals for studies
with DNA microarrays. The last two items are new and are two of the goals
of functional proteomics.
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Detecting protein species over the wide range of concentrations at which
they may appear in the cell is a significant technical problem. With simple
organisms such as yeast, in-frame fusions of DNA encoding an affinity tag
can be placed at the end of each ORF in the genome by recombinant DNA
techniques (Ghaemmaghami et al., 2003). This allows a single convenient pu-
rification protocol to be used for all proteins in the genome and also facili-
tates their detection by highly sensitive antibody techniques. Such methods
revealed about 4250 protein species in yeast grown in log-phase (about 75%
of the estimated total number of genes). In contrast, only 500-1500 yeast pro-
tein species were detected using liquid chromatography/mass-spectrometry
(LC/MS) methods (see below). 2D gel electrophoresis and LC/MS methods
also fail to detect a large proportion of low-abundance proteins. For exam-
ple, only 8% of yeast proteins appearing at 5000 copies per cell or less were
detected by MS methods (Ghaemmaghami et al., 2003). The less sensitive
methods for protein detection are still employed because in-frame fusion of
affinity tags is technically more difficult for complex eukaryotic genomes.

11.7.1 2DE/MALDI-MS

The older, well-established two-dimensional electrophoresis (2DE) method
has been joined to matrix-assisted laser-induced desorption/ionization
(MALDI) mass spectrometry (MS). There are two steps to this compos-
ite procedure: resolution of polypeptides on two-dimensional polyacrylamide
gels (Section 1.5) and identification of each spot by mass spectrometry. Each
well-resolved spot on the 2D gel corresponds (ideally) to a single polypeptide
characterized by a molecular mass and a pl. These parameters alone are not
sufficient to identify the actual polypeptide chains. Therefore, spots are ex-
cised from the gel, digested with a sequence-specific protease such as trypsin,
and then subjected to MALDI-MS.

Because this is a highly technical subject beyond the scope of this book, we
only provide a brief outline of the principles of MALDI-MS. There are three
principal instrumental components: an ionization source, a mass analyzer, and
a detector. With MALDI, the digested polypeptide sample is embedded in an
organic matrix, that is then dried and placed in a vacuum. Pulses from a UV
laser volatilize the sample. The molecules may become charged by acquiring
one or more HT ions in the process. These charged polypeptides (now in
the gas phase) are accelerated toward the mass analyzer by application of a
high-voltage electric field (e.g., 25 kV). The mass analyzer employs a magnetic
field to resolve the individual polypeptides. Moving charges in a magnetic field
experience a force proportional to the charge and perpendicular to both the
velocity vector and to the magnetic field vector. Thus the ion trajectories in
the mass analyzer become broad arcs. A single peptide type may produce one
or more species having different charges, and each species follows a different
trajectory. Different peptide fragments having the same charge differ in mass,
and they also follow different trajectories because they were accelerated to
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different velocities. In general, peptide fragments having different mass (m) to
charge (z) ratios, m/z, can be resolved by the analyzer. The detector measures
the ion current at different values of m/z. The overall precision in resolving
species of different m/z is 10 ppm (!). Each particular m/z value usually
corresponds to a single polypeptide amino acid sequence, which identifies the
polypeptide.

Greater accuracy in polypeptide identification can be achieved by tandem
mass spectrometry. In this case, two components are added between the mass
analyzer and the detector: a collision cell and a second mass analyzer. Indi-
vidual polypeptides from the first mass analyzer are directed into the collision
cell, which contains a low concentration of the inert gas argon (Ar). High-speed
collision of the polypeptide with the argon atoms causes collision-induced dis-
sociation (CID). The resulting polypeptide fragments are then resolved by the
second mass analyzer. The m/z values of the constituent fragments provide a
fingerprint of the polypeptide.

This whole operation is obviously not a high-throughput, parallel analyti-
cal procedure. Efforts to improve this general approach substitute tandem mi-
crocapillary chromatography for the 2DE (e.g., strong cation-exchange chro-
matography followed by reverse-phase chromatography). The effluent from
the second column is then analyzed by MS (see Ferguson and Smith, 2003, for
a review). Obviously, it would be desirable to have analytical methods that
offer some of the same convenience as DNA microarrays.

11.7.2 Protein Microarrays

Protein microarrays employ probes that specifically recognize different target
proteins in a complex mixture of target species. One of the goals might be
simply quantification of the amounts of the different protein species (analo-
gous to DNA microarrays). Other goals might be detection of protein-protein
interactions, protein-small molecule interactions, or enzyme-substrate inter-
actions. There are two general types of protein microarrays: (1) arrays of the
proteins of interest and (2) arrays of antibodies or antibody-like molecules di-
rected against the proteins of interest. If the proteins themselves are arrayed
as probes on solid substrates, they may lose biochemical activity. Also, differ-
ent arrayed proteins may have different pH or ionic strength optima. Any one
condition is unlikely to be optimal for all proteins on the array. These issues
are less important if the probes are antibodies directed against specific target
molecules. An advantage of arrayed antibodies is that these proteins are more
robust and comparably active under a particular assay condition. However,
even for antibodies, instability on surfaces or during long-term storage may
be problematic.

We limit our discussion of arrayed antibody probes (see MacBeath, 2002,
for a review). Suppose that we had a collection of antibody samples Ab,,
Aby, ..., Ab,, each capable of recognizing antigens a, b, . . ., z. We could imag-
ine using these antibodies to create an antibody microarray for detecting
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and quantifying antigens a,b, ...,z that might be present in a protein sam-
ple of interest. Given the necessary antibody probes, the array technology
is relatively straightforward and analogous to DNA microarray technology.
The probes (sometimes called capture antibodies) are robotically arrayed and
mapped onto a suitably prepared glass slide and exposed to a target solution
containing the proteins (antigens) to be analyzed. The antigens in the sample
specifically bind to the probes or capture antibodies, and features on the array
are then scanned to detect bound antigens.

One method to detect antigen binding is indirect labeling by detection
antibodies (Fig. 11.12A). The detection antibodies recognize the same anti-
gens as the set of probes or capture antibodies, but they recognize a different
epitope. When a cocktail of detection antibodies is placed on an antibody
array that has been incubated with the target sample, an antibody-antigen-
antibody “sandwich” is formed at those features that contain bound antigen.
The detection antibodies either contain fluorescent labels or chemical groups
that allow them to act as reporter molecules. This method obviously requires
two antibody preparations for every antigen to be assayed: one to be arrayed
as the probe and one for detection.

A second method (and the one employed with commercial arrays having
large numbers of features) is the antigen capture method, which is analogous
to the method used with DNA spotted microarrays (Fig. 11.12B). With this
method, there are two target samples: treatment and control. Each target
sample is labeled with a different fluorescent dye (Cy3 or Cy5, for example),
the samples are mixed, and then they are incubated with the probes on the
antibody microarray. The relative amounts of each antigen in the two sam-
ples are determined from the ratios of the fluorescence intensities for the two
dyes. Commercially available arrays (BD Biosciences, Palo Alto, CA) may
contain 500 different monoclonal antibodies directed against a variety of hu-
man proteins (transcription factors, receptors, cell cycle proteins, cytoskeletal
proteins, membrane proteins, and several other classes of proteins). The arrays
and reagent kits are designed for comparing two protein samples labeled with
either Cy3 or Cy5. The array format is compatible with the same instrumen-
tation used for DNA spotted microarrays. Two different slides are supplied
for use with a dye-swap protocol. If T is the treatment sample and C is the
control sample, four different labeled samples are produced: T-Cy3, T-Cy5, C-
Cy3, and C-Cy5. One slide is incubated with a mixture of T-Cy54+C-Cy3, and
the other is incubated with a mixture of T-Cy3+C-Cy5. Each feature on each
slide appears in duplicate. To study other organisms, or to include antibodies
directed against any of the other 25,000-75,000 human proteins and their in
vivo modified variants, the particular antibody probes must be produced by
the investigator or by a commercial vendor. Alternatives to antibody probes
can be produced by phage display technologies or by protein engineering, but
these will not be discussed here.
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Fig. 11.12. Schematic illustration of antibody microarrays. Each feature on the
slide corresponds to an antibody (Y-shaped patterns) directed to a different protein
antigen (shaded spheres). Antigens and cognate antibodies have similar shadings.
Panel A: Bound antigens are quantified by indirect labeling using a mixture of de-
tection antibodies, all labeled with the same dye (open squares). Antigen becomes
sandwiched between the capture antibodies constituting each feature and the detec-
tion antibodies. Panel B: Antigen capture format. Target proteins are isolated from
two conditions and differentially labeled with two different fluorescent dyes (open
and filled squares). After binding to the antibody features, amounts of antigen cor-
responding to each condition can be quantified by measuring fluorescence intensity
in two wavelength channels.
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11.8 The End of the Beginning

We have presented in this chapter the basics of measuring the levels of mRNA
and proteins in cells. The methods that we have discussed in-depth are mul-
tiplex approaches that measure responses of a large number of genes or gene
products to a variety of experimental conditions. The data are intrinsically
multivariate, with individual vectors (expression patterns of one gene) po-
tentially having 10 to 100 components or more. We indicated how clustering
methods could be employed to produce a cluster of genes that display similar
patterns of expression under different experimental conditions or times in the
cell cycle. We close this chapter by discussing the uses of such data.

Cells and organisms are structurally complex entities that exhibit a large
repertoire of responses to changes in their environment. We would not claim
complete understanding of a biological system unless it were possible to trace
all changes in protein and substrate concentrations and all structural changes
of a cell or organism in response to any outside perturbation (e.g., tempera-
ture shift, change in hormone concentration, amino acid starvation). There are
about 10* to 10° genes in genomes of multicellular eukaryotes, and for those
gene products that are enzymes, there are collectively thousands of prod-
ucts and substrates. The functions of proteins in regulatory and metabolic
pathways are highly coordinated, forming networks of functionally related
proteins. The biochemical system is not at equilibrium. Rather, there are di-
rectional flows of energy and reaction products through this network of related
processes. How can we describe such a complex system?

At a minimum, the description of a living cell requires a parts inventory, a
description of the concentrations of all molecules and substrates as a function
of times and conditions, and a specification of how the functions of the indi-
vidual components (molecules) are coordinated. Since living cells are dynamic,
nonequilibrium systems, we could include rate constants for all biochemical re-
actions. This type of integrative approach falls within the purview of systems
biology. It contrasts with the typical reductionist approaches (studies of
single molecules, operons, or pathways) that have been so successful in molec-
ular biology over the last half century.

Gene expression analysis (measurement of mRNA or protein concentra-
tions) provides basic initial information for an eventual integrated view of
cell function and behavior. These measurements indicate which genes are ex-
pressed under each experimental condition, and clustering methods suggest
which sets of genes may be coordinately regulated. For coordinately-expressed
genes, we can compare sequences of promoter regions in an attempt to iden-
tify transcription factor binding sites that might be fundamental to this pro-
cess. Alternatively, protein products of coordinately expressed genes might be
tested directly for protein-protein interactions. As we already indicated, ex-
pression analysis can be used to suggest functions for genes not yet annotated,
and functional annotation is an essential part of placing each gene product
into the appropriate mechanistic context.
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The solution of the problems of systems biology will not come from bioin-
formatics alone, or even from current expression array data in conjunction
with bioinformatics. While these initial steps are important, systems biology
will require substantial new biotechnology methods and new types of infor-
matics.
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Exercises

Exercise 1. Spotted microarrays allow measurement of fluorescence intensi-
ties corresponding to mRNA levels for each gene or feature.

a. Are intensity ratio measurements for low-abundance transcripts inde-
pendent of measurements for high-abundance transcripts when reverse-
transcribed DNA from the same mRNA sample is used for the hybridiza-
tion?
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b. Is there a similar dependence or independence for transcripts whose abun-
dance is measured by SAGE?

Exercise 2. Suppose that SAGE is used to analyze gene expression from a
eukaryote having 30,000 genes each expressed at a level of two transcripts
per cell on average. If the average number of ditags per cloned insert is 20,
what is the least number of clones that must be sequenced to detect, with
probability 0.95, gene expression at a level of 0.5 transcripts/cell? [Hint: This
is a coverage problem. See Section 4.5.]

Exercise 3. Perform hierarchical clustering of the yeast data in Section C.4.
Use the Euclidean distance metric with standardized data. How does cluster
membership obtained with hierarchical clustering compare with the result
from K-means (Computational Example 11.2)7

Exercise 4. Repeat the calculation in Exercise 3, except use the correlation
coefficients to calculate distances. [Hint: Use the R function as.dist().] In
previous calculations using these data, we standardized expression levels for
each gene (row) prior to clustering. Is this standardization needed for hierar-
chical clustering when correlation coefficients are used for distances? Why or
why not?

Exercise 5. Use the results from the example presented in Computational
Example 11.2 and similar results obtained by you for ¥ = 5 and k£ = 6 to
produce a plot like Fig. 10.8.

Exercise 6. Examine the output for K-means, £k = 3 in Computational Ex-
ample 11.2. Suppose that you wanted to perform a classification of a set of
unknown vectors based upon their similarity to the average pattern typical of
Cluster 2.

a. What pattern vector could you use to represent Cluster 27

b. For classification, you would need to produce a score that reports how close
any candidate vector is to the pattern vector. What function discussed in
Section 11.5 could be used to produce this score?

¢. Compute scores for previously defined members of Cluster 2 relative to
the pattern vector representing Cluster 2 as a whole.

d. Score previously defined members of Cluster 1 to test how well they con-
form to the pattern of Cluster 2.

Exercise 7. Intensity measurements from a single slide (Fig. 11.5) for four
replicated features corresponding with the twist gene are presented below.
Nucleic acid corresponding with dsdP flies was labeled with Cy5 (R), and
nucleic acid corresponding with wild-type flies was labeled with Cy3 (G).
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Feature Intensity® Intensity®
number at 635nm at 532nm
1175 1125 1683
2329 819 1621
3407 273 532
5717 1420 1888

@ Intensity values after subtraction of background
intensity

a. Correct the data using the global normalization factor obtained in Com-
putational Example 11.1.

b. What is the probability that the expression levels of twist in dsd® flies
differs from expression levels of twist in normal flies?

c. What is the probability that R/G > 27

Exercise 8. Use the data corresponding with Fig. 11.6 to estimate the frac-
tion of features for which |log,(R/G)| > 1. If the standard errors of the
intensities for twist (Exercise 7) are typical of the average feature, is the es-
timated fraction a good indicator of the number of genes whose expression
differs between mutant and wild-type flies?

Exercise 9. Yeast cells contain approximately 15,000 transcript molecules
per cell. SAGE analysis indicated that there are roughly three broad abun-
dance classes of transcripts, as indicated below (Velculescu et al., 1997):

Component  Fraction of Copies/Cell

total RNA
1 0.17 180
2 0.35 40
3 0.45 2.5

Approximately how many genes are responsible for Component 1?7 For Com-
ponent 1 + Component 27

Exercise 10. For the Drosophila Cy3 data at http://www.cmb.usc.edu,
compute the fraction of the total signal represented by each gene (after remov-
ing controls, blanks, and flagged data). Sort the fractions in order of increasing
fraction, and then plot the cumulative fraction of RNA as a function of the
fraction of genes examined. What fraction of these genes accounts for the
most abundant 20% of the transcripts? Is there evidence for classes of genes
distinguished by their expression levels?
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Inferring the Past: Phylogenetic Trees

12.1 The Biological Problem

This chapter discusses methods for analyzing and describing ancestor-descend-
ant relationships among groups of organisms. These groups may be formalized
groupings recognized by biological classification systems (species, genus, sub-
family, etc.) or they may be different populations within a species. Recognized
groups are called taxa (singular: taxon). The actual ancestor-descendant re-
lationships for a particular set of taxa are called a phylogeny. An example
was shown in Fig. 1.1 in Chapter 1.

The actual phylogeny ordinarily is not known because ancestral organisms
may have become extinct long before modern humans evolved to observe them.
Therefore, phylogeny is inferred from data derived from organisms alive today
or represented in the fossil record. In this chapter, we assume we are using
molecular data. Phylogenetic relationships are of considerable historical and
practical interest, and we first offer two specific examples that illustrate what
phylogenies are and why they are important. Then we present an informal
discussion of how to “read” trees before proceeding to quantitative methods
for inferring them.

There is some overlap with our discussion of clustering in Chapter 10.
In that chapter, we employed distances to create hierarchical clusters using
either morphological or sequence data. In the example of clustering of pri-
mates based upon sequence data, we employed the number of sites at which
two DNA sequences differ (i.e., the Hamming distance) to create a hier-
archical cluster linking human, chimpanzee, gorilla, and gibbon. How does
the construction of phylogenetic trees differ from clustering? First, ancestor-
descendant relationships are explicitly invoked in tree-building. In contrast,
points where OTUs join in hierarchical clustering need not correspond to
hypothetical ancestral OTUs. Second, evolutionary mechanisms suggest that
the distances between two OTUs in a tree should be divided between the two
branches leading back to their common ancestor. With hierarchical clustering,
the junction point was mapped to the corresponding distance, and the distance
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was not divided between the two branches. Finally, with tree construction we
recognize that evolutionary processes may not be adequately reflected in the
distances that are directly measured, and accordingly appropriate corrections
are applied. Hierarchical clustering employs the distances calculated directly
from the measured characters. Despite these differences, there are obvious op-
erational and conceptual connections between hierarchical clustering and the
building of trees.

12.1.1 Example: Relationships Among HIV Strains

Human immunodeficiency viruses HIV-1 and HIV-2 are the causative agents
for the AIDS pandemic (HIV-1 being more prevalent). Because HIV-1 is a
retrovirus (replicating by reverse transcription of an RNA molecule), it ac-
cumulates mutations more rapidly than does human genomic DNA. The se-
quence variation that results can be revealed by sequencing DNA copies of
the retroviral RNA molecules.

Populations of the variant HIV-1 strains constitute the groups and sub-
types of the virus found among human populations today. For example, group
M, subtype B is common among infected persons in the United States, while
group M, subtype C is more common in Southeast Asia. By examining the
sequences of HIV subtypes, it is possible to track the pattern of transmission
of the viruses around the world. Figure 12.1 shows the relationship between
HIV strains and various simian immunodeficiency viruses (SIV). It is seen
that HIV-1 types are more closely related to SIVcpz than they are to HIV-2,
which itself is more closely related to SIVs isolated from the sooty mangabey
and the stump-tailed macaque. From these and similar data we can make the
reasonable inference that the ancestors of the HIVs present today entered the
human population by transmission of simian immunodeficiency viruses found
in populations of chimpanzees and other primates. It is thus possible to infer
the origins and date of inception of the pandemic (Hahn, 2000).

12.1.2 Example: Relationships Among Human Populations

We humans are keenly interested in our own origins. Although people from
different regions of the world may differ substantially in appearance (e.g., a
Masai from Africa compared with a Dane from Northern Europe), we all be-
long to the same species. How and where did the various human populations
originate? This question can be approached by sequencing DNA from individ-
uals belonging to many human populations from all over the globe. Sometimes
chromosomal DNA (particularly X or Y chromosomal DNA) is employed, and
sometimes mitochondrial DNA (mtDNA) is used.

Mitchondrial DNA of humans is a circular molecule containing some
16,500 bp. Over time, this DNA accumulates mutations (base changes) within
its genome, and these mutations are passed on to descendants by the mother.
(Mitochondrial DNA is maternally inherited.) Populations of humans that
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Fig. 12.1. [This figure also appears in the color insert.] Examples of phyloge-
netic trees. Inferred relationships between human immunodeficiency virus (HIV)
and simian immunodeficiency virus (SIV) strains isolated from humans and other
primates: agm, African green monkey; cpz, chimpanzee; lhoest, L’Hoest monkey;
mnd, mandrill; sm, sooty mangabey; stm, stump-tailed macaque; sun, sun monkey;
syk, Sykes monkey. The tree was constructed from viral sequence data but may be
confounded by recombination between different virus strains. Reprinted, with per-
mission, from Hahn BH et al. (2000) Science 287:607-614. Copyright 2000 American
Association for the Advancement of Science.
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share particular sets of mutations are understood to be more closely related
to each other than they are to populations lacking these mutations.

One inferred set of relationships based upon mtDNA sequences is shown
in Fig. 12.2. This tree suggests, for example, that native Australians are more
closely related to East Asians (e.g., Japanese) than they are to the major
groups of Africans. Of particular interest is the observation that populations
from the rest of the world are a subset of African populations, supporting
the anthropological hypothesis that modern humans in other parts of the
world are descendants of migrants that originated from an African population
(the“Out-of-Africa” hypothesis). Also noteworthy is the diversity of African
populations. For example, the Kikuyu people differ more from the Effik than
Europeans differ from Papua New Guinean highlanders.

12.1.3 Reading Trees

In both examples above, we stated conclusions based upon the phylogenetic
trees presented in Figs. 12.1 and 12.2. Here we will be more explicit about
how to interpret the iconography. We have already had some preparation for
this because of the material presented in Chapter 10.

The tree is seen to be a branching structure generated by successive split-
tings of prior branches. Ideally, the branches are formed by successive bifur-
cations (splits of one branch into two), but sometimes the branching order
of several taxa cannot be determined, and in that case there are multiple
branches emanating from a single branch. Eventually, branches end at tips (or
“leaves”), and these represent extant taxa (e.g., strains of HIV or contempo-
rary populations of humans). We can trace back along branches leading to two
different taxa (taxon A and taxon B, for instance) until these branches join.
This junction represents the most recent common ancestor, C. The branch
lengths connecting A and C are proportional to the distance between A and
C (e.g., using a distance metric defined in Chapter 10). Under ideal circum-
stances, the distance between A and B is the sum of distances AC and BC.
For the examples shown in Fig. 12.1 and Fig. 12.2, distances are depicted as
horizontal lines: the vertical lines joining the horizontal ones are just connec-
tors, and the lengths of the vertical connections are not related to distance. A
set of all taxa derived from a particular common ancestor is called a clade,
and the process of branching is sometimes called cladogenesis. A tree that
depicts the order of branching of taxa without regard to the distances between
them is called a cladogram.

Fig. 12.2 (opposite page). [This figure also appears in the color insert.] Phylo-
genetic relationships among representatives of human populations based upon com-
plete mtDNA sequence data (D loop region excluded). The scale is in units of the
number of nucleotide differences per site. Reprinted, with permission, from Ingman
M et al. (2000) Nature 408:708-713. Copyright 2000 Nature Publishing Group.
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To construct a tree, we often must identify the ancestral state of the char-
acters employed (e.g., the ancestral DNA sequence). To do this, we employ
an outgroup, which is a taxon that is clearly more distantly related to the
taxa of interest than any of them is to another of these taxa. In Fig. 12.2, the
outgroup is chimpanzee. If we look at the branches of humans at the bottom,
we see results for two San individuals, preceded above by branches for two
Mbuti, and then above those (skipping the Hausa) we see the branch for a
Kikuyu individual. Using the convention described above, we can see that the
distances separating the two San is less than the distance separating either of
the San from either of the Mbuti, indicating (as expected) that the San are
more closely related to each other than either is to either of the Mbuti.

The depiction of the data should be distinguished from the quantitative
aspects, which relate to branch lengths and branching topology. The top-
to-bottom ordering of the branches in this representation is chosen for con-
venience and has no quantitative significance. If we transposed the top-to-
bottom order of the branches leading to the San and the Mbuti+Hausa, the
tree would have the same meaning. Similarly, the chimpanzee branch could
be “flipped” up to the top, to lie adjacent to the non-Africans, with the same
meaning as before. If we look at the lower African branches, we notice that
branches emanate from longer branches, whereas non-Africans are related to
each other through shorter branches. This implies that African populations
diverged from each other earlier, which could produce greater genetic diver-
sity among them. More sampling of African populations is needed to explore
this point. Trees help us to interpret the data. For example, notice the pat-
tern of the ten taxa at the top of Fig. 12.1. The first four branches of HIV-1
isolates (HIV-1/U455, /LA1, /EL1, /YBF30) emanate from one side of a bi-
furcation, the other of which contains SIVcepzUS and SIVepzCAMS3. This set
of six viruses represents one of two branches, the other of which contains
SIVcepzGABI1. The four HIV-1 strains mentioned are said to form a sister
group of SIVepzUS and SIVepzCAMS3. These six together form a sister group
of SIVepzGABI1, and by parsimony type arguments (see below) they share
a common ancestor that was an SIVcpz. The appearance of HIV-1 strains
among branches that are otherwise SIVcpz suggests that the first four HIV-1
strains mentioned are derived from SIVcpz as a result of a cross-species trans-
fer event. Considering the next connection back, we find two HIV-1 strains
forming a sister group with respect to the first seven mentioned above and
derived from an ancestor shared by SIVcpzANT. Again, we can argue that
this ancestor was an SIVcpz. Notice that there are two clades of HIV-1 within
a larger clade that is otherwise SIVcpz: the clade formed from HIV-1 strains
U455, LAI, ELI, and YBF30, and the clade formed from strains MVP5180
and ANT70. This suggests that there were at least two interspecies transfer
events involved in generating the first ten viruses.

Trees such as those shown in Figs. 12.1 and 12.2 are inferences based upon
a particular data set and employing one of several possible methods of tree
construction. Such trees may or may not represent the actual phylogeny or
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evolutionary tree. There are underlying assumptions used in the construction
of any tree, as will become clear in the following sections. It is possible to pour
data thoughtlessly into a tree-building software application and get a “result”
at the end. If the data are poor or represent inappropriate sampling, or the
assumptions for building the tree don’t match the data, then the result may
be misleading or worthless.

12.2 Tree Terminology

In the previous section, we discussed two particular examples of trees to il-
lustrate why they are important. In that context, we have already introduced
some nomenclature. Now we formalize the presentation. A tree is a particular
kind of graph, which is defined as a set of vertices connected by edges. Each
vertex has a degree, which is the number of edges that emanate from that
vertex. A directed graph has a defined ordering between vertices connected
by one or more edges. A cycle in a graph is a collection vy, ..., v, of vertices
with edges between v; and vse, vo and vs, ..., v,—1 and v,, and finally v,
and vy. Trees are cycle-free graphs whose vertices correspond to current or
ancestral species or populations. Vertices immediately below a vertex v and
connected to it by edges are called the children of v. Similarly, a vertex u
immediately above v and connected to it by an edge is called the parent of
.

12.2.1 Conventions

Trees relate species or other biological entities to each other by invoking
ancestor-descendant relationships. In this discussion, we consider relation-
ships between species, but remember that the related objects could be gene
sequences or populations within species. The observed species (correspond-
ing to the data) appear at the tips of the branches, and these are sometimes
called leaves. Leaves are vertices of degree 1. Vertices in the tree where leaves
or branches join are also called internal nodes. For molecular sequences, the
actual data correspond to the terminal vertices or leaves. Internal nodes corre-
spond to ancestral species that are not part of the data. Ancestors temporally
precede their descendants, and we can sometimes infer likely character states
of these ancestral species. However, these states are not usually directly ob-
served.

Binary trees are ones for which each internal node has two children.
Internal nodes are connected by internal branches, and leaves are connected
to the rest of the tree by external branches emanating from an internal node.
The lengths of the branches connecting leaves to nodes and nodes to nodes
correspond to distances between them. The trees discussed here are all binary,
or bifurcating.
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A tree is said to be rooted (or have a root) if there is a single ancestral
node from which all other nodes descend, and in this case the root node is
connected to two branches. Trees may be either rooted or unrooted, as illus-
trated in Fig. 12.3. If the tree is rooted, direction is defined by the evolution-
ary time-scale, and we usually associate increasing time with the downward
or rightward direction. If there is no root, all we can say is that the leaves
correspond to the ultimate descendants of some ancestor, but we do not know
whether the internal node adjacent to any leaf is its ancestor, nor do we know
the ancestral relationships of the internal nodes. Put another way, we don’t
know which direction along the edges corresponds to increasing time. In the
unrooted tree shown in Fig. 12.3A, OTU 7 may be an ancestor of 8, corre-
sponding to placement of the root as indicated by arrow R1, or 8 might be
an ancestor of 7, as would be the case if the root were placed as indicated
by arrow R2. Once the root is placed, the ancestor-descendant orientation
of all edges is established. Figure 12.3B shows the two different rooted trees
corresponding to the two different placements of the root in Figure. 12.3A.

We have so far been representing trees graphically, and we will continue
to do so. However, note that there are other representations. For instance, if
we construct a tree with branches like those illustrated in Fig. 10.3, that tree
could be represented as

(((Ho,Pa),Go),Hy).

12.2.2 Numbers of Trees

Before proceeding to a discussion of methods for constructing trees, we need
to be aware of the magnitude of the problem. What we seek is the tree or
collection of trees that best represents the ancestor-descendant relationships
implicit in the data. We might naively imagine that we could draw all possible
trees and see how well each fits the data. The unsuitability of this approach is
evident if we calculate the possible trees that can be drawn relating n different
species. We first consider unrooted trees. The simplest unrooted tree is shown
below.

It connects three species, has a single internal node, and contains no internal
branches. The number of internal branches is thus n — 3 = 0. Now consider
the case n = 4 by adding one leaf or species (connected between the internal
node and 1, for example), as shown in the diagram below.



12.2 Tree Terminology 345

A. R1 3 R2
2 7 4
6 8

1 5
B R1 R2

8

7 7
6 8 6
1 2 3 4 5 1 2 3 5 4

Fig. 12.3. Distinctions between unrooted (panel A) and rooted (panel B) trees. In
panel A; R1 and R2 represent two of the seven possible edges in which the root
could be placed. Rooted trees corresponding to these two placements are shown in
panel B. Note that in the absence of a root, the ancestor-descendant relationships
among the vertices are not established beyond the trivial observation that leaves are
not ancestors. R1 and R2 imply very different ancestors for most taxa.

®

There is now one additional leaf and one additional node; there is one internal
branch (the thick line). The number of internal branches is now n—3 = 4—3 =
1. Repeating this step n — 4 additional times results in a tree with n leaves
and n — 4 additional internal branches for a total of n — 3 internal branches.
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The total number of branches is therefore the sum of n external branches and
n — 3 internal branches. There are thus 2n — 3 branches in an unrooted tree
with n leaves.

We now find the number b,, of unrooted trees having n leaves; clearly
bs = 1. We calculate this number by first asking how many ways there are to
connect the last leaf; it is just the total number of branches for n — 1 leaves.
Then we ask how many ways there are to add branch n — 1 (which is the
number of branches in a tree with n — 2 leaves) and so on until we reach
n = 1. The total number of possible trees is the product of the numbers of
ways of adding each successive branch. The number of ways of adding the last
branch is

bp=12(n—1)=3]bp—1 = (2n—5)bp—1, n=3,4,... .
The number of ways of adding the second-to-last branch is
bp—1=[2(n—2) = 3]bp_2=2n—Tbp_2, n=4,5,... .
The terms may now be calculated successively until reaching bs = 1. Hence

bp=02n—-5)x(2n—T7) x---x3x1
~ (2n—5)!
~ (n—3)l2n=3"

The proof of the last equality appears in the exercises.

The number of rooted trees with n leaves is closely related to the number
of unrooted trees. All that is required is the multiplicative term for the number
of ways of placing the root on one of the branches. That number is equal to
the number of branches, which we saw above was 2n — 3. Thus the number of
rooted trees ], for n leaves is

bl = (2n — 3)b,
(2n — 3)!
= , n=3,4,....
(n—2)an—2" "

Now we are ready to calculate how many unrooted trees there are for
several values of n. The result is shown in Table 12.1. For the example in
Fig. 12.1, there were 24 leaves on the unrooted tree. The number of possible
trees in that case is then approximately 5.64 x 1026. With the naive approach,
we would have to search through all these trees to find the “best” one; this is
currently a computationally impossible task.

n=34,.... (12.1)

12.3 Parsimony and Distance Methods

There are three basic methods for building trees from molecular data: par-
simony methods, distance methods, and likelihood-based methods. In this
section, we briefly introduce parsimony and distance methods. We defer dis-
cussion of the likelihood method to Section 12.5.



12.3 Parsimony and Distance Methods 347

Table 12.1. Numbers of possible unrooted trees b,, corresponding to different num-
bers of taxa or leaves, n.

34 5 6 7 8 9 10
13

n
bn 15 105 954 10,395 135,135 2,027,025

12.3.1 Parsimony Methods

Finding a tree relating n species or sequences by parsimony employs the idea
that the tree requiring the least number of mutations to relate those sequences
is the preferred one. This approach is a specific application of Ockham’s Razor:
“Plurality should not be posited without necessity.” We illustrate this with an
example. The method tests hypothetical trees and then calculates the number
of base changes needed to yield the observed data.

Suppose the observed data are:

Site:
12345
Species:

1 ACTTT
ACATT
AACGT
AATGT
AATTT

T W N

Expressions in the last section indicate that there are 105 possible rooted
trees. We illustrate two of these alternative trees and evaluate which one is
most parsimonious. First, we examine the tree (((3,4),5),(1,2)) with root at 9,
diagrammed in Fig. 12.4A. What is the smallest number of changes required
to produce the five sequences according to the species relationships implied by
this particular tree? We have drawn a set of four mutations that explains the
data given this tree. (We illustrate how to obtain these particular mutations
a bit later.)

Now let’s consider the tree ((((1,2),3),4,),5) diagrammed in Fig. 12.4B.
Notice that this tree requires at least six mutations to account for the rela-
tionships that the tree implies. Since the second tree requires a greater number
of changes than does the first, it is less parsimonious. We therefore prefer the
first tree (Fig. 12.4A). Is this tree the correct one? We actually don’t know.
All we can say is that the probability of mutation at any position is usually
very small over relatively short timescales (e.g., 1 to 100 million years) and
that the probability of six independent mutations is less than the probability
of four mutations.

But how did we decide what the mutations should be and what the se-
quences at the ancestral nodes might have been? We focus on one position,
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A. ‘
9 (AATTT)
A—-C
oG 7 (AATTT)
AATGT
= /TW\ 7oA | 8(ACTTT)
3 4 5 2 1
AACGT AATGT AATTT ACATT ACTTT
B. ‘
TG 9 (AATTT)
TG 8 (AATGT)
A-C 7 (AACGT)
G-T
C->T 6 (ACCTT) C—-A
1 2 3 4 5
ACTTT ACATT AACGT AATGT AATTT

Fig. 12.4. Alternative trees for five different taxa. Nodes are indicated by num-
bers. The sequences in parentheses at internal and ancestral nodes would normally
be inferred. Mutations required to transform the sequence at any particular node
to the sequence at the node immediately below are indicated on the appropriate
branches. Positions at ancestral nodes altered to produce the mutant descendant are
highlighted. The highlighted position at each of the leaves is used for the parsimony
illustration in the text. Panel A: More parsimonious tree. Panel B: less parsimonious
tree.

position 3, and determine the smallest number of changes needed at that po-
sition to be consistent with the tree in Fig. 12.4A. (Bases at position 3 for
the five leaves are indicated in boldface type.) Start for example, with the (3,
4) join, corresponding to the letters {C, T}. The parent node, labeled 6, can
therefore be either C or T. Next consider joining species 5, which has a T at
that site, at the node labeled 7. The most parsimonious assignment is to put
T at node 7. If we were to put a C in position 3 at node 7, we would then
need to add another mutation leading to 5, which is less parsimonious. Now
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consider joining species 1 and 2 at node 8. The sites are A, T, so that at node
8 we must have either A or T. Thus node 8 is {A, T} and node 7 is T. Thus
the most parsimonious assignment is to put the T at node 8. This allows us to
read off the assignment at each internal node: T (8), T (7), T (6). The resulting
assignments of bases at position 3 imply two base changes over the tree. The
same method is employed for the five other positions to determine the total
number of changes for the tree as a whole.

We now formalize the approach a little. It is convenient to think of the tree
as rooted, as for example in Fig. 12.4A. The root node is labeled 2n — 1, which
in Fig. 12.4A is 2x5—1=9. We are going to work our way up the tree in the
following way. Let F; denote the set of possible base assignments at a node
labeled ¢, and let L; denote the number of changes that have accumulated up
to that node. We start with L; = 0 if 7 is a leaf. We want to obtain values
(F3, L3) at the next node up as a result of combining two nodes with values
(F1, Lo) and (Fy, Lo). The rules for doing this are as follows:

1. NN Ey,=0,then Ly = L1+ Lo+ 1, F3 = F} U .
2. f i NFy #0, then Ly = Ly + Lo, F5=F, N F.

Reminder: For sets A and B,

AN B, read as “A intersect B,” denotes the elements in A and B that
appear both in A and in B.

AU B, read as “A union B,” denotes the set of elements that appear in A
or B or both.

(0, called the “empty set,” is a set that contains no elements at all.

Let’s try this out at position 4 using the tree in Fig. 12.4A. We start with
(F5,L3) = ({G},0) and (Fu, Ls) = ({G},0), so that (Fs, L) = ({G},0) as a
result of applying rule 2. Moving onto node 7, we have (Fs, Ls) = ({T},0), so
that (F7, L7) = ({G, T}, 1) as a result of applying rule 1 for nodes 6 and 7. Next,
since (F1,L1) = ({T},0) and (Fz, L2) = ({T},0), we have (Fs, Ls) = ({T},0)
(rule 2). To complete the assignments at node 9, we note that (F7, L7) =
({G,T},1) and (Fg, Lg) = ({T},0), which by rule 2 yields (Fy, Ly) = ({T}, 1).
Now that we are at the top, we can read off the number of changes required in
the tree from Lg = 1. We have explored all possible paths to the root, and we
then backtrack down the tree to construct the assignments to the ancestral
states and the base changes that have occurred at each step. At position 4,
the change was T— G after node 7, leading to node 6.

We can perform this calculation for each site in the sequences related by
the tree. The total parsimony cost for a tree is the sum of the parsimony scores
for all the sites. The method in its simplest form is to compute the parsimony
cost of all possible trees, and choose the minimum-cost tree. Reconstructing
the collection of best trees by this approach can be hard though! (The reason
is indicated in Section 12.2.2). For larger trees, a variety of heuristic search
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methods are used to attempt to identify the best ones without examining all
of the trees. There are also versions of weighted parsimony in which different
weights are given to different types of substitutions.

12.3.2 Distance Methods

Assume for the moment that we have a set of pairwise distances linking n se-
quences, and write d;; for the distance between sequence ¢ and sequence j. Let
D be the distance matrix whose elements are d;;. This is formally the same
type of data employed for the hierarchical clustering described in Chapter 10.
In the evolutionary context, the distances meet the three criteria listed in
Section 10.3.1. Now that we are interpreting the data in the context of a tree,
we need to recognize that biological mechanisms may impose additional con-
ditions on the distances under particular circumstances. These are described
below.

We call a tree additive if the distance between any pair of leaves is the
sum of the distances between those leaves and the first node that they share in
the tree. Furthermore, a rooted additive tree is called ultrametric (or clock-
like) if the distances between any two leaves and their common ancestor are
equal. An example of an ultrametric tree is shown in Fig. 12.5. There is an
interesting and important biological concept related to the idea of ultrametric
trees. In actuality, mutations may not occur at the same rate in different
branches of the tree. For example, mutations accumulate more slowly among
primates than among rodents. If the ticking of the molecular clock is not at
the same rate on two different branches, then the branch lengths for a given
amount of time since the last common ancestor will differ. With ultrametric
trees, however, clocks “tick” at the same rate on both branches emanating
from a bifurcation.

One natural question is: Given a distance matrix D, can we determine
whether we can construct an additive or ultrametric tree corresponding to
those distances? The answer is contained in the following result. Let D be the
distance matrix.

(i) Three-point condition for ultrametric trees: D corresponds to an ultramet-
ric tree if and only if for any three sequences i, j, k, the distances satisfy
dij S max(dik, dkj).

(ii) Four-point condition for additive trees: D corresponds to an additive tree
if and only if for any four sequences (labeled here 1, 2, 3, 4) two of the
sums dis + dsq, d13 + dag, d14 + dog are equal and greater than or equal to
the third.

The interpretation of part (ii) becomes evident when we sketch out trees
with three or four leaves and examine the relevant sums (Fig. 12.6). Note that
if the tree is ultrametric, part (i) states that two distances must be the same
and the third must be smaller. This is shown algebraically and graphically in
Figs. 12.6A and 12.6B, respectively.
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1.0

0.8F

0.6

distance

0.4

0.2}

0.0% 5 4 2 3 1

Fig. 12.5. Example of an ultrametric tree. The distance from the leaves to node
6 = 0.2, to node 7 = 0.4, to node 8 = 0.6, and to node 9 = 1. Note the equal
lengths of the branches from any node to all leaves derived from that node. This is
a distinguishing feature of ultrametric trees.

The hierarchical clustering method discussed in Chapter 10 is one way
to calculate an ultrametric tree from a set of distances. When the distance
between two clusters is defined by group average linkage (see Section 10.4.1),
the method produces what is called the UPGMA tree (UPGMA meaning
“unweighted pair group method with arithmetic means”). Finding an additive
tree is also an interesting problem, but in practice the distances estimated
from molecular sequence data do not satisfy the conditions of the theorem
and we are left with more work to do. There are several approaches. For an
approximately additive tree, a popular method uses Saitou and Nei’s neighbor
joining method, implemented for example in the software package MEGA.

Another approach uses weighted least squares to fit a best additive tree
for which the distances in any tree to be evaluated are denoted by parameters
pi; and the observed pairwise distances d;; as before. We find the assignment
of sequences or species to nodes that minimizes the function E given by

E = Zzwij|dij — pij|%,
i g

where « typically has the value 1 or 2 and the w;; are weights. Choices of
weights such as w;; = 1, di_jl, or dgj are typical. This also allows for missing

data by putting w;; = 0 if there is no distance for pair (4, j).



A. d”S max(dik, dk])
c foralli,j,k=1,2,3
=> min(a,b) <c,
min(c,a) < b, and
min(c,b) < a.

1 If b<a, we have b <c,
a b so b < min(a,c).
Hence, if c > a, b = min(a,c) = a.
.". the tree is ultrametric
(c < ais similar).

3

dio+dgy=a+b+d+e
dig+dy=(@+c+d)+(b+c+e)
=(a+b+d+e)+2c

diy+dog=(@a+c+e)+(b+c+d)
=(a+b+d+e)+2c

Fig. 12.6. Illustrations of distance constraints imposed by the ultrametric require-
ment (panels A and B) and additive distances (panel C). Panel A: An arbitrary
relationship between three taxa 1,2, and 3 is shown with distances from the com-
mon node indicated. Assuming the three conditions shows the tree is ultramet-
ric. Panel B: With taxa at the leaves of a rooted tree, the ultrametric condition
(a+b) < (a+c) = (b+ ¢) can be observed directly. Panel C: Illustration of the
four-point condition for additive trees (or a portion of a larger additive tree). The
dashed line indicates a potential connection to a larger tree. As indicated earlier, two
of the summed distances are equal to each other and larger than the third summed
distance.
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An example serves to illustrate the rationale behind this approach. Con-
sider the tree for three taxa shown below:

1 2 3

We assign parameters a, b, ¢, and d to each branch segment, with a, b, ¢,d > 0.
For this particular tree, p1o =a+b+c,p13 =a+b+d, and pes = c+d. If
we select a = 2 and let w;; = 1, then according to the equation, we seek to
minimize the sum

E=[di2 — (a+b+c)?+[diz — (a+b+d))* + [deg — (c +d)]?,

with the appropriate choices of a, b, ¢, and d > 0. In practice, if the number
of sequences or taxa is sufficiently small, one calculates the optimal value of
E using numerical analysis methods. The tree having the lowest value of E is
the preferred tree.

12.4 Models for Mutations and Estimation of Distances

There are two additional conceptual issues to be addressed before we proceed
further. The first concept is modeling the evolutionary process, and the second
is using this model to obtain the distance matrix, given that this evolutionary
process is operating. In Section 12.1, we indicated that a difference between
hierarchical clustering and construction of trees is the inclusion of evolutionary
models in the latter case. Before proceeding to the actual construction of trees,
we need to introduce a quantitative description of the evolutionary processes
that influence the distances used for tree construction. An important aspect
of this is the introduction of time and its relationship to distances.

We use a simple stochastic model for the evolution of a DNA sequence
through time. Much of the requisite mathematical framework has already
been presented in Chapters 2 and 3. For simplicity, we assume that changes
in the sequences occur through base substitutions only. Suppose that we have
two aligned DNA sequences (in which any sites with gaps have been removed).
How can we measure the distance between the two sequences? We have already
used the Hamming distance, calculated as the proportion of sites at which the
two sequences differ. This measure is not sufficient for many evolutionary
studies because it does not allow for the possibility of repeated substitutions
at the same site. For example, at a given position in the sequence, there
might be an initial A — G transition that later reverts by a G — A transition,
restoring the original state at this position. Because of this phenomenon, we
might underestimate the true number of substitutions between our sequences.



354 12 Inferring the Past: Phylogenetic Trees

We treat the substitution process as a stochastic process and define the
distance between the two sequences, measured on the path in a tree separat-
ing them, as the expected number of substitutions that change the base at
that site. Note that the Hamming distance counts a difference between two
sequences at a position as one change. The new definition of distance recog-
nizes that a sequence difference at a position may be the result of more than
one change.

12.4.1 A Stochastic Model for Base Substitutions

We consider first a single homologous site in our two sequences and assume
the two sites have diverged for time length ¢. Since the evolutionary clock is
running on both paths from the two sequences back to their common ancestor,
they are separated by time 2¢. Suppose that the number of substitutions that
arise in any branch of length ¢ has a Poisson distribution with mean At¢; the
probability that k substitutions arise is given by the Poisson probability

e M (At)F
k!

We then have to decide what happens at each site where a potential substi-
tution can occur. A general model specifies

 k=0,1,2,... . (12.2)

P(substitution results in base j | site was base i) = my;.

A simple example of this mechanism, Felsenstein’s (1981) model, specifies
mij = 7'l'j7 (123)

with m; > 0 and 7 + 79 + 73 + w4 = 1. From here on we employ the numeric
notation introduced previously: 1, 2, 3, and 4 correspond to bases A, G, C, and
T, respectively. This implies that the substitution that appears at a position
in the sequence does not depend on the type of the base at that position when
the substitution occurred. We also assume that the set of probabilities m; is
the same at every position in the sequence.

Next we calculate the probability ¢;;(t) that a base that was ¢ at time 0
has mutated to base j a time ¢ later. For the model in (12.3), this is easy to do.
We calculate the probability by conditioning on whether or not any mutations
occurred in time ¢. Suppose first that ¢ = j. If there were no mutations on
that branch (probability e=**), then the base time ¢ later must still be j. On
the other hand, if there is at least one mutation, then the chance that the
resulting base is j is just m;; this follows because the mutation mechanism
does not care about the type at a site when a mutation occurs. Summing over
the two possibilities gives

g (t) = e M 4+ (1 — e M7 (12.4)

When i # j, the same argument shows that
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qij (1) = (1 — e ). (12.5)

We need to assume something about the base that is the type of the
most recent common ancestor of the two sites we are considering. The usual
assumption is to make the evolution of base frequencies along a single branch
stationary. By stationary we mean that the distribution of base frequencies
is the same for every time ¢. Thus, if 7T;-) denotes the chance that the ancestral
base is of type j, then we want

P(base a time ¢ later = j) = 7T?

for any time ¢. Finding the probability distribution that makes this last equa-
tion true requires some linear algebra. It turns out that we have to solve the
equations

71';-) = Zﬂ'gmij (12.6)
subject to Y, 7Y = 1. It can be checked that for the model (12.3),

T =m;, j=1,2,34. (12.7)

If the 79 do satisfy (12.6), then it can be shown that for any ¢ > 0
7T§-) = Zﬂ?qij(t), (12.8)
i
so that, indeed, the base frequencies are not evolving with time.

12.4.2 Estimating Distances

For building the tree, we usually employ distances that take into account
the mutation mechanism. Here we present the mathematical background for
determining the distance K for any position. The set of K;; for a set of taxa
or sequences forms the elements of the distance matrix, analogous to those
distance matrix elements employed for clustering in Chapter 10.

Mean Number of Substitutions in Time ¢

We know that an average of At substitutions occur at a particular site on a
branch of length ¢. However some of these substitutions result in a given base
being “replaced” by the same base. In terms of the end product, this would not
be detected as a substitution at all. Now consider a particular substitution.
Because of the stationarity assumption, the base at this time is ¢ with chance
m;. In the model in (12.3), the chance that a base of type ¢ changes is just
1 — m;. Hence the chance that a mutation results in a change of base is

=1

4 4
H=> m(l-m)=1-Y =, (12.9)
i=1
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and the average number of real substitutions in time ¢ is therefore (average
number of mutations) x (proportion that result in change) = (M)H. In the
general case with stationary ancestral frequencies, this number can be calcu-

lated as
/\L‘ZTM(l — m“)

If we assume the same mutation mechanism applies in the path from the
common ancestor to each of its descendants then the expected number of real
substitutions between the two present-day bases for the model in (12.3) is

K = 2XtH. (12.10)

We use K as our measure of distance.

Estimating K

We want to estimate K from the sequence data. To do this, we first have to
calculate the chance that we observe an ¢ in one species and a j in the other
when they have diverged for time ¢. We denote this probability by F;;(t). By
averaging over the possible ancestral nucleotides, we get

Fij(t) = maqui(t)q; (1), (12.11)
.

assuming that the two sites evolved independently of each other after splitting
from their common ancestor.

The result in (12.11) can be simplified if the mutation process is reversible
with respect to the stationary distribution 7. This means that the detailed
balance equations

MGy = T3 j4 for all ¢ 75.]

hold. From this it can be shown that
miqi; (t) = m;q5:(t) for all 4,5 and ¢ > 0. (12.12)

It is easy to check that the model in (12.3) is reversible. When the model is
indeed reversible the result in (12.11) can be simplified, since

Fy(t) =) [mau(®Oay(t) = Y _[miga()]ai(t)

1 1
= Z qit(t)qu; () = miqij(2t). (12.13)
!

The second equality follows from reversibility and the final equality from ele-
mentary probability considerations.

Next we compute the probability F' = F(t) that the letters at a particular
position in two immediate descendants from the same node are identical.
Averaging over the possible ancestral bases gives
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F= Zm‘qii(%)
[

for a reversible model, and for the model in (12.3), this reduces to

F=e¢2 (1 -1 -H). (12.14)

Putting the Sites Together

We assume that sites evolve independently of one another, with identical
mutation processes at each site. We discuss these assumptions later. We can
now glue together the information from each site in the sequence by thinking
in coin-tossing terms. Look at the aligned sequences (with no gaps), and define

1, if the ith pair of sites differs,
X; = .
0, otherwise.

If there are s sites in all, then the X, are independent and (for the model
(12.3)) satisfy
P(X;=1)=1-F=(1—-e 0. (12.15)

Then D = X; + --- + X, the number of mismatched pairs of bases, is a
binomial random variable with parameters s and 1 — F. (Note that D is the
Hamming distance.)

Of course, F'is unknown and we have to estimate it from the sequence data.
Returning to the coin-tossing example, we know that a sensible estimator of
the binomial success probability is the observed proportion of successes. Thus
we can estimate 1 — F with the quantity D/s. We can then use this to estimate
K by solving the equation

obtaining (after taking logs and simplifying)

D
2Xt = —log 1 — :
x(1- )

Recalling the definition of K in (12.10), we obtain
K =oxH = —Hlog (1- P (12.16)
= = g o) :

This estimate of the distance K between the two sequences is known as the
Jukes-Cantor formula.

If we knew H, we could estimate K using the Jukes-Cantor formula.
Typically we do not know H, and we have to estimate this from the data
also. The usual strategy is to estimate the base frequencies my, 7e, mg, 7 from
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the collection of homologous sequences being compared, and then calculate
H=1-Y, 72

Pairwise distances such as K can be calculated for many other models
of the evolutionary process. These often arise by changing the form of the
mutation parameters m;; in (12.3), and finding the transition probabilities
¢i; (t) for the new model. The subsequent analysis is simplified if the model is
reversible.

12.5 Maximum Likelihood Methods

Now that we have seen how to calculate distances and to build trees based
upon those distances, we move to the third of our methods, developing a sta-
tistical method for tree-building based upon a maximum likelihood approach.
For illustration, we assume that we are trying to construct an ultrametric, or
clock-like, tree.

12.5.1 Representing a Tree

A clock-like tree can be represented in many ways. Here is a simple one. First,
we label the n species 1,2, ..., n at the leaves and assign labels n+1,...,2n—1
to the n—2 internal nodes. This should be done in such a way that any internal
node has a label larger than any of its descendants. This labeling lists the
names of the descendants of each internal node and hence the complete tree
shape. The other missing ingredient is the times of the joins in the tree. For
an ultrametric tree, it is natural to record the distance to each internal node
measured from the present time back into the past. For example, the tree
described by

6 2 3 0.2
7T 6 4 0.4
8 7 5 0.6
9 1 8 1.0

has n = 5 species. The left-hand column gives the internal node labels; these
are followed by the labels of the two direct descendants and the distance from
the internal node to the leaves. In the example, species 2 and 3 join first at
node 6, 0.2 units back in time; node 6 is then joined to leaf 4 at node 7, the
distance being 0.4 units. Leaf 5 joins the tree at node 8, a distance of 0.6 units
from the present, and finally leaf 1 joins at the root node 9, a distance of 1
unit from the present. The resulting tree was shown in Fig. 12.5. Note that it
is easy to represent other tree topologies using this data structure.

12.5.2 Computing Probabilities on a Tree

We use the evolutionary model of substitutions described in Section 12.3. As
earlier, we assume that the sequences under comparison have been aligned
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and that any gaps have been removed. We also assume we know the topology
of the phylogenetic tree linking the species. First, we calculate the probabil-
ity p(i1,2,...,4,) that species 1,2,...,n have bases i1,1io,...,i, at a given
nucleotide site. To see what is involved, let’s do the calculation for the case
of three species with a tree of the form

4121t
5341y
We get
p(i1,ia,i3) = Z Zﬂaqm:s (t2)qab(t2 — t1)qbis (t1)qbi, (t1)- (12.17)

a b

This formula arises by considering the possible assignments a for the root node
5 and b for the node 4 and summing over the possibilities for a and b. Here
the 7, are the stationary base frequencies (i.e., base frequencies assuming the
same distribution both for ancestral and descendant bases). The g;;(t) give
the probability of base j at a site given base i at that site a time t earlier. A
formula of this type can be written down for any tree topology, but it can be
very complicated.

The standard way to arrange the computations is to use the peeling al-
gorithm, due in this context to Felsenstein (1981). This recursive algorithm
goes through the tree calculating at each internal node the probability of the
subtree data below that node as a function of the base at the node. This algo-
rithm is routinely implemented in most tree-building software. The principle
behind it is to “move all summation signs as far to the right as possible.” See
Exercises 11 and 12 for further details.

12.5.3 Maximum Likelihood Estimation

We compute the likelihood of the data by multiplying the likelihood terms
p(i1,142,...,1,) calculated using the peeling algorithm at each site in the data.
This comes about because we assume that the sites are evolving independently
of each other. The maximum likelihood estimator of the parameters of the
mutation model and the branch lengths are found in two steps: first, maximize
the likelihood over the model parameters for a given tree, and then repeat this
maximization over all possible trees. The maximum likelihood estimator we
are looking for is the one that maximizes these maximized likelihoods. This
recipe is manageable for small numbers of species but impractical for large
numbers (bigger than 5, say). In such cases, a variety of heuristic search
algorithms have been devised to explore tree space (see, e.g., Hillis et al.,
1996).

An important question to be addressed is: What can be estimated? It is
conventional to reduce the number of parameters to be estimated by setting
the stationary frequencies to be the observed proportions of each base in the
entire data set. We do this, too. For a given topology, for the simple mutation



360 12 Inferring the Past: Phylogenetic Trees

model we are using, there is one parameter, A, for the substitution rate, as
well as n — 1 node heights that might be estimated. However, looking at the
form of the ¢;;(t) in (12.4) and (12.5) shows that times and the rate A are
confounded; that is, they cannot all be estimated separately. We then have
two different (but equivalent) choices:

(i) We can fix the height of the tree (the distance to the root node) and
estimate A and n — 2 other node heights, or

(ii) We can fix parameter A (at value 1, say) and estimate the n — 1 node
heights.

The program used in the exercises allows for either possibility. This obser-
vation shows why we need external calibration of the tree height in order to
obtain node heights in years and mutation rates in units of changes per year.

12.5.4 Statistics and Trees

Often we want to use molecular data to test different hypotheses about the
phylogenetic relationships between species or to estimate (and perhaps find
confidence intervals for) parameters in the mutation model (see, e.g., Huelsen-
beck and Rannala, 1997). A common guiding heuristic is to compare like-
lihoods among different models. This is a subtle business, but a couple of
examples should illustrate what can be done.

One problem concerns whether or not a given phylogeny explains a data
set better than another phylogeny. We have already discussed this problem in
our description of parsimony and distance methods. In the present context,
we could compare the log-likelihoods of the data under each model; presum-
ably the one with the highest log-likelihood provides a better description of
the data. This can be formalised into a rigorous statistical procedure (e.g.,
Goldman, 1993), but we do not present the details here.

Another problem concerns estimation of parameters in a mutation model
given a particular phylogenetic tree topology. We can test (formally at least)
whether a simpler model (the “reduced hypothesis” in what follows) provides
an adequate fit to a data set, as opposed to a model with more parameters
(the “general hypothesis”). We can use a x? test as follows:

1. Calculate the maximized likelihood L; under the general hypothesis.
Calculate the corresponding likelihood Lg under the reduced hypothesis.
Calculate W = —2[log Lo — log L1].

Under the reduced hypothesis, the distribution of W is approximately x?
with degrees of freedom given by the difference between the dimension of
the general hypothesis and the dimension of the reduced one.

e
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12.6 Problems with Tree-Building

There are numerous problems associated with tree-building using molecular
data. We might wonder about the adequacy of a given mutation model as a
description of the data. We have made a number of assumptions, among them

(a) Sites evolve independently of one another.

(b) Sites evolve according to the same stochastic model.
(¢) The tree is rooted.

(d) The sequences are aligned.

Point (c) is easy to deal with; there are likelihood methods for unrooted trees
(assuming reversible models of substitutions) with the additive property (see,
e.g., Felsenstein, 2004). Point (b) is clearly violated in a coding region: it is
well-known that third positions evolve faster than first positions, which in turn
evolve faster than second positions. It is possible to fit models with a common
tree while allowing for this type of rate variation. It is sometimes useful to try
a model of random rate variation, in which each site evolves independently but
with a rate drawn independently across sites from a given distribution. Some
of the computational and biological problems are described in Yang (1996).
There have been some attempts to alleviate the difficulties of assumption (a),
which can arise, for example, in sequences with secondary structure. Point (d)
has proved more difficult to address. Usually, gaps in aligned sequences are
removed before tree-building. The effects of this are hard to assess, especially
in distantly related species in which alignment is hard. Finally, we remark
that there are computational problems with exploring tree space adequately.
One way to address this issue is through the use of Bayesian computation,
in particular the Markov chain Monte Carlo methods (see Huelsenbeck et al.,
2001).

When the goal is to understand the evolutionary relationships between
organisms, the distinction between a gene tree and a species tree becomes
important. This distinction is illustrated in Fig. 12.7. A gene tree is a tree
drawn from DNA or protein sequences corresponding to a particular gene
shared by a set of organisms. Each different gene may (or may not) produce a
different tree for the same set of organisms. A species tree is often produced
from sets of macroscopic characters but also may be produced from sequence
data. Generating a consensus species tree from a collection of gene trees is a
difficult problem that is beyond the scope of this book.

References
Felsenstein J (1981) Evolutionary trees from DNA sequence data: A maximum

likelihood approach. Journal of Molecular Evolution 17:368-376.
Felsenstein J (2004) Inferring Phylogenies. Sunderland, MA: Sinauer.



362 12 Inferring the Past: Phylogenetic Trees

Gene tree topology:
((1,2),3)

Species tree topology:
(1,(2,3))

Species 1 Species 2 Species 3

Fig. 12.7. Distinction between gene trees and species trees. The thick black lines
denote the gene tree constructed from homologous regions of the same gene found
in species 1, 2, and 3. The shaded bands represent the species tree. Underlying this
diagram is the concept that species are represented by populations, which at any
time may have multiple alleles for any gene. Genes transmitted to the next generation
are sampled from these populations. For example, at the time corresponding to the
dashed line, there are three alleles of the gene present in a single species. The allele
for gene 2 that became fixed in species 2 actually diverged later than the allele that
became fixed in species 3. Mechanisms of sampling of alleles from populations are
discussed in Chapter 13.

Goldman N (1993) Statistical tests of models of DNA substitution. Journal
of Molecular Evolution 36:182—198.

Hahn BH, Shaw GM, De Cock KM, Sharp PM (2000) AIDS as a zoonosis:
Scientific and public health implications. Science 287:607-614.

Hillis DM, Moritz C, Mable BK (1996) Molecular Systematics (2nd edition).
Sunderland, MA: Sinauer.

Huelsenbeck JP, Rannala B (1997) Phylogenetic methods come of age: Testing
hypotheses in an evolutionary context. Science 276:227-232.

Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference
of phylogeny and its impact on evolutionary biology. Science 294:2310-
2314.

Ingman M, Kaessmann H, P&&bo S, Gyllensten U (2000) Mitochondrial
genome variation and the origin of modern humans. Nature 408:708-713.

Yang Z (1996) Among site rate variation and its impact on phylogenetic anal-
yses. Trends in Ecology and Fvolution 11:367-372.

Freely available software programs:
http://evolution.genetics.washington.edu/phylip/software.html
Site for PHYLIP, maintained by Joe Felsenstein.



Exercises 363

http://www.megasoftware.net

Site for MEGA2.1, which focuses on distance methods.
http://abacus.gene.ucl.ac.uk/software/paml.html

Site for PAML, which focuses on likelihood methods.
http://morphbank.ebc.uu.se/mrbayes/

Site for MrBayes. This is good for a Bayesian perspective.

Exercises

Exercise 1. Draw all rooted and unrooted trees with n = 5 leaves labelled
{a,b,c,d, e}.

Exercise 2. Use Stirling’s approximation
2!~ (27T)1/2x(w+1/2)efz

as in Section 6.5 to find the corresponding approximation for b, in (12.1). Use
this to find an approximation for bigg.

Exercise 3. Suppose dgp, doe and dp. are distances that form an additive tree
for the unrooted tree with leaves {a,b,c}. (There is only one such tree.) The
tree has length x for the leaf a, length y for the leaf b and length z for the leaf
c. Derive a formula for z, y and z in terms of dgp, dge and dp.. [Hint: Draw a
picture.]

Exercise 4. Using the results of the previous problem, find the unique tree
with distances given by

abcd
a0365
b 076
c 03
d 0
Exercise 5. You are given the following set of species and aligned sequences:
Site:
1234
Species:
1 TCAA
2 GCAT
3 TTTT
4 GATA
5 GAAC
6 ATAG

Find the parsimony score for the tree ((((1,2),(3,4)),5),6). Indicate the F’
sequence at each vertex of the tree.
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Exercise 6. Table 10.1 gives a 60 bp region of the cytochrome oxidase sub-
unit IT coding sequence for five primates.

a. Write an R function to calculate the matrix of pairwise distances defined
in (12.16) for these data.

b. Find a UPGMA tree based on these distances, and compare to the results
in Section 10.4.

Exercise 7. Discuss the logical connection between the data structure in-
troduced in Section 11.5.1 and the procedure for agglomerative clustering
described in Section 10.4.1.

Exercise 8. For the data structure introduced in Section 11.5.1, devise an
algorithm that computes the number of leaves below each internal node of a
rooted binary tree. Can you modify your algorithm to return the number of
nodes and leaves below each internal node?

Exercise 9. Devise an R function that takes a tree described by the data
structure in Section 11.5.1 as input, and produces a plot such as the one
shown in Fig. 12.5 as output, using the standard R function plclust (see
Computational Example 10.1).

Exercise 10. Consider a tree with just two leaves. Suppose the branch to
species 1 has length ¢; and the branch to species 2 has length ¢5. Show that
for a reversible mutation model, the probability Fj; of observing base 4 in
species 1 and base j in species 2 depends on ¢; and ¢ only through the
sum t1 + to. This result is known as the pulley principle, which says that
we cannot tell the direction of time. (For the meaning of “pulley principle,”
imagine that two leaves are connected by a rope through a pulley mounted
at the node immediately above it. If you lengthen the rope on one side of the
pulley, the rope length on the other side must correspondingly shorten.)

Exercise 11. This exercise illustrates an important principle in calculating
likelihoods on trees. Equation (12.17) gives the probability of observing par-
ticular bases at the leaves of a tree with n = 3 species as

pliv, i, is) = > > Tadais (t2)qab(t2 — £1) iy (£1)qei, (1)

a b

This can also be written in the form

pliryis,is) = Tadais (t2) Y dab(t2 = 11)abis (1) b (1)
a

b

Evaluate carefully how many addition and multiplication operations are per-
formed in these two formulae, and deduce that the first form is less efficient
than the second.
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Exercise 12. This exercise, an extension of Exercise 11, provides more details
about the peeling algorithm used to compute probabilities on trees. Consider
the tree with four species and topology given by (((1,2),3),4). Let ¢ denote
the internal node linking species 1 and 2, b denote the node linking ¢ and 3,
and a denote the root node.

a. Write a formula for the probability p of observing particular bases at the
leaves of the tree in the form

Z Z Z{an expression involving the product of 7 terms}

a b c

and find this expression.

b. Evaluate the number of addition and multiplication operations needed to
evaluate p.

c. The peeling algorithm is based on the principle of “moving all summa-
tion signs as far to the right as possible.” Write down the corresponding
formula for p and evaluate the number of addition and multiplication
operations needed to calculate it. Comment.

d. Describe in a few sentences how the peeling algorithm works.

Exercise 13. For this example you need the primate data for Pongo, Pan,
Gorilla and Homo from Table 10.1. Pongo is taken to be the outgroup in this
example. This exercise investigates whether Pan is more closely related to
Homo than Gorilla is.

a. Using the approach in Section 12.5.1, give the representation of the tree
in which Pan and Homo split first. Calculate the likelihood of the data
for this topology.

b. Repeat the previous problem, but for the tree in which Gorilla and Homo
split first.

c. What do you conclude about the divergence of these three species?

d. What is the effect on the estimated topology of the tree if you use more
of the cytochrome oxidase sub-unit sequence? If you use other sequences?

[Note: this exercise can be completed using likelihood software available at
www.cmb.usc.edu.|
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Genetic Variation in Populations

13.1 The Biological Problem

In Chapter 12, we showed how evolutionary relationships between organisms
(taxa or OTUs) could be inferred from DNA sequence data. In that discus-
sion, it was assumed that the variation among taxa being analyzed was much
greater than any variation within taxa, so that each taxon (species) could
be represented by a unique set of characters. Because mutations (variations)
accumulate over time, this is equivalent to stating that the phylogenetic trees
that were constructed corresponded to taxa that had diverged from each other
relatively long ago. Suppose, however, that we look at a population of organ-
isms alive today and examine the allele frequencies within this population.
What inferences can we make about the history of this population? Now that
we are focusing on variation within a taxon, we are concerned with a time-
scale that is short compared with the time-scale associated with phylogenetic
trees.

The concept of population is extremely important for understanding bio-
logical organisms and their evolution. A population is a localized collection
of individuals of a species that are capable of exchanging the genes that char-
acterize that species. The San people of southern Africa or the brown pelicans
living on Anacapa Island off the coast of Southern California are examples of
populations. A biological population observed today is a “snapshot” within
a particular taxon of the current state of a process that has been occurring
for about 3.9 billion years. The concept of population is intimately connected
with evolution. Evolution may be parsimoniously defined as the process of
change over time of the allele frequencies within populations.

In this chapter, we consider the parameters and statistics required to de-
scribe the genetic properties and genetic changes in populations of diploid
sexual organisms. The criteria used to characterize a population must take
into account the dynamic properties of that population. Populations are un-
dergoing constant change because the individuals that comprise the popula-
tion are themselves changing from birth to mate selection, reproduction, and
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eventually death. In addition, individuals may migrate into or away from a
particular population. When a portion of a population relocates, the mem-
bers of that subpopulation introduce a sample of the alleles from the original
population into the new locale. The subpopulation may then grow to become
different from the original population, possibly leading to a speciation event.
When individuals migrate into a population from another distinct popula-
tion, they may introduce new alleles. Added to these processes of change is
the inexorable accumulation of point mutations, which adds new alleles to any
population (other types of mutations, such as deletion or inversion, usually
inactivate genes rather than create new alleles). It is evident that populations
and the forces acting upon them can be complex, thus requiring correspond-
ingly complex statistical models.

There are a number of reasons why we wish to study populations. Arguably
the most important is that variation within populations is the basis for nat-
ural selection. Another reason is to infer population history. For example, we
can measure allele frequencies in human populations and use them to infer mi-
gration patterns that affected recent human evolution. In addition, we might
look for alleles associated with genes implicated in particular genetic diseases.
A special case of this is analyzing genes associated with diseases for which
particular human subpopulations have elevated risk (e.g., adult diabetes in
some native American populations in the southwestern United States).

13.2 Mendelian Concepts

In Chapter 1, we briefly discussed genetics, deferring detailed discussions to
the occasions when they would be needed. Since we describe populations in
terms of their genes, it is appropriate at this point to review some basic
Mendelian genetics.

Every diploid organism has two copies of each genetic locus carried on
pairs of autosomes (chromosomes other than sex chromosomes). A locus is
an identifiable region on a chromosome, and it may correspond to a gene or
to a physical marker such as a sequence-tagged site (STS). We discuss genes
for simplicity. Gene nomenclature can vary from organism to organism, and
we use conventions like those used in human genetics. Genes are represented
as uppercase italicized letters (up to four for humans), and phenotypes are
represented by the corresponding Roman letters: phenotype A corresponds to
gene A. We are concerned with diploid organisms, and the alleles residing on
different members of a corresponding pair of chromosomes are separated by a
forward stroke: A; /A, means that allele A; of gene A resides on one chromo-
some and allele As resides on the other. The two gene copies corresponding
to a particular locus in an organism may or may not be exactly identical.
For example, in human populations from equatorial Africa, the 3-globin gene
HBB may appear in at least two forms: type A, which is associated with
the normal phenotype, and type S, which is associated with sickle-cell dis-
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ease. These alternative forms of the same gene are examples of alleles. During
meiosis (see Section 1.3.1), alleles corresponding to a particular locus segre-
gate, which means that one copy of any locus appears in any given gamete. In
contrast, two different genes on the same chromosome do not segregate unless
recombination has occurred.

If two alleles at a given locus are identical in an individual, then that
individual is said to be homozygous for the genes at that locus. If the two
alleles are different, then the individual is heterozygous with respect to the
genes at that locus. A special case of homozygosity is autozygosity, which
means that two alleles are identical because they have descended from the
same common ancestral allele. Suppose that phenotype A is associated with
allele A1, and that phenotype A~ is associated with allele Ag. If an A;/As
heterozygote has phenotype A, then A; is said to be the dominant allele and
As is said to be the recessive allele. In humans, cystic fibrosis is associated
with a mutant form of the CFTR gene (located on chromosome 7). Individuals
who have two copies of the normal gene, or one copy of the normal allele
and one copy of the defective allele, are not affected, but persons who have
two defective alleles are affected. The wild-type allele is thus dominant, and
the disease is said to be autosomal recessive. Sometimes the phenotype of
the heterozygote is intermediate between those of the parents, each of whom
is homozygous for different alleles. This circumstance is called incomplete
dominance. Sometimes the phenotype associated with a gene fails to appear
because of the particular constellation of other genes in that individual or
particular environmental circumstances. The probability that a gene confers
the phenotype associated with it is called its penetrance.

It is very important to note that a large proportion of phenotypes in
complex organisms depend upon the cumulative effects of several genes. Such
phenotypes are called polygenic traits. For example, height and skin color
in humans do not depend on single genes but rather on the collaboration of a
number of genes. Skin color in humans is thought to be controlled by three to
six loci. Teasing out the contributions of multiple genes, each of which might
contribute in a quantitative way (so-called quantitative trait loci), can be a
complicated exercise in genetics.

13.3 Variation in Human Populations

In this section, we use populations drawn from different regions of the world
to show how genetic variation is distributed across human populations. Be-
cause only a small proportion of alleles are unique to a particular population,
knowing what population or region an individual belongs to does not help
much in predicting which alleles the individual will have. On the other hand,
by studying information across different loci, we can often predict which pop-
ulation or region an individual comes from by knowing which combination of
alleles is present in the individual.
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The data are taken from 52 populations in seven geographic regions of the
world measured for genotypes at 377 loci (Rosenberg et al., 2002). An exam-
ple of a region is sub-Saharan Africa, and examples of populations within this
region are Bantu, Mandenka, Yoruba, San, Mbuti Pygmy, and Biaka Pygmy.
The loci examined were microsatellites, which are tandem repeats of short
k-words (see Section 13.4.2). Corresponding to each locus is a characteristic
number of different alleles. An example of the allele frequencies for two loci
measured for seven different geographical regions is shown in Fig. 13.1. For
the particular locus D12S2070, there are eight alleles. Clearly, the allele fre-
quencies differ for different regions. For example, one allele represents 85% of
the total in native American populations, but that same allele represents only
7% of the total in populations from the Middle East. Allele frequencies for
other loci may not vary much across regions, as illustrated by D65474.

D6S474

Africa Europe Middle Central/ East Oceania  America
East South Asia Asia

NANLRSdD

D1252070

Africa Europe Middle Central/ East Oceania  America
East South Asia Asia

PPPDOTEO

Fig. 13.1. [This figure also appears in the color insert.] Allele frequencies associated
with two microsatellite markers in human populations taken from seven different
regions. Each allele has a different color code, and the size of the sector in the pie
chart indicates allele frequency. Reproduced with permission. Copyright 2002 NA
Rosenberg.

13.3.1 Describing Variation Across Populations

We now introduce some statistics for describing population variation. Let K
be the number of alleles for any given locus, and let p; be the relative frequency
of allele j. The probability F' that two randomly chosen genes at a locus are
identical is



13.3 Variation in Human Populations 371

K
F=>p} (13.1)
=1

We note that the population frequencies p; are unknown parameters of our
population and must be estimated from a sample of individuals from that
population. F' can then be calculated from the estimated allele frequencies.
The heterozygosity H for any locus is defined as H =1 — F:

K
H=1-> p. (13.2)
i=1

Computational Example 13.1: Calculating heterozygosities

Heterozygosity provides a measure of the amount of variation within a pop-
ulation. Exercise 1 at the end of this chapter should now be completed. The
results illustrate how H behaves for different numbers of alleles and allele
probability distributions. Observe that for a fixed number of alleles, the het-
erozygosity is greater if the distribution of the allele probabilities is uniform
than if some alleles predominate. Also, for uniform allele distributions, the
heterozygosity is greater if the number of alleles is greater.

Heterozygosities can be calculated within populations, within regions, or
globally. Table 13.1 exemplifies the typical structure of the underlying data
for a single locus having three alleles. There would be similar tables for every
other locus, each with its characteristic number of alleles. The heterozygosity
reported for each population measured over 100 loci would be the heterozy-
gosity averaged over all 100 loci.

Examples of Calculated Heterozygosities

For the data in Table 13.1, we can calculate a variety of heterozygosities.

Population 1, region 1:
Hpopi—1 =1—[(3/10)* + (5/10)* + (2/10)?] = 0.620.
Region 1 as a whole:
Hg, =1—1(15/30)% + (10/30)* + (3/30)?] = 0.611.
Average of populations in region 1 (see (13.3)):
Hp, p=(0.6240.62+ 0.46)/3 = 0.567.
World as a whole:

Hyw =1—[(31/120)% + (44/120)* + (45/120)?%] = 0.658.
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Table 13.1. Example of data structure and heterozygosities for a single gene having
three alleles examined in four world regions, each containing three populations. The
three rightmost columns show the number of instances of the alleles a, b, c.

Allele
a b c
Region 1 Pop 1-1 3 5 2
Pop 1-2 53 2
Pop 1-3 721
Total for region 1510 5
Region 2 Pop 2-1 3 3 4
Pop 2-2 4 3 3
Pop 2-3 3 4 3
Total for region 10 10 10
Region 3 Pop 3-1 019
Pop 3-2 118
Pop 3-3 0 2 8
Total for region 1 425
Region 4 Pop 4-1 2 71
Pop 4-2 17 2
Pop 4-3 2 6 2
Total for region 520 5
World 31 44 45

In addition to the direct measures of heterozygosity, it is useful to consider
particular averages, as illustrated in Computational Example 13.1. If there
are B populations in a region with heterozygosities H1, Ho, ..., Hp, then the
average heterozygosity for that region is

B
1
HR,avg: B g H;. (133)
i=1

We can also calculate the average regional heterozygosity over R regions,
1 &
Hp= ; Hg,, (13.4)

where the Hp, correspond to the heterozygosities of each region as a whole,
obtained by pooling data from all populations (i.e., not calculated as in (13.3)).

Now we are prepared to take a look at the actual population heterozygosi-
ties estimated for different human populations (Table 13.2). The first column
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of heterozygosities are the regional data calculated directly from the allele fre-
quencies of the pooled populations—not calculated as averages. The bottom
line, first column, is computed from a pool of all the data, taking the world
as a single region. Data above the last entry in the second column (Hpg avg)
were calculated as averages of population heterozygosities using (13.3). The
average regional heterozygosity, Hp, calculated according to (13.4), is 0.733.
The average subpopulation heterozygosity, Hs (bottom line, second column),
can be calculated from the entries above it as a weighted average using the
numbers of each population as weighting factors.

Table 13.2. Heterozygosities for 377 human microsatellite alleles by population and
region. Hg: region as whole; HRg avg: average of populations in region. The number
of populations in each region is given in parentheses. Source: Rosenberg NA et al.
(2002) www.sciencemag.org/cgi/content/full/298/5602/2381/DC1.

Region HR HR,avg
sub-Saharan Africa 0.792  0.774 (6)
Europe 0.753  0.751 (8)
Middle East 0.761  0.756 (4)
Central/S. Asia  0.759  0.752 (9)
East Asia 0.730  0.723 (18)
Oceania 0.695 0.683 (2)
America 0.644  0.599 (5)
World 0.771 0.727

Remember that the heterozygosities provide measures of population vari-
ation. With the data in Table 13.2 and the population averages described
above, we can estimate the fractions of human variation that occur within
populations, among populations within regions, and among regions of the
world. Let Hr be the heterozygosity for the total population of the world (see
Table 13.2, column 1, last entry). Since we can write

Hr=Hr—-Hr+Hr— Hs + Hg,

we see that
(Hr — HR) n (Hr — Hs) n Hs
Hr Hr Hrp'
The first term on the right-hand side of (13.5), the fraction of variation that
occurs among regions of the world, is (0.771 — 0.733)/0.771 = 0.049. The
second term, the fraction of variation that occurs among populations within
a region, is (0.733 — 0.727)/0.771 = 0.008. The last term, the fraction of
variation within populations, is 0.727/0.771 = 0.943. This means that 94%
of the human variation in the world occurs at the level of local populations,

1= (13.5)
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and only about 5% of the variation occurs among regions of the world. On
average, for each locus, there is more variation between two African people
than there is between the average African and the average Chinese person.
The last statement does not mean that we can’t distinguish East Asians
from Africans. A simple example that shows why can be illustrated from the
allele frequency data in Table 13.3. Suppose that we have two populations, I
and II, and estimated allele frequencies at three unlinked loci, each of which
has two alleles. We score a particular individual (Joe) for his genotype with
respect to these three genes and find him to be A; /Ay, B1/By, and C;/C1—
that is, homozygous with respect to the first alleles of genes A, B, and C. The
joint probability of this occurrence for an individual belonging to population
Lis (0.8)% x (0.8)? x (0.8)% = 0.26. The joint probability of this genotype for
an individual belonging to population I is (0.2)% x (0.2)% x (0.2)% = 0.00006.
Clearly, Joe’s genotype is far more common in population I than in population
II, and we would conclude that Joe is more likely to be “I-ese” than“II-ian.”

Table 13.3. Example of allele frequencies for two populations measured with respect
to three genes having two alleles. Both alleles of all genes are present in both popula-
tions. While the minor allele of each gene is somewhat common in each population,
particular combinations of alleles may be quite rare (e.g., Az/A2, Ba/Bz,C2/C2 in
population I).

Allele Frequencies
Gene Population I Population II
1 2 1 2

0.8 0.2 0.2 0.8
0.8 0.2 0.2 0.8
0.8 0.2 0.2 0.8

QW

13.3.2 Population Structure

The world’s human population displays population structure: there are
clear subpopulations indicated by the data (eg, locus D1252070, Fig. 13.1).
The populations are hierarchical in the sense that each local population can
be grouped into successively larger inclusive groupings (local population —
regional population — world population). Because the local populations are
genetically distinct, the total population for the world as a whole is said to be
stratified. For such populations, there are particular relationships between
heterozygosities calculated as averages of subpopulation data and heterozy-
gosities calculated from pooled data. Note in Table 13.2 that the heterozy-
gosity computed from population values, Hg avg, is always less than Hg, the
heterozygosity computed by pooling all individuals in a region (the region as a
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whole). This type of behavior is a general occurrence when a population (e.g.,
in a region) is broken down into subpopulations (the individual populations
in the example above). This can be shown as follows.

Suppose we wish to compare the heterozygosities for a total population,
which is broken down into B subpopulations, to the average heterozygosity of
the subpopulations. We perform measurements on one gene having K alleles.
We let p; be the average fraction of allele i in the population as a whole
and p;p be the fraction of allele i in subpopulation b. The total population

homozygosity, Fr, is
K
Fr = Zp?a
i=1

and the homozygosity of subpopulation b is

K
Fy =Y ph
iz

The average homozygosity for the subpopulations, Fg, is
1B
Fs= . ; F,

(analogous to (13.3)). We are interested in the difference between Fg calcu-
lated by averaging the Fj for the subpopulations, and Fr calculated from

pooled data:
1 BLK K
_ 2 2
FS—FT—B;Z;pib—Z;pi. (13.6)

In Exercise 3 we show that

K

FS—FT:Z

=1

B

; > (i — pi)ﬂ : (13.7)

b=1

The terms in the brackets are seen to be the variances of the frequencies
(across subpopulations) of each allele, measured with respect to the population
average. In terms of variances o2,

K
Fs—Fr=>Y o} (13.8)
=1

In terms of heterozygosities, Hr = 1 — Fpr and Hg = 1 — Fg, so we finally

obtain
K

Hp—Hs =) o}. (13.9)

i=1
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Since the variances o7 are always positive, the heterozygosity for a pooled

population is always larger than the average of the heterozygosities of the
subpopulations of which it is constituted.

The quantities we have been discussing are closely related to the F-
statistics defined by Wright (1951). These statistics were called fixation in-
dices, and they describe the heterozygosities of structured populations at dif-
ferent levels,

Hr — Hs
F =
ST HT )
Hr— Hs
F =
SR HR )
Hr — H
FRT: THT R7

where subscripts S, R, and T stand for subpopulation, region, and total in the
same sense that we have been using them above. These subscripted quantities
should not be confused with homozygosities, F. Note that the terms in (13.5)
are related to the fixation indices.

13.4 Effects of Recombination

The discussion up to now has not included recombination, which permits
alleles on one chromosome to substitute for alleles on other copies of that
chromosome (Section 1.3.2). When describing a population in terms of indi-
vidual loci, it suffices to report allele frequencies corresponding to each locus.
Sometimes we are interested in several different loci that reside on the same
chromosome. The specification of the alleles for loci on the same chromosome
is called the haplotype. The distinction between genotype and haplotype is
shown in Fig. 13.2. Without recombination, new haplotypes would be gen-
erated only by new mutations. However, new haplotypes are produced by
recombination because chromosome pairs usually recombine during gamete
formation.

Given a group of individuals affected by a particular genetic disease pheno-
type, how do we identify the gene or set of genes that confer that phenotype?
One way is to identify linkage of the locus associated with the disease with
mapped genetic markers. Such linkage analysis may be performed by using
families containing affected individuals. One limitation of such an approach
is that the numbers of individuals in families available for genetic study are
usually rather small, which means that the number of meioses represented
in the pedigree (family tree) is correspondingly small. As we shall see in the
next section, low numbers of meioses mean that there will be a low number
of recombination events, which means that any linkage detected will probably
be to genetic markers that are comparatively far away from the locus causing



13.4 Effects of Recombination 377

A.
X

S R I Haplot :
B I I plotypes:
.l 2 I | i | P2 A1B2C2D;
i : I A2B1C4D4

A | D

2 By | L1 1 Genotype:

————————— A1/Ay, B1/By, C4/Cy, D4/ Dy

B. Gamete chromosomes

Single cross-over (l): Double cross-over (ll):
Al B C D4 Al By C D,
and and

Fig. 13.2. Distinctions between haplotypes and genotypes, and the effects of recom-
bination. Panel A: A portion of two chromosomes is shown containing four genes,
each of which has two alleles. Two different recombination events (broken lines) are
diagrammed. Recombination I involves a single crossover, while recombination II
involves a double crossover. The products from these events are illustrated in Panel
B.

the disease. Another limitation is that the interpretation of linkage analysis
data is tied to a model of inheritance. An alternative to linkage analysis is
association analysis, which seeks statistical relationships between alleles
within a larger population and the disease phenotype. An example of asso-
ciation analysis is the case-control study. The population can now be much
larger than one or a few families, so many meioses usually will have occurred
since the appearance of the disease-causing allele in the population. If a par-
ticular allele of gene X is usually co-inherited with the disease state, then
the disease locus is probably close to gene X. To apply this logic, we need
to know the sizes of genomic regions for which allelic combinations have not
been disrupted by recombination. Such regions (called haplotype blocks) are
discussed in Section 13.6.
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13.4.1 Relationship Between Recombination and Distance

We first develop an expression that relates the probability of recombination
to distance. Two crossover events are diagrammed in Fig. 13.2. Crossover I
involves a single genetic exchange in interval  and joins the left segment of
the top chromosome to the right segment of the bottom chromosome and vice
versa. An odd number of crossover events anywhere in region x will produce
products that are recombinant for markers to the left and right of region z, in
this case alleles of genes A and D. Crossover II involves two genetic exchanges
in region x. Even numbers of exchanges may generate products recombinant
for genes that lie to the left (or right) of = and genes lying within x, but
they do not generate products recombinant for genes that flank region z. We
are interested in how frequently haplotypes are shuffled by genetic exchange.
The recombination fraction r is the probability that alleles at two loci on
a chromatid come from different parental chromosomes. The recombination
fraction, which is used to measure genetic map distance, is related to m, the
expected number of crossovers between the two loci.

The simplest model relating r to m was first proposed by Haldane. He as-
sumed that the crossovers occurring between two loci on a given chromatid fol-
low a Poisson process with mean m. In particular, the number C of crossovers
has a Poisson distribution, with

k,—m
P(C=k)= ¥ , k=0,1,....
As we can see from Fig. 13.2, odd numbers of crossovers lead to recombination
between loci on both sides of z (A and D), and even numbers of crossovers
do not. Thus the relevant probability is

mke—m

r=P(C is odd) = Z Il

k odd

(13.10)

The sum on the right-hand side of (13.10) can be expressed as

mk e —e
2 B2

k odd

—m

(This can be verified by performing series expansions of the exponential terms
on the righthand side.) Therefore,

r=P(C is odd) = ;(1 —e2m), (13.11)

This is the Haldane mapping function, which relates recombination frequency
(probability) with map distance, m. When m is small, we can neglect terms of
order m? and higher in a series expansion of the exponential term in (13.11) to
see that for short distances r ~ m. Note that as m gets very large in (13.11),
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the probability of recombination approaches 0.5. This means that relative to
a chosen locus on one chromosome, there is a 50:50 chance that an allele at a
distant locus has become associated with the partner chromosome. In such a
case, the loci appear to be unlinked. (Note that because of random assort-
ment of chromosomes during meiosis, the probability that genes appearing on
different chromosomes will appear in the same gamete is also 0.5.)

Loci that are close together are therefore less likely to be separated by
recombination than are loci that are far apart, and for sufficiently short dis-
tances, there is an approximately linear relationship between recombination
frequency and distance. This is the rationale for measuring genetic distances
in terms of recombination frequencies, and the map units used for eukaryotes
are centimorgans (named after Thomas Hunt Morgan). One centimorgan
distance between two loci corresponds to having (on average) one recombina-
tion event separating these loci every 100 meioses. Because meiosis is different
in male and female mammals (oocytes are arrested in meiosis I in females),
the relationship between map distances in human males and females is differ-
ent. In males, it is estimated that there are 0.92cM per Mb, but for human
females, there are 1.7c¢cM/Mb (Yu et al., 2001). The sex-average relationship
between recombination frequency and distance is thus very approximately
1¢M/Mb. These numbers are only averages: recombination rates vary from
chromosome to chromosome and at different positions in any particular chro-
mosome. Local recombination rates measured at genetic map resolution range
from 0.1¢M/Mb to 3¢cM/Mb for Chromosome 3 (Kong et al., 2002). In some
regions rates are even larger, as described in Section 13.6. The total genetic
map length of an organism can be obtained by multiplying the number of
c¢M/Mb by the physical length, or more accurately by concatenating map dis-
tances separating all loci. Using the latter approach, the genetic length of
the human female autosomal genome (i.e., excluding the X chromosome) is
estimated to be 4821cM, and the corresponding length for the human male
autosomal genome is about 2590 cM (Kong et al., 2002).

13.4.2 Genetic Markers

Appropriate genetic markers that can easily be assayed are required for ge-
netic mapping or measurement of recombination. If recombination is to be
detected between two loci, there must be more than one allele for each locus.
For example, the recombination events I and II shown in Fig. 13.2 (bottom)
produced new haplotypes that are different from the parental haplotypes.
Given suitable assays, these haplotypes could be detected. However, suppose
that the genotype for the rightmost marker was D;/D;: if we were scoring
recombination using loci A and D, we would not be able to detect recombi-
nation because the state of the allele at position D (D;/D;) would remain
unchanged even if recombination occurred. What is required are polymor-
phic markers—genes or loci that have two or more alleles with sufficiently
high frequency in the population. We say that a locus is polymorphic if it has
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at least two alleles with frequency greater than 1/100. (This cutoff is arbitrary,
serving only to remove alleles with extremely small frequencies.)

There are three major considerations affecting the utility of any type of
genetic marker: (a) the density of the marker along the genome, (b) the type
of assay of marker alleles, and (¢) amenability to high-throughput screening.
Genes were the earliest markers employed in genetics. With estimates of 25,000
genes in the human genome, the marker density is roughly 1/10° bp. Tradition-
ally, genes were scored by different methods, depending upon the phenotype
that they confer. For example, different blood group alleles might be distin-
guished by by immunological assays. Genes contributing to complex traits
might have no corresponding simple phenotypic assay. If different assay meth-
ods are needed for scoring different loci, prospects for high-throughput screens
based on gene products are poor.

Recombinant DNA technologies provided assays for new types of genetic
markers that could be scored using the same experimental platform. One
approach is gel electrophoresis of DNA digested by a particular restriction
endonuclease followed by Southern blotting (i.e., transfer of resolved DNA
fragments to membranes for hybridization to a labeled probe). One type of
marker that can be detected in this way is the restriction fragment length
polymorphism (RFLP), which arises when a particular restriction endonu-
clease cleavage site is inactivated (i.e., mutated) in a subpopulation. Another
type of polymorphism is the presence or absence of a transposable element,
often Alu elements for human DNA. There are about 10° Alu sequences in
the human genome, but different human populations may display characteris-
tic Alu insertions or deletions, which alter sizes of restriction fragments from
particular chromosomal regions. Thus, Alu elements are another source of
RFLPs. Microsatellite and minisatellite polymorphisms, variable number
of tandem repeat (VNTR) polymorphisms, can sometimes be detected
by gel electrophoresis and Southern blotting. These consist of tandem rep-
etitions of DNA segments occurring at numerous locations throughout the
human genome. The number of repeated bases may differ for different indi-
viduals or populations. One type (minisatellite DNA) tends to have extensive
repetition of elements ranging in size from 14 to 500 bp. These are often found
in telomeric regions of chromosomes. Another type (microsatellite DNA) com-
prises shorter blocks of sequence with repeat sizes of 1 to 13 bp. Di-, tri-, and
tetra-nucleotide repeat units are common. Microsatellite DNA is distributed
throughout the genome. Examples of di- and tri-nucleotide repeats are (CA),
and (AAT),,, with the polymorphism arising from differing values of n among
members of the population.

The advent of the polymerase chain reaction (PCR) revolutionized genome
analysis because of its sensitivity (as little as one molecule can be detected)
and specificity (particular regions within a vast “sea” of genomic DNA can
be selectively amplified). PCR is an automatable method that can be used
to assay for VNTR and restriction site polymorphisms, obviating the need
for Southern blotting (which is hard to automate and employs radioactive
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probes). A disadvantage of PCR is the required design and synthesis of specific
primer pairs for each region to be amplified.

A single-nucleotide polymorphism (SNP) is variation in the identity
of the base appearing at a particular position in the genome. There are an esti-
mated 1.5 x 10— 107 polymorphic SNP sites in the human genome (Cargill et
al., 1999; International SNP Map Working Group, 2001; Venter et al., 2001),
corresponding to resolution at a level of hundreds of base pairs. Detection can
employ either DNA sequencing or oligonucleotide array technologies, which
means that SNP analysis can be readily automated and multiplexed. If de-
tection is by hybridization, the underlying principle is that mismatched bases
reduce the melting temperature of DNA-DNA hybrids. In the simplest exam-
ple, four different oligonucleotide features, each having one of the four different
bases at the polymorphic site, can be arrayed on a solid substrate. The state
of the base at the polymorphic site is indicated by which of the four features
hybridizes with the DNA being tested. An alternative detection method is
primer extension. The underlying principle in this case is the ability of DNA
polymerase to add the correct base to a growing chain during synthesis along
a DNA template. The oligonucleotide probe sequences arrayed on a solid sub-
strate act as primers, so designed that the next base to be added corresponds
to the polymorphic site. The polymorphism can be detected by supplying
dXTP molecules bearing distinctive fluorescent tags and detecting the wave-
length of fluorescence emission after DNA synthesis. When the primers are
not immobilized, other detection methods such as standard DNA sequencing
gels or MALDI-TOF mass spectrometry may be employed.

13.5 Linkage Disequilibrium (LD)

Linkage disequilibrium (hereafter abbreviated LD) refers to the nonran-
dom association of alleles in haplotypes. It is measured by comparing the
proportion of an observed haplotype with the proportion that would be pre-
dicted based upon the population frequencies of the alleles at each locus. In
this section, we discuss a number of properties and consequences of LD.

13.5.1 Quantitative Description of LD

Linkage disequilibrium may be quantified as the difference between the ob-
served and predicted frequencies for allele combinations at two or more loci.
The predicted frequencies are computed using the population frequencies of
the alleles. For a system in which each locus has two alleles, let pa,p, and
DA, B, be the probabilities in the population of haplotypes A; By and Az Bs, re-
spectively. The allele frequencies of the genes contributing to these haplotypes
are pa,, PB,, PA,, and pp,. Note that the allele frequencies are population
quantities, which are unaffected by recombination. We introduce a quantity
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D that measures the difference between these observed and predicted frequen-
cies:
D =pa,B, —pa,psB,-

Similarly (see Exercise 4),

D =pa,B, —pa,pB,- (13.12)

If the A1 By and A; B> haplotypes are in excess of their predicted frequencies,
as indicated above, then there must be corresponding deficits in the haplotypes
A1 By and A;B; (having probabilities pa, g, and pa, s, , respectively):

PAsB, — PAPB, = _Da
PA B, = PADB, = —D. (13.13)

Some straightforward algebra shows that
D =pa,B, PA:B, — PAB:PA By (13.14)

(taking into account the fact that pa,pp, + Pa.PB, + PA,PBy + DAPB, =
(pa, +pa,)(pB, +pB,) = 1). The value of D can be either positive or negative,
and the sign depends on the arbitrary labeling of the alleles. If D = 0, the
loci are said to be in linkage equilibrium.

The magnitude of D depends upon the probabilities of the individual al-
leles. For example, in the special case for which pa, = pa, = pp, = B, =
0.5, the maximum value of D occurs when pa, 5, = 0.5 (which requires that
PA,B, = 0.5 and that pa, g, = pa,, = 0.0). The value of D in this case is
0.52, or 0.25. Alternatively, with the probabilities of all alleles again set at
0.5 and pa,B, = pa,B, = 0, then pa,p, = pa,p, = 0.5, and from (13.14),
D = —(0.5%) = —0.25.

In practice, it is convenient to express the data in terms of |D’|, where
D’ = D/Dpax and Dypayx is the maximum value of D. We show in Exercise 5
that

Dmax = min{pAzpBlvalsz}a it D> 07
Dmax - min{pAlpBlvazsz}a it D <0. (1315)

|D’| has the convenient property that 0 < |D’| < 1, with |D’| = 1 correspond-
ing to complete LD.
Another convenient measure of LD, r?, is obtained by dividing D? by
PAPAPBPB,:
D2
r? = : (13.16)
PAPAPBPB,
The quantity 72 is the square of the Pearson product-moment correlation
coefficient, which we encountered in Section 11.4. The equivalence between
(13.16) and the definitional form for % can be seen by noting that for binary
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alleles of gene X (X7 and X»), the variance is 0% = px, px,. This means that

the denominator of (13.16) is 040%.

Another way of expressing 72 with the use of (13.12) is

r? = (pAlBl - 1) (pA2B2 - 1). (13.17)

Pa,PB, PAPB,
The quantity 72 measures the correlation between alleles at the two sites.
For markers that have complete disequilibrium and that have the same allele
frequency, it takes the maximal value 1.0 (= [(0.5/0.25 —1)]?). If there is com-

plete equilibrium, the numerators and denominators of the ratios in (13.17)
are equal and 72 = 0.

13.5.2 How Rapidly Does LD Decay?

LD decays over time. It is also possible to obtain an expression for D at any
generation in a population in terms of the recombination parameter (recom-
bination fraction) r between two markers. Suppose that we want to calculate
the change in frequency of a haplotype in going from one generation to the
next. Consider a particular A; By haplotype. This could have arisen as a non-
recombinant copy of an A; By haplotype in the previous generation (frequency
(1 —7)pa,B,) or as a result of recombination in the previous generation be-
tween two haplotypes that were A; and *B; (the % denoting that the allele
at the other locus is immaterial). The frequency of these latter events is just
7pa,pB,. Combining the possibilities, we see that the fraction p/y 5 of hap-
lotype A1 B; is

p;}lBl = (1 —r)pa,B, +7PA,PB;- (13.18)

If we subtract pa,pp, from both sides of (13.18), we get

p;hBl — PAPB; = (1 - T)pAlBl - (1 - T)pAlpBlv

which, with the definition of D in (13.12) and the fact that the allele frequen-
cies do not change with time for a simple recombination model, becomes

D' =(1-7)D. (13.19)

This recursion formula can be applied over ¢ generations to relate the LD Dy
at generation t to the initial linkage disequilibrium Djy:

D; = (1—r)'Dy. (13.20)

Equation (13.20) indicates how linkage disequilibrium changes over time.
LD will decrease to 0 after a large number of generations because 0 < r < 0.5.
We can estimate the number of generations necessary to reduce LD to half
of its present value. We take r = 0.01 (corresponding to 1 cM-—conveniently
close linkage for association studies). We solve the equation
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Dy 1
= = (1=7)
for ¢, with » = 0.01. The result is t ~ 69. Taking the human generation time
to be 20 years, we calculate that the human LD half-life is about 1400 years
for markers separated by 1cM.

13.5.3 Factors Affecting Linkage Disequilibrium

In the previous section, we modeled LD using a population model that al-
lowed recombination to occur. Other forces acting on populations can lead to
association of alleles. For example, smaller populations will experience greater
sampling variation, leading to genetic drift (Section 13.7.1). Effects of genetic
drift are balanced by recombination (which breaks up haplotypes) and muta-
tion (which introduces new haplotypes). The magnitude of LD between two
polymorphic loci in a stable population is expected to depend on population
size, recombination fraction, and mutation rate. Moreover, LD can also re-
flect the precise mutational history of a population, even if no recombination
occurs. Consider, for example, a haplotype A; B1C} in an ancestor, with dis-
tances A — B and B — C being identical. Now assume that a particular set of
mutations occurs in the pedigree shown in Fig. 13.3. The computed values of
LD for loci AB and BC' are not the same, even though no recombination has
occurred (see Exercise 6).

Another force operating is the founder effect, which is observed with a
small population that has grown rapidly, largely in isolation. For example,
the population of Finland (now about 5 x 10°) rapidly grew from a founding
population of about 1000 individuals 2000 years ago. If there is rapid pop-
ulation expansion over a short interval, linkage disequilibrium will be higher
than for a population of comparable size that has been in existence for a long
period of time.

Natural selection also can affect the association of alleles in haplotypes
if the individual’s genotype influences reproductive fitness. If the effect on
fitness of an allele at one locus is changed by an allele at another locus, there
will be a disproportionate increase in the frequency of individuals with both,
at the expense of individuals having only one of the alleles.

Finally, LD can be affected by the mixing of populations having different
allele frequencies. For example, suppose that we had a composite popula-
tion composed of three different subpopulations having the allele frequencies
and population sizes shown in Table 13.4. Suppose further that each of the
three subpopulations have individually reached equilibrium with respect to
alleles A and B (i.e., there is no mating between subpopulations). By taking
weighted averages, we can obtain the proportions of alleles within the com-
posite population: p4 = 0.0923,pp = 0.177, and pap = 0.0277. From (13.12),
we calculate that D = pap — papp = 0.0114. In other words, even though
the D values for each of the subpopulations were 0.0, because of population



13.5 Linkage Disequilibrium (LD) 385

B,—> B,
C,—> C,
N =
B.

Fig. 13.3. Measures of linkage disequilibrium are dependent upon the genealogical
history of mutations, independent of any recombination. A particular genealogical
tree for ten haplotypes is shown in panel A. The haplotypes corresponding to the
leaves of the tree immediately above each column are diagrammed in panel B.

structure (stratification), the computed D for the composite population was
not zero.

Table 13.4. Example of effects of population stratification on estimated linkage
disequilibrium. Probabilities of allele A at locus A and allele B at locus B are
reported. Each individual subpopulation is at linkage equilibrium.

Population

Population  size N PA DB  DAB D

I 1,000 0.3 0.5 0.15 0
II 2,000 0.2 0.4 0.08 0
III 10,000  0.05 0.1 0.005 O

I4+1I4-111 13,000 0.0923 0.177 0.0277 0.114
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We conclude then that the state of allelic associations in a population is
the result of interplay among many aspects of the evolutionary history of the
population. Unless the history is “known,” it is hard to model LD between
pairs of loci. This means that in general, data for the present state of LD in
populations are insufficient for making inferences about parameters such as
recombination fraction, population size, or mutation rate.

13.6 Linkage Disequilibrium in the Human Genome

There are two major reasons for interest in the pattern of linkage disequilib-
rium in the human population. First, there are medical reasons, as indicated
in Section 13.4. Recall that identification of genes associated with genetic
diseases depends upon relating the disease phenotype with readily scorable
genetic markers, either by using pedigree analysis or through statistical asso-
ciation. If there are few genetic markers on the map, disease states associated
with any one of them may not be physically close, meaning that the hunt
for the disease gene must cover an extensive area. Using markers such as
microsatellite repeats has produced genetic maps with a resolution of about
0.5 ¢cM (Kong et al., 2002). Association of such markers with a disease gene
would (on average) allow us to restrict the search to a 500,000 bp region of
the genome. The numerous single-nucleotide polymorphisms in the human
genome provide an opportunity for an even finer scale of mapping (hundreds
to thousands of bp map resolution). However, if there is substantial LD, a
much smaller number of “tag SNPs” may serve to mark regions in linkage
disequilibrium, which in turn may contain the disease-causing alleles. The
second major reason is that patterns of LD reflect the evolutionary history of
human populations over the last 250,000 years (e.g., effects of selection, mi-
gration, population expansion, and admixture). Different populations might
have different patterns of LD, which would reflect the population history.

The ability to solve these problems has been augmented by DNA sequenc-
ing technologies and the consequent ability to detect single-nucleotide poly-
morphisms (SNPs). Remember that SNPs are the character states at individ-
ual nucleotide positions in a genomic sequence. In most cases examined so far,
SNPs are biallelic: there are just two alleles, a major and a minor allele. This
means that we can employ the equations developed in Section 13.5 to describe
LD in the human genome. When we inquire about LD patterns in a genome,
we are really asking about the frequency distribution of chromosomal lengths
having | D’| or 7? values exceeding some arbitrary threshold value. These pat-
terns could equivalently be described in terms of recombination frequencies
within intervals separating the genes.

It is helpful to think about LD patterns in terms of some simple models.
For example, suppose that the recombination parameter r is approximately
constant throughout the length of a chromosome. In that case, we might model
the locations of recombinational crossovers as a Poisson process, which would
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produce an exponential distribution of lengths for segments in linkage disequi-
librium if all recombination events were to occur in a single generation. Such
a model applied over several generations will produce regions with high LD:
loci in close proximity are less likely to be separated by recombination than
distant loci, and for close loci, there simply may not have been enough meioses
during the history of the population to produce short-range equilibrium. This
is illustrated in Fig. 13.4. Alternatively, we might try to imagine some simple
patterns to which the observed data might conform. For example, we might
imagine that the genome is divided into haplotype blocks, which consist of
consecutive chromosomal loci showing high levels of local LD, separated by
short regions within which many recombination events have occurred. This is
equivalent to a punctate recombination model (where the recombination
fraction r is not constant). Whether or not these or more complicated models
are appropriate, we want statistics to describe the observed patterns. For the
haplotype block model, these might be (a) mean block size, (b) numbers of
blocks per Mb in a region, and (c) the fraction of the region contained in (or
covered by) haplotype blocks.

Descriptions of LD in terms of haplotype blocks are influenced by a number
of different factors:

— The history of the sampled populations (Section 13.5.2): Populations sam-
pled after a bottleneck will display greater amounts of LD, and populations
that have experienced exponential growth will have lesser amounts of LD,
than populations that have continued at stable population sizes for a long
period of time. As noted above, pooled samples may produce LD by ad-
mixture.

— Sample size: The estimated haplotype frequencies are only a sample from
a larger population, and estimates of the population frequencies from the
sample frequencies are less reliable when the number of genomes sampled
is small.

— Methods for determining haplotypes: Haplotypes may be determined di-
rectly, but often they have been inferred by statistical methods based upon
allele frequencies in the sample (i.e., they are estimated from diploid geno-
types). Such estimates may be less reliable than direct measures, because
of required assumptions in a population model.

— Spacing between SNPs: If the marker density is high (SNPs have close
spacing), short segments in LD can be detected, but if marker densities
are low, only larger haplotype blocks will be observed.

— Cutoffs imposed to exclude rare alleles: To simplify interpretation of pat-
terns, some investigators employ only more common alleles to define hap-
lotypes. But rare alleles are found in the “younger” haplotypes, and com-
mon alleles are biased toward older haplotypes. Older haplotypes have
had more time for recombination to occur, so that the length distribution
of haplotype blocks may be skewed toward lower values than in younger
haplotypes.
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The observations above imply that any statistic describing LD in a particu-
lar case is meaningful only within the context of the methods and sampling
protocols employed for making the estimate.

Computational Example 13.2 illustrates how SNPs can be used to identify
genomic regions that display LD. In this illustration, there are five SNP loci,
and the state of each is represented by one of only two alleles. Invariant loci are
indicated by dashes in this illustration, but in the literature, SNP characters
are usually listed in positional order with no representation of the positions
between the SNPs. The measure of LD employed is |D’|, calculated for all
possible pairings of alleles [n(n — 1)/2 pairings of n alleles]. The result is
displayed at the end of the box in a triangular grid, with each element shaded
to represent the magnitude of |D’| for the corresponding pair of alleles. If the
order of SNPs representing rows and columns is as shown, then the elements
representing LD between SNP j + 1 and SNP j appear in order along the
diagonal set of elements (reading from bottom left to top right). Haplotype
blocks would appear as clusters of shaded elements near the diagonal. (Only
one block, comprised of SNPs 3 and 4, is illustrated in this simplified example.)
Figure. 13.5 presents the results for real data.

Computational Example 13.2: Calculation of pairwise linkage dis-
equilibrium statistic |D’|

Below are the SNP data for our example.

SNP number
1 2 3 4 5
e T--=G--T-————=———————————— T--—-
R T-=-G--T-——————— === - T----
e R S A----
e R A----
A T---G--T-—————=——— ===~ A-——-
e T--=C-—A-———==———————————c T--—-
R R S A-—--
R R S A----
e T---C--A-————m—mm—mmmmm o T----
~=Tmmmmmmm e R S A-——-

The calculations are shown below.

D Duax |D]

[1,2] par=0.3, pp = 0.5, pr = 0.6 0.00 0.20 0.00
[1,3] pag=0.3, pp = 0.5, pg = 0.5 —0.05 0.25 0.20
[1,4] par = 0.3, py = 0.5, pr = 0.5 —0.05 0.25 0.20
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D Duax |D]

[1,5] par = 0.2, pp = 0.5, pr = 0.4 0.00 0.20 0.00
2,3] prg=0.4, pr = 0.6, pc = 0.5 —~0.10  0.20 0.50
[2,4] prr =04, py = 0.6, pr = 0.5 0.10 0.20 0.50
[2,5] prr =04, pr = 0.6, pr = 0.4 0.16 024 0.67
3,4] per = 0.5, pg = 0.5, pr = 0.5 ~0.25 025 1.00
3,5] per =0.2, pg = 0.5, pr = 0.4 0.00 0.20 0.00
[4,5] prr=0.2, pr =05, pr =04 0.00 0.20 0.00

1 2 3 4 5

5
White: ID| < 0.2
4 Light Grey: 0.2 < |D’| < 0.5
3 Dark Grey: 0.5 < |D'| < 0.8
Black: 08<|D'|<1.0
2
1

Currently, data on LD in human populations has focused either on genome
samples or short chromosomes (Hsal9, Hsa20, Hsa21, and Hsa22). “Haplotype
block” may be defined differently in different studies. For example, haplotype
blocks have been defined as a series of three or more markers in a contig
for which all estimated values of |D’| exceed 0.9 (Phillips et al., 2003) or as
a region over which fewer than 5% of the markers show evidence of recom-
bination (Gabriel et al., 2002). The study of Hsal9 (Phillips et al., 2003)
indicated that with a median 5.5kb spacing between SNPs, about 32% of the
chromosome was contained in haplotype blocks. The observed distribution of
block lengths resembled an exponential distribution, and simulations indicated
that similar distributions could be produced without invoking selection, spe-
cial population histories, or recombination hotspots. The median block length
was approximately 20kb. In the case of Hsa2l, individual chromosomes were
separated by using somatic cell hybrids, so that haplotypes were measured
directly (Patil et al., 2001). The mean SNP spacing was 1300 bp, and an opti-
mization method was employed to define blocks such that the entire genome
was covered. About 80% of the chromosome was contained in blocks defined
by three or more SNPs, and the mean size of these blocks was about 16 kb. The
mean size of all blocks (including smaller ones) was 7.8 kb. The dependence of
inferred haplotype block sizes on marker spacing is shown in Table 13.5. This
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A. Sub-Saharan African sample, B. Sub-Saharan African sample,
region 19a region 32a

450.8 kb

0.49 cM/Mb 0.94 cM/Mb

Fig. 13.5. Plots of pairwise |D’| for two different human genomic regions drawn
from a sample of sub-Saharan African populations. Plotting is analogous to the
diagram in Computational Example 13.2. Dark grey squares indicate strong LD,
light grey represents intermediate LD, and medium grey indicates no LD. Markers
and marker spacings are indicated by lines below and to the right of the triangular
grids. Reprinted, with permission, from Wall JD and Pritchard JK (2003) Nature
Reviews Genetics 4:587-597. Copyright 2003 JD Wall.

emphasizes the assertion that marker spacings that are too large will fail to
detect smaller blocks of disequilibrium, in effect sampling only the tail of the
LD block length distribution function.

The large number of SNPs allows estimation of recombination rate varia-
tion across the human genome. Although Innan et al. (2003) found that the
observed LD for chromosomes Hsal9 and Hsa2l could be modeled by us-
ing uniform but lower-than-average recombination rates, other experiments
indicated that recombination “hotspots” are present in the Class II region
of the major histocompatability complex (MHC) in humans (Jeffreys et al.,
2001; Kaupi et al., 2003). Substantial LD and apparent haplotype blocks were
noted based upon genetic data alone, and recombination events were detected
experimentally by assaying SNPs in DNA extracted from single sperm cells.
Five recombination hotspots were identified, each extending for 1-2kb and
lying between the observed haplotype blocks. Whereas the average genomic
recombination rate is about 1.1c¢M/Mb, the rates at these hotspots range
from about 3c¢M/Mb up to 130 cM/Mb—100- to 1000-fold higher than rates
within the haplotype blocks themselves. A more comprehensive statistical
study employing SNP data for Hsa20 indicated that punctate recombination
(i.e., presence of hotspots and coldspots) is a general feature of the human
genome (McVean et al., 2004). This study found that half of all recombination
events occur within just 10% of the genome sequence and that the average
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spacing between hotspots is no more than 200kb. Recombination rates were
as low as 0.01 ¢cM/Mb for coldspots and approached 100 cM/Mb for hotspots.

Table 13.5. Effects of marker spacing on predicted haplotype block length (Phillips
et al., 2003).

Distance between Predicted mean
markers (kb)  block length (kb)

0.1 0.5
1.0 4.0
5.0 16.8
10.0 324
50.0 148.6

As we mentioned above, it is estimated that there are some 1.5 x 106 — 107
common SNP loci in the human genome, a number far too large to be eco-
nomically feasible for routine screening of individuals. LD structure offers
the opportunity to reduce the labor while still reaping the benefit of having
more closely spaced markers than are available on current genetic maps. With
regions of substantial LD extending for about 20kb (see above) and the as-
sumption that most of the genome lies within such blocks, there would be
about 150,000 such regions in the human genome. If we were to use a corre-
sponding number of tag SNPs, then the resolution of the human genetic map
would be improved to about 0.02cM (3700cM (average) /150,000), while re-
taining a manageable number of markers to screen for association with genes
implicated in genetic diseases.

13.7 Modeling Gene Frequencies in Populations

13.7.1 The Wright-Fisher Model

To understand the effects of different forces on the distribution of gene fre-
quencies in populations, it is helpful to use stochastic or deterministic models.
We saw an example of the latter type when we discussed the rate of decay of
LD in Section 13.5.2. In this section, we introduce some Markov chain models
to describe gene frequencies in finite populations.

We begin with the simplest model, which was introduced by Fisher (1930)
and Wright (1931). The assumptions we make to build this model are:

— The population size N is constant from generation to generation.

— Organisms are diploid (so there are 2N copies of each gene).

— All members of each generation reproduce simultaneously: generations do
not overlap.



13.7 Modeling Gene Frequencies in Populations 393

Starting Population
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Fig. 13.6. Schematic illustration of Wright-Fisher model for a population of size
N = 5, with two alleles (A = white circles, B = black circles) at equal starting
frequencies. Each horizontal line of 2N = 10 circles corresponds to a different gen-
eration. The total population size does not change from generation to generation.
Copies of each gene to be reproduced for the next generation are chosen randomly,
so that some may be copied more than once and others not at all. This leads to ge-
netic drift, illustrated here by the excess of B alleles in the present population (0
generations ago). Note that three generations ago there was an excess of W alleles.

— Mating among individuals is random.
— Allele frequencies are not perturbed by mutation, migration, or selection.

The term “random mating” deserves further explanation. To form an off-
spring, choose an individual at random from the population and then choose
one if its gametes at random. Return the chosen individual to the population,
and repeat the experiment. This results in two gametes that form an individ-
ual in the next generation. This procedure is repeated N times to form the
next generation. Our model, diagrammed in Fig. 13.6, describes a population
in terms of a gene pool from which genes are randomly drawn to constitute
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the next generation. To describe a population containing N individuals, it
is not necessary to keep track of each individual. Instead, we follow the fate
of the 2NN copies of each gene. Suppose that each gene is either allele A or
allele B. If at generation n there are i copies of allele A, then the number of
A alleles at generation n + 1 has a binomial distribution with 2N trials and
success probability p = i/2N.

Because of the random components in this model, allele frequencies change
over time, even though the model does not allow for mutation or selection.
This process is called genetic drift. The random number of offspring per indi-
vidual implies that an initial population allowed to evolve over ¢ generations
will produce different outcomes for different “trials.” (In the real world, we
observe populations that have experienced only one trial during the course of
evolution.) The simulation below illustrates genetic drift in a population for
a gene having two different alleles. Notice that the allele frequencies evolve
differently for different trials. At some point, one allele or the other “wins”
(fixation of that allele) and the other allele is lost (it is “unlucky”). The
surviving allele has become fixed, not as a result of selection based upon any
benefit it may confer but merely as a result of the random nature of the
process.

Computational Example 13.3: Simulation of genetic drift

We can see the effects of genetic drift for a two-allele system by employing the
R function below. The parameters are population size, N; the number of alleles
A in the population at the beginning, M; and the number of generations, G.
(The initial generation is labeled 1 here.) The function drift is employed:

drift<-function(N,G,M){
# N = number of genes in population
# G = number of generations of simulation
# M = number of A alleles in population
pop<-matrix(nrow=N, ncol=G)
# Holds resulting alleles, each generation
prop<-rep(NA,G)
# Holds proportion of allele A in each generation
prop[1]1<-M/N
#Initialize the first generation
popl,11<-c(rep(1,M),rep(0, (N-M)))
for(j in 2:G){ #looping over generations
for (i in 1:N){
popli,jl<-sample(popl,j-1],1,replace=TRUE)
}
R
# Alternative code to replace interior loop: #
# popl,jl<-sample(popl,j-1],replace=TRUE) #



S
prop[jl=sum(pop[,jl)/N
}

return(prop)

3

We perform four different runs for 100 generations with an initial population
of 60 genes, with M = 30:

> tmp<-matrix(nrow=4,ncol=100)
> for(i in 1:4){tmp[i,]l<-drift(N,G,M)}

Plots for each run are shown in Fig. 13.7.

(=}
—
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04 0.6 0.8
1 I 1
L L L
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0.0
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Major allele fraction
1.0

T T T
0 20 40 60 80 100 0 20 40 60 80 100

Number of Generations

Fig. 13.7 Simulation of genetic drift after 100 generations for 60 biallelic genes,
with both alleles initially at the same frequency. Four independent realizations of
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this process are illustrated. One allele or the other becomes fixed in simulations A,
B, and D. For simulation C, neither allele has been fixed after 100 generations.
The plots were produced using;:

> par (mfrow=c(2,2))
> plot(1:G,tmp[1,],type="s",1ty=1,ylim=c(0,1.0))
# Repeat for tmp[2,],...,tmp[4,]

Observe that in one of the runs (panel A) the A allele has drifted to a
relative frequency of 1.0, and in two of the cases (panels B and D) the A allele
has become extinct. In one run (panel C), the A allele has been enriched but
has not been lost or fixed in 100 generations. Notice that, in this case, the A
allele almost became fixed by generation 94, after which the other allele began
to experience a run of “good luck.”

13.7.2 The Wright-Fisher Model as a Markov Chain

If we denote the number of A alleles in the population in generation n by X,,,
then we recognize that the sequence Xy, X1,... is a Markov chain, the set of
possible outcomes being {0,1,2,...,2N}. The transition matrix of the chain
(see page 52) is given by

oN\ [ i\’ i\
g=(" 1- ,i,j=0,1,...,2N.
m= () (aw) (o) oo

We note that, conditional on X,, =i,
i

E(Xnp | Xa=i)=2N x

= i’
so that
EX, = EX, for all n.

This result says that on average the A allele frequency does not change. This
result is akin to the Hardy-Weinberg law, but it gives a very misleading im-
pression of the behavior of the model. Recall that in our simulations we saw
trajectories in which the A allele became fixed! Because there is no mutation
in this model, the states 0 and 2N are absorbing—once the frequency of al-
lele A reaches 0 or 2N, it remains there forever after. It can be shown that
the chance that allele A becomes fixed is its initial relative frequency (see
Exercise 7).

We know that fixation or loss of the A allele must occur. We can find
the rate at which this loss occurs by calculating the expected heterozygosity
h(n) in the population in generation n. This is the probability that two genes
chosen at random (with replacement) are different alleles. It can be shown
that
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h(n) = (1 - Ziv)nh(o). (13.21)

Variation is therefore lost at a geometric rate, and this rate is faster in a small
population than in a large one (see Exercise 8).

13.7.3 Including Mutation

The model in Section 13.7.1 does not allow for mutation. In this section,
we add neutral mutations to the Wright-Fisher model. Neutral mutations
do not affect the survival or reproductive success of an organism. Neutral
mutations thus can lead to a variety of alleles that are not subject to natural
selection. A subset of neutral mutations are those that occur in the third
position of codons such that the specified amino acids remain unchanged.

We employ the infinitely many alleles model, which states that each
mutation produces a novel allele. This implies that any homozygous individ-
uals are also autozygous because, under this mutation model, if two alleles
are the same, they must have descended from the same ancestor. This also
implies that alleles cannot back-mutate. Of course, the number of alleles can-
not actually be infinite, but this is a good approximation, provided the actual
number of possible alleles is sufficiently large. For example, a look at a table
of the genetic code shows that, given any specification of first and second
positions in a codon, there are on average 2.7 third-position variants that will
specify the same amino acid. For a polypeptide chain containing about 400
amino acid residues (a reasonable average for eukaryotes), there are about
2.7400 possible alleles involving third positions of codons and producing the
same amino acid sequence. This number does not take into account amino
acid composition, which would affect the average number of third position
variants. This works out to approximately 3.5 x 1072 alleles that would code
for the same polypeptide chain. This number is not infinite but still is very
large.

We now compute some population statistics in terms of this model. As
before, we track 2N copies of each gene at each generation. Let p be the
rate of mutation of each gene; this rate is assumed to be constant for all
genes and for all generations. We obtain an expression for the probability Fy
that two genes are identical by descent in generation ¢. This event can occur
in two ways: either both genes are copies of a single gene from generation
t — 1 (probability 1/2N) and neither copy is mutant, or the two genes are
nonmutant copies of different genes in the previous generation and those two
genes are identical by descent. Thus,

F, = 2;{(1 — )+ <1 - ;V) (1—p)*Fi_1. (13.22)

If enough generations pass, genetic drift and mutation lead to a steady-state
condition in which the probability of homozygosity does not change. After
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this point, F;_; = F; = F, a constant. Because p in 13.22 is a very small
number (around 1076 amino acid substitutions per coding region per year),
we can ignore terms in p2. Also, since N is ordinarily a large number, we can
also ignore terms in p/N. Expanding the terms (1 — p)? in (13.22), applying
the approximations, and rearranging gives the result

1
F= . 13.2
1+4Np (13.23)
The heterozygosity H is just 1 — F (by definition), so
AN
H = . 13.24
1+4Np (13.24)

Equation (13.24), unlike (13.2), was derived in terms of a model, without
explicit knowledge of the individual allele frequencies. As we see later, the
product 4Np appears repeatedly in other contexts, so for convenience we
write

0 =ANp. (13.25)

We will discover in Section 13.8.2 that 6 is the expected number of differ-
ences in two sequences drawn at random from a population of size N. The
parameters p and N are usually confounded—they appear together in 6 as
a product—and from population data from a single generation alone they
cannot be estimated independently. The quantity 6 is called the mutation
parameter.

13.8 Introduction to the Coalescent

We note that (13.22) was found by asking how the relevant statistic in gener-
ation t, Fy, could have been obtained, given its value in the prior generation.
In other words, rather than considering how the statistic changes as we go
forward in time, we found it practical to look backward. In a sense, this is
a very natural thing to do when considering the genetics of populations. We
are given a population as it exists now, and we may want to make inferences
about how it reached its current state. (Predicting the future is beyond the
realm of observational science unless one can afford to wait a suitably long
time to check predictions.) The coalescent (Kingman, 1982) is a very use-
ful stochastic process that allows us to model the ancestry of genes in the
population. This section describes the nature of the coalescent.

13.8.1 Coalescence for Pairs of Genes

We illustrate how the coalescent works by discussing two aspects: the time to
the most recent common ancestor (TMRC A) for two gene sequences from the
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sampled population and the expected number of pairwise differences between
a pair of sequences. We use the Wright-Fisher model. The population contains
2N copies of each autosome or autosomal single-copy gene at each generation.
(Don’t worry about mutation yet—that is dealt with at the end of the argu-
ment.) We discuss the model in terms of an autosomal gene. We count time
backward from the present, so at the present g = 0, and successive generations
back in time are at times g = 1,2, ... . (We use g to denote generation in this
section, as a reminder that time is running back into the past.) Each gene in
generation g — 1 had an ancestor in generation g. (Note the direction for the
generation scale!) The coalescent model is implemented by allowing each gene
in generation g — 1 to “choose” its ancestor from among the 2N gene copies
that existed in generation g. Clearly, some of the gene copies in generation
g may be chosen multiple times, and others may be chosen not at all. The
process is repeated, going back from generation g to generation g+ 1. Because
some gene copies are not chosen in each generation going back, the number of
ancestors becomes smaller and smaller until the lineages coalesce to a single
ancestor some number of generations ago (Fig. 13.8). Note that the process
is stochastic: this means that different “runs” of this process yield different
values of the Tyrca. We seek the expectation of this quantity for two genes.

Pick one gene out of the 2N copies in generation g — 1. It came from one of
2N ancestors in generation g. The probability that a second gene in generation
g — 1 came from the same parent is 1/2N. The probability that the second
gene came from a different parent is therefore 1 — 1/2N. The probability that
two genes have not coalesced to a common ancestor within g generations is
the product of the probabilities that they have not coalesced at generations
1,2,...,¢:

1 g
P(First coalescence > g generations) = (1 ~ 4 N) . (13.26)

We see that Tyrca for a pair of genes has a geometric distribution with

1 1\"!
P(First coalescence g generations ago) = o N (1 — 2N> ,g=1,2,....

From Exercise 9b in Chapter 3, it follows that
ETvrca = 2N.

When the population size N is large, we can approximate the distribution
of the time to the most recent common ancestor by an exponential distribution
with mean 1. To do this, we measure time in units of 2N generations. Then,
for t = g/2N,

1\ 2Vt
P(First coalescence > ¢ units ago) = (1 — 2N> ~e !
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Fig. 13.8. Model for coalescence. Ten successive populations are shown. Time,
measured in generations, is counted backward from the present (bottom population).
Each member of population g — 1 “chooses” its ancestor randomly from population
g. Black circles in the bottom population represent the present members of three
lineages. Going back in time (increasing the number of generations g), the lineages
successively coalesce until they unite at a shared common ancestor (black circle,
top line). This type of analysis relates the time to most recent common ancestor,
Twmrca, to population size.

Thus, in a large population with time measured in units of 2N generations,
the time to the most recent common ancestor of a pair of genes has probability
density function f>(t) given by

f(t)y=e"" t>0. (13.27)

13.8.2 The Number of Differences Between Two DINA Sequences

We can use the previous results to obtain the expected number of differences
between any two DNA sequences sampled in the present generation. The
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number of mutations that occur along a single lineage of length g generations
has a binomial distribution with parameters g and p. With ¢ = 2Nt and
1= 60/4N and N large, we can use the Poisson approximation to the binomial
distribution to see that on our new timescale the number of mutations along
a lineage of length ¢ time units has a Poisson distribution with mean 6¢/2. If
the two sequences have a coalescence time of Tyirca, then they are separated
by an amount of time equal to 2T\vrca. Given Tyrca, we see that the total
number of mutations separating the two sequences has a Poisson distribution
with mean (ZTMRCA) X (0/2) = 0TMRCA.-

We use the infinitely many sites model, under which each mutation
occurs at a site in the DNA sequence that has not had a mutation before.
These sites are said to be segregating—the site contains two bases, the ances-
tral one and the mutant one. Letting IT represent the number of segregating
sites in the two sequences, we see that the expected number of segregating
sites is just the expected number of mutations separating the two sequences:

EH:EGTMRCAZGETQZQXIZQ. (1328)

This quantity is seen to be the same as (13.25).

One statistic commonly used to describe the variation in a set of n DNA
sequences is the so-called nucleotide diversity. This is the average pairwise
distance between the n sequences; the result in (13.28) shows that the average
value of the nucleotide diversity is the compound mutation parameter 6 (see
Exercise 9).

13.8.3 Coalescence in larger samples

To study the ancestral relationships among a sample of size n taken from a
large population we proceed as follows. The probability that the n genes have
distinct ancestors in the previous generation is

H(w—a):’ﬁ(l_;v)%1_22';1;1/3':1_% 1329

Repeating this argument, we see that the probability that no coalescence
events have occurred in g generations is (1— (%) /2N ). When time is measured
in units of 2N generations, we obtain

B 2Nt
P(First coalescence > ¢ units ago) = (1 - 2?\[) ~ e (3),

Thus the time T,, taken for the first coalescence event in the sample has an
exponential distribution with parameter (;) It can be shown that when this
event occurs, it results in the coalescence of precisely two randomly chosen
members of the sample; the possibility of three or more members of the sample
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coalescing simultaneously can be ignored. At that time, the sample has n — 1
distinct ancestors. We can repeat the previous argument to see that, with time
measured in units of 2N generations, we wait a further amount of time T;,_1
having an exponential distribution with parameter (”;1), and then choose
two of those n — 1 ancestors to coalesce. This process of randomly joining
pairs of ancestors continues back to the common ancestor of the sample.

In summary, the waiting times T),,...,T3,T5 for coalescence events are
independent of each other and have exponential distributions with
2
ET, = . j=n,n—1...,2. (13.30)
[V

At each coalescence event a randomly chosen pair of ancestors is chosen to
coalesce.

We can find the expected time to the most recent common ancestor Tyrca
of the sample of n genes by noting that

Tvrca =Tn + Ty + -+ - + 1o,
so that

Elvirca = E(T, + Tho1+ - + 1)
2 2 2

T -1 m=Dm-2 " " Tax1

1 1 1 1 1 1
(n—l n>+ <n—2 n—1>+ * <1 2>
1
:2(1_ )
n

Thus, the expected height of the ancestral tree linking n genes is about 2
coalescent time units. The variance of the height can be computed in a similar
way (see Exercise 10). When measured on the original time scale, the expected
height of the coalescent tree is 2N x 2(1 — 1/n) generations, or about 4N
generations in a large sample.

The coalescent can be thought of as a random bifurcating tree whose
properties can be studied by simulation. In Fig. 13.9, some random coalescent
trees for samples of size 5 are shown. Notice the large variability in the height
of the trees, and observe that most of this variability is due to the deep
coalescence events, those near the top of the tree. On average, over half of the
height of the coalescent tree comes from the deepest coalescence.

13.8.4 Estimating the Mutation Parameter 6

Experimental estimation of recombination and mutation rates is very difficult,
primarily because these rates are so small. In this section, we outline two
model-based approaches for estimating mutation rates.
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Fig. 13.9. Six realizations, drawn on the same scale, of coalescent trees for a sample
of n = 5. (In each tree, the labels 1, 2, 3, 4, 5 should be assigned at random to the
leaves.)

Under the coalescent model, mutations are placed on the tree according to
independent Poisson processes of rate §/2 down each branch of the tree. Since
a coalescent tree has j branches of length 77, the length of the coalescent tree
of a sample of size n is

L, =Y jT;, (13.31)
j=2

and the mean length, from Exercise 11, is
n—1 1
EL, =2 B (13.32)

If we suppose that each mutation results in a new segregating site, then
we see that the number of segregating sites in the sample is precisely the total
number of mutations that have arisen on the coalescent tree. The Poisson
nature of the mutations means that given the length L, of the tree, the
number of mutations is Poisson with mean 6L,,/2. Hence, by averaging over
all possible tree lengths and using (13.32), we find that the expected number
of segregating sites in our sample is
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n—1

E(Number of segregating sites) = 6 Z (13.33)
Jj=

1
1 J

We can use the result in (13.33) to provide an estimator of the parameter
. If we observe S segregating sites in the sample of n (aligned) sequences,
then we can use the Watterson estimator

o= > (13.34)

n—11"
Yo

This estimator is, by design, unbiased (that is, Efy, = ). We can compute
its variance (Exercise 12a), from which we find a rather surprising result:
the variance of the estimator decays at a rate proportional to 1/logn (as
opposed to a rate proportional to 1/n that would be expected for estimates of
a population parameter based on an independent sample). It is precisely the
dependence caused by the relatedness of genes in the sample that reduces the
amount of information contained in that sample. This phenomenon is typical
of estimators based on coalescent models. In Exercise 13, the properties of Oy
are studied by simulation.

An alternative approach to inference for population parameters is a
Bayesian one (cf. Tavaré et al. 1997). In this approach, we find the poste-
rior distribution of 6 given the number of segregating sites S observed in the
sample. We start by specifying a prior distribution 7(6) for the parameter
6, and then compute the posterior distribution f(#]S) via Bayes’ Theorem
(recall (2.24)) in the form

P(S = k|6) 7(6)

fOs =k =""p

(13.35)
Recalling (3.3), we see that the normalizing constant is
P(S = k) = /]P’(S — k0) 7(6)d0.

All our inferences about # are contained in the posterior density rather than
point estimates such as fy. Finding the form of the posterior density usually
requires a computational approach, one of which is outlined below.

We solve an apparently harder problem first. We simulate observations
from the posterior distribution of 8 and the coalescence times T5, ..., T,, given
that we observe S = k segregating sites in the sample. Write 7 = (T5....,T,),
and note that the posterior distribution of (,7) given S = k is given by

F(0,T|S = k) o< P(S = k|0, T)m(0) f(T), (13.36)

where f(7) is the prior probability density for 7 obtained from the coalescent
model. The likelihood P(S = k|0,7) can be found as follows. Writing L =
2T5 + - - - + nT,, we see that
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P(S = k|0, T) = P(Poisson with mean 0L/2 = k)
= e OL/2(9L/2)% /R, (13.37)

the last coming from the form of the Poisson distribution in (3.2). A rejection
algorithm for simulating observations from (13.36) is as follows:

1. Simulate an observation 6 having density 7(6), and simulate 7 having
independent exponential distributions with means given in (13.30).

2. Calculate L = 2Ty + - - +nT), and h = e 9L/2(0L/2)* /k!.

3. Simulate U from a uniform density on (0,1). If U < h, accept the obser-
vation (0, T) if U < h, and ignore it otherwise. Return to step 1.

Because the probability density of accepted observations is proportional to
the product of P(S = k|0,7) and (), the algorithm does indeed generate
observations from the posterior density in (13.36). The 6 values then have the
distribution (13.35) that we wanted. Implementation in R and further details
are discussed in Exercise 14.

13.9 Concluding Comments

Our introduction to stochastic models of gene frequencies and estimation of
population parameters such as the mutation rate # has necessarily been very
brief. In particular, we have not made explicit reference to the effects of re-
combination or population expansion in this setting. There is an extensive
body of literature about coalescents with recombination. It provides a useful
theoretical tool for interpreting patterns of LD in natural populations, and
for inference about recombination rates. For a taste of this, see Nordborg and
Tavaré (2002) for example.

References

Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Lane CR, Lim
EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, War-
rington J, Lipshutz R, Daley GQ, Lander ES (1999) Characterization of
single-nucleotide polymorphisms in coding regions of human genes. Nature
Genetics 22:231-238.

Fisher RA (1930) The Genetical Theory of Natural Selection. Oxford: Claren-
don Press.

Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Hig-
gins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C,
Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002)
The structure of haplotype blocks in the human genome. Science 296:2225—
2229.



406 13 Genetic Variation in Populations

Innan H, Padhukasahasram B, Nordborg M (2003) The pattern of polymor-
phism on human chromosome 21. Genome Research 13:1158-1168.

International SNP Map Working Group (2001) A map of human genome se-
quence variation containing 1.42 million single nucleotide polymorphisms.
Nature 409:928-933.

Jeffreys AJ, Kaupi L, Neumann R (2001) Intensely punctate meiotic recom-
bination in the class II region of the major histocompatibility complex.
Nature Genetics 29:217-222.

Kaupi L, Sajantila A, Jeffreys AJ (2003) Recombination hotspots rather than
population history dominate linkage disequilibrium in the MHC class 1T
region. Human Molecular Genetics 12:33-40.

Kingman JFC (1982) On the genealogy of large populations. Journal of Ap-
plied Probability 19A:27-43.

Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richards-
son B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Pals-
son ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A
high-resolution recombination map of the human genome. Nature Genetics
31:241-247.

McVean GA, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P (2004)
The fine-scale structure of recombination rate variation in the human
genome. Science 304:581-584.

Nordborg M, Tavaré S (2002) Linkage disequilibrium: What history has to
tell us. Trends in Genetics 18:83-90.

Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer
CR, Lee DH, Marjoribanks C, McDonough DP, Nguyen BTN, Norris MC,
Sheehan JB, Shen N, Stern D, Stokowski RP, Thomas DJ, Trulson MO,
Vyas KR, Frazer KA, Fodor SPA, Cox DR (2001) Blocks of limited haplo-
type diversity revealed by high-resolution scanning of human chromosome
21. Science 294:1719-1723.

Phillips MS et al. (2003) Chromosome-wide distribution of haplotype blocks
and the role of recombination hot spots. Nature Genetics 33:382—-387.
Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky
LA, Feldman MW (2002) Genetic structure of human populations. Science

298:2381-2385.

Tavaré S, Balding DJ, Griffiths RC, Donnelly P (1997) Inferring coalescence
times for molecular sequence data. Genetics 145:505-518.

Venter JC et al. (2001) The sequence of the human genome. Science 291:1304—
1351.

Yu A et al. (2001) Comparison of human genetic and sequence-based maps.
Nature 409:951-953.

Wall JD, Pritchard JK (2003) Haplotype blocks and linkage disequilibrium in
the human genome. Nature Reviews Genetics 4:587-597.

Wright S (1931) Evolution in Mendelian populations. Genetics 16:97-159.

Wright S (1951) The genetical structure of populations. Annals of Fugenics
15:323-354.



Exercises 407

Exercises

Exercise 1. Calculate the heterozygosities corresponding to each of the allele
probability distributions presented below.

Probabilities for allele Heterozygosity
1 2 3 4

1 0 0 0 ?
08 02 0 0 ?
0.67 033 0 0 ?
05 05 0 0 ?
05 03 02 0 ?
033 033 033 0 ?
04 03 02 0.1 ?
0.25 0.25 0.25 0.25 ?

Exercise 2. Prove that for a particular locus for which there are k alleles,
the heterozygosity is maximized when all alleles have the same frequency.

Exercise 3. This exercise establishes the equality of (13.6) and (13.7). To see
this, note that (13.6) can be rewritten as

B
FS_FT—Z ;Z(p?b—p?)] :

=1 b=1

Completing the square for the term in parentheses gives

K

FS—FT:Z

i=1

B

B
1
B Z(P?b — 2pipi + ;) + Z (2pivpi — 2p; ]
b=1 b:1

Recalling that we defined
B
1
Pi = B ;pib,

show that the second summation in the brackets is zero.
Exercise 4. Establish the identities in (13.12) and (13.13).

Exercise 5. Show that the expressions in (13.15) correctly represent the val-
ues of Dyax. [Hint: Work with the definitions in (13.11) and (13.12). For D < 0
set pa, B, O pa,B, = 0, and note the constraints on pa,pp, and pa,pn,, given
the requirement that probabilities are always positive. Use a similar approach
for D > 0.]
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Exercise 6. Suppose that the proportions of haplotypes in a population
are reflected by the proportions diagrammed in Fig. 13.3B (e.g., pa,B, =
(4/10);pa, = 5/10). To confirm that the genealogy of mutations shown in
Fig. 13.3A produces LD, use the data to compute |D’| for loci A, B and |D’|
for loci B, C.

Exercise 7. For the Wright-Fisher Markov chain in Section 13.7.2, show that
the probability that allele A becomes fixed is its initial relative frequency.
[Hint: define

m; = P(Xreaches 2N before reaching 0|Xo = ),

with 7o = 0, menx = 1. By conditioning on the value of X1, justify the following
equation satisfied by the 7;:

2N
T = E DijTj
=0

and verify that m; = j/(2N) solves the equation.]

Exercise 8. For the Wright-Fisher Markov chain in Section 13.7.2, find the
variance of X,,, and use this to verify (13.21).

Exercise 9. The nucleotide diversity I1,, among a set of n aligned sequences
was introduced in Section 13.8.2. It is defined by

2
iy = n(n—l)zdij’

1<j

where d;; is the number of segregating sites between sequences ¢ and j. (This is
the Hamming distance between the sequences.) Show that under the infinitely
many sites model of mutation, the expected value of the nucleotide diversity
is 6.

Exercise 10. In Section 13.8.3 we found a formula for ET\irca for a sample of
n genes. Calculate the variance of T\rca and find its value for large samples.

Exercise 11. Calculate the mean and variance of the tree length L, in (13.31)
of a coalescent tree of size n.

Exercise 12. Watterson’s estimator Oy of 6 was defined in (13.34).

a. Calculate the variance of fyy .
b. Show that it decays at a rate proportional to 1/logn in large samples,
and comment on the practical implications of this result.

Exercise 13. R can be used to simulate observations having the distribution
of 9W
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a. Write a function to simulate an observation ¢ having the distribution of
L, in (13.31). Exponential random variables Ts, ..., T}, can be generated
using rexp.

b. Given the value of ¢, generate a Poisson variable s having mean 0//2.
Poisson random variables can be generated using rpois. Given the value
of s, calculate an observation from 6y from (13.34).

c. For 6 =1,5,25 and n = 10, 25, 100 simulate observations from the distri-
bution of 8y, and compare the results.

Exercise 14. This exercise focuses on the rejection algorithm for simulating
from the posterior distribution of mutation rate and coalescence times de-
scribed at the end of Section 13.8.4. It builds on the method developed in
Exercise 13. For definiteness, assume that () is a uniform density over some
range, so prior observations for 6 can be generated using runif.

a. Implement the rejection algorithm in R.
b. The quantity A in Step 2 of the rejection algorithm can be replaced by

—0L/2 k

e 0L/2)" k!

_ ( / ) / — ek_"L/Q(GL/Qk:)’“,

e kkk /!
resulting in a faster algorithm. Verify this by modifying your function in
a.

c. Given that k = 5, generate 1000 observations from the posterior distri-
bution of 6 for samples of size n = 10, and plot the estimated posterior
density. The function density is useful for this. Explore the effects of
different prior distributions on the posterior.

d. How could you use the algorithm to generate observations from the pos-
terior distribution of the time to the most recent common ancestor?
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Comparative Genomics

Computational biology provides insights into the nature of genomes and or-
ganisms, and provides tools for understanding how an organism’s characters
or phenotypes are determined by its genome sequence. In prior chapters, we
presented a number of computational methods addressing a variety of specific
biological questions. In this concluding chapter, we indicate in more detail
how these tools can be employed in the context of complete genomes. Com-
putational analysis of genome sequence data has transformed the approach
to answering biological questions because now they can be formulated in the
context of all genes operating as a coordinated system. This more integrated
approach complements the reductionist approach of traditional molecular bi-
ology.

Comparisons can be performed within genomes and between genomes.
Within-genome comparisons focus on the genome of organism X and scan
it from beginning to end, analyzing variations in base composition, k-tuple
frequency, gene density, and numbers and kinds of transposable elements,
and identifying any duplicated regions. Between-genome comparisons employ
closely related organisms (e.g., to help identify conserved genes, gene organi-
zations, and control elements) or more distant organisms (to identify genes
that are restricted to particular clades of a phylogenetic tree). Such data can
help trace evolutionary trajectories of organisms.

What properties can be used to describe genomes? We start with composi-
tional measures stated in terms of k-word content. As indicated in Chapter 2,
even simple measures such as this can prove very informative. Second, we
examine the fraction of the genome represented by transposable elements.
These elements may or may not represent a large proportion of the genome.
Although they do not code for organism-specific proteins, the sequences of
these elements can be used as tracers for defining the evolutionary histories
of groups of like organisms. Third, we examine how sequence organization
in chromosomes reflects duplication within genomes or evolutionary relation-
ships between genomes. We have already touched on this question in Chap-
ter 5. Fourth, we provide a brief introduction to the identification and char-
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acterization of genes. Finally, we indicate how the predicted proteome can be
functionally annotated and how proteomes of organisms can be compared.

14.1 Compositional Measures

Summaries and statistical descriptions of genomes are essential for compre-
hending genome content. The page that you are reading now can accommodate
approximately 3500 characters. Approximately 500 to 1000 such pages would
be required to print out the sequence of an “average” microbial genome, and
about a million pages would be required to print out the sequence of the
human genome. The human mind cannot grasp such quantities of data in
this form. In this section, we illustrate what can be learned from simple k-
word statistics, especially when these statistics are combined with other data.
Even as simple a number as genome size, when combined with gene number
(Table 14.1), imposes important constraints on genome composition. This is
discussed in detail in Section 14.4.

k-word compositions of genomes measured as a function of position along
the chromosome are not uniform. Even simple compositional measures can be
very informative. The simplest measure is the base composition (correspond-
ing to k = 1). Figure 14.1 shows distributions of GC content, transposable
elements, and genes along human chromosome 17. Distributions of these fea-
tures along chromosomes provide a statistical analog of a genetic map, and
they are useful for understanding chromosome structure and function. The
third panel from the top shows the %G+C as a function of position. The three
regions where this quantity is the lowest correspond to regions where genes
are particularly sparse. (Compare this with the bottom panel in Fig. 14.1).
In the human genome, gene-rich regions typically have a higher %G+C than
regions that are gene-poor.

Another statistic based on k = 1, and particularly useful for prokaryotic
genomes, is the GC skew, defined in Chapter 2 as (#G — #C)/(#G + #C).
This statistic is computed for sliding windows of length w along the genome.
Prokaryotic chromosomes are usually circular and usually have a single repli-
cation origin and a terminus located approximately 180° away from the origin.
This means that in one half of the chromosome, the genomic DNA strand as
written in the sequence file corresponds to DNA produced by leading strand
DNA synthesis, while the other half of that strand is produced by lagging
strand DNA synthesis. In many bacteria, the leading strand exhibits an ex-
cess of G relative to C, or a positive GC skew. The GC skew has been used to
infer the origin of replication in sequenced genomes. An example is shown
in Fig. 14.2 for Borrelia burgdorferi, which has a linear rather than circular
chromosome (lower panel). The predicted replication origin would be near the
450kb position based upon the pattern of GC skew.

Genome regions having unusual shifts in one or more statistics may have
particular biological interest. For example, Yersinia pestis, the causative or-
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Fig. 14.1. Composition of human chromosome 17 (Hsal7). Various properties have
been summarized for 100 kb intervals along the length of the chromosome. Reprinted,
with permission, from Venter JC et al. (2001) Science 291:1304-1351. Copyright 2001
American Association for the Advancement of Science.
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Fig. 14.2. GC skew for the Borrelia burgdorferi linear chromosome (lower panel) and
distribution of eight-letter word TTGTTTTT on “top” and “bottom” strands (upper two
panels). GC skew measures the relative excess of G (compared with C) on a particular
strand. Reprinted, with permission, from Fraser CM et al. (1997) Nature 390:580—
586. Copyright 1997 Nature Publishing Group.
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Table 14.1. Statistics describing genomes of common and model organisms. Human
mitochondrial DNA is included as an example of an organellar genome.

Number of Genome

Organism Genes Size (Mb)  Chromosomes®

(Human mtDNA 37 0.016 ~10% — 10%)°

Mycoplasma genetalium 517 0.58 1
(bacterium)

Escherichia coli 4,288 4.64 1
(bacterium)

Saccharomyces cerevisiae 6,000 12.05 16
(baker’s yeast)

Caenorhabditis elegans 18,400 97 5+X
(nematode worm)

Drosophila melanogaster 13,600 180 4
(fruit fly)

Arabidopsis thaliana 25,500 125 5
(dicotyledonous plant)

Fugu rubripes 31,000 365 22
(Pacific puffer fish)

Homo sapiens 25,000 3,080 23
(mammal)

Allium cepa NA 15,000 8
(onion)

¢ Haploid number N is reported for diploid organisms.
® Organelle. Chromosome number is DNA copy number in somatic cells.

ganism for plague, or “Black Death,” is a potential biowarfare agent. Yersinia
pestis is closely related to another Yersinia species, Y. pseudotuberculosis,
which is not a blood-borne pathogen, but instead causes gastrointestinal dis-
ease. Yersinia pestis is thought to have evolved relatively recently from an
ancestor shared with Y. pseudotuberculosis (perhaps during the last 20,000
years). Properties of the Y. pestis genome are summarized in Fig. 14.3. The
inner circle in Fig. 14.3 is a plot of the GC skew. Notice that, for the most part,
the genome is divided into approximate halves with the right half having a
mostly positive GC skew and the left half having a mostly negative GC skew.
There are three regions where the GC skew reverses sign for comparatively
short portions of the genome, suggesting relatively recent inversion events.
Genes involved in Y. pestis pathogenicity or adaptation are marked in dark
blue on the two outer circles of Fig. 14.3. It is known that genes conferring
pathogenicity traits are often located in clusters, called pathogenicity islands,
and that these may be acquired by horizontal transfer (from conjugative plas-
mids, bacteriophages, or other gene transfer mechanisms). DNA from such
sources will not, in general, exhibit the same base composition or other statis-
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Fig. 14.3. [This figure also appears in the color insert.] Properties of the Yersinia
pestis genome. Numbers on the outer circle denote coordinates in millions of bp
clockwise of the map origin at 0. Two bands of short radial lines just inside the
coordinate circle represent the genes on the two DNA strands. Dark blue lines denote
genes related to pathogenicity and adaptation. The innermost circle represents GC
skew, and the next one out (black) depicts variations in base composition relative to
the mean. Reprinted, with permission, from Parkhill J et al. (2003) Nature 413:523—
527. Copyright 2003 Nature Publishing Group.
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tical properties as the genome that receives it. Notice that the pathogenicity
genes at the 2.15 Mb position on the genome (between 5 and 6 o’clock) are
clustered on one strand and that a peak of elevated %G-+C appears at the same
position (second circle from the inside). This type of pattern could result if a
block of pathogenicity genes had been acquired from another organism.

Genomes can also be described by dinucleotide measures (kK = 2; Sec-
tions 2.5 and 2.6). For example, probability distributions for dinucleotides
can be organism-specific (Karlin et al., 1998). In human DNA, 5'-CG-3’ (also
known as CpG, where p stands for the phosphate residue) occurs with about
20% of the frequency anticipated for iid bases having the base composition of
human DNA (THGSC, 2001). However, there are regions of the genome where
their frequency is closer to the predicted value. These regions are called CpG
islands. In the human genome, there are approximately 29,000 CpG islands (a
number similar to the predicted gene number), and most of them are less than
1800 bp long. There is a correlation between the density of CpG islands and the
gene density, which is expected from prior experiments showing association
between CpG islands and the 5’ ends of vertebrate genes (see Strachan and
Read, 2003, and references therein).

14.2 Transposable Elements

Studies of eukaryotic DNA by reassociation kinetics in the 1960s and 1970s
showed that eukaryotic genomes contain different sequence components that
vary by copy number. Some genomic sequences appear once or a few times
(unique sequence), while others appear many times (repeated sequences).
One class of repeated sequences is the telomeric repeats (the short repeated
sequences found at the ends of chromosomes), which are important for chro-
mosome stability. Another class of repeated DNA consists of multiple copies
of one or more types of transposable elements. These can represent a sub-
stantial fraction of some eukaryotic genomes. For example, about 45% of the
human genome is attributable to transposable elements. In contrast, the per-
centages of transposable element DNA in Arabidopsis, Caenorhabditis elegans,
and Drosophila genomes are 10.5%, 6.5%, and 3.1%, respectively (IHGSC,
2001). For efficient computational analysis of genomes, it is necessary to know
the number of transposable element classes, the number of elements in each
class, and how the elements are distributed along the genome. These multiple
copies can complicate DNA sequence assembly in whole-genome shotgun ap-
proaches. Highly repetitive sequences are usually “masked” (omitted) before
applying exon prediction tools, or before making interspecies comparisons.
The types and copy numbers of transposable elements within the human
genome are shown in Fig. 14.4. There are generally two categories of each
type of transposon. One category encodes functions required for autonomous
transposition, and the other category lacks one or more of these functions (i.e.,
elements of this category are defective). Transposition of defective elements
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requires gene products supplied in trans from related elements. One type of
transposon is the LTR transposon, where LTR stands for long terminal re-
peat, a characteristic of retroviruses. Its nonautonomous counterparts possess
the LTRs, but they lack the reverse transcriptase. Another general type of ele-
ment is the LINE (long interspersed nuclear element), which also uses reverse
transcription to transpose but does not require or possess LTRs. Its nonau-
tonomous counterparts are the SINEs (short interspersed nuclear elements.)
The third type of element consists of DNA transposons (whose mechanism
does not require reverse transcription) and their defective partners, which
lack the transposase encoded by the autonomous counterpart.

Copy Fraction of

Length number genome
ORF1  ORF2 (pol)
LINEs Autonomous —AAA 6-8 kb 850,000 21%
AB
SINEs Nonautonomous HHH—AAA 100-300 bp 1,500,000 13%
gag pol  (env)
Retrovirus-like Autonomous D> D> 6-11kb
elements o,
(gag) } 450,000 8%
Nonautonomous m>——D 1.5-3 kb
transposase
DNA Autonomous 2-3 kb
transposon } 300,000 3%
fossils Nonautonomous —i < 80-3000 bp

Fig. 14.4. Types and numbers of transposable elements found in the human genome.
Reprinted, with permission, from International Human Genome Sequencing Consor-
tium (2001) Nature 409:860-921. Copyright 2001 Nature Publishing Group.

Also shown in Fig. 14.4 are the numbers of each type of element. Over a
million copies of Alu elements (a type of SINE) are found within the human
genome. They comprise about 10% of the human genome, and they appear on
average once every three kb. They do not contribute to the protein encoded
by those genes into which they are inserted. Since the average human gene
extends over 27 kb, we would expect (on average) to find nine such elements in
the noncoding regions of an average gene, provided Alu elements are targeted
uniformly throughout the genome. (It should be obvious why Alu elements
are absent from coding sequences.) In fact, targeting preferences to different
parts of the genome are not the same (Alu elements seem to target AT-rich
DNA more frequently), but the observed distribution of these elements is
complicated by post-transpositional losses (deletion). There are more than
500,000 copies of LINE L1 elements in the human genome, suggesting that
they appear on average once every 6kb. Thus, we would also expect to find
several L1 elements in regions the size of an average gene. L1 elements, like
Alu sequences, also seem to preferentially target AT-rich DNA.
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Most transposable elements in genomes are defective. If all were active,
the mutational “load” associated with the large numbers of transposable ele-
ments found in many eukaryotes would probably be incompatible with species
survival. Because most genomic transposable elements have been mutation-
ally inactivated during the course of evolution, they are not under selection
for function, and therefore they continue to accumulate additional mutations.
If we align instances of any particular type of transposon, we can define a
consensus sequence for that element (presumably corresponding to a func-
tional element having no mutations). We can then distribute all elements into
“bins” having differing levels of sequence divergence from this consensus. The
degree of sequence divergence from the consensus is a measure of how long
ago the elements in each bin were transpositionally inserted: higher levels of
divergence correspond to more remote times. An example of this is shown
in Fig. 14.5. Bins of each element type having large proportions of elements
correspond to periods when transposition of that element was particularly ac-
tive. It is evident that most Alu transpositional events were relatively recent
in humans but that LINE L2 elements were primarily active in the remote
past and are no longer transposing at a significant rate. The distribution of
transposable element sequences as a function of sequence divergence provides
a measure of the evolutionary trajectory of the organism. Even recently trans-
posed elements can provide evolutionary information over shorter timescales.
For example, Alu insertions can be used to analyze phylogenetic relationships
among great apes (Salem et al., 2003).

14.3 Sequence Organization within Chromosomes

Even before the advent of genome sequencing, it was clear that DNA within a
chromosome could be divided into distinguishable regions. The first division
of DNA into types is its assignment to either euchromatin or heterochro-
matin. Recall that chromatin is composed of DNA with the bound histones
and other chromosomal proteins. Euchromatin is more actively transcribed,
less condensed during interphase, and exhibits cytological staining properties
different from heterochromatin, which remains condensed during interphase
and is relatively inactive transcriptionally. Heterochromatic regions are com-
monly found near the centromeres of chromosomes. Recently, heterochromatin
has been defined operationally as that portion of the genome that cannot be
readily cloned in high-capacity cloning vectors such as BACs (Adams et al.,
2000). This latter property, thought to relate to the relatively large number
of repeated sequences in heterochromatin, has slowed the completion of ge-
nomic sequencing in some organisms. Organisms can differ significantly in
the amounts of heterochromatin that they contain. For example, heterochro-
matin represents about 6.5% of the human genome but approximately 33%
of the Drosophila melanogaster genome. Draft sequences at the time of initial
publication may exclude large proportions of the heterochromatic regions. In
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Fig. 14.5. [This figure also appears in the color insert.] Abundance and sequence
divergence of different classes of human transposable elements. Light blue: SINE Alu
I; dark blue: SINE Mir; green: LTR transposons; orange, LINE L1; yellow: LINE
L2; red: DNA transposons. Higher percentages of substitution from the consensus
sequence correspond to more ancient copies of elements. The higher proportion of
Alu elements at lesser amounts of substitution indicates more recent transpositional
activity among this class of elements, while the absence of LINE L2 elements at
low levels of substitution indicates that L2 elements were not transposing recently.
Reprinted, with permission, from International Human Genome Sequencing Con-
sortium (2001) Nature 409:860-921. Copyright 2001 Nature Publishing Group.

the case of Drosophila, this amounted to about one-third of the total genome
(Adams et al, 2000).

Genetic mapping studies allow comparisons within and between genomes
at a map resolution determined by marker or gene densities. Map compar-
isons can reveal genome segments that have been duplicated within genomes
or segments whose genetic organization has been conserved between genomes.
Genome sequences increase map resolution by several orders of magnitude,
which allows for much more detailed comparisons within and between genomes.
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If two species are very closely related, we might expect that their genetic maps
would be very similar. In other words, the gene orders and relative locations
may be similar, at least over short distances. We already saw an example of
this in Fig. 5.1 of Chapter 5, where contents of a mouse chromosome and
human chromosomes were compared. We also saw in that chapter how al-
terations in gene orders could serve as measures of the evolutionary distance
between organisms.

14.3.1 Conservation of Synteny and Segmental Duplication

As indicated in Section 1.3.2, two or more genes are said to be syntenic if
they reside on the same chromosome. A set of genes ¢1,..., g, that is syn-
tenic in organism A and also syntenic in organism B represents a conserved
synteny. Note that the chromosomes in the respective organisms may not be
related to each other in a simple way. A group of genes that display conserved
synteny and that appear in the same order and relative map positions in
the two genomes constitutes a conserved segment (also called a conserved
linkage or syntenic segment; see Fig. 1.4B). As was illustrated in Fig. 5.1,
there are multiple instances of conserved segments shared by the human and
mouse genomes, even though these two lineages diverged from each other more
than 83 million years ago. The existence of conserved segments indicates that
analysis and annotation of such segments in one genome can guide analysis
in a related genome. For example, the human genome sequence provided a
useful framework for generating a high-resolution physical map for the mouse
genome (Gregory et al., 2002). This was done by matching end-sequence reads
from inserts in a mouse BAC library with the assembled human genome se-
quence. The tiling could be checked by comparing fingerprints (patterns of
insert restriction fragments) of overlapping BACs.

Once conserved segments between genomes have been identified by ap-
proaches to be described below, the rearrangements that have occurred since
the two organisms diverged from the common ancestor can be inferred. A par-
ticularly simple example is the X chromosome in humans (HsaX) and mice
(MmuX). The plot in Fig. 5.3 showed that runs of contiguous loci in MmuX
have homologs in HsaX. These runs in the two organisms could be related by
a series of reversals. Other mouse-human chromosome comparisons (Fig. 14.6)
show much more complicated relationships involving many chromosomes. For
example, Hsa3 has conserved segments corresponding to six different mouse
chromosomes. Of cours