
Computational Genome Analysis

Richard C. Deonier, Simon Tavaré,
Michael S. Waterman

Computational Genome Analysis

An Introduction

With 102 illustrations, including 15 in full color

Richard C. Deonier Simon Tavaré
Department of Biological Sciences Department of Biological Sciences
University of Southern California University of Southern California
Los Angeles, CA 90089 Los Angeles, CA 90089
deonier@usc.edu stavare@usc.edu

and
Michael S. Waterman Department of Oncology
Department of Biological Sciences University of Cambridge
University of Southern California England
Los Angeles, CA 90089
msw@usc.edu

ISBN 0-387-98785-1 Printed on acid-free paper.

© 2005 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the writ-
ten permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New
York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis.
Use in connection with any form of information storage and retrieval, electronic adaptation, com-
puter software, or by similar or dissimilar methodology now known or hereafter developed is for-
bidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed in the United States of America. (MVY)

9 8 7 6 5 4 3 2 1 SPIN 10715186

springeronline.com

Library of Congress Cataloging-in-Publication Data
Deonier, Richard C.

Computational genome analysis : an introduction / R.C. Deonier, S. Tavaré, M.S. Waterman.
p. cm.

Includes bibliographical references and index.
ISBN 0-387-98785-1 (alk paper)
1. Molecular Biology—Statistics—Computer Science. I. Tavaré, Simon.

II. Waterman, M.S. III. Title.
QH438.4M33W378 2005
572.8´6—dc22 2004059191

Cover collage: Lower left: Properties of the Yersinia pestis genome (see page 408 and also color insert).
Reprinted, with permission from Parkhill J et al. (2003) Nature 413:523-527. Copyright 2003 Nature
Publishing Group. Lower right: Photograph of chimpanzee by Professor Craig Stanford, Departments of
Anthropology and Biological Sciences, University of Southern California.

◆

R.C.D.:
To Sylvia, Rachel and Christian

S.T.:
To Jane, Ella and Richard

M.S.W.:
To the memory of Gian-Carlo Rota

◆

Acknowledgments

We thank our students, particularly those who learned with us in BISC499 and
BISC478. We also thank our colleagues in the Molecular and Computational
Biology Section, Department of Biological Sciences, University of Southern
California, for their comments and criticisms. We thank Professors Michelle
Arbeitman, Lei Li, and Jeff Wall and Dr. Noah Rosenberg for providing illus-
trations, and Dr. Thomas D. Schneider, National Cancer Institute, for pro-
viding the sequence logo in Chapter 9.

We thank our editor, John Kimmel, for his patience and constructive crit-
icisms during the writing of this book. We also thank the production editor
Lesley Poliner and the production department at Springer (New York) for
their valuable comments and assistance with formatting.

The cover photograph of the chimpanzee “Frodo” was kindly provided
by Professor Craig Stanford, Departments of Anthropology and Biological
Sciences, University of Southern California.

To the Student

This would normally be called a “preface,” but in our experience, students of-
ten skip sections with that title. We wanted to indicate what we assume about
you, the reader, and how we think that you should use this book. First, we
need to define what we mean by “student.” The need for this book became ap-
parent to us when we were teaching an undergraduate computational biology
course to seniors and first-year master’s or Ph.D. students at the University
of Southern California. We have structured the book for use in an upper-level
undergraduate teaching program. However, we recognize that “student” may
be used in the broader sense to include anyone who wishes to understand the
basics of computational biology. This might include investigators in medical
schools or computer scientists who want to expand their knowledge of this
exciting field.

Persons from a variety of disciplines develop an interest in computational
biology. They may be biologists, applied mathematicians, computer scientists,
and persons working in the biotechnology industry. Because of the variety of
backgrounds from which students may be drawn, we cannot assume that any
reader will have all of the necessary background. If we tried to supply all of the
necessary background for all likely readers, this book would be prohibitively
long (and expensive!). This means that you will probably need to supplement
your reading with outside sources. For example, persons with backgrounds
in applied mathematics may find Chapter 1 too telegraphic in style. They
will need to use the supplementary biology texts indicated at the end of that
chapter. Some current biology students may have limited computer skills and
no programming skills. For them, we provide an appendix outlining the R

statistics environment.
The latter point requires amplification. If you are studying computational

biology, you should learn how to perform some simple computations. If you
come from a computer science background, you will be proficient in UNIX and
will be familiar with string-manipulation languages such as Perl and one or
more versions of C. In contrast, some biology students may not know what
commands can be issued at a UNIX prompt. How can we write a book that

x To the Student

employs computations that have the feel of “real” ones (computations beyond
the hand calculator) without imposing a steep learning-curve barrier on those
biology students? We have tried to solve this problem by using R.

R is a statistics environment that is available for free download and use
with Windows, Macintosh, and Linux operating systems. It functions very much
like the S-PLUS statistics package, which may be available to you already at
your specific institution. R and S-PLUS provide an extensive suite of functions
for statistics calculations. We are using R in lieu of C for computations because
of its wide availability, because the input/output is simpler, and because the
commands can be run interactively, which eases the writing of functions (pro-
grams). This means that you don’t need to first write a text file, compile the
program, and then test it, going through this three-step process repeatedly
until the program is debugged. However, if R is used for large-scale computa-
tions such as analysis of bacterial genomes (106 bp or more), be sure that you
have available a large amount of memory or the computation time may be ex-
cessively long. For big problems, faster, more efficient programming languages
such as versions of C can be incorporated into R.

You need to know how to actually implement the concepts in computa-
tional biology if you really want to understand them. Therefore, in many
chapters we have included examples of computations using R. We encourage
everyone to become familiar enough with R that the logic behind these compu-
tations is evident. We realize that this may be challenging for students lacking
programming experience, but it really is necessary to learn how to visualize
problems from a computational standpoint. To illustrate probabilistic mod-
els, we have performed a number of simulations. If you can’t visualize how
to simulate data given a probabilistic model, do you really understand the
model?

Finally, we emphasize that the material in this book does not represent the
definitive word on any of the topics covered. It is not a treatise on statistics or
algorithms in computational biology. It is not an overview of “bioinformatics,”
although we treat some of the most important topics in that discipline. This
book is not a compendium of useful Web sites with instructions on where you
should point and click your mouse. However, in Appendix B we do provide
some useful URLs to help you get started. This is not a book “about” ge-
nomics. To keep focused on the principles and strategies of the computations,
we are not concerned with proving theorems and discussing the subtleties of
the mathematics and statistics. If you are interested in more detail, you can
refer to some of the literature cited at the end of the chapters. This book is a
“roll up your sleeves and get dirty” introduction to the computational side of
genomics and bioinformatics. We hope to provide you with a foundation for
intelligent application of the available computational tools and for your in-
tellectual growth as new experimental approaches lead to new computational
tools.

We think that this field of endeavor is exciting and fun. Our hope is that
we shall whet your appetite to learn more about what you are introduced to

To the Student xi

here. In every case, there is much more already known and far more left to be
discovered. We hope that you enjoy learning about it.

R.C.D., S.T., and M.S.W.
March 2005

Conventions and Resources

Terms in bold type are defined in the Glossary. Illustrations that are dupli-
cated in the color insert are noted in the grey-scale versions appearing at the
appropriate locations in the text. Computational examples throughout the
text are enclosed in grey boxes. They are not required for the primary expo-
sition of the material, but we encourage the reader to study the computational
examples to see how the principles can be applied. Data sets and supplemen-
tary material are available for download at http://www.cmb.usc.edu.

Further Reading

A number of books for further reading are listed below. These are examples of
books that we have found to be particularly useful. Other high-quality books
have not been listed because of space limitations. Note that a variety of excel-
lent monographs are available online at the National Center for Biotechnology
Information (NCBI) Web site: http://www.ncbi.nih.gov/entrez/query.

fcgi?db=Books.

Baxevanis AD, Ouellette BFF (2001) Bioinformatics: A Practical Guide to
the Analysis of Genes and Proteins (2nd edition). New York: Wiley-
Interscience.

Brown TA (ed) (2002) Genomes (2nd edition). New York: John Wiley & Sons.
Durbin R, Eddy SR, Krogh A, Mitchison G (1999) Biological Sequence Analy-

sis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge: Cam-
bridge University Press.

Everitt BS, Dunn G (2001) Applied Multivariate Data Analysis (2nd edition).
London: Arnold Publishers.

Ewens WJ, Grant GR (2001) Statistical Methods in Bioinformatics. New York:
Springer-Verlag.

Strachan T, Read A (2003) Human Molecular Genetics, (3rd edition). New
York: Garland Science/Taylor & Francis Group.

Contents

To the Student . ix

1 Biology in a Nutshell . 1
1.1 Biological Overview . 1
1.2 Cells . 5
1.3 Inheritance . 7

1.3.1 Mitosis and Meiosis . 7
1.3.2 Recombination and Variation . 9
1.3.3 Biological String Manipulation . 12
1.3.4 Genes . 13
1.3.5 Consequences of Variation: Evolution 17

1.4 Information Storage and Transmission . 19
1.4.1 DNA . 20
1.4.2 RNA . 21
1.4.3 Proteins . 21
1.4.4 Coding . 24

1.5 Experimental Methods . 25
1.5.1 Working with DNA and RNA . 25
1.5.2 Working with Proteins . 28
1.5.3 Types of Experiments . 34

References . 36

2 Words . 37
2.1 The Biological Problem . 37
2.2 Biological Words: k = 1 (Base Composition) 38
2.3 Introduction to Probability . 40

2.3.1 Probability Distributions . 40
2.3.2 Independence . 42
2.3.3 Expected Values and Variances . 43
2.3.4 The Binomial Distribution . 44

2.4 Simulating from Probability Distributions 45

xiv Contents

2.5 Biological Words: k = 2 . 48
2.6 Introduction to Markov Chains . 50

2.6.1 Conditional Probability . 51
2.6.2 The Markov Property . 52
2.6.3 A Markov Chain Simulation . 54

2.7 Biological Words with k = 3: Codons. 57
2.8 Larger Words . 60
2.9 Summary and Applications . 61
References . 62
Exercises . 62

3 Word Distributions and Occurrences . 67
3.1 The Biological Problem . 67

3.1.1 Restriction Endonucleases . 69
3.1.2 The Problem in Computational Terms 70

3.2 Modeling the Number of Restriction Sites in DNA 71
3.2.1 Specifying the Model for a DNA Sequence 71
3.2.2 The Number of Restriction Sites . 71
3.2.3 Test with Data . 73
3.2.4 Poisson Approximation to the Binomial Distribution . . . 74
3.2.5 The Poisson Process . 75

3.3 Continuous Random Variables . 76
3.4 The Central Limit Theorem . 79

3.4.1 Confidence Interval for Binomial Proportion 81
3.4.2 Maximum Likelihood Estimation . 82

3.5 Restriction Fragment Length Distributions 84
3.5.1 Application to Data . 84
3.5.2 Simulating Restriction Fragment Lengths 85

3.6 k-word Occurrences . 89
References . 96
Exercises . 97

4 Physical Mapping of DNA . 99
4.1 The Biological Problem . 99
4.2 The Double-Digest Problem . 101

4.2.1 Stating the Problem in Computational Terms 101
4.2.2 Generating the Data . 101
4.2.3 Computational Analysis of Double Digests 102
4.2.4 What Did We Just Do? . 104

4.3 Algorithms . 105
4.4 Experimental Approaches to Restriction Mapping 106
4.5 Building Contigs from Cloned Genome Fragments 108

4.5.1 How Many Clones Are Needed? . 108
4.5.2 Building Restriction Maps from Mapped Clones 110
4.5.3 Progress in Contig Assembly . 112

Contents xv

4.6 Minimal Tiling Clone Sets and Fingerprinting 115
References . 117
Exercises . 118

5 Genome Rearrangements . 121
5.1 The Biological Problem . 121

5.1.1 Modeling Conserved Synteny . 123
5.1.2 Rearrangements of Circular Genomes 125

5.2 Permutations . 126
5.2.1 Basic Concepts . 126
5.2.2 Estimating Reversal Distances by Cycle Decomposition 129
5.2.3 Estimating Reversal Distances Between Two

Permutations . 131
5.3 Analyzing Genomes with Reversals of Oriented Conserved

Segments . 132
5.4 Applications to Complex Genomes . 135

5.4.1 Synteny Blocks . 135
5.4.2 Representing Genome Rearrangements 136
5.4.3 Results from Comparison of Human and Mouse

Genomes . 138
References . 140
Exercises . 140

6 Sequence Alignment . 143
6.1 The Biological Problem . 143
6.2 Basic Example . 146
6.3 Global Alignment: Formal Development . 152
6.4 Local Alignment: Rationale and Formulation 155
6.5 Number of Possible Global Alignments . 157
6.6 Scoring Rules . 160
6.7 Multiple Alignment . 161
6.8 Implementation . 163
References . 164
Exercises . 164

7 Rapid Alignment Methods: FASTA and BLAST 167
7.1 The Biological Problem . 167
7.2 Search Strategies . 169

7.2.1 Word Lists and Comparison by Content 170
7.2.2 Binary Searches . 171
7.2.3 Rare Words and Sequence Similarity 171

7.3 Looking for Regions of Similarity Using FASTA 173
7.3.1 Dot Matrix Comparisons . 173
7.3.2 FASTA: Rationale . 173

7.4 BLAST . 178

xvi Contents

7.4.1 Anatomy of BLAST: Finding Local Matches 179
7.4.2 Anatomy of BLAST: Scores . 180

7.5 Scoring Matrices for Protein Sequences . 181
7.5.1 Rationale for Scoring: Statement of the Problem 182
7.5.2 Calculating Elements of the Substitution Matrices 183
7.5.3 How Do We Create the BLOSUM Matrices? 186

7.6 Tests of Alignment Methods . 189
References . 190
Exercises . 192

8 DNA Sequence Assembly . 195
8.1 The Biological Problem . 195
8.2 Reading DNA . 196

8.2.1 Biochemical Preliminaries . 196
8.2.2 Dideoxy Sequencing . 198
8.2.3 Analytical Tools: DNA Sequencers 202

8.3 The Three-Step Method: Overlap, Layout, and Multiple
Alignment . 203

8.4 High-Throughput Genome Sequencing . 208
8.4.1 Computational Tools . 209
8.4.2 Genome-Sequencing Strategies . 212
8.4.3 Whole-Genome Shotgun Sequencing of Eukaryotic

Genomes . 214
References . 220
Exercises . 221

9 Signals in DNA . 225
9.1 The Biological Problem . 225

9.1.1 How Are Binding Sites on DNA Identified
Experimentally? . 226

9.1.2 How Do Proteins Recognize DNA? 227
9.1.3 Identifying Signals in Nucleic Acid Sequences 229

9.2 Representing Signals in DNA: Independent Positions 231
9.2.1 Probabilistic Framework . 233
9.2.2 Practical Issues . 236

9.3 Representing Signals in DNA: Markov Chains 242
9.4 Entropy and Information Content . 248
9.5 Signals in Eukaryotic Genes . 250
9.6 Using Scores for Classification . 252
References . 259
Exercises . 260

Contents xvii

10 Similarity, Distance, and Clustering . 263
10.1 The Biological Problem . 263
10.2 Characters . 264
10.3 Similarity and Distance . 268

10.3.1 Dissimilarities and Distances Measured on
Continuous Scales . 269

10.3.2 Scaling Continuous Character Values 271
10.4 Clustering . 272

10.4.1 Agglomerative Hierarchical Clustering 272
10.4.2 Interpretations and Limitations of Hierarchical

Clustering . 276
10.5 K-means . 278
10.6 Classification . 286
References . 286
Exercises . 286

11 Measuring Expression of Genome Information 291
11.1 The Biological Problem . 291
11.2 How Are Transcript Levels Measured? . 292
11.3 Principles and Practice of Microarray Analysis 298

11.3.1 Basics of Nucleic Acids Used for Microarrays 298
11.3.2 Making and Using Spotted Microarrays 300

11.4 Analysis of Microarray Data . 303
11.4.1 Normalization. 303
11.4.2 Statistical Background . 307
11.4.3 Experimental Design . 310

11.5 Data Interpretation . 313
11.5.1 Clustering of Microarray Expression Data 315
11.5.2 Principal Components Analysis . 319
11.5.3 Confirmation of Results . 320

11.6 Examples of Experimental Applications . 321
11.6.1 Gene Expression in Human Fibroblasts 324
11.6.2 Gene Expression During Drosophila Development 324
11.6.3 Gene Expression in Diffuse Large B-cell Lymphomas . . . 325
11.6.4 Analysis of the Yeast Transcriptome Using SAGE 327

11.7 Protein Expression . 327
11.7.1 2DE/MALDI-MS . 328
11.7.2 Protein Microarrays . 329

11.8 The End of the Beginning . 332
References . 333
Exercises . 334

xviii Contents

12 Inferring the Past: Phylogenetic Trees . 337
12.1 The Biological Problem . 337

12.1.1 Example: Relationships Among HIV Strains 338
12.1.2 Example: Relationships Among Human Populations . . . 338
12.1.3 Reading Trees . 340

12.2 Tree Terminology . 343
12.2.1 Conventions . 343
12.2.2 Numbers of Trees . 344

12.3 Parsimony and Distance Methods . 346
12.3.1 Parsimony Methods . 347
12.3.2 Distance Methods . 350

12.4 Models for Mutations and Estimation of Distances 353
12.4.1 A Stochastic Model for Base Substitutions 354
12.4.2 Estimating Distances . 355

12.5 Maximum Likelihood Methods . 358
12.5.1 Representing a Tree . 358
12.5.2 Computing Probabilities on a Tree 358
12.5.3 Maximum Likelihood Estimation . 359
12.5.4 Statistics and Trees . 360

12.6 Problems with Tree-Building . 361
References . 361
Exercises . 363

13 Genetic Variation in Populations . 367
13.1 The Biological Problem . 367
13.2 Mendelian Concepts . 368
13.3 Variation in Human Populations . 369

13.3.1 Describing Variation Across Populations 370
13.3.2 Population Structure . 374

13.4 Effects of Recombination . 376
13.4.1 Relationship Between Recombination and Distance 378
13.4.2 Genetic Markers . 379

13.5 Linkage Disequilibrium (LD) . 381
13.5.1 Quantitative Description of LD . 381
13.5.2 How Rapidly Does LD Decay? . 383
13.5.3 Factors Affecting Linkage Disequilibrium 384

13.6 Linkage Disequilibrium in the Human Genome 386
13.7 Modeling Gene Frequencies in Populations 392

13.7.1 The Wright-Fisher Model . 392
13.7.2 The Wright-Fisher Model as a Markov Chain 396
13.7.3 Including Mutation . 397

13.8 Introduction to the Coalescent . 398
13.8.1 Coalescence for Pairs of Genes . 398
13.8.2 The Number of Differences Between Two DNA

Sequences . 400

Contents xix

13.8.3 Coalescence in larger samples . 401
13.8.4 Estimating the Mutation Parameter θ 402

13.9 Concluding Comments . 405
References . 405
Exercises . 407

14 Comparative Genomics . 411
14.1 Compositional Measures . 412
14.2 Transposable Elements . 416
14.3 Sequence Organization within Chromosomes 418

14.3.1 Conservation of Synteny and Segmental Duplication . . . 420
14.3.2 Identifying Conserved Segments and

Segmental Duplications . 422
14.3.3 Genome Evolution by Whole-Genome Duplication 425

14.4 Gene Content . 432
14.4.1 Gene Prediction from Local Sequence Context 435
14.4.2 Exon and Intron Statistics . 437
14.4.3 Comparative Methods for Identifying Genes 437
14.4.4 Gene Numbers . 440

14.5 Predicted Proteome . 441
14.5.1 Assigning Gene Function by Orthology 441
14.5.2 Assigning Gene Function by Patterns of Occurrence . . . 443
14.5.3 Gene Content Within and Between Organisms 447

14.6 New Biological Perspectives from Genomics 452
References . 452

Glossary . 457

A A Brief Introduction to R . 479
A.1 Obtaining R and Documentation . 479
A.2 First Steps . 480

A.2.1 Starting, Stopping, and Getting Help 480
A.2.2 Objects . 481

A.3 Types of Objects . 482
A.4 Computations . 487
A.5 Simple Statistical Applications . 491
A.6 Functions . 492

A.6.1 Writing Functions . 492
A.6.2 Loops . 493
A.6.3 Libraries . 495

A.7 Graphics . 496
A.7.1 Basic Plotting . 496
A.7.2 Histograms . 497

References . 498

xx Contents

B Internet Bioinformatics Resources . 499
B.1 General Entry Points . 499

B.1.1 National Center for Biotechnology Information (NCBI) . 499
B.1.2 European Bioinformatics Institute (EBI) 500
B.1.3 Science Magazine Functional Genomics Resources 501

B.2 Databases . 501
B.3 Applications . 504
B.4 Concluding Remarks . 504

C Miscellaneous Data . 507
C.1 IUPAC-IUB Symbols . 507
C.2 Genetic Code . 508
C.3 E. coli Promoter Sequences . 509
C.4 Yeast Gene Expression over Two Cell Cycles 511
C.5 Preprocessing of Microarray Data . 512
References . 515

1

Biology in a Nutshell

The goal of computational genomics is the understanding and interpretation
of information encoded and expressed from the entire genetic complement of
biological organisms. The complete inventory of all DNA that determines the
identity of an organism is called its genome. Biological systems are compli-
cated, interacting multivariate networks. They can be considered at a number
of different levels, ranging from populations of organisms to molecules. At
the present time, computational biology emphasizes biological phenomena at
levels of complexity ranging from molecular to cellular, though other levels in
the hierarchy are also explored, especially in evolutionary contexts. The na-
ture, anatomy, structure, physiology, biochemistry, and evolutionary histories
of organisms define the types of problems to be solved. There are significant
medical and evolutionary reasons to emphasize understanding human biology.
Understanding the biology of other organisms, a worthy goal in its own right,
also serves as a guide for interpreting the human genome and gene expression.

In this brief introduction we can only outline some key biological principles.
For more details consult the monographs and Web sites listed at the end of
the chapter.

1.1 Biological Overview

Zoos do not give a correct impression of what life on Earth is like because
they over-represent mammals and other vertebrates. Organisms range from
bacteria to multicellular plants and animals, and these organisms may employ
a variety of strategies for extracting energy from their environment, ranging
from reducing dissolved sulfate to produce H2S and ultimately pyrite (fool’s
gold), to photosynthesis, to aerobic respiration. Some organisms can exist at
temperatures near the boiling point (at atmospheric pressure) or below the
freezing point of water. Others may be found in rocks 3 km below Earth’s
surface (lithotrophic bacteria) or flying over the Himalayas (snow geese).
Nevertheless, analysis of ribosomal RNA sequences suggests that there are

2 1 Biology in a Nutshell

three major related domains of organisms: eubacteria (organisms such as
Escherichia coli or Bacillus subtilis), Archaea (bacteria notable for the ex-
treme environments in which they can live), and eukaryotes (organisms with
true nuclei, hierarchically structured chromosomes complexed with histones,
and membrane-bound organelles—organisms such as humans or fungi). Rela-
tionships between these groups and between their representative members are
indicated in Fig. 1.1. Two of the three major domains of life are prokaryotic
(eubacteria and archaebacteria).

Prokaryotes do not contain a true nucleus or membrane-bound organelles,
and their DNA is not as highly structured as eukaryotic chromosomes. Given
the wide range of environments bacteria can inhabit and their abundance from
the ancient past up to the present, bacteria as a group are considered to be
the most successful life form on this planet.

Among the eukaryotes, there is an abundance of unicellular forms, called
protists. Most of these are marine organisms. Ultrastructural and molecular
data indicate that different types of protists may differ from each other more
than plants differ from animals. Nevertheless, the unicellular eukaryotes are
conventionally lumped into a kingdom called “Protista.” Major multicellular
groups are fungi, plants, and animals. There are about 300,000 described
species of plants and about 1,000,000 described species of animals. This is a
biased sample of the planet’s biodiversity. Among animals, mammals represent
a rather small number of species. There are about 5000 species of mammals,
but there are three times as many known species of flatworms. Three-quarters
of all described animal species are insects. In terms of numbers of species,
insects might be considered the most successful form of land animal.

There are similarities shared by all organisms on this planet:

– The basic unit of life is the cell.
– Chemical energy is stored in ATP.
– Genetic information is encoded by DNA.
– Information is transcribed into RNA.

Fig. 1.1 (opposite page). Phylogenetic relationships among organisms (panel A)
and among animals (panel B). Ancestor-descendant relationships are shown as a
tree (see Chapter 12) with shared common ancestors corresponding to nodes to the
left of descendant groups. The tree has been greatly simplified. Any given “twig” on
the right can be further split to indicate descendant groups in more detail. There is
usually a bifurcation at each node, but in those cases for which the branching or-
der is unknown, there may be three (or more) descendant groups emanating from a
particular node. Panel B indicates groupings of animals based upon body plans (bila-
teria), processes of embryological development (protostomes or deuterostomes), and
physiological or anatomical features. Ecdysozoa shed their outer covering, lophotro-
chozoa share a type of feeding appendage or larval type, and chordata possess a
notochord at some stage of development. Data from Pennisi (2003) and Knoll and
Carroll (1999).

Onychophora (velvet worms)

Arthropoda (insects, crabs)

Nematoda (roundworms)

Priapula (marine worms)

Platyhelminths (flatworms)

Annelida (earthworms)

Mollusca (clams, snails, squids)

Echinodermata (starfish)

Hemichordata (acorn worms)

Cephalochordata (lancets)

Vertebrata (sharks, mice)

cnideria (jellyfish)

porifera (sponges)

Ecdysozoa

Lophotrochozoa

D
e
u
te

ro
s
to

m
ia

P
ro

to
s
to

m
ia

B
ila

te
ri
a

Hydrogenobacteria

Cyanobacteria

Purple bacteria

Spirochetes

Gram-positive

Korarchaeotes

Crenarchaeotes

Euryarchaeotes

Trypanosomes

Dinoflagellates

Diatoms

Foraminiferans

Green algae

Plants

Slime molds

Fungi

Animals

Eubacteria

Archaebacteria

Eukaryotes

A.

B.

4 1 Biology in a Nutshell

– There is a common triplet genetic code (with a few exceptions).
– Translation into proteins involves ribosomes.
– There are shared metabolic pathways (e.g., glycolysis), with steps cat-

alyzed by proteins.
– Similar proteins are widely distributed among diverse groups of organisms.

These shared properties reflect the evolutionary relationships among organ-
isms, which can be useful for understanding the significance of shared bio-
logical processes. For example, there are relationships between the pathways
for bacterial photosynthesis with photosynthesis seen in cyanobacteria and
plants. Some characters, such as the basic biochemical pathways, are so cen-
tral to life that they are found in nearly all organisms. Processes such as
replication, DNA repair, and glycolysis (extraction of energy by fermentation
of glucose) are present and mechanistically similar in most organisms, and
broader insights into these functions can be obtained by studying simpler or-
ganisms such as yeast and bacteria. It is unnecessary to start all over again
from scratch in trying to understand functions encoded in genomes of new
experimental organisms.

For efficient study, biologists have typically focused on model organisms
that conveniently embody and illustrate the phenomena under investigation.
Model organisms are chosen for convenience, economic importance, or medical
relevance. Studies on such organisms are often applicable to other organisms
that might be difficult to study experimentally. For example, the generation
of antibody diversity in humans is equivalent to the process that can be genet-
ically studied in mice. It was initially surprising to discover that developmen-
tal genes (hox genes) controlling segment specification in Drosophila (fruit
flies) were mirrored by similar genes in mammals, including humans. Model
organisms include bacteria such as E. coli and B. subtilis (now joined by
many other bacteria whose genomes have been sequenced), fungi such as the
yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, simple ani-
mals such as the nematode Caenorhabditis elegans, insects such as Drosophila
melanogaster (fruit fly), rapidly reproducing vertebrates such as Danio rerio
(zebrafish) and mice (Mus musculus), and plants such as Arabidopsis thaliana
(mustard weed). In addition to these are agriculturally important plants and
animals (e.g., corn, or Zea mays) and of course humans (for medical reasons).

After this brief description of the complexity and scope of biological sys-
tems and organisms, in the rest of this chapter we will turn to those levels of
complexity most pertinent to computational biology. First, we discuss cells,
and we follow that with an introduction to informational macromolecules. We
close by indicating some of the experimental methods that define the structure
and scope of computational approaches.

1.2 Cells 5

1.2 Cells

Except for viruses, all life on this planet is based upon cells. Cells typically
range in size from 2×10−6 m to 20×10−6 m in diameter (some cells, such
as neurons, can be much larger). Cells sequester biochemical reactions from
the environment, maintain biochemical components at high concentrations
(which facilitates appropriately rapid reaction rates), and sequester genetic
information. As mentioned above, structurally there are two different types
of cells: prokaryotic and eukaryotic. Prokaryotes have cell membranes and
cytoplasm, but the DNA is not separated from the cytoplasm by a nuclear
membrane. Instead, the DNA is condensed into the nucleoid, which is less
highly structured than eukaryotic chromosomes and appears as a disorganized
“blob” in thin sections viewed by electron microscopy. Prokaryotes also lack
membrane-bound organelles such as mitochondria and chloroplasts. Prokary-
otic cells are typically small, and they may have generation, or doubling, times
as short as 20–30 minutes. Eukaryotes (fungi, flies, mice, and men) have a
true nucleus and membrane bound organelles. Most eukaryotes have observ-
able mitochondria, where major steps in aerobic respiration occur. Plant
cells may contain chloroplasts, where plant photosynthesis occurs. They also
may have prominent vacuoles and cell walls composed of cellulose. The typi-
cal doubling time of eukaryotic cells from complex organisms is significantly
longer than it is for prokaryotes: for a mammalian cell in tissue culture, this
is about 24 hours (although some cells, such as neurons, may not divide at
all).

Cells are organized into a number of components and compartments
(Fig. 1.2). The plasma membrane—the “face” that the cell shows to the out-
side world—is decorated with transporter proteins capable of moving particu-
lar classes of molecules into and out of the cell. Because of their more compli-
cated structure, eukaryotic cells have a more complex spatial partitioning of
different biochemical reactions than do prokaryotes. For example, translation
of particular mRNA molecules (ribonucleic acid copies of DNA coding for pro-
teins) occurs on the endoplasmic reticulum, and processing of polypeptides
may occur in the Golgi apparatus. The cellular cytoskeleton (composed of
microtubules, microfilaments, and other macromolecular assemblages) aids in
the trafficking of proteins and other cellular components from point to point
in the cell. Respiration (the production of the energetic molecule ATP by
oxidation of carbon compounds in the presence of oxygen) is localized on the
membranes of mitochondria. All of these features imply that particular pro-
teins may be localized for function in some compartments of the cell, but not
others.

The simplest “food” requirements are seen with bacteria. For example,
E. coli can grow in water containing ammonium chloride, ammonium ni-
trate, sodium sulfate, potassium phosphate, and magnesium sulfate (NH4Cl,
NH4NO3, Na2SO4, KH2PO4, and MgSO4, respectively) at pH 7.2 with glu-
cose as the sole source of carbon and energy. The water usually contains other

6 1 Biology in a Nutshell

MitochondrionMicrofilamentsMicrotubules

Cytoskeleton

Golgi Endoplasmic reticulum Ribosomes

Nuclear pore

Chromosome

Nuclear envelope

Plasma membrane

Cytoplasm

Fig. 1.2. Some major components of an animal cell (not necessarily drawn to scale).
Some features (e.g., intermediate filaments, centrioles, peroxisomes) have not been
depicted. In multicellular organisms, cells are frequently in contact and communi-
cation with other cells in tissues, but intercellular junctions and contacts with the
extracellular matrix are not shown.

necessary metal ions in trace amounts. These substances flow into the cell
through the inner and outer membranes. From a single type of sugar and
inorganic precursors, a single bacterial cell can produce approximately 109

bacteria in approximately 20 hours; E. coli is also capable of importing other
organic compounds into the cell from the outside, including other types of
sugars and amino acids, when available.

To grow animal cells (e.g., human cells) in tissue culture, it is necessary to
supply not only glucose and inorganic salts but also about a dozen amino acids
and eight or more vitamins (plus other ingredients). Eukaryotic cells must
import a large variety of components from the outside environment (matter
flow). Because eukaryotic cells typically are 10 times larger in linear dimen-
sion than prokaryotic cells, their volumes are approximately 103 larger than
volumes of prokaryotic cells, and diffusion may not suffice to move molecules
into, out of, or through cells. Therefore, eukaryotic cells employ mechanisms
of protein and vesicle transport to facilitate matter flow.

Another defining characteristic of eukaryotes is the machinery required for
managing the genome during mitosis and meiosis (described below). Unlike
prokaryotes, eukaryotes package their DNA in highly ordered chromosomes,
which are condensed linear DNA molecules wrapped around octamers of pro-
teins called histones. Since there are often many chromosomes, mechanisms

1.3 Inheritance 7

to ensure that each daughter cell receives a complete set are needed. This
involves formation of the mitotic spindle, which includes microtubules that
also contribute to the cell cytoskeleton. In addition, regulatory mechanisms
are required to coordinate mitosis with DNA synthesis and the physiological
state and size of the cell. These are fundamental processes that are shared by
all eukaryotic cells.

This section has briefly presented a variety of information about the struc-
ture and biochemistry of cells. The DNA, RNA, and protein sequences with
which computational biologists deal are important primarily because of the
functions that they have within the cell. As we shall see, relating functions to
macromolecules and sequences is one of the problems addressed in computa-
tional biology.

1.3 Inheritance

1.3.1 Mitosis and Meiosis

Each eukaryotic chromosome contains a single duplex DNA molecule bound
with histone proteins to form a macromolecular complex. The sequences of
bases contained on chromosomal DNA molecules are the result of a set of
evolutionary processes that have occurred over time. These processes are in-
timately connected with how the chromosomes recombine and how they are
copied during the DNA synthesis that precedes cell division.

Prokaryotes are typically haploid when they are not actively dividing,
and they often (but not in every instance) have a single circular chromoso-
mal DNA containing 106–107 bp (base pairs) of DNA. The DNA is typically
inherited vertically, meaning that transmission is from parent to daughter
cells. Under conditions of rapid growth or prior to cell division, there may
be multiple copies of all or part of the prokaryotic chromosome, and except
for low-frequency replication errors, their DNA sequences are usually identi-
cal. In such circumstances, recombination does not produce new assemblages
of genes. Inheritance is clonal in the sense that descendants are more or less
faithful copies of an ancestral DNA. This seemingly static mode of inheritance
can be modified by transposable elements, by conjugation systems, and by ac-
quisition of external DNA (transformation), but these interesting phenomena
are beyond the scope of this introduction.

Sexual organisms such as mammals are usually diploid, which means that
they contain N pairs of chromosomes (visible by light microscopy as stained
chromatin). If the haploid chromosome number of an organism is N , the body
(somatic) cells of that organism contain 2N chromosomes. There are two
functional types of chromosomes: autosomes, which are not associated with
sex determination, and sex chromosomes. Humans, for example, have 22 pairs
of autosomes and two sex chromosomes: two X chromosomes for females, and
one X + one Y for males. During the reproductive cycle of sexual organisms,

8 1 Biology in a Nutshell

the germline tissues produce haploid sex cells, or gametes: ova from females
and spermatozoa from males. Fusion of the gametes after mating produces a
zygote, which will undergo development to form a new organism.

The sexual cycle involves an alternation between cells having 2N chromo-
somes or N chromosomes:

Parent 1: 2N → Gamete 1: N
+ → Zygote: 2N

Parent 2: 2N → Gamete 2: N

The process of replication and reduction of chromosome numbers from 2N
to N is called meiosis, which is confined to germline cells. Meiosis reduces the
number of chromosomes by half because one chromosome doubling is followed
by two cell divisions. Growth and development of the zygote is largely through
a repeated process of chromosome doubling followed by one cell division—a
process called mitosis. Cells destined to become germline cells are ordinarily
subject to different sets of controls than typical body, or somatic cells. Mito-
sis of somatic cells is not genetically significant except for contributions that
those cells may make to reproductive success (e.g., mitosis leading to colorful
plumage in some male birds). Genetic mechanisms operate primarily during
the formation and fusion of gametes.

Figure 1.3 follows two chromosomes during meiosis. Particularly important
processes occur during prophase I, the beginning of the first meiotic division.
As a result of the DNA synthesis that occurred during interphase, each chro-
mosome has already been duplicated to generate a pair of sister chromatids.
(Chromatids are precursors of chromosomes that have not yet been separated
by meiosis.) Corresponding chromosomes from each parent (maternal and
paternal copies of chromosome 7, for example) align with each other, and re-
combination occurs between corresponding maternal and paternal chromatids
(i.e., between nonsister chromatids). Recombination is a process of break-
ing and joining chromosomes or DNA, and when this occurs at corresponding
regions of a pair of similar molecules, the result is an exchange of these regions
between the two molecules. This type of recombination is so-called homologous
recombination—recombination between nearly identical sequences.

Overview of meiosis (See Fig. 1.3)

Step A: Chromatids from corresponding partner chromosomes from each par-
ent recombine. Step B: Recombining chromosome partners (called bivalents)
line up in the middle of the cell in preparation for the first meiotic cell divi-
sion. Step C: Bivalents break apart, and one chromosome of each type moves
to the opposite poles of the dividing cell. One or both chromatids may be
recombinant. Step D: Completion of the first meiotic division produces two
cells, each containing a haploid number of chromosomes, but each chromo-
some has two chromatids. Step E: Chromosomes line up at the center of the
cell in preparation for the second meiotic division. Step F: During the second

1.3 Inheritance 9

meiotic division, bivalents in each duplicated chromosome are split, and one
of each type is directed to one of the two daughter cells. The resulting cells
are haploid with respect to chromosome number, and they contain only one
genome equivalent.

Chromosomes are replicated only once, prior to prophase I. Thus there
are four copies of each chromosome per cell at the beginning of a process
that, through two cell divisions, will increase the number of cells by 22.
Metaphase I/anaphase I leads to separation of homologous chromosomes,
while metaphase II /anaphase II leads to separation of sister chromatids.
Recombination (prophase I) may involve multiple crossovers with both chro-
matids. Note that at anaphase I and anaphase II, chromosomes originating
from one parent need not migrate to the same pole: assortment is indepen-
dent and random. Only one of the meiosis II products becomes the egg in
vertebrate females.

1.3.2 Recombination and Variation

Recombination between nonsister chromatids has extremely important genetic
consequences. The frequencies and constraints of this process determine the
genetic map, the haplotypes, and blocks of conserved synteny. (We will
define these terms in the next paragraphs.) These are properties important
in genetics, population genetics, and genome analyses. Each DNA or chromo-
some may contain alternative forms of given genes (an alternative form of a
particular gene is called an allele of that gene). As a result of recombination
during meiosis, the allele combinations in the gamete chromosomes are usu-
ally different from the combinations found in parental chromosomes. Thus,
each gamete produced by parents drawn from a population represents a novel
combination of alleles that were present in the population, and the resulting
variation produced in successive generations is evolutionarily “tested” against
the environment. Another source of variation is the production of new alleles
by mutation (change in base sequence; see below). Moreover, it is possible for
normal recombination processes to “derail,” leading to insertions, deletions, or
duplications of longer stretches of chromosomal DNA sequence. These changes
also are raw material for evolutionary change.

Chromosomes analyzed during genome projects display features that re-
flect recombination processes. One of the first tasks is to establish a corre-
spondence between the DNA sequence and the genetic map. The genetic
map records the order of genes and the approximate distances between them
on their respective chromosomes. Genes are identified in classical genetics by
particular mutations, sometimes called genetic markers. The order of genes is
determined by genetic crosses (intentional mating of organisms having mutant
genes), and the distances are measured in terms of recombination frequencies
(often measured in centimorgans). A centimorgan corresponds to a recom-

M
e
io

s
is

 I P
ro

p
h

a
s
e

 I

M
e

ta
p

h
a

s
e

 I

BA

C

A
n

a
p

h
a

s
e

 I

T
e

lo
p

h
a

s
e

/I
n

te
rk

in
e

s
is

D

M
e
io

s
is

 I
I

P
ro

p
h

a
s
e

 I
I

M
e

ta
p

h
a

s
e

 I
I

G
a

m
e

te
 a

G
a

m
e

te
 b

G
a

m
e

te
 c

G
a

m
e

te
 d

E

F
:
A

n
a

p
h

a
s
e

 I
I

+
 T

e
lo

p
h

a
s
e

 I
I

+
 C

y
to

k
in

e
s
is

F
ig

.
1
.3

.
S
ch

em
a
ti
c

su
m

m
a
ry

o
f
st

ep
s

in
m

ei
o
si
s

(D
N

A
re

p
li
ca

ti
o
n

a
n
d

in
te

rm
ed

ia
te

d
et

a
il
s

n
o
t

sh
ow

n
).

In
th

is
d
ia

g
ra

m
,
th

e
h
a
p
lo

id
ch

ro
m

o
so

m
e

n
u
m

b
er

is
2

(o
n
e

la
rg

e
a
n
d

o
n
e

sm
a
ll

ch
ro

m
o
so

m
e)

.
B

la
ck

ch
ro

m
o
so

m
es

ca
m

e
fr

o
m

o
n
e

p
a
re

n
t,

a
n
d

g
re

y
ch

ro
m

o
so

m
es

ca
m

e
fr

o
m

th
e

o
th

er
.
F
o
r

a
d
es

cr
ip

ti
o
n

o
f
p
ro

ce
ss

es
A

–
F
,
se

e
th

e
a
cc

o
m

p
a
n
y
in

g
b
ox

.

1.3 Inheritance 11

bination frequency of 1%, which means that two markers or genes that appear
together on the same chromosome are separated from each other by recom-
bination at a frequency of 0.01 during meiosis. Recombination is more likely
to separate two distant markers than two close ones, and the recombination
frequency between two markers is related to the physical distance separat-
ing them. Genes that tend to be inherited together are said to be genetically
linked. If genetically linked alleles of several genes on a chromosome are so
close together that they are rarely separated by recombination, this constel-
lation of alleles may persist for a long period of time. Particular combinations
of alleles carried on single chromosomes are called haplotypes, and frequen-
cies of various haplotypes within a population characterize the structure of
populations and can allow reconstruction of the evolutionary history of a pop-
ulation.

Over a longer timescale, recombination may shuffle the genetic maps of re-
lated species. For example, if species B and C are both descendants of ancestor
A, the order of genes on the chromosomes of B and C might not be identical.
Nevertheless, there may be groups of linked genes on a single chromosome in
B and that also are linked on a particular chromosome of C. This circum-
stance is called conserved synteny (Fig. 1.4A; see Glossary for alternative
definition). If the order of a set of genes is the same in both B and C, this
set of genes is described as a conserved segment, and if high-density “land-
marks” appear in the same order on a single chromosome in each of the two
species, this set of landmarks defines a syntenic segment. (In some contexts,
conserved segments and syntenic segments are also referred to as conserved
linkages or collinear gene clusters). A set of adjacent syntenic segments is
called a syntenic block, which may contain inversions and permutations
of the syntenic segments of C compared with B (Fig. 1.4B). The numbers
and sizes of such syntenic blocks are revealed when genome sequences of two
organisms are compared, and these blocks are signatures of the evolutionary
events separating B and C from A. It is possible to compare genomes of several
related organisms and make inferences about their evolutionary relationships
(i.e., comparative degrees of relatedness). One of the significant computational
problems is the construction of phylogenetic trees based upon sequences or
gene orders.

Even if there were no recombination, the DNA of the gametes would differ
from the DNA of the parent cells because of errors that occur at low frequency
during DNA replication. These errors occur at a frequency of 10−6–10−10 per
base pair for each cell division (depending upon the cell, the genome, and
the DNA polymerase involved). If the errors occur within a gene, the result
may be a recognizable mutation (alteration of the base sequence in a normal
gene or its control elements). Base changes at the DNA sequence level do not
always lead to recognizable phenotypes, particularly if they affect the third
position of a codon (three successive bases of DNA that encode a particular
amino acid during translation). As a result of mutations occurring over time,
a position in the DNA (whether in genes or in other regions of the genome)

12 1 Biology in a Nutshell

Chromosome j, species C

Chromosome i, species B

A. Conserved synteny

Syntenic segment

Syntenic block

B. Syntenic blocks and segments

Chromosome i, species B

Chromosome j, species C

g
2B

g
1B

g
3B

g
1C

g
2C

g
3C

g
1B

g
2B

g
3B

g
1C

g
2C

g
3Cg

4C
g

5C

g
5B

g
4B

Fig. 1.4. Co-occurrence of genes or landmark sequences within single chromosomes
or chromosome regions when chromosomes from each of two different organisms are
compared. Panel A: Conserved synteny. In this case, gB1, . . . , gB3 represent genes in
species B that have homologs gC1, . . . , gC3 in species C. Panel B: Syntenic segments
and syntenic blocks. In this case, gB1, . . . , gB5 and the similar sequences in species C
refer to landmark sequences on the genome, which can be more numerous than genes
to produce a higher marker density. Syntenic segments are conceptually similar to
conserved segments, except that in the latter case there may be microrearrangements
undetected because of the low marker density.

may contain different base pairs in different representatives of a population,
and this variation can be measured at particular nucleotide positions in the
genomes from many members of that population. This variation, when it
occurs as an isolated base-pair substitution, is called a single-nucleotide
polymorphism, or SNP (pronounced “snip”).

1.3.3 Biological String Manipulation

As indicated above, DNA is not immutable. During the copying or replication
process, errors can occur (hopefully at low frequency, but at significantly
high frequency in the case of reverse transcription of the HIV genome, for

1.3 Inheritance 13

example). In the human genome, the substitution rate at each nucleotide
position averages ∼ 2.2×10−9 per year (MGSC, 2002). The genome sequences
of contemporary organisms contain a record of changes that have occurred
over time. The types of changes that may have occurred include:

Deletion: Removal of one or more contiguous bases.
Insertion: Insertion of one or more contiguous bases between adjacent
nucleotides in a DNA sequence. This is often associated with insertion of
transposable elements.
Segmental duplication: Appearance of two or more copies of the same
extended portion of the genome in different locations in the DNA se-
quence.
Inversion: Reversal of the order of genes or other DNA markers in a
subsequence relative to flanking markers in a longer sequence. Within a
longer sequence, inversion replaces one strand of the subsequence with its
complement, maintaining 5′ to 3′ polarity.
Translocation: Placement of a chromosomal segment into a new se-
quence context elsewhere in the genome.
Recombination: In vivo joining of one DNA sequence to another. When
similar sequences are involved, this is called homologous recombination.
Point mutation: Substitution of the base usually found at a position
in the DNA by another as a result of an error in base insertion by DNA
polymerase or misrepair after chemical modification of a base.

Results from some of these processes are diagrammed in Fig. 1.5. Point
mutation is closely related to processes of DNA replication and repair for
the generation or fixation of mutations. The other processes may also involve
DNA copying, but they also involve other processes of DNA breaking and
joining. Figure 1.6 makes an analogy between these processes and the menu
for a computerized text editor, indicating the enzymes that may be involved
in the various steps.

1.3.4 Genes

In the nineteenth century, Gregor Mendel observed that units of inheritance
are discrete. A gene is now usually defined as a DNA segment whose infor-
mation is expressed either as an RNA molecule or as a polypeptide chain
(after translation of mRNA). Genes usually are found at defined positions on
a chromosome, and such a position may be referred to as a locus. (A locus
may correspond to a gene, but there are some loci that are not genes.)

Genes are identified biologically (i.e., in organisms studied in laboratories)
when a mutation occurs that alters a phenotype or character. Characters are
properties of an organism that can be observed or measured, and the pheno-
type corresponds to a particular state of a character. For example, a mutation
in Escherichia coli may render the organism incapable of using lactose as a
carbon source, or a mutation in Drosophila melanogaster may cause the eye

14 1 Biology in a Nutshell

5'...ACAGATACAGTCAGATACCGATCGGCACTAGTTTTTTTCATATCAGATGCCCTG...3'

3'...TGTCTATGTCAGTCTATGGCTAGCCGTGATCAAAAAAAGTATAGTCTACGGGAC...5'

5'...ACAGATACAGTCCGATCCATTTTCGGCACTAGCATAGGCATCTGACTG...3'

3'...TGTCTATGTCAGGCTAGGTAAAAGCCGTGATCGTATCCGTAGACTGAC...5'

Duplication Deletion Insertion Inversion

Fig. 1.5. Processes modifying multiple positions on a duplex DNA molecule. Al-
though modifications of small numbers of basepairs are depicted, such modifications
can involve much larger stretches of DNA (thousands to millions of bp or more).
The processes named below the bottom molecule apply if the top molecule repre-
sents the starting condition. If the initial molecule were the one at the bottom, the
DNA segment marked as “insertion” would be a “deletion” at the corresponding
position in the top molecule. If it is unknown which molecule represents the initial
state, such an insertion or deletion is called an “indel.”

Edit Process Enzyme

Cut Cleave Endonuclease

Copy As DNA Replicate DNA polymerase

 As RNA Transcribe RNA polymerase

Paste Ligate Ligase

Erase Degrade Exonuclease

Spelling Repair or Repair enzymes

 proofread or DNA polymerases

Fig. 1.6. The DNA text-editing “menu” (left) and associated enzymes.

1.3 Inheritance 15

color to change from red to white. In the latter case, the character is eye
color, and the phenotype is red eye color. However, genes and phenotypes are
not always in one-to-one correspondence. For example, in E. coli there are
seven genes involved in the biosynthesis of the amino acid tryptophan from
a precursor molecule. Mutations in any of these seven genes might lead to a
Trp− phenotype (which requires the addition of tryptophan for growth in the
minimal medium). Similarly, a phenotype such as height or stature in Homo
sapiens is controlled by a number of different genes, this time in a quantitative
rather than all-or-none manner.

A given gene (corresponding to a particular locus) may have alternative
forms called alleles, as described in Section 1.3.2. These alleles differ in DNA
sequence, and these differences lead to differences in amino acid sequence. For
example, individuals affected by sickle cell anemia have a beta-globin gene
in which the glutamine normally present as the sixth amino acid residue is
replaced by valine. This altered beta-globin gene is one allele of beta-globin,
and the normal gene (wild-type gene) is another allele. There are other beta-
globin alleles in the human population.

Genes are transcribed from DNA to form RNA molecules (including
mRNA, a very important class of RNA). The DNA strand that is comple-
mentary to the mRNA is called the template strand, while the DNA strand
whose sequence corresponds to the mRNA sequence is called the coding
strand. DNA features (elements) found 5′ relative to the coding sequence
are considered to be “upstream,” and elements that occur 3′ relative to the
coding sequence are referred to as “downstream.” Diagrams of prokaryotic
and eukaryotic genes are presented in Fig. 1.7.

Prokaryotic genes have a number of component elements. Going in the 5′

to 3′ direction relative to the direction of transcription, we encounter sites
for binding proteins that control expression of the gene, a promoter where
transcription initiates, the uninterrupted coding sequence (that eventually
is translated into an amino acid sequence), and translational terminators.
Sometimes the coding sequences for two or more polypeptide chains will be
transcribed in succession from the same promoter, and such genes are said
to be polycistronic. (Cistrons are identified by a particular type of genetic
test, but they roughly correspond to coding sequences for polypeptide chains.)
Polycistronic genes are relatively common in prokaryotes.

Eukaryotic genes are much more complicated than prokaryotic genes. They
contain exons, which are segments of gene sequences that are represented in
the processed mRNA. All segments of the coding sequence that will eventu-
ally be translated into protein appear in exons. Introns are noncoding DNA
segments that separate the exons, and the RNA corresponding to introns is
removed from the initial transcript by an excision process called splicing.
Eukaryotic genes have more extensive control regions that include binding
sites for transcription factors and enhancer sequences (that together regulate
the level of transcription) and the “core” promoter where the transcription
complex assembles. Eukaryotic transcription terminates nonspecifically down-

e
xo

n
 1

e
xo

n
 2

e
xo

n
 3

e
xo

n
 4

e
xo

n
 5

e
xo

n
 6

in
tr

o
n

 1
in

tr
o

n
 2

in
tr

o
n

 3
in

tr
o

n
 4

in
tr

o
n

 5

A
A

A
A

A
A

3
'

5
'

p
re

-m
R

N
A

A
A

A
A

A
A

3
'

5
'

m
R

N
A

 1

A
A

A
A

A
A

3
'

5
'

m
R

N
A

 2

Tr
a

n
sc

ri
p

ti
o

n
, 5

' e
n

d
 c

a
p

p
in

g
, p

o
ly

-A
 a

d
d

it
io

n

S
p

li
ci

n
g

 (
2

 a
lt

e
rn

a
ti

v
e

 s
p

li
ce

 v
a

ri
a

n
ts

)

Tr
a

n
sc

ri
p

ti
o

n

st
a

rt A
T

G
TA

A

p
o

ly
-A

 s
it

e
Tr

a
n

sc
ri

p
ti

o
n

 s
to

p
s

Tr
a

n
sc

ri
p

ti
o

n
 d

ir
e

ct
io

n

G
e

n
e

 A
G

e
n

e
 B

G
e

n
e

 C

G
e

n
e

 D

Tr
a

n
sc

ri
p

ti
o

n
 d

ir
e

ct
io

n

A
T

G
A

T
G

A
T

G
Tr

a
n

sc
ri

p
ti

o
n

 s
to

p

Tr
a

n
sc

ri
p

ti
o

n

5
'

3
'

p
o

ly
ci

st
ro

n
ic

 m
R

N
A

Tr
a

n
sc

ri
p

ti
o

n
 d

ir
e

ct
io

n
B

.

A
.

T
G

A
TA

A
TA

A

5
'U

T
R

3
'U

T
R

F
ig

.
1
.7

.
S
tr

u
ct

u
re

s
o
f
p
ro

ka
ry

o
ti
c

a
n
d

eu
ka

ry
o
ti
c

g
en

es
in

d
u
p
le

x
D

N
A

(h
o
ri

zo
n
ta

l
b
la

ck
li
n
e)

.
W

h
it
e

b
ox

es
a
b
ov

e
th

e
so

li
d

b
la

ck
li
n
e

co
rr

es
p
o
n
d

to
co

d
in

g
se

q
u
en

ce
s

p
re

se
n
t

o
n

th
e

“
to

p
”

st
ra

n
d
,
w

h
il
e

b
ox

es
b
el

ow
th

e
li
n
e

co
rr

es
p
o
n
d

to
si
m

il
a
r

fe
a
tu

re
s

o
n

th
e

“
b
o
tt

o
m

”
st

ra
n
d
.
R

eg
u
la

to
ry

se
q
u
en

ce
s

(g
re

y
b
ox

es
)

o
r

co
re

p
ro

m
o
te

r
se

q
u
en

ce
s

(b
la

ck
b
ox

es
)

a
re

in
d
ic

a
te

d
,
b
u
t

si
ze

s
a
n
d

sp
a
ci

n
g
s

a
re

n
o
t

to
sc

a
le

.
D

N
A

se
q
u
en

ce
s

fo
r

st
a
rt

a
n
d

st
o
p

co
d
o
n
s

(A
T
G
,
U
A
G
,
U
A
A
;
U
G
A

n
o
t

sh
ow

n
)

a
re

in
d
ic

a
te

d
re

la
ti
v
e

to
th

e
co

d
in

g
se

q
u
en

ce
s.

P
a
n
el

A
:
P

ro
ka

ry
o
ti
c

g
en

e.
P
a
n
el

B
:
E

u
ka

ry
o
ti
c

g
en

e.
F
o
r

a
m

o
re

co
m

p
le

te
d
es

cr
ip

ti
o
n
,
se

e
th

e
a
cc

o
m

p
a
n
y
in

g
b
ox

.

1.3 Inheritance 17

stream of the DNA “signal” that specifies the post-transcriptional addition of
a string of A residues at the 3′ end of the message. (The addition of these A

residues is called polyadenylation.)

Organization of prokaryotic and eukaryotic genes (See Fig. 1.7)

Prokaryotic genes
Genes in bacteria are normally close together and may be organized as operons
(Genes A, B, and C) or may be individually transcribed (Gene D). Gene D
is transcribed from the strand opposite to genes A, B, and C. Transcription
(5′ to 3′ polarity with respect to the coding sequence) is initiated at promoter
sequences, with initiation controlled by one or more operator sequences (grey
boxes) to which repressor proteins bind. The mRNA product of the ABC
operon (bottom of panel A) is ready for immediate translation.

Eukaryotic genes
The eukaryotic gene schematically depicted in panel B has transcription factor
binding sites (grey boxes) upstream of the promoter. Promoter regions may
be extensive, and introns may also be long, as indicated by the interruptions
in the black line. The gene illustrated contains six exons and five introns.
Exons 1 and 6 contain regions that will not be translated (5′ UTR in exon 1
and 3′ UTR in exon 6, hatched boxes). Transcription does not terminate at
a unique position (vertical arrows). The immediate product of transcription
is a pre-mRNA (grey line with open boxes) that is modified at the 5′ and 3′

ends. The poly-A tail is added to the end of the message after transcription
has occurred. Splicing removes the introns to produce mature mRNA species
that are ready for translation. Alternative splicing may or may not occur, but
when it does, a single gene region may be responsible for two or more different
(related) polypeptide chains (mRNA 1 and mRNA 2).

With the arrival of the “genome era,” genes can now be identified by
analyzing DNA sequence. For prokaryotes, this may be relatively easy because
the average prokaryotic gene is around 1000bp long, and approximately 90%
of a typical prokaryotic genome codes for gene products. For eukaryotes, this
can be a significant computational problem because eukaryotic genes usually
are much larger, are interrupted by several introns (in higher eukaryotes), and
occur as a much smaller fraction of their genomes (around 1.2% in the case
of H. sapiens). For example, the average human gene is about 27,000bp in
extent and contains 9–10 exons of average length 145bp. The rest of the gene
region corresponds to extensive control regions, untranslated regions, and the
intronic regions, which may be thousands of base pairs in extent.

1.3.5 Consequences of Variation: Evolution

In the last two sections, we described types of change that can occur in DNA
sequences, and we alluded to the biochemical mechanisms leading to these

18 1 Biology in a Nutshell

changes. The result of such processes occurring in a large number of inter-
breeding individuals is genetic variation within the population (i.e., a lo-
calized collection of individuals in a species that reproductively transmits
genes). This means that different versions (alleles) of the same gene may be
found within the population. Some members of that species may be more re-
productively successful than others, depending on their genetic constitution
(genotype). Every organism’s genotype is tested against environmental con-
ditions through the phenotypes specified by that genotype. The conditions
that a population experiences allow some genotypes to be more efficiently
transmitted to the succeeding generations, leading to enrichment of some al-
leles at the expense of others. This process is called natural selection. The
change in population gene or allele frequencies over time is called evolution.

There are two related statistical and computational problems in dealing
with populations: (1) characterization of genetic variation within and between
populations in terms of allele frequencies or nucleotide sequence variation, and
(2) analysis of the trajectory of population parameters over time. These two
approaches are practically and conceptually interwoven. The first activity,
which is the concern of population genetics, employs gene or locus frequency
measurements taken from samples of populations alive today. Population ge-
netics is usually (but not always) concerned with variation within species over
relatively shorter periods of time. The second activity, known as molecular
evolution, invokes evolutionary models to describe molecular (often sequence)
data in a parsimonious manner. Molecular evolution usually (but not always)
focuses on variation among species or higher-level taxa over comparatively
longer periods of time. The key idea in evolutionary thought is that all species
are related by descent from shared, common ancestral species that lived at
some time in the past. These relationships are often represented in terms of
phylogenetic trees (see Chapter 12). Thus, today’s human and chimpanzee
populations arose from the same ancestral primate population that existed
about 6 million years ago, while humans and mice arose from an ancestral
population that existed 80–85 million years ago (dates are estimated by a
combination of molecular and fossil evidence). However, there were popula-
tions of organisms in the past that left no contemporary descendants (e.g.,
hadrosaurs, or “duck-billed” dinosaurs): they have become extinct. The biota
of today are as much a result of extinction as of speciation. More than 99%
of all species that have ever lived are now extinct. On average, species exist
for about 2–4 million years before they succumb to extinction (some species
last for much shorter, others for much longer times). Causes of extinction
are varied and unpredictable. The organisms on Earth today resulted from
a particular sequence of environmental conditions that occurred in a unique
temporal sequence on this one planet. This pattern of evolution was not pre-
dictable and is not repeatable.

1.4 Information Storage and Transmission 19

1.4 Information Storage and Transmission

An important segment of computational biology deals with the analysis of
storage and readout of information necessary for the function and reproduc-
tion of cells. This information is used to code for structural proteins (e.g.,
cytoskeletal proteins such as actin and tubulin) and catalytic proteins (e.g.,
enzymes used for energy metabolism), for RNA molecules used in the transla-
tional apparatus (ribosomes, transfer RNA), and to control DNA metabolism
and gene expression.

An organism’s genome (defined at the beginning of the chapter) is, ap-
proximately, the entire corpus of genetic information needed to produce and
operate its cells. As indicated above, eukaryotic cells may contain one, two, or
three types of genomes: the nuclear genome, the mitochondrial genome, and
the chloroplast genome (in plants). The vast majority of eukaryotes contain
both nuclear and mitochondrial genomes, the latter being much smaller than
the nuclear genome and confined to mitochondria. When one speaks of “the
X genome” (e.g., “the human genome”), the nuclear genome is usually the
one meant. Mitochondrial and chloroplast genomes in some ways resemble
genomes of the prokaryotic symbionts from which they were derived.

The information flow in cells (already alluded to above) is summarized
below.

DNA RNA protein
1 2

3

4

The processes are identified as follows:

1. DNA replication, where a DNA sequence is copied to yield a molecule
nearly identical to the starting molecule;

2. Transcription, where a portion of DNA sequence is converted to the cor-
responding RNA sequence;

3. Translation, where the polypeptide sequence corresponding to the mRNA
sequence is synthesized;

4. Reverse transcription, where the RNA sequence is used as a template for
the synthesis of DNA, as in retrovirus replication, pseudogene formation,
and certain types of transposition.

Most biological information is encoded as a sequence of residues in linear,
biological macromolecules. This is usually represented as a sequence of Roman
letters drawn from a particular alphabet. Except for some types of viruses,
DNA is used to store genomic information. RNA may be used as a temporary
copy (mRNA) of information corresponding to genes or may play a role in the
translational apparatus (tRNA, spliceosomal RNA, and rRNA). Proteins are
polypeptides that may have catalytic, structural, or regulatory roles.

20 1 Biology in a Nutshell

1.4.1 DNA

The genomes of free-living (nonviral) organisms are composed of DNA. The
subunits (nucleotides) of these macromolecules are deoxyribonucleotides of
four types: deoxyadenosine 5′-phosphate (A), deoxycytidine 5′-phosphate (C),
deoxyguanosine 5′-phosphate (G), and thymidine 5′-phosphate (T). The 5′ po-
sition on the sugar of each nucleotide is connected via a phosphate group to
the 3′ position on the sugar of the immediately preceding nucleotide. Each
DNA strand has a 5′ end, corresponding to the phosphate group attached to
the 5′ position on the sugar molecule of the first nucleotide, and a 3′ end,
corresponding to the -OH group at the 3′ position on the sugar of the last nu-
cleotide. For double-stranded DNA (Fig. 1.8), the two strands are antiparallel,
which means that the two polynucleotide chains have opposite orientations or
polarities. Base-pairing rules are usually observed: A base pairs with T and G

base pairs with C (Fig. 1.9). Two strands whose sequences allow them to base
pair are said to be complementary. A duplex DNA molecule can thus be rep-
resented by a string of letters drawn from {A, C, G, T}, with the left-to-right
orientation of the string corresponding to the 5′ to 3′ polarity. The other
strand is implied by the base-pairing rules. If the string corresponds to a sin-
gle strand, then this should be explicitly stated. If a strand is written in the
3′ to 5′ direction, then this should be explicitly indicated. DNA molecules are
encountered with numbers of bases or base pairs ranging from ∼20 (oligonu-
cleotide primers) to hundreds of millions (panel A of Table 1.1). For example,
the DNA molecule in human chromosome 1 has a size of 285,000,000 base
pairs. The number of bases or base pairs may be colloquially referred to as
“length,” and units may be given in kilobases (kb = 1000 bases or base pairs)
or megabases (Mb = 1,000,000 bases or base pairs).

The organization of DNA in cells can be considered at four different struc-
tural levels: constituent nucleotides, DNA, chromatin, and chromosomes. As
an indicator of scale, the “length” of a nucleotide is approximately 1×10−9 m.
The diameter of the DNA helix is 2 × 10−9 m, and the pitch of the helix is
3.4×10−9 m. In eukaryotes, the DNA is wrapped around histones to form nu-
cleosomes (diameter 11×10−9 m). The chain of nucleosomes is further wrapped
into higher-order structures that constitute the chromosomes, which are lo-
cated in the nucleus. A typical nucleus might have a diameter of 0.5× 10−5 m
and would represent approximately 10% of the cell volume. Notice that a
DNA molecule may be orders of magnitude longer than the diameter of the
cell that contains it. For example, the length along the contour of the DNA
in human chromosome 1 is approximately 9.5 cm (!), while the cell diameter
is approximately 10−3 cm. The small diameter of the DNA helix and the hi-
erarchical packing of the nucleosome structures allow packing of these long
molecules into nuclei.

1.4 Information Storage and Transmission 21

5'

3'

5'

3'

3.6 nm

2 nm

minor

groove

major

groove

Fig. 1.8. Structure of duplex DNA. Ribbons represent the phosphodiester back-
bones of the two antiparallel strands, and the rectangular elements in the middle of
the duplex represent the stacked base pairs. Connections of these base pairs to the
phosphodiester backbone are not indicated. The gradients in size of the rectangles
indicate that sometimes the base pairs are being viewed “edge-on” and other times
“end-on” as they lie at different degrees of rotation about the helix axis. The major
and minor grooves and relevant dimensions are indicated. Major and minor grooves
are distinguished from each other by the spacing between the two phosphodiester
backbones and the depth from the outside of the molecule to the edges of the base
pairs.

1.4.2 RNA

RNA differs from DNA in two primary ways: the residues contain hydroxyl
groups at the 2′ position of the sugar (and thus are not “deoxy”), and
uracil (U) replaces the thymine base T. Thus RNA molecules are composed of
the monomers adenosine 5′-phosphate, cytidine 5′-phosphate, guanosine 5′-
phosphate, and uridine 5′-phosphate. RNA is written as a string of Roman
letters drawn from the alphabet {A, C, G, U}, with the left-to-right orientation
corresponding to the 5′ to 3′ polarity. In most cases, RNA is encountered as a
single strand, but often it will form intrastrand base pairs to form secondary
structures that may be functionally important. RNA secondary structures are
the result of intrastrand base pairing to form sets of “hairpins” and loops. The
prediction of secondary structures for RNA molecules is a significant compu-
tational problem that takes into account free energies of base-pair formation
and constraints on loop sizes. Duplex RNA molecules can be functional, either
as genomes of some viruses or as interfering RNA (RNAi) that helps regulate
gene expression in plants and animals. Sizes of RNA molecules typically range
from approximately 100 to a few thousand nucleotides (not bp)—see panel B
of Table 1.1.

1.4.3 Proteins

As indicated above, proteins are directly involved in the functioning of the cell.
They are polypeptides, composed of strings of amino acid residues polymerized
with the loss of one H2O molecule per joined pair of amino acid residues. They

Table 1.1. Examples of DNA, RNA, and protein molecules. DNA molecules differ
primarily by base composition and length and are structurally similar (but not
identical) to each other. RNA molecules differ by length, base composition, and
secondary and tertiary structure. Proteins are much more structurally diverse: the
data represent only a sample of the diversity of structure types for proteins. Identical
protein types from different organisms may differ in sequence; see the accession
numbers for the source organism.

A: DNA
Name (GenBank acc. num.) Number of bp Base composition

(%G + C)

Mouse mtDNA 16,295 36.7
(NC 001569)

Bacteriophage λ 48,502 49.9
(J02459)

E. coli K-12 chromosome 4,639,221 50.8
(U00096)

Human chromosome 1 285,000,000 41.0

B: RNA
Name (GenBank acc. num.) Number of nt Base composition

(%G + C)

tRNAAla(M26928) 73 60.3

18S rRNA(X04025) 1826 53.8

HIV-1 (AF443114) 9094 41.9

C: Protein

Name (PDB acc. num.) Polypeptides Number of Molecular
(number/molecule) residues weight

Ribonuclease A (1FS3) A (1) 124 13,674
Total: 1 124 13,674

Hemoglobin (2HCO) A (2) 141 15,110
B (2) 146 15,851

Total: 4 574 61,922

Ubiquinol oxidase (1FFT) A (1) 663 74,359
B (1) 315 34,897
C (1) 204 22,607
D (1) 109 ?

Total: 4 1291 148,000 (est)

Glutamine synthase (1FPY) A (12) 468 51,669
Total: 12 5616 620,028

1.4 Information Storage and Transmission 23

T A

N

N

N

H

H

O

N

N

N

N

N H

H

O

H

G C

sugarsugar

N

N

O

H

O

N

N

N

N

N

H

H

sugarsugar

CH 3

Fig. 1.9. Structure of Watson-Crick base pairs. Only relevant atoms are indicated.
Junctions between straight segments in the rings correspond to locations of carbon
atoms. The -CH3 of T is called a methyl group. Broken lines connecting A and T or G
and C correspond to hydrogen bonds that help stabilize the base pairs. Grey arrows
pointing toward atoms on the rings indicate that these atoms are hydrogen bond
acceptors, and grey arrows pointing away correspond to hydrogen bond donors. Only
donors and acceptors on the major groove edges of the base pairs are shown. The
bonds extending to the sugar residues in the phosphodiester backbone are on the
minor groove side of the base pairs.

are usually represented as a string of letters drawn from an alphabet of twenty,
written in the direction from the amino-terminal to the carboxy-terminal ends:

NH2-AEGLV· · ·WKKLAG-COOH

This also may be written as

NH2-Ala-Glu-Gly-Leu-Val-· · · -Trp-Lys-Lys-Leu-Ala-Gly-COOH

using the three-letter abbreviation for the amino acid residues. Each polypep-
tide chain usually corresponds to a gene. Polypeptides in proteins usually have
between 50 and 1000 amino acid residues, with 300 to 400 residues being the
typical average length of polypeptides in many organisms. For small proteins
(often in the range 100 to 200 amino acid residues), the active molecule may

24 1 Biology in a Nutshell

be composed of a single polypeptide chain, but many proteins are composed of
a precisely defined set of polypeptide chains. The simplicity of representation
of polypeptides as a string of letters belies the profound structural complexity
of protein molecules: the prediction of protein structure from the amino acid
sequence is a difficult computational and theoretical problem.

Panel C of Table 1.1 lists some examples of proteins, illustrating the ranges
in size and numbers of polypeptides. The sequence of amino acid residues
constitutes the primary structure. There are a limited number of types of sec-
ondary structures (involving interactions between nearby amino acid residues
on the same polypeptide chain), including alpha helix and beta pleated sheet.
Secondary structure elements may combine to form a particular fold of a
polypeptide segment. There are thought to be 1000–2000 different types of
folds. Each individual polypeptide chain is folded into a particular three-
dimensional structure (called tertiary structure). It is a general observation
that complex proteins are often composed of multiple polypeptide subunits.
Sometimes these are all identical, as is the case with glutamine synthase (12
identical polypeptide chains), but in other cases these subunits are all differ-
ent (e.g., ubiquinol oxidase; see Table 1.1C). The aggregate structures formed
from multiple polypeptide chains are called quaternary structures.

1.4.4 Coding

The DNA alphabet contains four letters but must specify polypeptide chains
with an alphabet of 20 letters. This means that combinations of nucleotides
are needed to code for each amino acid. Dinucleotides are combinations of
two: AA, AC, AG,. . . , TC, TG, TT. There are 42, or 16, possible dinucleotides—
not enough to code for all 20 naturally occurring amino acids. Trinucleotides
(triplets) are combinations of three nucleotides: AAA, AAC, AAG, . . . , TTC, TTG,
TTT. There are 43, or 64, possible trinucleotides. The genetic code is a triplet
code, and the code triplets in mRNA are called codons. These may be written
in their DNA form with T instead of U (when looking for genes in DNA) or
in their RNA form with U instead of T (when we are concerned about the
actual translation from mRNA). Triplets that specify “stop translation” are
UAG, UGA, and UAA. Translational starts usually occur at an AUG codon, which
also specifies the amino acid methionine. One representation of the genetic
code is given in Appendix C.2.

Since there are three stop codons out of 64 triplets, there are 61 triplets
coding for the 20 amino acids. This means that amino acids may be specified
by more than one triplet. For example, leucine (Leu) is encoded by CUG, CUA,
CUC, and CUU. As we will see later, these codons are not used with equal
frequencies in various genes and organisms, and the statistics of codon usage is
a characteristic that can sometimes be used to distinguish between organisms.

Successive amino acid residues in a polypeptide chain are specified by the
sequence of triplets. For example, if the first amino acid is specified by a triplet
beginning at nucleotide i in the mRNA, the second one will be specified by

1.5 Experimental Methods 25

the triplet beginning at nucleotide i + 3, and the third one will be specified
by the triplet beginning at nucleotide i + 6, and so on. But what determines
the location of the initial triplet at i? Prokaryotes contain a hexanucleotide
at the 5′ end of the mRNA that sets the stage for translation beginning with
the next AUG. Eukaryotes have a 5′ cap structure, and translation begins at
the next AUG of the mRNA.

When examining DNA for protein-coding regions, we initially look for
open reading frames (ORFs). An ORF (pronounced “orf”) is a stretch of
sequence that does not contain stop codons. In a random DNA sequence that
is 50% G+C, on average one would expect a stop codon to occur after a stretch
of 21 codons. The median exon size for humans is about twice as large as this
(122 bp), and for prokaryotes the average gene size is approximately 1000bp,
so longer-than-average ORFs are indications of possible protein-coding re-
gions. As a first approximation to gene recognition in prokaryotes, one looks
for (1) an AUG start codon followed by (2) an open reading frame long enough
to code for a reasonably sized polypeptide (> 50 amino acid residues) and
having (3) the characteristic codon usage frequencies. The ORF ends at one
of the three stop codons. As we will see later, gene recognition in eukary-
otes requires much more analysis to replace point (2) above. Duplex DNA
contains six possible reading frames, as illustrated in Fig. 1.10: three on the
“top” strand and three on the “bottom” strand. When searching for genes in
DNA, we must examine all six reading frames.

1.5 Experimental Methods

Data used in computational biology often can be traced back to a few micro-
liters of an aqueous solution containing one or more types of biological macro-
molecules. The methods for studying biological materials determine the types
of data available and the computational approaches required. The structures
of DNA, RNA, and proteins were presented in Section 1.4. Here we discuss
these types of molecules from an experimental perspective. As computational
biologists, we should clearly understand what quantities are measured and
how the measurements are made. It is appropriate to examine the raw data
(e.g., output from a sequencing machine, autoradiogram, pattern of restriction
fragments on a gel) to help understand the type and quality of the data.

1.5.1 Working with DNA and RNA

Most DNA and RNA molecules, regardless of their source, have similar prop-
erties and can be purified by using only minor variations from a standard
set of protocols: alkaline minipreps (appropriate for DNA, not RNA), ultra-
centrifugation in CsCl gradients, or ethanol precipitations, for example. The
experimental approaches depend on the amounts and molecular sizes of each
type of macromolecule in a typical cell.

S
ta

rt
 C

o
d
o
n
:

A
U

G

(A

T
G

 i
n
 D

N
A

)

D
ir
e
c
ti
o
n
 o

f
T

ra
n
s
c
ri
p
ti
o
n
 a

n
d
 T

ra
n
s
la

ti
o
n

D
ir
e
c
ti
o
n
 o

f
T

ra
n
s
c
ri
p
ti
o
n
 a

n
d
 T

ra
n
s
la

ti
o
n

5
’
.
.
.
G
C
A
G
T
T
A
C
T
A
T
G
T
A
T
G
C
G
G
C
A
T
A
A
T
G
C
A
C
C
C
G
A
T
A
T
C
C
G
C
G
C
T
G
T
G
A
G
A
A
C
C
G
A
T
A
G
C
.
.
.
3
’

3
’
.
.
.
C
G
T
C
A
A
T
G
A
T
A
C
A
T
A
C
G
C
C
G
T
A
T
T
A
C
G
T
G
G
G
C
T
G
T
A
G
G
C
G
C
G
A
C
A
C
T
C
T
T
G
G
C
T
A
T
C
G
.
.
.
5
’

F
r
a
m
e

3

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

F
r
a
m
e

2

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

F
r
a
m
e

1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

F
r
a
m
e

-
1

|

|

|

|

|

|

|

|

|

|

|

|

|

F
r
a
m
e

-
2

|

|

|

|

|

|

|

|

|

|

|

|

|

F
r
a
m
e

-
3

S
to

p
 C

o
d
o
n
s
:

U
A

A

(T
A

A
 i
n
 D

N
A

)

U

A
G

(T

A
G

 i
n
 D

N
A

)

U

G
A

(T

G
A

 i
n
 D

N
A

)

F
ig

.
1
.1

0
.

R
el

a
ti
o
n
sh

ip
s

a
m

o
n
g

o
p
en

re
a
d
in

g
fr

a
m

es
,
co

d
in

g
o
r

“
se

n
se

”
st

ra
n
d
s,

a
n
d

te
m

p
la

te
st

ra
n
d
s

in
d
u
p
le

x
D

N
A

.
F
o
r

fr
a
m

es
1
,

2
,
a
n
d

3
a
b
ov

e
th

e
D

N
A

se
q
u
en

ce
,
th

e
“
to

p
”

st
ra

n
d

is
th

e
co

d
in

g
st

ra
n
d

a
n
d

th
e

b
o
tt

o
m

st
ra

n
d

is
th

e
te

m
p
la

te
.
F
o
r

th
e

fr
a
m

es
w

ri
tt

en
b
el

ow
th

e
se

q
u
en

ce
,

th
e

si
tu

a
ti
o
n

is
re

v
er

se
d
.

F
o
r

a
ct

u
a
l

o
p
en

re
a
d
in

g
fr

a
m

es
in

p
ro

ka
ry

o
te

s,
th

e
n
u
m

b
er

o
f

co
d
o
n
s

is
,

o
n

av
er

a
g
e,

a
p
p
ro

x
im

a
te

ly
3
0
0
.
P

ro
ce

ss
ed

eu
ka

ry
o
ti
c

m
R

N
A

m
o
le

cu
le

s
a
re

d
efi

n
ed

la
rg

el
y

b
y

th
ei

r
ex

o
n
s,

w
h
ic

h
av

er
a
g
e

a
p
p
ro

x
im

a
te

ly
5
0

co
d
o
n
s

in
h
u
m

a
n
s.

1.5 Experimental Methods 27

We can calculate the abundance of a 1000bp segment of single-copy DNA
in diploid eukaryotic cells. Taking each base pair of the sodium salt of DNA
to have a molecular mass of 662, and recognizing that there are two copies
of each molecule per cell, we calculate that 103 bp of single-copy DNA in a
genome corresponds to about 2 × 10−18 grams of DNA/cell. A 1 liter cul-
ture of mammalian cells grown in suspension (at about 106 cells/mL in a
tissue culture flask, higher in a bioreactor) would contain 2 × 10−9 g of this
1000bp region. In contrast, a DNA segment of similar length in mitochondrial
DNA (mtDNA, present at 103-104 copies/mammalian somatic cell) will be at
least a thousand times more abundant. The molecular sizes also matter. A
1000bp DNA segment of eukaryotic DNA from a particular chromosome is
part of a long, linear DNA molecule that cannot be easily purified without
fragmentation, which destroys long-distance relationships to other regions of
the molecule. In contrast, a similar length segment in mitochondrial DNA can
be easily purified on an intact molecule because the mtDNA molecules are
small, circular molecules that can be purified without fragmentation.

For routine molecular biology procedures (e.g., restriction mapping, in
vitro mutagenesis), a laboratory technician requires about 10−7 to 10−8 g of
DNA. Because only small quantities of any particular nuclear DNA sequence
are isolated directly (see above), DNA is often amplified. The most common
amplification methods are the polymerase chain reaction (PCR) and cloning.
PCR employs in vitro enzymatic DNA synthesis in repeated cycles, such that
if amount A of a DNA is originally present, after n cycles the amount present
will be approximately A2n. With extreme care to exclude contaminating DNA,
it is technically possible to amplify as little as one molecule (!) by PCR.
There is no DNA repair system to correct polymerase copying errors during
PCR; consequently, after repeated cycles of amplification, some of the copies
will have slightly altered sequences compared with the original, unamplified
molecules.

Cloning (see Fig. 1.11) involves enzymatic joining of the desired DNA
sequence to a cloning vector and its propagation in a convenient host organ-
ism (bacteria, yeast, or eukaryotic cells in culture). The cloning vector is a
DNA molecule chosen to have appropriate replication properties (copy num-
ber, control of copy number), insert size, and host specificity (vectors must
be matched to the host cell) for producing the desired amount and length of
DNA product. If a genome is being analyzed, the genome may be represented
as collections of clones, called libraries. In genome sequencing projects, clone
collections based upon three different types of cloning vector are not uncom-
mon. The number of clones to be collected and stored may range from 104

to 107, depending upon the genome size of the organism being analyzed, the
chosen vector, and the cloned fragment size. This of course raises practical
issues of physically archiving the clones (e.g., sample storage in freezers) and
recording pertinent descriptive information about each (e.g., cloning vector,
date prepared, shelf location in a particular freezer).

28 1 Biology in a Nutshell

Microarray studies of gene expression focus on types and amounts of dif-
ferent RNA species in cells or tissues (see Chapter 11). Mammalian genomes
may have ∼25,000 genes, which corresponds to 25,000–75,000 or more pos-
sible different mRNA species when alternative splice variants are taken into
account. Different mRNA species can have very different levels of abundance,
and they are often unstable (some may be degraded in vivo within seconds
to minutes). mRNA molecules are extremely unstable in vitro as well. Unlike
DNA, they are sensitive to alkaline hydrolysis. Stable ribonucleases present in
cells (and on laboratory apparatus and fingerprints of technicians who don’t
wear protective gloves) represent an even bigger problem. Sequences repre-
sented on mRNA molecules can be enzymatically converted to DNA form by
in vitro reverse transcription using retroviral reverse transcriptases. Since the
DNA strands that are reverse-transcribed are complementary to the mRNA
molecules, these products are referred to as cDNA (Fig. 1.11, right). Such
molecules may not contain copies of the complete mRNA sequence, however.
The molecules are usually converted to duplex cDNA for eventual manipula-
tion (e.g., cloning). Collections of cloned cDNAs representing transcripts from
a particular cell type are called cDNA libraries. Of course, cDNA molecules
can be further amplified by PCR as required.

Sometimes short DNA sequences (∼200 nucleotides) are obtained from
large collections of cDNA clones to provide sequence labels for genes expressed
under a particular set of conditions for a particular cell or tissue type. These
short sequences are called expressed sequence tags (ESTs). The sequences of
ESTs can be used to design PCR primers that can assist in mapping these
sequences to genomic locations.

1.5.2 Working with Proteins

Different proteins can have substantially different abundances. For example,
proteins such as histones or cytoskeletal proteins are abundant in cells and are
readily purified. Other proteins have very low abundances (< 100 molecules
per cell). Unlike DNA and RNA (represented as cDNA), currently there is no
method for amplifying rare proteins in a cell extract. To obtain rare proteins

Fig. 1.11 (opposite page). Capturing genetic information in genomic or cDNA
libraries. After extraction or conversion to DNA, DNA fragments are cloned and in-
troduced into an appropriate host organism for propagation. Either DNA molecules
or clones may be archived for future use. cDNA clones are usually small because
mRNA from which cDNA is derived is usually hundreds of nucleotides to a few
thousand nucleotides in length. Genomic clones may have small inserts (∼2 kb, use-
ful for DNA sequencing), intermediate-sized inserts (10 kb, useful for DNA sequence
assembly), or large inserts (100–300 kb, useful for long-range sequence assembly).
Molecules in the appropriate size range are produced by a size selection step prior
to cloning. Different cloning vectors are required for different insert sizes.

mRNA

Duplex

cDNA

Reverse

transcription

Extract mRNA

from organism, organ,

tissue, or tumor

Clone

 cDNA library

Extract genomic DNA

from organism, organ,

or tissue

a. Incompletely digest with

 restriction endonuclease

b. Purify one or more size classes

 (large, intermediate, or small)

Duplex

genomic

DNA

Clone

 Genomic library

(large, intermediate, or small insert)

30 1 Biology in a Nutshell

directly from cells, it may be necessary to employ many liters of cell culture
and multiple purification steps to obtain even 10−3 g of purified protein. Large
amounts of a particular protein can be obtained by cloning its coding sequence
(possibly derived from a full-length cDNA) onto an expression vector—a
vector with a promoter (constitutive or inducible) and sequences specifying
the addition of polyA to transcripts. Large amounts of the desired protein
are produced from such clones because of the increased gene copy number
and increased transcription rate. However, a polypeptide chain produced in
this manner may or may not be properly processed, folded, glycosylated, or
assembled if it is expressed in a nonnative cell type.

If a particular protein has never before been purified, protein biochemists
know a number of procedures to try (e.g., precipitation by (NH4)2SO4, ion-
exchange chromatography, high-pressure liquid chromatography, molecular
sieve chromatography, etc.), but in general multiple steps are required, each
of which must be optimized before milligram amounts of purified and active
protein can be produced. During purification, proteins that function as parts
of macromolecular complexes may be separated from other proteins in the
complex and thus may lose biological activity. In addition, proteins dena-
ture (lose their natural structure) more readily than do nucleic acids. This
can occur because of binding to surfaces (a problem particularly in dilute solu-
tions), oxidation of sulfhydryl groups, unfolding at elevated temperatures, or
exposure to detergents. (Nucleic acids are indifferent to detergents.) Similarly,
some membrane proteins may be difficult to purify in soluble form because of
their hydrophobic character.

A lack of amplification methods (short of expression cloning) and the wide
range of protein properties determined by the various possible amino acid se-
quences influence methods for studying proteins. Two-dimensional polyacry-
lamide gel electrophoresis (2DE) is an established method for displaying (in
principle) any cellular proteins in cell lysates or cell fractions (Fig. 1.12).
Sample preparation disrupts the protein structures, producing a solution of
denatured polypeptide chains. Therefore, functional proteins composed of
multiple polypeptide chains (e.g., RNA polymerases) are “deconstructed” to
their constituent polypeptides. Separation of the polypeptides on the poly-
acrylamide gel matrix depends upon two different properties associated with
each polypeptide chain: the molecular mass and the isoelectric point (pI).
Molecular mass is the summation of the molecular masses of the constituent
amino acid residues, and since polypeptides generally differ in length and com-
position, each polypeptide species has a characteristic molecular mass. The
isoelectric point of a protein or polypeptide is the pH at which its average
charge is zero. The isoelectric point is related to the amino acid composition
by the number and kind of acidic and basic residues that the polypeptide
chain or protein contains. An excess of basic residues leads to a pI greater
than 7.0, and an excess of acidic residues leads to a pI less than 7.0.

With 2DE (Fig. 1.12), the protein mixture is first resolved into a series
of bands by isoelectric focusing, which is electrophoresis in a stationary

p
I

p
I

Molecular mass

Is
o
e
le

c
tr

ic

fo
c
u
s
in

g

A
p
p
ly

 t
o

p
o
ly

a
c
ry

la
m

id
e

s
la

b
 g

e
l

E
le

c
tr

o
p
h
o
re

s
is

,

s
ta

in
 g

e
l

+-

pI

- +

F
ig

.
1
.1

2
.

S
ch

em
a
ti
c

il
lu

st
ra

ti
o
n

o
f
tw

o
-d

im
en

si
o
n
a
l
g
el

el
ec

tr
o
p
h
o
re

si
s.

C
ir
cl

es
re

p
re

se
n
t

p
ro

te
in

s
in

th
e

m
ix

tu
re

,
w

it
h

d
iff

er
en

t
si
ze

s
re

p
re

se
n
ti
n
g

d
iff

er
en

t
m

o
le

cu
la

r
m

a
ss

es
.

T
h
e

sh
a
d
in

g
s

co
rr

es
p
o
n
d

to
th

e
is
o
el

ec
tr

ic
p
o
in

ts
o
f

th
e

p
ro

te
in

s.
Is

o
el

ec
tr

ic
fo

cu
si
n
g

(l
ef

t)
se

p
a
ra

te
s

th
e

m
o
le

cu
le

s
in

to
th

re
e

d
iff

er
en

t
cl

a
ss

es
,
ea

ch
o
f
w

h
o
se

m
em

b
er

s
sh

a
re

th
e

sa
m

e
p
I.

S
D

S
-p

o
ly

a
cr

y
la

m
id

e
g
el

el
ec

tr
o
p
h
o
re

si
s

(r
ig

h
t)

is
co

n
d
u
ct

ed
in

a
n

o
rt

h
o
g
o
n
a
l
d
ir

ec
ti
o
n
,
le

a
d
in

g
to

th
e

se
p
a
ra

ti
o
n

o
f
p
ro

te
in

s
in

ea
ch

p
I

cl
a
ss

in
to

d
iff

er
en

t
p
ro

te
in

sp
o
ts

.

32 1 Biology in a Nutshell

pH gradient (i.e., a pH gradient for which the pH at any position is time-
invariant). Proteins having an isoelectric point of 8, for example, migrate to
that point in the pH gradient where the pH is 8 and then stop migrating
because their average charge is zero at that point. Proteins whose isoelectric
point is 4.5 migrate to the position in the pH gradient where the pH is 4.5.
Isoelectric focusing is performed in a “tube gel” (typical tubes are 0.3 cm in di-
ameter and 15 cm long) or on plastic-backed gel strips containing immobilized
pH gradients. After the bands have been formed by isoelectric focusing, the gel
or strip is equilibrated with a solution containing the strong detergent SDS.
SDS is negatively charged. All polypeptides bind SDS at approximately the
same mass of SDS/mass of protein, and they become extended and negatively
charged with approximately the same charge-to-mass ratio in solution. The
gel or strip is then placed on a slab gel, perpendicular to the direction of the
electric field to be applied. Electrophoresis through the slab polyacrylamide
gel resolves polypeptides based upon their extension in space, which is related
to the molecular mass. After the electrophoresis step, spots corresponding to
individual polypeptides can be visualized by staining or by autoradiography
or phosphorimaging (if proteins were labeled with radioisotopes). Figure 1.13
shows an example of a stained gel. With typical protein loads, up to 1000 to
1500 polypeptides can be resolved in two dimensions.

Often, we wish to detect a specific macromolecule in the presence of others.
For DNA and RNA, this is relatively easy because Watson-Crick base pairing
is a specific and efficient mechanism for a probe DNA molecule to “recognize”
a molecule containing the complementary sequence. However, there currently
are no easy methods for detecting specific protein sequences, except for meth-
ods using antibodies and antibody-like molecules. These and similar methods
are powerful and sensitive but are experimentally demanding, as described in
the box below.

Antibodies and specific protein recognition

Antibodies (Ab) or immunoglobulins are proteins that are produced by
vertebrate immune systems to bind “foreign” molecules that may be present
in the body (e.g., bacteria). A complex combinatorial process produces anti-
bodies that are capable of binding virtually any specific antigen (a molecule
that elicits the immune response) that the organism might encounter. Usually
(but not always), an antibody that recognizes and binds to antigen x will not
recognize and bind to antigen y, and vice versa.

There are two labor-intensive steps in the production of antibodies: pro-
duction of the antigen and production of the antibody. We have already dis-
cussed earlier the issues related to purification of proteins to be used as anti-
gens. The second issue, antibody production, can be attacked in different ways.
Traditionally, antibodies are made by repeated injection of an antigen into
rabbits or goats and bleeding the animals several weeks later. This produces
a sample of polyclonal antibodies (a mixture of different immunoglobu-

1.5 Experimental Methods 33

10.0 7.5 6.3 6.0 5.8 5.5 5.2 5.0 4.0 3.09.0 8.0

100

60

50

40

35

30

25

20

pI
M

o
le

c
u
la

r
W

e
ig

h
t

Fig. 1.13. Proteins extracted from yeast resolved by two-dimensional gel elec-
trophoresis and visualized by silver staining. Molecular weights are in kilodaltons.
Over 1000 spots were detected, corresponding to about 20% of all yeast genes. The
abundance of proteins in the gel is approximately proportional to the spot intensity.
Reprinted, with permission, from Gygi SP et al. (1999) Molecular and Cell Biology

19:1720–1730. Copyright 1999, the American Society for Microbiology. All rights
reserved.

lin species directed against the antigen). The different immunoglobulins may
“recognize” or bind to different specific regions of the antigen (different pro-
tein domains, for example). Different regions of the antigen recognized by
distinct antibody species are called epitopes. A preferable but more expen-
sive and time-consuming procedure is to produce a monoclonal antibody,
which is a single immunoglobulin species that recognizes a single epitope. In
this procedure, a mouse is immunized with the antigen, and cells from the
spleen (where antibody-producing cells mature) are removed and fused with
an “immortal” multiple myeloma (tumor) cell line. This produces hybrid cell
lines (hybridomas), and individual hybridoma cell lines may produce a single
antibody directed toward a single epitope from the original antigen. Such cells
can be used to produce the antibody in tissue culture, or they can be injected
into mice to produce the desired antibody in vivo. This procedure obviously

34 1 Biology in a Nutshell

entails costs for vivarium facilities and for a hybridoma tissue culture facility.
The procedure usually requires a few months.

An alternative to monoclonal antibodies are probe molecules identified by
phage display approaches. With phage display, DNA encoding the antibody
binding regions is cloned into one of the coat protein genes of a filamentous E.
coli bacteriophage such as fd or M13. When the mature phage is produced, it
“displays” the antigen binding region on its surface. From a mixture of bacte-
riophages that recognize a large number of antigens, a phage species capable
of recognizing a particular antigen can be purified after repeated amplification
and enrichment steps. This approach only requires standard cloning and bio-
chemical expertise, but of course it still requires purified antigen. Production
of antibodies can also be avoided by using small polypeptides specifically de-
signed by protein engineering for specific protein binding, and such technology
is commercially available (e.g., Affibody AB, Sweden).

1.5.3 Types of Experiments

In general, questions addressed by computational biology are subsets of the
overall question, “How do cells and organisms function?” We may think of
the larger question as being composed of three components:

– Characterizing the genome;
– Identifying patterns of gene expression and protein abundance under dif-

ferent conditions;
– Discovering mechanisms for controlling gene expression and the biochem-

ical reactions in the cell.

We expand on these topics in the introductions to subsequent chapters, but
here we provide an overview. Computational biologists should be concerned
about experimental details because computational approaches must be tai-
lored to the structure of the experimental data.

Genomes can be characterized by genetic and physical mapping, analyz-
ing evolution of single-copy and repeated DNA sequences, identifying genes
and their organization, and building inventories of genes by type. This is the
realm of restriction mapping, cloning, DNA sequencing, pattern recognition,
and phylogenetic tree building. Each of these topics is addressed in a subse-
quent chapter. Typically, DNA is isolated from an appropriate representative
strain or lineage of a particular type of organism and cloned as shown in
Fig. 1.11 (left). Clones stored in libraries may be digested with restriction
endonucleases (individually or in combination) to produce maps of the var-
ious clones. Alternatively, the ends of the cloned inserts may be sequenced
directly. Depending upon the purpose of the experiment, the clones may be
screened by hybridization to find those having sequences similar to particular
probe sequences (e.g., to DNA from a gene of interest). Ultimately the result

1.5 Experimental Methods 35

is the sequence of a DNA molecule annotated for any genes or regulatory sig-
nals (e.g., transcription factor binding sites) that it may contain. Comparison
with similar gene regions in model organisms may provide insight into gene
function. Investigators interested in those genes associated with a particular
genetic disease may focus on a few genes, but with genome sequencing ap-
proaches, the entire panoply of genes is examined, usually in an evolutionary
context.

Gene expression studies seek to measure the amounts of mRNA or protein
species in a particular cell or tissue type under a particular set of physiological
conditions. The transcriptome is the entire collection of transcripts, and the
proteome is the entire collection of proteins for a particular cell and set of
conditions. The transcriptome is studied by a variety of methods for measuring
(directly or indirectly) mRNA levels, including spotted microarray exper-
iments, “gene chip” experiments, serial analysis of gene expression (SAGE),
and total gene expression analysis (TOGA). For eukaryotes, this may in-
volve purification of RNA and preparing cDNA (Fig. 1.11, right). Each cDNA
clone corresponds to a particular expressed sequence (mRNA). For spotted
microarrays, gene or intergenic DNA samples spotted onto solid substrates
are hybridized to labeled cDNA mixtures prepared from mRNA extracts (see
Chapter 11). Proteomes can be analyzed by resolving protein extracts from
cells by using 2DE and subjecting particular polypeptides to tandem mass
spectrometry. Array technologies also are being devised to identify and quan-
tify protein species in cell extracts.

Gene regulation may depend upon sites on DNA that bind regulatory
proteins and also can depend upon protein-protein interactions. Sites on DNA
that bind regulatory proteins can be identified on a DNA fragment by gel-
shift or footprinting methods. Gel-shift experiments are lower-resolution
electrophoretic assays that depend upon the retardation (“gel-shift”) of DNA-
protein complexes relative to DNA having no bound protein. Alternatively,
“footprinting” methods may be used to locate the position and extent of the
binding region. These methods rely on reagents that cleave DNA within one
or the other of the two strands. Proteins bound to the DNA protect it from
cleavage. Fragmented DNA strands are resolved by gel electrophoresis, and the
“footprint” is the region of the gel lacking cleaved fragments. Protein-DNA
complexes formed in vitro can also be investigated by immunoprecipitation of
complexes using antibodies specific for the bound protein.

Gene regulation can also depend upon protein-protein interactions, which
can be studied in vivo by using yeast “two-hybrid” genetic systems. Protein-
protein interactions can also be studied in vitro by chemical cross-linking.
To detect proteins that interact with protein P, the extract containing it
and possible binding partners is subjected to chemical cross-linking. Then
reagents that specifically bind to P (a specific antibody, for example) are used
to purify complexes containing P, and reversal of cross-linking releases proteins
interacting with it. Such data are helpful for identifying the components and
connectivity of protein interaction networks.

36 1 Biology in a Nutshell

The particular combination of experiments employed will depend upon
the reason for the study. The study may be part of an investigation of a par-
ticular genetic disease conducted in a medical school, or it may have been
initiated within a biotechnology company to produce a profitable therapeutic
agent. The study might be a comparison of a particular set of genes among a
variety of organisms or might encompass the entire genome of a single organ-
ism. A wide range of methods derived from genetics, chemistry, biochemistry,
and physics may be applied to each individual problem or project. Computa-
tional biologists should be aware of concepts associated with a wide range of
disciplines.

References

Alberts B, Lewis J, Raff M, Johnson A, Roberts K (2002) Molecular Biology
of the Cell (4th edition). London: Taylor & Francis, Inc.

Branden C, Tooze J (1998) Introduction to Protein Structure (2nd edition).
London: Taylor & Francis, Inc.

Calladine CR, Drew HR (1997) Understanding DNA: The Molecule and How
It Works (2nd edition). San Diego, CA: Academic Press.

Griffiths AJ, Lewontin RC, Gelbart WM, Miller JH, Gelbart W (2002) Modern
Genetic Analysis (2nd edition). New York, NY: W. H. Freeman Company.

Knoll AH, Carroll SB (1999) Early animal evolution: Emerging views from
comparative biology and geology. Science 284:2129–2137.

Mouse Genome Sequencing Consortium [MGSC] (2002). Initial sequencing
and comparative analysis of the mouse genome. Nature 420:520–562.

Pennisi E (2003) Modernizing the tree of life. Science 300:1692–1697.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books

Online books on genetics, molecular biology, and cell biology presented by
the National Center for Biotechnology Information (NCBI). Includes some
of the best standard textbooks.

http://www.ucmp.berkeley.edu/alllife/threedomains.html

An excellent resource covering evolution and the diversity of life from both
biological and paleontological perspectives. Maintained by the University
of California, Berkeley Museum of Paleontology.

http://web.mit.edu/esgbio/www/7001main.html

Biology hypertextbook. Information is highly compressed but rapidly ac-
cessible.

http://www.genome.gov/10002096

Glossary of terms presented by the National Human Genome Research
Institute. Includes illustrations for glossary entries.

2

Words

2.1 The Biological Problem

Consider the DNA sequence shown below:

TGATGATGAAGACATCAGCATTGAAGGGCTGATGGAACACATCCCGGGGCCGGAC

TTCCCGACGGCGGCAATCATTAACGGTCGTCGCGGTATTGAAGAAGCTTACCGTA

CCGGTCGCGGCAAGGTGTATATCCGCGCTCGCGCAGAAGTGGAAGTTGACGCCAA

AACCGGTCGTGAAACCATTATCGTCCACGAAATTCCGTATCAGGTAAACAAAGCG

CGCCTGATCGAGAAGATTGCGGAACTGGTAAAAGAAAAACGCGTGGAAGGCATCA

GCGCGCTGCGTGACGAGTCTGACAAAGACGGTATGCGCATCGTGATTGAAGTGAA

ACGCGATGCGGTCGGTGAAGTTGTGCTCAACAACCTCTACTCCCAGACCCAGTTG

CAGGTTTCTTTCGGTATCAACATGGTGGCATTGCACCATGGTCAGCCGAAGATCA

TGAACCTGAAAGACATCATCGCGGCGTTTGTTCGTCACCGCCGTGAAGTGGTGAC

CCGTCGTACTATTTTCGAACTGCGTAAAGCTCGCGATCGTGCTCATATCCTTGAA

GCATTAGCCGTGGCGCTGGCGAACATCGACCCGATCATCGAACTGATCCGTCATG

CGCCGACGCCTGCAGAAGCGAAAACTGCGCTGGTTGCTAATCCGTGGCAGCTGGG

CAACGTTGCCGCGATGCTCGAACGTGCTGGCGACGATGCTGCGCGTCCGGAATGG

CTGGAGCCAGAGTTCGGCGTGCGTGATGGTCTGTACTACCTGACCGAACAGCAAG

CTCAGGCGATTCTGGATCTGCGTTTGCAGAAACTGACCGGTCTTGAGCACGAAAA

ACTGCTCGACGAATACAAAGAGCTGCTGGATCAGATCGCGGAACTGTTGCGTATT

CTTGGTAGCGCCGATCGTCTGATGGAAGTGATCCGTGAAGAGCTGGAGCTGGTTC

GTGAACAGTTCGGTGACAAACGTCGTACTGAAATCACCGCCAACAGCGCAGACAT

CAACCTGGAAGATCTGATCACCCAGGAAGATGTGGTCGTGACGCTCTCTCACCAG

GGCTACGTTAAGTATCAGCCGCTTTCTGAATACGAAGCGCAGCGTCGTGGCGGGA

Given this sequence, there are a number of questions we might ask:

– What sort of statistics should be used to describe this sequence?
– Can we determine what sort of organism this sequence came from based

on sequence content?
– Do parameters describing this sequence differ from those describing bulk

DNA in that organism?

38 2 Words

– What sort of sequence might this be: Protein coding? Centromere? Telo-
mere? Transposable element? Control sequence?

This chapter approaches these sorts of questions from three different per-
spectives, all of which are united by considering words. These are short strings
of letters drawn from an alphabet, which in the case of DNA is the set of letters
A, C, G, and T. A word of length k is called a “k-word” or “k-tuple”; we use
these terms interchangeably. For example, individual bases are 1-tuples, di-
nucleotides are 2-tuples, and codons are triplets, or 3-tuples. GGGT is a 4-word
or 4-tuple.

DNA sequences from different sources or regions of a genome may be dis-
tinguished from each other by their k-tuple content. We begin by giving illus-
trations and examples of how word frequencies can vary within and between
genomes. Second, we take a closer look at computational issues pertaining to
words, starting with the seemingly obvious one about how to count words and
how words can be located along a string. This includes describing their distri-
bution in terms of a probabilistic model. Finally, we discuss various statistics
that have been used to describe word frequencies.

2.2 Biological Words: k = 1 (Base Composition)

We consider first the frequencies of individual bases. For free-living organisms
(in contrast with some bacteriophages and other viruses), DNA is typically
duplex. This means that every A on one strand is matched by a T on the
complementary strand, and every G on one strand is matched by C on the
complementary strand. In other words, the number of A residues in the genome
equals the number of T residues, and the number of G residues equals the
number of C residues. This applies to the duplex DNA: as we will see later,
the number of G or A residues on one strand need not equal the number of C
or T residues (respectively) on the same strand. This statement is illustrated
below:

5′-GGATCGAAGCTAAGGGCT-3′ Top strand: 7 G, 3 C

3′-CCTAGCTTCGATTCCCGA-5′ Duplex molecule: 10 G, 10 C

Considering G or C for this particular duplex DNA, it suffices to report
the fraction fr(G+C) of G+C, knowing the individual base frequencies will be
fr(G+C)/2. Also, fr(A+T) = 1 − fr(G+C), so only a single parameter is required
to describe the base frequencies for duplex DNA. (That is, there are four
variables, fr(A), fr(C), fr(G), and fr(T), and there are three relations among
them, fr(A) = fr(T), fr(G) = fr(C), and fr(A+T) = 1 − fr(G+C).)

Since the early days of molecular biology (before cloning and DNA se-
quencing), base composition has been used as a descriptive statistic for
genomes of various organisms. The fraction fr(G+C) of bulk DNA can be
determined either by measuring the melting temperature of the DNA, Tm,

2.2 Biological Words: k = 1 (Base Composition) 39

or by determining the buoyant density of the DNA in a CsCl gradient us-
ing equilibrium ultracentrifugation. Both methods can reveal the presence of
genome fractions having different base compositions, and in the case of ultra-
centrifuge measurements, bands of genomic DNA adjacent to the main band
and differing from it in base composition may be described as “satellites.”

Table 2.1 presents the base compositions of DNA from a few organisms,
indicating the range over which this statistic can vary. Obviously, there are
constraints on base composition imposed by the genetic code: long homopoly-
mers such as · · · AAAAA · · · (fr(G+C) = 0) would not encode proteins having
biochemical activities required for life. We see more about this when we con-
sider k = 3 (codons).

Table 2.1. Base composition of various organisms. Bacterial data taken from the
Comprehensive Microbial Resource maintained by TIGR: http://www.tigr.org/

tigr-scripts/CMR2/CMRHomePage.spl.

Organism %G+C Genome size (Mb)

Eubacteria
Mycoplasma genitalium 31.6 0.585
Escherichia coli K-12 50.7 4.693
Pseudomonas aeruginosa PAO1 66.4 6.264

Archaebacteria
Pyrococcus abyssi 44.6 1.765
Thermoplasma volcanium 39.9 1.585

Eukaryotes
Caenorhabditis elegans 36 97
(a nematode)
Arabidopsis thaliana 35 125
(a flowering plant)
Homo sapiens 41 3,080
(a bipedal tetrapod)

Another point will be visited in a later chapter: the distribution of individ-
ual bases within the DNA molecule is not ordinarily uniform. In prokaryotic
genomes in particular, there is an excess of G over C on the leading strands
(strands whose 5′ to 3′ direction corresponds to the direction of replication
fork movement). This can be described by the “GC skew,” which is defined as
(#G − #C)/(#G + #C), calculated at successive positions along the DNA for
intervals of specified width (“windows”); here, #G denotes the number of Gs
and so on. As will be seen later, this quantity often changes sign at positions
of replication origins and termini in prokaryotic genomic sequences. This is

40 2 Words

another example of how a relatively simple statistic based on k-tuples with
k = 1 can be informative.

In the sections that follow, we develop some probabilistic and statistical
approaches for describing the base composition, dinucleotide composition, and
other aspects of DNA sequences. To do this, it is most convenient to describe
the DNA in terms of a single strand in a given 5′ to 3′ orientation. The other
strand of the duplex is formed by taking its complement.

2.3 Introduction to Probability

This is a good point to introduce some necessary basic ideas of probability.
We build on these ideas as we progress through this and later chapters. In
this section, we use the nucleotide sequence on a single strand as an example.
For definiteness, we assume that this sequence is written in a given 5′ to 3′

direction. We are often interested in deciding whether particular patterns of
bases appear unusually often in a given sequence; such sequences might be of
biological significance. To address such problems, we need a way to measure
our “surprise” about the frequency of particular patterns, and to do this we
use a probabilistic model for the sequence.

One way to specify such a probability model is to describe a method for
simulating observations from the model. This means that we must specify the
probabilistic rules the computer uses to produce the next letter in the simu-
lated sequence, given the previous letters. We can then think of the sequence
as the output of a machine (or simulation algorithm). Here is a simple set of
rules that specify a probability model:

(a) The first base in the sequence is either an A, C, G, or T with probability
pA, pC, pG, pT, respectively.

(b) Suppose the machine has generated the first r bases. To generate the
base at position r + 1, the machine pays no attention to what has been
generated before and spits out A, C, G, or T with the probabilities given in
(a) above.

A run of the simulation algorithm results in a sequence of bases, and
different runs will typically result in different sequences. The output of a
random string of n bases will be denoted by L1, L2, . . . , Ln, where Li denotes
the base inserted in position i of the sequence. It is conventional to use small
letters to denote the particular sequence that resulted from a run; we may
observe L1 = l1, L2 = l2, . . . , Ln = ln for a particular simulation. In the
next sections, we outline some basic probabilistic and statistical language
that allows us to analyze such sequences.

2.3.1 Probability Distributions

Suppose that on a single step our machine produces an output X that takes
exactly one of the J possible values in a set X = {x1, x2, . . . , xJ}. In the DNA

2.3 Introduction to Probability 41

sequence example, we have J = 4 and X = {A, C, G, T}. We do not typically
know with certainty which value in X will be produced by our machine, so
we call X a discrete random variable. (Note the font used to distinguish
bases from random variables.) The term discrete refers to the fact that the
set of possible values is finite. Now suppose that the value xj occurs with
probability pj , j = 1, 2, . . . , J . We note that each pj must be greater than or
equal to 0, and the pj must sum to 1; that is,

p1, p2, . . . , pJ ≥ 0;

p1 + p2 + · · · + pJ = 1.

We call the collection p1, . . . , pJ the probability distribution of X , and we
write

P(X = xj) = pj , j = 1, 2, . . . , J.

In this book, we always use the symbol P to denote probability. For example,
the first base L1 in our model for a DNA sequence has probability distribution

P(L1 = A) = pA, P(L1 = C) = pC, P(L1 = G) = pG, P(L1 = T) = pT. (2.1)

Note that some textbooks use the term probability mass function of the ran-
dom variable instead of probability distribution, defined above. The probability
distribution allows us to compute probabilities of different outcomes in the fol-
lowing way. If S is an event (that is, a subset of X), then the probability that
S occurs, written P(X ∈ S), is calculated as

P(X ∈ S) =
∑

j:xj∈S

pj.

The term j : xj ∈ S is read “j such that xj is in S.” For example, if S = {G, C},
then P(X ∈ S) = pG + pC.

In the following sections, we study the probability distribution of the num-
ber of times a given pattern occurs in a random DNA sequence L1, L2, . . . , Ln,
and we’ll make our patterns one base long to begin with. To address this ques-
tion, we define a new sequence X1, X2, . . . , Xn by

Xi =

{
1, if Li = A,
0, otherwise.

(2.2)

The number of times N that A appears is then the sum of the Xs:

N = X1 + X2 + · · · + Xn. (2.3)

Starting from the probability distribution (2.1) of the Li, we can find the
probability distribution of each of the Xi as follows:

P(Xi = 1) = P(Li = A) = pA,

P(Xi = 0) = P(Li = C or G or T) = pC + pG + pT = 1 − pA. (2.4)

42 2 Words

Different “runs” of our machine produce strings having different values of N .
We ultimately wish to know what a “typical” value of N might be, which
means we need to know its probability distribution. To find the probability
distribution of N is more complicated because we need to know how the
individual outputs from our machine are related to each other. This is the
topic of the next section.

2.3.2 Independence

According to our simple DNA sequence model, the probability distribution of
the base in position r + 1 does not depend on the bases occupying positions
r, . . . , 2, 1. This captures the notion that outputs from the machine do not
influence each other (you might like to ponder whether this is likely to be true
in a DNA sequence). In this section, we formalize the notion of independence
for a collection of discrete random variables X1, X2, . . . , Xn. Capturing this
notion in a definition is a little complicated.

Discrete random variables X1, X2, . . . , Xn are said to be independent if,
for r = 2, 3, . . . , n,

P(Xi1 = a1, Xi2 = a2, . . . , Xir
= ar) =

P(Xi1 = a1)P(Xi2 = a2) · · ·P(Xir
= ar)

for all subsets {i1, i2, . . . , ir} of {1, 2, . . . , n} and for all possible values
a1, . . . , ar. In particular, if X1, . . . , Xn are independent, we can calculate the
probability of a set of outcomes by using the multiplication rule for probabil-
ities of independent events: for events Ai, i = 1, 2, . . . , n, we have

P(X1 ∈ A1, . . . , Xn ∈ An) = P(X1 ∈ A1)P(X2 ∈ A2) · · ·P(Xn ∈ An). (2.5)

For the DNA sequence model outlined in the introduction, the Li are indeed
independent, and so the probability of obtaining the sequence l1, l2, . . . , ln is
given by the product of the probabilities of each li,

P(L1 = l1, . . . , Ln = ln) = P(L1 = l1)P(L2 = l2) · · ·P(Ln = ln), (2.6)

where the terms on the right-hand side are determined by the probability
distribution of a single base given in (2.1).

In the last section, we introduced a sequence of discrete random variables
X1, . . . , Xn that counted whether the bases in the sequence L1, L2, · · · , Ln

were A or not. It is intuitively clear that if the Li are independent of one
another, then so too are the Xi defined in (2.2). You should check this from
the definition. While it is sometimes possible to check whether a collection
of random variables X1, X2, . . . , Xn are independent, it is more common to
assume independence and then use the multiplication rule (2.5) to calculate
probabilities of different outcomes. Random variables that are independent
and have the same probability distribution are said to be independent and
identically distributed; in what follows, we use the abbreviation “iid.” For
further discussion of dependent random variables, see Exercise 8.

2.3 Introduction to Probability 43

2.3.3 Expected Values and Variances

In this section we describe measures of location (or central tendency) and
spread for random variables that take on numerical values. Suppose that X
is a discrete random variable taking values in X , a subset of (−∞,∞). We
define the expected value (or mean or expectation) of X by

EX =
J∑

j=1

xjP(X = xj) = x1p1 + x2p2 + · · · + xJpJ . (2.7)

In this book, the symbol E will always be used to indicate expected value or
mean. For the random variables Xi defined in (2.2) with distribution given in
(2.4), we have

EXi = 1 × pA + 0 × (1 − pA) = pA. (2.8)

If we know the expected value of the random variable X , then it is easy to
calculate the expected random variable Y = cX for any constant c; we obtain

EY = c EX.

The random variable N in (2.3) counts the number of times the base A

appears in the sequence L1, L2, . . . , Ln. We do not yet know the probability
distribution of N , but we can compute its expected value in another way. We
use the fact that the mean of the sum of the Xs is the sum of the means of
the Xs. That is, for any random variables X1, X2, . . . , Xn, we have

E(X1 + X2 + · · · + Xn) = EX1 + EX2 + · · · + EXn. (2.9)

It follows from this and the result in (2.8) that the expected number of times
we see an A in our nbp sequence is

EN = EX1 + EX2 + · · · + EXn = nEX1 = npA. (2.10)

The expected value of a random variable X gives a measure of its location;
values of X tend to be scattered around this value. In addition to this measure
of location, we need a measure of spread: Is X closely concentrated about its
expected value, or is it spread out? To measure spread, we use a quantity
called the variance. We define the variance of X by

VarX = E(X − µ)2 =

J∑
j=1

(xj − µ)2pj, (2.11)

where µ = EX is defined in (2.7). It can be shown that

VarX = EX2 − µ2 =
J∑

j=1

x2
jpj − µ2, (2.12)

44 2 Words

a formula that sometimes simplifies calculations. For the random variables Xi

in (2.4), we see that

VarXi = [12 × pA + 02 × (1 − pA)] − pA
2 = pA(1 − pA). (2.13)

The (positive) square root of the variance of X is called its standard
deviation and is denoted by sd(X). If X is multiplied by the constant c,
then the variance is multiplied by c2; that is, if Y = cX

VarY = Var(cX) = c2 Var(X).

The standard deviation of Y is then given by

sdY = sd(cX) = |c| sd(X).

To calculate the variance of the number N of A s in our DNA sequence, we
exploit the fact that the variance of a sum of independent random variables
is the sum of the individual variances; that is, if X1, . . . , Xn are independent
random variables,

Var(X1 + · · · + Xn) = Var(X1) + · · · + Var(Xn). (2.14)

When this rule is applied to N , we find from (2.13) that

VarN = nVarX1 = npA(1 − pA). (2.15)

Equations (2.14) and (2.15) give two statistics that describe features of the
probability distribution of N mentioned at the end of Section 2.3.1.

2.3.4 The Binomial Distribution

The expected value and variance of a random variable such as N are just two
(of many) summary statistics that describe features of its probability distri-
bution. Much more information is provided by the probability distribution
itself, which we show how to calculate in this section.

To do this, notice that P(X1 = x1, . . . , Xn = xn) is the same for any
x1, x2, . . . , xn containing the same number of 1s. Furthermore, the fact that
the Xi are iid means that we can use (2.5) to see that if there are j 1s in
x1, x2, . . . , xn, then the probability of that sequence is pj(1 − p)n−j , where,
for typographical convenience, we have written p = pA. Finally, to compute
the probability that the sequence contains j A s (i.e., that N = j), we need
to know how many different realizations of the sequence x1, x2, . . . , xn have j
1s (and n − j 0s). This is given by the binomial coefficient

(
n
j

)
, defined by

(
n

j

)
=

n!

j!(n − j)!
, (2.16)

2.4 Simulating from Probability Distributions 45

where j! = j(j − 1)(j − 2) · · · 3 · 2 · 1, and by convention 0! = 1. It now follows
that the probability of observing j A s is

P(N = j) =

(
n

j

)
pj(1 − p)n−j , j = 0, 1, 2, . . . , n. (2.17)

The probability distribution in (2.17) is known as the binomial distri-
bution with parameters n (the number of trials) and p (the probability of
success). The mean of N , which can also be calculated using (2.17) and (2.7),
is given in (2.10), and the variance of N is given in (2.15).

2.4 Simulating from Probability Distributions

To understand the behavior of random variables such as N , it is useful to
simulate a number of instances having the same probability distribution as
N . If we could get our computer to output numbers N1, N2, . . . , Nn having
the same distribution as N , we could use them to study the properties of this
distribution. For example, we can use the sample mean

N = (N1 + N2 + · · · + Nn)/n (2.18)

to estimate the expected value µ of N . We could use the sample variance

s2 =
1

n − 1

n∑
i=1

(Ni − N)2 (2.19)

to estimate the variance σ2 of N , and we can use a histogram of the values of
N1, . . . , Nn to estimate the probability of different outcomes for N .

To produce such a string of observations, we need to tell the computer
how to proceed. We need the computer to be able to generate a series of
random numbers that we can use to produce N1, . . . , Nn. This is achieved by
use of what are called pseudo-random numbers. Many programming languages
(and the statistical environment R we use in this book is no exception) have
available algorithms (or random number generators) that generate sequences
of random numbers U1, U2, . . . that behave as though they are independent
and identically distributed, have values in the unit interval (0, 1), and satisfy,
for any interval (a, b) contained in (0, 1),

P(a < U1 ≤ b) = b − a.

Random variables with this property are said to be uniformly distributed on
(0, 1). This last phrase captures formally what one understands intuitively:
any number between 0 and 1 is a possible outcome, and each is equally likely.
Uniform random numbers form the basis of our simulation methods. From
now on, we assume we have access to as many such Us as we need.

46 2 Words

To illustrate the use of our random number generator, we will simulate an
observation with the distribution of X1 in (2.2). We can do this by taking a
uniform random number U and setting X1 = 1 if U ≤ p ≡ pA and 0 otherwise.
This works because the chance that U ≤ p is just p. Repeating this procedure
n times (with a new U each time) results in a sequence X1, X2, . . . , Xn from
which N can be computed by adding up the Xs.

We can use a similar approach to simulate the sequence of bases L1, L2, . . .,
Ln. This time we divide up the interval (0,1) into four intervals with endpoints
at pA, pA + pC, pA + pC + pG, and pA + pC + pG + pT = 1. If the simulated U lies in
the leftmost interval, set L1 = A; if it is in the second interval, set L1 = C; if it
is in the third interval, set L1 = G; and otherwise set L1 = T. Repeating this
procedure with a new value of U each time will produce a sequence of bases
L1, L2, . . . , Ln. Fortunately, we do not have to write code to implement this
approach, as it is included in R already as the sample function. The details
are given in the box below.

Computational Example 2.1: Simulating a DNA sequence

The sample function can be used to generate many sorts of samples. The
function has the form

sample(x,n,replace=TRUE,pi)

x = list of values to be sampled

n = number of samples required

replace=TRUE means sampling with replacement

pi = probability distribution for the list in x

Here is an application that generates ten outcomes from the probability dis-
tribution in (2.4) with pA = 0.25:

> pi<-c(0.25,0.75)

> x<-c(1,0)

> sample(x,10,replace=TRUE,pi)

[1] 1 0 0 0 0 0 1 1 1 0

We can use a similar approach to generate a DNA sequence according to
our simple iid model. First, we code the bases as A = 1, C = 2, G = 3, and T =
4 and assume that each base is equally likely. To simulate 10,000 bases under
this model and look at the first 15 bases, we can use

> pi<-c(0.25,0.25,0.25,0.25)

> x<-c(1,2,3,4)

> seq<-sample(x,10000,replace=TRUE,pi)

> seq[1:15]

[1] 4 4 4 4 1 1 2 3 2 4 2 2 1 1 1

It is sometimes convenient to be able to use the same string of random num-
bers more than once (for example, when preparing examples for this book!).
To do this, you can use

2.4 Simulating from Probability Distributions 47

set.seed(int)

where int is an integer seed. Try generating two DNA sequences without using
set.seed() and then by calling set.seed(100) before each run. Compare the
outputs!

By looking through a given simulated sequence, we can count the number
of times a particular pattern arises (for example, the one-letter pattern A

considered earlier) and so, by repeatedly generating sequences and analyzing
each of them, we can get a feel for whether or not our particular pattern is
“unusual.” We illustrate this by simulating observations having the binomial
distribution with p = 0.25 and n = 1000. Recall that under our uniform base
frequency model for DNA, this is the distribution of the number of A s in the
sequence of length n. R can perform binomial simulations, as described in the
box below.

Computational Example 2.2: Simulating binomial random variables

R has a number of built-in functions for simulating observations from standard
distributions. To generate 2000 observations from a binomial distribution with
n = 1000 trials and success probability p = 0.25, we can use

> x <- rbinom(2000,1000,0.25)

The sample mean (see (2.18)) of our simulated values can be found using

> mean(x)

[1] 249.704

This value is in good agreement with the mean of N , which is µ = np = 250.
The variance of the replicates (see (2.19)) can be found using the square of
the sample standard deviation:

> sd(x)^2

[1] 183.9734

Once more, this is in good agreement with the theoretical value of σ2 =
np(1 − p) = 187.5. To plot the histogram, we use

> hist(x,xlab="Number of successes",main="")

The result is shown in Fig. 2.1.

Later in the book, a number of statistical concepts are introduced by use
of simulation. For now, we answer another question about the frequency of
the pattern A in a sequence. Suppose then that we have a sequence of length
1000 bp and assume that each base is equally likely (and so has probability
0.25). How likely is it to observe at least 280 A s in such a sequence? There

48 2 Words

Number of successes

F
re

q
u

e
n

c
y

200 220 240 260 280 300

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

Fig. 2.1. Histogram of 2000 replicates of a binomial random variable having n =
1000 trials and success probability p = 0.25.

are three ways to attack this problem: by using the distribution in (2.17), by
simulation, and by an approximation known as the Central Limit Theorem.
We discuss the first two approaches here and the third in Section 3.4.

For the first approach, the probability we need to calculate is given by

P(N ≥ 280) =

1000∑
j=280

(
1000

j

)
(1/4)j(1 − 1/4)1000−j. (2.20)

A computer algebra program such as Derive
TM gives the answer 0.01644. The

second approach is to simulate a large number of random variables having the
distribution of N and calculate how many times the values are greater than or
equal to 280. In 10,000 runs of this procedure (see Exercise 4), 149 values were
at least 280, so the estimate of the required probability is 149/10, 000 ≈ 0.015,
in good agreement with the theoretical value of ≈ 0.016.

2.5 Biological Words: k = 2

If li is a nucleotide at position i, then a dinucleotide is lili+1 (5′ to 3′ po-
larity implied). Since li is drawn from an alphabet of four bases A, C, G, T,
there are 16 different dinucleotides: AA, AC, AG, . . . ,TG, GG. Since the sum of

2.5 Biological Words: k = 2 49

the dinucleotide frequencies is 1, just 15 of them suffice to give a complete
description of the dinucleotide frequencies in a single-stranded molecule. Di-
nucleotides are important in part because physical parameters associated with
them can describe the trajectory of the DNA helix through space (DNA bend-
ing), which may have effects on gene expression. Here we concentrate only on
their abundances.

Now suppose we model the sequence L1, L2, . . . , Ln using our iid model
with base probabilities given by (2.1). Since the bases are behaving indepen-
dently of one another, we can use the multiplication rule (2.5) for probabilities
to calculate the probabilities of each dinucleotide r1r2 as

P(Li = r1, Li+1 = r2) = pr1
pr2

. (2.21)

For example, under the independence model, the chance of seeing the dinu-
cleotide AA is pA

2, and the chance of seeing CG is pCpG.
To see whether a given sequence has unusual dinucleotide frequencies com-

pared with the iid model, we compare the observed number O of the dinu-
cleotide r1r2 with the expected number given by E = (n − 1)pr1

pr2
. (Note

that n−1 is the number of dinucleotides in a string of length n.) One statistic
to use is

X2 =
(O − E)2

E
. (2.22)

The rationale for using this statistic is as follows. If the observed number
is close to the expected number (so that the model is doing a good job of
predicting the dinucleotide frequencies), X2 will be small. If, on the other
hand, the model is doing a poor job of predicting the dinucleotide frequencies,
then X2 will tend to be large.

All that remains is to determine which values of X2 are unlikely if in fact
the model is true. This turns out to be a subtle problem that is beyond the
scope of this book, but we can at least give a recipe. For further details, see
Exercise 10.

(a) Calculate the number c given by

c =

{
1 + 2pr1

− 3p2
r1

, if r1 = r2;
1 − 3pr1

pr2
, if r1 	= r2.

(b) Calculate the ratio X2/c, where X2 is given in (2.22).
(c) If this ratio is larger than 3.84, conclude that the iid model is not a good

fit.

If the base frequencies are unknown, the same approach works if the fre-
quencies fr(A), fr(C), fr(G), and fr(T) are estimated from the data. Table 2.2
presents the observed values of X2/c for the first 1000bp of two organisms,
E. coli (GenBank ID NC 000913) and Mycoplasma genitalium (GenBank ID
L43967). It can be seen that E. coli dinucleotide frequencies are not well-
described by the simple iid model, whereas the M. genitalium sequence is not

50 2 Words

as bad. As one might have expected, given the biological nature of genomic
sequences, there are some dinucleotides whose frequencies differ significantly
from what would be expected from the iid model.

Table 2.2. Observed values of X2/c for the first 1000 bp of each genome. For E. coli,
the base frequencies were taken as (0.25, 0.25, 0.25, 0.25), whereas for M. genitalium

they were (0.45, 0.09, 0.09, 0.37), close to the observed frequencies. Significant values
are in bold.

Observed X2/c for
Dinucleotide E. coli M. genitalium

AA 6.78 0.15
AC 0.05 1.20
AG 5.99 0.18
AT 0.01 0.01
CA 2.64 0.01
CC 0.03 0.39
CG 0.85 4.70
CT 4.70 1.10
GA 2.15 0.34
GC 10.04 1.07
GG 0.01 0.09
GT 1.76 0.61
TA 5.99 1.93
TC 9.06 2.28
TG 3.63 0.05
TT 1.12 0.13

2.6 Introduction to Markov Chains

As we can see from Table 2.2, real genomes have sequence properties more
complicated than those described by our simple iid model. A more complicated
probabilistic model is required to capture the dinucleotide properties of real
genomes. One approach is to use a Markov chain, a natural generalization
of a sequence of independent trials. Many applications of Markov chains in
computational biology are described in Durbin et al. (1998). Suppose that we
examine a sequence of letters corresponding to the genome of an organism. If
we focus on position n, we realize that the character at that position might
be dependent upon the letters preceding it. For example, human DNA has a
lower than expected frequency of the dinucleotide 5′-CG-3′: if we have a C at
position t−1, then the probability of a G at position t will be lower than might
be expected if the letter at position t− 1 were A, G, or T. To make these ideas

2.6 Introduction to Markov Chains 51

precise, we make use of more ideas from probability, particularly the notion
of conditional probability.

2.6.1 Conditional Probability

We consider events, which are subsets of the sample space Ω. In the earlier
examples, events were usually defined in terms of outcomes of random vari-
ables, so that Ω corresponds to the set X of possible outcomes of a single
experiment. In particular, P(Ω) = 1, and

P(A) + P(Ac) = 1,

for any event A, where Ac denotes the complement Ω−A of A. For two events
A and B, we define the intersection of A and B, written A ∩ B, as the set of
elements in Ω belonging to both A and B. The union of A and B, written
A ∪ B, is the set of elements of Ω belonging to either A or B (and possibly
both). The conditional probability of A given B, denoted by P(A | B), is
defined by

P(A | B) =
P(A ∩ B)

P(B)
, (2.23)

when P(B) > 0 (and, by convention, = 0 if P(B) = 0). The term P(A ∩ B) is
read “probability of A and B.”

A number of useful consequences derive from this definition, among them
Bayes’ Theorem, which states that

P(B | A) =
P(A | B)P(B)

P(A)
. (2.24)

Suppose next that B1, B2, . . . , Bk form a partition of Ω:

(a) The Bi are disjoint (i.e., Bi ∩ Bj = ∅ for i 	= j)
(b) and exhaustive (i.e., B1 ∪ B2 ∪ · · · ∪ Bk = Ω).

Another useful identity is known as the law of total probability: for any event
A, and a partition B1, . . . , Bk,

P(A) =

k∑
i=1

P(A ∩ Bi)

=

k∑
i=1

P(A | Bi)P(Bi). (2.25)

A number of applications of these results are given in the exercises at the end
of the chapter.

52 2 Words

2.6.2 The Markov Property

We study a sequence of random variables {Xt, t = 0, 1, 2, . . .} taking values
in the state space X . For example, Xt might be the letter in position t of a
DNA sequence, and the state space is the set X = {A, C, G, T}. The sequence
{Xt, t ≥ 0} is called a first-order Markov chain if the probability of finding
a particular character at position t + 1 given the preceding characters at
positions t, t−1, and so forth down to position 0 is identical to the probability
of observing the character at position t + 1 given the character state of the
immediately preceding position, t. In other words, only the previous neighbor
influences the probability distribution of the character at any position. More
formally, {Xt, t ≥ 0} is called a first-order Markov chain if it satisfies the
Markov property,

P(Xt+1 = j | Xt = i, Xt−1 = it−1, . . . , X0 = i0) = P(Xt+1 = j | Xt = i),

for t ≥ 0 and for all i, j, it−1, . . . , i0 ∈ X . Markov chains of order k correspond
to the case where the conditional distribution of the present position depends
on the previous k positions. We do not consider higher-order Markov chains
in this book.

We consider Markov chains that are homogeneous, which means the prob-
ability P(Xt+1 = j | Xt = i) is independent of the position t in the sequence.
For example, P(Xt+1 = G | Xt = C) is the same throughout the sequence if
the Markov chain is homogeneous. The probabilities common to all positions
are denoted by pij ,

pij = P(Xt+1 = j | Xt = i), i, j ∈ X .

The pij are the elements of a matrix P called the one-step transition matrix
of the chain. In the matrix P below, we show what the transition matrix
would look like for DNA. Each row corresponds to one of the possible states
at position t (i.e., row 1 corresponds to Xt = A), and each column corresponds
to the possible state at t + 1 (Xt+1 = A, C, G, or T):

P =

⎛
⎜⎜⎝

pAA pAC pAG pAT
pCA pCC pCG pCT
pGA pGC pGG pGT
pTA pTC pTG pTT

⎞
⎟⎟⎠ .

As we indicated, if the Markov chain is homogeneous, then this transition
matrix applies all along the chain. Since after any position there must be
one of the characters from X , we see that

∑
j pij = 1 for each value of i.

If all the rows in P were identical, then the next position from any starting
position would have the same distribution, regardless of the identity of the
character at the current position. This corresponds to the iid model we used
in Section 2.3.2.

2.6 Introduction to Markov Chains 53

The transition matrix tells us the probabilities that apply as we go from the
state at position t to the state at position t+1. For example, if Xt = A, then the
probability that Xt+1 = G is pAG. But how do we start the chain? To completely
specify the evolution of the Markov chain, we need both the transition matrix
and the initial probability distribution, π. The initial probability distribution
can be written as a row vector whose elements are

πi = P(X0 = i), i ∈ X .

In the case of DNA, the πi are the initial probabilities (at position 0) of A, C,
G, and T.

To find the probability distribution for the states at position 1 (represented
by row vector π(1)), we use the law of total probability as follows:

P(X1 = j) =
∑
i∈X

P(X0 = i, X1 = j)

=
∑
i∈X

P(X0 = i)P(X1 = j|X0 = i)

=
∑
i∈X

πipij . (2.26)

You may recognize this as the product of the row vector π with the matrix
P , so that (in matrix notation)

π(1) = πP.

To compute the probability distribution for the states at position 2 (repre-
sented by row vector π(2)), we first note that P(X2 = j|X0 = i) is the i, jth
element of the matrix PP = P 2. This is another application of the law of
total probability,

P(X2 = j|X0 = i) =
∑
k∈X

P(X2 = j, X1 = k|X0 = i)

=
∑
k∈X

P(X2 = j|X1 = k, X0 = i)P(X1 = k|X0 = i)

=
∑
k∈X

P(X2 = j|X1 = k)P(X1 = k|X0 = i)

=
∑
k∈X

pikpkj

= (PP)ij ,

as required. (Note that the second line follows from the definition of condi-
tional probability, the third from the Markov property.) Copying the argument
that leads to (2.26) then shows that the elements of π(2) are given by

54 2 Words

π
(2)
j = P(X2 = j) =

∑
i

πi(P
2)ij .

This can be generalized to the tth position, giving

P(Xt = j) =
∑

i

πi(P
t)ij ,

where the elements (P t)ij correspond to the elements of the matrix generated
by multiplying the transition matrix by itself t times (a total of t factors). This
expression gives the probability distribution, P(Xt = j), at any position t.

It is possible that the distribution π(t) is the same for every t. This is called
a stationary distribution of the chain. This occurs when

πj =
∑

i

πipij for all j.

In matrix notation, this condition is π = πP . If X0 also has π as its distribu-
tion, then π = πP t and

P(Xt = j) = πj .

This shows that Xt then has the same distribution for every t. Note that this
does not contradict the dependence of the state at t on the state at t − 1.

2.6.3 A Markov Chain Simulation

To illustrate the use of a Markov chain, we use the observed dinucleotide fre-
quencies of M. genitalium to determine the parameters of a Markov model.
The observed dinucleotide relative frequencies are given below; each row spec-
ifies a base, and each column specifies the following base:

A C G T

A

C

G

T

⎛
⎜⎜⎝

0.146 0.052 0.058 0.089
0.063 0.029 0.010 0.056
0.050 0.030 0.028 0.051
0.087 0.047 0.063 0.140

⎞
⎟⎟⎠ .

(2.27)

The individual base frequencies (the base composition) may be calculated
from the matrix by summing across the rows. We obtain pA = 0.345, pC =
0.158, pG = 0.159, and pT = 0.337. To estimate the AA element of the transition
matrix P of the chain, we note that

pAA = P(Xt = A | Xt−1 = A) =
P(Xt = A, Xt−1 = A)

P(Xt−1 = A)
≈ 0.146

0.345
= 0.423.

In this calculation, we used the observed dinucleotide frequency matrix to find
the proportion 0.146 of the dinucleotide AA and the base frequency vector to
find the proportion 0.345 of A. The same estimation procedure can be done

2.6 Introduction to Markov Chains 55

for the 15 other entries of P , and we arrive at an estimated transition matrix
of

P =

A C G T

A

C

G

T

⎛
⎜⎜⎝

0.423 0.151 0.168 0.258
0.399 0.184 0.063 0.354
0.314 0.189 0.176 0.321
0.258 0.138 0.187 0.415

⎞
⎟⎟⎠ .

The rows sum to unity, to within rounding error, as they should. The smallest
matrix element (pCG = 0.063) corresponds to placing G at a position given C at
the previous position. For our initial distribution π, we assign vector elements
just using the base composition:

π = (0.345, 0.158, 0.159, 0.337).

Now we are ready to simulate a sequence string that resembles M. geni-
talium DNA, at least in terms of dinucleotide frequencies. We don’t expect
it to look like actual M. genitalium DNA because our probabilistic model is
still likely to be too simple: the model is capable of generating the correct
proportions of k-tuples with k = 1 and k = 2, but it does not include the
“machinery” for simulating k-tuple frequencies for k > 2. The details are
given in Computational Example 2.3.

Computational Example 2.3: Simulating a string having character-
istics of Mycoplasma DNA

We generate a sequence having 50,000 positions. We code the bases as follows:
A = 1, C = 2, G = 3, and T = 4. By using numbers instead of characters, we
can use logical operators (==, !=, >, ...) in our analysis of the sequence.
The values for the transition matrix and π were presented above. We simulate
the sequence with the aid of R (Appendix A). First, we write an R function
(program) to generate the sequence. For this function, we supply the following
input variables (arguments): the transition matrix P , π, and n, the length of
the string to be generated. We also supply a vector x containing the characters
to be sampled. A function that will simulate the sequence is presented below:

> markov1 <- function(x,pi,P,n){

x = vector [1 2 3 4] representing A, C, G, T, respectively

pi = the probability distribution for X0: (1x4 row vector)

P = transition matrix (4x4)

n = length of simulated sequence

Initialize vector to contain simulated sequence

mg <- rep(0,n)

Produce initial element

mg[1] <- sample(x,1,replace=TRUE,pi)

for(k in 1:(n-1)){

56 2 Words

mg[k+1]<-sample(x,1,replace=T,P[mg[k],])

}

return(mg)

}

Lines prefixed by # are comments and are not executed. The R library function
sample() is employed to generate an element to be placed at position i + 1
given a particular letter at i. Use the help(sample) command at the R prompt
for documentation for this function. Note particularly how the probability
distributions pi and P[i,], the rows of the transition matrix, are employed
for each use of sample(). Each application of markov1 will produce a different
string (check this), but the overall properties of each string should be similar.
To input the parameters in the simulation, we use:

> x <- c(1:4) # Loading parameters

> pi <- c(.342,.158,.158,.342)

> P <- matrix(scan(),ncol=4, nrow=4,byrow=T)

1: .423 .151 .168 .258

5: .399 .184 .063 .354

9: .314 .189 .176 .321

13: .258 .138 .187 .415

17: # enter "return" here to end input

Application of markov1 uses the following:

> tmp<-markov1(x,pi,P,50000)

Checking the simulation output

We can check the base composition (remembering that C is represented by 2
and G is represented by 3) of the generated sequence:

> length(tmp[tmp[]==1])

[1] 16697

> length(tmp[tmp[]==2])

[1] 8000

> length(tmp[tmp[]==3])

[1] 7905

> length(tmp[tmp[]==4])

[1] 17398

> (8000+7905)/(16697+8000+7905+17398) # compute fr(G+C)

[1] 0.3181

This compares favorably with the value 31.6% G+C given in the transition
matrix. Now we check whether tmp contains an appropriate fraction of CG
dinucleotides:

2.7 Biological Words with k = 3: Codons 57

> count=0

> for(i in 1:49999){ # 49999 because i+1 undefined for 50000

+ if(tmp[i]==2 && tmp[i+1]==3)

+ count<-count+1}

> count

[1] 482

> count/49999

[1] 0.0096

From (2.27), the relative abundance of the CG dinucleotide in M. genitalium
is 0.010, whereas the string produced by the Markov model contains CG at a
relative abundance 0.0096. This matches the observed data well. You should
verify that other dinucleotide relative abundances are correctly predicted by
your simulation. Evidently, the Markov model provides a good probabilistic
description of the data for M. genitalium DNA.

2.7 Biological Words with k = 3: Codons

As mentioned in Chapter 1, there are 61 codons that specify amino acids and
three stop codons. Since there are 20 common amino acids, this means that
most amino acids are specified by more than one codon. This has led to the use
of a number of statistics to summarize the “bias” in codon usage. An example
of such a statistic is shown later. To show how these codon frequencies can
vary, consider the specific example of the E. coli proteins. Table 2.3 displays
the predicted and observed codon relative frequencies for three (out of 20)
particular amino acids found in 780 genes of E. coli. (At the time this work
was done, no complete genome sequences were available for any organism.)
The predicted relative frequencies are calculated as follows.

For a sequence of independent bases L1, L2, . . . , Ln the expected 3-tuple
relative frequencies can be found by using the logic employed for dinucleotides
in (2.21). We calculate the probability of a 3-word as

P(Li = r1, Li+1 = r2, Li+2 = r3) =

P(Li = r1)P(Li+1 = r2)P(Li+2 = r3). (2.28)

This provides the expected frequencies of particular codons. To get the entries
in Table 2.3, we calculate the relative proportion of each of the codons making
up a particular amino acid. Using the base frequencies from Table 2.1, we find
that

P(TTT) = 0.246 × 0.246× 0.246 = 0.01489,

while
P(TTC) = 0.246 × 0.246× 0.254 = 0.01537.

58 2 Words

It follows that among those codons making up the amino acid Phe, the ex-
pected proportion of TTT is

0.01489

0.01489 + 0.01537
= 0.492.

Allowing for approximations in the base frequencies of E. coli, this is the value
given in the first row of the second column in Table 2.3.

Table 2.3. Comparison of predicted and observed triplet frequencies in coding
sequences for a subset of genes and codons from E. coli. Figures in parentheses
below each gene class show the number of genes in that class. Data were taken from
Médigue et al. (1991).

Observed
Gene Class I Gene Class II

Codon Predicted (502) (191)

Phe TTT 0.493 0.551 0.291
TTC 0.507 0.449 0.709

Ala GCT 0.246 0.145 0.275
GCC 0.254 0.276 0.164
GCA 0.246 0.196 0.240
GCG 0.254 0.382 0.323

Asn AAT 0.493 0.409 0.172
AAC 0.507 0.591 0.828

Médigue et al. (1991) clustered the different genes into three groups based
on such codon usage patterns, and they observed three clusters. For Phe
and Asn different usage patterns are observed for Gene Class I and Gene
Class II. For Gene Class II in particular, the observed codon frequencies differ
considerably from their predicted frequencies. When Médigue et al. checked
the gene annotations (names and functions), they found that Class II genes
were largely those such as ribosomal proteins or translation factors—genes
expressed at high levels—whereas Class I genes were mostly those that are
expressed at moderate levels.

A statistic that can describe each protein-coding gene for any given or-
ganism is the codon adaptation index, or CAI (Sharp and Li, 1987). This
statistic compares the distribution of codons actually used in a particular
protein with the preferred codons for highly expressed genes. (One might also
compare them to the preferred codons based on gene predictions for the whole
genome, but the CAI was devised prior to the availability of whole-genome
sequences.) Consider a sequence of amino acids X = x1, x2, . . . , xL represent-
ing protein X , with xk representing the amino acid residue corresponding to
codon k in the gene. We are interested in comparing the actual codon usage

2.7 Biological Words with k = 3: Codons 59

with an alternative model: that the codons employed are the most probable
codons for highly expressed genes. For the codon corresponding to a particu-
lar amino acid at position k in protein X , let pk be the probability that this
particular codon is used to code for the amino acid in highly expressed genes,
and let qk correspond to the probability for the most frequently used codon of
the corresponding amino acid in highly expressed genes. The CAI is defined
as

CAI =

[
L∏

k=1

pk/qk

]1/L

.

In other words, the CAI is the geometric mean of the ratios of the probabilities
for the codons actually used to the probabilities of the codons most frequently
used in highly expressed genes. An alternative way of writing this is

log(CAI) =
1

L

L∑
k=1

log(pk/qk).

This expression is in terms of a sum of the logarithms of probability ratios, a
form that is encountered repeatedly in later contexts.

For an example of how this works, consider the amino acid sequence from
the amino terminal end of the himA gene of E. coli (which codes for one of the
two subunits of the protein IHF: length L = 99). This is shown in Fig. 2.2, and
below it are written the codons that appear in the corresponding gene. Un-
derneath is a table showing probabilities (top half) and corresponding codons
(in corresponding order) in the bottom half. The maximum probabilities (the
qk) are underlined. The CAI for this fragment of coding sequence is then given
by

CAI =

[
1.000

1.000
× 0.199

0.469
× 0.038

0.888
× 0.035

0.468
· · ·
]1/99

.

The numerator of each fraction corresponds to pk, the probability that the
observed codon in the himA gene sequence would actually be used in a highly
expressed gene. If every codon in a gene corresponded to the most frequently
used codon in highly expressed genes, then the CAI would be 1.0. In E. coli,
a sample of 500 protein-coding genes displayed CAI values in the range from
0.2 to 0.85 (Whittam, 1996).

Why do we care about statistics such as the CAI? As we will see in Chap-
ter 11, there is a correlation between the CAI and mRNA levels. In other
words, the CAI for a gene sequence in genomic DNA provides a first approx-
imation of its expression level: if the CAI is relatively large, then we would
predict that the expression level is also large.

If we wanted a probabilistic model for a genome, k = 3, we could employ a
second (or higher)-order Markov chain. In the second-order model, the state
at position t+1 depends upon the states at both t and t− 1. In this case, the
transition matrix could be represented by using 16 rows (corresponding to all

60 2 Words

M A L T K A E M S E Y L F ...
ATG GCG CTT ACA AAA GCT GAA ATG TCA GAA TAT CTG TTT ...

1.000 0.469 0.018 0.451 0.798 0.469 0.794 1.000 0.428 0.794 0.193 0.018 0.228
 0.057 0.018 0.468 0.202 0.057 0.206 0.319 0.206 0.807 0.018 0.772
 0.275 0.038 0.035 0.275 0.033 0.038
 0.199 0.033 0.046 0.199 0.007 0.033
 0.007 0.037 0.007

0.888 0.176 0.888

ATG GCT TTA ACT AAA GCT GAA ATG TCT GAA TAT TTA TTT
 GCC TTG ACC AAG GCC GAG TCC GAG TAC TTG TTC
 GCA CTT ACA GCA TCA CTT
 GCG CTC ACG GCG TCG CTC
 CTA AGT CTA
 CTG AGC CTG

Fig. 2.2. Example of codon usage patterns in E. coli for computation of the codon
adaptation index of a gene. The probability for the most frequently used codon in
highly expressed genes is underlined.

possible dinucleotide states for t − 1 and t) and four columns (corresponding
to the possible states at position t + 1). We do not explore this further here.

2.8 Larger Words

The number and distributions of k-tuples, k > 3, can have practical and
biological significance. Some particularly important k-tuples correspond to
k = 4, 5, 6, or 8. These include recognition sites for restriction endonucleases
(e.g., 5′-AGCT-3′ is the recognition sequence for endonuclease AluI, 5′-GAATTC-
3′ is the recognition sequence for EcoRI, and 5′-GCGGCCGC-3′ is the recog-
nition sequence for NotI). The distribution of these k-tuples throughout the
genome will determine the distribution of restriction endonuclease digest frag-
ments (“restriction fragments”). These distributions are discussed in Chap-
ter 3. There are also particular words (e.g., Chi sequences 5′-GCTGGTGG-3′ in E.
coli, k = 8) that may be significantly over-represented in particular genomes
or on one or the other strands of the genome. For example, Chi appears 761
times in the E. coli chromosome compared with approximately 70 instances
predicted using base frequencies under the iid model. Moreover, Chi sequences
are more abundant on the leading strand than on the lagging strand. These
observations relate in part to the involvement of Chi sequences in general-
ized recombination. Another example is the uptake sequences that function
in bacterial transformation (e.g., 5′-GCCGTCTGAA-3′ in Neisseria gonorrhoeae,
k = 10). Other examples of over-represented k-tuples can be found in the re-
view by Karlin et al. (1998). Some sequences may be under-represented. For
example, 5′-CATG-3′ occurs in the E. coli K-12 chromosome at about 1/20 of
the expected frequency.

2.9 Summary and Applications 61

k-words (k ≥ 4) are also useful for analyzing particular genomic subse-
quences. At the end of the next chapter, we illustrate how 4-word frequencies
can be used to quantify the differences between E. coli promoter sequences
and “average” genomic DNA.

2.9 Summary and Applications

In the cases k = 1, 2, and 3 above, we saw that frequencies of words or
statistics derived from them (GC skew for k = 1) were not as predicted from the
independent, identically distributed base model. This is no surprise: genomes
code for biological information, and we would therefore not expect the iid
model to provide an accurate description for real genomes. The frequencies
of k-tuples have a number of applications. We already mentioned that GC

skew can be used to predict locations of replication origins and termini in
prokaryotes. Prokaryotes also may engage in gene transfer, and local genome
regions having aberrant base compositions may indicate genome segments
acquired by lateral transfer. For eukaryotes, gene regions may have on average
a different base composition than regions outside genes (e.g., human genes are
relatively GC-rich compared with the genome as a whole).

For k = 3, we saw that different gene classes have different codon usage fre-
quencies. In general, the distribution of codon usage differs from organism to
organism. The codon usage pattern of an anonymous DNA sequence from an
organism can be compared against the overall usage pattern for that organism
to help determine whether the reading frame being analyzed probably is, or is
not, a protein-coding region. In Sections 2.5 and 2.7, words were described in
terms of probabilistic models. Sometimes the observed frequencies of k-words
can be used to make inferences about DNA sequences. For example, suppose
that we were given a sequence string that hypothetically could be a portion
of a candidate exon or prokaryotic gene:

GACGTTAGCTAGGCTTTAATCCGACTAAACCTTTGATGCATGCCTAGGCTG

Simply by noting the stop codons (underlined) in all three reading frames,
and knowing that a typical bacterial gene contains, on average, more than
300 codons, or that the typical human exon, for example, contains around 50
codons, we can make a reasonable inference that this string does not code for
a protein.

k-tuple frequencies can assist in classifying DNA sequences by content,
such as predicting whether an unannotated sequence is coding or noncod-
ing. Because coding sequences commonly specify amino acid strings that are
functionally constrained, we would expect that their distribution of k-tuple
frequencies would differ from that of noncoding sequences (e.g., intergenic or
intronic sequences). Consider in-frame hexamers (k = 6). There are 4096 of
these 6-tuple words. We can already predict from known polypeptide sequence

62 2 Words

data that some 6-tuples will be infrequent. For example, the pair of residues
Trp-Trp in succession is not common in protein sequences, which implies that
the corresponding dicodon hexamer, TTGTTG, is likely to be relatively infre-
quent in coding sequences. Alternatively, we could use k = 3 and compute the
CAI within open reading frames to identify those that might correspond to
highly expressed genes (i.e., CAI close to 1.0). k-tuple frequencies and other
content measures such as the presence of particular signals (see Chapter 9)
are among the statistical properties employed by computational gene-finding
tools.

References

Campbell AM, Mrázek J, Karlin S (1999) Genome signature comparisons
among prokaryote, plasmid, and mitochondrial DNA. Proceedings of the
National Academy of Sciences USA 96:9184–9189.

Derive
TM 5. See http://education.ti.com/us/product/software/derive

/features/features.html

Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge: Cambridge
University Press.

Karlin S, Campbell AM, Mrázek J (1998) Comparative DNA analysis across
diverse genomes. Annual Review of Genetics 32:185–225.

Médigue C, Rouxel T, Vigier P, Hénaut A, Danchin A (1991) Evidence for
horizontal gene transfer in Escherichia coli speciation. Journal of Molec-
ular Biology 222:851–856.

Sharp PM, Li W-H (1987) The codon adaptation index—a measure of direc-
tional synonymous codon usage bias, and its potential applications. Nucleic
Acids Research 15:1281–1295.

Whittam TS (1996) In Neidhardt FC (Ed. in Chief), Curtiss III R, Ingraham
JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter
M, Umbarger HE (eds). Escherichia coli and Salmonella: Cellular and
Molecular Biology. Washington, D.C.: ASM Press, pp 2708–2720.

Exercises

Exercise 1. The base composition of a certain microbial genome is pG =
pC = 0.3 and pA = pT = 0.2. We are interested in 2-words where the letters
are assumed to be independent. There are 4 × 4 = 16 2-words.

(a) Present these 16 probabilities in a table. (Do your 16 numbers sum to
1.0?)

(b) Purine bases are defined by R = {A, G} and pyrimidine bases by Y = {C, T}.
Let E be the event that the first letter is a pyrimidine, and F the event

Exercises 63

that the second letter is A or C or T. Find P(E), P(F), P(E ∪F), P(E ∩F),
and P(F c).

(c) Set G={CA, CC}. Calculate P(G | E), P(F | G ∪ E), P(F ∪ G | E).

Exercise 2. For three events A, B, and C show that P(A ∩ B | C) = P(A |
B ∩ C)P(B | C).

Exercise 3. The independent random variables X and Y have the following
expectations: E(X) = 3, E(X2) = 12, E(Y) = 5, and E(Y 2) = 30. Find

(a) E(X + Y), E(2X + 1), E(2X + 0.3Y) and E(2X − 0.3Y).
(b) VarX, VarY, Var(2X +5), Var(X +Y), Var(5X +7Y), Var(5X − 7Y), and

Var(5X + 7Y + 1600).

Exercise 4. Suppose N has a binomial distribution with n = 10 and p = 0.3.

(a) Using the formula (2.17), calculate P(N = 0), P(N = 2), E(N), and VarN .
(b) Using R and Computational Example 2.2, simulate observations from N .

Use the simulated values to estimate the probabilities you calculated in
(a), and compare with the results in (a).

(c) Now use R to simulate observations from N when n = 1000 and p = 0.25.
What is your estimate of P(N ≥ 280)? (See (2.20).)

Exercise 5. Verify the terms in the first row of the transition matrix P pre-
sented in Section 2.6.3. Describe how you would use the sequence of M. geni-
talium to produce this matrix.

Exercise 6. Find the stationary distribution of the chain with transition ma-
trix P in Section 2.6.3; that is, solve the equations π = πP subject to the
elements of π begin positive and summing to 1. Compare π to the base com-
position of M. genitalium, and comment.

Exercise 7. Using the values for P in Section 2.6.3, compute P 2, P 4 and P 8.
(Remember to use %*% as the matrix multiplication operator in R, not *.)
What quantities are the row entries approaching? This distribution is called
the limiting distribution of the chain. Compare to the results of Exercise 6.

Exercise 8. Perform the simulation in Chapter 2.6.3, and verify that the
appropriate dinucleotide frequencies are produced in your simulated string.

Exercise 9. Using the sequence of E. coli (GenBank ID NC 000913) and the
method in Section 2.6.3, find the dinucleotide frequencies and the estimated
transition matrix. (Hint: Download the sequence in FASTA format from the
NCBI website, and convert letters to numbers using a text editor.)

Exercise 10. In this example, we use R to verify the distribution of the statis-
tic X2 given in (2.22), as used in Table 2.2. To do this, first choose a pair of
bases r1r2, and calculate the appropriate value of c by following the recipe
after (2.22) for the given base frequencies p = (p1, . . . , p4). Now use R to

64 2 Words

repeatedly simulate strings of 1000 letters having distribution p, calculate O
(the number of times the pair of letters r1r2 is observed) and E, and hence
X2/c. Plot a histogram of these values, and compare it to the theoretical dis-
tribution (which is the χ2 distribution with 1 degree of freedom). Remark:
This simulation approach provides a useful way to estimate percentage points
of the distribution of any test statistic.

Exercise 11. The genome composition π of E. coli can be computed from Ta-
ble 2.1. Take the first 1000 bps of the E. coli sequence you used in the previous
exercise. We are going to use a variant of (2.22) to test if this 1000bp sequence
has an unusual base composition when compared with π. The statistic to use
is

X2 =

4∑
i=1

(Oi − Ei)
2

Ei
, (2.29)

where Oi denotes the number of times base i is observed in the sequence, and
Ei denotes the expected number (assuming that frequencies are given by π).

(a) Calculate Oi and Ei, i = 1, . . . , 4, and then X2.
(b) Values of X2 that correspond to unusual base frequencies are determined

by the large values of the χ2 distribution with 4−1 = 3 degrees of freedom.
Using a 5% level of significance, are data consistent with π or not? [Hint:
percentage points of the χ2 distribution can be found using R.]

Exercise 12. In this exercise we have two random variables X and Y which
are not independent. Their joint probability distribution is given in the fol-
lowing table:

Y
1 3 6 9

2 0.11 0.05 0.20 0.08
X 3 0.20 0.02 0.00 0.10

7 0.00 0.05 0.10 0.09

The values of X are written in the first column and the values of Y in the
first row. The table is read as P(X = 7 & Y = 6) = 0.10, and so on.

(a) Find the marginal distribution of X and Y . (That is, P(X = 2), P(X =
3),)

(b) Write Z = XY . Find the probability distribution of Z.
(c) The covariance between any two random variables is defined by

Cov(X, Y) = E(X − EX)(Y − EY).

Show that Cov(X, Y) = E(XY) − EX × EY.
(d) Find EX, EY, σ2

X = VarX, σ2
Y = VarY, and Cov(X, Y) for the example in

the table.

Exercises 65

(d) The correlation coefficient ρ is defined by ρX,Y = Cov(X, Y)/σXσY .
It can be shown that −1 ≤ ρ ≤ 1, the values ±1 arising when Y is a linear
function of X . Verify this last statement.

(e) Calculate ρ for the example in the table.

Exercise 13. Using R, simulate n pairs of observations (Xi, Yi), i = 1, 2, . . . , n
from the distribution in the table in Exercise 12.

(a) From these observations calculate the estimates X̄, Ȳ , s2
X , and s2

Y (see
(2.18), (2.19)).

(b) Calculate the estimate s2
X,Y of Cov(X, Y) defined by

s2
X,Y =

1

n − 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ).

(c) Calculate the estimate r of the correlation coefficient ρ via r = s2
X,Y /(sX sY).

(d) Compare the estimated covariance and correlation obtained for different
values of n with the theoretical values obtained in Exercise 12.

3

Word Distributions and Occurrences

3.1 The Biological Problem

Suppose that we wanted to obtain a sample of DNA that contained a specific
gene or portion of a gene with very little other DNA. How could we do this?
Today, given a genome sequence, we could design PCR primers flanking the
DNA of interest and by PCR could amplify just that segment. Prior to the
development of rapid genomic sequencing technologies, the process was much
more complicated.

DNA is a macromolecule. That means that DNA molecules can have very
high molecular weights. Because DNA can be long (for example, the DNA
in human chromosome 1, at 225,000,000bp, is 7.65 cm long) but is only 20
×10−8 cm thick, it is easily broken by hydrodynamic shear. Such a long
molecule cannot be transferred from one tube to another without breakage
during pipetting. This was found to be a problem even with smaller molecules
(e.g., 50,000bp). The result of shearing is a collection of DNA fragments that
are not broken at the same position, so that molecules containing the gene of
interest intact might be very rare. What would be desirable is a method for
cutting out the DNA at reproducible locations on the larger molecule together
with a method for amplifying this DNA segment. Restriction endonucleases
provided the means for precisely and reproducibly cutting the DNA into frag-
ments of manageable size (usually in the size range of 100s to 1000s of base
pairs), and molecular cloning provided the method for amplifying the DNA
of interest (Section 1.5.1). The clone containing the DNA of interest could be
identified by hybridization of a probe DNA (known to contain the sequence
of interest) to DNA from bacterial colonies (if the DNA had been cloned into
plasmid vectors) or from plaques (if a bacteriophage cloning vector had been
used).

The cloned DNA fragment can be put in context with other fragments
(which themselves can be subsequently analyzed) by creating a type of physi-
cal map called a restriction map. A restriction map is a display of positions
on a DNA molecule of locations of cleavage by one or more restriction en-

68 3 Word Distributions and Occurrences

donucleases. It is created by determining the ordering of the DNA fragments
generated after digestion with one or more restriction endonucleases. The re-
striction map is useful not only for dissecting a DNA segment for further anal-
ysis but also as a “fingerprint” or bar code that distinguishes that molecule
from any other molecule. Even a list of fragments and their sizes can serve as
a kind of fingerprint. Given a sufficiently large collection of mapped clones, it
is possible to build up a restriction map of the DNA from which the clones
were derived by matching restriction site patterns at the ends of the inserts.
Again, remember that cloning puts DNA of manageable size into vectors that
allow the inserted DNA to be amplified, and the reason for doing this is that
large molecules cannot be readily manipulated without breakage.

The overall process can be summarized as shown in Figure 3.1: given
a DNA molecule, digest the DNA with one or more restriction endonucle-
ases to generate the particular set of fragments dictated by the sequence of
that molecule; determine the sizes of the product fragments by acrylamide or
agarose gel electrophoresis; and then, using one or more techniques, infer the
locations of sites (or equivalently, the order of fragments) in the original DNA
molecule.

When the Human Genome Project was originally contemplated, it was
supposed that a physical map would first be constructed so that appropri-
ate restriction fragments (of known location) could then be sequenced. In
the strictest “top-down” approach, we would first construct a high-resolution
genetic map, then clone the DNA into large insert vectors such as yeast arti-
ficial chromosomes (YACs) or bacterial artificial chromosomes (BACs), sub-
clone the inserts of these into cosmids, which would then be fingerprinted
after restriction endonuclease digestion, and then subclone the cosmid inserts
into plasmids for sequencing (Section 8.4.3). The location of any sequence on
the genome would then be determined by tracing back from plasmid to cos-
mid to YAC, taking into account the restriction map of inserts at each step.
This did not take into account the powerful computational tools that would
later become available, which then made possible random, shotgun sequencing
approaches (sequencing randomly chosen small insert clones, followed by com-
putational sequence assembly). Restriction enzyme digests are still employed
in the shotgun method to assess the contents of the collection of BACs, but
prior physical mapping is not required.

Although restriction mapping is not as central as it once was for genome
analysis, workers at the bench still use restriction mapping to evaluate the
content of clones or DNA constructs of interest, so it is still important to
talk about locations and distributions of restriction endonuclease recognition
sites. This chapter presents the probabilistic basis for analyzing this kind of
problem. In addition, the last section shows how word occurrences can be used
to characterize biologically significant DNA subsequences.

3.1 The Biological Problem 69

A BCD EF G

A

B

C

D

E

F

G

Undigested Molecule

Products:

Digest with

restriction

endonuclease

Determine sizes by

gel electrophoresis

Construct

restriction map

5.0, 3.5, 3.0,

2.5, 2.0, 1.5,

0.5 kb

Fig. 3.1. Restriction endonuclease digestion (one enzyme) and the corresponding
physical map for a linear molecule. Fragments are labeled in order of decreasing
size, as would be observed after gel electrophoresis. Restriction sites are indicated by
vertical arrows. The order of fragments (D, A, F, G, C, E, B) is originally unknown.
A variety of techniques may be employed to determine this order.

3.1.1 Restriction Endonucleases

Bacteria contain genes for a remarkable collection of enzymes, restriction en-
donucleases. Here is the setting for their discovery. Bacteriophage lambda
grows well on the E. coli strain K-12. However, only a very small percentage
of bacteriophages grown on strain K-12 can grow well on E. coli strain B.
Most of the phage DNA that infects strain B is inactivated by fragmentation.
However, those few bacteriophages that infect E. coli B successfully produce
offspring that can infect E. coli B (but not K-12) with high efficiency.

The reason for these observations is that the host DNA in E. coli B is mod-
ified (by methylation) in a particular manner. The invading DNA is not modi-
fied in this particular way, and consequently it is broken down. In 1970, Hamil-
ton Smith found that a restriction enzyme that he was studying (HindII)
caused cleavage of double-stranded DNA in a short specific nucleotide se-
quence. Methylation of a base in the sequence prevented this cleavage. The
recognition sequence for HindII is

70 3 Word Distributions and Occurrences

5′-GTY
↓

RAC-3′

3′-CAR
↑
YAG-5′

and its methylated form is

5′-GTYRm6AC-3′

3′-CARm6YAG-5′

Arrows indicate the position of cleavage at this site. HindII is an example of
a Type II restriction endonuclease (Types I and III are also known). Type II
enzymes cleave DNA within the recognition sequence. In the case of HindII,
the third position (top strand) can be either pyrimidine (Y = C or T) and
the fourth position can be either purine (R = A or G). Because the cleavages
on the two strands are directly opposite, blunt ends are generated by HindII
cleavage, and this enzyme is not used as much in cloning as are other enzymes.

Type II restriction endonucleases that recognize four to eight specific bases
are known. Sometimes the specific sequences in the recognition sequence are
separated by one or more bases whose identities are indeterminate. For exam-
ple, Sfi I recognizes and cuts within the sequence 5′-GGCCNNNNNGGCC-3′ (N can
be A, C, G, or T). For the sizes of DNA fragments typical in laboratory cloning
experiments, enzymes that recognize six base-pair sequences have been com-
monly used. For example, EcoRI recognizes and cleaves (within the context
of DNA on both sides of the sequence—not shown below)

5′-G
↓

AATTC-3′ −→ 5′-G + 5′-AATTC-3′

3′-CTTAA
↑
G-5′ 3′-CTTAA-5′ G-5′

It will not cleave

5′-GAm6ATTC-3′

3′-CTTAAm6G-3′

The particular usefulness of the Type II enzymes was the production of
extensions (in this case, the 5′ extension AATT), which aided efficient cloning.
With synthetic adapter and linker technologies now available, this is less of a
consideration. More than 600 restriction endonucleases of different types (I,
II, or III) have been described, and over 200 are commercially available.

3.1.2 The Problem in Computational Terms

As described in Chapter 2, the genome of an organism can be represented as a
string L1, . . . , Ln drawn from the alphabet X = {a1, a2, a3, a4} = {A, C, G, T},
where n is the number of base pairs. Given such a string, there are a number
of questions that might arise.

– If we were to digest the DNA with a restriction endonuclease such as
EcoRI, approximately how many fragments would be obtained, and what
would be their size distribution?

3.2 Modeling the Number of Restriction Sites in DNA 71

– Suppose that we observed 761 occurrences of the sequence 5′-GCTGGTGG-3′

in a genome that is 50% G+C and 4.6 Mb in size. How does this number
compare with the expected number (see Section 2.8)? How would one find
the expected number? Expected according to what model?

This chapter provides some tools for answering these sorts of questions.
We model the underlying sequence as a string of independent and identically
distributed letters (Section 2.3.2) and use this model to find the probability
distribution of the number of restriction endonuclease cleavage sites and the
distribution of fragment sizes of a restriction digest. We then inquire about the
expected frequencies of runs of letters (such as AAAAAA· · ·A tracts). These can
be important because of their occurrence in promoter regions. In Chapter 4,
we describe the reverse of the digestion problem: Given a set of fragments
without knowing the DNA sequence, how do we assemble the physical map?

3.2 Modeling the Number of Restriction Sites in DNA

3.2.1 Specifying the Model for a DNA Sequence

If we are given a DNA sample, we usually know something about it—at least
which organism it came from and how it was prepared. This means that usu-
ally we know its base composition (%G+C) and its approximate molecular
weight (especially for bacteriophage or plasmid DNA). In this section, we
inquire about the number and distribution of restriction endonuclease recog-
nition sites and about the distribution of resulting restriction fragment lengths
after digestion by a specified restriction endonuclease. To describe this math-
ematically, we need a model. Since our information about the DNA is limited,
we select the simplest possible model for our DNA sequence: iid letters.

3.2.2 The Number of Restriction Sites

Now that we know the sequence model, we can proceed with analysis of our
restriction site problem (e.g., the number and distribution of sites). We have
modeled the DNA sequence as a string of iid letters at positions 1, 2,. . . ,n.
Restriction endonuclease recognition sequences have length t (4, 5, 6 or 8
typically), and t is very much smaller than n. To begin, our model is going
to assume that cleavage can occur between any two successive positions on
the DNA. This is wrong in detail because, depending upon where cleavage
occurs within the n bases of the recognition sequence (which may differ from
enzyme to enzyme), there are positions near the ends of the DNA that are ex-
cluded from cleavage. (Also, because the ends of DNA molecules may “fray” or
“breathe” for thermodynamic reasons, sites at the ends of molecules may not
be cleaved.) However, since t is much smaller than n, the ends of the molecule
do not affect the result too much, and our approximation that cleavage can
occur between any two positions produces a result that is nearly correct.

72 3 Word Distributions and Occurrences

We again use Xi to represent the outcome of a trial occurring at position
i, but this time Xi does not represent the identity of a base (one of four
possible outcomes) but rather whether position i is or is not the beginning of
a restriction site. That is,

Xi =

{
1, if base i is the start of a restriction site,
0, if not.

(3.1)

We denote by p the probability that any position i is the beginning of a
restriction site. The outcomes are then

Xi =

{
1, with probability p,
0, with probability 1 − p.

If this were a coin-tossing experiment, “heads” might be coded as 1, “tails”
might be coded as 0, and Xi would represent the outcome of the ith toss. If
the coin were fair, p would be equal to 0.5. For the case of restriction sites on
DNA, p depends upon the base composition of the DNA and upon the identity
of the restriction endonuclease. For example, suppose that the restriction en-
donuclease is EcoRI, with recognition sequence 5′-GAATTC-3′. (The site really
recognized is duplex DNA, with the sequence of the other strand determined
by the Watson-Crick base-pairing rules.) Suppose further that the DNA has
equal proportions of A, C, G, and T. The probability that any position is the
beginning of a site is the probability that this first position is G, the next one
is A, the next one is A, the next one is T, the next one is T, and the last one is C.
Since, by the iid model, the identity of a letter at any position is independent
of the identity of letters at any other position, we see from the multiplication
rule (2.6) that

p = P(GAATTC) = P(G)P(A)P(A)P(T)P(T)P(C) = (0.25)6 ∼ 0.00024.

Notice that p is small, a fact that becomes important later.
The appearance of restriction sites along the molecule is represented by the

string X1, X2, . . . , Xn, and the number of restriction sites is N = X1 + X2 +
· · ·+ Xm, where m = n− 5. The sum has m terms in it because a restriction
site of length 6 cannot begin in the last five positions of the sequence, as
there aren’t enough bases to fit it in. As we noted earlier, such end effects
are not significant when the sequence is long, so for simplicity of exposition
we take m = n in what follows. What really interests us is the number of
“successes” (restriction sites) in n trials. If X1, X2, . . . , Xn were independent
of one another, then the probability distribution of N would be known from
the result in Section 2.3.4. N would have a binomial distribution (2.17) with
parameters n and p; the expected number of sites would therefore be np and
the variance np(1 − p). We remark that the Xi are not in fact independent
of one another (because of overlaps in the patterns corresponding to Xi and
Xi+1, for example). The binomial approximation often works well nonetheless.

3.2 Modeling the Number of Restriction Sites in DNA 73

Probabilities of events can be computed using the probability distribution
in (2.17), but as we saw in Section 2.3.3, this can be cumbersome. In the
following sections, we describe two other approximations that can be used for
computing probabilities for the number of successes in a binomial experiment.
Before doing this, we assess how well our very simplified model behaves by
comparing its predictions with data from bacteriophage lambda.

3.2.3 Test with Data

To test the adequacy of the iid model for the DNA sequence and the distribu-
tion of restriction sites, we compare the number of sites predicted under the
model with the observed number of restriction sites (based upon the exper-
imentally measured DNA sequence). For this comparison, we use restriction
endonucleases that recognize four base-pair sequences because this allows easy
comparison for most or all of the 16 possible 4 bp palindromes. (Remember
that most restriction endonucleases having an even-numbered recognition se-
quence display inverted repetition in that sequence, so there are only two
independently variable sites for a 4 bp palindrome; therefore the number of
different 4 bp palindromes is 42 = 16.) In the example in Table 3.1, the lambda
DNA sequence is 48,502bp long, and we use a model with the observed duplex
DNA frequencies pA = pT = 0.2507, pC = pG = 0.2493.

Table 3.1. Comparison of observed and expected numbers of restriction enzyme
cleavage sites for bacteriophage lambda DNA. (The data were taken from GenBank
nucleotide sequence file NC 001416 and from the New England Biolabs online catalog
(http://www.neb.com–Restriction Maps/Frequencies of Restriction Sites).

Enzyme Recognition p EN VarN Observed
sequence number

AluI AGCT 0.00391 190 189 143
BfaI CTAG 0.00391 190 189 13∗

BstUI CGCG 0.00386 187 186 157
HaeIII GGCC 0.00386 187 186 149
HpaII CCGG 0.00386 187 186 328∗

MboI GATC 0.00391 190 189 116∗

MseI TTAA 0.00395 192 191 195
NlaIII CATG 0.00391 190 189 181
RsaI GTAC 0.00391 190 189 113∗

TaqI TCGA 0.00391 190 189 121∗

Recall that the standard deviation is the square root of the variance, which
in all cases above is around 14. In most cases, the observed number of sites
is approximately as predicted, suggesting that the iid model adequately de-
scribes the number of restriction sites for lambda DNA. There are five enzymes

74 3 Word Distributions and Occurrences

(indicated by ∗) whose site numbers in lambda are well over three standard
deviations away from the predicted value. If this were consistently observed
for other bacteriophages of E. coli and for the E. coli chromosome, then we
might hypothesize that the deficiency of these recognition sequences may re-
flect some biochemical feature of the organism (e.g., peculiarities of the DNA
repair system).

3.2.4 Poisson Approximation to the Binomial Distribution

In preparation for looking at the distribution of restriction fragment lengths,
we introduce an approximate formula for P(N = j) when N has a binomial
distribution with parameters n and p. Recall that for the restriction site ex-
ample, p depends upon the particular restriction endonuclease and upon the
base composition of the DNA. For example, we showed above for EcoRI that
p = 0.00024 for DNA that equal frequencies of the four bases. For a molecule
that is 50,000bp long, there would be 50, 000 × 0.00024 = 12 sites expected
according to our model. Notice that because p is very small, the number of
sites is small compared with the length of the molecule. This means that
VarN = np(1 − p) will be very nearly equal to EN = np. Contrast this with
a fair coin-tossing experiment, where p = 0.5. In that case, if we were to per-
form, say, 300 coin tosses, we would have EN = 300 × 0.5 = 150, which is
much larger than VarN = 300 × 0.5 × (1 − 0.5) = 75. In what follows, we
assume that n is large and p is small, and we set λ = np.

In (2.17), we saw that for j = 0, 1, . . . , n,

P(N = j) =
n!

(n − j)!j!
pj(1 − p)n−j .

Now we massage the equation algebraically, factoring the various terms and
canceling in a manner that will seem reasonable a bit later. First, write

P(N = j) =
n(n − 1)(n − 2) · · · (n − j + 1)

j!(1 − p)j
pj(1 − p)n.

Note that there are j terms involving n in the numerator. In the cases in
which we are interested, the expected number of sites is small compared with
the length of the molecule (so values of j that are relevant are small compared
with the length of the molecule, n). This means that

n(n − 1)(n − 2) · · · (n − j − 1) ≈ nj and (1 − p)j ≈ 1.

Substituting these approximations into the equation for P(N = j) and using
λ = np, we get

P(N = j) ≈ (np)j

j!
(1 − p)n =

λj

j!

(
1 − λ

n

)n

.

3.2 Modeling the Number of Restriction Sites in DNA 75

Now recall a result from calculus that, for any x,

lim
n→∞

(
1 − x

n

)n

= e−x.

Since n is large (often more than 104), we replace (1 − λ/n)n by e−λ to get
our final approximation in the form

P(N = j) ≈ λj

j!
e−λ, j = 0, 1, 2,

Some of you will recognize that this is the formula for the Poisson proba-
bility distribution with parameter λ = np. We say that a random variable N
taking values in {0, 1, 2, . . .} has a Poisson distribution with parameter λ if

P(N = j) =
λj

j!
e−λ, j = 0, 1, 2, (3.2)

It can be shown that EN = VarN = λ for the Poisson distribution (see
Exercise 1.

Computational Example 3.1: Poisson approximation for the bino-
mial

We have just illustrated the well-known result that the binomial distribution
can be approximated by the Poisson distribution if np is small or of moderate
size and p is small. To show how this approximation may be used, we estimate
the probability that there are no more than two EcoRI sites in a DNA molecule
of length 10,000, assuming equal base frequencies.

Earlier we calculated that p = 0.00024 in this case. Therefore λ = np is
calculated to be 2.4. The problem is to calculate P(N ≤ 2). Using the Poisson
distribution in (3.2), we get

P(N ≤ 2) ≈ λ0

0!
e−λ +

λ1

1!
e−λ +

λ2

2!
e−λ ≈ 0.570.

This can also be evaluated using the R command ppois, which gives the
distribution function of the Poisson random variable.

> ppois(2,2.4)

[1] 0.5697087

In other words, more than half the time, molecules of length 10,000 and uni-
form base frequencies will be cut by EcoRI two times or less.

3.2.5 The Poisson Process

There is a more general version of the Poisson distribution that is very useful.
It generalizes n into “length” and p into “rate.” The mean of the corresponding

76 3 Word Distributions and Occurrences

Poisson distribution is length × rate. We suppose that events (which were
restriction sites above) are occurring on a line at rate µ; then

P(k events in (x, x + l)) =
e−µl(µl)k

k!
, k = 0, 1, 2,

If there is more than one interval, the lengths of the intervals simply add,

P(k events in (x, x+ l1)∪(y, y+ l2)) =
e−µ(l1+l2)(µ(l1 + l2))

k

k!
, k = 0, 1, 2, . . . ,

as long as the intervals are disjoint (i.e., x < x + l1 ≤ y < y + l2).
Poisson processes have events occurring “uniformly” along the line. It is

easy to generalize the idea to area or volume. For example, lightning strikes
might occur in a county according to a Poisson process. Then µ might be in
units of strikes per square foot (i.e., events/area), and l would be in units of
square feet (area).

3.3 Continuous Random Variables

In the previous section, we saw that the probability of finding N = j restric-
tion sites in a molecule could be represented by the binomial distribution or
the Poisson distribution. These are discrete distributions since N takes on in-
tegral values. To calculate the probability that N takes on a range of values,
for example P(N ≤ k), we calculate a sum,

P(N ≤ k) =
k∑

j=0

P(N = j).

When a random variable X can take on any value in an interval, we call X
continuous. The probabilistic behavior of X is then determined by its prob-
ability density function f(x),−∞ < x < ∞. The function f satisfies

f(x) ≥ 0 for all x, and

∫ ∞

−∞

f(x)dx = 1. (3.3)

To compute the probability that X takes values in a set A, we use

P(X ∈ A) =

∫
A

f(x)dx;

in particular, when A is an interval (a, b], we have

P(a < X ≤ b) =

∫ b

a

f(x)dx.

3.3 Continuous Random Variables 77

The mean EX of a continuous random variable X with density f is defined
as

EX =

∫ ∞

−∞

xf(x)dx, (3.4)

and the variance of X is calculated as

Var(X) =

∫ ∞

−∞

(x − µ)2f(x)dx =

∫ ∞

−∞

x2f(x)dx − µ2, (3.5)

where µ = EX . These definitions are the analogs of those in (2.7) and (2.11),
respectively.

In Section 2.4, we met our first continuous random variable, the one dis-
tributed uniformly over (0, 1). A random variable U is said to have the uni-
form distribution on (a, b) if its density function is

f(x) =

{ 1

b − a
, a < x ≤ b;

0, otherwise.
(3.6)

It is easy to verify that EU = (a + b)/2 and Var U = (b − a)2/12; see Exer-
cise (2).

In the following chapters, we meet several other continuous random vari-
ables. It is convenient at this point to introduce two important examples, the
exponential and the normal. The exponential random variable with parameter
λ has probability density function

f(x) =

{
λe−λx, x ≥ 0;
0, otherwise.

(3.7)

If X has the exponential distribution with parameter λ, then

P(a < X ≤ b) =

∫ b

a

λe−λxdx = e−λa − e−λb.

The mean of X is

EX =

∫ ∞

0

xλe−λxdx = 1/λ,

while

EX2 =

∫ ∞

0

x2λe−λxdx = 2/λ2.

It follows that VarX = 1/λ2.
The random variable Z is said to have a standard normal distribution if

its probability density function is given by

φ(z) =
1√
2π

e−
1

2
z2

,−∞ < z < ∞. (3.8)

78 3 Word Distributions and Occurrences

The probability Φ(z) that Z ≤ z is given by

Φ(z) = P(Z ≤ z) =

∫ z

−∞

φ(x)dx, (3.9)

and the probability that Z lies in the interval (a, b) is

P(a < Z ≤ b) =

∫ b

a

φ(z)dz = Φ(b) − Φ(a), a < b.

The function Φ(z) cannot be written in closed form, but its values can be
computed numerically. For our purposes, we can use R to do this computation.
As shown in the box below, we find for example that

P(−1.96 < Z < 1.96) = 0.95,

and
P(Z > −1) = 1 − Φ(−1) ≈ 0.841.

If Z has the standard normal distribution, we write Z ∼ N(0, 1). It can be
shown that if Z ∼ N(0, 1), then EZ = 0, VarZ = 1.

If Z ∼ N(0, 1), the random variable X = µ + σZ is said to have a Normal
distribution with mean µ and variance σ2; we write X ∼ N(µ, σ2) in this case.
To calculate probabilities for such X , we use the fact that if X ∼ N(µ, σ2),
then Z = (X − µ)/σ ∼ N(0, 1). That is,

P(X ≤ x) = P

(
X − µ

σ
≤ x − µ

σ

)
= Φ

(
x − µ

σ

)
.

For example, if X ∼ N(1, 4), then

P(X ≤ 1.96) = Φ

(
1.96 − 1

2

)
= Φ(0.48) ≈ 0.684

and

P(X ≤ −1.96) = Φ

(−1.96 − 1

2

)
= Φ(−1.48) ≈ 0.069,

so that
P(−1.96 < X ≤ 1.96) = 0.684− 0.069 = 0.615.

These calculations can be performed simply in R, as shown in the box below.

Computational Example 3.2: Using R to compute probabilities for
the normal distribution

To calculate probabilities for the standard normal distribution, we use the R

function pnorm(z), which calculates

pnorm(z) = Φ(z) =

∫ z

−∞

φ(z)dz.

3.4 The Central Limit Theorem 79

> pnorm(1.96,0,1) - pnorm(-1.96,0,1) # P(-1.96 < Z < 1.96)

[1] 0.9500042

> 1 - pnorm(-1) # P(Z > -1)

[1] 0.8413447

To calculate probabilities for the normal random variable X with mean
µ = m and standard deviation σ = s, we use the function pnorm(x,m,s),
where P(X ≤ x) = pnorm(x, m, s). For example,

> pnorm(1.96,1,2)

[1] 0.6843863

> pnorm(-1.96,1,2)

[1] 0.06943662

> pnorm(1.96,1,2) - pnorm(-1.96,1,2)

[1] 0.6149497

as shown in the text.

The concept of independence of continuous random variables X1, . . . , Xn

is just the same as in the discrete case; the formal definition is given in (2.5).

3.4 The Central Limit Theorem

In this section we give another useful approximation that allows us to calculate
probabilities. This result, known as the Central Limit Theorem, applies
to sums or averages of independent, identically distributed random variables.
Assume that X1, X2, . . . , Xn are iid with mean µ and variance σ2, and denote
their sample average by Xn, where

Xn =
1

n
(X1 + · · · + Xn) .

From (2.9) and (2.14), we know that

EXn = µ, VarXn =
σ2

n
,

and therefore that

E

(
Xn − µ

σ/
√

n

)
= 0, Var

(
Xn − µ

σ/
√

n

)
= 1.

The Central Limit Theorem states that if the sample size n is large,

P

(
a ≤ Xn − µ

σ/
√

n
≤ b

)
≈ Φ(b) − Φ(a), (3.10)

80 3 Word Distributions and Occurrences

the approximation improving as the sample size increases. The terms on the
right involve the standard normal distribution function in (3.9). We note that

Xn − µ

σ/
√

n
=

∑n
i=1 Xi − nµ

σ
√

n
,

obtained by multiplying the top and bottom of the left-hand side by n. This
gives a version of the Central Limit Theorem for sums:

P

(
a ≤

∑n
i=1 Xi − nµ

σ
√

n
≤ b

)
≈ Φ(b) − Φ(a). (3.11)

To show the Central Limit Theorem in action, we use simulated binomial
data (see Figure 2.1). In the box below, we show how to use R to superimpose
the standard normal density (3.8) on the histogram of the simulated values.
In each case, we standardize the simulated binomial random variables by
subtracting the mean and then dividing by the standard deviation.

Computational Example 3.3: Illustrating the Central Limit Theo-
rem

First, we generate 1000 binomial observations with n = 25, p = 0.25, and then
standardize them.

> bin25 <- rbinom(1000,25,0.25)

> 25 * 0.25 # Calculate the mean

[1] 6.25

> sqrt(25 * 0.25 * 0.75) # Calculate standard deviation

[1] 2.165064

> bin25 <- (bin25 - 6.25)/2.1651 # Standardize observations

D
e
n
s
it
y

0
.0

0
.1

0
.2

0
.3

0
.4

-4 -2 2 40

Fig. 3.2. Histogram of 1000 standardized replicates of a binomial random variable

with n = 25 trials and success probability p = 0.25. The standard normal density is

superimposed.

3.4 The Central Limit Theorem 81

In Fig. 3.2 we plot a histogram of the observations and then superimpose
the standard normal density. The code to achieve this is given below.

> hist(bin25,xlim=c(-4,4),ylim=c(0.0,0.4),prob=TRUE,

+ xlab="Sample size 25",main="")

> x<-seq(-4,4,0.1) # Generate grid of points

from -4 to 4 in steps of 0.1

> lines(x,dnorm(x))

Now we return to the question posed at the end of Section 2.4: What is
the probability that a random, uniformly distributed DNA sequence of length
1000 contains at least 280 A s? That is, we want to estimate the quantity
P(N ≥ 280) when N has a binomial distribution with parameters n = 1000
and p = 0.25. We saw in (2.3) that N is the sum of iid random variables, so
we can use (3.11) to estimate P(N ≥ 280).

To do this, we calculate the mean and standard deviation for N in (2.3)
having n = 1000, obtaining

E(N) = nµ = 1000× 0.25 = 250,

and

sd(N) =
√

nσ =

√
1000 × 1

4
× 3

4
≈ 13.693.

Hence

P(N ≥ 280) = P

(
N − 250

13.693
>

280 − 250

13.693

)
≈ P(Z > 2.19) = 0.014.

This is in good agreement with the theoretical result 0.016 cited earlier.

3.4.1 Confidence Interval for Binomial Proportion

In Section 2.4, we used simulation to estimate a proportion. The parameter of
interest was p = P(N ≥ 280). In n = 10, 000 repeated simulations of 1000 bp
under the iid model with equal base frequencies, we observed 149 occasions
where the number N of As in the sequence exceeded 280. Each of these we
can call a “success” and the remaining trials “failures.” How accurately have
we estimated the success probability p?

To answer this question, we can use the Central Limit Theorem again.
Write p̂ for the observed proportion of successes in the 10,000 trials. Using
our results about the binomial distribution, we know that the expected value
Ep̂ = p, and Varp̂ = p(1 − p)/10, 000. Given the large number of trials, we
know that

P

(
−1.96 <

p̂ − p√
p(1 − p)/10, 000

< 1.96

)
≈ 0.95.

82 3 Word Distributions and Occurrences

Given that the sample size is very large, we expect p̂ ≈ p, so that

P

(
−1.96 <

p̂ − p√
p̂(1 − p̂)/10, 000

< 1.96

)
≈ 0.95

as well. This statement can be rewritten in the form

P

(
p̂ − 1.96

√
p̂(1 − p̂)

10, 000
< p < p̂ + 1.96

√
p̂(1 − p̂)

10, 000

)
≈ 0.95.

This says that if we repeat our whole simulation many times, the random
interval (

p̂ − 1.96

√
p̂(1 − p̂)

10, 000
, p̂ + 1.96

√
p̂(1 − p̂)

10, 000

)
(3.12)

will cover the true value p about 95% of the time. We call this a 95% confidence
interval for p. In our example, we got p̂ = 0.0149 and a 95% confidence interval
of (0.0125, 0.0173), which does indeed cover the true value of p = 0.0164.

To obtain confidence intervals with confidence levels other than 0.95, all
that has to be done is to replace the value 1.96 in (3.12) with the appropriate
value found from the standard normal distribution. For example, for a 90%
confidence interval use 1.645.

Computational Example 3.4: p-values It is common practice in much of

statistics to measure one’s surprise about the outcome of a series of experi-
ments by reporting the p-value of the result. The p-value is the probability
of obtaining a result more extreme than the value observed in the experi-
ment. For example, suppose we tossed a fair coin 100 times and observed that
the number of heads N (which has a binomial distribution with parameters
n = 100 and p = 0.5) was 65. Then the p-value would be

P(N ≥ 65) ≈ P(Z ≥ 3) ≈ 0.0013,

where Z has a standard normal distribution. This result follows from the Cen-
tral Limit Theorem and the fact that N has mean 50 and standard deviation
5.

Sometimes p-values are two-sided. In the coin-tossing example, we would
calculate the probability that values more than three standard deviations from
the mean are observed. The p-value in this case would be 2× 0.0013 ≈ 0.003.

3.4.2 Maximum Likelihood Estimation

In Section 2.6.1, we gave a simple method for estimating the transition ma-
trix of a Markov chain from a sequence of observations of that chain. This

3.4 The Central Limit Theorem 83

is an example of parameter estimation, which arises frequently in statistical
applications. The setting usually involves trying to find “good” values for the
parameters of a probability model using a set of observations. We illustrate
one method of parameter estimation in the context of estimating a binomial
proportion.

In this case, the (unknown) parameter of interest is the success probability,
p. We estimated this in the previous section by using the observed proportion
of successes in the n trials—obviously a sensible thing to do. Here we provide
another rationale for this choice based on the method of maximum likelihood.
Suppose then that we observed k successes in n tosses of a coin with success
probability p. For a given value of p, the chance of this observation is

L(p) =

(
n

k

)
pk(1 − p)n−k.

Note that we are treating k as fixed here. (It was the value we observed in
the experiment.) The maximum likelihood approach estimates the parameter
p by using that value of p that maximizes the likelihood function L(p).

Elementary considerations show that the value of p that maximizes L(p)
also maximizes the log-likelihood function l(p) = log L(p); the latter is often
a simpler function to optimize. To maximize

l(p) = log

(
n

k

)
+ k log p + (n − k) log(1 − p),

we solve the equation
dl(p)

dp
= 0,

obtaining the equation
k

p
− n − k

1 − p
= 0.

The solution of this equation is obtained as p = k/n, the observed fraction
of successes in the n trials. The value p̂ = k/n is called the maximum like-
lihood estimator (MLE) of the parameter p. In this case, the maximum
likelihood method has given the same estimator as we derived intuitively ear-
lier. (We note that we should check that p̂ does indeed give a maximum of the

likelihood function. You should check that if you compute the value of d2l(p)
dp2

at the point p = p̂, you get a negative value, as required.)
The maximum likelihood approach for parameter estimation is one of the

basic methods in statistics. The general scheme is to write down the likelihood
function, the probability (or the probability mass function) of the observa-
tions, viewed as a function of the unknown parameters in the model and then
maximize over the parameters. This can sometimes be done by simple calculus
but more often involves numerical approaches. This aspect is not discussed
further in this book, but we note that many statistics packages have flexible
tools for such numerical analysis; R is no exception.

84 3 Word Distributions and Occurrences

3.5 Restriction Fragment Length Distributions

We assume that restriction sites occur according to a Poisson process with
rate λ per bp. Then the probability of k sites in an interval of length l bp is

P(N = k) =
e−λl(λl)k

k!
, k = 0, 1, 2, (3.13)

We can also calculate the probability that a restriction fragment length X is
larger than x. If there is a site at y, then the length of that fragment is greater
than x if there are no events in the interval (y, y + x). From (3.13), this has
probability

P(X > x) = P(no events in (y, y + x)) = e−λx, x > 0.

It follows that

P(X ≤ x) =

∫ x

0

f(y)dy = 1 − e−λx,

and the density function for X is then

f(x) = λe−λx, x > 0.

Hence, recalling (3.7), the distance between restriction sites has an exponential
distribution with parameter λ; the mean length is 1/λ.

3.5.1 Application to Data

To develop intuition about what this means, let’s look at a specific example:
the result of digesting bacteriophage lambda with AluI. We already used this
example for comparison with our model for estimation of the expected number
of fragments (Table 3.1). The restriction fragment lengths and a histogram of
these lengths are shown in Fig. 3.3. The data come from the New England
Biolabs catalog; check the links at http://www.neb.com.

We see that there are more fragments of shorter lengths and that the
number having longer lengths decreases, as predicted by the model. We can
also estimate the proportion of fragments we would expect to see with lengths
greater than d = 1000 bp (say). For the model used in Table 3.1, we have
n = 48, 502, p = 0.003906, so that x = d/n = 0.0206 and λ = np = 189.45.
Thus the probability of a fragment being longer than 1000 bp is e−λx =
e−3.903 = 0.020.

Notice from Fig. 3.3 that in the lambda data there were ten fragments
with lengths greater than 1000bp, whereas we would have predicted 143 ×
0.020 ≈ 2.9. There is some evidence that our simple probability model does
not describe the longer fragments very well. In the next section, we describe
a simulation approach that can be used to study fragment lengths generated
by far more complicated probability models.

3.5 Restriction Fragment Length Distributions 85

Fragment Size

0 500 1000 1500 2000 2500

A.

0 500 1000 1500 2000 2500

Fragment Size

B.

0

 5

 1

0

1
5

2
0

2
5

Fig. 3.3. Fragments produced by AluI digestion of bacteriophage lambda DNA.
Panel A: Lengths of individual fragments. Panel B: Histogram of fragment sizes.

3.5.2 Simulating Restriction Fragment Lengths

In the preceding section, we showed that the restriction fragment length dis-
tribution should be approximately exponential, and we demonstrated that a
particular real example did indeed resemble this distribution. But what would
we actually see for a particular sequence conforming to the iid model? In other
words, if we simulated a sequence using the iid model, we could compute the
fragment sizes in this simulated sequence and visualize the result in a manner
similar to what is seen in the actual case in Fig. 3.3. The details of this R

exercise are given in Computational Example 3.5.

Computational Example 3.5: Simulating restriction site distribu-
tions

We assume the iid model for the sequence, with uniform base probabilities
pA = pC = pG = pT = 0.25. Comparison with the data for lambda DNA
in Table 3.1 shows that this approximation is not too bad. We generate a
sequence having 48,500 positions (close to the length of lambda DNA). As
earlier, we code the bases as follows: A=1, C=2, G=3, and T=4. The following
is the result of an R session simulating the sequence:

> x<-c(1:4)

86 3 Word Distributions and Occurrences

> propn<-c(0.25,0.25,0.25,0.25)

> seq2<-sample(x,48500,replace=T,prob=propn)

> seq2[1:15]

[1] 2 2 4 2 1 4 3 4 3 1 3 2 1 1 4

> length(seq2[])

[1] 48500

The first line defines a vector with elements 1, 2, 3, and 4. The second line
defines the probabilities of each base, corresponding to our probability model.
The third line samples 48,500 times with replacement according to the fre-
quencies in propn. The last two commands show that the simulation did run
(for the first 15 elements) and the length of our simulated iid sequence string
in which we seek restriction sites. Other base frequencies can be simulated by
changing the entries in propn.

Locating the restriction sites

The following function operating under R will identify the restriction sites in
a sequence string, with bases coded numerically:

> rsite <- function(inseq, seq){

inseq: vector containing input DNA sequence,

A=1, C=2, G=3, and T=4

seq: vector for the restriction site, length m

Make/initialize vector to hold site

positions found in inseq

xxx <- rep(0, length(inseq))

m <- length(seq)

#To record whether position of inseq matches seq

truth<-rep(0, m)

Check each position to see if a site starts there.

for(i in 1:(length(inseq) - (length(seq) - 1))) {

for(j in 1:m) {

if(inseq[i + j - 1] == seq[j]) {

truth[j] <- 1 # Record match to jth position.

}

}

if(sum(truth[]) == m){# Check whether all positions match

xxx[i] <- i # Record site if all positions match

}

truth <- rep(0, m) # Reinitialize for next loop cycle

}

Write vector of restriction site positions stored in xxx

L <- xxx[xxx > 0]

return(L)

}

3.5 Restriction Fragment Length Distributions 87

The restriction sites we look for are for AluI, AGCT. We code this as [1 3 2
4], and then use the rsite function to find the sites and write the result into
alu.map.

> alu1 <- c(1,3,2,4)

> alu.map <- rsite(seq2,alu1)

The nested loops cause this to take a bit of time to run. The output is the
initial positions of all of the AluI sites in the simulated sequence. Checking
the output (length and first ten terms):

> length(alu.map)

[1] 184

> alu.map[1:10]

[1] 645 915 1076 1790 1836 1957 2100 2566 2881 2980

Note that the prediction from the mathematical model was 190 sites: We
found 184 for this particular string. (To estimate the expected number, we
would need to simulate many strings and report the mean number of sites
detected.) We judge that the model agrees well with the simulation (so far!).

Obtaining and displaying fragment lengths and fragment length distribution

We obtain the fragment lengths by subtracting positions of successive sites.
Since the molecule is linear, we need to deal with the ends. The function
flengthr, written in R, does these things for us.

> flengthr < - function(rmap, N){

#rmap is a vector of restriction sites for a linear molecule

N is the length of the molecule

frags<-rep(0, length(rmap))

Vector for subtraction results: elements initialized to 0

rmap<-c(rmap,N)

Adds length of molecule for calculation of end piece.

for(i in 1:(length(rmap)-1)){

frags[i] < - rmap[i+1]-rmap[i]}

frags <- c(rmap[1],frags) # First term is left end piece

return(frags)

}

> alu.frag <- flengthr(alu.map,48500)

> alu.frag[1:10]

[1] 645 270 161 714 46 121 143 466 315 99

The two lines above run the function and display the first ten fragment lengths.
You can verify that the second element in alu.frag is the difference between
the first two elements in alu.map.

88 3 Word Distributions and Occurrences

> max(alu.frag[])

[1] 1475

> min(alu.frag[])

[1] 5

The four lines above display the largest and smallest fragments.

> length(alu.frag[])

[1] 185

> sum(alu.frag[])3.2

[1] 48500

Fragment Size

0 500 1000 1500 2000 2500

A.

0 500 1000 1500 2000 2500

Fragment Size

B.

1
0

2
0

3
0

4
0

5
0

0

Fig. 3.4. Fragments predicted for an AluI digestion of simulated DNA. Panel A:

Lengths of individual fragments. Panel B: Histogram of fragment sizes.

The first two lines verify that the number of fragments is what it should be.
(n sites in a linear molecule generate n + 1 fragments.) The second two lines
show that the fragment sizes sum to the length of the molecule. These results
are expected if the function does what it should do. The data in alu.frag

are plotted in Fig. 3.4, as was done in Fig. 3.3.

The particular simulated sequence that we generated yields a distribution
of restriction fragment lengths that looks similar to the distribution observed
for bacteriophage lambda DNA fragments (Fig. 3.3). However, note the dif-
ferent scales for the ordinates in the lower panels for the two figures and the

3.6 k-word Occurrences 89

greater number of large fragments in the case of bacteriophage lambda DNA.
To determine whether the distribution for lambda DNA differs significantly
from the mathematical model (exponential distribution), we could break up
the length axis into a series of “bins” and calculate the expected number of
fragments in each bin by using the exponential density. This would create
the entries for a histogram based on the mathematical model. We could then
compare the observed distribution of fragments from lambda DNA (using the
same bin boundaries) to the expected distribution from the model by using
the χ2 test, for example. Further details are given in Exercise 13.

3.6 k-word Occurrences

The statistical principles learned in this and the previous chapter can be
applied to other practical problems, such as discovering functional sites in
promoter sequences. Recall from Section 1.3.4 that promoters are gene re-
gions where RNA polymerase binds to initiate transcription. We wish to find
k-words that distinguish promoter sequences from average genomic sequences.
Because promoters are related by function, we expect to observe k-words that
are over-represented within the promoter set compared with a suitable null
set. These k-words can help identify DNA “signals” required for promoter
function. (DNA signals are described in detail in Chapter 9.) Using the ap-
proaches of Chapter 2, we determine expected k-word frequencies and compare
them to the observed frequencies. Distributions presented in this chapter are
used to test whether over-represented k-words appear with significantly higher
frequencies.

Consider N promoter sequences of length Lbp, which we denote by Si

for i = 1, . . . , N (Table C.2). The null set might consist of N strings of L
iid letters, each letter having the same probability of occurrence as the letter
frequencies in genomic DNA as a whole. For the purposes of the discussion
here, we take a small word size, k = 4, so that there are 256 possible k-words.
With no a priori knowledge of conserved patterns, we must examine all 256
words. We ask whether there are an unusual number of occurrences of each
word in the promoter regions.

For the 49 promoter sequences shown in Table C.2 in Appendix C, we first
evaluate the most abundant observed k-words and their expected values for
k = 4 using R for the computation described in Computational Example 3.6.
The expectation of each word according to the null (iid) model is easy to
calculate if words are overlapping. For example, if Xw denotes the number of
occurrences of word w in the whole set of sequences, then for w = ACGT,

P(w = ACGT) = pApCpGpT

E(# times w appears in Si) = (L − 4 + 1)pApCpGpT

and the expected number of occurrences in N such sequences is

90 3 Word Distributions and Occurrences

E(Xw) = N(L − 4 + 1)pApCpGpT. (3.14)

Computational Example 3.6: Counting k-words in promoter se-
quences

The data in Table C.2 are stripped of row labels, and A, C, G, and T are
coded numerically as 1, 2, 3, and 4 separated by spaces, as has been our usual
practice. The result is saved as a text file, Ec.table.txt, which is then read
into a matrix in R:

>ec.prom<-matrix(scan("Ec.table.txt"),nrow=49,byrow=T)

Read 2499 items

We must first decide to what we wish to compare the promoters. In this ex-
ample, we compare them with the average E. coli sequence, and in an exercise
you will compare them with sequences having the promoter base composition.
The base frequencies for the E. coli genome are, for A, C, G, and T, respectively,
(see Table 2.1):

> prob.ec

[1] 0.246 0.254 0.254 0.246

These values are employed for calculating the expected value of each k-word
and later for simulating sequences under the null model.

Since we are concerned with k-words having k = 4, it is convenient to
store the results of our calculations in four-dimensional arrays. We can think
of these as four different three-dimensional arrays, each labeled 1, 2, 3, 4, but
this visualization is not required for handling the array objects under R. We
represent the word size, k, as w in this function, so w = 4 in our example.
Because the base frequencies are, in general, all different, the expected word
frequencies are not all identical. The code to generate the expected frequencies
is:

> expect4.ec<-array(rep(0,4^w), rep(4,w))

> for(i in 1:4){

for(j in 1:4){

for(k in 1:4){

for(m in 1:4){

expect4[i,j,k,m]<-

+ 48*49*prob.ec[i]*prob.ec[j]*prob.ec[k]*prob.ec[m]

} } } }

The number 49 corresponds to N , the number of sequences, and 48 comes
from L − w + 1 = 51 − 4 + 1, where 51 is the number of bases listed for each
string. The expected frequency of each k-word is read from the corresponding
array element. For example, if the word is GATC, the coded word is repre-
sented as 3142, and the expected frequency of that word is contained in the
expect4[3,1,4,2] array element. The function below is used to perform the

3.6 k-word Occurrences 91

word count, accumulating the total counts for each word in a four-dimensional
array, tcount. The plug-in portion is included for the computation to be per-
formed in the next box. For counting only, we could “comment out” all lines
in the plug-in, and delete the ncount in the return() statement. For now,
we just concentrate on tcount.

Ncount4<-function(seq,w){

#w=length of word

tcount<-array(rep(0,4^w), rep(4,w))

array[4x4x4x4] to hold word counts, elements set to zero

ncount<-array(rep(0,4^w), rep(4,w))

array[4x4x4x4] holds number of sequences with one or

more of each k-word

N<-length(seq[1,]) #Length of each sequence

M<-length(seq[,1]) #Number of sequences

###

#Count total number of word occurrences

for(j in 1:M){ #looping over sequences

jcount<-array(rep(0,4^w), rep(4,w))

#array to hold word counts for sequence j

for(k in 1:(N-w+1)){ #looping over positions

jcount[seq[j,k],seq[j,k+1],seq[j,k+2],seq[j,k+3]]<-

jcount[seq[j,k],seq[j,k+1],seq[j,k+2],seq[j,k+3]]+1

#adds 1 if word at k,k+1,k+2,k+3 appears in sequence j

}

tcount<-tcount+jcount

#Add contribution of j to total

###

#Plug-in: add 1 to ncount if word occurs >= once in j

for(k in 1:4){

for(l in 1:4){

for(m in 1:4){

for(n in 1:4){

if(jcount[k,l,m,n]!=0){

ncount[k,l,m,n]<-ncount[k,l,m,n]+1}

}

}

}

}

###

}

return(tcount,ncount)

}

The word count is performed on the promoter sequences:

92 3 Word Distributions and Occurrences

> prom.count<-Ncount4(ec.prom,4)

> sum(prom.count$tcount)

[1] 2352

The last two lines verify that the expected number of words have been counted:
48 × 49 = 2352. Note that since two items are being returned from the com-
putation, we must specify which item in the list we require; in this case,
prom.count$tcount. The most frequently occurring word appears 33 times:

> max(prom.count$tcount)

[1] 33

We find that ten words appear more than 20 times in this set of promoter
sequences:

>(1:256)[prom.count$tcount[prom.count$tcount[,,,]>20]]

[1] 23 22 21 21 23 24 24 25 22 33

By inspection, we identify these words in the output of the array contents and
tabulate the result in Table 3.2. Expected values are taken from corresponding
elements of expect4.

Table 3.2. Observed and expected k-word frequencies in E. coli promoter sequences

for k = 4. Expected values were computed under the iid null model where pA = pT =

0.246 and pG = pC = 0.254. Only the ten most abundant words, based on the total

number of apperances in all promoter sequences, are shown. Example promoter

sequences are shown in Table 9.2.

Word Observed frequency Expected frequency

TTTT 33 8.6
CATT 25 8.9
AATT 24 8.6
TAAT 24 8.6
ATTG 23 8.9
TGAA 23 8.9
ATAA 22 8.6
ATTT 22 8.6
TTTA 21 8.6
ATTC 21 8.9

These results suggest that promoters have unusual word composition com-
pared with the iid null model. These words are composed mostly of As and
Ts, the most frequent letters in the promoter set. We must determine whether
these elevated abundances are statistically significant.

3.6 k-word Occurrences 93

If a k-word is to be identified as significantly over-represented in promoters
compared with the null set, we need to know the expected number of occur-
rences, E(Xw), and the standard deviation of this number. In other words,
we need to know how the values Xw are distributed. A computational ap-
proach is to repeatedly simulate sets of N iid sequences, perform the word
counts, and then produce a histogram of the observed values of Xw for each
word w. The resulting distributions for each word might not be normal, but
we could determine thresholds such that an appropriately small fraction of
observations (0.001, for example) fall outside this range. If the distributions
of the Xw were approximately normal, then a significance level of three stan-
dard deviations would correspond to a probability of approximately 0.0013. If
there were N = 100 sequences, the expected number of words that are three
or more standard deviations above the mean would therefore be 0.13.

We do not simply compute E(Xw) and Var(Xw) from first principles
because both E(Xw) and Var(Xw) depend on how the words are counted.
For example, if k = 4, what is Xw for w = AAAAA? If word overlaps are
allowed, Xw = 2, whereas if word overlaps are not allowed, Xw = 1. If
pA = pC = pG = pT = 0.25 and word overlaps are allowed, E(Xw) is iden-
tical for each word of length k (see (3.14), but if overlaps are not allowed,
E(Xw) in general differs for different words having the same k. With either
way of counting words, Var(Xw) is not the same for each word. There are
basically two approaches for word counting. One is to count all occurrences of
the word in the whole set of N regions Si as we did above, and the second is
to count the number of promoter sequences in which the word occurs at least
once.

The simple, naive basis we use for deciding whether w occurs with unusual
frequency is to take each word w and tabulate the number of promoter se-
quences Nw in which the word occurs at least once. This alternative statistic
conforms to the normal approximation of the binomial distribution. First, we
simulate 5000 sequences with letter probabilities corresponding to the E. coli
genome. We use the simulations to estimate

pw = P(w occurs at least once in a 51-letter sequence)

≈ # of sequences in which w appears at least once

5000
.

The reason for using “at least once” is that the word may appear at multiple
locations in the promoter, with only one occurrence at a particular location
being sufficient for function.

The simulation provides an estimate of pw that can be used with the nor-
mal approximation of the binomial with n = 49 trials and success probability
pw. Let Nw denote the number of promoter sequences in which w appears at
least once. Then the statistic

Zw =
Nw − 49pw√
49pw(1 − pw)

94 3 Word Distributions and Occurrences

has approximately an N(0, 1) distribution, which allows p-values to be com-
puted for each word w. The results of this simulation are shown in Computa-
tional Example 3.7.

Computational Example 3.7: Number of promoter sequences con-
taining at least one frequent k-word and statistical significance

Step 1: Compute the number of promoter sequences, Nw, containing each
k-word

This time, we want to count the number of promoter sequences that contain
at least one occurrence of each word. This quantity is computed by the plug-
in in the function provided in Computational Example 3.6. The series of four
“for” loops in the plug-in examines counts for all words found in sequence j
and adds 1 to appropriate elements of ncount if a word appears, regardless of
the number of times it appears. The desired counts of sequences Nw for any
desired k-word klmn are extracted from the result of the previous computation,
which is a list, as prom.count$ncount[k,l,m,n]. For example, the number
of promoter sequences containing at least one instance of AAAA is

> prom.count$ncount[1,1,1,1]

[1] 13

We check the maximum value for Nw among all k-words.

> max(prom.count$ncount)

[1] 20 #Maximum value of Nw among all k-words

Step 2: Computation of pw

This is done by simulation. We simulate 5000 sequences, each 51 nucleotides
long and having the base composition of average E. coli DNA.

> ec.sim<-matrix(nrow=5000,ncol=51)

> for(i in 1:5000){

+ ec.sim[i,]<-sample(x,51,replace=T,prob.ec)

+ }

Remember that x is [1,2,3,4] and prob.ec is given in Computational Exam-
ple 3.6. To get the data needed for pw, we again apply the function Ncount4():

> sim.count<-Ncount4(ec.sim,4)

This may take a while to run since there are nested loops operating on 5000
sequences. The values of pw for the most abundant words listed in Table 3.2
are calculated as shown below for AAAA:

> sim.count$ncount[1,1,1,1]/5000

[1] 0.1238

3.6 k-word Occurrences 95

The results for all words are presented in Table 3.3. Because the simulated
sequences were based on chromosomal values for base frequencies, which are
all nearly the same, the fraction of sequences for which each word appears
should also be about the same.

Step 3: Computing p-values

We can use Nw and pw computed above to calculate Zw and then compute the
desired p-value using the R function pnorm (previously used in Section 3.3).
This is because Zw is expected to follow (approximately) a normal distribu-
tion:

> Nw<-c(19,20,20,20,20,19,19,19,17,16) # See step 1

> pw

[1] 0.1238 0.1680 0.1710 ... 0.1660 0.1626 0.1736

(From Step 2 above.) We compute Zw for the ten top-scoring k-words:

> options(digits=4)

> Zw<-(Nw-49*pw)/sqrt(49*pw*(1-pw))

> Zw

[1] 5.610 4.497 4.409 ... 4.172 3.497 2.826

Calculate the one-tailed p-value:

> 1-pnorm(Zw)

[1] 1.011e-08 3.452e-06 5.185e-06 2.328e-06

[5] 1.641e-06 1.589e-05 1.510e-05 1.510e-05

[9] 2.353e-04 2.354e-03

Table 3.3. Number of E. coli promoter sequences, Nw , containing indicated k-words

for k = 4. Data for the ten most abundant words listed in Table 3.2 are shown. For

the meaning of other quantities, see the text. The last column corresponds to p-

values associated with each Nw. Entries not significant at level 0.001 (one-tailed

test) are indicated in italics.

Word Nw pw Zw P(X > Zw)

TTTT 19 0.124 5.610 10−8

CATT 20 0.168 4.497 0.000003
AATT 20 0.171 4.409 0.000005
TAAT 20 0.165 4.580 0.000002
ATTG 20 0.163 4.652 0.000002
TGAA 19 0.166 4.160 0.000016
ATAA 19 0.166 4.172 0.000015
ATTT 19 0.166 4.172 0.000015
TTTA 17 0.163 3.497 0.000235
ATTC 16 0.174 2.826 0.002354

96 3 Word Distributions and Occurrences

Notice that Nw is lower than the number of overall occurrences shown in
Table 3.2, as would be expected. From prior knowledge of E. coli promoters,
we already expected that words contained within TATAAT would be abundant.
Note that TAAT appears in about 40% of the listed promoters, as does ATAA.
Testing for the occurrence and significance of TATA is left as an exercise.

Why did we earlier refer to this analysis as naive? This comes from the
strong correlation between word counts, especially that which comes from
word overlaps. If, for example, we knew that AAAA occurred in a particular
string 49 times out of 51, then the end of the string of As must be a letter not
equal to A. Of these, pT/(pT +pC +pG) are expected to be Ts. That means that
we expect at least 49×pT/(pT+pC+pG) occurrences of AAAT. In addition, there
are occurrences of AAAT where the preceding letter was not an A. Taking all
word overlaps into account in a rigorous statistical analysis is beyond the scope
of this book, but you now know that Nw has different variances depending on
w and that correlation between words is important.

Functional k-words are generally more complicated and more extensive
than the example above, and in practice values to be used for k are not
known in advance. Certainly k = 4 is too small; nevertheless, larger functional
k-words can be decomposed into sets of characteristic 4-words. For promoters,
k = 6 is a more realistic choice. In addition, our idea of counting exact occur-
rences does not correspond to what is observed in biological systems (e.g., not
all promoters contain exact matches to the most frequent 4-words). However,
it is often the case that exact word analysis has allowed researchers to make
the initial pattern discovery. The approach above is not limited to exact word
analysis, however. We could, for example, use k = 6 letter words and allow
up to two mismatches in the definition of “occurrence.”

In Chapter 9, we illustrate how to describe signals of arbitrary length based
upon patterns of letter occurrences observed among a set of aligned subse-
quences. The approach described in the current chapter could be extended
to yield a complementary description of such signal sequences. We could im-
plement this for the promoter data set by making histograms of positions at
which each over-represented k-word occurs relative to the transcriptional start
sites at +1. Any “signal” that appears within a window centered at position x
relative to the transcriptional start site would then be represented by a word
decomposition yielding the observed k-words preferentially mapping within
that window (Galas et al., 1985).

References

Galas DJ, Eggert M, Waterman MS (1985) Rigorous pattern-recognition
methods for DNA sequences. Journal of Molecular Biology 186:117–128.

Exercises 97

Exercises

Exercise 1. Suppose that N has a Poisson distribution with parameter λ.

(a) Show that the probabilities in (3.2) sum to 1. [Hint: This uses the expan-
sion of ex that you learned in calculus.]

(b) Use the same expansion (by taking the first and second deriviatives) to
show EN = λ and VarN = λ.

Exercise 2. Verify that if U has the uniform distribution on (a, b), then EU =
(a + b)/2 and Var U = (b − a)2/12.

Exercise 3. Verify the formula (3.5) for calculating the variance.

Exercise 4. Use R to plot the probability density (3.7) of an exponential
random variable for values of λ = 0.5, 1.0, 5.0.

Exercise 5. For the exponential distribution (3.7) calculate the mean and
variance. [Hint: Use integration by parts.]

Exercise 6. For a distribution with probability density function f(x) = 3
8x2

for 0 ≤ x ≤ 2 and f(x) = 0 elsewhere, find P(0 ≤ X ≤ 1), EX, EX2, and
VarX .

Exercise 7. Suppose Z has a standard normal distribution.

(a) Find P(−1 ≤ Z ≤ 1), P(−1 ≤ Z ≤ 2), P(−2 ≤ Z ≤ −1), P(−∞ ≤ Z ≤ 1).
(b) If P(Z ≤ a) = 0.45 and P(0 ≤ Z ≤ b) = 0.45, find a and b. [Hint: Use

qnorm in R.]

Exercise 8. In a certain genome the bases appear to be iid and pG = 0.3.
Define the (binomial) count of the number of Gs in the first 1000 bases as
N = X1 + X2 + · · · + X1000.

(a) Give the mean and variance of N .
(b) Approximate, using the Central Limit Theorem, P(0 ≤ N ≤ 329) and

P(285.5 ≤ N ≤ 329).
(c) Produce a histogram for 1000 replicates of N and compare the results

with those of (b).

Exercise 9. A discrete random variable taking values 0, 1, . . . is said to have
a geometric distribution with parameter p if

P(N = k) = (1 − p) pk−1, k = 1, 2,

a. Suppose that X is exponential with parameter λ, and define a new random
variable N by

N = k if k − 1 < X ≤ k.

Show that N is geometric, and identify p.

98 3 Word Distributions and Occurrences

b. Show that the mean EN of the geometric is 1/(1 − p), and calculate the
variance. [Hint: One way to do this is to complete the steps below:

EN =

∞∑
k=1

k(1 − p)pk−1 = (1 − p)

∞∑
k=0

d

dp
pk = (1 − p)

d

dp

(
∞∑

k=0

pk

)
= · · · .

For the variance, differentiate twice.]
c. The geometric arises as the distribution of the number of tosses up to and

including the first tail in a sequence of independent coin tosses in which
the probability of a head is p. Use this to calculate the distribution of N .
Can you derive EN using the waiting time analogy?

Exercise 10. Suppose N is binomial with n = 1000 and success probability
p. Find a 90% confidence interval for p using p̂ = N/1000 when N = 330.
What are E p̂ and Var p̂?

Exercise 11. Assume that X1, X2, . . . , Xn are iid random variables having
the exponential distribution with parameter λ. Find the maximum likelihood
estimator of λ.

Exercise 12. Suppose X = X0, X1, . . . , Xn are observations on a Markov
chain with transition matrix P = (pij) and let n(i, j) be the number of times
that state i is followed by state j in the sequence X . Find the maximum
likelihood estimator of the elements pij in terms of the n(i, j). [Hint: See the
discussion in Section 2.6.3.]

Exercise 13. Use the value of p computed for HpaII in Table 3.1. Compute
λ = 1/p for the parameter of the corresponding exponential distribution, using
the approach of Section 3.3.

a. For the bins [0, 100), [100, 200), [200, 300), [300, 400), [400, 500), [500, 600),
[600,∞), compute the theoretical probability of each bin.

b. Use the probabilities from (a) and the expected number of fragments from
an HpaII digestion of bacteriophage lambda to calculate the expected
number of fragments in each of the seven bins.

c. Compute the X2 value analogous to (2.29) on page 64 for these observed-
expected data. The number of degrees of freedom for the approximate χ2

distribution of X2 is equal to 7 − 1 = 6.
d. Does the exponential distribution fit these data?

4

Physical Mapping of DNA

4.1 The Biological Problem

In contrast with genetic maps, physical maps of genomes or genome segments
(e.g., chromosomal DNA) relate genome positions to each other using phys-
ical distances measured along the DNA helix axis. Distances between posi-
tions are often expressed in base pairs (bp) or multiples thereof (for example,
kilobases (kb)—bp × 1000). Large-scale physical maps are useful for some
genome sequencing strategies, and they are even more important when study-
ing genomes that have not been sequenced. However, sequencing “factories”
can now churn out so much sequence per day that for small genomes it is
easier and faster to determine the genome DNA sequence and identify the
restriction sites computationally.

Markers on the physical map (discussed in detail in Section 13.4.2) al-
low investigators to retrieve particular regions of interest for further study.
Restriction endonuclease (or restriction enzyme) cleavage sites represent one
type of physical marker. Genetic markers (defined by mutations in genes)
may affect the sizes of restriction fragments, leading to a correspondence be-
tween a genetic and a physical marker. Examples are mutations that destroy
a restriction site (a restriction site polymorphism), or deletions, insertions, or
inversions. Other types of markers are portions of a gene sequence. The pres-
ence of such markers can be detected by hybridization reactions, even if the
complete DNA sequence is unknown. Sequences that are not part of genes can
be used as physical markers, and these include segments of DNA containing
variable numbers of tandem repeats and sequence-tagged sites, or STSs.
The presence of a particular STS is revealed by the presence of PCR reac-
tion products obtained by use of a particular primer pair so chosen that they
allow amplification of DNA from only one location in a particular genome.
Obviously, the ultimate physical map is the DNA sequence.

In Chapter 3, we discussed the properties of restriction digest products
within the context of eventually constructing a restriction map. Recall that a
restriction map is a display of positions on a DNA molecule that can be cleaved

100 4 Physical Mapping of DNA

by one or more restriction endonucleases and that this is one particular ex-
ample of a physical map of a genome. As we will see below, reconstructing
a restriction map from the restriction digest products can be computation-
ally very hard. Laboratory workers circumvent this complexity by a number of
experimental techniques, including use of multiple restriction enzymes, end la-
beling of DNA prior to digestion, analysis of incompletely digested end-labeled
products, and hybridization. They also may employ genetic variants of the
molecules being mapped (ones containing insertions, deletions, or inversions).
Laboratory workers usually perform map construction by using a massively
parallel, cranially mounted neural network (the brain). Optical mapping is
an experimental strategy that preserves fragment order after digestion, but it
requires nonstandard laboratory equipment in addition to more sophisticated
statistical tools to allow for fragment length measurement errors and products
of incomplete digestion.

As indicated in Chapter 3, DNA molecules can be too long to be handled
conveniently without breakage. For this reason, genomes are intentionally frag-
mented into pieces of appropriate size for cloning into convenient cloning vec-
tors. For example, pieces cloned into lambda vectors may be approximately
20 kb in length, those cloned into cosmids will be approximately 40kb in
length, and those cloned into BACs may be in the range of 100–300kb. The
inserts in these vectors can be individually mapped (the large-map problem
is broken down into a large number of more tractable small-map problems).
Then the genome map is built up by merging the maps of the constituent
cloned inserts. One of the experimental issues is how many clones must be
characterized before the genome map merges into a single continuous seg-
ment.

Physical maps can be informative for comparisons among organisms. For
example, most unicellular eukaryotes and all multicellular animals and plants
have organelles called mitochondria, which contain circular DNA molecules.
The orders of the approximately 37 genes in the mitochondria of various ani-
mals have been determined, and they are not identical. A model to describe
differences in order is based on breakage/rejoining or reversal of DNA seg-
ments, leading to permutations of the gene order. It should be possible to
model this process in a manner that predicts animal phylogeny (branching
pattern connecting lineages of organisms to common ancestors). This also
has relevance when comparing bacterial strains with each other. For example,
there are strains of Escherichia coli that are nonpathogenic and others that
are pathogenic. There are species of Yersinia that give rise to epidemics of
plague and others that do not. By comparing genomes (including gene or-
ders), it is possible to reconstruct steps in the evolutionary history of these
organisms that may provide insights into mechanisms of pathogenicity. We
discuss permutations of gene order in the next chapter.

4.2 The Double-Digest Problem 101

4.2 The Double-Digest Problem

This is an older, classical problem in computational biology, but we neverthe-
less describe it here to reinforce previous concepts and to provide experience
with computationally complex problems. We will work with an idealized ver-
sion of the problem that still illustrates the computational challenges.

4.2.1 Stating the Problem in Computational Terms

Given the sizes of restriction fragments from digestion of a DNA molecule by
restriction endonucleases A, B, and a combination of those enzymes, A + B,
reconstruct the order of restriction sites in the undigested molecule:

Products generated by digestion with A, sorted by increasing size,
= {a1, a2, . . . , an};

Products generated by digestion with B, sorted by increasing size,
= {b1, b2, . . . , bm};

Products generated by digestion with A + B, sorted by increasing size,
= {c1, c2, . . . , cm+n−1}.

The solution is a list of positions for cleavage by A or B such that the fragment
set {c1, c2, . . . , cm+n−1} is generated.

4.2.2 Generating the Data

A sample of DNA is “digested” with a restriction enzyme until all sites on
every molecule are cut. Agarose gel electrophoresis gives a way to separate
DNA fragments (which are negatively charged) by their lengths. The molecules
migrate through the porous agarose a distance proportional to the negative
logarithm of their lengths; big pieces hardly move, and small pieces fall like
stones. This principle also allows DNA to be sequenced, a topic we treat later.
The approximate fragment lengths are determined and listed in order of size.
The problem is to reproduce the order of the pieces in the original DNA.
That is, gel electrophoresis gives us the set of lengths unordered relative to
the actual location in the DNA. For example, digesting phage lambda DNA
(48,502bp) with EcoRI gives the following lengths (in kb): 3.5, 4.9, 5.6, 5.8,
7.4, and 21.2. The correct order on the lambda genome is 21.2–4.9–5.6–7.4–
5.8–3.5.

If the molecule has been sequenced, we can also learn this ordering by
downloading the sequence from a database and searching the string for occur-
rences of GAATTC. How are restriction maps of uncharacterized DNA molecules
determined experimentally?

102 4 Physical Mapping of DNA

4.2.3 Computational Analysis of Double Digests

As we indicated above, one experimental approach to the restriction mapping
problem is to select another enzyme, digest with that enzyme, and finally
digest with a combination of both enzymes. Inferring the two-enzyme map
of the DNA from the resulting data is called the double-digest problem
(DDP). Here is a simple example for a linear molecule digested with enzymes
A and B (in these examples, fragment sizes are taken to be integers):

Products produced from digestion with A : {2, 4};
Products produced from digestion with B : {1, 5};
Products produced from digestion with A + B : {1, 1, 4}.

This “toy” problem can be solved by inspection. The “ends” in the double
digest must be 1 and 4. This is because the shorter of the fragments produced
at each end by digestion with A or B must lie wholly within the larger of the
end fragments produced by A or B. This observation solves the problem. The
solution is

A:

B: 1

2 4

5

In general, there are (2!)(2!) = 4 different potential maps or orderings for this
problem (two orderings for A fragments and two for B fragments), and each
ordering has a biologically indistinguishable reversal. That is,

A : 2 4 and A : 4 2
B : 1 5 B : 5 1

are reversals of each other. They correspond to reading fragment orders from
one end of the molecule or the other.

It is easy for these problems to become more complex:

Products produced from digestion with A : {3, 4, 5};
Products produced from digestion with B : {2, 4, 6};
Products produced from digestion with A + B : {1, 1, 2, 3, 5}.

Obviously, 5 must be at the end, and therefore 6 must be also. This is because
there must be a fragment at each end from the A or B digests that is not
cleaved after double digestion. Fragment 5 must lie within 6 since 6 is the
only B fragment large enough to contain it. Since in this problem only integer
values are allowed, one end of 5 must match one end of 6, which means that
5 is an end fragment from the A digest and 6 is an end fragment from the B
digest:

(two fragments)−5
(two fragments)−6

Having determined the two end fragments, we have only four possibilities
left to consider:

4.2 The Double-Digest Problem 103

A : 3 4 5
or

3 4 5
or

4 3 5
or

4 3 5
B : 2 4 6 4 2 6 2 4 6 4 2 6

The last one is eliminated because it would produce too few double-digest
pieces. The techniques used in these two examples obviously depend on the
small sizes of the problems.

A more systematic method to predict the double-digest products is as
follows: (1) take the fragment lengths, (2) produce maps of positions, (3)
interleave the positions, and (4) take successive differences. For example, the
digests above correspond to a molecule that is of length 12. The first map
position is taken as 0, and the last position is 12. Starting at 0, successive
positions on the map are produced by adding the lengths of fragments, starting
from the left end:

Fragment ordering −→ Map positions −→ Interleaved positions
3 4 5 0 3 7 12 0 2 3 6 7 12
2 4 6 0 2 6 12

Successive differences:

2 − 0, 3 − 2, 6 − 3, 7 − 6, 12 − 7 −→ 2, 1, 3, 1, 5

(This is a solution because the correct double-digest products are produced.)
Now we try another ordering:

Fragment ordering −→ Map positions −→ Interleaved positions
3 4 5 0 3 7 12 0 3 4 6 7 12
4 2 6 0 4 6 12

Successive differences:

3 − 0, 4 − 3, 6 − 4, 7 − 6, 12 − 7 −→ 3, 1, 2, 1, 5

(This is another solution!)
Now try the putative map positions of one of the other possibilities:

Fragment ordering −→ Map positions −→ Interleaved positions
4 3 5 0 4 7 12 0 2 4 6 7 12
2 4 6 0 2 6 12

Successive differences:

2 − 0, 4 − 2, 6 − 4, 7 − 6, 12 − 7 −→ 2, 2, 2, 1, 5

This does not correspond to the observed products of double digestion, so
this pair of fragment orders is rejected. The remaining possible ordering also
fails to agree with the double-digest data, as you can verify for yourself.

104 4 Physical Mapping of DNA

The solutions to the double-digest problem are:

A : 3 4 5 and its reversal 5 4 3
B : 2 4 6 6 4 2

and
A : 3 4 5 and its reversal 5 4 3
B : 4 2 6 6 2 4

4.2.4 What Did We Just Do?

Basically, we decided to try all orderings of each digestion product and to find
out whether the predicted double digest fits the data. Here is an outline of
the method. We assume that no cut site for A coincides with a cut site for B.

(1) Input fragment sizes:
a1, a2, . . . , an (n − 1 cuts),
b1, b2, . . . , bm (m − 1 cuts),
c1, c2, . . . , cm+n−1 (m + n − 2 cuts).

(2) Produce position maps:
0, a1, a1 + a2, . . . , a1 + a2 + · · · + an = L,
0, b1, b1 + b2, . . . , b1 + b2 + · · · + bm = L.

(3) Merge and put into order.
(4) Then take differences of adjacent numbers in (3).
(5) Check whether output of (4) is equal to c1, c2, . . . , cm+n−1.

When we solved our first tiny problems, we used special tricks for the
data we had. Then we created a general approach to DDP that is correct and
systematic.

What is the space efficiency? By this we mean memory commitments in
our computer. For each map check, we needed space proportional to n + m.
In addition, we need to save all correct permutations, and that we cannot
estimate. The map check requires space proportional to (n + m).

Our examples were all small problems. How complicated can things get
with this approach? That is, what is the time efficiency? The number of pos-
sible orderings of the A fragments is n!, and the number of possible orderings
of the B fragments is m!, and so there are n! × m! different combinations
of position maps in (2) that require testing. As n and m become larger, the
number of possibilities to test becomes huge!

n 1 2 4 6 8 10
n! 1 2 24 720 40,320 3,628,800

This means that a problem with ten A fragments and ten B fragments would
yield over 1013 subproblems (2) through (4) to be analyzed. A very simple
data set becomes computationally large very fast.

4.3 Algorithms 105

4.3 Algorithms

We now turn to specifying a method for solving computational problems such
as DDP. The description of such a specification is called an algorithm. It
should be kept in mind that this is a slightly higher level than computer code,
although algorithms can and should result in code.

First of all, we need a set of basic operations such as addition, multiplica-
tion, etc. Next we describe some important aspects of algorithms (see Skiena,
1998).

(1) The input to and output from an algorithm must be precisely specified.
(In the DDP, the input is three unordered lists (of integers), each of which
must sum to the same number. The output is all orderings of the first two
lists that solve the DDP.)

(2) The algorithm must consist of a well-defined series of operations.
(3) The algorithm must stop after a finite number of steps.

Finally, we must consider the notions of correctness and efficiency. Cor-
rectness is a mathematical issue of proving that the algorithm does what it
should do. The DDP as we set it up takes a multiple of n! × m! × (n + m)
operations. This is an example of the time efficiency or time complexity of
an algorithm. The computational time complexity of an algorithm with in-
put data of size n is measured in “big O” notation and is written as O(g(n))
if the algorithm can be executed in time (or number of steps) less than or
equal to Cg(n) for some constant C. For example, adding up the numbers
a1, a2, . . . , an can be accomplished in time O(n) by the following method. Set
S = 0. Then for j = 1, 2, . . . set S = S + aj . On step n, S equals the desired
sum. More generally, an algorithm has polynomial time complexity if g(n) is
a polynomial, and if g(n) = a × bn for a > 0 and b > 1, the algorithm has
exponential time complexity.

Our method for DDP is correct but hardly efficient. Can we find a more
efficient method that is also correct, say one that takes at most a multiple
of nm or even n + m steps? The answer is very likely to be no. Here is the
reason.

There is a famous problem called the traveling salesman problem
(TSP). Cities 1, 2, . . . , n are located with various flights connecting them.
The TSP is to find an ordering of cities i1 → i2 · · · → in → i1 so that all cities
are visited and the total route length is minimized. An example is shown
below:

Los Angeles

Denver

Seattle

Chicago

Detroit
Boston

AtlantaDallas

106 4 Physical Mapping of DNA

If the salesman starts in Seattle and follows the itinerary shown, is the trip
shown shorter than if he were to end the trip by going from Dallas to Denver
and then to Los Angeles and Seattle? This problem (in general) is one of the so-
called NP-complete problems that have equivalent computational difficulty. It
is unknown whether there is a polynomial method for solving these problems,
but the universal belief is that there is no such method. The DDP is one of
these problems without a known polynomial algorithm.

One more aspect of studying and implementing algorithms is space effi-
ciency. As described above, our DDP algorithm has time efficiency O(n! m! (n+
m)) (Problem 6). Space efficiency is measured in the same “big O” notation.
We remark that in Section 4.2.4 there was an algorithm for taking fragment
permutations and producing the double digest lengths. That algorithm can
be implemented in O(n + m) time and space. We have not described how to
generate all n! m! pairs of permutations!

4.4 Experimental Approaches to Restriction Mapping

When applying computational methods to biological problems, sometimes it
is better to invest more effort in computational approaches, and other times
it is easier to generate a different data set in the laboratory. We just showed
that the double-digest problem rapidly becomes extremely complicated even
for modest numbers of fragments. Even a small microbial genome containing,
for example, 1000 EcoRI fragments and 1000 HindIII fragments, if analyzed
as described above, would require analysis of an astronomically large number
of subproblems. This effort can be avoided by using a different experimental
approach.

In the examples above, molecules were digested to completion, so that
all fragment orderings were completely disrupted. There are two experimen-
tal approaches that retain ordering information. Optical mapping (Cai et al.,
1995) involves stretching individual DNA molecules onto a solid substrate,
digesting them on the substrate, and then observing the ordered digestion
products by fluorescence microscopy. Lengths of the product fragments (rela-
tive to included size standards) can be measured from recorded images in the
microscope field, and lengths can also be determined from fluorescence intensi-
ties. This is particularly useful when employed with restriction endonucleases
such as NotI that generate very large fragments.

Another approach that preserves order information employs intentional
incomplete digestion, as illustrated in Fig. 4.1. At first consideration, this
might seem to make analysis worse because if n fragments are produced by
complete digestion, the total number of fragments produced by incomplete
digestion of a linear molecule is (Problem 8)(

n + 1

2

)
.

4.4 Experimental Approaches to Restriction Mapping 107

4 2 8 1

4

2

8

1

4 2

2 8

8 1

4 2 8

2 8 1

Undigested

Completely digested

Incompletely digested

D

A

B

C

Fig. 4.1. Using incomplete digestion as an aid to restriction mapping. The molecule
to be mapped is labeled at one end (filled circle) with a radioisotope. By autoradiog-
raphy or the use of a phosphorimager, only radioactively labeled fragments (A, B, C,
and D) will be detected after resolution by gel electrophoresis. The size increments
separating each successive fragment starting with the end fragment correspond to
the distance to the next restriction site.

The experimental “trick” (Smith and Birnstiel, 1976) is to radioactively label
(directly or indirectly) one end of the molecule. In Fig. 4.1, the filled circle
marks the labeled end fragment.

The mixture of completely and incompletely digested products can be
resolved electrophoretically, and the sizes of the radioactive fragments can
be measured (for example, after autoradiography of the dried gel or using
a Southern blot, or with the help of a phosphorimager). Scoring only the
labeled fragments (only they appear on the autoradiogram) eliminates the
background of incomplete digestion products that do not include the indicated
end fragment. Now we list the labeled fragments in order of size:

0 1 9 11 15

This includes the map of restriction site positions measured from the
right end!

In what was then an experimental tour de force, Kohara et al. (1987)
applied this approach for constructing a restriction map of the E. coli genome
for several different restriction enzymes. They mapped clones in a lambda

108 4 Physical Mapping of DNA

library and then assembled the larger map by overlap. This general process,
which in some form is used in most genome analyses, will be discussed in
the next section. In the case of Kohara et al., individual lambda clones were
indirectly end-labeled by hybridizing radioactive end probes to incomplete
digests of cloned DNA that had been transferred to membranes by Southern
blotting.

4.5 Building Contigs from Cloned Genome Fragments

4.5.1 How Many Clones Are Needed?

We indicated previously that analysis of genomes often proceeds by first break-
ing them into pieces. This is because genomes of free-living (nonviral) organ-
isms are much larger than the sizes of inserts in most cloning vectors. For
example, microbial genomes usually have genome sizes G > 0.5 × 106 bp,
and for mammalian genomes, G > 109 bp are usual. In contrast, capacities of
cloning vectors are on the order of 104 bp for lambda or cosmid vectors and 105

to 106 bp for BAC and YAC vectors, respectively. This means that genomes
will be represented by genomic libraries, which are collections of clones that
contain a given genome represented piecewise as inserts in a specified cloning
vector.

How many clones N should there be in the library? This depends upon
the following parameters:

G = genome length in bp,

L = length of the clone insert in bp,

f = probability that any chosen base pair is represented in the library.

Suppose that we were to select one clone. The probability that a particular
base is recovered in that clone is just the fraction of the genome contained in
the clone, L/G. The probability that any particular base is not in the clone
(i.e., is not “covered” by the clone) is

P(not covered, one clone) = 1 − L/G. (4.1)

The probability that any particular base is not covered after N independent
clones have been selected is therefore

P(not covered, N clones) = (1 − L/G)N . (4.2)

If fc is the probability that a base is covered after N clones have been drawn,
then

1 − fc = P(not covered, N clones) = (1 − L/G)N . (4.3)

We can solve (4.3) for N (after taking the logarithm of both sides) to
yield an expression for estimating the number of clones needed in the library
in terms of the probability fc that any base will be covered (e.g., fc = 0.95):

4.5 Building Contigs from Cloned Genome Fragments 109

L

0 G

Fig. 4.2. Coverage of a genome of length G represented by a genomic library,
with inserts of length L for each clone. Some areas of the genome (shaded) may
be represented multiple times in the library, whereas others are represented once or
not at all. The coverage is the average number of times that each position in the
genome is represented in the library. Broken lines indicate limits of the three contigs
(gap-free assemblies of genome segments represented by two or more clones) shown.

N = log(1 − fc)/ log(1 − L/G). (4.4)

Computational Example 4.1: How many clones?

How many cosmid clones are required in a library representing the E. coli
genome such that fc = 0.95?

We know that G = 4.6 × 106 bp and L = 4 × 104 (for cosmids). Hence,
from (4.4), N = log(1 − 0.95)/ log(1 − 4 × 104/4.6 × 106) = 343 clones.

From Computational Example 4.1, we can calculate that the amount of
DNA represented in the clones is 343 clones× 4× 104 bp/clone = 14× 106 bp.
This is about three times the size of the E. coli genome. Some portions of the
genome are represented multiple times and some not at all, but, on average,
any position will be represented (covered) approximately three times in this
particular library (see Fig. 4.2 for an explanation).

The coverage (the number of times, on average, that any base pair b is
contained in inserts belonging to members of the library) is defined as

c = NL/G. (4.5)

Equation (4.3) can be rewritten in terms of coverage:

1 − fc = (1 − L/G)N = (1 − (NL/G)/N)N = (1 − c/N)N ≈ e−c. (4.6)

Thus we find that
fc = 1 − e−c. (4.7)

The amount of coverage required to achieve different probabilities of in-
cluding any particular base pair is

c 1 2 3 4 5
fc 0.632 0.865 0.950 0.982 0.993

From this, we see that if we want to have a 99% chance of having a locus of
interest in our library, we will need to clone five genome equivalents.

110 4 Physical Mapping of DNA

From Exercise 7, we will discover that nearly half a million lambda clones
would be required to represent mammalian genomes with a reasonable degree
of completeness, and from the table above, we see that half again as many
clones would be needed for fc to be 0.99. Actually handling libraries of this size
(e.g., propagating clones, distributing clones, arraying clones on hybridization
filters) is very labor-intensive, requiring robotics for manipulating the clones
and databases for recording clone inventory and annotation.

As we randomly select more and more clones, we do eventually begin to fill
in the gaps shown in Fig. 4.2, but at late stages of this process, each successive
clone, picked at random, is far more likely to fall into a region already covered
than it is to fall into a region of the genome that has not been covered at all. At
that point, a better approach is to switch to a directed experimental strategy
for gap closure—the process of covering regions not previously covered.

4.5.2 Building Restriction Maps from Mapped Clones

As is the case for complete digestion with restriction enzymes, the cloning
process disrupts the ordering of the cloned segments. The inserts are gener-
ated either by shearing the DNA or by restriction digestion, and usually the
inserts are size-selected before ligation to the vector sequences. Size selection
is needed particularly for vectors that accept inserts in a particular size range.
For example, lambda vectors accept inserts ranging from 9kb to 20 kb, and
cosmid vectors require inserts of length L ∼ 40 kb. When individual clones are
selected, their positions on the genome are unknown, and we must build up
the complete restriction map from pieces of it. Developing a larger segment of
the map from data for smaller segments is called the “bottom-up” approach,
which we will discuss in greater detail in Chapter 8.

Using techniques such as the incomplete digestion method (Fig. 4.1), the
restriction map of individual clones can be determined. If the inserts in two
different clones contain some of the same restriction sites (i.e., generate re-
striction fragments of the same length), then the inserts may share a region
in common (they overlap), and a larger, contiguous mapped region can be
recognized by extending the physical map on both sides of the region of over-
lap (Fig. 4.3A). A contig is a genome segment represented by two or more
overlapping clones. A contig is part of a larger physical map, and its material
representation is a particular set of clones. If the genomic library is very large,
nearly all of the clonable portions (heterochromatin is difficult to clone) will
be represented by clone inserts, and most regions will be represented many
times on different clones, as shown in Fig. 4.3C.

The desired outcome is to place each clone in its correct genome location,
as shown in Fig. 4.3C. A typical step in the process for achieving that outcome
is illustrated in Fig. 4.3A. The question is, “How rapidly will the map approach
completion as coverage c increases?” When should we stop picking clones at
random and move to directed gap closure? These questions can be answered
using Poisson statistics, which were introduced in Chapter 2.

0
G

1
2

5
3

4

0
G

C
.

B
.

A
. C

lo
n

e
 X

C
lo

n
e

 Y

E
x
te

n
d

e
d

 m
a

p

(c
o

n
ti
g

)

F
ig

.
4
.3

.
M

a
p
p
in

g
a

la
rg

e
g
en

o
m

e
b
y

a
ss

em
b
li
n
g

m
a
p
s

o
f
re

p
re

se
n
ta

ti
v
e

cl
o
n
es

.
P
a
n
el

A
:
C

lo
n
es

X
a
n
d

Y
a
re

se
en

to
ov

er
la

p
b
ec

a
u
se

th
ey

sh
a
re

so
m

e
o
f
th

e
sa

m
e

re
st

ri
ct

io
n

fr
a
g
m

en
ts

.
T

h
is

a
ll
ow

s
th

ei
r

m
a
p
s

to
b
e

jo
in

ed
to

fo
rm

a
c
o
n
ti

g
.
P
a
n
el

B
:
C

lo
n
ed

in
se

rt
s

ca
n

ov
er

la
p

su
ffi

ci
en

tl
y

fo
r

th
a
t

ov
er

la
p

to
b
e

d
et

ec
te

d
(1

a
n
d

2
),

m
ay

ov
er

la
p

in
su

ffi
ci

en
tl
y

fo
r

ov
er

la
p

d
et

ec
ti
o
n

(3
a
n
d

4
),

o
r

m
ay

b
e

si
n
g
le

to
n
s

(5
)

h
av

in
g

n
o

co
n
te

x
t

in
fo

rm
a
ti
o
n

su
p
p
li
ed

b
y

n
ei

g
h
b
o
rs

.
C

o
n
ti
g
s,

si
n
g
le

to
n
s,

a
n
d

se
le

ct
ed

cl
o
n
es

w
it
h

u
n
d
et

ec
te

d
ov

er
la

p
s

a
re

ca
ll
ed

is
la

n
d
s

(s
ee

th
e

te
x
t)

.
P
a
n
el

C
:
O

n
ce

m
u
lt
ip

le
cl

o
n
e

ov
er

la
p
s

h
av

e
b
ee

n
co

n
st

ru
ct

ed
su

ch
th

a
t

th
ey

sp
a
n

a
w

h
o
le

g
en

o
m

e
o
r

g
en

o
m

e
se

g
m

en
t,

th
er

e
w

il
l
b
e

se
v
er

a
l
cl

o
n
es

co
v
er

in
g

ea
ch

re
g
io

n
.
In

th
is

il
lu

st
ra

ti
o
n
,
co

v
er

a
g
e

c
∼

5
.
T
o

re
d
u
ce

th
e

re
d
u
n
d
a
n
cy

,
a

su
b
se

t
o
f

m
in

im
a
ll
y

ov
er

la
p
p
in

g
cl

o
n
es

is
ch

o
se

n
(h

ea
v
y

li
n
es

)
th

a
t

st
il
l

sp
a
n
s

th
e

w
h
o
le

g
en

o
m

e.
T

h
e

p
a
th

th
ro

u
g
h

th
e

g
ra

p
h

re
p
re

se
n
ti
n
g

th
es

e
cl

o
n
es

(a
rr

ow
s)

is
ca

ll
ed

a
m

in
im

a
l
ti
li
n
g

p
a
th

.

112 4 Physical Mapping of DNA

4.5.3 Progress in Contig Assembly

Figure 4.3B illustrates the possible situations encountered for assembly of
contigs. The process is dependent on recognizing overlaps (Fig. 4.3A), and it
should be evident that some overlaps are too short to recognize (Fig. 4.3B, 3
and 4). This could occur if the overlap is shorter than the average fragment size
generated by the restriction endonuclease employed in mapping, for example.
Also, because of the experimental error in measuring restriction fragment
lengths, identical fragments might not be recognized as such. Moreover, it is
possible to generate similar-sized fragments from inserts from totally different
parts of the genome. For this reason, it is usual to demand size matches among
several fragments from each clone before declaring that two clones overlap.

In Fig. 4.3B, clones 1 and 2 represent a contig that can be recognized,
while clones 3 and 4 represent a contig that cannot be recognized. Clone 5
is a singleton. These three blocks of sequence (two contigs and a singleton)
correspond to fixed points in the genome in a “sea” of genomic DNA. Contigs
(those that are apparent and those not recognized) together with singletons
constitute “islands.”

To analyze progress in contig assembly, we list again the parameters
pertaining to the problem (some of which are identical to the ones used in
Section 4.5.1):

N = number of clones;
L = length of insert in each clone;
G = genome length;
Ω = minimum amount of overlap required for detection of that overlap;
θ = fraction of L corresponding to Ω; Ω = θL.

Overlaps can be detected only if they exceed Ω = θ ×L. Smaller overlaps are
undetected by the experimenter. As before, the coverage is c = NL/G.

Now we develop expressions for the number of islands observed for a given
value of c. We start by examining the distributions of clone inserts along the
genome. (Any island must start with one particular clone.) Of course, now we
are distributing intervals along the genome instead of positions. We can use
our previous formalism if we locate each interval (cloned insert) by specifying
the position of one end. We will pick the left end (we could have chosen the
right), and once the position of the left end on the genome is specified, the
remaining L−1 base pairs are located to the right of this position in succession.

When analyzing restriction sites, we didn’t know at first how many of them
there were, and we had to calculate λ, the probability that any position on
the genome is the beginning of a restriction site. But now we know that N
clones have been drawn, so we can say immediately that the probability that
any genome position corresponds to the left end of a clone is λ = N/G = c/L
(i.e., in G base pairs the expected number of clone ends is E(YN) = Gλ). Thus
we have “converted” a known number (N) of clones into a random variable
with expectation M . According to the Poisson distribution, for example,

4.5 Building Contigs from Cloned Genome Fragments 113

P(Number of left ends in an interval of length x = k)

=
(xλ)k

k!
e−xλ =

(xc/L)k

k!
e−xc/L, (4.8)

where x is the length of the interval along a DNA segment.
Now let’s think about the number of apparent islands that will be observed.

We have to use the word “apparent” because some clone pairs will actually
overlap but not sufficiently to detect—they will be counted is if they were two
islands instead of one. We will enumerate the number of islands by counting
their right ends. This is the same as the number of clones that are at the right
end of an island. Let Γ be the expected number of islands. Then

Γ = NP(A clone is at the right end of an island). (4.9)

Our problem is solved if we can calculate the probability that a clone is at
the right end of an island. We can see what this probability is if we consider
the diagram of a particular clone insert shown below (let’s name it 8G11—the
clone in row G, column 11 of microtitre plate 8):

8G11 (1−θL) | θL

What is the probability that clone 8G11 is at the right end of an island? If there
is another clone whose left end lies within θL of the right end of clone 8G11,
we can’t tell whether there are any clones to the right of it. However, if the
left end of a clone does lie within the segment of length (1− θ)L diagrammed
above, we can be sure that clone 8G11 is not at the right end of an island.
The probability that the left end of another clone does not lie in the interval
of length (1 − θ)L (i.e., the probability that 8G11 is at the right end of a
contig) is given by (4.8), with k = 0 and x = (1 − θ)L. The expected number
of islands then becomes

Γ = Ne−(1−θ)LN/G = Ne−(1−θ)c. (4.10)

To obtain an expression convenient for plotting, multiply and divide the
expression on the right by L/G to obtain

Γ = (G/L)(c e−(1−θ)c). (4.11)

This result is the number of islands expected as a function of coverage and θ
for given values of G and L.

The results for different values of θ are plotted in Fig. 4.4. The verbal
explanation for the shapes of the curves is as follows. When the mapping is
started, there are no islands. At the beginning, as we draw each new clone for
mapping, it is more likely to be a singleton (at that stage) than to overlap a
clone already drawn, so the number of islands begins to climb. As the number
of clones examined increases, existing contigs begin to increase in length as
clones overlap their ends. So, later in the process, an ever-increasing propor-
tion of the genome is being spanned by contigs. Any new clones that fall inside

114 4 Physical Mapping of DNA

Genome Equivalents = c

0 2 4 6 8

0
.0

 0

.2

 0
.4

 0

.6

0
.8

 1

.0

E
x
p
e
c
te

d
 N

u
m

b
e
r

o
f

Is
la

n
d
s
 (

in
 G

/L
)

θ = 0

θ = 0.25

θ = 0.50

θ = 0.65

Fig. 4.4. Expected number of islands as a function of coverage for different values
of fractional overlap, θ, required to reliably detect that overlap.

an existing contig do not add to the number of contigs or islands. Some clones
will overlap the left end of one contig and the right end of another, causing the
contigs to merge. This means that the number of contigs and islands begins
to drop later in the process. Eventually, the number of islands is expected to
approach the final value of Γ = 1 (all clones merged into the single contig
representing the entire genome). But the approach to Γ = 1 gets slower and
slower as c increases. This is because, at the later stages of the process, most
of the genome has been spanned, and the probability that a random clone will
fall in the small gaps between the large contigs gets smaller and smaller.

We can estimate the number of “singletons,” clone inserts not overlapping
others, by using the same argument. A clone insert C is a singleton if there
is no other clone whose left end falls in the interval of length (1 − θ)L at the
left end of C (probability = e−(1−θ)c) and there is no other clone whose right
end falls in the interval of length (1−θ)L to the right of C. This has the same
probability as for the left end, so the joint probability that there is no other
clone whose left end falls in the intervals (1−θ)L to the left and to the right of
C is e−2(1−θ)c (the product of the two identical probabilities). The predicted
number of singletons is then

4.6 Minimal Tiling Clone Sets and Fingerprinting 115

of singletons = Ne−2(1−θ)c. (4.12)

Computational Example 4.2: Reality check

Kohara et al. (1987) produced a complete restriction map for E. coli by us-
ing a random clone-mapping strategy employing inserts contained in lambda
cloning vectors. The parameters were

N = 1025, L = 1.55 × 104, G = 4.7 × 106.

The problem is to calculate the numbers of islands and singletons and compare
them with the experimental results.

Overlap was detected by analysis of restriction sites for eight different en-
zymes mapped in each of the clone inserts. Six consecutive sites were required
to declare overlaps. Since they calculated that the eight enzymes that they
used would cut the genome in 9700 locations, the average number of cleavage
sites in any one 15.5 kb insert would have been about 32.

Calculated results

c = NL/G = 3.38; θ = 6/32 ≈ 0.19.

From (4.11), we calculate

Γ = (303)(3.38)(e−2.84) = 66.3 islands.

From (4.12), we calculate

of singletons = (1025)× e−2(1−0.19)(3.38) = 4.3.

Experimental results

Kohara et al. (1987) reported 70 islands, seven of which were singletons. The
agreement between theory and experiment is excellent given the statistical
sampling of clones. Olson et al (1986) reported another early example of this
restriction mapping strategy.

4.6 Minimal Tiling Clone Sets and Fingerprinting

For some purposes (e.g., various shotgun sequencing strategies—see Chap-
ter 8), it is not necessary to generate a complete restriction map. Instead, we
seek a representation of the genome as a set of ordered clones that minimally
overlap and yet include all of the genome sequence. Such a set of clones is
called a minimal tiling clone set (Fig. 4.3C). It is certainly possible to
produce such a set from a large library whose inserts have all been mapped,
but this is not needed in general.

116 4 Physical Mapping of DNA

One way to produce a minimal tiling set is by fingerprinting the clones
(Wong et al., 1997). A fingerprint of a clone insert is the set of fragments or
fragment sizes produced from digestion by one or more restriction enzymes.
Different inserts will produce different fingerprints. As we indicated above,
shared fragments from mapped inserts can be used to build contigs. With
fingerprinting, the mapping step is skipped, and overlaps between two clones
are declared when they share the requisite number of fragments whose sizes
match within experimental error. With this procedure, restriction fragments
are “binned” and partially ordered, even though the clones have not been
completely mapped.

For example, suppose a digest of clones A, B, and C by the same restric-
tion enzyme or combination of enzymes yields the fragment clone fingerprints
indicated below. (Fragment sizes in kb are listed in order of size, and insert
sizes are compatible with typical lambda cloning vectors. Assume that enzyme
cleavages occur at the boundaries between the insert and vector sequences and
that vector fragments have been removed from the list.)

A B C

7.0 6.0 6.0

5.0 4.0 5.0

3.5 3.0 4.0

3.0 2.5 3.0

2.0 2.0 2.0

1.0 1.5 1.0

1.0

Notice that A and C share fragments of sizes 5.0, 3.0, 2.0, and 1.0 kb. C and B
share fragments of sizes 6.0, 4.0, 3.0, 2.0, and 1.0. If four matching fragments
suffice to declare overlaps, then the following sets of fragment clusters are
defined:

A : (7.0, 3.5) (5.0, 3.0, 2.0, 1.0)

C : (5.0, 3.0, 2.0, 1.0)(6.0, 4.0)

B : (6.0, 4.0, 3.0, 2.0, 1.0)(2.5, 1.5)

C : (5.0) (6.0, 4.0, 3.0, 2.0, 1.0)

We don’t know the order of the fragments enclosed in parentheses: we
have arbitrarily listed them in order of decreasing size. But we have defined
groups of fragments that occur as neighbors (in some undetermined order)
in the restriction map. Since A and B both overlap C and share fragments
3.0, 2.0, and 1.0, we see that we can overlap all three clones. The particular
clusters defined by each pair of clones allow us to further reduce the sizes of
unmapped clusters:

References 117

A : (7.0, 3.5) 5.0 (3.0, 2.0, 1.0)

C : 5.0 (3.0, 2.0, 1.0) (6.0, 4.0)

B : (3.0, 2.0, 1.0) (6.0, 4.0) (2.5, 1.5)

The result is a partial restriction map of the region represented on these clones,
and this map was obtained by using the clone fingerprints without mapping
the individual clone inserts:

(7.0, 3.5) 5.0 (3.0, 2.0, 1.0) (6.0, 4.0) (2.5, 1.5)

Given these clones and the mapping result, the region could be represented
by clones A and B only. They would be the minimal tiling clone set for this
region:

A : (7.0, 3.5) 5.0 (3.0, 2.0, 1.0)

B : (3.0, 2.0, 1.0) (6.0, 4.0) (2.5, 1.5)

In this toy example, we had only three clones to compare. In actuality, there
is experimental error in determining fragment sizes, and the number of clones
in the library may be very large. This could make the fingerprinting process
tedious because there would be N(N − 1)/2 fingerprint comparisons to be
made. If the library contained 100,000 clones, this would involve about 5×109

comparisons in all.
It is possible to reduce the labor of producing a minimal tiling clone set by

prescreening the library for clones that overlap. We will describe this in more
detail in Chapter 8, but we note here that it is relatively easy to determine
the sequences for about 500 bp into the insert from each end of the segment
cloned. With this sequence, we can design PCR primers that will amplify
DNA between them whereever that sequence is present and, in particular,
within the inserts in overlapping clones. We would then start with clone X
and design primers for its “right” end. By using appropriate pooling schemes,
it is relatively easy to identify other clones that overlap the right end of X
because an amplified product can be produced from the appropriate clone
pools. Those are the only clones that need to be fingerprinted to determine
the ones that have minimal overlap with the right end of X. If the left end of
Y overlaps the right end of X, then we can design primers for the right end
of Y, screen the library for clones that overlap its right end, fingerprint those
clones, and continue the process until we have produced a minimal tiling path
clone set. What we have just described is equivalent to employing sequence-
tagged connectors to generate a minimal tiling clone set like those used for
clone-by-clone shotgun sequencing (Chapter 8).

References

Cai W, Aburatani H, Stanton V Jr, Housman DE, Wang Y-K, Schwartz DC
(1995) Ordered restriction endonuclease maps of yeast artificial chromo-

118 4 Physical Mapping of DNA

somes created by optical mapping on surfaces. Proceedings of the National
Academy of Sciences USA 92:5164–5168.

Kohara Y, Akiyama K, Isono K (1987) The physical map of the whole E. coli
chromosome: Application of a new strategy for rapid analysis and sorting
of a large genomic library. Cell 50:495–508.

Olson MV, Dutchik JE, Graham MY, Brodeur GM, Helms C, Frank M, Mac-
Collin M, Scheinman R, Frank T (1986) Random-clone strategy for ge-
nomic restriction mapping in yeast. Proceedings of the National Academy
of Sciences USA 83:7826–7830.

Skiena S (1998) The Algorithm Design Manual. New York:Springer-Verlag.
Smith HO, Birnstiel ML (1976) A simple method for DNA restriction site

mapping. Nucleic Acids Research 3:2387–2398.
Wong GKS, Yu J, Thayer EC, Olson MV (1997) Multiple-complete digest

restriction fragment mapping: Generating sequence-ready maps for large-
scale DNA sequencing. Proceedings of the National Academy of Sciences
USA 94:5225–5230.

Exercises

Exercise 1. Given the products of digestion with A, B, and A + B shown
below, determine the restriction map(s). Assume that the molecule is linear
and that the sizes of digestion products are integers.

Products produced from digestion with A : {8, 9, 10};
Products produced from digestion with B : {4, 5, 8, 10};
Products produced from digestion with A + B : {1, 1, 4, 4, 8, 9}.

Exercise 2. Try to determine the restriction map of a linear molecule that
generates the following data:

Products produced from digestion with A : {3, 5, 6, 6, 8};
Products produced from digestion with B : {2, 3, 4, 4, 4, 4, 7};
Products produced from digestion with A + B : {1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5}.

Write a description of what you did. Calculate the number of possible or-
derings. Don’t test all possible orderings unless you are using a computer
program!

Exercise 3. In Section 4.2.1, the products by digestion with A + B number
n + m− 1. Show that this is correct. What is the number of A + B products
if A and B have one cut site in common?

Exercise 4. Download the λ DNA sequences and determine to the base pair
the exact length of the EcoRI restriction fragments. Note that since EcoRI
is not a blunt end cutter you must describe your convention for measuring
“length.”

Exercises 119

Exercise 5. Prove that ntot, the total number of fragments produced by an
incomplete digest of a linear DNA molecule, is ntot =

(
n+1

2

)
, where n is the

number of fragments produced in a complete digest. [Hint: The middle term
can be obtained by writing down an index number for each site along left and
top sides of a square and considering how many ways there are to choose pairs
of sites that bracket an undigested segment.]

Exercise 6. Show that the method to solve DDP has time complexity n! m!×
(n + m).

Exercise 7. Repeat the calculation done in Computational Example 4.1, fc =
0.95, for the human genome, G = 3.2 × 109, and for lambda inserts of length
20 kb.

Exercise 8. Show that the number of partial digestion fragments from a
molecule that has n complete digestion fragments is

(
n+1

2

)
.

Exercise 9. The equation (4.6) for fc is for a point locus. Find the probability
that you would clone an entire locus of length l at least once in N random
clones of length L (where l < L).

Exercise 10. What is c for 500, 000 λ-clones of the human genome? How
many λ-clones are required to represent 99% of the human genome?

Exercise 11. For complete digestion of a molecule with n restriction sites,
there are n + 1 restriction fragments. For incomplete digestion, let p = P(any
site is cut). If all cuts of one molecule are independent, find P(digestion of a
molecule results in k fragments), 1 ≤ k ≤ n + 1.

Exercise 12. Show that if N → ∞, then c → ∞, and evaluate limc→∞ Γ =
limNe−c(1−θ). Explain this result, given that complete coverage of the genome
(c → ∞) should produce one island. Can you correct formula (4.10)?

5

Genome Rearrangements

5.1 The Biological Problem

Genomes of living organisms consist of genes and noncoding DNA arranged
in particular orders on one or more chromosomes. Eukaryotes usually have
several pairs of linear chromosomes (humans have 23 pairs in each somatic
cell), but prokaryotes typically have only one or a few circular (sometimes
linear) chromosomes. The order of genes (or sets of genes) along a particular
chromosome of a particular species is ordinarily conserved, and the list of
genes or physical markers along a genome, together with the distances between
these genes or markers, is called either a genetic or physical map, depending
upon the units in which distances are measured. For each species, there is a
particular genetic map that distinguishes it from other species. For example,
even though the mouse (Mus musculus) contains most of the same types of
genes found in humans, the genetic map of the mouse differs from that of
humans. This is illustrated in Fig. 5.1 for human (Homo sapiens) chromosome
Hsa6, which contains blocks of DNA sequences corresponding to portions of
six different mouse chromosomes.

Clearly, segments of DNA in the two species were rearranged with respect
to each other during their independent descent from a common ancestor. If
blocks of sequences are excised from one location and inserted into another,
those sequences are said to have been translocated. On the other hand, it is
possible that the chunks of sequence in a syntenic block (Fig. 1.5) remain
together but are permuted in one organism relative to the other. An example
of permutation is blocks 1-2-3 of Hsa6 in Fig. 5.1, which appear in the order
3-1-2 in the mouse chromosome Mmu13. Sometimes sequences in the genome
of an organism are duplicated elsewhere in the same genome (either on the
same or on a different chromosome). For example, it is estimated that around
5% of the human genome (exclusive of transposable elements; see Chapter 14)
consists of duplicated sequences (Bailey et al., 2002). Segmental and whole-
genome duplications are discussed in Chapter 14.

M
m

u
1

3
M

m
u

1
M

m
u

4

7

2
3

5
9

8

1
1

1
3

1
41

5
1

6
1

7
1

8
1

9
2

0
4

6

1
2

1

2

1
0

H
s
a

6

M
m

u
1

7
M

m
u

9
M

m
u

1
0

F
ig

.
5
.1

.
[T

h
is

fi
g
u
re

a
ls
o

a
p
p
ea

rs
in

th
e

co
lo

r
in

se
rt

.]
S
y
n
te

n
ic

b
lo

ck
s

co
n
se

rv
ed

b
et

w
ee

n
h
u
m

a
n

ch
ro

m
o
so

m
e

H
sa

6
a
n
d

m
o
u
se

ch
ro

m
o
so

m
es

.
B

ro
k
en

li
n
es

in
d
ic

a
te

re
g
io

n
s

th
a
t

a
p
p
ea

r
in

in
v
er

te
d

o
rd

er
s

in
th

e
tw

o
o
rg

a
n
is
m

s.
R

ep
ri
n
te

d
,

w
it
h

p
er

m
is
si
o
n
,

fr
o
m

G
re

g
o
ry

S
G

et
a
l.

(2
0
0
2
)

N
a
tu

re
4
1
8
:7

4
3
–
7
5
0
.
C

o
p
y
ri
g
h
t

2
0
0
2

N
a
tu

re
P

u
b
li
sh

in
g

G
ro

u
p
.

5.1 The Biological Problem 123

5.1.1 Modeling Conserved Synteny

When comparing genomes of two organisms such as mice and humans, we
sometimes observe local similarities in the gene content and gene order. If two
or more genes that occur together on a single chromosome in organism B also
occur together on a particular chromosome in organism C, this occurrence
is an example of conserved synteny (see Fig 1.4 in Chapter 1). As shown in
Fig. 5.1, the gene orders may or may not be conserved within syntenic blocks
that are distributed among different chromosomes in a related organism. We
will use a simple example to show how such patterns can arise by genome
rearrangement.

Figure 5.2 shows four different ancestral “chromosomes,” each distin-
guished by a different color. Each ancestral chromosome is of identical size,
and each has ten “genes” 0, 1, . . . , 9. Each number/color combination repre-
sents a unique gene. This means that 2-green is not the same gene as 2-red.
The telomeres are indicated by a single slash, /. We will model an evolutionary
process indicated in the following diagram:

Ancestor A

Descendant B

Descendant C

inversion 1 inversion 2

inversion 3 inversion 4

To model the genome rearrangements, we line up the A chromosomes in
tandem and then invert different portions of this combined string in two in-
dependent steps to obtain chromosomes of Descendant B. The same process
is repeated by inverting different segments to produce Descendant C. By in-
version, we mean that we take a portion of the sequence of genes and reverse
their order relative to the surrounding genes. For example, if the middle three
genes represented by 1 2 3 4 5 were inverted, the result would be 1 4 3 2 5.
Inversions of chromosomal regions are well-documented in most organisms for
which there are genetic data.

Fig. 5.2 (Following page). [This figure also appears in the color insert.] Model
producing conserved synteny in descendant chromosomes B and C after independent
inversion steps starting with ancestral chromosome A. Telomeres (/) divide the
“genes” (numbered) into four chromosomes. Chromosomes are placed end-to-end
before inversions (reversals) are performed to simulate translocation. Two inversion
steps on the path leading to B and two inversion steps on the path leading to C are
sufficient to generate syntenic relationships resembling those seen in Fig. 5.1.

Inversion 1

Inversion 2

Inversion 4

Inversion 3

Ancestor A:

/1 2 3 4 5 6 7 8 9 0//1 2 3 4 5 6 7 8 9 0//1 2 3 4 5 6 7 8 9 0//1 2 3 4 5 6 7 8 9 0/

/1 2 3 4 5 6 7 8 9 0//1 2 3 4 5 6 7 7 6 5 4 3 2 1//0 9 8 8 9 0//1 2 3 4 5 6 7 8 9 0/

/1 2 3 4 3 2 1//0 9 8 8 9 0//1 2 3 4 5 6 7 7 6 5 4 3 2 1//0 9 8 7 6 5 4 5 6 7 8 9 0/

Chromosomes of Descendant B:

 B1 /1 2 3 4 5 6 7 7 6 5 4 3 2 1/
 B2 /0 9 8 7 6 5 4 5 6 7 8 9 0/
 B3 /1 2 3 4 3 2 1/
 B4 /0 9 8 8 9 0/

Ancestor A:

 /1 2 3 4 5 6 7 8 9 0//1 2 3 4 5 6 7 8 9 0//1 2 3 4 5 6 7 8 9 0//1 2 3 4 5 6 7 8 9 0/

 /1 2 3 4 5 6 7 8 9 0//1 2 3 4 5 6 7 8 9 4 3 2 1//0 9 8 7 6 5 4 3 2 1//0 5 6 7 8 9 0/

 /1 2 3 4 5 6 7 8 3 4 9 8 7 6 5 4 3 2 1//0 9 2 1//0 9 8 7 6 5 4 3 2 1//0 5 6 7 8 9 0/

Chromosomes of Descendant C:

 C1 /1 2 3 4 5 6 7 8 3 4 9 8 7 6 5 4 3 2 1/
 C2 /0 9 8 7 6 5 4 3 2 1/
 C3 /0 5 6 7 8 9 0/
 C4 /0 9 2 1/

Relationships between chromosome C1 and chromosomes B1 B4:

 B2 /0 9 8 7 6 5 4 5 6 7 8 9 0/ B1 /1 2 3 4 5 6 7 7 6 5 4 3 2 1/

 C1 /1 2 3 4 5 6 7 8 3 4 9 8 7 6 5 4 3 2 1/

 B3 /1 2 3 4 3 2 1/ B4 /0 9 8 8 9 0/

5.1 The Biological Problem 125

Conserved synteny occurs when two or more genes occur together on any
chromosome of Descendant B and on any chromosome of Descendant C. For
example, 0-black and 9-black occur together on chromosome C4, and they
also occur together on chromosome B2. 0-red and 5-green appear together on
chromosome C3, but they do not appear together on any of the B chromo-
somes. This is not a conserved synteny. In the modelled example (Fig. 5.2,
bottom), C1 shares regions of conserved synteny (and syntenic blocks) with
B1, B2, B3, and B4.

Inversions of the type shown in this example can produce results like those
illustrated in Fig. 5.1. The difference between Fig. 5.1 and our illustrative
model is that in Fig. 5.1 each colored region represents many genes—not just
one (i.e., 18-purple in Fig. 5.1 may contain hundreds of genes or more). Also
Hsa6 has segments that are syntenic with six mouse chromosomes. The ob-
served arrangements of genes on vertebrate chromosomes resemble what we
would see if a process similar to the one modelled had occurred. In the example
modeled, placing chromosomes end-to-end and then inverting segments corre-
sponds to a translocation if the two breakpoints associated with the inversion
fall within two chromosomes and to an inversion if they both fall within only
one chromosome.

The model just considered should not be taken as the actual mechanism
for chromosome evolution. It merely illustrates how one type of rearrangement
process can produce results similar to what is observed in contemporary eu-
karyotic chromosomes. However, rearrangements like these have been observed
in closely related contemporary species. For example, human chromosomes 1
and 18 have large inversions compared with the corresponding chimpanzee
chromosomes, and chimpanzee chromosomes 12 and 13 together contain ma-
terial that is located in human chromosome 2 (see Olson and Varki, 2003, for
a review comparing chimpanzees and humans). Chromosome rearrangements
thus may be used to help track evolutionary processes.

5.1.2 Rearrangements of Circular Genomes

As we mentioned above, bacteria often have circular chromosomes. Circu-
lar chromosomes are also found in mitochondria and chloroplasts. Remember
that mitochondria and chloroplasts are organelles that are thought to have
been reduced from eubacterial endosymbionts. These organelles contain many
copies of their respective genomes. For example, human mitochondria contain
approximately 103-104 DNA circles, each about 16,000bp long and containing
37 genes. Circular chromosomes or organelle DNAs of related organisms may
not have identical gene arrangements. Because of their circular structures, it
is possible to invert segments of circular chromosomes by a single crossover
event, which produces an inversion, a permutation of the original sequence
with two novel junctions, or breakpoints. When this occurs repeatedly, con-
siderable “shuffling” of the gene orders may occur.

126 5 Genome Rearrangements

One of the most interesting applications of computational biology is the
reconstruction of phylogenies of organisms (see Chapter 12). This is often ac-
complished by using the actual DNA sequences of genes or gene segments. Hu-
man mtDNA sequences have been used to reconstruct the ancestor-descendant
relationships leading to contemporary human populations (see, for example,
Fig. 12.2). Organellar DNAs are particularly useful sources of ancient DNA
samples because the copy numbers of mtDNA sequences are thousands of
times more abundant than particular sequences from nuclear DNA. But one
problem with organellar DNA and other small circular DNAs is that they may
have high mutation rates, which makes it hard to establish with confidence
the time separating distantly-related gene homologs. One way of dealing with
this problem is to delineate blocks of conserved genes, or conserved segments.
Evolutionary relationships are then analyzed in terms of these conserved seg-
ments rather than the actual DNA sequence. In this chapter, we will show
how genome sequences can evolve by inversion (which we will be calling these
reversals), and we will be estimating the distance between two genomes
by using the number of reversals required to convert the order of conserved
segments in one genome into the order found in the other. A set of distances
relating a collection of genomes can be used to construct phylogenetic trees,
which are graphs of ancestor-descendant relationships between these genomes.
These are discussed in detail in Chapter 12.

5.2 Permutations

5.2.1 Basic Concepts

To begin, we analyze rearrangements of linear, unichromasomal genomes (vi-
ral, organellar, bacterial), with each segment representing a group of con-
tiguous genes (a conserved segment). As noted, many of these genomes are
circular but have an analog linear genome, as otherwise the analysis is need-
lessly complicated. Because each conserved segment contains several genes, we
can define an orientation for each segment. Before we deal with orientation,
we first discuss the analysis of ordered elements, g1, g2, . . . gn. In Section 5.3,
each of these elements gi will be identified with conserved segments, and the
permutation G will be identified with a particular genome.

The identity permutation of these elements is defined as the permutation
in which the indices increase in numerical sequence:

I : g1 g2 g3 . . . gn.

The elements may also appear as a permutation of the elements in the identity
permutation. For example, if n = 7, permutation G might have elements in
the following order:

G : g3 g7 g2 g6 g4 g1 g5.

5.2 Permutations 127

For simplicity, we represent this particular permutation by just listing the
index numbers,

G : 3 7 2 6 4 1 5,

and we represent the identity permutation similarly:

I : 1 2 3 4 5 6 7.

How can we transform G into I? One way is to pick up the numbers one
or more at a time and drop them into the correct position. The equivalent
biological process is translocation. Transformation of G to I by translocation
is diagrammed as:

As indicated above, a common way for DNA molecules to rearrange is by
inversion. The equivalent term in computer science is reversal. An example
of a reversal performed on I is illustrated below, where the interval 3 4 5 is
reversed:

1 2 5 4 3 6 7

The order of the elements in the box is reversed from the order in which
they were found in the identity permutation. In general, if we are given a
permutation:

g1 g2 g3 . . . gi−1 gi gi+1 . . . gj−1 gj gj+1 . . . gn,

a reversal of the interval [i, j] yields the permutation

g1 g2 g3 . . . gi−1 [gj gj−1 . . . gi+1 gi] gj+1 . . . gn.

The order of the elements in brackets has been reversed. Adjoining ele-
ments may represent either an adjacency or a breakpoint.

gkgj ⇒ Adjacency if j = k ± 1,

gkgj ⇒ Breakpoint if j 	= k ± 1.

128 5 Genome Rearrangements

Since in the second string immediately above gi−1 is followed by gj , there is one
breakpoint after gi−1. Similarly, since gi is followed by gj+1, there is another
breakpoint just before gj+1. The inversion has produced two breakpoints.

Let’s now return to our previous example G = 3 7 2 6 4 1 5. We want this
to represent a circular array of permuted elements. This means that the first
element in our linear representation is connected to the last element. If the first
element is in the correct position, then we do not consider it to be preceded
by a breakpoint, even if the last element is not yet in the correct position.
(We don’t want to count the same breakpoint twice.) By our definition of
breakpoint shown above, you can see that there are seven breakpoints. In-
stead of transforming G to I by transposition of elements, we can effect this
transformation by successive inversions (reversals) of two or more elements
(brackets enclosing the elements to be inverted in each step):

G: [3 7 2 6 4 1]5
 1 break-point removed (the one

preceding the first element)
 1[4 6 2]7 3 5

 1 break-point removed
 1 2[6 4 7 3]5

 2 break-points removed
 1 2 3[7 4]6 5

 2 break-points removed
 1 2 3 4[7 6 5]

 1 break-point removed
 (the connection to 1 counted in

I: 1 2 3 4 5 6 7 first step)

As we see from this example, we have removed the seven breakpoints that
were in the original sequence. It should be clear that the maximum number
of breakpoints that can be removed by a reversal is 2. Note that the reversals
do not always remove two breakpoints.

We define d(G, I) as the minimum number of reversals required to convert
G into I. Notice that reversals destroy breakpoints during the transformation
process. If the number of breakpoints in G is b(G), then it should be clear that

d(G, I) ≥ b(G)/2.

Also, each reversal can remove at least one breakpoint, so

d(G, I) ≤ b(G)

and it follows that
b(G)/2 ≤ d(G, I) ≤ b(G).

Let’s check this against the example that we just used. We should recognize
that there is a breakpoint just before 3 in G (that element should have been

5.2 Permutations 129

1 if there had been no breakpoint). Using the same reasoning, there is also
a breakpoint after the last element. In fact, b(G) = 8, and d(G, I) ≥ 8/2.
We know that it will take at least four reversals to transform G to I. In the
illustration, we employed five reversals.

What is the greatest number of reversals required to transform the most
unfavorable permutation G to I (worst-case scenario)? What is the least num-
ber of reversals it would take to transform G to I? We can easily estimate
what the greatest number of reversals (worst case) would be. We can imagine
that you start from this worst-case permutation by reversing the set of ele-
ments from the initial one in the permutation up to and including g1. This
puts g1 in front. Then reverse all elements beginning with the second in the
permutation up to and including g2. Continue the process until the identity
permutation is achieved. In the worst case, we will have to do this for n − 1
elements. We don’t have to do a separate operation for gn because if the first
n−1 elements are sorted as described, then n automatically falls into the last
position. It can be shown that, for some permutations, the least number of
reversals required is (n + 1)/2. Thus we have

(n + 1)/2 ≤ d(G, I) ≤ n − 1.

Examples of the worst case are

G13 = 3 1 5 2 7 4 9 6 11 8 12 10 13

and
G14 = 3 1 5 2 7 4 9 6 11 8 13 10 12 14.

5.2.2 Estimating Reversal Distances by Cycle Decomposition

Given X and Y , which are permutations of the same letters, how can we
determine d(X, Y)? We describe a graphical method for doing this, and as an
example (to keep the graphs simple) we estimate the reversal distance between
F and I, where

F : 1 2 4 5 3 I : 1 2 3 4 5.

First, extend each permutation by adding 0 before the first element and n+1
after the last element, where n is the number of elements. These changes do not
alter the reversal distances between the permutations because the elements
are in their correct positions.

F ′ : 0 1 2 4 5 3 6 I ′ : 0 1 2 3 4 5 6.

Each element index corresponds to a vertex of the graph, and lines connecting
the vertices are called edges. First, we connect all adjacent vertices of F ′ with
black edges:

F ′ : 0 1 2 4 5 3 6

Now, in the same way, connect all of the adjacent I ′ vertices with grey edges.

130 5 Genome Rearrangements

Γ(F',I'): 0 1 2 4 5 3 6

The diagram above is called a graph, Γ(F ′, I ′). This type of graph is said to
be balanced because the number of black edges at each vertex is equal to the
number of grey edges. It can be decomposed into cycles that have edges with
alternating colors and that don’t share edges with other cycles (i.e., they are
edge-disjoint). We do not give an algorithm for this decomposition, which in
general is a challenging problem. We define c(F, I) as the maximum number of
alternating, edge-disjoint cycles into which Γ(F, I) can be decomposed. There
are four in this case, and they are shown in the following diagram:

0 1

1 2 4 5

2 4 5 3 6

The reason that we did this is that for most of the usual and interesting bio-
logical systems, the equality holds for the next expression for reversal distance
between two permutations X and Y :

d(X, Y) ≥ n + 1 − c(X, Y) = d̃(X, Y).

The general problem, just like the TSP, is NP-complete. In the case of per-
mutation F , the number of elements n was equal to 5, and we found that
c(F, I) = 4. This means that d̃(F, I) = 2. In other words, we should be able to
transform F into the identity permutation with just two reversals. They are
shown below (again, we reverse the order of elements between the brackets):

F: 1 2[4 5]3

1 2[5 4 3]

I: 1 2 3 4 5

5.2 Permutations 131

5.2.3 Estimating Reversal Distances Between Two Permutations

Up to now, we have been determining the reversal distance d(G, I) between
permutation G and the identity permutation I. Now suppose that we have
the two permutations F and H , with the following elements:

F : 1 2 4 5 3 H : 1 4 3 5 2.

The distance between F and H , d(F, H) and d̃(F, H), is calculated just as
was done above, except that this time the second set of edges will not be drawn
connecting vertices in increasing numerical order but instead in the order
in which these vertices appear in H . For simplicity, we again represent each
element by its numerical index and, as before, we extend each permutation
by prefixing it with 0 and by adding n + 1 at the end (6 in this case). We
connect the vertices of F with black edges, taking vertices in succession as
they appear in F . Then we add grey edges between vertices, taking them in
the order in which they appear in H . The result is:

Γ(F',H'): 0 1 2 4 5 3 6

The decomposition of this graph into the maximum number of edge-disjoint
cycles is:

0 1

1 2 4 5

5 3

2 4 3 6

Since Γ(F ′, H ′) can be decomposed into a maximum of four cycles, d̃(F, H) =
5 +1− 4 = 2, and we expect that F can be transformed into H with two
reversals. This is shown in the following diagram:

132 5 Genome Rearrangements

F: 1[2 4]5 3

1 4[2 5 3]

H: 1 4 3 5 2

5.3 Analyzing Genomes with Reversals of Oriented
Conserved Segments

In the previous section, we showed how to analyze permutations. When we
start to analyze genomes, the elements are now genes (or sets of genes in
an interval that contains no breakpoints), and these have orientation. Gene
orientation might be indicated by transcription direction, which might be
denoted as “+” if it is transcribed left to right in a particular map as drawn
and “−” if it is transcribed right to left. Genes α, β, and γ might appear
in one genome in an order +α +β +γ but in another genome in the reverse
order −γ −β −α. These might represent conserved segment gi, which would be
represented as +gi = +α+β +γ in the former case and as −gi = −γ −β −α
in the latter case.

For example, consider the two genomes J and K below:

J : +g1 +g5 −g2 +g3 +g4 K : +g1 −g3 +g2 +g4 −g5.

These could be represented graphically as (again, employing only the subscript
labels):

J: 1 5 2 3 4

K: 1 3 2 4 5

As before, we are seeking the reversal distance d(J, K), which is the minimum
number of reversals needed to convert J to K. But now when we do reversals
to sort the segment orders, we must also keep track of the orientations of the
conserved segments to make sure that both gene order and orientation are
correct. Just as we did before, we calculate d(J, K) by constructing an edge-
colored graph and then counting the maximum number of alternating cycles
into which the graph can be decomposed. But we must modify the procedure
to keep track of the orientations of the conserved segments. (As noted above,
the genome rearrangement problem with unsigned segments is NP-complete.
Although signed segments would appear to make the problem more difficult,
actually there is an O(n2) algorithm! Further discussion of this is beyond the
scope of this chapter.)

5.3 Analyzing Genomes with Reversals of Oriented Conserved Segments 133

To track the orientation of conserved segment i, label its left end (tail) ia
and its right end (head) ib. If genome J has n conserved segments, there are
now 2n elements representing their ends, thus specifying their location and
orientation. We prefix the list of elements in J with 0 and add element n+1 to
the right end as before to yield a total of 2n + 2 elements. Genomes J and K
are each represented by a particular permutation of the same 2n+2 elements,
and the approaches described in the previous section can now be applied. Our
example above now becomes

J : 0 1a 1b 5a 5b 2b 2a 3a 3b 4a 4b 6,

K : 0 1a 1b 3b 3a 2a 2b 4a 4b 5b 5a 6.

Now we create an edge-colored graph, but we only draw edges where ad-
jacent conserved segments are connected (i.e., we won’t draw edges between
the ends of the same conserved segment, ia and ib). We designate edges be-
tween conserved segments in J with black lines and edges between conserved
segments in K with grey lines.

Γ(J,K):

 0 1a 1b 5a 5b 2b 2a 3a 3b 4a 4b 6

The decomposition of this graph into edge-disjoint alternating cycles is:

0 1a 2a 3a

 1b 5a 5b 2b 3b 4a 4b 6

We find that there are three such cycles, and thus we calculate the reversal
distance between J and K:

d̃(J, K) = n + 1 − c(J, K) = 5 + 1 − 3 = 3.

We then expect to be able to transform J to K by using three reversals.
These are shown in the following diagram (with [] indicating set of conserved
segments being reversed):

134 5 Genome Rearrangements

J: 1 [5 2 3 4]

1 [4 3 2] 5

1 [2 3] 4 5

K: 1 3 2 4 5

We notice that the alternating color edge-disjoint decomposition into the
maximum number of cycles is now easy. This is a general property of the anal-
ysis of signed reversals. It is accomplished by choosing an edge and following
the alternating edge-vertex path until returning to the beginning. There are
no choices to make. A challenging problem became easy with the addition of
biological detail.

Let’s remember again at this point why we are going through all of this.
What we are extracting is the set of d̃(X, Y) from a collection of related
genomes. These are pairwise differences, or distances. It turns out that if we
have a collection of m genomes and all of the m(m− 1)/2 pairwise differences
between them, we can build a phylogenetic tree that reveals the relationships
among the genomes. This sort of approach has been used by different investiga-
tors to analyze mitochondrial genomes (Sankoff et al., 1992) and herpesvirus
genomes (Hannenhalli et al., 1995). A discussion of approaches to genome
reconstruction is provided by Bourque and Pevzner (2002).

Computational Example 5.1: Determination of reversal distance
d(X, Y) between genome X and genome Y

Given two related genomes containing the same set of conserved segments,
but in different orders and orientations:

Step 1: Label the ends of each conserved segment i as ia and ib, for all l ≤ i ≤
n, where n is the number of conserved segments. These labeled ends
will be the vertices of the graph.

Step 2: Write down in order the ends of the oriented conserved segments in
the sequence that they occur in genome X .

Step 3: Add 0 at the beginning of the permutation representing genome X ,
and add n + 1 at the end of the permutation.

Step 4: Repeat steps 2 and 3 for genome Y .

5.4 Applications to Complex Genomes 135

Step 5: Connect vertices from different fragments with a black line if they are
joined in genome X . Connect vertices from different fragments with a
grey line if they are joined in genome Y . (No connections will be made
for ia and ib.)

Step 6: Decompose the graph generated in step 5 into the maximum number
of edge-disjoint alternating cycles. This number is c(X, Y).

Step 7: Compute the reversal distance, the minimum number of reversals of
one or more conserved segments needed to transform one genome into
the other: d̃(X, Y) = n + 1 − c(X, Y).

5.4 Applications to Complex Genomes

The illustrations above applied to unichromosomal linear genomes, which can
be generalized to circular genomes of eukaryotic organelles and many bacte-
ria. Relating multichromosomal organisms by genome rearrangements is much
more complicated, although this has been done for humans and mice. We will
illustrate these more complex problems without going into detail. Genome re-
arrangements are also discussed in Chapter 14. We continue to use the mouse
and human genomes as examples (MGSC, 2002; Pevzner and Tesler, 2003).

5.4.1 Synteny Blocks

In the first and second sections of this chapter, we discussed conserved synteny
and conserved segments (see also Fig. 1.5 and Fig. 14.8). We need to be
a bit more precise to accommodate the data. According to one definition
(see Section 14.3 for other definitions), a conserved segment is a region
found in two genomes in which homologous genes retain the same order and
relative map position in both genomes. Does it follow that conserved segments
contain no gene rearrangements? It is estimated that there are about 25,000
mammalian genes in genomes of about 3×109 bp. This means that, on average,
conserved segments that include three genes would exceed 300,000bp. Is it
possible that there have been rearrangements in intervals of size 200,000 to
1,000,000bp that would not be detected in conserved segments?

The availability of sequenced genomes makes possible more precise mea-
sures of conserved synteny and conserved segments, based upon a higher den-
sity of physical markers. Regions of local similarity between two sequenced
genomes can be readily identified (sequence similarity and alignment are dis-
cussed in the next chapter). Suppose that subsequence fi in genome F is
similar to subsequence gi in genome G, and that (a) alignment of fi to G
yields gi as the highest-scoring alignment and that (b) alignment of gi to F
yields fi as the highest-scoring alignment (i.e., fi and gi are reciprocal “best
hits”). The subsequences fi and gi can be used as sequence anchors or

136 5 Genome Rearrangements

landmarks to aid in comparing the two genomes. In principle, there can be
many more sequence anchors than there are genes and, unlike genes, their
identification is uninfluenced by errors in gene annotation (e.g., incorrectly
identifying a gene in F as an ortholog of a gene in G—see Chapter 14 for how
orthologs are identified). In a recent study relating the mouse and human
genome organizations, nearly 560,000 genome anchors were employed.

Whereas conserved segments were defined above in terms of genes, synteny
blocks can also be defined in terms of anchors. A syntenic block is a set of
sequence anchors that appear together (but not necessarily in the same order)
in the genomes from two different organisms. Because there are so many more
anchors than there are genes, the synteny blocks are based upon much finer
partitioning of the chromosome than are conserved segments defined by genes.
Conserved segments may contain short inversions or other types of microrear-
rangements that are not detected by mapping with sequence anchors. Synteny
blocks can be used to define macrorearrangements relating two chromosomes
by approaches similar to those we have discussed above (Pevzner and Tesler,
2003).

5.4.2 Representing Genome Rearrangements

The methods we have discussed for single chromosomes have relied on making
what were, in effect, one-dimensional diagrams. When comparing two chro-
mosomes or genomes, it is possible to represent the relationships by using
two-dimensional diagrams, with each axis representing the synteny blocks for
each organism. The projection of the two-dimensional graph onto either axis
produces a unidimensional diagram of the type that we have employed up to
now. Figure 5.3 shows an example of a two-dimensional diagram comparing
the human and mouse X chromosomes. The problem to be solved is exactly
the same as the one that we have discussed in the unichromosomal case: de-
termining the distance between the chromosomes by enumerating the number
of reversals required to convert the order of synteny blocks found in mice into
the order found in humans. This is of course just a part of the larger problem,
identifying the total rearrangement distance between the complete genomes.
Exercise 9 illustrates cycle decomposition in two dimensions.

To demonstrate how the observations recorded in Fig. 5.3 could have
arisen, we perform a simple simulation.

Computational Example 5.2: Simulating genome rearrangements

Using R, provide an ordered set of 100 anchor loci for genome x. This might
represent the ancestral genome. We will not perform any rearrangements on
x.

x<-c(1:100)

Next we provide an ordered set of 100 anchor loci for genome y:

5.4 Applications to Complex Genomes 137

0 Mb 50 Mb 100 Mb 149 Mb

0
 M

b
5
0
 M

b
1
0
0
 M

b
1
4
7
 M

b Human Chromosome X

M
o

u
s
e

 C
h

ro
m

o
s
o

m
e

 X

Fig. 5.3. Synteny blocks shared by human and mouse X chromosomes. The arrow-
head for each block indicates the direction of increasing coordinate values for the
human X chromosome. Reprinted, with permission, from Pevzner P and Tesler G
(2003) Genome Research 13:37–45. Copyright 2003 Cold Spring Harbor Laboratory
Press.

y<-c(1:100)

We now transform genome y into genome y4 through a series of four reversal
steps of our choice, saving each intermediate genome y1, y2, and y3. y2 is
produced by applying a second reversal to y1, which resulted from the first
reversal, and so on.

y1<-y

y1[11:75]<-y1[75:11]

#Reversal of interval 11 to 75 inclusive in y

y2<-y1

y2[15:30]<-y2[30:15]

#Reversal of interval 15 to 30 inclusive in y1

138 5 Genome Rearrangements

y3<-y2

y3[55:80]<-y3[80:55]

#Reversal of interval 55 to 80 inclusive in y2

y4<-y3

y4[70:90]<-y4[90:70]

#Reversal of interval 70 to 90 inclusive in y3

Now we plot the results on a single plot with three rows of two
columns (mfrow=c(3,2)) and using “.” as the print character for each point
(pch=".").

par(pin=c(2.5,2.5), mfrow=c(3,2),pch=".")

plot(x,y, main="A.")

plot(x,y1, main="B.")

plot(x,y2, main="C.")

plot(x,y3, main="D.")

plot(x,y4, main="E.")

The results of this simulation are plotted in Fig. 5.4. We can see step by step
how a graph such as the one shown in Fig. 5.3 can be generated by reversals.

We note in passing that these graphs are analogous to the “dot plots”
that will be discussed in Chapter 7. In that chapter, the plots are of k-word
matches in two different sequence strings. Here, the plots are of synteny blocks
in two different genomes. Interpretations in terms of diagonals are very similar
in both cases.

5.4.3 Results from Comparison of Human and Mouse Genomes

Mouse and human genomes have been compared by Pevzner and Tesler (2003),
who also present an extremely complicated multichromosomal breakpoint
graph. They identified 281 synteny blocks (within stated gap and size crite-
ria), and they concluded that the order of the mouse genome synteny blocks
can be converted into the order seen in the human genome by 245 genome
rearrangements: 149 inversions, 93 translocations, and 3 fissions. Mice and
humans share a common ancestor estimated to have lived about 83 million
years ago. Since that time, there have been about 1.5 rearrangements occur-
ring per million years of evolutionary time separating the two species (245
rearrangements ÷ (2 × 83 million years); the factor of 2 reflects the fact that
evolution is occurring in both lineages).

As more mammalian genomes are sequenced, comparisons of their se-
quence organizations will provide additional measures of genetic distance,
which can be used together with DNA sequence differences to delineate evo-

A.

x

y
B.

x

y
1

C.

x

y
2

x

y
3

E.

x

y
4

0 20 40 60 80 100

0

2
0

4
0

6
0

 8

0

1
0
0

0 20 40 60 80 100

0

2
0

4
0

6
0

 8

0

1
0
0

0 20 40 60 80 100

0

2
0

4
0

6
0

 8

0

1
0
0

0

2
0

4
0

6
0

 8

0

1
0
0

0 20 40 60 80 100

0

2
0

4
0

6
0

 8

0

1
0
0

0 20 40 60 80 100

D.

Fig. 5.4. Simulation of rearrangement of a single chromosome by reversals. An-
chor loci are plotted along axes. Panel A represents chromosomes x and y in
the unrearranged states. Chromosomes y1, y2, y3, and y4 in panels B through
E are related to chromosome y by one reversal relative to the previous genome
(e.g., y1 has one reversal compared to y, y2 has one reversal compared to y1,
etc.).

140 5 Genome Rearrangements

lutionary relationships. General approaches for genome comparisons are de-
scribed in Chapter 14.

References

Bailey JA et al. (2002) Recent segmental duplications in the human genome.
Science 297:1003–1007.

Bourque G, Pevzner PA (2002) Genome-scale evolution: Reconstructing gene
orders in the ancestral species. Genome Research 12:26–36.

Gregory SG et al. (2002) A physical map of the mouse genome. Nature
418:743–750.

Hannenhalli S, Chappey C, Koonin EV, Pevzner PA (1995) Genome sequence
comparison and scenarios for gene rearrangements: A test case. Genomics
30:299–311.

Mouse Genome Sequencing Consortium (2002) Initial sequencing and com-
parative analysis of the mouse genome. Nature 420:520–562.

Olson MV, Varki A (2003) Sequencing the chimpanzee genome: Insights into
human evolution and disease. Nature Reviews Genetics 4:20–28.

Pevzner P, Tesler G (2003) Genome rearrangements in mammalian evolution:
Lessons from human and mouse genomes. Genome Research 13:37–45.

Sankoff D, Leduc G, Antoine N, Paquin B, Lang BF, Cedergren R (1992)
Gene order comparisons for phylogenetic inference: evolution of the mito-
chondrial genome. Proceedings of the National Academy of Sciences USA
89:6575–6579.

Exercises

Exercise 1. For X = 1 2 3 4 5 6 7 and Y = 2 3 1 4 6 5 7, (a) find the break-
points, (b) find the breakpoint graph, and (c) perform the cycle decomposition
of the breakpoint graph.

Exercise 2. Taking x = 1 2 3 4 5 6 as the “reference genome” find the
breakpoint graph for y = 3 1 5 2 6 4. What is d̃(X, Y)?

Exercise 3. Taking X = +1 + 2 + 3 + 4 + 5 + 6 as the reference genome,
find the breakpoint graph for y = +3 − 1 + 5 + 2 − 6 + 4

Exercise 4. Find a set of reversals for the “n − 1” distance for G13 (Sec-
tion 5.2). Do the same thing for G14.

Exercise 5. Find the cycle decomposition of G7 = 3 1 5 2 7 4 6, for which
the reversal distance is 7 − 1 = 6.

Exercises 141

Exercise 6. Given G : 2 4 5 3 1, a set of reversals that transform G to the
identity permutation I is

G: [2 4 5 3 1]

 1 [3 5 4 2]

 1 2 [4 5 3]

 1 2 3 [5 4]

I: 1 2 3 4 5

Show by cycle decomposition that this set of reversals does not correspond
to the minimum d(G, I).

Exercise 7. The two-dimensional plot shown in Fig. 5.4D can be expressed
as a one-dimensional graph using the conventions in Section 5.3. Recall that
in the simulation that led to Fig. 5.4D, sequence x was not rearranged.

a. Label the ends of the ith line segment ia and ib using the order and orien-
tation of segments in x to determine the values of i and the assignments
a or b.

b. Make a diagram showing y3 as a set of oriented arrows with the appro-
priate labelling. (For the purposes of this problem, the arrows can all be
of the same length. See Section 5.3.)

c. Draw a graph corresponding to the oriented sequence blocks in part b
of this problem, and perform a cycle decomposition to verify that the
computed reversal distance agrees with the actual number of reversals
used to produce Fig. 5.4D (Computational Example 5.2).

Exercise 8. Reproduce Fig. 5.4D, except this time allow enough space to add
a point labeled 0 in the lower left-hand corner and a point labeled 8 in the
upper right-hand corner, with a gap separating these points from the first
and last oriented segments, respectively. Shorten segments 1–7, and add the
labeling as in Exercise 7a.

a. Project all ia and ib onto the y3 axis. (Each point should be separated
from its neighbors by a space because the segments were shortened above.)
Connect adjacent points with broken lines, except for points belonging to
the same line segment.

b. Using solid line segments, connect the ends of segments 1-7 in the order
of appearance in x (i.e., connect ib to (i + 1)a, etc.), and project these
solid line segments as arcs onto the y3 axis.

142 5 Genome Rearrangements

c. Compare the results of parts a and b of this problem with the graph that
you drew in Exercise 7c. Are they the same (except for the lengths of
edges connecting the points)?

Exercise 9. This exercise shows how to perform cycle decomposition in two
dimensions, again using Fig. 5.4D. Redraw Fig. 5.4D just as you did in Exer-
cise 8, with points 0 and 8 added, and ia and ib labels.

a. In the two-dimensional area, use solid lines to connect adjacent segments
in the order that they occur in x. (Connect 0 to 1a and 7b to 8 with arcs
that are concave downward.)

b. Use broken lines to connect adjacent segments in the order that they occur
in y3. (Connect 0 to 1a and 7b to 8 with arcs that are concave upward)

c. Now remove all segments 1–7 (corresponding to our not connecting the
ia and ib vertices when i is the same). Decompose the composite set of
broken and solid lines into disjoint cycles. (Cycles will contain both solid
and broken lines.) Use the number of cycles to compute d(x, y3). Does
this agree with the result of Exercise 7c and the number of reversals used
to produce y3 in the simulation?

Exercise 10. Use the approach of Exercise 9 to compute the distance sepa-
rating the human and mouse X chromosomes (Fig. 5.3). (To prevent confusion,
make all segments the same length, so that their projections on the coordinate
axes would be separated by gaps.)

Exercise 11. GRIMM is the genome rearrangements Web server that com-
putes optimal rearrangement scenarios relating a source and destination
genome. It is available at http://www-cse.ucsd.edu/groups/bioinformati
cs/GRIMM.

a. Represent genomes x and y4 in Fig. 5.4E as oriented arrows (see Exer-
cise 7). Input x as the source genome and y4 as the destination genome
into GRIMM and run the application. Do you get the same rearrangement
scenario as was actually employed to generate Fig. 5.4E? Do you obtain
the same number of reversals?

b. Check your answer to Exercise 10 by applying GRIMM to the data in
Fig. 5.3.

6

Sequence Alignment

6.1 The Biological Problem

Much of biology is based on recognition of shared characters among organisms,
extending from shared biochemical pathways among eukaryotes to shared
skeletal structures among tetrapods. The advent of protein and nucleic acid
sequencing in molecular biology made possible comparison of organisms in
terms of their DNA or the proteins that DNA encodes. These comparisons
are important for a number of reasons. First, they can be used to establish
evolutionary relationships among organisms using methods analogous to those
employed for anatomical characters. Second, comparison may allow identifi-
cation of functionally conserved sequences (e.g., DNA sequences controlling
gene expression). Finally, such comparisons between humans and other species
may identify corresponding genes in model organisms, which can be geneti-
cally manipulated to develop models for human diseases.

Genes or characters in organisms B and C that have evolved from the
same ancestral gene or character in A are said to be homologs. Similar char-
acters that result from independent processes (i.e., convergent evolution) are
instances of homoplasy. Examples are the dorsal fins of sharks and whales.
We are most interested in homologies because they usually exhibit conserved
functions. Since organisms have greater or lesser degrees of evolutionary re-
lationships, we anticipate that homologs will be found for most genes in or-
ganisms that are evolutionarily close. Thus, we might expect that mice would
have homologs of human genes for immunoglobulins but would not expect
such genes to occur in bacteria.

It is important to distinguish between sequence homology and sequence
similarity. Suppose that genes gB and gC are homologs derived from gene gA

in organism A. They will have independently accumulated mutations along
the paths A → C and A → B. If the divergence between these two lineages was
relatively recent, then the coding sequences for gB and gC will display the same
character at most positions in their corresponding DNA or protein sequences.
If the divergence between lineages was more remote in time, there will be a

144 6 Sequence Alignment

lesser correspondence in characters at each position. Similarity refers to the
degree of match at corresponding positions in the two sequences. This is often
expressed as a percentage. Similarity is an expected consequence of homology,
but when comparing two short sequences, it is possible for similarity to occur
by chance. Similarity does not necessarily imply homology.

Identification of homologs makes it possible to trace evolutionary patterns
of genes, which may or may not be identical to the patterns of the species that
contain them (see Fig. 12.7). Suppose that genes gB and gC are homologous.
They normally will have the same function. Suppose that gB in species B
has undergone a number of duplication events to produce gB1, gB2, . . . , gBn.
Selection for function may require that one of these copies (gB1, for exam-
ple) retains the ancestral function, but then gB2, . . . , gBn can evolve either
to lose function or possibly acquire new but related functions. Sequence ho-
mologs from two different species that share the same function (gC and gB1

in the example above) are called orthologs. Homologs of gene copies that
have evolved within a species (e.g., any two of gB1, . . . , gBn) are said to be
paralogs. Paralogy arises from independent evolutionary events affecting a
gene within one species but not the corresponding gene in a related species.

An important activity in biology is identifying DNA or protein sequences
that are similar to a sequence of experimental interest, with the goal of finding
sequence homologs among a list of similar sequences. By writing the sequence
of gene gA and of each candidate homolog as strings of characters, with one
string above the other, we can determine at which positions the strings do
or do not match. This is called an alignment. As we shall see, there are
many different ways that two strings might be aligned. Ordinarily, we expect
homologs to have more matches than two randomly chosen sequences.

However, this seemingly simple alignment operation is not as simple as it
sounds. Consider the examples below (matches are indicated by ·, and − is
placed opposite bases not aligned):

ACGTCTAG 2 matches

.. 5 mismatches (6.1)

ACTCTAG- 1 not aligned

We might instead have written the sequences

ACGTCTAG 5 matches

..... 2 mismatches (6.2)

-ACTCTAG 1 not aligned

We might also have written

ACGTCTAG 7 matches

.. 0 mismatches (6.3)

AC-TCTAG 1 not aligned

6.1 The Biological Problem 145

Which alignment is “better”?
Next, consider aligning the sequence TCTAG with a long DNA sequence:

...AACTGAGTTTACGCTCATAGA... (6.4)

T---CT-A--G

We might suspect that if we compared any string of modest length with an-
other very long string, we could obtain perfect agreement if we were allowed
the option of “not aligning” with a sufficient number of letters in the long
string.

Clearly, we would prefer some type of parsimonious alignment—one that
does not postulate an excessive number of letters in one string that are not
aligned opposite identical letters in the other. We have seen that there are
multiple ways of aligning two sequence strings, and we may wish to compare
our target string (target meaning the given sequence of interest) to entries
in databases containing more than 107 sequence entries or to collections of
sequences billions of letters long. How do we do this? The present chapter
focuses on alignment of two sequences with each other. This can be done
using the entire strings (global alignment) or by looking for shorter regions
of similarity contained within the strings that otherwise do not significantly
match (local alignment). We briefly discuss multiple-sequence alignment
(alignment of more than two strings) at the end of this chapter.

Our approach is guided by biology. It is possible for evolutionarily related
proteins and nucleic acids to display substitutions at particular positions (re-
sulting from known mutational processes). Also, it is possible for there to be
insertions or deletions of sequences (less likely than substitution). In total,
the DNA sequence can be modified by (Section 1.3.3):

– Substitution (point mutation)
– Insertion of short segments
– Deletion of short segments
– Segmental duplication
– Inversion
– Transposable element insertion
– Translocation

The latter four processes often involve DNA segments larger than the coding
regions of genes, and they usually don’t affect the types of alignment presently
under discussion. The first three processes are important in aligning targets
whose sizes are less than or equal to the size of coding regions of genes, and
these will be explicitly treated in the alignment processes. Insertions and/or
deletions are called indels. In (6.3) above, we can’t tell whether the string
at the top resulted from the insertion of G in ancestral sequence ACTCTAG

or whether the sequence at the bottom resulted from the deletion of G from
ancestral sequence ACGTCTAG. For this reason, alignment of a letter opposite
nothing is simply described as an indel.

146 6 Sequence Alignment

Before proceeding, note that we may align nucleic acids with each other
or polypeptide sequences with each other. The latter case raises a number of
additional issues because of constraints on protein structures and the genetic
code, so it will be discussed in the next chapter.

6.2 Basic Example

Before proceeding to a rigorous description, we will introduce the “flavor” of
the process with a simple “toy” example. Suppose that we wish to align WHAT

with WHY. Our goal is to find the highest-scoring alignment. This means that
we will have to devise a scoring system to characterize each possible alignment.
One possible alignment solution is

WHAT

WH -Y

We need a rule to tell us how to calculate an alignment score that will,
in turn, allow us to identify which alignment is best. Let’s use the following
scores for each instance of match, mismatch, or indel:

identity (match) +1
substitution (mismatch) −µ
indel −δ

The minus signs for substitutions and indels assure that alignments with
many substitutions or indels will have low scores. We define the score S as
the sum of individual scores at each position:

S(WHAT/WH− Y) = 1 + 1 − δ − µ.

There is a more general way of describing the scoring process (not nec-
essary for “toy” problems such as the one above). We write the target se-
quence (WHY) and the search space (WHAT) as rows and columns of a ma-
trix:

6.2 Basic Example 147

We have placed an x in the matrix elements corresponding to a particular
alignment shown. We have included one additional row and one additional
column for initial indels (−) to allow for the possibility (not applicable here)
that alignments do not start at the initial letters (W opposite W in this case).
We can indicate the alignment above as a path through elements of the matrix
(arrows). If the sequences being compared were identical, then this path would
be along the diagonal. Other alignments of WHAT with WHY would correspond
to paths through the matrix other than the one shown. Each step from one
matrix element to another corresponds to the incremental shift in position
along one or both strings being aligned with each other, and we could write
down in each matrix element the running score up to that point instead of
inserting x.

What we seek is the path through the matrix that produces the greatest
possible score in the element at the lower right-hand corner. That is our “des-
tination,” and it corresponds to having used up all of the letters in the search
string (first column) and search space (first row)—this is the meaning of global
alignment.

Using a scoring matrix such as this employs a particular trick of thinking.
For example, what is the “best” driving route from Los Angeles to St. Louis?
We could plan our trip starting in Los Angeles and then proceed city to city
considering different routes. For example, we might go through Phoenix, Al-
buquerque, Amarillo, etc., or we could take a more northerly route through
Denver. We seek an itinerary (best route) that minimizes the driving time.
One way of analyzing alternative routes is to consider the driving time to
a city relatively close to St. Louis and add to it the driving time from that
city to St. Louis. Three examples for the last leg of the trip are shown be-
low.

City 1 (Tulsa)

City 2 (Topeka) St. Louis

City 3 (Little Rock)

1t

2t

3t

We would recognize that the best route to St. Louis is the route to St.
Louis from city n + the best route to n from Los Angeles. If D1, D2,

148 6 Sequence Alignment

and D3 are the driving times to cities 1, 2, and 3 from Los Angeles, then
the driving times to St. Louis through these cities are given by D1 +
t1, D2 + t2, and D3 + t3. Suppose that the driving time to St. Louis
through Topeka (City 2) turned out to be smaller than the times to St.
Louis through Tulsa or Little Rock (i.e., D2 + t2 were the minimum of
{D1 + t1, D2 + t2, D3 + t3}). We then know that we should travel through
Topeka. We next ask how we get to Topeka from three prior cities (not
shown), seeking the route that minimizes the driving time to City 2. Ana-
lyzing the best alignment using an alignment matrix proceeds similarly,
first filling in the matrix by working forward and then working backward
from the “destination” (last letters in a global alignment) to the starting
point. This general approach to problem-solving is called dynamic program-
ming.

The best alignment is revealed by beginning at the destination (lower right-
hand corner matrix element) and working backward, identifying the path that
maximizes the score at the end. To do this, we will have to calculate scores
for all possible paths into each matrix element (“city”) from its neighboring
elements above, to the left, and diagonally above. To illustrate, suppose that
we want to continue an ongoing alignment process using WHAT and WHY and
that we have gotten to the point at which we want to continue the alignment
into the shaded element of the matrix above. We have now added row and
column numbers to help us keep track of matrix elements.

 0 1 2

 - W H

0 -

1 W

2 H

case b

case a

There are three possible paths into element (3, 3) (aligning left to right
with respect to both strings—letters not yet aligned written in parentheses):

Case a. If we had aligned WH in WHY with W in WHAT (corresponding to element
(2, 1)), adding H in WHAT without aligning it to H in WHY corresponds
to an insertion of H (relative to WHY) and advances the alignment from
element (2, 1) to element (2, 2) (horizontal arrow): (W)H(AT)

(WH)- (Y)

Case b. If we had aligned W in WHY with WH in WHAT (corresponding to element
(1, 2)), adding the H in WHY without aligning it to H in WHAT corre-

6.2 Basic Example 149

sponds to insertion of H (relative to WHAT) and advances the alignment
from element (1, 2) to element (2, 2) (vertical arrow):

(WH)-(AT)

(W)H (Y)

Case c. If we had aligned W in WHY with W in WHAT (corresponding to el-
ement (1,1)), then we could advance to the next letter in both
strings, advancing the alignment from (1, 1) to (2, 2) (diagonal arrow
above): (W)H(AT)

(W)H (Y)

Note that horizontal arrows correspond to adding indels to the string written
vertically and that vertical arrows correspond to adding indels to the string
written horizontally.

Associated with each matrix element (x, y) from which we could have come
into (2, 2) is the score Sx,y up to that point. Suppose that we assigned scores
based on the following scoring rules:

identity (match) +1
substitution (mismatch) −1
indel −2

Then the scores for the three different routes into (2,2) are

Case a : S2,2 = S2,1 − 2,

Case b : S2,2 = S1,2 − 2,

Case c : S2,2 = S1,1 + 1.

The path of the cases a, b, or c that yields the highest score for S2,2 is the
preferred one, telling us which of the alignment steps is best.

Using this procedure, we will now go back to our original alignment matrix
and fill in all of the scores for all of the elements, keeping track of the path into
each element that yielded the maximum score to that element. The initial row
and column labeled by (−) corresponds to sliding WHAT or WHY incrementally
to the left of the other string without aligning against any letter of the other
string. Aligning (−) opposite (−) contributes nothing to the alignment of
the strings, so element (0, 0) is assigned a score of zero. Since penalties for
indels are −2, the successive elements to the right or down from element
(0, 0) each are incremented by −2 compared with the previous one. Thus
S0,1 is −2, corresponding to W opposite −, S0,2 is −4, corresponding to WH

opposite --, etc., where the letters are coming from WHAT. Similarly, S1,0 is
−2, corresponding to - opposite W , S2,0 is −4, corresponding to -- opposite
WH, etc., where the letters are coming from WHY. The result up to this point is

150 6 Sequence Alignment

 0 1 2 3 4

 - W H A T

0 - 0 -2 -4 -6 -8

1 W -2

2 H -4

3 Y -6

Now we will calculate the score for (1, 1). This is the greatest of S0,0 + 1
(W matching W, starting from (0, 0)), S0,1 − 2, or S1,0 − 2. Clearly, S0,0 + 1 =
0 + 1 = 1 “wins”. (The other sums are −2 − 2 = −4.) We record the score
value +1 in element (1, 1) and record an arrow that indicates where the score
came from.

 0 1 2 3 4

 - W H A T

0 - 0 -2 -4 -6 -8

1 W -2 +1

2 H -4 -1

3 Y -6

The same procedure is used to calculate the score for element (2, 1) (see
above). Going from (1, 0) to (2, 1) implies that H from WHY is to be aligned
with W of WHAT (after first having aligned W from WHY with (−)). This would
correspond to a substitution, which contributes −1 to the score. So one pos-
sible value of S2, 1 = S1, 0 − 1 = −3. But (2, 1) could also be reached from
(1, 1), which corresponds to aligning H in WHY opposite an indel in WHAT (i.e.,
not advancing a letter in WHAT). From that direction, S2, 1 = S1,1 − 2 =
1 − 2 = −1. Finally, (2, 1) could be entered from (2, 0), corresponding to
aligning W in WHAT with an indel coming after H in WHY. In that direction,
S2, 1 = S2, 0 − 2 = −4 − 2 = −6. We record the maximum score into this cell
(S2,1 = S1, 1 − 2 = −1) and the direction from which it came.

The remaining elements of the matrix are filled in by the same procedure,
with the following result:

6.2 Basic Example 151

 0 1 2 3 4

 - W H A T

0 - 0 -2 -4 -6 -8

1 W -2 +1 -1 -3 -5

2 H -4 -1 2 0 -2

3 Y -6 -3 0 1 -1

The final score for the alignment is S3,4 = −1. The score could have been
achieved by either of two paths (implied by two arrows into (3, 4) yielding
the same score). The path through element (2, 3) (upper path, bold arrows)
corresponds to the alignment

WHAT

WH -Y

which is read by tracing back through all of the elements visited in that path.
The lower path (through element (3, 3)) corresponds to the alignment

WHAT

WHY -

Each of these alignments is equally good (two matches, one mismatch, one
indel).

Note that we always recorded the score for the best path into each element.
There are paths through the matrix corresponding to very “bad” alignments.
For example, the alignment corresponding to moving left to right along the
first row and then down the last column is

WHAT - - -

- - - - WHY

with score −14.
For this simple problem, it was unnecessary to go through all of these

operations. But when the problems get bigger, there are so many different
possible alignments that an organized approach such as the one shown here
is essential. Biologically interesting alignment problems are far beyond what
we can handle with a No. 2 pencil and a sheet of paper.

152 6 Sequence Alignment

6.3 Global Alignment: Formal Development

We will now recapitulate the development described in the previous section
in a more direct and formal manner. We are given two strings, not necessarily
of the same length, from the same alphabet:

A = a1a2a3 · · · an,

B = b1b2b3 · · · bm.

Alignment of these strings corresponds to consecutively selecting each letter
or inserting an indel in the first string and matching that particular letter or
indel with a letter in the other string, or introducing an indel in the second
string to place opposite a letter in the first string. Graphically, the process is
represented by using a matrix as shown below for n = 3 and m = 4:

 0 1 2 3 4

 - b b b b

0 -

1 a

2 a

3 a

1 2 3 4

1

2

3

The alignment corresponding to the path indicated by the arrows is

b1 b2 b3 b4 -

- a1 - a2 a3

(6.5)

Any alignment that can be written corresponds to a unique path through
the matrix. The quality of an alignment between A and B is measured by a
score, S(A, B), which is large when A and B have a high degree of similarity. If
letters ai and bj are aligned opposite each other and are the same, they are an
instance of an identity. If they are different, they are said to be a mismatch.
The score for aligning the first i letters of A with the first j letters of B is

Si,j = S (a1a2 · · · ai, b1b2 · · · bj). (6.6)

Si,j is computed recursively as follows. There are three different ways that the
alignment of a1a2 · · · ai with b1b2 · · · bj can end:

6.3 Global Alignment: Formal Development 153

Case a: (a1 a2 · · · ai) −
(b1 b2 · · · bj−1) bj ,

Case b: (a1 a2 · · · ai−1) ai

(b1 b2 · · · bj) −,

Case c: (a1 a2 · · · ai−1) ai

(b1 b2 · · · bj−1) bj ,

(6.7)

where the inserted spaces “−” correspond to insertions or deletions (“indels”)
in A or B. Scores for each case are defined as follows:

s(ai, bj) = score of aligning ai with bj (6.8)

(= +1 if ai = bj,−µ ≤ 0 if ai 	= bj , for example),

s(ai,−) = s(−, bj) = −δ ≤ 0 (for indels). (6.9)

With global alignment, indels will be added as needed to one or both
sequences such that the resulting sequences (with indels) have the same length.
The best alignment up to positions i and j corresponds to the case a, b, or c
in (6.7) that produces the largest score for Si, j :

Si,j = max

⎧⎨
⎩

Si−1,j−1 + s(ai, bi)
Si−1,j − δ
Si,j−1 − δ

⎫⎬
⎭

Case c
Case b.
Case a

(6.10)

The “max” indicates that the one of the three expressions that yields the
maximum value will be employed to calculate Si, j . Except for the first row
and first column in the alignment matrix, the score at each matrix element
is to be determined with the aid of the scores in the elements immediately
above, immediately to the left, or diagonally above and to the left of that
element, as indicated in (6.10). The scores for elements in the first row and
column of the alignment matrix are given by

Si,0 = −iδ, S0,j = −jδ. (6.11)

The score for the best global alignment of A with B is S(A, B) = Sn,m, and
it corresponds to the highest-scoring path through the matrix and ending at
element (n, m). It is determined by tracing back element by element along
the path that yielded the maximum score into each matrix element.

Computational Example 6.1: Alignment scores

What is the maximum score and corresponding alignment for aligning A =
ATCGT with B = TGGTG? For scoring, take s(ai, bj) = +1 if ai = bj , s(ai,
bj) = −1 if ai 	= bj, and s(ai,−) = s(−, bj) = −2.

Step 1: Write down the alignment matrix using B along the top and A in a
column at the side.

154 6 Sequence Alignment

Step 2: Fill in the first row and first column by using (6.11).

 0 1 2 3 4 5

 - T G G T G

0 - 0 -2 -4 -6 -8 -10

1 A -2

2 T -4

3 C -6

4 G -8

5 T -10

Step 3: Fill in all matrix elements using the scoring rules of (6.10) and keeping
track of the path into each element that was employed. Sometimes two
paths will yield equal scores.

 0 1 2 3 4 5

 - T G G T G

0 - 0 -2 -4 -6 -8 -10

1 A -2 -1 -3 -5 -7 -9

2 T -4 -1 -2 -4 -4 -6

3 C -6 -3 -2 -3 -5 -5

4 G -8 -5 -2 -1 -3 -4

5 T -10 -7 -4 -3 0 -2

Step 4: Read out the alignment, starting at (5, 5) and working backward.
For clarity, arrows corresponding to the path for the highest-scoring
alignment are drawn with heavier lines.

The matrix elements corresponding to the last three steps in the alignment
below are shown by corresponding shading.

A: A T C G T -
B: - T G G T G

6.4 Local Alignment: Rationale and Formulation 155

6.4 Local Alignment: Rationale and Formulation

Often proteins are multifunctional. Pairs of proteins that share one of these
functions may have regions of similarity embedded in otherwise dissimilar
sequences. For example, human TGF-β receptor (which we will label A) is
a 503 amino acid (aa) residue protein containing a protein kinase domain
extending from residue 205 through residue 495. This 291 aa residue segment
of TGF-β receptor is similar to an interior 300 aa residue portion of human
bone morphogenic protein receptor type II precursor (which we will label B), a
polypeptide that is 1038 aa residues long. This type of situation is diagrammed
as

I

J

A

B

where regions of similarity I, J are indicated by the boxes. With only partial
sequence similarity and very different lengths, attempts at global alignment
of two sequences such as these would lead to huge cumulative indel penalties.
What we need is a method to produce the best local alignment ; that is, an
alignment of segments contained within two strings (Smith and Waterman,
1981).

As before, we employ an alignment matrix, and we seek a high-scoring path
through the matrix. However, this time the path will traverse only part of the
matrix. Also, we do not apply indel penalties if strings A and B fail to align
at the ends. This means that instead of having elements −iδ and −jδ in the
first row and first column, respectively (−δ being the penalty for each indel),
all the elements in the first row and first column will now be zero. Moreover,
since we are interested in paths that yield high scores over stretches less than
or equal to the length of the smallest string, there is no need to continue paths
whose scores become too small. Therefore, if the best path to an element from
its immediate neighbors above and to the left (including the diagonal) leads
to a negative score, we will arbitrarily assign a 0 score to that element. We
will identify the best local alignment by tracing back from the matrix element
having the highest score. This is usually not (but occasionally may be) the
element in the lower right-hand corner of the matrix.

The mathematical statement of the problem is as follows. We are given
two strings A = a1a2a3 . . . an and B = b1b2b3 . . . bm. Within each string there
are intervals I and J that have similar sequences. I and J are intervals of A
and B, respectively. We indicate this by writing I ⊂ A and J ⊂ B, where
“⊂” means “is an interval of.” The best local alignment score, M(A, B), for
strings A and B is

M(A, B) = max{S(I, J) : I ⊂ A, J ⊂ B} (6.12)

156 6 Sequence Alignment

where S(I, J) is the score for subsequences I and J and S(∅, ∅) = 0. Elements
of the alignment matrix are Mi,j, and since we are not applying indel penalties
at the ends of A and B, we write

Mi,0 = M0,j = 0. (6.13)

The score up to and including the matrix element Mi,j is calculated by
using scores for the elements immediately above and to the left (including the
diagonal), but this time scores that fall below zero will be replaced by zero.
The scoring for matches, mismatches, and indels is otherwise the same as for
global alignment. The resulting expression for scoring Mi,j is

Mi,j = max

⎧⎪⎪⎨
⎪⎪⎩

Mi−1,j−1 + s(ai, bi)
Mi−1,j − δ
Mi,j−1 − δ
0

⎫⎪⎪⎬
⎪⎪⎭ . (6.14)

The best local alignment is the one that ends in the matrix element having
the highest score:

max{S(I, J) : I ⊂ A, J ⊂ B} = max
i,j

Mi,j . (6.15)

Thus, the best local alignment score for strings A and B is

M(A, B) = max
i,j

Mi,j. (6.16)

Computational Example 6.2: Local alignment

Determine the best local alignment and the maximum alignment score for A
= ACCTAAGG and B = GGCTCAATCA. For scoring, take s(ai, bj) = +2 if ai = bj ,
s(ai, bj) = −1, ai 	= bj , and s(ai,−) = s(−, bj) = −2.

Step 1: Write down the alignment matrix using B along the top and A in a
column at the side.

Step 2: Fill in the first row and first column by using (6.13).
Step 3: Then fill in all matrix elements using the scoring rule (6.14), keeping

track of the paths into each element. For clarity, we have included
below only the arrows around the highest-scoring path. Observe what
happens for M3,7. Regardless of whether this is entered from above,
from the left, or diagonally from the left, the scoring rule would have
yielded −1 were it not for the requirement that all elements be non-
negative, as indicated in (6.14).

Step 4: The local alignment ends at M7,9 (shaded box), which contains the
maximum alignment score (6). Read out the alignment, starting at
M7,9 and working backward along the directions of entry into each
cell until an element containing zero is encountered.

6.5 Number of Possible Global Alignments 157

 0 1 2 3 4 5 6 7 8 9 10

 - G G C T C A A T C A

0 - 0 0 0 0 0 0 0 0 0 0 0

1 A 0 0 0 0 0 0 2 2 0 0 2

2 C 0 0 0 2 0 2 0 1 1 2 0

3 C 0 0 0 2 1 2 1 0 0 3 1

4 T 0 0 0 0 4 2 1 0 2 1 2

5 A 0 0 0 0 2 3 4 3 2 1 3

6 A 0 0 0 0 0 1 5 6 4 2 3

7 G 0 2 2 0 0 0 3 4 5 3 1

8 G 0 2 4 2 0 0 1 2 3 4 2

The resulting local alignment is enclosed in the box below:

A: A C C T - A A G G -
B: G G C T C A A T C A

Most local alignment programs only report the aligned regions of A and B,
that is, the sequences shown in the box above.

6.5 Number of Possible Global Alignments

We have shown how to identify rigorously the highest-scoring alignment. Ob-
viously, for strings of lengths n and m, we had to compute three scores going
into (n− 1)(m− 1) cells and to take a maximum. This means that 4nm com-
putations were required (including the trivial first row and first column). In
the “big O” notation (Section 4.3), this means that computation time will be
O(mn).

Now we ask a separate question: How many possible global alignments
are there for two strings of lengths m and n? This is the same thing as ask-
ing how many different paths there are through the alignment matrix (ex-

158 6 Sequence Alignment

cluding backward moves along the strings). We recognize that any alignment
that has any practical meaning will have matched some of the letters in one
string with some of the letters in the other. The number of matched pairs
will be less than or equal to the smaller of m and n. We can count the num-
ber of alignments, #A, by summing the number of alignments having one
matched pair, the number of alignments having two matched pairs, and so
on up to min(m, n) matched pairs. Examples of some of the 12 alignments
of A = a1a2a3a4 and B = b1b2b3 having one matched pair are shown be-
low.

- - a1 a2 a3 a4 - a1 a2 a3 a4 - - a1 - a2 a3 a4

b1 b2 b3 - - - b1 b2 - - - b3 b1 - b2 - - b3

The number of alignments, #A, is the sum of the numbers of alignments
having 1, 2, 3, . . . and min(m, n) matched pairs. To count the number of ways
of having k aligned pairs, we must choose k letters from each sequence. From
A this can be done in

(
n
k

)
ways, and from B this can be done in

(
m
k

)
ways.

Therefore

#A =

min(m, n)∑
k=0

(# of alignments having exactly k matched pairs)

=

min{m,n}∑
k=0

(
n

k

)(
m

k

)
= 1 + nm + n!

(n−2)!2! × m!
(m−2)!2! + · · · .

(6.17)

The “1” is the number of ways of choosing no letters from n letters and m
letters, nm is the number of ways of choosing one letter from n letters and one
letter from m letters (the number of alignments having one matched pair),
etc. The result turns out to have a simple expression:

#A =

min{m,n}∑
k=0

(
n

k

)(
m

k

)
=

(
n + m

min(n, m)

)
. (6.18)

The latter equality requires some manipulation, which is provided at the end
of this chapter. For the special case for which m = n,

#A =

(
2n

n

)
= (2n)!/(n!)2. (6.19)

(6.19) can be approximated by using Stirling’s approximation

x! ∼ (2π)1/2x(x+1/2)e−x.

When this is applied to (6.19), we obtain

6.5 Number of Possible Global Alignments 159

#A ∼ 22n/
√

πn. (6.20)

This approximate value for the number of alignments can also be rationalized
in the following simple manner. We are given two strings of equal length,
A = a1a2 . . . an and B = b1b2 . . . bn. For each of the letters in A, we have two
choices: align it opposite a letter in B or add an indel. This makes 2n ways
of handling the letters in A. Similarly, for B there are two ways of handling
each letter, for a total of 2n ways of handling the letters in B. Since the
decision “align or add indel” is made for every letter in both strings, the total
number of choices for both strings (the approximate number of alignments)
is 2n × 2n = 22n.

For a simple problem of A = a1a2a3a4 aligned with B = b1b2b3, n+m = 7,
min(m, n) = 3, and the exact number of alignments is

#A =

(
n + m

m

)
=

(
4 + 3

3

)
= 7!/(4! 3!) = 35. (6.21)

For longer strings, the number of alignments gets very large very rapidly. For
n = m = 10, the number of alignments is already 184,756. For n = m = 20,
the number of alignments is 1.38 × 1011. For m = n = 100, there are ∼2200

possible alignments. In more familiar terms (using log10 x = log2 x × log10 2),
log10(2

200) = log2(2
200) × log10(2) = 200 × (0.301) ≈ 60. In other words,

#A when aligning two strings of length 100 is about 1060. This is an as-
tronomically large number. For example, the Sun weighs 1.99 × 1033 grams.
Each gram contains roughly 12 × 1023 protons and electrons, which means
that the Sun contains about 24 × 1056 elementary particles. It would take
400 stars the size of our Sun to contain as many elementary particles
as there are alignments between two equal-length strings containing 100
characters.

Clearly, we need to have ways of further simplifying the alignment process
beyond our O(nm) method, and this is the topic of the next chapter.

Proof of equality (6.18)

The hypergeometric distribution pertains to the sampling (without replace-
ment) of a binary population. If there are m “successes” in a population of
size N , the probability of drawing k successes in a sample of size h is given
by

g(k; h, m, N) =

(
m

k

)(
N − m

h − k

)/(N

h

)
.

This is called the hypergeometric distribution. In our situation, the population
is the total number of letters that must appear in the global alignment, N =
m + n. Therefore,

g(k; h, m, m + n) =

(
m

k

)(
n

h − k

)/(m + n

h

)
.

160 6 Sequence Alignment

This also holds in particular for h = n:

g(k; n, m, m + n) =

(
m

k

)(
n

n − k

)/(m + n

n

)
.

Since g(k; n, m, m+n) is the probability for a particular value of k, summing
over all values of k will yield unity:

∑
k

g(k; n, m, m + n) =
∑

k

(
m

k

)(
n

n − k

)/(m + n

n

)
= 1.

From the definition of
(
n
k

)
, it is clear that

(
n

n−k

)
=
(
n
k

)
. Thus,

∑
k

(
m

k

)(
n

k

)
=

(
m + n

n

)
,

which is the right-hand side of (6.18) when n = min(m, n).

6.6 Scoring Rules

We have used alignments of nucleic acids as examples, but one very important
application of alignment is protein alignment, for which scoring is much more
complicated. At this point, we address briefly the issue of assigning appropri-
ate values to s(ai, bj), s(ai,−), and s(−, bj) for nucleotides. We address the
scoring for amino acids in the next chapter.

Considering s(ai, bj) first, we write down a scoring matrix containing
all possible ways of matching ai with bj , ai, bj ∈ {A, C, G, T} and write in
each element the scores that we have used for matches and mismatches in the
examples above.

 A C G T

A 1 -1 -1 -1

C -1 1 -1 -1

G -1 -1 1 -1

T -1 -1 -1 1

b :j

a :i

This scoring matrix contains the assumption that aligning A with G is just
as bad as aligning A with T because the mismatch penalties are the same in

6.7 Multiple Alignment 161

both cases. However, studies of mutations in homologous genes indicate that
transition mutations (A → G, G → A, C → T, or T → C) occur approximately
twice as frequently as do transversions (A → T, T → A, A → C, G → T, etc.).
Therefore, it may make sense to apply a lesser penalty for transitions than
for transversions since they are more likely to occur (i.e., related sequences
are more likely to have transitions, so we should not penalize transitions as
much). The collection of s(ai, bj) values in that case might be represented in
the matrix below:

 A C G T

A 1 -1 -0.5 -1

C -1 1 -1 -0.5

G -0.5 -1 1 -1

T -1 -0.5 -1 1

b :j

a :i

A second issue relates to the scoring of gaps (a succession of indels). Are
indels independent? Up to now, we have scored a gap of length k (see (6.11))
as

w(k) = −kδ. (6.22)

However, insertions and deletions sometimes appear in “chunks” as a result
of biochemical processes such as replication slippage at microsatellite repeats.
Also, deletions of one or two nucleotides in protein-coding regions would pro-
duce frameshift mutations (usually nonfunctional), but natural selection might
allow small deletions that are integral multiples of 3, which would preserve
the reading frame and some degree of function. These examples suggest that
it would be better to have gap penalties that are not simply multiples of the
number of indels. One approach is to use an expression such as

w(k) = −α − β(k − 1). (6.23)

This would allow one to impose a larger penalty for opening a gap (−α) and
a smaller penalty for gap extension (−β for each additional base in the gap).

6.7 Multiple Alignment

Now that we have explained methods for aligning two sequences, the issue
of aligning three or more sequences naturally arises. It might be that we

162 6 Sequence Alignment

have many sequences of orthologous genes from different organisms, and we
are interested in the relationships between these sequences. Sometimes genes
within an organism arise from duplications and the history of the duplications
(along with the associated functions) must be inferred. How are the methods
we have constructed in this chapter generalized?

It turns out to be almost obvious how to generalize the dynamic pro-
gramming methods. We will indicate how this is done for three sequences.
The basic idea in the pairwise case was to have a recursion for the end of
the alignment. Recall that A = a1a2 . . . ai and B = b1b2 . . . bj have align-
ments that can end in three possibilities: (−, bj), (ai, bj), or (ai,−). In other
words, the alignments end in an indel or aligned letters. The number of al-
ternatives for aligning ai with bj can be calculated as 3 = 22 − 1, which
can be understood as follows. There are two things that you can do at
the ith position of sequence A: align or employ an indel. There are two
things that you can do at the jth position of sequence B: align or employ
an indel. Therefore there are 22 alternatives for two sequences. However,
“align” is the same event for both sequences, so we subtract 1 from 22 to
obtain the number of distinct combinations. If we now introduce a third se-
quence c1c2 . . . ck, the three-sequence alignment can end in one of seven ways
(7 = 23 − 1): (ai,−,−), (−, bj,−), (−,−, ck), (−, bj, ck), (ai,−, ck), (ai, bj ,−),
and (ai, bj, ck). In other words, the alignment ends in 0, 1, or 2 indels. This
fundamental term in the recursion is no problem, except that it must be done
in time and space proportional to the number of (i, j, k) positions; that is the
product of the length of the sequences i × j × k. This dramatic increase in
running time and storage requirements continues as we increase the number
of sequences, so that this method is practical for small problems only. Hence
the bioinformatics community has found heuristic solutions.

One class of methods for speeding up the calculation employs pairwise
alignments in an incremental fashion: the most similar pair is placed into a
fixed alignment, and then the other sequences are included in a stepwise fash-
ion. One of the most used and practical programs to perform global multiple
alignment is CLUSTALW (Thompson et al., 1994). That program proceeds
by computing all pairwise alignments, estimating a tree (or cluster) of re-
lationships using those alignment scores (see Section 10 for a discussion of
clustering), and then collecting the sequences into a multiple alignment us-
ing the tree and pairwise alignments as a guide for adding each successive
sequence.

Another approach developed in recent years uses hidden Markov mod-
els (HMMs) and has proven quite effective (see, e.g., www.cse.usc.edu/

research/compbio/sum.html).

6.8 Implementation 163

6.8 Implementation

We used short sequences in the illustrations to keep the computations minimal.
For real problems with realistically long sequences (hundreds of amino acid
residues to thousands of base pairs long), substantial computational resources
may be required. In fact, there are commercially available computers contain-
ing application-specific integrated circuits specifically tailored for dynamic
programming applications. The Smith-Waterman pairwise local alignment is
available in a number of commercial software packages and at various Inter-
net sites. One example is the MPsrch tool from the European Bioinformatics
Institute (http://www.ebi.ac.uk/MPsrch).

The computations for global and local alignments are presented in pseu-
docode in Computational Example 6.3. Although the code looks simple, re-
member that these computations may require large amounts of memory for
numerous operations. Consequently, alignment that relies exclusively on dy-
namic programming approaches tends to be slow. In the next chapter, we will
discuss alignment methods that are less accurate but much faster.

Computational Example 6.3: Pseudocode for global and local align-
ment.

Global alignment

Input sequences A, B
Set Si,0 ← −δi for all i
Set S0,j ← −δj for all j
for i = 1 to n

j = 1 to m
Si,j ← max{Si−1,j − δ, Si−1,j−1 + s(ai, bj), Si,j−1 − δ}

end
end

Local alignment

Input sequences A, B
Set Mi,0 = M0,j = 0 for all i, j
for i = 1 to n

j = 1 to m
Mi,j ← max{Mi−1,j − δ, Mi−1,j−1 + s(ai, bj), Mi,j−1 − δ, 0}

end
end

164 6 Sequence Alignment

References

Smith TF, Waterman MS (1981) The identification of common molecular
subsequences. Journal of Molecular Biology 147:195–197.

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the
sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice. Nu-
cleic Acids Research 22:4673–4680.

Exercises

Exercise 1. Another approach to counting alignments is from the recursion
formula B(n, m) = B(n−1, m)+B(n, m−1)+B(n−1, m−1), where B(n, m)
is the number of alignments of a1a2 · · ·an with b1b2 · · · bm. Using B(0, 0) = 0
and B(i, 0) = 1 = B(0, j) (all i and j), use a matrix to find B(5, 5). Compare
this number with

#A =

(
10

5

)
.

Why is B(5,5) larger?

Exercise 2. Using Stirling’s approximation, we found an approximation for
#A, the number of alignments. Apply that formula to n = m = 1000. Why
didn’t we simply compute (

2000

1000

)
exactly on our computer?

Exercise 3. If we use a gap penalty g(k) = −10k, we observe that all optimal
alignments of strings A and B are identical for all values of the mismatch
penalty µ when µ > 20. Explain why this is true.

Exercise 4. A score for global alignment of a1a2 · · · an with b1b2 · · · bm is E−
µF − δG, where E is the number of matches, F is the number of mismatches,
and G is the number of deleted letters. Evaluate this expression for µ = −1
and δ = −1/2.

Exercise 5. Equation (6.10) gives the recursion equation for global alignment
of two sequences. Generalize it to an equation for global alignment of three
sequences. You will require a function s(a, b, c) where any of the letters can
be a blank or “−”.

Exercise 6. Go to the alignment server at http://www.cmb.usc.edu and
perform local sequence alignment of the following two sequences:

Exercises 165

>sequence1

TCAGTTGCCAAACCCGCT

>sequence2

AGGGTTGACATCCGTTTT

a. First set alpha = beta = 1000, and perform the alignment using the
Single score option, with Match score = 10, and with Mismatch Penalty

score = 10, 7, 5, or 3. Observe the effect of reducing the Penalty score by
examining the ten highest-scoring alignments for each case. What trend
do you observe? Explain this trend.

b. Now with Match score = 10 and Mismatch Penalty score = 10, explore
the effect of changing alpha from 15 to 10, and then to 5 (holding beta at
the default setting of 3). What trend do you observe? Explain this trend.

Exercise 7. Using the alignment server at http://www.cmb.usc.edu, per-
form global sequence alignment of the following two sequences:

>sequence1

TCAGTTGCCA

>sequence2

AGGGTTGACA

Use Match score = 10, Mismatch Penalty score= 10, alpha = 15, and beta

= 3. Repeat the alignment using the same Match score and Mismatch Penalty

score as above, but with alpha = beta = 10.

Exercise 8. For the same sequences used in Exercise 7, calculate the align-
ment matrix with traceback using alpha = beta = 5, Match score= 10, and
Mismatch Penalty score = 10. Compare your optimal alignments with those
from Exercise 7.

Exercise 9. Download sequences contained in accession numbers P21189 and
NP 143776.1 from the NCBI GenBank database. Using the alignment server
available at http://www.cmb.usc.edu, perform the following alignments.

a. Perform global alignment using “blosum62” as the penalty matrix (see
Section 7.5.2) and the default indel settings (alpha = 15, beta = 3).
Examine your result: Can you discern a region that likely will produce a
high-scoring local alignment?

b. Perform local alignment on the same sequences. Did the result from local
alignment agree with your prediction based upon the global alignment?

c. Use the contiguous sequence from 1Q8I (remove indels) that resulted from
the local alignment with NP 143776.1 as query for an NCBI BLAST search
(Chapter 7) of the non-redundant databases. Are any putative conserved
domains found? Check your output to see whether there are significant
hits to Danio or Arabidopsis sequences.

166 6 Sequence Alignment

Exercise 10. Download gene sequences for histone H2a contained in acces-
sion numbers Z48612 (S.cerevisiae) and BC001193.1 (H. sapiens) from the
NCBI GenBank database. (In the case of Z48612, use the “Find” function of
your browser to find the annotated gene for H2a, and then click on the “Gene”
link.) Supply these sequences in FASTA format to the alignment server avail-
able at http://www.cmb.usc.edu.

a. Perform a global alignment, using “Single Score” for type of scoring and
default parameters otherwise. Examine the result, and try to identify a
region that you would predict to have the highest-scoring local alignment.

b. Now perform local alignment using the same two sequences and the same
parameters. Were you able to predict the region with high-scoring local
alignment from the global alignment output? Why or why not?

7

Rapid Alignment Methods: FASTA and BLAST

7.1 The Biological Problem

In the last chapter, we indicated how alignment could be performed rigorously
and some of the reasons for performing it. In this chapter, we consider the
practicalities of the alignment process, and we demonstrate how it can be
speeded up. The need for accelerated methods of alignment is connected with
the potentially large number of possible alignments between two sequences
(Section 6.5) and with the very large sizes of the databases that must be
searched. Why is it necessary to search large databases?

Remember that alignment involves a query or target sequence and a
search space. The query sequence typically comes from the organism that
is under investigation. The investigator will have obtained the sequence of
a portion of the genome and usually seeks information about its possible
function either by direct experimentation or by comparing this sequence with
related sequences in other organisms. Direct experimentation on a gene of
interest (query) in an arbitrary organism may be difficult for a number of
reasons. For example, some organisms are difficult to grow in the laboratory
(such as certain types of marine bacteria). Other organisms can be grown
but may have little genetic or biochemical data (such as the nine-banded
armadillos, which can serve as an animal model for leprosy). Or, there may
be organisms that are experimentally refractory (we can’t perform arbitrary
genetic crosses with Homo sapiens, for example) or expensive to work with
(such as chimpanzees, which are endangered, expensive, and have relatively
long generation times).

A solution to this type of problem is to seek comparisons with genes
from a number of model organisms—organisms chosen for intensive ge-
nomic, genetic, or biochemical studies (Section 1.1). Examples of traditional
model organisms are Escherichia coli (a bacterium), Saccharomyces cerevisiae
(baker’s yeast), Caenorhabdidtis elegans (a nematode “worm”), Drosophila
melanogaster (fruit fly), Arabidopsis thaliana (a flowering plant—“mustard
weed”), and Mus musculus (the common mouse). Others are being added to

168 7 Rapid Alignment Methods: FASTA and BLAST

the list as sequencing projects expand. Because of extensive genetic and bio-
chemical study over several decades, many of the genes, gene products, and
functions of gene products are known for these model organisms. Because of
the evolutionary relationships among organisms, we ordinarily expect that a
gene from other experimental organisms may have homologs in the genomes
of one or more model organisms. For example, the homeotic genes that act
during the development of human embryos have homologs with Drosophila
homeotic genes, and in some cases these genes have the same functions. The
important point is that a target gene is likely to have a function similar or re-
lated to functions of a homolog in one or more model organisms. This means
that we can (judiciously) attach to the target gene part of the functional
annotation associated with homologs in model organisms.

The problem is to search in protein or DNA sequence databases for se-
quences that match (to a significant degree) the sequence of interest. These
databases contain many entries and large numbers of letters. For example,
at the time this book was written, there were over 2 million nonredundant
entries accessible using the BLAST server at NCBI (Appendix B), and these
contained over 1010 letters. In recent years, the amount of DNA sequence in
databases has been growing exponentially. From the discussion in the previous
chapter, we can readily see that the rigorous alignment method described in
the previous chapter is too demanding in memory and computation time for
routine searching of large databases: the time to compute an alignment be-
tween a string of length n and a string of length m was seen to be proportional
to n × m. We need something faster.

So far, we have been talking about performing an alignment between a sin-
gle query sequence and sequences in databases. What happens if we are per-
forming a whole-genome shotgun sequence assembly of a eukaryotic genome?
We’ll present more about shotgun sequencing later, but for now we need to
know that typically the sequencing includes “reads” of about 500 bp from
both ends of each insert in a small plasmid library (insert size 1–3 kb). Typ-
ically, enough clones are generated to cover the genome 5× or more. So for
a mammal having 3 × 109 bp in its genome, 1× coverage by plasmids with
3 kb inserts would involve 106 clones, and 5× coverage would involve 5 × 106

clones. With two sequence reads per clone, the total number of sequence reads
is 107. To look for overlaps during sequence assembly, every read would, in
principle, need to be compared with (aligned with) every other read. For N
reads, there are N(N − 1)/2 pairwise comparisons. This means that there
are 5 × 1013 comparisons to perform, each of which would require 4 × (500)2

computations if done by dynamic programming. In this case, rapid methods
are necessary because of the very large numbers of comparisons that must be
made (in principle, any sequence “read” against every other sequence read
and its complement).

7.2 Search Strategies 169

7.2 Search Strategies

One way to speed up sequence comparison is by reducing the number of se-
quences to which any candidate sequence must be compared. This can be
done by restricting the search for a particular matching sequence to “likely”
sequence entries. The logic of the overall process is easily understood if we
visualize each sequence to be analyzed as a book in an uncataloged library.
Given a book like this one, how could we tell what books are similar just
based on word content? The present book has words such as “probabilistic,”
“genome,” “statistics,” “composition,” and “distribution.” If we picked up a
book at random from an uncataloged library and did not find these words
(as might be the case if we had picked books by Jane Austen or Moses Mai-
monides), we would know immediately that there is no need to search further
in Sense and Sensibility or The Guide of the Perplexed for help in computa-
tional biology.

We can reduce the search space by analyzing word content (see Sec-
tion 3.6). Suppose that we have the query string I indicated below:

I : TGATGATGAAGACATCAG

This can be broken down into its constituent set of overlapping k-tuples. For
k = 8, this set is

��������

���������

����������

�����������

�������������

�������������

�������������

����������������������

If a string is of length n, then there are n− k + 1 k-tuples that are produced
from the string. If we are comparing string I to another string J (similarly
broken down into words), the absence of any one of these words is sufficient
to indicate that the strings are not identical. If I and J do not have at least
some words in common, then we can decide that the strings are not similar.

We already know that when P(A) = P(C) = P(G) = P(T) = 0.25, the prob-
ability that an octamer beginning at any position in string J will correspond
to a particular octamer in the list above is 1/48. Provided that J is short, this
is not very probable, but if J is long, then it is quite likely that one of the
eight-letter words in I can be found in J by chance. Therefore, the appear-
ance of a subset of these words is a necessary but not sufficient condition for
declaring that I and J have at least some sequence similarity.

170 7 Rapid Alignment Methods: FASTA and BLAST

7.2.1 Word Lists and Comparison by Content

Rather than scanning each sequence for each k-word, there is a way to collect
the k-word information in a set of lists. A list will be a row of a table, where
the table has 4k rows, each of which corresponds to one k-word. For example,
with k = 2 and the sequences below,

J = C C A T C G C C A T C G

I = G C A T C G G C

we obtain the word lists shown in Table 7.2. Thinking of the rows as k-words,
we denote the list of positions in the row corresponding to the word w as
Lw(J) (e.g., with w = CG, LCG(J) = {5, 11}). These tables are sparse, since
the sequences are short, but serve to illustrate our methods. They can be
constructed in a time proportional to the sum of the sequence lengths.

One approach to speeding up comparison is to limit detailed comparisons
only to those sequences that share enough “content,” by which we mean k-
letter words in common. The statistic that counts k-words in common is

n−k+1∑
i=1

m−k+1∑
j=1

Xi,j ,

where Xi,j = 1 if IiIi+1 . . . Ii+k−1 = JjJj+1 . . . Ji+k−1 and 0 otherwise. The
computation time is proportional to n × m, the product of the sequence
lengths. To improve this, note that for each w in I, there are #Lw(J) oc-
currences in J. So the sum above is equal to∑

w

(#Lw(I)) × (#Lw(J)) .

This equality is a restatement of the relationship between multiplication
and addition(!). This second computation is much easier. First we find the
frequency of k-letter words in each sequence. This is accomplished by scanning
each sequence (of lengths n and m). Then the word frequencies are multiplied
and added. Therefore, the total time is proportional to 4k + n + m. For our
sequence of numbers of 2-word matches, the statistic above is

02 + 02 + 02 + 2 × 1 + 2 × 1 + 2 × 0 + 2 × 1 + 02 + 02 + 1 × 2 + 0 × 1

+02 + 02 + 2 × 1 + 02 + 02 = 10

If 10 is above a threshold that we specify, then a full sequence comparison can
be performed. (Low thresholds require more comparisons than high thresh-
olds.) This method is quite fast, but the comparison totally ignores the relative
positions of the k-words in the sequence. A more sensitive method would be
useful.

7.2 Search Strategies 171

7.2.2 Binary Searches

Suppose that I and J contain the k-words listed in Table 7.1. How do we find
the first word in list I, TGAT, within list J? In this example, we can find the
matches by inspection. But what would we do if the lists were 500 entries
long, and composed of words of k = 10? Rather than just scanning down a
list from the top, a better way to find matching entries is a binary search.
Since list J (of length m) is stored in a computer, we can extract the entry
number m/2, which in this example is entry 16, GACA. Then we proceed as
follows:

Step 1: Does TGAT occur after entry 16 in the alphabetically sorted list? Since
it occurs after entry 16, we don’t need to look at the first half of the
list.

Step 2: In the second half of the list, does TGAT occur after the entry at
position m/2 + m/4? This is entry 24, TCGA. TGAT occurs after this
entry, so we have now eliminated the need to search in the first 3/4
of the list after only two comparisons.

Step 3: Does TGAT occur after entry 24 but before entry 29? (We have split
the last 1/4 of the list into two m/8 segments.) Since it is before 29
and after 24, we only examine the four remaining entries.

Steps 4 and 5: Two more similar steps are needed to “zero in” on entry 25.

Had we gone through the whole list, 25 steps would have been required to
find the word. With the binary search, we used only five steps. This process
is analogous to finding a word in a dictionary by successively splitting the
remaining pages in half until we find the page containing our word. (Try
it! We found the page containing “quiescent” after ten splits of pages in a
dictionary having 864 pages.)

In general, if we are searching a list of length m starting at the top and
going item by item, on average we will need to search half the list before we find
the matching word (if it is present). If we perform a binary search as above, we
will need only log2(m) steps in our search. This is because m = 2log

2
(m), and

we can think of all positions in our list of length m as having been generated
by log2(m) doublings of an initial position. In the example above, 32 = 25, so
we should find any entry after five binary steps. In the dictionary experiment,
finding the entry should have required ten steps (nine-letter word, 29 = 512,
and 210 = 1024—nine “splits” are not enough since 864 > 512).

7.2.3 Rare Words and Sequence Similarity

For the method described in Section 7.2.1, if k is large the table size can
be enormous, and it will be mostly empty. For large k, another method for
detecting sequence similarity is to put the k-words in an ordered list.

To find k-word matches between I and J, first break I down into a list of
n− k + 1 k-words and J into a list of m− k + 1 k-words. Then put the words

172 7 Rapid Alignment Methods: FASTA and BLAST

Table 7.1. Ordered word lists of query sequence I and sequence J to which it is
to be compared. Numbers beside each 4-word indicate the position of each word in
the list. Binary searches reduce the search space by half for each iteration, checking
whether the search word from I is in the remaining first or second half.

I
TGAT

GATG

ATGA

. . .
J

AAAT 1 GATG 17
AATC 2 GATT 18
AATG 3 GGAT 19
ACAA 4 GGGA 20
ATCC 5 GTCG 21
ATGA 6 TCAC 22
ATGT 7 TCCG 23
ATTT 8 TCGA 24
CAAA 9 TGAT 25
CCGA 10 TGGG 26
CGAA 11 TGTC 27
CGAC 12 TTGG 28
CGTT 13 TTTA 29
CTTT 14 TTTC 30
GAAT 15 TTTG 31
GACA 16 TTTT 32

in each list in order, from AA...A to TT...T. This takes time n log(n) and
m log(m) by standard methods which are routinely available but too advanced
to present here. Let’s index the list by (W (i), Pw(i)), i = 1, . . . , n− k + 1 and
(V (j), Pv(j)), j = 1, . . . , m− k + 1, where, for example, W (i) is the ith word
in the ordered list and Pw(i) is the position that word had in I.

We discover k-word matches by the following algorithm which basically
merges two ordered lists into one long ordered list. Start at the beginning of
one list. So long as that element is smaller than the beginning of the second
list continue to add elements from that list. When this is no longer the case,
switch to the other list. Proceed until reaching the end of one of the lists.
During this process we will discover all k-words that are equal between the
lists, along with producing the merged ordered list. Because the positions in
the original sequences are carried along with each k-word, we will know the
location of the matches as well. Obviously matches longer than length k will
be observed as successive overlapping matches.

7.3 Looking for Regions of Similarity Using FASTA 173

7.3 Looking for Regions of Similarity Using FASTA

FASTA (Pearson and Lipman, 1988) is a rapid alignment approach that com-
bines methods to reduce the search space (it depends on k-tuples) and Smith-
Waterman local sequence alignment, as described in the previous chapter. As
an introduction to the rationale of the FASTA method, we begin by describ-
ing dot matrix plots, which are a very basic and simple way of visualizing
regions of sequence similarity between two different strings. We have already
alluded to them in Section 5.4.

7.3.1 Dot Matrix Comparisons

Dot matrix comparisons are a special type of alignment matrix with positions i
in sequence I corresponding to rows, positions j in sequence J corresponding to
columns, and sequence identities indicated by placing a dot at matrix element
(j, i) if the word or letter at Jj is identical to the word or letter at Ii. An
example for two DNA strings is shown in Fig. 7.1A. In this example, the
string CATCG in I appears twice in J, and these regions of local sequence
similarity appear as two diagonal arrangements of dots: diagonals represent
regions having sequence similarity.

When I and J are DNA sequences and are short, the patterns of this type
are relatively easy to see. When I and J are DNA sequences and very long,
there will be many dots in the matrix since, for any letter at position j in J,
the probability of having a dot at any position i in I will equal the frequency
of the letter Jj in the DNA. For 50% A+T, this means that on average 1/4
of the matrix elements will have a dot. When I and J are proteins, dots
in the matrix elements record matches between amino acid residues at each
particular pair of positions. Since there are 20 different amino acids, if the
amino acid frequencies were identical, the probability of having a dot at any
particular position would be 1/20.

7.3.2 FASTA: Rationale

The rationale for FASTA (Wilbur and Lipman, 1983) can be visualized by
considering what happens to a dot matrix plot when we record matches of
k-tuples (k > 1) instead of recording matches of single letters (Fig. 7.1 B and
C). We again place entries in the alignment matrix, except this time we only
make entries at the first position of each dinucleotide or trinucleotide (k-tuple
matches having k = 2 (plotted numerals 2) or k = 3 (plotted numerals 3).
Notice how the number of matrix entries is reduced as k increases. By looking
for words with k > 1, we find that we can ignore most of the alignment matrix
since the absence of shared words means that subsequences don’t match well.
There is no need to examine areas of the alignment matrix where there are

174 7 Rapid Alignment Methods: FASTA and BLAST

C C A T C G C C A T C G

G

C

A

T

C

G

G

C

 . .

 . . .

 . . .

 . .

 . .

.

.

.

J:

I:

A.

C C A T C G C C A T C G

G

C

A

T

C

G

G

C

 2

 2 2

 2 2

 2

 2 2

 2 2

J:

I:

B.

C C A T C G C C A T C G

G

C

A

T

C

G

G

C

 3 3

 3 3

 3 3

J:

I:

C.

Fig. 7.1. Dot matrix plots showing regions of sequence similarity between two
strings (diagonal lines). Panels A, B, and C are plots for k-tuples k = 1, 2, and 3,
respectively. Typical k-tuples used for plotting a particular element are indicated by
boxes.

no word matches. Instead, we only need to focus on the areas around any
diagonals.

Our task is now to compute efficiently diagonal sums of scores, Sl, for
diagonals such as those in Fig. 7.1B. (The method for forming these scores
is explained below.) Consider again the two strings I and J that we used in
Section 7.2.1. There are 7 × 11 = 77 potential 2-matches, but in reality there
are ten 2-matches with four nonzero diagonal sums. We index diagonals by
the offset, l = i− j. In this notation, the nonzero diagonal sums are S+1 = 1,
S0 = 4, S−5 = 1, and S−6 = 4. It is possible to find these sums in time
proportional to n + m + #{k-word matches}. Here is how this is done.

Make a k-word list for J. In our case, this is the list for J in Table 7.2.
Then initialize all row sums to 0:

� −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
S� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Next proceed with the 2-words of I, beginning with i = 1, GC. Looking in
the list for J, we see that LGC(J)={6}, so we know that at l = 1−6 = −5 there
is a 2-word match of GC. Therefore, we replace S−5 = 0 by S−5 = 0 + 1 = 1.

7.3 Looking for Regions of Similarity Using FASTA 175

Table 7.2. k-word lists for J = CCATCGCCATCG and I = GCATCGGC, k = 2.

J I

AA AA

AC AC

AG AG

AT 3, 9 AT 3
CA 2, 8 CA 2
CC 1, 7 CC

CG 5, 11 CG 5
CT CT

GA GA

GC 6 GC 1, 7
GG GG 6
GT GT

TA TA

TC 4, 10 TC 4
TG TG

TT TT

Next, for i = 2, CA, we have LCA(J)={2,8}. Therefore replace S2−2 = S0 = 0
by S0 = 0+1, and replace S2−8 = S−6 = 0 by S−6 = 0+1. These operations,
and the operations for all of the rest of the 2-words in I, are summarized below.
Note that for each successive step, the then current score at Si is employed:
S0 was set to 1 in step 2, so 1 is incremented by 1 in step 3.

i = 1, GC LGC(J)={6} l = 1 − 6 = −5
S−5 = 0 → S−5 = 0 + 1 = 1

i = 2, CA LCA(J)={2,8} l = 2 − 2 = 0
S0 = 0 → S0 = 0 + 1, and
l = 2 − 8 = −6
S−6 = 0 → S−6 = 0 + 1

i = 3, AT LAT(J)={3,9} l = 3 − 3 = 0
S0 = 1 → S0 = 1 + 1 = 2
l = 3 − 9 = −6
S−6 = 1 → S−6 = 1 + 1 = 2

i = 4, TC LTC(J)={4,10} l = 4 − 4 = 0
S0 = 2 → S0 = 2 + 1 = 3
l = 4 − 10 = −6
S−6 = 2 → S−6 = 2 + 1 = 3

i = 5, CG LCG(J)={5,11} l = 5 − 5 = 0
S0 = 3 → S0 = 3 + 1 = 4
l = 5 − 11 = −6
S−6 = 3 → S−6 = 3 + 1 = 4

176 7 Rapid Alignment Methods: FASTA and BLAST

i = 6, GG LGG(J)={�} LGG(J) is the empty set: no sums
are increased

i = 7, GC LGC(J) = {6} l = 7 − 6 = 1
S1 = 0 → S1 = 0 + 1 = 1

The final result for scores of the diagonals at various offsets is

� -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
S� 0 0 0 0 4 1 0 0 0 0 4 1 0 0 0 0 0

Notice that we only performed additions when there were 2-word matches.
The algorithm that we employed is indicated in pseudocode in Computational
Example 7.1.

Computational Example 7.1: Pseudocode for diagonal sums of
scores

Set S� ← 0 for all 1 − m ≤ � ≤ n − 1
Compute Lw(J) for all words w
for i = 1 to n − k − 1

w ← IiIi+1 . . . Ii+k−1

for j ∈ Lw(J)
� ← i − j
S� ← S� + 1

end
end

It is possible to find local alignments using a gap length penalty of −gx
for a gap of length x along a diagonal. Let A� be the local alignment score
and Sl be the maximum of all of the Al’s on the diagonal. Then the scoring is
done as follows, after initializing A� ← 0, S� ← 0, for each element (i, j) along
the diagonal � = i − j, beginning at i = 1:

A� ← max

⎧⎨
⎩

A� + 1 if ai = bj+l

A� − g if ai 	= bj+l

0

⎫⎬
⎭

S� ← max{S�, A�}

Five steps are involved in FASTA:

1. Use the look-up table to identify k-tuple identities between I and J.
2. Score diagonals containing k-tuple matches, and identify the ten best di-

agonals in the search space.
3. Rescore these diagonals using an appropriate scoring matrix (especially

critical for proteins), and identify the subregions with the highest score
(initial regions).

7.3 Looking for Regions of Similarity Using FASTA 177

4. Join the initial regions with the aid of appropriate joining or gap penalties
for short alignments on offset diagonals.

5. Perform dynamic programming alignment within a band surrounding the
resulting alignment from step 4.

To implement the first step, we pass through I once and create a table of
the positions i for each possible word of predetermined size k. Then we pass
through the search space J once, and for each k-tuple starting at successive
positions j, “look up” in the table the corresponding positions for that k-
tuple in I. Record the i, j pairs for which matches are found. We have already
illustrated this process for 2-words in Section 7.2.1. The i, j pairs define where
potential diagonals can be found in the alignment matrix.

FASTA step 2 is identification of high-scoring diagonals. If I has n letters
and J has m letters, there are n + m − 1 diagonals. (Think of starting in
the lower left-hand corner, drawing successive diagonals all the way up to the
top of the column representing J (m diagonals). Then continue rightward,
drawing diagonals through all positions in I (n diagonals). Since you will have
counted the first position twice, you need to subtract 1.) To score the diag-
onals, calculate the number of k-tuple matches for every diagonal having at
least one k-tuple. Scoring may take into account distances between matching
k-tuples along the diagonal. Note that the number of diagonals that needs to
be scored will be much less than the number of all possible diagonals. Identify
the significant diagonals as those having significantly more k-tuple matches
than the mean number of k-tuple matches. This means, of course, that we
should set a threshold, such as two standard deviations above the mean. For
example, if the mean number of 6-tuples is 5 ± 1, then with a threshold of
two standard deviations, you might consider diagonals having seven or more
6-tuple matches as significant. Take the top ten significant diagonals.

In step 3, we rescore the diagonals using a scoring table and allowing iden-
tities shorter than k-tuple length. We retain the subregions with the highest
scores. The need for this rescoring is illustrated by the two examples below.

�� ����������������������� ��������	
���
�������������
�� �����������������������

�	� �����������������������

�	� �����������������������

In the first case, the placement of mismatches spaced by three letters means
that there are no 4-tuple matches, even though the sequences are 75% identi-
cal. The second pair shows one 4-tuple match, but the two sequences are only
33% identical. Rescoring reveals sequence similarity not detected because of
the arbitrary demand for uninterrupted identities of length k.

Step 4 is joining together appropriate diagonals that may be offset from
each other, as might occur if there were a gap in the alignment (i.e., vertical or
horizontal displacements in the alignment matrix, as described in the previous

178 7 Rapid Alignment Methods: FASTA and BLAST

chapter). Diagonal dl is the one having k-tuple matches at positions i in
string I and j in string J such that i − j = l. As described earlier in this
chapter, l = i − j is called the offset. Offsets are explained pictorially in
Fig. 7.2. Alignments are extended by joining offset diagonals if the result
is an extended aligned region having a higher alignment score, taking into
account appropriate joining (gap) penalties.

Step 5 is to perform a rigorous Smith-Waterman local alignment. This
can be restricted to a comparatively narrow window extending +w to the
right and −w to the left of the positions included within the highest-scoring
diagonal (see Fig. 7.3D).

7.4 BLAST

The most used database search programs are BLAST and its descendants.
BLAST is modestly named for Basic Local Alignment Search Tool, and it
was introduced in 1990 (Altschul et al., 1990). Whereas FASTA speeds up
the search by filtering the k-word matches, BLAST employs a quite different

L A I F L W R T W S

L

A

I

S

W

K

T

W

T

.

.

.

.

.

.

L A I F L W R T W S

L A I S W K T W T

I:

J:

j=1, i=1, i-j=0

j=2, i=2, i-j=0

j=3, i=3, i-j=0

j=5, 6=1, i-j=1

j=7, i=8, i-j=1

j=8, i=9, i-j=1

1 2 3 4 5 6 7 8 9 10

d0

d1

Fig. 7.2. Illustration of offset diagonals. The first three letters for the alignment
between I and J as drawn have no offset. Corresponding diagonal d0 is drawn in
black. Farther down I and J, there are additional matches that are offset from each
other (residues enclosed by ellipses). These define another diagonal, d1, that is offset
from the first one (grey line). Such offsets may indicate indels, suggesting that the
local alignments represented by the two diagonals should be joined to form a longer
alignment.

7.4 BLAST 179

I

J

C. D.B.A.

Fig. 7.3. Illustration of FASTA steps 2–5. Panel A: Identify diagonals sharing k-
tuples (step 2). Panel B: Rescore to generate initial regions (step 3). Panel C: Join
initial regions to give the combination having maximum score (step 4). Panel D:
Perform dynamic programming in a “window space” or “band” centered around the
highest-scoring initial region (step 5).

strategy. This can be summarized in two parts: the method for finding local
alignments between a query sequence and a sequence in a database, and the
method for producing p-values and a rank ordering of the local alignments
according to their p-values. High-scoring local alignments are called “high
scoring segment pairs,” or HSPs. The output of BLAST is a list of HSPs
together with a measure of the probability that such matches would occur by
chance.

7.4.1 Anatomy of BLAST: Finding Local Matches

First, the query sequence is used as a template to construct a set of sub-
sequences of length w that can score at least T when compared with the
query. A substitution matrix, containing neighborhood sequences, is used
in the comparison. Then the database is searched for each of these neighbor-
hood sequences. This can be done very rapidly because the search is for an
exact match, just as our word processor performs exact searches. We have not
developed such sophisticated tools here, but such a search can be performed in
time proportional to the sum of the lengths of the sequence and the database.

Let’s return to the idea of using the query sequence to generate the neigh-
borhood sequences. We will employ the same query sequence I and search
space J that we used previously (Section 7.2.1):

180 7 Rapid Alignment Methods: FASTA and BLAST

J = C C A T C G C C A T C G

I = G C A T C G G C

We use subsequences of length k = 5. For the neighborhood size, we use all 1-
mismatch sequences, which would result from scoring matches 1, mismatches
0, and the test value (threshold) T = 4. For sequences of length k = 5 in the
neighborhood of GCATC with T = 4 (excluding exact matches), we have:⎧⎨
⎩
A

C

T

⎫⎬
⎭ CATC, G

⎧⎨
⎩
A

G

T

⎫⎬
⎭ ATC, GC

⎧⎨
⎩
C

G

T

⎫⎬
⎭ TC, GCA

⎧⎨
⎩
A

C

G

⎫⎬
⎭ C, GCAT

⎧⎨
⎩
A

G

T

⎫⎬
⎭

Each of these terms represents three sequences, so that in total there are
1 + (3 × 5) = 16 exact matches to search for in J. For the three other 5-word
patterns in I (CATCG, ATCGG, and TCGGC), there are also 16 exact 5-words, for
a total of 4 × 16 = 64 5-word patterns to locate in J.

A hit is defined as an instance in the search space (database) of a k-word
match, within threshold T , of a k-word in the query sequence. There are
several hits in I to sequence J. They are

5-words in I 5-words in J J position(s) Score

CATCG CATCG 2, 8 5
GCATC CCATC 1 4
ATCGG ATCGC 3 4
TCGGC TCGCC 4 4

In actual practice, the hits correspond to a tiny fraction of the entire search
space. The next step is to extend the alignment starting from these “seed” hits.
Starting from any seed hit, this extension includes successive positions, with
corresponding increments to the alignment score. This is continued until the
alignment score falls below the maximum score attained up to that point by a
specified amount. Later, improved versions of BLAST only examine diagonals
having two nonoverlapping hits no more than a distance A residues away from
each other, and then extend the alignment along those diagonals. Unlike the
earlier version of BLAST, gaps can be accommodated in the later versions.

With the original version of BLAST, over 90% of the computation time
was employed in producing the ungapped extensions from the hits. This is
because the initial step of identifying the seed hits was effective in making this
alignment tool very fast. Later versions of BLAST require the same amount
of time to find the seed hits and have reduced the time required for the
ungapped extensions considerably. Even with the additional capabilities for
allowing gaps in the alignment, the newer versions of BLAST run about three
times faster than the original version (Altschul et al., 1997).

7.4.2 Anatomy of BLAST: Scores

The second aspect of a BLAST analysis is to rank-order the sequences found
by p-values. If the database is D and a sequence X scores S(D, X) = s against

7.5 Scoring Matrices for Protein Sequences 181

the database, the p-value is P(S(D, Y) ≥ s), where Y is a random sequence.
The smaller the p-value, the greater the “surprise” and hence the greater the
belief that something real has been discovered. A p-value of 0.1 means that
with a collection of query sequences picked at random, in 1/10 of the instances
a score that large or larger would be discovered. A p-value of 10−6 means that
only once in a million instances would a score of that size appear by chance
alone.

There is a nice way of computing BLAST p-values that has a solid math-
ematical basis. Although a rigorous treatment is far beyond the scope of
this book, an intuitive and accurate account is quite straightforward. In a
sequence-matching problem where the score is 1 for identical letters and −∞
otherwise (i.e., no mismatches and no indels), the best local alignment score
is equal to the longest exact matching between the sequences. In our n × m
alignment matrix, there are (approximately) n × m places to begin an align-
ment. Generally, an optimal alignment begins with a mismatch, and we are
interested in those that extend at least t matching (identical) letters. We set

p = P(two random letters are equal).

The event of a mismatch followed by t identities has probability (1 − p)pt.
There are n × m places to begin this event, so the mean or expected number
of local alignments of at least length t is nm(1 − p)pt. Obviously, we want
this to be a rare event that is well-modeled by the Poisson distribution (see
Chapter 3) with mean

λ = nm(1 − p)pt,

so

P(there is local alignment t or longer) ≈ 1 − P(no such event)

= 1 − e−λ

= 1 − exp(−nm(1 − p)pt).

This equation is of the same form used in BLAST, which estimates

P(S(D, Y) ≥ s) ≈ 1 − exp(−nmγξt),

where γ > 0 and 0 < ξ < 1. There are conditions for the validity of this
formula, in which γ and ξ are estimated parameters, but this is the idea! (In
BLAST output, the last quantity is called an E-value.)

The take-home message of this discussion is that the probability of find-
ing an HSP by chance using a random query sequence Y in database D is
approximately equal to E.

7.5 Scoring Matrices for Protein Sequences

The alignment scores obviously depend on the scoring matrices. We discussed
scoring matrices for DNA in Section 6.6. Now we seek a method to score
alignments between proteins X and Y such as

182 7 Rapid Alignment Methods: FASTA and BLAST

X = . . . N V S D V N L N K . . .
Y = . . . N A S N L S L S K . . .

We need to assign scores for the alignment of residues at any particular po-
sition, such as the one underlined above. In other words, we need to find the
probability pab of “matching” amino acid a with amino acid b. The values
of the pab will differ depending on the identities of a and b. For example,
the score at the position indicated in this example should take into account
the hydrophobic character shared by valine and leucine, which conserves the
properties (and possibly the function) of the two proteins.

7.5.1 Rationale for Scoring: Statement of the Problem

We are given two sequences, A = a1a2 . . . an and B = b1b2 . . . bn, of equal
length. The alignment will be over the entire set of letters in each sequence
(i.e., a global alignment). No gaps are employed in our simple illustration,
although as we have seen, FASTA and BLAST do allow gaps. We seek to
devise a scoring scheme based on the probabilities of matching amino acid
a with amino acid b. We use an approach that we will also employ later
when describing signals in DNA (Section 9.2.1). We take the ratio of two
probabilities: the probability that the sequence strings match (match model
M) and the probability that the sequence strings were chosen at random
(random model R). The probability of having X and Y given the random
model is

P(A, B | R) =
∏

i

qai

∏
i

qbi
,

where qxi
is the probability of occurrence of the amino acid of the type xi in a

collection of proteins, irrespective of position. The model above assumes that
the identity of xi is independent of the identity of xi−1.

What is the probability of having these two sequences according to the
“match” model? By “match” we recognize explicitly that amino acids at cor-
responding positions may have degrees of relationship based upon how much
divergence has occurred since the two strings evolved from a common ances-
tor. In other words, we won’t simply be assigning a single score value for all
matches and identical penalties for mismatches. We define pab as the proba-
bility of finding an amino acid of type a aligned with an amino acid of type b
given that they have both evolved from an ancestor who had c at that position
(c = a, b, or something else). This probability is

P(A, B | M) =
∏

i

paibi
.

The score S is obtained by taking the ratio of probabilities under the two
models—match relative to random sequences. This ratio is

P(A, B | M)

P(A, B | R)
=

∏
i paibi∏

i qai

∏
i qbi

=
∏

i

(
paibi

qai
qbi

)
.

7.5 Scoring Matrices for Protein Sequences 183

We define the score S as

S = log2

(
P(A, B | M)

P(A, B | R)

)
=

n∑
i=1

log2

(
paibi

qai
qbi

)
=

n∑
i=1

s(ai, bi),

which indicates that we are adding together scores for aligning individual
amino acid pairs a and b:

s(a, b) = log2

(
pab

qaqb

)
.

The paibi
are extracted from collections of data, as described in the next

section.

7.5.2 Calculating Elements of the Substitution Matrices

What we ultimately wish to find is a substitution matrix, whose compo-
nents are the scaled scores s(a, b) for aligning amino acid a with amino acid b,

A R N D · · · V

A s(A, A)
R s(R, A) s(R, R)
N s(N, A) s(N, R) s(N, N)
D s(D, A) s(D, R) s(D, N) s(D, D)
...
V s(V, A) s(V, R) s(V, N) s(V, D) · · · s(V, V)

where s(a, b) = s(b, a). (Letters labeling rows and columns are single-letter
amino acid codes, listed so that the amino acid names are in alphabetical
order: A = alanine, R = arginine, etc.)

The first substitution matrix set to be devised was the PAM (point ac-
cepted mutation) family (e.g., PAM100) (Dayhoff et al., 1978). With PAM100,
for example, the pabs used to obtain the s(a, b) values are calculated so that
they correspond to an average of 100 changes per 100 amino acid residues.
(Note that there will still be sequence similarity after 100 changes per 100
residues since some residues will not have mutated at all, others will have
changed repeatedly, and still other residues will back-mutate to their original
identity.) These were evaluated by multiplying together matrices of probabili-
ties, the originals of which depended upon a set of proteins that had diverged
by a fixed amount. Now the preferred substitution matrices are the BLOSUM
set (BLOcks SUbstitution Matrices: Henikoff and Henikoff, 1992). BLOSUM
matrices are based on aligned protein sequence blocks without assumptions
about mutation rates. BLOSUM45 is similar to PAM250. BLOSUM62 (com-
parable to PAM160) is commonly used (Table 7.3).

Earlier, we developed an equation for calculating the s(a, b), and it requires
qa, qb, and pab. It is obvious that the qa (and qb) can be obtained just by

184 7 Rapid Alignment Methods: FASTA and BLAST

Table 7.3. BLOSUM62 scoring matrix for scoring protein alignments.
Data are in half-bits. For the meaning of single-letter IUPAC-IUB amino
acid symbols, see Appendix C.1 (or http://www.fruitfly.org/blast/

blastFasta.html). Less commonly used symbols are * = translational stop, B = D

or N, and Z = E or Q. Data in this table are from http://www.ncbi.nlm.nih.gov/

Class/FieldGuide/BLOSUM62.txt.

A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 4 −1 −2 −2 0 −1 −1 0 −2 −1 −1 −1 −1 −2 −1 1 0 −3 −2 0 −2 −1 0 −4

R −1 5 0 −2 −3 1 0 −2 0 −3 −2 2 −1 −3 −2 −1 −1 −3 −2 −3 −1 0 −1 −4

N −2 0 6 1 −3 0 0 0 1 −3 −3 0 −2 −3 −2 1 0 −4 −2 −3 3 0 −1 −4

D −2 −2 1 6 −3 0 2 −1 −1 −3 −4 −1 −3 −3 −1 0 −1 −4 −3 −3 4 1 −1 −4

C 0 −3 −3 −3 9 −3 −4 −3 −3 −1 −1 −3 −1 −2 −3 −1 −1 −2 −2 −1 −3 −3 −2 −4

Q −1 1 0 0 −3 5 2 −2 0 −3 −2 1 0 −3 −1 0 −1 −2 −1 −2 0 3 −1 −4

E −1 0 0 2 −4 2 5 −2 0 −3 −3 1 −2 −3 −1 0 −1 −3 −2 −2 1 4 −1 −4

G 0 −2 0 −1 −3 −2 −2 6 −2 −4 −4 −2 −3 −3 −2 0 −2 −2 −3 −3 −1 −2 −1 −4

H −2 0 1 −1 −3 0 0 −2 8 −3 −3 −1 −2 −1 −2 −1 −2 −2 2 −3 0 0 −1 −4

I −1 −3 −3 −3 −1 −3 −3 −4 −3 4 2 −3 1 0 −3 −2 −1 −3 −1 3 −3 −3 −1 −4

L −1 −2 −3 −4 −1 −2 −3 −4 −3 2 4 −2 2 0 −3 −2 −1 −2 −1 1 −4 −3 −1 −4

K −1 2 0 −1 −3 1 1 −2 −1 −3 −2 5 −1 −3 −1 0 −1 −3 −2 −2 0 1 −1 −4

M −1 −1 −2 −3 −1 0 −2 −3 −2 1 2 −1 5 0 −2 −1 −1 −1 −1 1 −3 −1 −1 −4

F −2 −3 −3 −3 −2 −3 −3 −3 −1 0 0 −3 0 6 −4 −2 −2 1 3 −1 −3 −3 −1 −4

P −1 −2 −2 −1 −3 −1 −1 −2 −2 −3 −3 −1 −2 −4 7 −1 −1 −4 −3 −2 −2 −1 −2 −4

S 1 −1 1 0 −1 0 0 0 −1 −2 −2 0 −1 −2 −1 4 1 −3 −2 −2 0 0 0 −4

T 0 −1 0 −1 −1 −1 −1 −2 −2 −1 −1 −1 −1 −2 −1 1 5 −2 −2 0 −1 −1 0 −4

W −3 −3 −4 −4 −2 −2 −3 −2 −2 −3 −2 −3 −1 1 −4 −3 −2 11 2 −3 −4 −3 −2 −4

Y −2 −2 −2 −3 −2 −1 −2 −3 2 −1 −1 −2 −1 3 −3 −2 −2 2 7 −1 −3 −2 −1 −4

V 0 −3 −3 −3 −1 −2 −2 −3 −3 3 1 −2 1 −1 −2 −2 0 −3 −1 4 −3 −2 −1 −4

B −2 −1 3 4 −3 0 1 −1 0 −3 −4 0 −3 −3 −2 0 −1 −4 −3 −3 4 1 −1 −4

Z −1 0 0 1 −3 3 4 −2 0 −3 −3 1 −1 −3 −1 0 −1 −3 −2 −2 1 4 −1 −4

X 0 −1 −1 −1 −2 −1 −1 −1 −1 −1 −1 −1 −1 −1 −2 0 0 −2 −1 −1 −1 −1 −1 −4

* −4 1

counting the number of occurrences of each amino acid type in an appropriate
collection of protein sequences, and then dividing by the total number of amino
acids represented. But we are still left with the problem of where to obtain
the pab. There are a number of repositories of protein data that are extremely
useful for obtaining both types of quantities:

SWISS-PROT (http://au.expasy.org/sprot/)
This is an annotated database of protein sequences, that is minimally
redundant (multiple entries for the same sequence are avoided) and heav-
ily cross-indexed with other protein databases. At this time, there are
about 154,000 protein sequences representing 57 × 106 letters in this
database.

7.5 Scoring Matrices for Protein Sequences 185

PROSITE (http://www.expasy.ch/prosite/)
This is a database of protein families and signature motifs (characteristic
short sequence patterns) that characterize these families. Approximately
1700 families and domains are archived.

BLOCKS (http://blocks.fhcrc.org/)
This is a compilation of the most highly conserved regions for pro-
teins in PROSITE. Here are listed multiply aligned, ungapped, conserved
segments characteristic of each protein family. Examples are shown in
Fig. 7.4.

Block PR00851A

ID XRODRMPGMNTB; BLOCK
AC PR00851A; distance from previous block=(52,131)
DE Xeroderma pigmentosum group B protein signature
BL adapted; width=21; seqs=8; 99.5%=985; strength=1287
XPB_HUMAN|P19447 (74) RPLWVAPDGHIFLEAFSPVYK 54
XPB_MOUSE|P49135 (74) RPLWVAPDGHIFLEAFSPVYK 54
P91579 (80) RPLYAPDGHIFLESFSPVYK 67
XPB_DROME|Q02870 (84) RPLWVAPNGHVFLESFSPVYK 79
RA25_YEAST|Q00578 (131) PLWISPSDGRIILESFSPLAE 100
Q38861 (52) RPLWACADGRIFLETFSPLYK 71
O13768 (90) PLWINPIDGRIILEAFSPLAE 100
O00835 (79) RPIWVCPDGHIFLETFSAIYK 86
//

Block PR00851B

ID XRODRMPGMNTB; BLOCK
AC PR00851B; distance from previous block=(65,65)
DE Xeroderma pigmentosum group B protein signature
BL adapted; width=20;seqs=8; 99.5%=902; strength=1435
XPB_HUMAN|P19447 (160) TVSYGKVKLVLKHNRYFVES 68
XPB_MOUSE|P49135 (160) TVSYGKVKLVLKHNRYFVES 68
P91579 (166) TQSYGKVKLVLKHNKYYVES 85
XPB_DROME|Q02870 (170) TLSYGKVKLVLKHNKYFIES 77
RA25_YEAST|Q00578 (217) TISYGKVKLVIKHNRYFVET 100
Q38861 (138) TANYGKVKLVLKKNRYFIES 90
O13768 (176) TVSYGKVKLVLKKNRYFIES 72
O00835 (165) TQSYGKVKLVLQKNKYFVES 87
//

Fig. 7.4. Examples of sequence blocks from the Blocks database. In this case,
two different blocks from the same set of proteins are presented. All proteins are
related to a human gene associated with the DNA-repair defect xeroderma pigmen-
tosum (leading to excessive sensitivity to ultraviolet light). Reprinted, with per-
mission, from the Blocks database (http://blocks.fhcrc.org/). Copyright 2003
Fred Hutchinson Cancer Research Center. Data for entry PR00851 adapted from
the Prints database. (http://www.bioinf.man.ac.uk/dbrowser/PRINTS).

186 7 Rapid Alignment Methods: FASTA and BLAST

7.5.3 How Do We Create the BLOSUM Matrices?

Mechanics for enumerating the occurrences of various types of paired amino
acids (as a preliminary to calculation of pab) are as follows. Each block consists
of n aligned sequences each having w residues. For each column in a block
(archived in the Blocks database), we count the number of pairwise matches
and mismatches for each amino acid type. In column 3 of the block shown
below (underlined residues) we find that the number of pairwise matches of
L with L is 4 + 3 + 2 + 1 = 10 or 5(5 − 1)/2. (Matches of L in a sequence to
itself are not counted.)

R P L W V A P D . . .
R P L W V A P D . . .
R P L Y L A P D . . .
R P L W V A P N . . .
P L W I S P S D . . .
R P L W A C A D . . .
P L W I N P I D . . .
R P I W V C P D . . .

The enumeration of matches between all leucine (L) residues in the same
column can be understood by the matrix below, which applies to the indicated
column:

L L L L W L W I

L − + + + +
L − + + +
L − + +
L − +
W −
L −
W −
I −

From this we see that the total number of pairwise matches per column is
equal to the number of “+” entries in the triangular area above the diagonal.
If we take the total number of entries in the matrix (n2), subtract the number
of entries on the diagonal (n), and divide by 2 (to avoid counting the match
of L1 with L2 as both L1L2 and L2L1), we obtain a total of n(n− 1)/2 possible
pairings. Each block then provides w × n(n − 1)/2 possible pairings, and we
count the number of pairings of each type for more than 24,000 blocks. We
keep a running total of the number of each kind of pairing.

Now make a matrix for the number of occurrences fab for each pairing of
each type:

7.5 Scoring Matrices for Protein Sequences 187

A R N D · · · V

A fA,A
R fR,A fR,R
N fN,A fN,R fN,N
D fD,A fD,R fD,N fD,D
...
V fV,A fV,R fV,N fV,D · · · fV,V

We can use these fab to calculate pab using the following equation:

pab = fab

/ 20∑
a=1

a∑
b=1

fab.

Notice the limits on the summation in the denominator. Think of the first sum-
mation as extending over rows and the second over columns. Since pab = pba,
we are interested in the diagonal together with the terms below it. Therefore,
the second summation (performed for each row a) needs only to proceed up
to column a, as indicated. The denominator is the total number of pairwise
matches, including residue a with itself.

Using the same reasoning as above, the number of terms below the diagonal
is 20(20 − 1)/2 = 190. The number of terms on the diagonal is 20, so there
are 210 distinct pabs. We get the estimated probability for each amino acid,
qa, based on its frequency of occurrence in the whole collection of blocks:

qa =

20∑
b=1

(
fab

/ 20∑
a=1

a∑
b=1

fab

)
.

Then we take s(a, b) = log2(pab/qaqb). In practice, these values are rounded off
and scaled. So, for BLOSUM, the scores are reported in half-bits:
s(a, b) [half-bits] = 2s(a, b).

There is one more matter to deal with: How do we “tune” the matrix to
the amount of sequence divergence we are expecting in our similarity search?
This has to do with how we count pairs in blocks. Consider Fig. 7.5, where the
tips of the dendrogram indicate the identity of the amino acid at a particular
position in members of a block of eight sequences.

Obviously, there is a group of four sequences that are very similar to each
other that have L at that position. Should we count the top four examples as
separate individuals for evaluating the fij? Normally, clustering is performed
for the sequence entries in the blocks (clustering will be discussed in Chap-
ter 10), and contributions from sequences that cluster at similarities greater
than some specified cutoff (broken line) are averaged. In this case (where all
letters are identical), the effect would be that of replacing four Ls with one L

prior to counting the number of pairwise matches. Moving the cutoff to lower
levels of similarity produces a BLOSUM matrix whose entries correspond to
greater amounts of evolutionary separation.

188 7 Rapid Alignment Methods: FASTA and BLAST

L

L

L

L

W

L

W

I

Similarity

Distance

Fig. 7.5. Calculating fab as a function of evolutionary distance. The dendrogram
(branching pattern) is based upon the evolutionary distance between the proteins
from which the sequences in a particular block were taken. The single-letter amino
acid codes on the right represent those amino acids present at a particular position
in the sequences constituting the sequence block. If we are concerned with recently
diverged proteins, each of the four L residues in the cluster at the top should be
counted separately. If the concern is with more distantly related proteins (with
distance indicated by the dotted cutoff line), then the cluster of four L residues
should only be counted as one instance of L instead of four.

Computational Example 7.2: Using BLOSUM matrices

Score the alignment

M Q L E A N A D T S V

: : :

L Q E Q A E A Q G E M

Using the BLOSUM62 scoring matrix (Table 7.3), we see that

S = 2 + 5 − 3 − 4 + 4 + 0 + 4 + 0 − 2 + 0 + 1

= 7 (half-bits).

Now that we have seen how to obtain and use BLOSUM matrices, we
should examine Table 7.3 to make sure that the scores make biological sense.
The largest score (11 half-bits) is for conservation of tryptophan (W) in two
sequences. Tryptophan is a relatively rare amino acid, so there should be a
larger “reward” when it appears at corresponding positions in an alignment
of two sequences. The lowest scores are −4 for aligning a translational stop *

with any other amino acid or some unfavorable alignments such as D opposite
L. The low score in the latter case can be understood because aspartic acid

7.6 Tests of Alignment Methods 189

(D) codons GAC and GAU are at least two mutations away from those of leucine
(L)(UUA, UUG, CUA, CUC, CUG, CUU) and because the properties of D (polar and
negatively charged) are quite different from those of L (nonpolar and neutral).
In contrast, aligning isoleucine (I) opposite leucine produces a positive score
of 2 half-bits. All three codons for isoleucine (AUA, AUC, AUU) are only one
mutation away from a leucine codon, and isoleucine has the same properties
as leucine (nonpolar and neutral). Thus it is relatively easier to produce this
mutation, and the mutation is more likely to be tolerated under selection. In
summary, if the alignment is between chemically similar amino acids, the score
will be positive. It will be zero or negative for dissimilar amino acid residues.
Also, when aligning an amino acid with itself, scores for aligning rare amino
acids are larger than scores for aligning common ones.

7.6 Tests of Alignment Methods

At this point, we should remind ourselves why we are performing alignments in
the first place. In many cases, the purpose is to identify homologs of the query
sequence so that we can attribute to the query annotations associated with its
homologs in the database. The question is, “What are the chances of finding
in a database search HSPs that are not homologs?” Over evolutionary time, it
is possible for sequences of homologous proteins to diverge significantly. This
means that to test alignment programs, some approach other than alignment
scores is needed to find homologs. Often the three dimensional structures of
homologs and their domain structures will be conserved, even though the
proteins may have diverged in sequence. Structure can be used as a criterion
for identifying homologs in a test set.

A “good” alignment program meets at least two criteria: it maximizes
the number of homologs found (true positives), and it minimizes the number
of nonhomologous proteins found (false positives). Another way to describe
these criteria is in terms of sensitivity and specificity, which are discussed
in more detail in Chapter 9. In this context, sensitivity is a measure of the
fraction of actual homologs that are identified by the alignment program,
and the specificity is a measure of the fraction of HSPs that are not actually
homologs. Brenner et al. (1998) tested a number of different alignment ap-
proaches, including Smith-Waterman, FASTA, and an early version of BLAST.
They discovered that, at best, only about 35% of homologs were detectable
at an error frequency of 0.1% per query sequence.

An intuitive measure of homology employed in the past was the percent-
age of sequence identity. The rule of thumb was that sequence identities
of 25%−30% in an alignment signified true homology. Brenner et al. em-
ployed a database of known proteins annotated with respect to homology/non-
homology relationships. Their results are shown in Fig. 7.6. Figure 7.6B shows
percentage identity plotted against alignment length for proteins that are not
homologs. For comparison, a threshold percentage identity taken to imply

190 7 Rapid Alignment Methods: FASTA and BLAST

similar structure is plotted as a line (see Brenner et al., 1998 for details). The
point is that for alignments 100 residues in length, about half of the nonho-
mologous proteins show more than 25% sequence identity. At 50± 10 residues
of alignment length, there are a few nonhomologous proteins having over 40%
sequence identity. A particular example of this is shown in Fig. 7.6A. This
serves as a reminder of why methods providing detailed statistical analysis of
HSPs are required (Section 7.4.2).

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local
alignment search tool. Journal of Molecular Biology 215:403–410.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zheng Z, Miller W, Lipman
DJ (1997) Gapped BLAST and PSI-BLAST: A new generation of protein
database search programs. Nucleic Acids Research 25:3389–3402.

Brenner SE, Chothia C, Hubbard TJP (1998) Assessing sequence comparison
methods with reliable structurally identified distant evolutionary relation-
ships. Proceedings of the National Academy of Sciences USA 95:6073–6078.

Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change
in proteins. In Dayhoff MO (ed) Atlas of Protein Sequence and Structure,
Vol. 5, Suppl. 3. Washington D.C.:National Biomedical Research Founda-
tion, pp. 345–352.

Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein
blocks. Proceedings of the National Academy of Sciences USA 89:10915–
10919.

Pearson WR, Lipman DJ (1988) Improved tools for biological sequence com-
parison. Proceedings of the National Academy of Sciences USA 85:2444–
2448.

Wilbur WJ, Lipman DJ (1983) Rapid similarity searches of nucleic acid and
protein data banks. Proceedings of the National Academy of Sciences USA
80:726–730.

Fig. 7.6 (opposite page). The limitations of sequence identity as an indicator of
homology. Panel A: Unrelated proteins that have a 40% sequence identity over a
segment of approximately 60 residues. Panel B: Scores of unrelated, nonhomologous
proteins as a function of alignment length. The line indicates the sequence identity
cutoff, sometimes taken as an indicator of homology. Reprinted, with permission,
from Brenner SE et al. (1998) Proceedings of the National Academy of Sciences USA

95:6073-6078. Copyright 1998 National Academy of Sciences, USA.

1hdsb

1tml_

Cellulase E2 (1tml_)

A.

20

25

30

35

40

45

50

55

60

0 50 100 150 200

P
e

rc
e

n
ta

g
e

 i
d

e
n

ti
ty

 w
it
h

in
 a

lig
n

m
e

n
t

Alignment length

HSSP Threshold

Each point plots the length and

percentage identity of an alignment

between two unrelated proteins

B.

Hemoglobin β-chain (1hdsb)

GKVDVDVVGAQALGR--LLVVYPWTQRFFQHFGNLSSAGAVMNNPKVKAHGKRVLDAFTQGLKH
:.::. . .::: :. .:::: : :: ::.:: :. .:. . .: :. :::.
GQVDALMSAAQAAGKIPILVVYNAPGR---DCGNHSSGGA----PSHSAY-RSWIDEFAAGLKN

192 7 Rapid Alignment Methods: FASTA and BLAST

Exercises

Exercise 1. Find “serendipity” in a dictionary using splits as described
in the text. How many splits were required? Compare this number with
| log2(# pages)|. Suppose that each split divided the pages remaining into
thirds instead of halves. What is the formula relating the number of steps to
the number of pages in that case?

Exercise 2. In Section 7.2.1, it was suggested that the statistic∑
w

(#Lw(I)) × (#Lw(J))

could be used to determine quickly whether I and J share sufficient sequence
similarity to justify a “full-bore” dynamic programming alignment. For DNA
with k = 3, length(I) = 100, length(J) = 1000, indicate how you could
use simulation with iid letters to set a threshold value for this statistic, for
deciding when to employ dynamic programming.

Exercise 3. Suggest an alternative to FASTA for rapidly searching a large
search space J >> I using the approach in Section 7.2.1. Would you need to
modify your method for setting the threshold?

Exercise 4. For the sequences I = GCATCGGC and J = CCATCGCCATCG, find
matching 4-words shared by I and J, as described in Section 7.2.3. Do this
by making a table similar to Table 7.2, but only listing 4-words that actually
occur in I or J. (Otherwise, the table would have 44 = 256 rows!)

Exercise 5. Compute the average number of non-empty elements in a dot
matrix comparison for k = 1, with I and J both drawn from a human DNA
sequence (41% G+C).

Exercise 6. Given strings X and Y, each having differing base compositions,
write out the formula for calculating p = P(two random letters are equal),
defined in Section 7.4.2. Clearly define the symbols that you use.

Exercise 7. For I = TTGGAATACCATC and J = GGCATAATGCACCCC, make dot
matrices for the k-tuple hits for k = 1, 2, and 3.

Exercise 8. The E. coli F plasmid transfer origin region contains the sequence

I:
5′-ATAAATAGAGTGTTATGAAAAATTAGTTTCTCTTACTCTCTTTATGATATTT

AAAAAAGCG-3′

The TraY protein has been shown to bind to a region some 1600 bp away at
a site that contains the sequence

J:
5′-TAACACCTCCCGCTGTTTAT-3′

Exercises 193

Perform dot-matrix analyses for k = 1 and k = 2 to locate in I a subsequence
that is similar to J. This identifies a potential binding site for TraY in se-
quence I. [Hint: Use R to construct a matrix having dimensions determined
by the lengths of J and I, initialize elements to zero, and then substitute the
appropriate elements with the number 1 to indicate matches. Produce two
matrices: one for k = 1 and another for k = 2.]

Exercise 9. For I = GTATCGGCGC and J = CGGTTCGTATCGTCG, make a 2-word
list for J. Then execute the FASTA algorithm (Example 7.1) beginning with
Sl = 0. Compute Si as you go through I, beginning at i = 1 and the 2-word
GT, and ending at i = 9.

Exercise 10. To search J = CGGTTCGTATCGTCG for matches to TTCG within
one mismatch, first make a list of all possible matches. How many matches
are there within a single mismatch neighborhood of TTCG? [Hint: There is one
exact pattern, and there are 3 × 4 = 12 single-mismatch patterns.]

Exercise 11. Download AB125166 and X68309 from the NCBI nucleotide
databases (see Appendix B for the URL). Edit both sequences so that they
contain the first 1000 positions in FASTA format. Then perform a Smith-
Waterman local alignment using resources at http://www.cmb.usc.edu/, set-
ting mismatch and gap parameters at 1000, and requesting return of the top
100 alignments.

a. How many alignments are there of length t ≥ 8?
b. Use the expression for λ in Section 7.4.2 to compute the expected number

of alignments of length at least 8 for sequences of this size (see Exercise 4
for computing p).

c. Use R to simulate ten pairs I and J of iid sequences having the same base
compositions as in the first 1000 nucleotides of AB125166 and X68309.
Then perform the Smith-Waterman alignment on each of the 10 pairs,
and calculate the average number of alignments of length at least 8. Com-
pare your result with those from part a and part b above, and explain
agreements or disagreements.

d. The probability that there is a local alignment of length t or more is
approximately

1 − exp[−nm(1 − p)pt] .

Calculate the probability (called a p-value) for t = optimal alignment
score in part a. What do you conclude from this p-value? Explain your
answer carefully.

Exercise 12. Using only the data contained in the two blocks shown in
Fig. 7.4, compute fRR and pRR as defined in Section 7.5.3. [Hint: Only columns
that contain two or more instances of an R residue need be considered.]

Note: Because the computation above uses only a tiny sample of the total
number of blocks available, the result computed here is not expected to lead
to a score that agrees with the one in a BLOSUM matrix.

194 7 Rapid Alignment Methods: FASTA and BLAST

Exercise 13. To test the probability of irrelevant hits from a BLAST search,
download the first two paragraphs of Jane Austen’s Emma from a Web page
located with a search engine of your choice. Remove all spaces and punctua-
tion, and then replace letters “o” and “u” by “a” (alanine) and letters “b”,
“x”, “j”, and “z” by “g” (glycine). This should yield a string having about
500 characters. Add a first line >emma to convert to FASTA format, and then
run WU-BLAST2 for proteins on the server at the European Bioinformatics
Institute (see Appendix B). What are the E values and percentage identi-
ties for the top three sequences? How do these compare with real biological
sequences?

8

DNA Sequence Assembly

8.1 The Biological Problem

The ultimate physical map of a genome is its sequence. For free-living organ-
isms, genomes may be represented by strings of 5 × 105 to 1010 characters,
depending upon the genome size of the organism. However, current sequencing
technologies allow accurate reading of no more than 500 to 800 bp of contigu-
ous DNA sequence. This means that the sequence of an entire genome must
be assembled from collections of comparatively short subsequences. This pro-
cess is called DNA sequence assembly. These sequences are often, but not
always, generated from relatively short (∼2 kb) inserts contained in M13 or
small plasmid vectors. Obviously, experimental strategies are needed to con-
vert a collection of sequences derived from large numbers of small inserts to
the complete genome sequence. There have been two general approaches.

One approach, which was assumed to be optimal at the start of the Human
Genome Project, is called the top-down (or map-based) approach. In its
strictest form, the idea is to clone the genome into a hierarchy of libraries
having successively smaller inserts (e.g., making a YAC library having a low-
resolution restriction map, cosmid libraries from each YAC with a higher-
resolution restriction map, and small plasmid libraries from each cosmid).
The location of each clone relative to the restriction map of the larger-insert
clone from which it was derived is tracked. At the end, the small-insert clone
can be sequenced, and the map position of the sequence can be obtained by
tracing back up the hierarchy of mapped inserts. In this case, much of the
sequence assembly problem is solved by the prior restriction mapping.

Another approach to mapping is the bottom-up approach, in which a
small-insert library is used to assemble the restriction map of a larger region
by detecting overlaps of inserts to build contigs. We have already discussed this
approach to restriction mapping in Chapter 4. But suppose that, instead of
having a restriction map of the cloned inserts, we knew their DNA sequences.
Just as with contig assembly from the restriction mapping data, we can detect
overlaps with sequences in other inserts and assemble a sequence rather than a

196 8 DNA Sequence Assembly

restriction map. It is this process that we will be discussing in this chapter. The
process of producing the sequence of a DNA segment (perhaps a genome) from
a large number of randomly chosen sequence reads derived from it is called
shotgun sequencing. Whole-genome shotgun (WGS) sequencing has
produced a rapid expansion in our knowledge of genomes. As we will see at
the end of this chapter, hybrid strategies combining elements of both the
top-down and bottom-up approaches are often useful in actual practice.

8.2 Reading DNA

For many years, determining DNA sequence was extremely difficult. The first
rapid sequencing method was developed by Maxam and Gilbert (1977). This
approach is a traditional analytical one in the sense that it depends upon
chemically breaking down a more complicated molecule into smaller pieces,
which are then analyzed. Though revolutionary for its time, this method has
now been largely superseded by the Sanger dideoxy sequencing method
(Sanger et al., 1977), which employs the counterintuitive approach of analysis
by synthesis. The Sanger approach is easier to automate and is the basis for
high-throughput, high-volume sequencing “factories.”

This method depends upon the properties of DNA polymerases and the
biochemistry of DNA synthesis. Rather than breaking down a duplex molecule
into fragments to be sequenced, we start with a single-strand molecule and
manufacture fragments whose sizes depend upon the actual DNA sequence.
We need to recall the biochemical requirements for DNA synthesis in vitro:
a DNA template, a primer, four deoxynucleoside triphosphates (precursors
of the DNA to be synthesized—dATP, dCTP, dGTP, and dTTP), and DNA
polymerase in appropriate buffers.

8.2.1 Biochemical Preliminaries

The template is the DNA sequence to be copied (in this case, sequenced).
This is supplied as a cloned insert in a small plasmid or bacteriophage. Bacte-
riophage M13 was originally used as the cloning vector for sequencing because
it produced single-stranded circular molecules that could be used directly as
templates. Later, M13 replication origins were incorporated into small plasmid
vectors (yielding vectors called “phagemids”). Single-strand phagemid DNA
circles could then be produced from a bacterial growth culture by adding an
M13 helper phage to provide the necessary phage replication genes. Sanger
dideoxy sequencing can also be performed on duplex plasmid or phagemid
substrates by denaturing the DNA. It is not necessary to remove the opposite
(nontemplate) strand.

DNA polymerases are able to synthesize DNA by adding deoxynucleoside
triphosphates to a pre-existing 3′-OH on a DNA strand that is base-paired to
a template. Such a short DNA strand (RNA in vivo) is called a primer. The

8.2 Reading DNA 197

Sanger method employs synthetic primers that are complementary to DNA
immediately adjacent to the cloned insert. For some vectors, these have been
called universal sequencing primers. Since the primers are complementary to
vector sequences—not to insert sequences—the same primer can be employed
for different clones (i.e., custom primer synthesis for each clone is not needed).
Different primers are available for the two sides of the cloning site into which
the insert is placed. This allows sequencing from either end of the insert (i.e.,
from opposite strands of the insert since DNA is antiparallel). For reasons we
explain later, it is often useful to track which strand (i.e., which primer) was
used for every read of sequence generated.

Deoxynucleoside triphosphates are the precursors for DNA synthesis. Re-
member that “deoxy” means that, unlike RNA precursors, DNA precursors
lack an -OH group at the 2′ position of the ribose (sugar) portion of the
molecule. During DNA synthesis, the 5′ end of the dXTP (dXTP means any
deoxynucleoside triphosphate) is joined to the 3′ end of the growing chain,
with the elimination of pyrophosphate, yielding a product chain extended by
one more residue, whose new 3′ end is available for the next addition. The
identity of the incorporated dXTP is determined by the template and the
Watson-Crick base-pairing rules: if the template contains a T residue, then
dATP is used by the polymerase to extend the chain; if the template contains
a C residue, then dGTP is used to extend the chain, and so on.

DNA polymerases are the enzymes that can catalyze template-directed
DNA synthesis. Other enzymes, such as AMV reverse transcriptase, may
sometimes be employed as well. Many polymerases (E. coli DNA polymerase I
being a classic example) contain exonuclease activities: they are capable also
of digesting DNA ahead of the growing chain, or going back and digesting
the growing chain itself. These capabilities are called, respectively, 5′ → 3′

exonuclease and 3′→5′ exonuclease activities. Because these are irrelevant for
DNA sequencing, commercial sequencing polymerases have been genetically
engineered to remove these activities if present. One commercial sequenc-
ing polymerase is Sequenase�, which is an engineered version of phage T7
DNA polymerase. It lacks the normal 3′ → 5′ exonuclease activity. Sequenc-
ing polymerases are selected or engineered to be highly processive (adding
many residues to the growing chain without falling off the template), to be
relatively insensitive to template secondary structure (to prevent “stalling”),
and to be able to efficiently use nonconventional substrates when required
(e.g., thio-dXTPs or dideoxynucleoside triphosphates—ddXTPs). Other ther-
mostable polymerases derived from Thermus aquaticus (Taq polymerases) are
used in cycle sequencing protocols, which require periods at elevated temper-
atures.

This may seem like a lot of “fussy” biochemical detail, but the quality of
the sequence depends upon things such as the particular template and poly-
merase that are employed. Unresolved problems for any particular sequencing
run may require computational methods for “teasing out” the actual sequence.

198 8 DNA Sequence Assembly

Proper attention to biochemical matters will maximize the length of unam-
biguous sequence produced from each sequencing reaction.

8.2.2 Dideoxy Sequencing

Sanger dideoxy sequencing employs chain-terminating dideoxynucleoside tri-
phosphates, ddXTPs, to produce DNA molecules extending from the primer
into the template and stopping at positions specific to the ddXTP and to
the type of template residue with which it base-pairs. The reaction products
are then resolved on polyacrylamide gels for size analysis. The method is
illustrated in Fig. 8.1. In this illustration, we assume that an appropriate
fluorescent or radioactive label has been applied to the primer and that four
separate reactions are performed, one to identify positions of each of the four
bases in the DNA. We indicate later other formats for setting up the reactions.

In an ordinary polymerization reaction containing all four dXTPs and no
ddXTPs, polymerization continues from the primer sequence all the way to the
5′ end of the template (if the enzyme is processive enough and there are enough
reagents in the reaction mixture) (Fig. 8.1B). With dideoxy sequencing, each
reaction solution is “doped” with a small amount of an appropriate dideoxynu-
cleoside triphosphate. For the “A” reaction shown in the figure, a small amount
of ddATP is included in addition to dATP. As polymerization proceeds along
the many templates in the reaction solution, most of the time the polymerases
will pick up a dATP from solution and insert A opposite T, leaving a 3′-OH to
allow continued growth of the chain. Occasionally, however, the polymerases
will insert a ddATP opposite T, and when this happens, there is no 3′-OH, and
that particular chain can no longer grow—it is terminated (Fig. 8.1C). A ter-
mination can, in principle, occur opposite any T in the template, and different
chain lengths are produced in terminations that have occurred in different
positions. Because there are so many templates in the reaction solution, there
will be many terminated chains for each possible position.

Figure 8.1D shows the types of terminated molecules sorted by size
from largest to smallest. Polyacrylamide gel electrophoresis physically sorts
molecules by size, with the largest near the origin (top) of the gel and the

Fig. 8.1 (opposite page). Principles of Sanger dideoxy chain-termination sequenc-
ing. The primer sequence and its complement are enclosed in the grey boxes. Results
for the “A” sequencing reaction are illustrated. A and T are in uppercase boldface
type, and bases that are not involved in this specific chain-termination reaction are
all in lowercase type. Panel A: Template DNA with hybridized primer: substrate
for copying by DNA polymerase. Panel B: Product of DNA polymerization if no
dideoxynucleoside triphosphates are added. Panel C: Different products produced
after DNA synthesis, with termination occurring at various locations as a result of
incorporation of ddATP. The ∗ indicates a dideoxy residue. Panel D: Newly synthe-
sized products sorted in order of decreasing size.

8.2 Reading DNA 199

A.

B.

C.

D.

5'catgacgatcgg3'

3'gtactgctagccaaaTggacaaTagcTacagacccaTTTcTgaTcagg…5'

5'catgacgatcggtttAcctgttAtcgAtgtctgggtAAAgActAgtcc…3'

3'gtactgctagccaaaTggacaaTagcTacagacccaTTTcTgaTcagg…5'

5'catgacgatcggtttA*

3'gtactgctagccaaaTggacaaTagcTacagacccaTTTcTgaTcagg…5'

5'catgacgatcggtttAcctgttAtcgAtgtctgggtAA*

3'gtactgctagccaaaTggacaaTagcTacagacccaTTTcTgaTcagg…5'

5'catgacgatcggtttAcctgttA*

3'gtactgctagccaaaTggacaaTagcTacagacccaTTTcTgaTcagg…5'

5'catgacgatcggtttAcctgttAtcgAtgtctgggtAAAgActA*

3'gtactgctagccaaaTggacaaTagcTacagacccaTTTcTgaTcagg…5'

5'catgacgatcggtttAcctgttAtcgAtgtctgggtAAAgA*

3'gtactgctagccaaaTggacaaTagcTacagacccaTTTcTgaTcagg…5'

5'catgacgatcggtttAcctgttAtcgA*

3'gtactgctagccaaaTggacaaTagcTacagacccaTTTcTgaTcagg…5'

5'catgacgatcggtttAcctgttAtcgAtgtctgggtA*

3'gtactgctagccaaaTggacaaTagcTacagacccaTTTcTgaTcagg…5'

5'catgacgatcggtttAcctgttAtcgAtgtctgggtAAA*

3'gtactgctagccaaaTggacaaTagcTacagacccaTTTcTgaTcagg…5'

5'catgacgatcggtttAcctgttAtcgAtgtctgggtAAAgActA*

5'catgacgatcggtttAcctgttAtcgAtgtctgggtAAAgA*

5'catgacgatcggtttAcctgttAtcgAtgtctgggtAAA*

5'catgacgatcggtttAcctgttAtcgAtgtctgggtAA*

5'catgacgatcggtttAcctgttAtcgAtgtctgggtA*

5'catgacgatcggtttAcctgttAtcgA*

5'catgacgatcggtttAcctgttA*

5'catgacgatcggtttA*

200 8 DNA Sequence Assembly

smallest nearer the exit point (bottom). Each band or peak on the gel corre-
sponds to the collection of reaction product molecules that have terminated
at the same position on the template, and the spacing between one band or
peak and the next is related to the number of nucleotides separating successive
A residues in this illustration. (Note the similarity between this concept and
that of the Smith-Birnstiel restriction-mapping approach discussed in Chap-
ter 4.) Similar separate sequencing reactions are performed to generate bands
terminated at C, G, and T (in the newly synthesized strands), corresponding
to the bases shown in lowercase on the template.

For simplicity, we describe the analysis of products by using vertical slab
gels. In actual practice, automated capillary sequencers are now employed for
large-scale sequencing. If the reaction solutions are loaded onto a gel, one
in each of four lanes, after electrophoresis, four sequencing “ladders” corre-
sponding to positions of A, C, G, or T are produced, as shown in Fig. 8.2A. The
shortest fragment corresponds to termination near the 3′ end of the primer.
Since the DNA sequence is conventionally written 5′ → 3′, we therefore start
with the short fragments and read up, switching to whichever lane has a band
the next increment up. This is continued until the resolution is poor or until
compressions hide the actual number of bands. Currently, this limit is reached
after reading 500 to 800 bases. An autoradiogram corresponding to an actual
sequencing slab gel (using a different template) is shown in Fig. 8.2B.

With automated sequencing, four different fluorescent dyes are employed,
one for each ddXTP employed. In that case, the reaction products can be
pooled and resolved in a single lane or channel, as shown in Fig. 8.2C. We

Fig. 8.2 (opposite page). [This figure also appears in the color insert.] Read-
ing DNA sequences. Panel A: Idealized data from four sequencing reactions, with
products resolved by electrophoresis on a polyacrylamide slab gel. The sequence
being determined corresponds to a portion of the sequencing reaction diagrammed
in Fig. 8.1. The top and bottom bands in the “A” lane correspond to the top and
bottom products, respectively, listed in Fig. 8.1D. Thin arrows indicate the order in
which lower bands are to be noted during the readout of the DNA sequence. Panel
B: Results of a sequencing experiment employing a radioactively labeled product
detected by autoradiography. Notice how closer band spacing and high band inten-
sities complicate the reading of the upper portions of the gel. Also notice that the
lanes are not parallel: those on the right are skewed. Panel C: Graphical display of
output from an automated DNA sequencer, with different colors corresponding to
differing fluorescent labels on each of the ddXTPs: red = A, green = C, black = G,
and blue = T. The abscissa corresponds to the time of electrophoresis. Upper panel:
Uncorrected intensity data showing spillover between different color channels. Lower
panel: Color-corrected output of intensity data shown in the upper panel. Notice how
color correction restores the Cs that were apparently missing in the upper panel at
positions 115 and 130. Panel C provided by Prof. Lei Li, University of Southern
California.

50 100 150 200 250 300 350

1000

2000

3000

4000

5000

IN
T

E
N

S
IT

Y
C

O
LO

R
 C

O
R

R
E

C
T

E
D

 D
A

T
A

50 100 150 200 250 300 350

1.0

0.8

0.6

0.4

0.2

0.0

A C G T

A. B.

C.

202 8 DNA Sequence Assembly

discuss the use of capillary gels in high-throughput sequencing in the next
section.

What we need to know for the next section is that sequences may be from
either strand and that they will typically be 500-800bp long. The problem
addressed in the next section is how to use a very large collection of sequences
from different templates, all derived from the same genomic DNA, to reconsti-
tute the genomic sequence from the collection of individual sequence “reads.”

8.2.3 Analytical Tools: DNA Sequencers

When slab-gel technologies were first employed, the advantages of being able
to run many samples in parallel were immediately evident. For sequencing
with radiolabeled substrates, however, four lanes were typically employed for
each substrate being analyzed (one each for A, C, G, and T). Slab gels typically
draw large amounts of current during electrophoresis, which places limits on
the voltage that can be applied. Excessive voltages lead to high current, which
in turn can heat the gel to the point that the buffer boils or the glass plates sur-
rounding the slab crack. Either of these events ends the experiment. Slab gels
are very fragile and hard to handle without tearing; moreover, the procedures
required to pour the gels are difficult to automate. Analysis by phosphorimag-
ing or autoradiography is slow and requires an additional digitizing step to
locate band positions for eventual analysis. Because measurements are made
at a single time point (the end of the “run”), the larger fragments will not
have migrated as far as the smaller ones and thus are not resolved as well. In
those regions of the gel near the origin, bands are compressed together and
unreadable.

Capillary array electrophoresis has alleviated these problems. Instead of a
slab gel, a set of gel-filled capillaries (75 µm inside diameter and 40 cm long,
for example) is employed. The small inside diameter of the capillaries reduces
the current, and the large surface-to-volume ratio improves heat dissipation,
so that higher voltages (e.g., 10,000V rather than 1000V) can be employed.
This allows shorter run times. Unlike in the slab gel approach, the measure-
ments in capillaries are made continuously (i.e., at many time points) at one
position—at or near the exit point from the capillary. This means that larger
fragments can be resolved over the full length of the capillary, although the
longer time required for them to exit the capillary allows broadening of the
bands because of diffusion. Capillary sequencers are highly automated with
respect to loading samples, recharging the gel matrix in the capillaries, and
acquiring data. Depending upon the resolution required, a typical automated
sequencer can produce about 600–800 bases of readable sequence in a 1 hour
run, and witha turnaround time of less than an hour, it can perform more
than 20 such runs per day. With a “typical” 96 capillary array sequencer, this
works out to more than 96 × 700 × 20 ≈ 1, 000, 000 bases per day per instru-
ment. Some automated sequencers employ 4× 96 = 384 capillaries, and these
instruments have capacities approaching 3,000,000 bases per 24 hour day.

8.3 The Three-Step Method: Overlap, Layout, and Multiple Alignment 203

With capillary sequencers, DNA polymerization products employing all
four terminators (ddATP, ddCTP, ddGTP, ddTTP) are resolved in the same
capillary. Products from each of the four reactions are labeled with a different
dye. The readout consists of a fluorescent signal with emission wavelengths
characteristic of each type of dye. An example of the output is graphed in
Fig. 8.2C. Fluorescent dyes can be attached to the primer (dye primer), in
which case four different reactions are required if the same primer sequence
is used. The four reaction product solutions are mixed prior to electrophore-
sis. Fluorescent dyes can also be attached to the ddXTPs (dye terminator),
which allows all four sequencing reactions to be conducted in the same re-
action tube. Dyes and polymerases have been optimized so that the dye-
ddXTP compounds are incorporated into the growing chain with compara-
ble efficiencies. In general, each of the four fluorescent dyes might require
a different wavelength for optimal excitation. However, by adding a second
“donor” dye and using fluorescence energy transfer to an “acceptor”dye that
discriminates between reaction products, it is possible to use a single excit-
ing wavelength appropriate to the donor dye. Excitation is done with a laser
that either illuminates samples exiting from all capillaries simultaneously, or
scans across the array repeatedly, illuminating the exiting samples individu-
ally. The light produced by fluorescence is split into four different wavelength
ranges (channels), and the intensity in each channel is recorded as a function
of time.

8.3 The Three-Step Method: Overlap, Layout, and
Multiple Alignment

Determining the sequence of bases in biological sequences is a long and chal-
lenging problem, and an important component is computational. As the pre-
vious discussion indicated, the data typically are randomly located reads that
are short compared with the target (i.e., the unknown DNA to be sequenced
or determined). The orientation (5′ to 3′ or 3′ to 5′) relative to a map con-
vention is unknown, and the reads are of good quality but not perfect. In this
section, we present the usual method of sequencing, which as noted above is
colorfully called shotgun sequencing. There are three computational steps in
the process of shotgun sequencing as usually performed: pairwise comparison,
layout, and multiple alignment. Pairwise overlap alignment (i.e., align-
ments involving the ends of two sequence strings) produces scores that are
used as indicators of genomic overlap. Those scores can be used to obtain
clusters of reads with mutually consistent overlap scores. Finally, the layout is
used as a basis for multiple alignment that produces the consensus sequence.
It is a mistake to think the entire target sequence will be determined even if
the assembly is perfect. The random location of the reads makes the coverage
of the target follow the statistical distribution of oceans and islands as de-

204 8 DNA Sequence Assembly

scribed in Chapter 4. Each of the three steps is briefly described below, and
then a small example is presented for illustration.

If there are n reads, the read set must be augmented by the reverse comple-
ments of the DNA sequence from each read so that the set of potential reads
is 2n in size. The job of pairwise comparison is to look for potential overlaps.
This means that for every two reads r and s from the set of n original reads,
there are two comparisons: read r versus read s, and read r complemented, r∗,
compared with read s. (You should check that this includes all four possibili-
ties for the arrangement of read overlaps in the actual genome sequence.) The
Drosophila whole-genome shotgun assembly had 3 × 106 reads of 500 bases.
This means there were approximately 1013 comparisons to perform. How dif-
ficult are the comparisons? Computational Example 8.1 presents an extension
of the local alignment algorithm to handle this problem. In fact, for situations
such as the Drosophila project mentioned, this algorithm is too costly in time:
if each comparison takes time proportional to 5002 (the cost of a dynamic
programming comparison), then the total time complexity for all comparisons
is proportional to 2.5 × 1018, which is not practical with current computer
technology. Instead scientists have found ways to speed up and shortcut the
comparisons.

The overlap alignment algorithm is presented in pseudocode in Compu-
tational Example 8.1. It is a modification of the local alignment algorithm,
but the “0” in the recursion is left out. The details of the logic are not pre-
sented here, but it is similar to the various dynamic programming alignment
algorithms (Chapter 6). An alignment matrix (elements Oij) is employed for
each alignment. The best overlap according to the scoring scheme is given as
the largest number in the rightmost column and bottom row of the alignment
matrix.

Computational Example 8.1: Pseudocode for overlap alignment

Input sequences A, B
Set Oi,0 = O0,j = 0 for all i, j
for i = 1 to n

for j = 1 to m
Oi,j = max{Oi−1,j − δ, Oi−1,j−1 + s(ai, bj), Oi,j−1 − δ}

end
end
Best overlap = max{Oi,m, On,j ; 1 ≤ i ≤ n, 1 ≤ j ≤ m}

Now we turn to the layout phase of shotgun sequence assembly. Having a
matrix of pairwise comparisons is just the beginning. With the pair of reads
r and s, there are four ways they can fit into an assembly: r vs. s, r∗ vs. s,
r vs. s∗, and r∗ vs. s∗. We group all these pairwise comparisons into clusters

8.3 The Three-Step Method: Overlap, Layout, and Multiple Alignment 205

based on their scores. If, for example, two reads r and s of length 500 have
scores that indicate overlap of approximately 400 bases, then if r has a score
indicating a 300 base overlap with a third read t, then t must have at least a
200 base overlap with s; otherwise the pairwise scores are inconsistent with a
genomic layout. Fixing the orientation of one of the pairs of reads determines
the orientation for the remaining reads in the cluster.

Finally, there is the problem of determining the consensus sequence
from the layout. It might be imagined that this is an easy job, and it would
be if the sequences were perfectly aligned. Unfortunately, as with many com-
putational problems in biology, this is almost never the case. Instead, se-
quencing errors, fragments incorrectly clustered, and the approximate nature
of the initial alignment all make this problem most challenging. A greedy
procedure (which recursively “grabs” solutions close to a local optimum; see
www.nist.gov/dads/HTML/greedyHeuristic.html) allows an initial align-
ment, if desired, in the following manner. The highest-scoring overlap can be
fixed and the sequences aligned. Then the sequence with the highest overlap
score with any member of this cluster can be added, and so on. The identity
of the base at any position is then taken to be the majority letter in the re-
sulting multiple alignment. Of course, this is only the beginning of producing
a consensus sequence since the alignment is very unlikely to be correct.

To illustrate these ideas, we take a “toy” example through the assembly
process. The DNA to be sequenced is short (70 bases), and the reads are 8
bases long. This sequence is taken from an earlier example (Section 2.1) along
with enough 3′ and 5′ sequences (7 bases) on both ends, underlined in the
example below, so that the full 70 bases can be covered (if reads overlap the
ends). The reads are random in position and orientation, and the problem
is so small that we must take 100% accuracy in our reads. As we will see,
assembly is still not an entirely easy task. The DNA represented by the “top
strand” sequence is

5′− CAGCGCGCTGCGTGACGAGTCTGACAAAGACGGTATGCGCATCGTGATTGAAGTG

AAACGCGATGCGGTCGGTGAAGTTGTGCT− 3′

Table 8.1 gives the 20 reads and their reverse complements (5′ to 3′ ori-
entation for both). The reads, which are a subset of all possible reads, were
chosen at random locations in the sequence and in random orientations (i.e.,
some correspond to the complement of the strand shown).

Next, we present a 20 × 20 overlap matrix (Fig. 8.3) that indicates which
fragments or their complements overlap by more than a prespecified number of
letters. In location (k, l) with k < l, the entry is the number of bases of overlap
for rk versus rl, and if k > l the entry is the number of bases of overlap of rk

with r∗l . No diagonal entries are made because alignments of a sequence with
itself are uninformative. If the best overlap is less than 3, it is not entered.
This is because, for iid letters, overlaps of two random letters happen 1/2
the time, and two-letter overlaps happen 1/8 of the time. (This calculation

206 8 DNA Sequence Assembly

Table 8.1. Twenty reads and their reverse complements

No. Read Read∗

1 CATCGTGA TCACGATG

2 CGGTGAAG CTTCACCG

3 TATGCGCA TGCGCATA

4 GACGAGTC GACTCGTC

5 CTGACAAA TTTGTCAG

6 ATGCGCAT ATGCGCAT

7 ATGCGGTC GACCGCAT

8 CTGCGTGA TCACGCAG

9 GCGTGACG CGTCACGC

10 GTCGGTGA TCACCGAC

11 GGTCGGTG CACCGACC

12 ATCGTGAT ATCACGAT

13 GCGCTGCG CGCAGCGC

14 GCATCGTG CACGATGC

15 AGCGCGCT AGCGCGCT

16 GAAGTTGT ACAACTTC

17 AGTGAAAC GTTTCACT

18 ACGCGATG CATCGCGT

19 GCGCATCG CGATGCGC

20 AAGTGAAA TTTCACTT

is for the two ends, doubling the chances. Actually, the probability of a two-
letter overlap is 1/8 – 1/256; see Exercise 2.) Considering that there is also
another reversed comparison, effectively doubling this probability, two-letter
overlaps occur too frequently to be of interest. Three-letter overlaps happen
between two fragments by chance with probability approximately 2 × 1/64.
This probability and an equal number for the reversed comparison imply that
there will be approximately one spurious overlap per fragment. This noise level
we can handle. Making the overlap requirement four letters would restrict us
from assembling much sequence, although what we would produce would likely
be accurate.

Now that we have the overlap matrix (from the pairwise comparison step),
we turn to the layout and alignment steps. As you will see, in this small
example we combine them into one process. First, we examine the matrix for
significant overlaps. Obviously, read 1 has two substantial overlaps of 7 bases
with reads 14 and 12. They are

GCATCGTG 14
CATCGTGA 1
ATCGTGAT 12

This layout and alignment is completely consistent and believable. We are
beginning to assemble the DNA text. Next, we incrementally add overlaps to

8.3 The Three-Step Method: Overlap, Layout, and Multiple Alignment 207

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

* 3 7 7 5

 * 6 5 3

 * 7 3 5

 * 4

 *

3 7 * 4 3 6

3 * 3 4

 * 5

 * 3 3

 3 * 7

 *

 * 6 4

 4 * 5 3

 4 4 * 6

 5 *

 *

 * 7

 3 4 *

 6 4 *

 *

Fig. 8.3. Overlap matrix for sequence assembly. Rows and columns correspond to
sequence reads, where the numerical entries are the number of positions (or score)
of the match (overlap) between the reads. Only scores greater than or equal to a
threshold of three are shown.

the array in a greedy fashion, including reads 19, 6 (or 6∗), 7∗, and 13∗. The
alignment is

GACCGCAT 7∗

ATGCGCAT 6=6∗

GCATCGTG 14
CATCGTGA 1
ATCGTGAT 12

GCGCATCG 19
CGCAGCGC 13∗

CGCATCGTGAT

and we have determined 11 bases of sequence. Underlined bases at the left
ends of reads 6, 7∗, 19 and 13∗ are ambiguous, and it is now easy to see

208 8 DNA Sequence Assembly

why the process of sequencing is challenging. We have good evidence for the
sequence 11 bp and cannot call the other letters with any confidence, even
with error-free sequencing.

Moving on to the overlap from reads 10 and 11, by the same greedy tech-
nique, we obtain

CGGTGAAG 2
GTCGGTGA 10
GGTCGGTG 11

ATGCGGTC 7
ATGCGGTCGGTGAAG

Since we have no contradictions, we use the entire span of 15 bases. Finally,
we identify overlaps for reads 17 and 20.

AGTGAAAC 17
AAGTGAAA 20
AAGTGAAAC

As there are no other consistent overlaps (the 10-4 overlap is not compatible
with the others), we only get a 9 base determination.

This small example shows us how a sequence can be incrementally assem-
bled from smaller fragments and illustrates some of the difficulties of assembly.
In addition, only part of the sequence is determined from these data. After all,
the coverage is 20×8/70 = 2.28. At a coverage of 10 we would with reasonable
probability recover most of the 70 bp.

8.4 High-Throughput Genome Sequencing

Shotgun sequencing approaches, including the whole-genome shotgun ap-
proach, are currently a central part of all genome-sequencing efforts. These
methods require a high level of automation in sample preparation and analysis
and are heavily reliant on the power of modern computers. In this, section we
present a number of facets of these approaches.

There is an interplay between substrates to be sequenced (genomes and
their representation in clone libraries), the analytical tools for generating a
DNA sequence, the sequencing strategies, and the computational methods.
The key underlying determinant is that we can obtain high-quality continu-
ous sequence reads of up to 500 to 800 bases with current technology. This
represents a tiny fraction of either a prokaryotic or eukaryotic genome. The
sequence reads are the primary data. As indicated above, the computational
problem in large measure is defined by the need to assemble a larger whole
from a large number of small parts. DNA reads come from clones containing
different insert sizes. Because eukaryotic genomes contain repeated sequences
that may be longer than the average sequence read, strategies employing dif-
ferent sizes of cloned inserts have been used to produce an unambiguous se-
quence assembly. The strategies used will, in turn, determine what fraction

8.4 High-Throughput Genome Sequencing 209

of each clone is sequenced and the coverage of the genome required for each
type of clone.

8.4.1 Computational Tools

The problems of sequence assembly were illustrated in Section 8.3. It is beyond
the scope of this book to discuss at length the details of sequence assembly
software. We can, however, indicate some of the typical features. We start
with processing the data that are produced by the sequencing instruments.

Given automated sequencers that produce sequences at the rate of 0.5 to
1.0 megabases per day, clearly base calling must be automated. Base call-
ing is the process of identifying which base corresponds to each position in
a sequence read. The sequence traces produced experimentally are not per-
fect: they depend upon template quality and purity, reaction parameters, and
the particular sequence of the template. For example, inverted repetitions,
particularly in regions having high levels of G residues, can cause peaks to
migrate anomalously, leading to compressions (individual peaks migrating to-
gether as an unresolved, larger peak). Also, sometimes the template may have
homopolymer “runs” (TTT· · ·T, for example) at which “slippage” of the poly-
merase can occur. This may lead to a manifold of additional low-intensity
bands. Short fragments may produce bands having anomalous mobility be-
cause of the effects of dyes attached to terminating ddXTPs. There sometimes
may be “spillover” of light from the emission spectrum of one dye into the
wavelength range of another, causing the instrument to report peaks in more
than one channel at a particular position. Some of these types of problems
are illustrated in Fig. 8.2C.

Commercial sequencing instruments are typically “bundled” with base-
calling software. The independently developed base-calling application Phred

illustrates the required features of such an application (Ewing et al., 1998).
The trace processing portion of Phred proceeds through four different steps.
First, it determines idealized predicted peak locations for a given trace based
upon peaks that appear to have regular spacing. Second, it identifies ob-
served peaks as those in the trace that exceed a minimum threshold peak
area. Some of these are multicomponent peaks that will eventually be split
and assigned in the third step. Third, observed peaks are matched to pre-
dicted locations. Those peaks that have aberrantly large areas compared with
their neighbors are split into two or more peaks that are assigned to the pre-
dicted peak locations. Finally, missing peaks are accounted for from among
previously uncalled peaks. A very important feature of Phred is that it as-
sociates with each base a probability p that the base call is in error. The
probability p depends upon things such as peak spacings, peak resolution,
and areas of uncalled peaks. The quality of each base call is described by
the quality score Q, which is defined as Q=−10 log10 p. For example, if the
probability that a particular base is called in error is 0.001, the quality score
Q is 30.

210 8 DNA Sequence Assembly

Once the output of the sequencing machines has been written into data
files, the data are ready for assembly. There are a number of sequence assem-
blers available. A common assembler often used together with Phred is Phrap

(“phragment assembly program” or “phil’s revised assembly program:”; Green,
1999). Others are the CAP assemblers (a recent version, CAP3, is available
from Huang (Huang and Madan, 1999)), the TIGR Assembler (The Institute
for Genome Research (TIGR), 1995), and the Whole-genome Assembler used
by Celera (Myers et al., 2000). For references to other assemblers such as
EULER and ARACHNE, see Venter et al. (2003). Sequence assemblers have
differing levels of complexity, but there needs to be provision somewhere in
the assembly pipeline for the following processes:

– Screening out vector sequences or chimeric reads;
– Trimming off unreliable base calls from each read (at both 3′ and 5′ ends);
– Computing overlaps between pairs of reads, using the highest-quality por-

tions of each read;
– Screening out doubtful overlaps (i.e., those not having minimum length,

minimum percentage identity, minimum similarity score, or having too
many discrepancies in areas where the base quality is high);

– Constructing contigs; and
– Producing a consensus sequence by multiple sequence alignment with re-

liability scores at each position.

The input data to the assembler include the sequence files for each read
and the corresponding files of quality scores. Examples of such files for the
TIGR assembler are shown in Fig. 8.4. By providing the quality scores in a
second file, the assembler can use high-quality base calls even if there are a
few low-quality ones farther in from the ends. The alternative is aggressive
trimming of the sequence to include only regions composed exclusively of high-
quality base calls. This would shorten the read length and correspondingly
increase the required clone coverage. Parameters that must be supplied to the
assembler are things such as (TIGR, 1995):

– Minimum length of overlap between pairs that will be considered for as-
sembly;

– Minimum percentage of identity within overlap of two fragments to be
considered for assembly;

– Length of oligomers used in rapid similarity search;
– Information parameters for each read (e.g., clone identification and

whether it is a forward or reverse read).

The output is the consensus assembled sequence with the reliability score at
each position.

The actual computational resources for performing sequence assembly can
be substantial, for reasons indicated in Section 8.3. The banded-search ap-
proach similar to that used in FASTA speeds the computation of overlaps,
but the assembly still can be time-consuming. In 2001, the human genome

>ATRNA01TF 3000 4000 3500 29 586

GTAANAAAGTGCTCTTGCGGAAGCCTTGAATGGTTCGCTGCTAAAGCTGCGAGCTGGCCA

TTGCAATGTTCTTAGAAAAACACGAACTTATCGGAGAGTGTCGTTACTGCGAGCTGTTGC

CGGTCGGTTTTCTCTGACAACTGCTGAAGCAGCTGCTTGATGTCGTCGAGGGTGGAGGTT

TAGTCGCCGGAACTCTGACCGTCGGTGTTGCTCATGGTGAATTGATCGTTGCTCTGAAGT

...

Direction of

sequencing

reaction

Minimum, maximum,

and mean insert

lengths

Begin

high-quality

base call

End

high-quality

base call

A. Sequence file

>ATRNA01TF

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 15 00 00 00 00 00 00 25 23 33 31 23 23

00 00 00 28 28 23 23 23 23 23 23 45 40 37 32 28 28

19 32 45 38 37 18 18 00 00 00 00 25 34 36 36 34 34

34 34 31 31 31 34 34 34 37 37 41 41 45 45 37 37 37

27 37 37 40 40 34 34 34 34 37 37 37 40 45 37 34 34

.

.

.

25 27 25 30 25 23 22 18 21 23 26 26 33 35 22 18 00

00 00 00 15 26 23 18 00 00 00 00 00 18 21 30 30 30

34 37 37 34 34 33 33 28 28 28 37 32 32 19 19 19 30

22 19 00 00 00 21 25 37 37 37 37 37 37 37 37 37 37

.

.

.

34 38 27 21 00 00 00 21 20 26 29 29 31 29 26 24 15

00 00 15 00 00 23 22 18 00 00 00 17 00 00 00 00 00

00 00 00 00 00 00 00 18 19 27 23 00 00 21 21 00 00

.

.

.

00 00 20 21 15 15 17 17 26 23 25 18 28 17 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 17 00 00 00

00 00 00 00 00 00 00 00 00 00 00 16 17 26 24 21 24

19 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 16 16 15 21 17 15 00 00 00 17 00 00 00 00 00 00

00 00 00 00 00 00 00 15 15 00 17 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 19 00 00 00 00 00 00 00

B. Quality file

Fig. 8.4. Sequence and quality files used in sequence assembly. The sequence file
(panel A) is in FASTA format. Relevant parameters are listed in the header line of the
sequence file. The quality file (panel B) contains a Q score for each position listed in
the sequence file. “00” indicates base calls that are unreliable. The figure shows only
portions of the quality file, taken at increasing distances from the position of the
primer. Reproduced and reprinted, with permission, from The Institute for Genomic
Research (TIGR). Copyright ©2003 The Institute for Genomic Research (TIGR).
For details, visit http://www.tigr.org/software/assembler/helpfile.html.

212 8 DNA Sequence Assembly

sequence assembly required 20,000 hours of CPU time and 500GB of storage,
with the use of forty, four-processor machines, each having 4 GB of RAM,
running in parallel. Half of this time was employed in computing the overlaps
between reads (Venter et al., 2002, 2003).

8.4.2 Genome-Sequencing Strategies

As we indicated earlier, the type of data and available computational resources
dictate which strategies are feasible. All strategies require cloning, and strate-
gies commonly employ shotgun sequencing at some level. The differences in
strategies lie in the use of clone mapping, and the point at which random shot-
gun sequencing is initiated. Three particular strategies are: the clone-by-clone
shotgun approach, shotgun sequencing of BACs joined into a minimum tiling
path by sequence-tagged connectors, and whole-genome shotgun (WGS) as-
sembly. These three methods are illustrated in Fig. 8.5. For bacterial genomes,
the WGS method alone is often sufficient. For larger genomes, elements of all
three approaches can be blended in hybrid strategies. For a good review of
these strategies, see Green (2001).

The whole-genome shotgun assembly (Fig. 8.5C) was first employed with
viral genomes (Anderson, 1981; Gardner et al., 1981; Sanger et al., 1982). As
we indicated earlier, a large number of randomly selected small-insert clones
are used to generate sequences at appropriately large levels of sequence cov-
erage. Sequence coverage is the average number of times any given genomic
base is represented in sequence reads. This worked quite well for small, un-
complicated genomes such as the cauliflower mosaic virus (8031bp) and bacte-
riophage lambda (48,502 bp). This method also has been employed for cloned
fragments from larger genomes in the clone-by-clone shotgun approach. At
the inception of the Human Genome Project, a WGS approach to the entire
genome (i.e., sequence many randomly-chosen clones without any prior phys-
ical or genetic mapping) did not appear to be feasible. This was because of
the known abundance of repeats that would lead to ambiguous assemblies and
the limitations in sequence production and computing.

When the Human Genome Project was first proposed, it was assumed
that some aspects of a top-down approach would be required in a “divide
and conquer” strategy represented by the clone-by-clone shotgun approach
(Fig. 8.5A). The idea was to construct a high-resolution genetic map, a low-
resolution physical map from large-insert clones (originally YACs but later
BACs), and a high resolution physical map based on cosmids. Cosmids in a
minimum tiling path could then be used as substrates for random shotgun
sequencing.

An intermediate approach that avoids the need for mapping (Fig. 8.5B)
employs large-insert BAC clones and sequence-tagged connectors (Venter et
al., 1996). For this method, the entire genome is cloned into a BAC library,
and the ends of the BACs are sequenced. The BAC end sequences are the
sequence-tagged connectors, so-called because these sequences can be used to

Genome

Small-insert
plasmid library

C. Whole-genome shotgun sequencing

Genome

Large-insert
BAC library

Intermediate-insert
cosmid library

Small-insert
plasmid library

A. Three-stage divide-and-conquer

Genome

Connected
BAC library

Small-insert
plasmid library

B. Shotgun sequencing of connected BACs

Fig. 8.5. Strategies for genomic sequencing. Panel A: Clone-by-clone three-stage
divide-and-conquer approach. Panel B: Sequencing of BACs joined by sequence-
tagged connectors (STCs). Panel C: Whole-genome shotgun sequencing.

214 8 DNA Sequence Assembly

identify other BACs that overlap sequenced ends. For example, PCR reactions
designed to amplify unique sequences at the ends of a BAC can be used to
screen the BAC library for other clones that overlap the ends. Combined with
restriction digest fingerprinting, this process can generate a minimum tiling
set of BAC clones, as discussed in Section 4.6. Each BAC clone (insert size
about 150kb) can then be subjected to random shotgun sequencing.

In actual practice, hybrid strategies are useful, especially for model or-
ganisms for which prior genetic mapping and cloning have been undertaken.
Hybrid strategies can blend (in different proportions) the clone-by-clone shot-
gun and the WGS approaches. For example, we could use the WGS method
to provide small contigs at high levels of sequence coverage, and these could
be further assembled based upon partial assemblies of large-insert clones that
perhaps had been shotgun-sequenced at lower coverage (see below). Because a
clone-by-clone shotgun approach will usually have generated a minimal tiling
set of clones, hybrid strategies employing this approach will reduce the likeli-
hood of unfilled gaps in the sequence that might result from using the WGS
approach exclusively. The optimal proportion of clone-by-clone to WGS ap-
proaches will depend upon the genome.

The assembly of the brown Norway rat genome (Rat Genome Sequenc-
ing Project Consortium, 2004) is a good example of one hybrid strategy. The
several operations were actually conducted in parallel, but conceptually they
included the following steps. A set of BAC contigs was generated based upon
fingerprinting of the almost 200,000 BACs. The resulting fingerprint contig
map was used to select a subset of BACs that were individually shotgun se-
quenced at low sequence coverage (depth approximately 1.8). These sequence
reads are thus binned in the genome region contained in the corresponding
BAC insert, but the read depth is not sufficient for assembly of the whole
BAC insert sequence. In parallel, however, WGS sequencing to a depth of 7×
sequence coverage had been performed. The low-coverage sequences binned in
each BAC could be used as probes to “fish” for overlapping sequences in the
larger set of WGS sequencing reads. The resulting set of reads belonging to
each BAC (binned low-coverage reads+ overlapping reads identified among
the higher-coverage WGS sequence reads) were then assembled together to
produce a set of “enriched” BACs, or “eBACs.” Based upon sequence over-
laps, the set of eBACs were then assembled into contigs (“bactigs”) and into
higher-order assemblies (scaffolds; see below) in the usual way.

8.4.3 Whole-Genome Shotgun Sequencing of Eukaryotic Genomes

Whole-genome shotgun sequencing clearly is a viable approach for small
genomes, such as viral genomes. But it was not clear that this approach would
be feasible for larger genomes. In particular, there were doubts that it was
appropriate for vertebrate genomes in general and the human genome in par-
ticular (Green, 1997). Part of the reason for this pessimism had to do with the

a
b

c
d

A
.

a
/d

a
/c

c
/d

B
.

a
c

b d

C
.

a
c

b d

d
/b

[.
 .

.]

[
.

.
.

]

F
ig

.
8
.6

.
A

lt
er

n
a
ti
v
e

a
ss

em
b
li
es

re
su

lt
in

g
fr

o
m

th
e

o
cc

u
rr

en
ce

o
f

re
p
ea

te
d

se
q
u
en

ce
s.

P
a
n
el

A
:

T
h
e

re
p
ea

te
d

se
q
u
en

ce
s

a
–
d

a
re

se
p
a
ra

te
d

b
y

u
n
iq

u
e

se
q
u
en

ce
s

(s
o
li
d

o
r

b
ro

k
en

li
n
es

h
av

in
g

d
iff

er
en

t
sh

a
d
in

g
).

T
h
e

re
p
ea

te
d

se
q
u
en

ce
s

a
re

to
o

lo
n
g

to
b
e

sp
a
n
n
ed

b
y

th
e

se
q
u
en

ce
re

a
d
s

(s
h
o
rt

li
n
es

u
n
d
er

n
ea

th
).

P
a
n
el

B
:

A
ss

em
b
li
es

co
n
si
st

en
t

w
it
h

th
e

se
q
u
en

ce
re

a
d
s

m
ay

d
el

et
e

th
e

en
ti

re
b
lo

ck
o
f

re
p
ea

te
d

se
q
u
en

ce
s

(e
x
ce

p
t

fo
r

a
si

n
g
le

co
m

p
o
si

te
re

p
ea

t
a
/
d
)

a
s

sh
ow

n
o
n

th
e

le
ft

,
o
r

m
ay

d
el

et
e

o
r

p
er

m
u
te

p
o
rt

io
n
s

o
f
th

e
se

q
u
en

ce
b
et

w
ee

n
a

a
n
d

d
a
s

sh
ow

n
o
n

th
e

ri
g
h
t.

P
a
n
el

C
g
ra

p
h
ic

a
ll
y

il
lu

st
ra

te
s

th
e

a
ss

em
b
li
es

in
p
a
n
el

B
.

T
h
e

co
rr

ec
t

a
ss

em
b
ly

(a
-b

-c
-d

)
co

rr
es

p
o
n
d
s

to
o
n
e

p
a
rt

ic
u
la

r
so

lu
ti
o
n

to
th

e
H

a
m

il
to

n
ia

n
p
a
th

p
ro

b
le

m
.
B

o
th

a
ss

em
b
li
es

in
p
a
n
el

B
d
el

et
e

p
o
rt

io
n
s

o
f

th
e

se
q
u
en

ce
(t

h
in

li
n
e

la
b
el

ed
w

it
h

“
[.

..
]”

)
a
n
d

th
er

ef
o
re

fa
il

to
v
is
it

a
ll

fo
u
r

v
er

ti
ce

s.
In

th
e

a
ss

em
b
ly

a
t

th
e

ri
g
h
t,

v
er

ti
ce

s
v
is
it
ed

in
th

e
in

co
rr

ec
t

o
rd

er
re

su
lt

in
p
er

m
u
ta

ti
o
n

o
f
tw

o
st

re
tc

h
es

o
f
u
n
iq

u
e

se
q
u
en

ce
th

a
t

a
re

in
cl

u
d
ed

in
th

e
a
ss

em
b
ly

.

216 8 DNA Sequence Assembly

nature of eukaryotic genomes. It had been known for a long time that eukary-
otic genomes contain repeated sequences. Physical biochemical methods had
established that many copies of several families of repeated sequences were
present in Drosophila and human genomes. For example, the human genome
consists of about 45% repeated sequences, with over a million copies of Alu ele-
ments alone (International Human Genome Sequencing Consortium (IHGSC),
2001). This creates a problem for DNA sequence assembly, as illustrated in
Fig. 8.6.

We imagine a region of the genome containing four copies of a repeated
sequence, labeled a, b, c, and d (Fig. 8.6A). The repeats may not be precisely
identical in their sequence but have diverged over time to various extents from
a consensus sequence. When random shotgun sequencing of this genome seg-
ment is performed, the resulting fragments no longer indicate the connectivity
of the unique sequences between the repeated sequences. This is because some
repeats are sufficiently long that they cannot be completely spanned by a se-
quence read. In attempting to reconstitute the original sequences from the
individual fragments, we find that there are a number of possible ways of as-
sembling the sequence. Some of these connections may “collapse” a portion of
the genome, deleting unique sequences that should have been included in the
assembly (Fig. 8.6B). The problem is redrawn as a Hamiltonian path prob-
lem in Fig. 8.6C. The Hamiltonian path problem is to find a path through a
graph such that each vertex (a repeated sequence in this case) is visited only
once. There are no efficient algorithms for solving the Hamiltonian path prob-
lem, which is NP-complete (See Section 4.3). We illustrate in Fig. 8.6C the
correct path (thin line) and incorrect paths (thick lines or paths that delete
some unique sequences) for the examples in Fig. 8.6B. How then can we hope
to perform a whole-genome sequence assembly from a random shotgun ap-
proach if there can be 105 to 106 vertices?

We saw already in the case of the double-digest problem (Chapter 4) that
difficult computational problems sometimes can be avoided by imaginative
experimental designs (e.g., the Smith and Birnstiel mapping method). Al-
tered experimental designs also made it possible to apply WGS approaches
to eukaryotic genomes. The first eukaryotic test case for this method was
the assembly of the Drosophila melanogaster genome (Meyers et al., 2000),
and the methods developed there have been extended to the human genome
(Venter et al., 2001). The key experimental feature of these approaches is the
use of multiple clone libraries, each having different sizes of inserts, and with
tracking of sequences from both ends of each cloned insert.

We need to step back for a moment to recall the approaches used in the
first WGS sequencing of a free-living organism, Haemophilus influenzae (Fleis-
chmann et al., 1995). Bacterial genomes are easier subjects for WGS sequence
assembly because they are about 1/100 to 1/1000 the size of typical vertebrate
genomes and because they have few repeated sequences. Even for H. influen-
zae, two different libraries were employed: a small plasmid library with size-
selected inserts approximately 2 kb in size and a lambda library with inserts

8.4 High-Throughput Genome Sequencing 217

about 15–20kb in size. The sequence assembly was aided by the following
experimental design features:

– Two libraries—one small-insert and one larger-insert—were employed.
– Sequences from both ends of the inserts were obtained, and these end-

sequence pairs were tracked for use in assembly.
– The insert sizes in the libraries were confined to a relatively narrow size

range.

The small-insert library provided the templates for generating the high levels
of sequence coverage necessary to include most of the genomic sequences. The
large-insert library aided in closing gaps in the sequence, and, most impor-
tantly, the end reads from the large inserts, when each lay in a different contig,
provided data on the distance and orientation of these contigs relative to each
other.

These approaches were extended and refined in their application to the
Drosophila genome (Adams et al., 2000; Meyers et al., 2000) and the human
genome (Venter et al., 2001). The methods had to be refined to accommo-
date the larger fraction of repeated sequences (about 3.1% in the Drosophila
genome and about 45% in the human genome). We use the details for the
Drosophila project because they are simpler but typical of both. Three dif-
ferent libraries were prepared for the Drosophila sequencing project: a 2 kb
insert high-copy-number plasmid library (8× clone coverage); a 10 kb insert
low-copy-number plasmid library (7× clone coverage); and a 130 kb insert
BAC library (13× clone coverage). (This may be a good time to review the
concept of coverage, discussed in Section 4.5.1.) In most cases, sequence reads
were obtained from both ends of each insert. Such reads are called mate
pairs or paired-end sequences. In total, the raw data consisted of 3.2 mil-
lion reads plus the clone and mate information for each. Note that there are
two types of coverage. Clone coverage corresponds to the average number
of genome equivalents contained within the collection of complete inserts rep-
resented in each library. Clone coverage need not be the same for the different
libraries. As we indicated earlier, sequence coverage corresponds to the av-
erage number of times each base position is represented in the collection of
all sequence reads. Note that sequence coverage is less than clone coverage
because only a fraction of each insert is represented in the mate pairs. Before
sequences of mate pairs are used for assembly, they are trimmed to leave only
sequences with sufficient quality, and they are screened to remove contami-
nating sequences (e.g., vector sequences or E. coli sequences) and possibly to
set aside reads from some of the repeated sequences.

The first phase of the assembly is alignment of sequence reads. The align-
ments must meet predetermined criteria. For example, Drosophila and human
sequence assemblies required overlaps that were at least 40 bases in length
and 94% identical. The products of this initial “overlap” phase of sequence
assembly are unitigs. A unitig is a small contig composed of sequence reads
that have been unambiguously assembled. (The overlaps are uncontested—

U
n
it
ig

 1
a

U
n
it
ig

 1
b

C
o
n
ti
g
 1

U
n
it
ig

 2
a

U
n
it
ig

 2
b

C
o
n
ti
g
 2

U
n
it
ig

 3
a

U
n
it
ig

 3
b

C
o
n
ti
g
 3

S
c
a
ff
o
ld

F
ig

.
8
.7

.
A

n
a
to

m
y

o
f
a

sc
a
ff
o
ld

.
S
eq

u
en

ce
re

a
d
s

a
re

in
d
ic

a
te

d
b
y

li
n
es

w
it
h

a
rr

ow
h
ea

d
s.

B
a
se

d
u
p
o
n

p
a
ir
w

is
e

co
m

p
a
ri
so

n
s,

se
q
u
en

ce
re

a
d
s

ca
n

b
e

a
ss

em
b
le

d
in

to
sm

a
ll

co
n
ti
g
s

ca
ll
ed

u
n
it
ig

s,
w

h
ic

h
ca

n
fu

rt
h
er

b
e

m
er

g
ed

in
to

la
rg

er
co

n
ti
g
s

b
a
se

d
u
p
o
n

se
q
u
en

ce
re

a
d
s

p
re

se
n
t

a
s

m
a
te

p
a
ir
s

o
n

sm
a
ll
-

a
n
d

in
te

rm
ed

ia
te

-i
n
se

rt
cl

o
n
es

.
C

o
n
ti
g
s

a
re

co
m

p
le

te
ly

sp
a
n
n
ed

b
y

a
D

N
A

se
q
u
en

ce
,
a
lt
h
o
u
g
h

n
o
t

a
ll

re
g
io

n
s

m
ay

h
av

e
th

e
sa

m
e

d
ep

th
o
f

co
v
er

a
g
e.

C
o
n
ti
g
s

ca
n

b
e

fu
rt

h
er

g
ro

u
p
ed

to
fo

rm
a

sc
a
ff
o
ld

.
E

v
en

th
o
u
g
h

th
e

re
g
io

n
s

b
et

w
ee

n
th

es
e

co
n
ti
g
s

m
ay

n
o
t

b
e

re
p
re

se
n
te

d
b
y

a
D

N
A

se
q
u
en

ce
,
la

rg
e-

in
se

rt
cl

o
n
es

w
h
o
se

m
a
te

-p
a
ir

re
a
d
s

li
e

in
d
iff

er
en

t
co

n
ti
g
s

(s
h
a
d
ed

b
ox

es
)

a
ll
ow

th
o
se

co
n
ti
g
s

to
b
e

co
rr

ec
tl
y

p
o
si
ti
o
n
ed

a
n
d

o
ri

en
te

d
.

8.4 High-Throughput Genome Sequencing 219

there are no contradictory overlaps.) In the human sequence assembly, each
unitig consisted of about 30 overlapping sequence reads. Some of these unitigs
are a result of assembling multiple copies of repeated sequences. These “over-
collapsed” unitigs are recognized by significantly larger-than-average read
depth or sequence coverage, and they are not used in the assembly. The
remaining unitigs are called U-unitigs, which contain unique sequences, al-
though they may include repeated sequences at their ends.

The next phase is to assemble U-unitigs into larger contigs. Remember
that contigs are continuous stretches of sequence; therefore, unitigs and U-
unitigs are contigs. Contigs reported by the sequence assembler are larger
contigs composed of U-unitigs that have been placed and oriented based upon
mate pairs from clones that “bridge” between them (see Fig. 8.7). These
larger contigs, in turn, are assembled into scaffolds. A scaffold is a set of
contigs that have been ordered and oriented such that the approximate spacing
between them is known. Again, the mate pair reads, particularly those from
the larger-insert clones, are used to produce the scaffolds. There still may be
gaps resulting from a region of the genome not sequenced or from repeated
sequences that were set aside earlier during the identification of U-unitigs.

The ultimate goal of a genome sequence assembly is a finished sequence—
an ungapped listing of all consensus bases in the genome together with a
high-quality score for each base. In practice, we may need to be content with
an assembly of euchromatin only since clones containing heterochromatin may
not be stable. The initial published genome sequence of Drosophila represented
only 120Mb of the 180Mb genome because 1/3 of the Drosophila genome is
heterochromatin. The initial version of a genome sequence, performed at low
sequence coverage, is called a draft sequence. A prefinished sequence is
a consensus assembly with gaps and some low-quality consensus scores, but
with the desired high level of sequence coverage. Production of a finished se-
quence from a prefinished sequence is a slow process specifically tailored (not
automated) to the particular deficiencies of each problematic region in the
prefinished sequence. Filling the gaps may require directed approaches such
as chromosome walking. Regions having low-quality scores may require rese-
quencing either by using appropriately placed custom-synthesized primers or
perhaps by using altered sequencing substrates (e.g., 7-deaza dGTP or dITP)
to alleviate peak compression problems.

We mentioned earlier the difficulties posed for genome sequence assem-
bly by repeated sequences. We indicated that the repeated sequences corre-
sponded to vertices in a Hamiltonian path problem, that is NP-complete. From
the subsequent experimental description, it should be evident how problems
with repeats were avoided by experimental design. By focusing on U-unitigs,
we focused on edges—not vertices. Most of these edges are unique sequences.
By using large-insert clones, it is possible to correctly orient and place the
edges into scaffolds. The edges (U-unitigs) may include portions of flanking
repeated sequences at their ends, so they provide guidance for the process of
adding back the repeated sequences that may have been set aside either be-

220 8 DNA Sequence Assembly

cause of initial screening or as collapsed unitigs. The experimental approaches
transformed the problem from one that was difficult to solve computationally
to one that was amenable to brute force, large-scale approaches.

Whole-genome shotgun sequencing is now widely used for determining the
DNA sequences of both prokaryotic and eukaryotic genomes. As described in
this chapter, libraries are used to provide sequences from both ends of the
genomic inserts. Using different length inserts allows many of the problems
of repeated sequences in the genome to be solved. It is no surprise that DNA
containing long nearly-identical repeats may not be properly assembled. In
She et al. (2004) it was shown that repeats longer than 15 kb and over 97%
similar were not always resolved; therefore, the whole genome shotgun se-
quencing produced an assembly shorter than the true genome. They recom-
mend a mixed strategy of first a whole-genome shotgun sequence assembly to
produce a draft sequence, followed by BAC analysis. An example of such a
hybrid strategy was discussed in Section 8.4.2.

References

Adams MD et al. (2000) The genome sequence of Drosophila melanogaster.
Science 287:2185–2195.

Anderson S (1981) Shotgun DNA sequencing using cloned DNaseI-generated
fragments. Nucleic Acids Research 9:3015–3027.

Ewing G, Hillier LD, Wendl MC, Green P (1998) Base-calling of automated
sequencer traces using Phred. I. Accuracy assessment. Genome Research
8:175–185.

Fleischmann RD, Adams MD, White O, et al. (1995) Whole-genome sequenc-
ing and assembly of Haemophilus influenzae Rd. Science 269:496–512.

Gardner RC, Howarth AJ, Hahn P, Brown-Luedi M, Shepherd RJ, Mess-
ing J (1981) The complete nucleotide sequence of an infectious clone of
cauliflower mosaic virus by M13mp7 shotgun sequencing. Nucleic Acids
Research 9:2871–2888.

Green ED (2001) Strategies for the systematic sequencing of complex genomes.
Nature Reviews Genetics 2:573–583.

Green P (1997) Against whole-genome shotgun. Genome Research 7:410–417.
Green P (1999) Documentation for Phrap and Cross Match (Version 0.990319).

http://www.phrap.org/phrap.docs/phrap.html.
Huang X, Madan A (1999) CAP3: A DNA sequence assembly program.

Genome Research 9:868–877.
International Human Genome Sequencing Consortium (2001) Initial sequenc-

ing and analysis of the human genome. Nature 409:860–921.
Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proceed-

ings of the National Academy of Sciences USA 74:560–564.
Myers EW, Sutton GG, Delcher AL, et al. (2000) A whole-genome assembly

of Drosophila. Science 287:2196–2204.

Exercises 221

Rat Genome Sequencing Project Consortium (2004) Genome sequence of
the brown Norway rat yields insights into mammalian evolution. Nature
428:493–521.

Sanger F, Coulson AR, Hong GF, Hill DF, Peterson GB (1982) Nucleotide
sequence of bacteriophage lambda DNA. Journal of Molecular Biology
162:729–773.

Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain termi-
nating inhibitors. Proceedings of the National Academy of Sciences USA
74:5463–5467.

She X, Jiang Z, Clark RA, Liu G, Cheng Z, Tuzun E, Church DM, Sutton
G, Halpern AL, Eichler EE (2004) Shotgun sequence assembly and recent
segmental duplications within the human genome. Nature 431:927–930.

The Institute for Genome Research (2000) Description, notes, annotated
TIGR Asssembler help file, and file format overview. See http://www.tigr
.org/software/assembler/helpfile.html

Venter JC, Adams MD, Meyers EW, et al. (2001) The sequence of the human
genome. Science 291:1304–1351.

Venter JC, Levy S, Stockwell T, Remington K, Halpern A (2003) Massive
parallelism, randomness, and genomic advances. Nature Genetics 33:219–
227.

Venter JC, Smith HO, Hood L (1996) A new strategy for genome sequencing.
Nature 381:364–366.

Exercises

Exercise 1. The first four lanes (reading left to right) in Fig. 8.2B correspond
with sequencing reactions (for a single template) supplied with ddA, ddC,
ddG, and ddT, respectively. What is the DNA sequence indicated by these
four lanes?

Exercise 2. Assume that we are given sequences composed of independent
letters of uniform probability. Two sequences overlap by three letters in two
different configurations. Show that the probability of at least one three-letter
exact overlap is

2

(
1

4

)3

−
(

1

4

)6

.

Exercise 3. For A = CAAACGTCT and B = AGGCTAAA, perform overlap align-
ment as in Computational Example 8.1 (by hand) using +2 for match, −1
for mismatch, and −2 for every indel letter. Show the matrix and all optimal
overlap alignments.

Exercise 4. Show by example that comparison of read r and r complemented
(r∗) versus read s includes all of the four possible comparisons of r and r∗

with s and s∗.

222 8 DNA Sequence Assembly

Exercise 5. In Fig. 8.6C, two alternative assemblies of a genomic segment
containing four repeated sequences are diagrammed graphically.

a. For this example, calculate the total number of possible assemblies con-
sistent with the sequence reads.

b. For the case in which reads from all of the unique regions are included,
the assembly can be described as a Hamiltonian path problem. Diagram
all possible assemblies that begin at a and end at d.

Exercise 6. A whole genome of 150Mb is to be sequenced. A small-plasmid
library (average insert size 3 kb) providing 5× insert coverage (= clone cov-
erage) and a BAC library (average insert size 150kb) providing 15× insert
coverage are prepared for sequencing. If sequencing reads of length 700nt are
generated from both ends of all inserts in both libraries, compute the average
sequence read coverage for the genome.

Exercise 7. The coverage of a sequencing project is the mean λ of a Poisson
distribution. It turns out that the Poisson random variable is the depth of
coverage along the genome. Using this idea and the result from Exercise 6,
compute the expected fraction of the genome uncovered. What is the fraction
of the genome covered by three or more reads? Convert these fractions into
bp for the project.

Exercise 8. The function o.lap (which can be downloaded from http://www.

cmb.usc.edu) constructs the portion of an overlap matrix resulting from com-
paring direct reads rk and rl with each other, recording any matches below
the diagonal of the overlap matrix.

a. Modify this function so that it will create the portion of the overlap ma-
trix above the diagonal, corresponding to alignment of direct reads rk to
complementary reads r∗l .

b. The code fragment

#test for overlap of j with left end of i

s<-0 #Initialize counter

for(q in 0:(m-1)){

if(inseq[j,(k+q)]==le[q+1])

{s<-s+1}

...

does not impose a penalty for mismatches when computing score s. Is a
mismatch penalty needed in this application? Why or why not?

Exercise 9. Download the set of 40 sequence reads (8 nucleotides long each)
in the file r.reads.txt from http://www.cmb.usc.edu. Perform the se-
quence assembly using o.lap and your modification of o.lap (Exercise 8)
to create the overlap matrix. Use m = 4 and t = 0.8.

Exercises 223

a. For any sequence i, it is possible that sequences j that appear in the
overlap matrix do not correctly overlap. How can you reduce this problem?

b. Do you assemble a single contig? What does this indicate?
c. The reads were not annotated with respect to the clones from which they

came. If they had been, you might have detected mate pairs (paired-end
reads). Suppose that you were told that reads 2 and 23* are from the same
clone and 70 bp apart. How would this affect your sequence assembly?

Hints

The following code will be useful:

Function for reverse complement of string:

r.star<-function(r){

#function to produce the reverse comp. of r.

#r is a string (vector) of length n

b<-c(4:1) #complements of 1,2,3,4

r.rev<-r[length(r[]):1] #reverses sequence

s<-r.rev

s[]<-b[r.rev[]] #replaces w/ complementary "letters"

return(s)

}

Syntax for extracting nonzero entries of overlap matrix (using sequence 9 as
an example):

> (1:40)[tmp[9,]!=0]

[1] 2 3 7

All sequences that overlap with sequence 9

> c(((1:40)[tmp[9,]!=0]),((1:40)[tmp[,9]!=0]))

Output of overlapping sequences

r.reads[c(((1:40)[tmp[9,]!=0]),((1:40)[tmp[,9]!=0])),]

Exercise 10. This problem examines the effects of coverage and parameters
on the assembly result.

a. Sample r.reads without replacement, taking 25 of the sequences. Perform
the assembly again as in Exercise 9 (with the same values of m and t).
How does this affect the sizes of the assembled contigs and the number of
islands?

b. Using the full set of 40 sequence reads, what is the result of changing m
from 4 to 5 with t = 0.9?

9

Signals in DNA

9.1 The Biological Problem

We consider a signal to be a DNA or RNA sequence pattern that is recognized
by a protein or other molecule (or, for RNA, sometimes another region of the
same molecule). Binding sites for proteins on DNA are important examples
of signals, and in this chapter we focus on these signals. Particular instances
of the sequence pattern may be represented by a sequence of letters in the
pertinent alphabet (e.g., A, C, G, T for DNA), but for signals recognized by
proteins, this is an approximation: proteins actually recognize specific atoms
or groups of atoms on bases or base pairs. “Recognize” usually means binding
in the thermodynamic sense. This may be strong binding, as in the case of re-
pressors binding to operators, or binding may be transient, as with restriction
endonucleases. Examples of common signals in DNA are:

– Restriction endonuclease recognition sequences (e.g., GAATTC for EcoRI).
– Binding sites for regulatory proteins: These proteins may function as re-

pressors (e.g., cI protein of bacteriophage lambda, which binds to the cor-
responding operator), may regulate gene expression in response to physio-
logical conditions of the cell (e.g., CRP protein, the cAMP receptor protein
of E. coli), or may be eukaryotic transcription factors such as the glucocor-
ticoid receptor (which binds to the GRE or glucocorticoid receptor element
under appropriate conditions).

– Elements within replication origins and termination regions in genomes.
– Promoters: These are sites that determine where transcription is initiated.

There are different classes of promoters, depending upon the type of RNA
polymerase (eukaryotes) or type of specificity factor (prokaryotes) that
acts at these sites. Within any particular class of promoters, individual
examples have been fine-tuned by evolution to provide the appropriate
level of transcription for the genes that they control. This means that pro-
moter sequences display a much greater degree of sequence variability than

226 9 Signals in DNA

is observed for other signals (such as restriction endonuclease recognition
sequences).

9.1.1 How Are Binding Sites on DNA Identified Experimentally?

Often the starting point is a cloned or PCR-amplified piece of DNA that is
hypothesized to contain a binding site for a particular protein (e.g., a region
near the 5′ end of a gene, such as the lac promoter region). In most cases
of interest, the DNA is duplex rather than single-strand. To determine ex-
perimentally whether a particular protein binds, it is also necessary to have
purified (or partially purified) binding protein (e.g., CRP protein) stored in
the freezer.

One way to identify whether a protein-binding site is present or absent
on the DNA fragment is an electrophoretic mobility-shift assay (or gel-
shift assay). In this experiment, duplex DNA in an appropriate buffer for
protein binding is mixed with the binding protein and incubated to allow
formation of the DNA-protein complex. The reaction mixture is then loaded
onto a polyacrylamide gel, and electrophoresis is performed with naked DNA
(no protein supplied) run in an adjacent lane. Binding of the protein to the
DNA reduces the mobility of the DNA fragment relative to its mobility when
there is no bound protein. The resulting shift in the position of the protein-
bound fragment is visible after staining the gel. The amount of shifted complex
depends upon how much protein was supplied and on its binding equilibrium
constant.

Footprinting experiments can locate the positions of protein-binding sites
on DNA molecules. In one implementation of this approach, duplex DNA con-
taining the binding site is labeled at one end (on one strand) and is allowed to
bind the protein, which covers a small segment of the DNA. The complex is
then briefly treated with a nonspecific cleavage reagent such as DNase I, which
cuts only in regions of the molecule not protected by the protein. Hydroxyl
radicals can also be used for nonspecific cleavage. Each of the many DNA
molecules in solution may be cleaved at one or more positions not covered by
the protein. By electrophoresis of the treated DNA on a denaturing gel of the
type used for analyzing DNA sequencing reaction products, single-strand frag-
ments whose lengths extend from the labeled end to the various cleaved sites
are resolved from each other, generating a “ladder” of bands having different
lengths. The cleaved positions are located throughout the DNA except for
that portion of the DNA that was protected by the bound protein. The region
in the ladder where there are few (or fainter) bands is called the footprint.
The location of the footprint is determined from a control “ladder” having
fragments of known size.

Sometimes the investigator may possess proteins known to bind DNA but
not instances of the cognate binding site in a DNA of interest. In that case, it
is possible to retrieve fragments of DNA containing the binding site or sites
by using chromatin immunoprecipitation (ChIP). (ChIP experiments are

9.1 The Biological Problem 227

used with other approaches, particularly genomic microarrays, to identify ge-
nomic locations of sites that bind particular proteins.) For example, if we have
purified protein P known to bind to eukaryotic replication origins, it is possible
to produce in rabbits (or rats, mice, or goats) specific antibodies that recognize
protein P (see Section 1.5.2 for a more complete description). To identify DNA
binding sites for P, we first perform in vivo chemical cross-linking of chromatin
proteins, including P, to DNA. The chromatin is then extracted from the cells,
and the DNA in the protein-DNA complexes is fragmented into smaller pieces
(e.g., 500bp long) by hydrodynamic shearing. Complexes of P with the DNA
to which they are bound are then precipitated by using the anti-P antibodies
(possibly with the aid of a secondary antibody). Cross-linking is reversed, and
the DNA enriched for P-binding sites is purified. The sequence of the binding
sites for P is revealed after cloning, sequencing, and alignment of the DNA.
However, approximately half of the DNA recovered by ChIP does not result
from specifically bound P. This is because the vast excess of proteins that
bind weakly and nonspecifically nevertheless bind somewhat because of their
higher concentrations, thus contributing to experimental “noise.”

9.1.2 How Do Proteins Recognize DNA?

We indicated that a signal is often a short stretch of a nucleic acid sequence
to which one or more proteins may specifically bind. This may be represented
by a string of letters. But what is the signal actually? After all, proteins
cannot “read” Roman letters! Obviously, proteins are sensing chemical groups
exposed on the DNA or RNA.

Proteins can recognize DNA or RNA by hydrogen bonding or electrostatic
interactions with the phosphodiester backbone of the nucleic acid. Also, they
may “read” the sequence of base pairs by hydrogen bond interactions with
the donor and acceptor groups at the edges of the base pairs in the major or
minor grooves. They also may employ hydrophobic interactions mediated by
the methyl group of thymine or may partially intercalate a hydrophobic group
between two base pairs (if the DNA is “kinked”). An example of site-specific
recognition of DNA by the engrailed homeodomain protein is diagrammed in
Fig. 9.1A. This illustrates interactions of specific amino acids with the major
groove, the minor groove, and the phosphodiester backbone (shaded circles).
What really counts for specific protein binding is the ability to recognize the
actual sequence of base pairs, and particular patterns of hydrogen bond donor
and acceptor groups on the edges of base pairs allow discrimination between
them (Fig. 9.1B).

Protein-binding sites on DNA may be simple, as in the case of restric-
tion endonuclease recognition sequences, or they may be complex. They may
have internal symmetry (e.g., inverted repetition of sequence motifs). They
may have highly conserved specific sequence patterns or may tolerate vari-
ation (degeneracy) at particular positions. DNA-binding proteins are com-
monly oligomers (e.g., dimers or tetramers) of smaller polypeptide chains.

228 9 Signals in DNA

Arg3
Arg5

Asn51

Ile47

Gln50

Lys55
Trp48

Thr6

Lys57, Tyr25, Arg53

Arg53
Arg31

Major Groove Minor Groove

A.

N

N

N

H

H

O

N

N

N

N

N H

H

O

H

G C

sugarsugar

B.

T A
N

N

O

H

O

N

N

N

N

N

H

H

sugarsugar

CH 3

Fig. 9.1. How proteins interact with DNA. Panel A: Interactions between specific
residues of the engrailed homeodomain protein with its binding site. The cylindrical
surface of the DNA has been cut along one of the phosphodiester backbones and
unwrapped for projection onto a plane. Bases A or T are represented by shaded or
unshaded rectangles, respectively. Base pairs that do not specifically interact are
not shown. Note that the bases indicated in the minor groove are the opposite edges
of the same bases appearing in the major groove. Phosphate groups are represented
by circles. Shaded circles represent phosphate groups with which engrailed protein
specifically interacts. Dashed arrows indicate interactions of particular amino acid
residues with specific bases or phosphate groups. Note that there are interactions
between the protein and the bases in both the major and the minor grooves. Un-
derlying data were taken from Kissinger CR et al. (1990) Cell 63:579–590. Panel
B: Locations of hydrogen bond donor groups (arrows pointing away from the struc-
ture) and acceptor groups (arrows pointing toward the structure) on the edges of
the Watson-Crick base pairs in the major groove. Particular sequences create char-
acteristic patterns of donor and acceptor groups, particularly in the major groove.

9.1 The Biological Problem 229

Each polypeptide may be capable of binding DNA on its own, but as an
oligomer, the binding strength is increased. If the oligomer is a dimer hav-
ing a “head-to-head” arrangement, then the binding protein will have twofold
rotational symmetry, and therefore the site on the DNA to which it binds
will also have twofold rotational symmetry, recognized as inverted repetition
of the DNA sequence (Fig. 9.2). An example of what is meant by inverted
repetition is the GRE (glucocorticoid receptor element):

5′-NNNNNAGAACANNNTGTTCTNNNNN-3′

3′-NNNNNTCTTGTNNNACAAGANNNNN-5′

The underlined bases appear in an opposite direction relative to the laboratory
frame of reference, hence the “inverted” adjective. These repeated bases are on
opposite strands. The two symmetrically disposed strings of conserved bases
in a binding site are called half-sites. Notice that, in this case, the binding
site can be recognized by examining either strand of the DNA for AGAACA.
For sites that lack this symmetry, it is necessary either to scan each strand
separately to find the binding sites on a duplex DNA or scan one strand for
the two strings representing both the site and its complement, thus effectively
examining both the strand and its complement in a single pass.

Figure 9.2 illustrates the relationship between binding protein and binding
site structure using bacteriophage lambda cro protein as a specific example.
cro protein (Cro) can bind to lambda operator sites. Cro is a homodimer
having twofold rotational symmetry. Therefore, the operator also has twofold
rotational symmetry (i.e., it has inverted repeat structure). Moreover, be-
cause each cro protein monomer binds by using an alpha helical region that is
inserted into the major groove, interaction between successive major groove
regions on the same side of the DNA helix places the centers of the half-sites
approximately 10 bp away from each other. (The average helix pitch of B-form
DNA is 10.4 bp.)

The sites recognized by cro protein are summarized in Table 9.1. Observe
that the sequences of the six operator sites are similar, but not identical, and
that the sequences of half-sites comprising the same operator are similar, but
not identical. Obviously, any realistic description of signals in DNA must be
capable of representing this sequence variation.

9.1.3 Identifying Signals in Nucleic Acid Sequences

Given a set of DNA or RNA sequence strings, how can we determine what
signals they encode, and how can we represent these signals? One approach
seeks to gain knowledge of a pattern that has not been previously specified
(an unsupervised approach). This is a daunting, and in strictest terms im-
possible problem. However, we know a good deal about the length and extent
of protein-binding patterns in DNA, as illustrated in the previous section. An
example of unsupervised pattern discovery is identifying k-words that are over-
represented in a set of functional sequences such as promoters. We provided

1
2

3

1 1 2

3

+

1

Dimerization

Binding

Fig. 9.2. How site structure reflects the structure of a binding protein. The binding
protein (Cro in this case) binds head-to-head as a dimer. The individual monomer
components interact with the DNA through the major groove (bottom panel). In-
teraction of the dimer with successive major groove regions on the same face of
the helix implies that the centers of the two interaction regions will be spaced 10
to 11 bp apart—the pitch of B-form DNA. The equivalence of interactions between
helices 3 of both monomers and DNA imposes inverted symmetry within the DNA
sequence to which Cro binds.

9.2 Representing Signals in DNA: Independent Positions 231

Table 9.1. Binding sites for lambda cro protein at operators in the cI region of
bacteriophage lambda (Gussin et al., 1983). Underlined base pairs separate each site
into two half-sites.

OL1 5′-T A T C A C C G C C A G T G G T A-3′

3′-A T A G T G G C G G T C A C C A T-5′

OR1 5′-T A T C A C C G C C A G A G G T A-3′

3′-A T A G T G G C G G T C T C C A T-5′

OL2 5′-T A T C T C T G G C G G T G T T G-3′

3′-A T A G A G A C C G C C A C A A C-5′

OR2 5′-T A A C A C C G T G C G T G T T G-3′

3′-A T T G T G G C A C G C A C A A C-5′

OL3 5′-T A T C A C C G C A G A T G G T T-3′

3′-A T A G T G G C G T C T A C C A A-5′

OR3 5′-T A T C A C C G C A A G G G A T A-3′

3′-A T A G T G G C G T T C C C T A T-5′

an extensive illustration of this in Section 3.6. In that case, we expected there
to be signals in the regions immediately upstream of the 5′ end of transcribed
gene regions, but we did not specify what they were. Also, we did not require
that the signals be present in all members of the set. We were able to identify
over-represented k-words such as TAAT and ATAA that are contained within
TATAAT (−10 region) without alignment or experimental specification of the
signal. Unsupervised methods have been used to identify k-words represent-
ing both known and previously unrecognized regulatory sequences for yeast
genes (Brazma et al., 1998; van Helden et al., 1998). A statistical approach
devised by Bussemaker et al. (2000) can be used to generate a k-word dictio-
nary of regulatory sites or other significant motifs. Unsupervised methods are
not discussed further here, but see Section 14.4.3.

Another approach, supervised learning, includes prior knowledge of the
pattern to be found. For example, multiple instances of a known and aligned
DNA signal can be used to define parameters of probabilistic models describ-
ing that signal. This is the subject of the remainder of this chapter.

9.2 Representing Signals in DNA: Independent Positions

There are several ways of representing signals in DNA, ranging from very
simple to rather complex. The simplest method of representing a binding site
is as a consensus sequence—a string of characters corresponding to the
most common occurrences of bases at each position. This is adequate for sites
such as restriction endonuclease recognition sequences and reasonably good
for sites such as GRE half-sites (examples aligned below).

232 9 Signals in DNA

Position: 123456

AGAACA

ACAACA

AGAACA

AGAAGA

AGAACA

AGAACT

AGAACA

Consensus: AGAACA

In this particular collection of sites, one of the four bases is much more
likely to occur at any position in the site than any of the three others. (Ex-
ceptions to the consensus base at any position are underlined.) The consensus
sequence is a listing of the preferred bases at each position. If there are po-
sitions at which either of two bases is commonly found, then the consensus
might be written to indicate both possibilities. So, for the example above, we
might write A(C/G)AA(C/G)(A/T) if either of the indicated letters is tolerated
at positions 2, 5, and 6. There are cases, however, where there is much more
sequence variation at some or all of the positions within the binding site.
For such cases, consensus methods are not appropriate and a probabilistic
description is required.

A string of iid letters does not contain signals, except by chance. To gen-
erate a string of iid letters, a base is assigned at each position according to a
probability distribution, which might be represented as a column vector (4 ×
1 matrix) whose entries correspond to the probabilities of A, C, G, or T deter-
mined by the overall base composition of the DNA. We described this process
in Chapter 2. In the example of the GRE half-site above, it should be obvious
that there is no single probability distribution for describing the site. Instead,
we must specify (in principle) a different distribution at every single position
(in other words, we are removing the “id” from “iid”). This suggests another
representation of protein-binding sites. We create a matrix of probabilities by
“binding” together (the cbind function in R) the column vectors that repre-
sent the probability distributions (probabilities of each letter for any position)
at each position in a site. Therefore, each element in this matrix represents
the probability of finding a particular base at a given position.

For example, the probability distribution at position 2 for the limited
sample of GRE half-sites listed above, with rows corresponding to A, C, G, and
T, respectively, is ⎡

⎢⎢⎣
0.00
0.14
0.86
0.00

⎤
⎥⎥⎦

and the matrix representing all six positions in the half-site is

9.2 Representing Signals in DNA: Independent Positions 233⎡
⎢⎢⎣

1.00 0.00 1.00 1.00 0.00 0.86
0.00 0.14 0.00 0.00 0.86 0.00
0.00 0.86 0.00 0.00 0.14 0.00
0.00 0.00 0.00 0.00 0.00 0.14

⎤
⎥⎥⎦

where rows i = 1, . . . , 4 correspond to A, C, G, and T, respectively, and columns
j = 1, . . . , 6 correspond to the positions within the site. This representation
of the sites is called a positional weight matrix, or PWM. (See Stormo,
2000a for a review of the history of PWMs.) Note that the six lambda operator
half-sites Table 9.1 display more sequence variation at each position than is
seen at any position in the GRE half-sites, and thus the positional weight
matrix provides a much more precise representation of these half-sites than
would a consensus sequence. There are other cases where consensus methods
are very imprecise and inappropriate, such as for promoter sequences.

In preparation for describing and analyzing a signal in DNA, we gather
together and align representatives of that signal (see below). A training set
is a collection of bona fide signals (or sites) used to produce the probabilistic
model. A second set of bona fide signals or sites is necessary for testing the
mathematical description or model. This is called the validation set. Some-
times the construction of the model requires a challenge set of sequences
that are not sites. The challenge set is the one to which the real sequences in
the training set are contrasted, such as a set of “nonsites” to be contrasted
with sites. In some circumstances, we might use a probabilistic model to pro-
duce the challenge set (for example, an iid model or a Markov chain model).
The process of estimating the probability distributions from the training set
is called learning in the machine-learning world.

9.2.1 Probabilistic Framework

Our practical goal is to recognize a signal of length w within a string repre-
senting a DNA sequence. To do this, we parse the sequence using windows
of width w and ask how well the w letters in that window correspond to a
particular signal. This means that we need to assign some type of score to the
sequence in each successive window. We assume that we have a collection of
aligned DNA sequences of the same length w and having no gaps, and that
we know that all members of this collection are sites for binding a particular
DNA-binding protein. How do we assign a score to any particular sequence
to describe its level of correspondence with the training set?

We follow the logical steps presented in Durbin et al. (1998). Given a col-
lection of aligned sites, each of length w, let pai be the probability of any
particular letter a from {A, C, G, T} at position i measured within a site. Iden-
tities of letters at each position in the sequence are assumed to be independent
of identities of their neighbors. (Remember that since we are talking about
signals, the probability distributions for the letters at each position are not
identical in the general case.)

234 9 Signals in DNA

The probability of a sequence A = a1a2 . . . aw given hypothesis B that it
is a binding site is

P(A|B) =
w∏

i=1

pai. (9.1)

Suppose that the same sequence was chosen from a random collection of
bases (hypothesis R) with probabilities qai. (The random model is iid.) Then
the probability of the sequence is given by

P(A|R) =

w∏
i=1

qai, (9.2)

and the odds ratio is given by

P(A|B)

P(A|R)
=

w∏
i=1

pai

qai
. (9.3)

The score for the sequence A can be defined as the log of the odds ratio, or

S = log2

P(A|B)

P(A|R)
=

w∑
i=1

log2(pai/qai) ≡
w∑

i=1

si. (9.4)

where si = log2(pai/qai) is the contribution to the sequence score of the base
at position i. (Note that we are taking the log to base 2 because eventually we
will be referring to “information” in bits. Note that log2(x) = ln(x)/ ln(2).)

The pai may be used as elements in a positional weight matrix. For the
contrasting iid model, the qai are independent of position (identically dis-
tributed), so from here on, we just refer to qai as qa. If the base composition
is 50% G+C, then qa = 0.25 for each base for duplex DNA (i.e., qa = 0.25 for
all a in {A,C,G,T}).

Let’s consider a more complex example than those we have considered
previously. Escherichia coli promoters have been recognized to contain con-
served hexamer sequences at approximately −10 and −35 relative to the first
position in the transcript. The consensus for the −10 hexamer is often repre-
sented as TATAAT. Table 9.2 lists nine examples of promoter segments for E.
coli ; these are part of a larger data set given in Appendix C.3. Clearly, it is
hard to pick out the -10 hexamer in all cases using the consensus given above,
so we represent the -10 hexamer as a positional weight matrix using compiled
data for a subset of all E. coli promoters (Harley and Reynolds, 1987; Stormo,
1990). First, we create a matrix containing values for counts of each letter at
each position (rows i = 1, . . . , 4 corresponding to A, C, G, and T, and columns
corresponding to positions as before):⎡

⎢⎢⎣
9 214 63 142 118 8
22 7 26 31 52 13
18 2 29 38 28 5
193 19 124 31 43 216

⎤
⎥⎥⎦

9.2 Representing Signals in DNA: Independent Positions 235

Table 9.2. A sample of E. coli promoter sequences. These sequences have been
aligned relative to the transcriptional start site at position +1 (boldface large letter).
Sequences from −40 to +11 are shown. Close matches to consensus −35 and −10
hexamers are underlined. See also Appendix C.3 for additional examples and sources
of the data.

−35 −10 −1
ORF83P1 | | |

CTCTGCTGGCATTCACAAATGCGCAGGGGTAAAACGTTTCCTGTAGCACCG

ada

GTTGGTTTTTGCGTGATGGTGACCGGGCAGCCTAAAGGCTATCCTTAACCA

amnP4
TTCACATTTCTGTGACATACTATCGGATGTGCGGTAATTGTATGGAACAGG

araFGH

CTCTCCTATGGAGAATTAATTTCTCGCTAAAACTATGTCAACACAGTCACT

aroG

CCCCGTTTACACATTCTGACGGAAGATATAGATTGGAAGTATTGCATTCAC

atpI

TATTGTTTGAAATCACGGGGGCGCACCGTATAATTTGACCGCTTTTTGATG

caiT

AATCACAGAATACAGCTTATTGAATACCCATTATGAGTTAGCCATTAACGC

clpAP1
TTATTGACGTGTTACAAAAATTCTTTTCTTATGATGTAGAACGTGCAACGC

crrP2-I
GTGGTGAGCTTGCTGGCGATGAACGTGCTACACTTCTGTTGCTGGGGATGG

The sums of the entries in each column are all 242, which is the number
of promoter sequences in this particular data set. The numerical entries in-
dicate an overwhelming preference for A at position 2 and a less pronounced
preference for A at position 5.

We can also represent the data by a matrix containing the relative fre-
quencies of each letter at each position:⎡

⎢⎢⎣
0.04 0.88 0.26 0.59 0.49 0.03
0.09 0.03 0.11 0.13 0.21 0.05
0.07 0.01 0.12 0.16 0.12 0.02
0.80 0.08 0.51 0.13 0.18 0.89

⎤
⎥⎥⎦

Entries in this matrix correspond to entries in the previous one, each divided
by 242. Note that the sums of the entries in each column should be 1.0, and
they are, to within rounding error.

We can also represent the data by a third matrix (used for scoring), con-
taining the corresponding values for log2(pai/qa). Such a matrix is known as
a position-specific scoring matrix (PSSM—articulated as “possom”). If
we make the reasonable approximation for E. coli DNA that pa = 0.25 for all
a, the resulting PSSM is:

236 9 Signals in DNA⎡
⎢⎢⎣
−2.75 1.82 0.06 1.23 0.96 −2.92
−1.46 −3.11 −1.22 −0.96 −0.22 −2.22
−1.75 −4.92 −1.06 −0.67 −1.11 −3.60
1.67 −1.67 1.04 −0.96 −0.49 1.84

⎤
⎥⎥⎦

Now let’s see how to score a particular sequence string. Take the sequence
ACTATAATCG for example. If we start parsing this from the beginning using
windows of width 6, we score hexamers ACTATA, CTATAA, TATAAT, . . . until
we come to the end. The scores si at each position for TATAAT (matches
with the consensus) are boxed in the matrix above. The score for TATAAT is
S = 1.67 + 1.82 + 1.04 + 1.23 + 0.96 + 1.84 = 8.56. From (9.4), it is clear that
P(A|B)/P(A|R) = 2S, so for TATAAT, P(A|B)/P(A|R) = 377. In contrast, for
ACTATA, S = −2.75− 3.11 + 1.04 + 1.23 − 0.49 − 2.92 = −9.75.

Suppose that only one base occurred at each position in every example
in the training set (e.g., only T appeared at position 1, only A at position
2, etc.). Then log2(pai/qa) would have been log2(1/0.25) = log2 4 = 2 at
each position. The score for the six positions would then have been 12, and
P(A|B)/P(A|R) = 212 = 4096. This is the same ratio of probabilities that was
implicit when we were looking for an invariant 6 bp endonuclease recognition
site in DNA (see Section 3.2.2).

A positional weight matrix is a probabilistic description of a protein-
binding site or other signal, with the underlying assumption that the state
or letter at a given position is unaffected by the state or letter at the previous
position. We have emphasized the utility of such matrices for scoring potential
sites within a string containing other DNA. In addition, a PWM (elements
representing probabilities at each position) is a probabilistic model that allows
us to simulate sites, should we wish to do so. When we wanted to simulate a
string of iid letters (see Chapter 2), we used a single vector of probabilities to
generate a letter for each site in a particular simulated sequence. To simulate
a binding site of length w, we use consecutively w probability vectors, each
corresponding to a column in the PWM. This is done in one of the exercises
at the end of this chapter.

9.2.2 Practical Issues

We briefly touch on some practical matters that we have ignored up to now.
The first is aligning the sequences. For E. coli promoters, this was simplified
because the alignment could be approximately fixed relative to the transcrip-
tional start site. (The +1 position is determined experimentally.) For short
patterns or signals embedded in extensive other DNA, alignment is a more dif-
ficult proposition (i.e., finding statistically meaningful short local alignments
in long sequences). Having footprinting data helps to restrict the lengths of
the sequences to be aligned.

A second problem is defining the extent of the site (the value of w). Here,
footprinting data are also extremely helpful. The information content I(Xi),

9.2 Representing Signals in DNA: Independent Positions 237

mentioned in Section 9.4, can be used to determine the size of the sites. The
approach is to calculate I(Xi) across the sequence containing the site and to
select those positions where I(Xi) is significantly above the background level.

A third problem is that only a limited sample of the total population of
sites is available for use as a training set. This means that the elements pai of
the positional weight matrix are only estimates of the population values. To
correct for a small sample size, we may compute pai as

pai =
nai + 1

N + 4
, (9.5)

where nai is the number of sites having letter a at position i, and N is the
total number of sites in the training set. This is particularly necessary when
nai = 0 since the log2(pai/qa) term would then be undefined. This equation
provides a correction for small sample sizes by adding a “pseudocount” of 1
for each base at each position. The 4 in the denominator reflects the fact that
a pseudocount of 1 has been supplied for each of {A,C,G,T}. If there were no
observations at all (nai = N = 0), the result would be pai = 1/4, which is
what we would have predicted with no prior knowledge of the sites (assuming
equal probabilities of each base at each site).

Finally, note that, for a signal of length w, a positional weight matrix
contains 4w parameters. For a matrix of probabilities, only three entries in
each column are independent since the sum of the four entries must equal
1.0. Therefore, only 3w parameters are independent. If there were only six
members in the training set, there would on average be only two observations
available for estimating each parameter (6w observations ÷3w independent
parameters). This is such a small sample size that we would not expect the
parameters to be reliably estimated. The number of bona fide sites available
depends on wet-lab experiments, and this number may not be large enough to
provide both training and validation sets of adequate size. Sometimes methods
such as cross-validation (leave one out) are employed to test the predictive
performance of PWMs when the number of sites is too limited to provide both
training and validation sets of adequate size.

In Computational Example 9.1, we reinforce these concepts using the site
to which transcription factor GATA-1 binds. GATA-1 is a transcription factor
that regulates transcription in hematopoietic cells (cells that give rise to blood
cells, such as red blood cells or erythrocytes). The string representing its bind-
ing site has w = 6, and it is represented by the consensus (A/T)GATA(A/G).
Examples of GATA-1 binding sites are listed in the TRANSFAC database
(http://transfac.gbf.de/TRANSFAC/). (The database may list the binding
site embedded in a string of other sequence or may list either of two strands.
We need to perform alignment and record the complements of the sequence
given, as appropriate.) We chose GATA-1 binding sites for this example be-
cause there is a reasonably large number of listed binding sites for estimating
the parameters (49 human sites). These site sequences are listed in Table 9.3.

238 9 Signals in DNA

Table 9.3. Binding sites for hematopoietic transcription factor GATA-1 from H.

sapiens. Source: TRANSFAC database (http://transfac.gbf.de/TRANSFAC/).

TTATAG AGATAA TGATTA

AGATAT TGATAA AGATAA

AGATAG AGATAA AGATAG

ATATCT AGATAG TGATAT

AGATAG TGATAG AGATAA

AGATAG TGATCA TCAGAG

AGATAG TTATCA AAGTAG

TGATAA AGATGG AGATTA

AGATAA TGATAT TGATAG

AGATAA AGATAG TGATAG

CGATAG TGATAA AGATAC

AGAGTT GGATAC TGATTG

TGATAA AGATAA AGATTA

TGATAA CGATAA AGAATA

AGATGG TGATAG AGATAA

AGATAG AGATAA AGATTA

AGATTG

Computational Example 9.1: PWM representation of GATA-1 sites

We begin by converting the data in Table 9.3 into a numerical representation,
as we have done in earlier chapters. The data are stored in the matrix gata.
The first three entries are:

> gata

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 4 4 1 4 1 3

[2,] 1 3 1 4 1 4

[3,] 1 3 1 4 1 3

We can produce a PWM in terms of probabilities of bases at each site
directly from gata. However, we ultimately want to generate scores according
to (9.4), so we also create a PSSM having elements of the form log2(pai/qa).
This means that we need the probabilities of each base for genomic DNA.
Since these sites are from human DNA, we use the human base composition,
41% G+C, to produce the “background” probability distribution based upon
the iid model. Vector bg has four elements corresponding to the probabilities
of A, C, G, and T, respectively:

> bg<-c(0.295,0.205,0.205,0.295)

9.2 Representing Signals in DNA: Independent Positions 239

> bg

[1] 0.295 0.205 0.205 0.295

Now we write a function to compute the PWM, given a matrix of sites
and the background probability distribution as input:

makepwm<-function(x,bg){

x = matrix of N aligned sites coded numerically

bg = vector (1x4) of background base frequencies

L<-length(x[1,]) # Number of positions in each site

N<-length(x[,1]) # Number of sites

pwm<-matrix(rep(1,4*L),nrow=4)

pwm initialized to 1 for each matrix element (pseudocounts)

for (j in 1:L){

for (i in 1:N){

k <- x[i,j]

pwm[k,j] <- pwm[k,j]+1

}

}

N <- N+4 # Denominator for small sample correction

pwm<-pwm/N # PWM in terms of probabilities

log2pwm<-matrix(rep(0,4*L),nrow=4,ncol=L)

Initialize PWM in terms of log(base 2) of p/q

for(i in 1:4){

log2pwm[i,]<-log2(pwm[i,]/bg[i])

Scores for each [nucleotide, position], base 2

}

return(pwm, log2pwm)

}

The “guts” of this function are the lines

for (i in 1:N){

k <- x[i,j]

pwm[k,j] <- pwm[k,j]+1

}

Here we have used the numeric coding of the sequence to identify k, which
in the second line after the for also specifies the numeric row number corre-
sponding to each base in object pwm. The vectorization in R avoids a set of
commands such as

if(x[i,j]==1) ...pwm[1,j]<-pwm[1,j]+1 ...elseif(x[i,j]==2) ...

Notice that we are returning two objects from this function. This produces
an R “list” object, which we call tmp. Objects in the list tmp are extracted
by entering tmp followed immediately by the object name prefixed with the $

sign:

240 9 Signals in DNA

> tmp<-makepwm(gata,bg)

> tmp$pwm

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.566040 0.037736 0.924530 0.037736 0.698110 0.433960

[2,] 0.056604 0.037736 0.018868 0.018868 0.075472 0.056604

[3,] 0.037736 0.849060 0.037736 0.056604 0.056604 0.396230

[4,] 0.339620 0.075472 0.018868 0.886790 0.169810 0.113210

> tmp$log2pwm

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.94018 -2.9667 1.6480 -2.9667 1.24270 0.55685

[2,] -1.85670 -2.4416 -3.4416 -3.4416 -1.44160 -1.85670

[3,] -2.44160 2.0502 -2.4416 -1.8567 -1.85670 0.95070

[4,] 0.20322 -1.9667 -3.9667 1.5879 -0.79678 -1.38170

(You should check for yourself to see what happens if you enter object name
tmp alone.)

Now we use log2pwm to generate scores for all of the input sites in gata.
To do this, we need a scoring function, which is shown below. This calculates
the score for the first L positions of any input sequence, where L is the site
length, here represented as length(log2pwm[1,]). We invoke this repeatedly
for the set of GATA-1 sites, and later we use it in another function to scan
along a long input sequence.

calcscore<-function(seq,log2pwm){

seq is a vector representing input DNA numerically

log2pwm is a PWM (4xL) with elements as log base 2

score <- 0

for (j in 1:length(log2pwm[1,])){

score<-score+log2pwm[seq[j],j]}

return(score)

}

Now we calculate scores for all of the GATA-1 sites. First, we extract
log2pwm from tmp as a separate object:

> log2pwm<-tmp$log2pwm

Then we loop calcscore over all elements in gata and store the resulting
scores in gata.score:

> gata.score<-rep(0,length(gata[,1]))

> for(i in 1:length(gata[,1])){

+ gata.score[i]<-calcscore(gata[i,],log2pwm)

+ }

>

9.2 Representing Signals in DNA: Independent Positions 241

> signif(gata.score,2)

[1] 3.67 6.09 8.42 -0.61 8.42 8.42 8.42 7.29 8.03 8.03

[11] 5.62 0.60 7.29 7.29 5.32 8.42 6.38 8.03 7.29 8.03

[21] 8.42 7.68 4.60 0.59 5.32 5.35 8.42 7.29 2.23 8.03

[31] 5.23 7.68 8.03 5.25 8.03 8.42 5.35 8.03 -0.25 -0.69

[41] 5.99 7.68 7.68 5.61 5.64 5.99 1.43 8.03 5.99

(We use the signif() function to limit the output to two significant figures).
We examine the score distribution graphically:

> hist(gata.score,xlim=c(-12,12),ylim=c(0,0.4),

+ nclass=10, prob=T)

The result is shown in Fig. 9.3. The score distribution is very broad and
asymmetric. Notice that some of the GATA-1 sites have scores below 0. What
would you have expected the average score to be for a set of background
sequences composed of iid letters? We return to this question in the example
after the last section of this chapter. We might wonder whether some of the
GATA-1 sequences in our training set have been misidentified.

D
e
n
s
it
y

gata.score

-10 -5 0 5 10

0
.0

0
.1

0
.2

0
.3

0
.4

Fig. 9.3. Histogram of GATA-1 site scores for sites listed in Table 9.3.

242 9 Signals in DNA

9.3 Representing Signals in DNA: Markov Chains

A PWM represents a signal under the assumption that the identities of letters
at a given position are independent of the identities of letters at the previous
position. The probability distributions in general differ at every position in
the site (i.e., the letters are not identically distributed). We can remove the
condition of independence by using a Markov chain description. We have
already used this in Chapter 2 to describe DNA sequences having dinucleotide
frequencies that departed from the iid predictions. That application assumed
that identities of bases at various positions were not independent but were
identically distributed at all positions (i.e., the same transition matrix was
employed at every position).

The comparison and contrast of the approach in Chapter 2 with the one
used here is illustrated in Fig. 9.4. When we were representing a string with
identical distributions of each letter, we started with an initial probability
distribution π and produced the probability distributions at each subsequent
position by multiplication using a single transition matrix, as diagrammed in
Fig. 9.4A. Only one transition matrix was required because we were consid-
ering homogeneous chains. The Markov chain illustrated in the diagram in
Fig. 9.4A is conventionally represented as shown in Fig. 9.5. To represent the
signals, the π vector is identified with the vector of probabilities of each state
at the first position, and subsequent probabilities are produced by multiplica-
tion by a succession of (w−1) transition matrices (Fig. 9.4B). Multiplication of
the vector of first position probabilities by matrix 2 produces the probability
distribution at position 2 given the distribution at position 1, multiplication
of the probability distribution at position 2 by matrix 3 produces the prob-
ability distribution at position 3 given the distribution at position 2, and so
on. It should be evident to you that the initial vector and the set of transition
matrices are sufficient to allow simulation of the binding site type to which
they correspond.

It is important to think about the data structure and the number of pa-
rameters. For PWMs, the probabilistic data were summarized in a matrix
that could be produced by binding together column vectors corresponding to
the independent probability distribution at each site. For the Markov chain
representation, we can stack the individual transition matrices to form a three-
dimensional array, or three-dimensional matrix. The R statistics package ac-
commodates this type of data construct. With the Markov chain description,
the number of parameters has increased compared with the positional weight
matrix representation. Remember that each row of a transition matrix con-
sists of the probabilities that the next letter is A, C, G, or T, given the letter
corresponding to the row label. Three of these probabilities are independent,
so 4 × 3 = 12 of the entries in each transition matrix are independent. There
are three independent probabilities in the vector for position 1, and there are
(w−1) transition matrices. Therefore, the number of parameters in this prob-

9.3 Representing Signals in DNA: Markov Chains 243

π 2 3 4 5 . . .

. . .

Markov chain, identical distributions

Transition matrix

A.

Transition

matrix 2

Transition

matrix 3

Transition

matrix 4

Transition

matrix 5

Markov chain, nonidentical distributions

B.

. . .

π 2 3 4 5 . . .

. . .

Fig. 9.4. Contrast between the Markov chain representation for positions with
identical probability distributions (panel A) and the model for positions in a sig-
nal (binding site) sequence (panel B). Numbered four-element horizontal rows are
the vectors of probabilities for A, C, G, and T at each position. These vectors are
transformed to vectors at the next position by matrix multiplication by a transition
matrix. In panel A, a single transition matrix is employed. In panel B, a different
transition matrix is required for each successive position.

abilistic description is 3 + 12(w− 1), or for w = 6 a total of 63 parameters (in
contrast with 18 parameters for a conventional PWM representation, w = 6).

In Computational Example 9.2, we represent the GATA-1 sites by using a
Markov chain.

244 9 Signals in DNA

A

G

C

T

π

Fig. 9.5. A graphical representation of the Markov chain model for DNA that does
not contain a signal. Arrows indicate allowable transitions from one state to another,
and associated with each arrow is a probability for that transition. The initial state
is drawn from the initial probability distribution π. In any chain generated by the
model, state n + 1 is assigned based upon the identity of the state at n and the
probabilities describing the model. The 16 dark arrows correspond to the elements
in the transition matrix and the lighter arrows to the entries in the initial probability
distribution, Fig. 9.4A. (Redrawn from Durbin et al., 1998.)

Computational Example 9.2: Markov chain representation of
GATA-1 sites

Step 1: Preprocess the data

We find it convenient to use logical operators, so we first convert the alpha-
betical characters into numeric values: A= 1, C= 2, G= 3, and T= 4. A space
is placed between each character. This can be done with Perl or with any text
editor. The data may be put in a file called gata1N.txt.

Step 2: Import the data

Read the data into a matrix object defined under R. If you do not use a
UNIX text editor, you may find that formatting elements are picked up by
read.table. Save your file as text only before using read.table.

> gata<-read.table("gata1N.txt", header=F)

Step 3: Make the probability vectors

Produce the vector representing the probability distribution at position 1.
This can be done by simple base counts and using the correction for small
sample sizes given in the last section.

9.3 Representing Signals in DNA: Markov Chains 245

> length(gata[gata[,1]==1,1])

[1] 29

> length(gata[gata[,1]==2,1])

[1] 2

> length(gata[gata[,1]==3,1])

[1] 1

> length(gata[gata[,1]==4,1])

[1] 17

> vectorn<-c(29,2,1,17)

> vectorn

[1] 29 2 1 17

Now, applying the small sample correction, we estimate the probabilities
from the frequencies and check that the probabilities sum to unity, as they
should:

> vector1[]<-(vectorn[]+1)/(49+4)

> vector1

[1] 0.56603774 0.05660377 0.03773585 0.33962264

> sum(vector1[])

[1] 1

vector1 represents the probability distribution for the first position of this
collection of GATA-1 binding sites.

Step 4: Produce the transition matrices

We indicate how this is done for matrix2 (used to create the probability
distribution of sites at position 2 given vector1). In general, we need to read
down each column of gata for columns 2 through 6, evaluating the number
of times that 1, 2, 3, or 4 appears in a column (except the first) given that
each instance is preceded by 1, 2, 3, or 4 in the previous column. We first
do this by hand, to see how it works, and then by using an R function. (You
may wish to revisit Section 2.6, where we used R to implement a first-order
Markov process that generated a sequence having predetermined dinucleotide
frequencies.)

[a.] Initialize a matrix to hold counts, matrix0.

> matrix0<-matrix(nrow=4,ncol=4,rep(0,16))

> matrix0

[,1] [,2] [,3] [,4]

[1,] 0 0 0 0

[2,] 0 0 0 0

[3,] 0 0 0 0

[4,] 0 0 0 0

246 9 Signals in DNA

[b.] Record the following numerical counts in matrixn (4×4): matrixn[1,1]
is the number of times that a 1 in the first column of the gata matrix is
followed by a 1 in the second column for the whole list of binding sites. By
inspection of Table 9.3 (in numerical from), we see that this happens one time
(row 40 of gata), so the [1,1] element is 1.

matrixn[1,2] is the number of times that a 1 in the first column of the
gata matrix is followed by a 2 in the second column. By inspection of Ta-
ble 9.3, we see that there are no instances of this at all, so we record 0 for the
[1,2] element of matrixn.

We do one more entry by hand. matrixn[4,3] is the number of times
that a 4 in the first column of the gata matrix is followed by a 3 in the
second column. There are 14 occurrences of 4 followed by 3, so we record 14
in matrixn element [4,3].

Once we have calculated all of the matrix elements in matrixn, we need to
convert the numerical counts to probabilities to create the transition matrix,
matrixp. Recall that, for transition matrices, the four probabilities in each
row must sum to 1.0. So if the elements in the ath row of matrixn sum to N ,
then the probability value at each element of the transition matrix, matrixp,
is (nai +1)/(N +4), i = 1, 2, 3, 4, if we apply the small sample correction that
we used earlier.

Clearly, all of these operations are much too tedious for hand calculation;
therefore, we write a function in R to perform the job for us:

transmatp<-function(sites,col,matrix0){

#sites = numeric matrix of n binding sites, w positions

#col = column that transition matrix produces

#matrix0 = matrix of counts for n = col, initialized to 0

matrixn<-matrix0

for(i in 1:length(sites[,1])){

j<-sites[i,(col-1)]

matrixn[j,sites[i,col]]<-matrixn[j,sites[i,col]]+1

}

#Change counts to probabilities

matrixp<-matrixn

matrixp<-matrixp+1 #Adds 1 to every element

for(i in 1:4){

matrixp[i,]<-matrixp[i,]/sum(matrixp[i,])

#Denominator=sum(matrixn[i,])+4

}

return(matrixp, matrixn)

}

> tmp<-transmatp(gata,2,matrix0)

The result of this calculation is shown as an R list object below:

9.3 Representing Signals in DNA: Markov Chains 247

> tmp$matrixp

[,1] [,2] [,3] [,4]

[1,] 0.06060606 0.03030303 0.8484848 0.06060606

[2,] 0.16666667 0.16666667 0.5000000 0.16666667

[3,] 0.20000000 0.20000000 0.4000000 0.20000000

[4,] 0.04761905 0.09523810 0.7142857 0.14285714

> tmp$matrixn

[,1] [,2] [,3] [,4]

[1,] 1 0 27 1

[2,] 0 0 2 0

[3,] 0 0 1 0

[4,] 0 1 14 2

> matrix2<-tmp$matrixp #Identical to $matrixp above

matrix2 is the transition matrix that generates the probability distribu-
tion for the second position given the probability distribution for the first
position given in vector1. For completeness, we present all of the other ma-
trices calculated for the remaining positions. These are computed in the same
way as for matrix2.

> matrix3

[,1] [,2] [,3] [,4]

[1,] 0.2000000 0.2000000 0.4000000 0.2000000

[2,] 0.4000000 0.2000000 0.2000000 0.2000000

[3,] 0.9375000 0.0208333 0.0208333 0.0208333

[4,] 0.5714286 0.1428571 0.1428571 0.1428571

> matrix4

[,1] [,2] [,3] [,4]

[1,] 0.0384615 0.0192308 0.0576923 0.8846154

[2,] 0.2500000 0.2500000 0.2500000 0.2500000

[3,] 0.2000000 0.2000000 0.2000000 0.4000000

[4,] 0.2500000 0.2500000 0.2500000 0.2500000

> matrix5

[,1] [,2] [,3] [,4]

[1,] 0.2000000 0.2000000 0.2000000 0.4000000

[2,] 0.2500000 0.2500000 0.2500000 0.2500000

[3,] 0.3333333 0.1666667 0.1666667 0.3333333

[4,] 0.7200000 0.0800000 0.0600000 0.1400000

248 9 Signals in DNA

> matrix6

[,1] [,2] [,3] [,4]

[1,] 0.4000000 0.07500000 0.4250000 0.1000000

[2,] 0.4285714 0.14285714 0.1428571 0.2857143

[3,] 0.1666667 0.16666667 0.5000000 0.1666667

[4,] 0.5000000 0.08333333 0.2500000 0.1666667

These five matrices, together with vector1, provide the Markov chain
representation of the GATA-1 transcription factor binding sites listed in Ta-
ble 9.3. If we wanted, we could use the initial probability distribution vector1

and these transition matrices to simulate GATA-1 binding sites in a manner
similar to the simulation that we did in Section 2.3.3.

One more point needs to be made before we move on: How do we score
a sequence given a representation of the type shown above? Scoring proceeds
in a fashion analogous to the approach used for the PWMs. Convert the
probabilities in the initial probability distribution into log2(pai/qa) using qa

for the genome as a whole (which means that we are comparing sites to an iid
model). Convert the probabilities in the transition matrices into log2(pij/qij)
values using qij = qj (also assuming an iid model).

Let’s take a specific example using the variable names and notation em-
ployed in the example above. Suppose the sequence to be scored is TGATAA.
The score s1 for the first position is log2(pa1/qa), selecting the vector ele-
ment corresponding to position 1 in the initial probability distribution vector,
vector1. Since we have coded A, C, G, and T, respectively, as 1, 2, 3, and 4,
the element that we require is vector1[4] (corresponding to T). The score
is s1 = log2(vector1[4]/qT). The score for the second position is taken from
the transition matrix corresponding to position 2, matrix2. The element of
matrix2 whose row corresponds to the base that appears at position 1 (T) and
whose column corresponds to the base that appears at position 2 (G) provides
the information needed to compute s2 = log2(matrix2[4, 3]/qG). Scores at the
other positions are calculated similarly.

9.4 Entropy and Information Content

Shannon’s entropy is a concept drawn from information theory and sig-
nal processing. It measures the degree of uncertainty associated with a set
of possible outcomes. Given a discrete random variable X with J outcomes
x1, x2, . . . , xJ having probabilities p(x1), . . . , p(xJ), respectively, Shannon’s
entropy is conventionally defined as

H(X) = −
J∑

j=1

p(xj) log2 p(xj), (9.6)

9.4 Entropy and Information Content 249

where p(x) log2 p(x) = 0 if p(x) = 0.
Now suppose we are looking at a sequence X1, X2, . . . of iid bases. The

entropy of the ith position is

H(Xi) = −
∑

a∈{A,C,G,T}

p(a) log2 p(a). (9.7)

If the outcomes are equally probable, p(a) = 1/4 and then H(Xi) = log2 4 = 2.
The uncertainty in this case can be represented by two bits. One bit accounts
for the possibility that a base is a purine (1) or pyrimidine (0), and the other
bit specifies which purine (1 or 0, given that the first bit was 1) or which
pyrimidine (1 or 0, given that the first bit was 0) is present. If we know that
the base at a position is actually an A, for example, then p(a) = 1 if a = A,
and all other p(a) = 0. In this case, H(Xi) = 0 (i.e., the uncertainty is zero).

The information is a measure of how much the entropy is reduced after
a “signal” (in this case, resulting from natural selection at a position within
a region of DNA) has been received:

I(Xi) = Hbefore − Hafter. (9.8)

If the bases at a position had initially been distributed with equal probabilities,
and over the course of time had evolutionarily been fixed to be an A, then
using the calculation above, we see that the information at that position is
now I(Xi) = 2 bits.

Another measure of information content (which becomes identical to Shan-
non’s entropy when the probability distribution is uniform) is the relative
entropy, or Kullback-Leibler distance. We start with a set of aligned sites,
where, as before, the probability of finding base a at position i is given by
pai. Let qa represent the background distribution of bases in a genome or in
a random model of a genome. The relative entropy is then defined as

H(pi||q) =
∑

a∈{A,C,G,T}

pai log2(pai/qa). (9.9)

The || indicates that a distribution pi is being examined relative to a distri-
bution q. Using the log-odds scoring scheme that we employed above, we can
calculate the expectation for the score at any position in the sequence:

E(Si) =
∑

a

paisa =
∑

a

pai log2(pai/qa). (9.10)

In this expression, the pai correspond to the distribution at position i. We
see that the expected value for the score at any position is the same as the
relative entropy at that position. This provides an intuitive view of the nature
of relative entropy.

Why have we introduced relative entropy and information content? The
major reason is to help define the extent of signals. Remember that an ex-
perimental measure of the extent of a binding site comes from footprinting

250 9 Signals in DNA

experiments. But how can we decide the extent of a signal in probabilistic
terms given a set of sequences containing that signal? One approach is to plot
information content as a function of position along the set of sequences. The
binding site boundary is taken as that position where the relative entropy
exceeds a particular threshold (e.g., the value of relative entropy exceeded by
no more than 5% of the positions in iid sequences).

The informational perspective has led to a depiction of signals as sequence
logos (Schneider and Stephens, 1990). A sequence logo is a graphical repre-
sentation of a signal in which the total height at each position corresponds to
the relative entropy. The height of each letter at each position is calculated by
multiplying the relative entropy at that position by the frequency of the cor-
responding letter. A logo representing the lambda operator sites (Table 9.1) is
shown in Fig. 9.6. Logos are better visual representations than consensus se-
quences because the logos indicate both the amount of relative entropy at each
position (the height of the stack of four letters) and the relative contribution
of each base (the relative height of the letter) at that position.

GCG TG TA
G
T

C
0

1

2

b
it
s

-9

G
A
C
T

-8

A
C
T

-7

A

-6

C
A
T

-5

C

-4

C
T
A

-3

T

-2

G
T
C

-1

C
T
G

0

TAG
C

1

G
A

2

C
A

3

A

4

A
G

5 6

T
G
A

7 8 9

T
C
G
A

Fig. 9.6. [This figure also appears in the color insert.] DNA sequence logo of lambda
operator sites. The illustration includes one more position to the right and left of the
sequences shown in Table 9.1. Heights of each letter A, C, G, or T (in bits) represent
the contribution of each letter to the information encoded at each position. The
sequence logo was provided by Dr. Thomas D. Schneider, National Cancer Institute
(http://www.lecb.ncifcrf.gov/∼toms/papers/hawaii/lambdacro/).

9.5 Signals in Eukaryotic Genes

Signals are important components of eukaryotic genes. Examples of promoter
signals, transcriptional signals, and mRNA processing signals are provided in
Table 9.4. In Section 9.2, we represented the consensus sequences by writing

9.5 Signals in Eukaryotic Genes 251

down the actual base that is overwhelmingly preferred at each position. In
Table 9.4, we expand the representation by using single-letter codes to describe
different combinations of bases. For example, (A/T) is represented by W, and
(A/G) is represented by R. (See Appendix C.1 for a complete list of the IUPAC-
IUB codes.) With this notation, the GATA-1 consensus can be more flexibly
represented as WGATAR. Lowercase letters are sometimes used to depict a weak
preference for a particular base, with all others appearing at lower frequencies.
The last two positions in the 3′ splice signal are designated by this notation.
These types of designations are not appropriate for gene finding because we
need to be able to generate a score. Positional weight matrices (also called
profiles in this context) or Markov chains are effective representations of
these signals. Examples of these are presented in Chapter 14 (Table 14.3).

Table 9.4. Examples of signals and their consensus sequences in human genes.
For further details about the TATA box see Milanesi and Rogozin (1998) and for
the others see Zhang (1998).

Site Consensus1

−3 −2 −1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11
TATA box S T W T W W A W R S S S S S S

−4 −3 −2 −1 0 +1 +2 +3 +4
CAAT box R R C C A R K S R

−2 −1 0 +1 +2 +3 +4 +5
Cap site K C W S Y S S S

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 +1 +2 +3
Start site S S S S S C R M C A T G R

−3 −2 −1 0 +1 +2 +3 +4 +5
5′ splice signal N A G G T R A G W

−15 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 +1
3′ splice signal Y Y Y Y Y Y Y Y Y Y Y N Y A G g t

1 Weaker preferences are indicated by lowercase letters. Locations with prefer-
ences for particular combinations of bases are indicated by IUPAC-IUB codes.
In addition to A, C, G, T, they are R = A or G (purine), Y = T or C (pyrimidine),
S = C or G, W = A or T, K = G or T, M = A or C, and N = any base.

Regulatory sequences control the timing and levels of gene expression
by binding specialized transcription factors. The regulatory regions of genes
can extend tens of thousands of base pairs upstream of the transcriptional
start site, and some sequences (enhancers) can be found either upstream or
downstream of the promoter (sometimes within introns or downstream of the
polyadenylation site). Probabilistic descriptions can be used as an aid to locat-
ing these binding sites (e.g.,the GATA-1 binding site; Section 9.3). Numbers
and locations for k-tuples corresponding to signals such as GATA-1 may pro-
vide similar information about signal content. However, many binding sites

252 9 Signals in DNA

are quite short, and therefore they are likely to occur by chance in long lengths
of sequence.

Our probabilistic description has not taken into account the distributions
of the sites along the DNA although typical values for locations of GC boxes,
CAAT boxes, and TATA boxes relative to the transcriptional start sites are
known (Chapter 14.4.2). The spacing (or alternatively density) of candidate
transcription factor binding sites is additional information that can be used for
assessing whether they have been correctly identified. This sort of information
can be incorporated in hidden Markov models (not discussed in this book).
Clearly, signals are only one set of features that describe eukaryotic genes,
but they are an important component of gene-finding tools. Eukaryotic gene
finding is discussed at greater length in Chapter 14.

9.6 Using Scores for Classification

We have described how to represent signals in probabilistic terms and how to
produce scores for instances of any signal. The scores can be used to classify
any candidate string into one of two categories: sites or nonsites. There are two
types of errors that can result from this procedure. Let the null hypothesis
H be that the sequence to be tested is a site. A Type I error is one that
classifies a site as a nonsite (i.e., a false negative, rejecting H when it is true).
A Type II error is one that classifies a nonsite as a site (a false positive,
failing to reject H when it is false):

Assigned class is:
H is: True False

True correct Type I error

False Type II error correct

The performance of a classification method is often described in terms of
sensitivity (Sn, the proportion of actual features detected) and specificity
(Sp, the proportion of predicted features that are real). In terms of Type I
and Type II errors, we have

Sn = 1 − P(Type I error),

Sp = 1 − P(Type II error).

If #TP is the number of true positive predictions, #FP is the number of false
positive predictions, #TN is the number of true negative predictions, and
#FN is the number of false negative predictions, then

Sn ≈ #TP

#TP + #FN
, Sp ≈ #TN

#TN + #FP
. (9.11)

9.6 Using Scores for Classification 253

Given a training set of sites, scoring produces a distribution of scores for
these sites, shown as an idealized distribution, A, in Fig. 9.7. Given a set
of sequences that are not sites, the same scoring method produces another
distribution, B, that in general overlaps the first one. We can place a cutoff
score C on the graph and classify any sequence with score S ≥ C as a site and
classify any sequence having S < C as a nonsite. The area of distribution A to
the left of C represents the fraction of false negative assignments, and the area
of distribution B to the right of C is the fraction of false positive assignments.
We may move the cutoff lower in an effort to avoid “losing” actual sites, but
we do so at the expense of a greater number of false-positive assignments. We
can move the cutoff to the right to reduce the false-positive assignments, but
then we lose sensitivity.

0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

Score S

Cutoff

AB

Fig. 9.7. Idealized illustration of the classification of objects of types A and B
based upon their score distributions. An arbitrary cutoff score midway between the
maximum scores for the two object types is indicated. Objects B having scores larger
than the cutoff score (light shaded area) are incorrectly classified as A, while objects
A having scores below the cutoff score (dark shaded area) are incorrectly classified
as B. If objects are classified to answer the question of whether they are objects
of type A, then the light shaded area corresponds to false positive assignments
and the dark shaded area corresponds to false negative assignments. The cutoff
score can be adjusted up or down (arrows) to minimize false positive assignments
(with correspondingly greater false negative errors) or to minimize false negative
assignments (with correspondingly greater false positive errors).

254 9 Signals in DNA

In actual practice, we may be scanning an entire genome for a limited
number of sites (e.g., one site per 103 to 104 bp). In this case, the number of
nonsites examined is equal to (G − w) − n, where G is the number of base
pairs in the genome, w is the length of the site, and n is the number of actual
sites. Ordinarily, G >> n, so many more nonsites than sites are scored. The
result is that if we set the cutoff midway between the scores corresponding
to the maxima of the two curves, the number of false positive assignments
will vastly exceed the number of actual sites. For this sort of application, we
might accept a lower sensitivity to achieve higher specificity. If, however, we
are only analyzing the upstream region of a particular gene of interest, then
we might move the cutoff to the left to increase the sensitivity at the expense
of specificity. We make the trade-offs necessary for the problem at hand. We
illustrate these principles in Computational Example 9.3.

Another approach to assessing a classification scheme uses the false dis-
covery rate (FDR), defined to be the expected proportion of false positive
features among those features called positive. This is given by

FDR ≈ #FP

#FP + #TP
.

For details on the calculation of the FDR, see, for example, Storey and Tib-
shirani (2003).

Computational Example 9.3: Classification of sites using GATA-1
PWM

We use the PWM computed in Computational Example 9.1 to illustrate the
classification problem. Remember that we had a training set comprising 49
sites and that these represent a sample of all possible sites. First, we employ
our PWM to simulate 5000 sites and score them to determine the site score
distribution implied by our PWM. Next, we simulate a set of 5000 “back-
ground” sequences of the same length as GATA-1 sites (6 bp) by using the iid
model, and we determine the score distribution of this set. Finally, we examine
FP and FN error rates at different cutoff scores.

Step 1: Simulating GATA-1 sites

Our R function makepwm produced a matrix of probabilities at each position
as one of its two returned objects. This is just what we need to simulate the
sites. The function to do this is:

simmotif<-function(pwm){

pwm is a PWM matrix of probabilities (4xL)

L<-length(pwm[1,]) #Number of positions in the motif

motif<-rep(0,L) #Create and initialize motif vector

dna<-c(1,2,3,4) #Numeric codes for A, C, G, T

9.6 Using Scores for Classification 255

for (j in 1:L){

motif[j]<-sample(dna,1,p=pwm[,j])

}

return(motif)

}

We have used sample before, so this function should be clear to you. The
only wrinkle is that for each cycle of the for loop, a different probability dis-
tribution is used, corresponding to each column of pwm. The need for these
probability distributions was anticipated when we devised the makepwm func-
tion. To simulate N sites, we make an N ×6 matrix and then run simmotif N
times. Remember that the pwm argument that we need is in tmp as tmp$pwm.

> N<-5000

> gata.motifs<-matrix(nrow=N,ncol=6)

> for(i in 1:N){

+ gata.motifs[i,]<-simmotif(tmp$pwm)

+ }

We check some of the simulated sites to make sure that they look reasonable
(compared with the gata object).

> gata.motifs[1:5,]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 4 3 1 4 1 3

[2,] 1 3 1 4 1 3

[3,] 4 3 1 4 1 3

[4,] 1 3 1 4 4 3

[5,] 1 4 1 4 3 3

Step 2: Scoring simulated sites

We now wish to generate the score distribution for the simulated sites.
What would we predict for this distribution, based on the training set scores
(Fig. 9.3)? We can employ the calcscore function operating on each row of
gata.motifs to obtain the scores:

> gata.motifs.score<-rep(0,N)

#vector to hold the results of computation

> for(i in 1:N){

+ gata.motifs.score[i]<-

+ calcscore(gata.motifs[i,],log2pwm)

}

We can compare this set of scores to the training set by looking at the
means:

256 9 Signals in DNA

> mean(gata.motifs.score)

[1] 5.094539

> mean(gata.score)

[1] 6.07064

At first, it may seem strange that the simulated motif scores have a smaller
average than those of the training set, but things become clearer when we ex-
amine the score distributions. We produce a histogram of gata.motifs.score
in the usual manner, with the result shown in Fig. 9.8 (solid lines: code sup-
plied later).

Notice that our simulated sites have a score distribution that is skewed
left (as is the training set distribution), and note that the central part of the
distribution has been filled in. This accounts for the lower mean value for the
scores. Remember that the training set is a sample of the set of actual sites.
As an exercise, you can test how much individual samples vary by repeatedly
sampling 49 of the simulated set of 5000 motifs, recomputing the correspond-
ing PWMs, and plotting the resulting scores for each sampling (see Exercise 13
at the end of this chapter) .

Step 3: Simulating the background

We now simulate sequence strings of length N according to the iid background
model. The function to do this is:

simbg<-function(bg,L){

#bg is a vector of probabilities for A, C, G, T (1x4)

#L = length of sites to be simulated

seq<-rep(0,L)

dna<-c(1,2,3,4) #Numeric codes for DNA

seq<-sample(dna,L,replace=T,p=bg)

return(seq)

}

We apply this function 5000 times in the same manner as we did with
simmotif, and examine the resulting score distribution.

> for(i in 1:N){

+ back.sim[i,]<-simbg(bg,6)

+ }

> back.sim.score<-rep(0,N)

> for(i in 1:N){

+ back.sim.score[i]<-calcscore(back.sim[i,],log2pwm)

}

Now we examine the score distribution for the background and compare
it with the distribution for the simulated motifs:

9.6 Using Scores for Classification 257

> hist(back.sim.score, prob=T,xlim=c(20,20),

+ ylim=c(0,0.25),lty=2)

> hist(gata.motifs.score, xlim=c(-20,20),

+ prob=T,lty=1,add=T)

The distribution of the background scores (Fig. 9.8, broken lines) is more
nearly symmetric, and the mean is at −6.56. In Computational Example 9.2,
we asked what we might have expected the mean score for the background
distribution to be. In particular, why is it not 0? The answer comes from
looking at tmp$log2pwm: 16 of the 24 matrix elements are negative, and their
average value is −2.32. Eight of the 24 matrix elements are positive, and their
average value is 1.14. The iid sites draw more of their positional scores si from
the negative values.

Scores

D
e
n
s
it
y

-20 -10 0 10 20

0
.0

0

0
.0

5

0
.1

0

0
.1

5

 0

.2
0

0
.2

5

Fig. 9.8. Score distributions for GATA-1 sites (solid lines) simulated from the PWM

corresponding to sites in Table 9.3 (scores shown in Fig. 9.3) and for “background”

sequences (broken lines) simulated from an iid model using the base composition of

human DNA.

Now we can examine the false positive and false negative error rates.
To do this, we specify a set of cutoffs from −10 to +8 (encompassing
most of the scores in gata.motifs.score) and calculate the fraction of
gata.motifs.score values below the cutoff (false negative) and the fraction
of back.sim.score values above the cutoff (false positive).

cutoffs<-c(-10:8)

false.neg<-rep(0,19) #Vector to hold calculated values

258 9 Signals in DNA

for(i in 1:19){

false.neg[i]<-length(gata.motifs.score[gata.motifs.score[]

<cutoffs[i]])/N}

false.pos<-rep(0,19) #Vector to hold calculated values

for(i in 1:19){

false.pos[i]<-length(back.sim.score[back.sim.score[]

>cutoffs[i]])/N}

> plot(cutoffs,false.neg,type="l",xlim=c(-10,10), ylim=c(0,1))

> points(cutoffs,false.pos,type="l",lty=2)

F
ra

c
ti
o
n
 f
a
ls

e
-n

e
g
a
ti
v
e
 (

)

 o
r

fa
ls

e
-p

o
s
it
iv

e
 (

)

0
.0

0
.2

0
.4

 0

.6

0
.8

1
.0

Cutoff Score

-10 -5 0 5 10

Fig. 9.9. False negative errors (fraction of simulated GATA-1 sites identified as

“background”: solid line) and false positive errors (fraction of simulated “back-

ground” sequences identified as GATA-1 sites: broken line) for simulated motifs

and background sequences as a function of cutoff score. The histogram of scores is

shown in Fig. 9.8.

The plot in Fig. 9.9 shows the expected opposite behavior of the false
positive and false negative error rates. If we were to choose a cutoff score of
0.0, we would have a false negative rate of 6.6% and a false positive error rate
of 6.8%. This latter value is deadly for scanning long sequences. For example,
if we were to examine 100,000 base pairs upstream of a particular gene, we
would incorrectly predict approximately 6800 GATA-1 sites (assuming that
human DNA is adequately represented by the iid model).

References 259

As mentioned above, to avoid the “noise” associated with the false positive
error, we might choose to increase the cutoff and accept the concomitant false
negative errors. Ultimately, we might choose a more sophisticated probabilistic
model that includes the expected site distribution (e.g., a hidden Markov
model), but this is beyond the scope of this chapter.

References

Brazma A, Jonassen I, Vilo J, Ukkonen E (1998) Predicting gene regulatory
elements in silico on a genomic scale. Genome Research 8:1202–1215.

Bussemaker HJ, Li H, Siggia ED (2000) Building a dictionary for genomes:
Identification of presumptive regulatory sites by statistical analysis. Pro-
ceedings of the National Academy of Sciences USA 97:10096-10100.

Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge: Cambridge
University Press.

Gussin GN, Johnson AD, Pabo CO, Sauer RT (1983) Repressor and Cro
protein: Structure function, and role in lysogenization . In Hendrix RW,
Roberts JW, Stahl FW, Weisberg RA (eds.), Lambda II. Cold Spring Har-
bor, NY: Cold Spring Harbor Laboratory, pp. 93–121.

Harley CB, Reynolds RP (1987) Analysis of E. coli promoter sequences. Nu-
cleic Acids Research 15:2343–2361.

Kissinger CR, Liu BS, Martin-Blanco E, Kornberg TB, Pabo CO (1990) Crys-
tal structure of an engrailed homeodomain-DNA complex at 2.8A reso-
lution: A framework for understanding homeodomain-DNA interactions.
Cell 63:579–590.

Milanesi L, Rogozin IB (1998) Prediction of human gene structure. In Bishop
MJ (ed.)Guide to Human Genome Computing (2nd edition) San Diego:
Academic Press, pp. 213–259.

Schneider T. A gallery of sequence logos.
http://www.lecb.ncifcrf.gov/ toms/sequencelogo.html

Schneider TD , Stephens RM (1990) Sequence logos: A new way to display
consensus sequences. Nucleic Acids Research 18:6097–6100.

Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies.
Proceedings of the National Academy of Sciences USA 100:9440–9445.

Stormo GD (1990) Consensus patterns in DNA. Methods in Enzymology
183:211–221.

Stormo GD (2000a) DNA binding sites: representation and discovery. Bioin-
formatics 16:16–23.

van Helden J, Andre B, Collado-Vides J (1998) Extracting regulatory sites
from the upstream region of yeast genes by computational analysis of
oligonucleotide frequencies. Journal of Molecular Biology 281:827–842.

260 9 Signals in DNA

Zhang MQ (1998) Statistical features of human exons and their flanking re-
gions. Human Molecular Genetics 7:919–932.

Exercises

Exercise 1. Write out a duplex DNA sequence that contains the sequence
pattern 5′-AGAACA-3′ as an inverted repeat. Separate the centers of inverted
repeats by a number of base pairs that places corresponding positions in the
pattern on the same side of the DNA helix.

Exercise 2. Generalize (9.5) to the case for which not all qai are equal. Will
a single equation suffice?

Exercise 3. Make a plot of Sn and Sp (9.11) versus cutoff scores for simulated
GATA-1 sites using an iid background (see Computational Example 9.3 and
Fig. 9.8). Add the FDR curve to your plot.

Exercise 4. If the samples of sites or non-sites are sufficiently large that small
sample effects are negligible, do Sn and Sp depend upon sample size? Does
the false discovery rate depend upon sample size (i.e., does the computed FDR
apply to a particular analysis or is it a general property for a given cutoff)?

Exercise 5. From the data in Table 9.1, produce a PWM describing the
lambda operator half-sites, and generate a score for each site. Make a his-
togram of the score distribution.

Exercise 6. Use the matrix of probabilities describing the E. coli −10 se-
quence TATAAT (Section 9.2.1 and the R function in Computational Exam-
ple 9.3) to simulate ten such sequences.

Exercise 7. Plot the relative entropy as a function of position for the human
start site represented by the profile or PWM in Table 14.3. Then produce (by
hand, to make sure you understand the principles) a sequence logo represent-
ing this site.
[Hint: One way of creating letters with adjustable widths and heights is to
take screen shots of enlarged letters A, C, G, and T. These can be pasted into
a Microsoft Word document and scaled as needed.]

Exercise 8. Use your PWM from Exercise 5 to simulate 100 lambda operator
half-sites, and also simulate 100 non-sites of the same length using iid letters
with 50% G+C. Create a PSSM for the simulated half-sites. Score the simulated
half-sites and the simulated non-sites, and plot the histograms for each. Select
a cutoff score for discriminating between sites and non-sites, and justify your
choice.

Exercises 261

Exercise 9. Generate 48,502 bp of iid sequence, 50% G+C (see Chapter 2).
Using the PWM from Exercise 8, generate scores for every starting position
of a potential lambda operator half-site using an R function that you cre-
ate. Make a histogram of scores obtained from this sequence, and estimate
the number of half-sites that you would have predicted. [Hint: Compare the
histogram from this problem with the one that you obtained in Exercise 8.]

Exercise 10. Repeat Exercise 9, except instead of using a simulated se-
quence, use the lambda DNA sequence in GenBank file NC 001416. This can
be downloaded in FASTA format from the NCBI Web site (Appendix B).

Exercise 11. Calculate by hand the transition matrix needed to produce the
probability distribution at position 3 for the GATA-1 sites listed in Table 9.3.

Exercise 12. Write an R function for producing the score for an arbitrary
sequence using the Markov chain representation of GATA-1 sites in Compu-
tational Example 9.2.

Exercise 13. To illustrate the effects of sampling variation, take three inde-
pendent random samples each containing 49 simulated GATA-1 sites from the
5000 sites produced in Computational Example 9.3. Compute the three corre-
sponding PWMs, and use each PWM to generate scores for the actual sites in
Table 9.3. Plot the resulting score distributions and calculate the mean score
corresponding to each PWM.

Exercise 14. The code at the end of this exercise will produce all sequence
strings having two differences from a specified input string.

a. Write an R function that will produce all sequences differing from a given
sequence at exactly one position.

b. Generate all sequences that are identical to the promoter −35 consensus
TTGACA or that differ from it at one or at two positions. Use all of these
to create a PWM for the −35 sequence.

c. Use the PWM from part b of this exercise to identify the −35 sequences
in promoters for caiT, damP2, dnaQP2, gapB, melA, and nrd.

Code:

neighbor2<-function(x){

#function to make all 2-neighbors

#x is the input string

out.file<-x #holds result

#First change: 1-neighborhood specification

for(j in 1:6){

for(k in 1:4){

y<-x

262 9 Signals in DNA

if(k!=x[j]){

y[j]<-k

#Second change: becomes 2-neighborhood specification

for(m in 1:6){

if(m!=j){

for(n in 1:4){

z<-y

if(n!=x[m]){

z[m]<-n

out.file<-rbind(out.file,z)

}}}}

}}}

out.file<-out.file[2:length(out.file[,1]),]

return(out.file)

#contains sequence variants with two changes

}

Exercise 15. A combinatorial approach to the previous problem is possible.
Show that there are 16 five-letter words in the one-mismatch neighborhood of
GCATC (including GCATC itself). How many of these words begin with G? How
many begin with a letter other than G? Use this information to produce the
first column of a PWM.

Exercise 16. Indicate how PWMs may be used to define neighborhood se-
quences (Section 7.4.1) to be used for identifying approximate “hits” in the
rapid search method described in Section 7.4.1. Produce the PWM corre-
sponding to the word GCATC with a neighborhood size of one mismatch (Ex-
ercise 15), and state the threshold score T above which a hit (within one
mismatch) to GCATC will be declared.

10

Similarity, Distance, and Clustering

10.1 The Biological Problem

In this chapter, we explore quantitative approaches to clustering, the process
of identifying groups of like objects. This grouping is based upon similarities or
differences as measured by the characters that the objects possess. Clustering
is closely related to the process of classification, which is assigning objects
into predetermined categories. This assignment to a category is also based
upon the particular states of the characters associated with that object. We
discussed classification in the last chapter and will say a little more at the end
of this chapter. For more extensive discussions of clustering and classification,
see Dunn and Everitt (1982), Everitt and Dunn (2001), and Johnson and
Wichern (2002).

Clustering and classification have a long history in the biological sciences.
About 1.7 million biological species have been described, and tens of mil-
lions of species are thought to exist. Nevertheless, biological diversity becomes
comprehensible because organisms can be classified hierarchically into groups.
This exercise was actively pursued during the eighteenth century by Carolus
Linnaeus, who is well-known for his system of biological nomenclature. By
hierarchical classification, we mean that groups of similar organisms (such a
group being called a taxon—plural: taxa) are subsets of larger groupings.
For example, mammals are a subset of tetrapods (amphibians, reptiles, mam-
mals, and other organisms having four appendages), tetrapods are a subset of
vertebrates (animals with backbones), and vertebrates are a subset of deutero-
stomes (animals whose mouth is formed second during the gastrulation stage
of embryonic development). Classification of organisms is still practiced today
by biologists involved in systematics and by paleontologists. For example, in
classifying dromaeosaurs (bipedal dinosaurs such as Velociraptor), more than
a hundred skeletal characters (e.g., relative sizes of premaxillary teeth, fusion
of tarsal bones) may be employed.

Clustering and classification are equally important for genomic analysis.
For example, spotted microarray or oligonucleotide array technologies are used

264 10 Similarity, Distance, and Clustering

to analyze gene expression as measured by mRNA abundances in cells. In this
case, the objects being clustered usually are genes, and the characters are
relative mRNA abundances measured under particular conditions. In partic-
ular, animal cells in tissue culture might be deprived of serum and then, after
serum is added back, the levels of mRNA species (relative to levels in cells
not deprived of serum) are measured at different time points. Or, the objects
might be genes in human cells, and the characters might be relative mRNA
expression levels in normal cells, cancer cells, or both cell types treated with
an antitumor agent. The purpose of clustering in this case is to identify and
group together (cluster) genes having similar expression patterns. Similar ex-
pression patterns may indicate that the genes participate in similar biological
processes or that they respond to similar biological controls.

Data in the biological world are commonly multivariate. This means that
biological objects and phenomena are associated with a number of variables,
each of which contributes to the observed phenomenon. In both cases de-
scribed above, the data consist of a matrix of m rows of objects (convention-
ally called operational taxonomic units, or OTUs, in evolutionary studies)
and p columns of characters describing those objects. The distinctions between
different objects or operational taxonomic units are based upon the states of
their differing characters. These characters are properties that can take on
different values and can differ among OTUs (for example, fused metatarsals or
relative mRNA abundance 30 minutes after addition of serum). There may be
on the order of 104 objects (genes), each described by states of 10–100 char-
acters. The list of states for each character that describes an object might
be thought of as a vector, and thus clustering and classification may require
descriptions using high-dimensional vector spaces. Such complex multivariate
data require appropriate quantitative approaches.

As an aside, note that clustering and classification are important in fields
other than biology. For example, businesses as represented by their stocks
may be classified into different “taxa,” such as “small cap. value” or “large
cap. growth,” based upon their asset base, business model, and other factors.
For financial lending, criteria (characters) pertaining to prospective borrowers
(e.g., employment, income level, credit history) are employed to generate a
“credit score,” which determines the class into which the prospective borrower
will be classified (credit-worthy or not credit-worthy).

10.2 Characters

Before we discuss measures of similarity or difference and clustering, we need
to examine different types of characters.

1. Qualitative or categorical characters differ in type. For example, the
coat color of mice might be either black (2), brown (1), or white (0).
As a further example, at any particular position in a DNA sequence,

10.2 Characters 265

the state at that position could be A, C, G, or T (coded as 1, 2, 3, or
4, respectively). Even though these states may be coded numerically, no
arithmetic operations (such as multiplication or division) can be applied
to them.

2. Quantitative characters are measured on a numerical scale, and these
may take on either discrete values or continuous values. For example,
the number of hydrogen bond donor or acceptor positions in the major
groove at any position in the DNA will be an integer (discrete). Among
fossil dinosaurs, the number of caudal (tail) vertebrae in a dromaeosaur
skeleton will be an integer (discrete), whereas the length of the tail in
centimeters will be drawn from a continuous distribution.

3. Dichotomous characters may take one of two possible values or states.
For example, if the character is the presence or absence of a Y chromosome
in human cells (qualitative or categorical), then only two possible values
are possible (counting multiple copies of Y in XYY individuals as the
“presence of Y”). Similarly, the character state at any position in a DNA
sequence is either a purine or a pyrimidine. It is possible to convert other
types of quantitative characters into dichotomous ones. For example, if
we were studying arthropods (insects, spiders, crustaceans, millipedes),
we could convert leg numbers into two character states: state 0 (number
of legs not equal to 6) and state 1 (number of legs equal to 6). These states
could be used to distinguish insects from the other arthropod classes.

When dealing with biological strings I and J , the character states will corre-
spond to the identities of the letters at each position in each string, and I and
J will be said to be similar, with similarity coefficient sIJ determined by the
number of character states that match. We may consider strings representing
nucleic acid or protein sequences. An example is shown in Table 10.1. This
shows alignments of portions of primate cytochrome oxidase subunit II DNA
sequences for different pairs of primates. A * indicates positions where the
state in the lower member of the pair is identical to the corresponding state
in the string at the top. Positions where the bottom string differs from the top
one are indicated by listing the different states at the appropriate positions. In
this figure, the number of differences and the fractional number of differences
D are listed below each pairwise comparison. The edit distance, or Leven-
shtein distance, is the minimum number of indels or substitutions required
to transform one string into another. The number of differences listed below
each pair corresponds to the edit distance. Obviously, these strings (portions
of corresponding genes) are similar: How should we describe the similarity?
This depends upon the purpose, which is often driven by the biological appli-
cation.

The amino acid sequences corresponding to the gene regions listed in Ta-
ble 10.1 are shown in Table 10.2. Note how the amino acid representation
differs from the representation of the sequences as DNA. First, the C → T

transition distinguishing Hy from Pa, Go, and Ho at position 6 (Table 10.1)

266 10 Similarity, Distance, and Clustering

Table 10.1. Comparisons between a selected region of cytochrome oxidase sub-
unit II coding sequences (bp 121–180) for different pairs of primates. Hy: Hylobates

(gibbon); Pa: Pan (chimpanzee); Go: Gorilla; Ho: Homo; Po: Pongo (orangutan).

Hy GCCCTCTTCCTAACACTCACAACAAAACTAACCAACACTAACATTACGGATGCCCAAGAA

Pa GCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAGTATTTCAGACGCCCAGGAA

Go GCCCTTTTCCTAACACTCACAACAAAGCTAACTAGCACCAACATCTCAGACGCCCAAGAA

Ho GCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAACATCTCAGACGCTCAGGAA

Po GCCCTTTTCCTAACACTCACAACGAAACTCACCAACACTAACATCTCAGATGCCCAAGAG

Hy GCCCTCTTCCTAACACTCACAACAAAACTAACCAACACTAACATTACGGATGCCCAAGAA

Pa *****T**************************T**T****GT***T*A**C*****G***

(9 differences; fractional difference = 0.150)

Hy GCCCTCTTCCTAACACTCACAACAAAACTAACCAACACTAACATTACGGATGCCCAAGAA

Go *****T********************G*****T*G***C*****CT*A**C*********

(9 differences; fractional difference = 0.150)

Hy GCCCTCTTCCTAACACTCACAACAAAACTAACCAACACTAACATTACGGATGCCCAAGAA

Ho *****T**************************T**T********CT*A**C**T**G***

(9 differences; fractional difference = 0.150)

Pa GCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAGTATTTCAGACGCCCAGGAA

Go **************************G*******GC**C*AC**C***********A***

(8 differences; fractional difference = 0.133)

Pa GCCCTTTTCCTAACACTCACAACAAAACTAACTAATACTAGTATTTCAGACGCCCAGGAA

Ho **AC**C********T******

(4 differences; fractional difference = 0.067)

Go GCCCTTTTCCTAACACTCACAACAAAGCTAACTAGCACCAACATCTCAGACGCCCAAGAA

Ho **************************A*******AT**T**************T**G***

(6 differences; fractional difference = 0.100)

makes no difference in the amino acid sequence because of degeneracy of the
genetic code (see Chapter 1). Second, the percentage differences between the
different pairs is not the same at the amino acid sequence level as at the
DNA sequence level. In particular, the fractional difference between Hy and
Ho based on these 20 amino acid residues is 0.05, while the difference corre-
sponding to 60 nucleotide residues is 0.15. This is because the gene is under
selection (i.e., selection tends to conserve the sequence of amino acids), and
synonymous changes—those codon sequence changes that do not change the
specified amino acid—are not visible in the amino acid sequence.

When dealing with protein sequences, we might elect to count not amino
acid differences but rather the minimum number of base changes needed to

10.2 Characters 267

Table 10.2. Amino acid sequences from portions of cytochrome oxidase subunit II
from selected primates indicated in Table 10.1.

Hy ALFLTLTTKLTNTNITDAQE

Pa ALFLTLTTKLTNTSISDAQE

Go ALFLTLTTKLTSTNISDAQE

Ho ALFLTLTTKLTNTNISDAQE

Po ALFLTLTTKLTNTSISDAQE

Pairwise alignments:

Hy ALFLTLTTKLTNTNITDAQE Pa ALFLTLTTKLTNTSISDAQE

Pa *************S*S**** Go ***********S*N******

(2 differences = 0.10) (2 differences = 0.10)

Hy ALFLTLTTKLTNTNITDAQE Pa ALFLTLTTKLTNTSISDAQE

Go ***********S***S**** Ho *************N******

(2 differences = 0.10) (1 differences = 0.05)

Hy ALFLTLTTKLTNTNITDAQE Go ALFLTLTTKLTSTNISDAQE

Ho ***************S**** Ho ***********N********

(1 differences = 0.05) (1 differences = 0.05)

convert one residue to another. This might correspond to a measure of evo-
lutionary distance between two sequences. But this might not reveal the true
differences. Conversion of Asn to Ser (residue 14 in the Hy/Pa comparison
in Table 10.2) could have been accomplished by one change: AAC → AGC. In
actuality, there were two changes: AAC → AGT (Table 10.1).

Finally, note that what may be relevant biochemically are the chemical
properties of the residues. There are only two types of differences in the amino
acid sequence shown in Table 10.2: Asn replaces Ser (or vice versa), and
Ser replaces Thr. Asn, Ser, and Thr are all uncharged polar amino acids.
These changes are expected to make little difference in the physicochemical
properties of the respective proteins. Despite the differences at the nucleic
acid sequence level and at the amino acid sequence level, each of these protein
regions has an identical string of physicochemical properties,

nnnnpnpp+nppppnp−np−
where n = nonpolar, p = polar, + = positively charged, and − = negatively
charged amino acid residues.

The obvious conclusion is that there are choices to be made for characters
used to describe objects, and these choices will be dictated by the purpose
for which clustering and classification are undertaken. For example, protein
homologs that diverged from a common ancestor at a very remote time may
be hard to recognize based upon DNA sequence, easier to recognize based

268 10 Similarity, Distance, and Clustering

upon protein sequence, and easier still to recognize based on protein structure
(determined by physical properties of constituent amino acids).

10.3 Similarity and Distance

Similarity and distance are measures of how closely- or distantly-related ob-
jects are based upon a collection of characters that describe those objects.
To illustrate these concepts, we consider an example with which we are all
familiar: relationships among some common animals. Each animal type is an
OTU. Consider the set of OTUs shown below. They have been scored for
dichotomous characters (1 = present, 0 = absent).

Characters
OTU Hair Lungs Egg-laying Milk
Dog 1 1 0 1
Turtle 0 1 1 0
Canary 0 1 1 0
Goldfish 0 0 1 0

One measure of similarity between OTUs i and j employs the numbers of
matches and mismatches between their character states. In this case, there
are four characters, and the states for each character may be 0 or 1. The
matches and mismatches are conveniently represented in a table:

OTU j
1 0

OTU i 1 a b
0 c d

In this table,

a = the number of characters for which OTUs i and j are both 1,
b = the number of characters for which OTU i is 1 and OTU j is 0,
c = the number of characters for which OTU i is 0 and OTU j is 1,
d = the number of characters for which OTUs i and j are both 0.

Note that the number of characters equals a+b+c+d. The simple matching
coefficient is defined as

sij = (a + d)/(a + b + c + d).

For the particular comparison of the canary and goldfish, the table becomes

canary
1 0

goldfish 1 1 0
0 1 2

10.3 Similarity and Distance 269

and sij = (1 + 2)/4 = 0.75. All of the sij gathered together in a matrix
constitute a similarity matrix. Such a matrix is m × m (where m is the
number of OTUs) and symmetric.

Sometimes negative matches convey no additional information about rela-
tionships. For instance, including feathers as a character would cause the value
of d for pairwise comparisons among dogs, goldfish, and turtles to increase.
(Any two of the three would both score 0 relative to this character.) Does it
really make sense to include an additional character for which all OTUs score
0 if only these three animals are to be compared? For this reason, sometimes
it is preferable to define similarity in terms of Jaccard’s coefficient,

sij =
a

a + b + c
.

This similarity coefficient only “counts” characters that are present or that
differ between the two OTUs.

It is sometimes more useful to compare OTUs in terms of dissimilarities
rather than in terms of similarities. The dissimilarity dij corresponding to
Jaccard’s coefficient is

dij =
b + c

a + b + c
=

a + b + c − a

a + b + c
= 1 − sij .

10.3.1 Dissimilarities and Distances Measured on
Continuous Scales

There are desirable properties that dissimilarities dij may have, and when
they have them they are called distances or metrics. These properties are:

1. Symmetry: dij = dji for each i, j;
2. Distinguishability: dij 	= 0 if, and only if, i 	= j;
3. Triangle inequality: dij ≤ dik + dkj for each i, j, k.

An example of such a metric or distance is the familiar Euclidean dis-
tance in two dimensions. If OTU i has character values (xi1, xi2) and OTU
j has character values (xj1, xj2), then this distance is given by

dij =
√

(xi1 − xj1)2 + (xi2 − xj2)2. (10.1)

This is illustrated in Fig. 10.1A.
In general, we are concerned with many characters (possibly more than

there are letters in the Roman alphabet). Extending our earlier notation, the
values of the p characters for OTU i are denoted by xi1, xi2, . . . , xip. In this
notation, the first subscript is the OTU or object label and the second sub-
script corresponds to the particular character. We can organize the data into
a matrix with m rows of OTUs and p columns of characters. The Euclidean
distance between OTUs i and j is then defined by

270 10 Similarity, Distance, and Clustering

0 1 2

2

1

A

B

B'

0 x i1

x
i2

x j1

x j2

dij

A. B.

Fig. 10.1. Illustration of the Euclidean distance between OTU i and OTU j having
two characters (panel A) and of the city-block distance (panel B). In panel B, the
labels A, B, and B′ represent different OTUs.

dij =

√√√√ p∑
k=1

(xjk − xik)2.

An alternative to the Euclidean distance metric is the city-block metric
(sometimes called the “Manhattan” distance), which is defined as

dij =

p∑
k=1

|xik − xjk|.

This measure is analogous to the way that we would measure distances if we
were driving between points in a city laid out in blocks. (We must travel along
the city’s street grid and not the direct route “as the crow flies”.) This means
that if OTU i and OTU j are 2 units apart with respect to character 1, they
are as far apart as if they were 1 unit apart with respect to character 1 and 1
unit apart with respect to character 2 (Fig. 10.1B). If the Euclidean distance
were used in the latter case, the distance would be

√
2.

The city-block metric makes sense for some applications. Suppose that we
are comparing the following amino acid sequences:

A · · · P R H L Q L A V R N · · · A · · · P R H L Q L A V R N · · ·
B · · · P R H V L L A V R N · · · B′ · · · P R H A Q L A V R N · · ·

0 0 0 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

Below each pair is the number of mutations in the nucleic acid sequence un-
derlying A needed to produce B or B′. In the case on the left, there have been
two mutations, one at each of two different positions. In terms of mutations,
B and B′ are equally distant from A: two mutations away. In the case on
the right, there have been two successive mutations at the same position. We

10.3 Similarity and Distance 271

would not want to say that the distance between B and A is
√

2, while the
distance between B′ and A is 2.

The generalization of the distance metrics given above is the Minkowski
metric:

dij =

[
p∑

k=1

|xik − xjk|a
]1/a

.

Clearly, the city-block metric corresponds to a = 1 and the Euclidean distance
corresponds to a = 2.

10.3.2 Scaling Continuous Character Values

In many applications, such as measuring mRNA expression levels with mi-
croarrays, the character values are drawn from continuous distributions of
possible values. In addition, different characters may not have the same units.
For example, in classifying fossil hominids, we might use height (in meters),
molar surface area (mm2), and cranial volume (cm3). Clearly, trying to calcu-
late Euclidean distance when the coordinates (characters) have different units
is problematic. By scaling coordinate values, they all become dimensionless
and this problem disappears.

Let xik represent the value of character k corresponding to OTU i. The
standardized or scaled character values might be written as

x∗
ik =

xik

sk
, k = 1, 2, . . . , p,

where sk is the standard deviation of character k measured over all OTUs.
Division by sk ensures that x∗

ik is dimensionless. The other important re-
sult of this division is that it adjusts for characters or coordinates that have
much greater variation than the others. Such variation, if not compensated
for by scaling, would give those coordinates undue weight when distances are
calculated—coordinates with the broadest range would dominate the analy-
sis. For the fossil hominid example, it would be silly to have height contribute
more just because it was stated in centimeters rather than meters. The scaling
above eliminates this problem.

The scaling described above was for each column of characters. Sometimes
(for example, in microarray experiments) the set of characters for each object
are all measured on the same dimensionless scale. The characters for each gene
in a microarray experiment might correspond to a time series for which the
expression ratios as a function of time are measured. The actual amplitude of
the measurement at any time point may be less important than the pattern
of values for all points taken as a whole. In this case, the scaling should be
over all time points (characters) for each gene (object). In other words, the
scaling is applied to rows rather than columns.

272 10 Similarity, Distance, and Clustering

10.4 Clustering

There are two general approaches to clustering. Hierarchical clustering
consists of the successive joining together or splitting of individual objects
or groups of objects based upon a measure of similarity or distance between
the objects. This produces a “tree” or dendrogram in which any object is
associated with successively larger groups of objects. Groups or clusters are
arbitrarily defined based upon distance relationships to be described. This
hierarchical structure resembles the hierarchical patterns of phylogenetic re-
lationships among organisms, which are a consequence of their evolutionary
descent from shared common ancestors. The second clustering approach in-
volves optimization, in which the number of groups or clusters is prespecified.
Optimization (nonhierarchical) methods do not construct the clusters based
on pairwise differences between individual objects. Instead, mutually exclu-
sive clusters are formed, with no “subclusters.” We discuss K-means as an
example of this. Assignments of objects to one or another of the predeter-
mined groups are determined in such a way that their distances from cluster
“centers” are minimized. A method such as K-means is not used for classi-
fication of organisms because the biology and observation indicate that their
relationships are hierarchical.

10.4.1 Agglomerative Hierarchical Clustering

Agglomerative hierarchical methods sequentially merge OTUs into clusters
having larger and larger numbers of members by successively grouping those
that are least distant first. In contrast, divisive hierarchical methods sequen-
tially divide larger groups into smaller and smaller clusters with fewer mem-
bers. Here, we will discuss an agglomerative approach only. Agglomerative
hierarchical clustering starts with the m× p matrix of m OTUs measured on
p characters. This is used to calculate an m×m distance matrix using dis-
tance measures such as those described above. The distance matrix is used to
decide which of the OTUs to join first. After the first two OTUs are joined, a
new distance matrix is generated taking into account the newly formed clus-
ter, and the process is continued until all OTUs have been joined to other
OTUs or to clusters. The result is presented as a dendrogram. The process
is summarized in the following steps.

Procedures for agglomerative clustering

1. Start with m clusters, each containing one OTU, and calculate the m×m
symmetric distance matrix D1 (entries dij).

2. Determine from D1 which of the OTUs (or clusters in later iterations) are
least distant (i.e., find the i and j for which dij is a minimum, i 	= j).
Suppose these happen to be clusters (or OTUs) I and J.

10.4 Clustering 273

3. Merge I and J into cluster IJ. Form a new distance matrix D2 by deleting
rows corresponding to I and J and columns I and J, and by adding a new
row and column for distances of IJ from all remaining clusters.
(The method for calculating distances between clusters is given in (10.2).)

4. Repeat steps 2 and 3 a total of m−1 times until a single cluster is formed.
– Record which clusters are merged at each step.
– Record the distances between the clusters that are merged in that
step.

As the steps above are applied, individual OTUs merge with others to
form clusters, and it is necessary to specify what is meant by distance between
clusters. There are a number of possible criteria for merging clusters I and J.
Three clustering criteria, based upon the individual OTUs that belong to I
and J, are

Single linkage: dIJ = min{dij : i ∈ I and j ∈ J},
Complete linkage: dIJ = max{dij : i ∈ I and j ∈ J},
Group average: dIJ =

∑
i∈I

∑
j∈J dij/(NINJ),

(10.2)

where NI and NJ are the numbers of members in clusters I and J, respectively.
NINJ is the number of possible distances between each of the objects in cluster
I and the objects in cluster J. These distinctions are illustrated in Fig. 10.2.

This method is illustrated by using the primate data presented in Ta-
ble 10.1. In that table, the fraction of bases that differed between each se-
quence pair was stated. This edit distance is used to produce our distances, the
dij . The table of distances between OTUs is given below. Because dij = dji,
we need only list half of the off-diagonal entries. For the entries on the diag-
onal, dii = 0. (The distance between an OTU and itself is zero.) The matrix
below represents the initial distance matrix, D1.

D1 =

OTU Hy Pa Go Ho
Hy 0
Pa 0.150 0
Go 0.150 0.133 0
Ho 0.150 0.067 0.100 0

For illustration, we employ single-linkage clustering, for which the first
cluster is determined by min{dij}, i 	= j. Clearly, Pa (Pan troglodytes, the
chimpanzee) and Ho (H. sapiens) have the least pairwise distance: dPa,Ho =
0.067 (indicated by the box). So we merge these two OTUs to form the first
cluster (PaHo), and we record the joining of Pa and Ho at distance 0.067. We
then create a new distance or dissimilarity matrix, D2, by deleting rows and
columns corresponding to Pa and Ho and adding a new row and column for
the (PaHo) cluster.

274 10 Similarity, Distance, and Clustering

Cluster I Cluster J

dIJ

Cluster I Cluster J

dIJ

A.

B.

Cluster I Cluster J

d13

C.

1

2

3

4

5

d14

d15

d23

d24

d25

Fig. 10.2. Methods of defining the distance between clusters. Panel A illustrates
single linkage, panel B complete linkage, and panel C group average linkage.

D2 =

OTU Hy Go (PaHo)
Hy 0
Go 0.150 0

(PaHo) 0.150 0.100 0

The entries in the last row were calculated from the data in D1 as d(PaHo)W =
min{dPaW, dHoW}, where W is either Hy or Go. Thus dHy(PaHo) = min{dHyPa,
dHyHo} = 0.15, and dGo(PaHo) = min{dGoPa, dGoHo} = 0.10. The next cluster
to form is determined by the minimum entry in the distance matrix D2, and
this corresponds to forming the cluster Go(PaHo) at distance 0.10. For the
next iteration, we create distance matrix D3,

10.4 Clustering 275

D3 =
OTU Hy Go(PaHo)
Hy 0

Go(PaHo) 0.15 0

where the distance between Hy and the Go(PaHo) cluster is min{dHyPa,
dHyHo, dHyGo} (=min{0.15, 0.15, 0.15} from matrix D1). This merges the last
OTUs with the others. The dendrogram representing this clustering is shown
in Fig. 10.3.

Computational Example 10.1: Hierarchical clustering using R

This box illustrates how to perform cluster analysis using R. We use the
primate data once more. The first task is to make a file of the sequence data
shown in Table 10.1; as above, we use just the first four species. The file
primates.txt has 4 rows and 60 columns, coded as a = 1, c = 2, g = 3, t =
4. Having read in the data using

> seqs<-matrix(scan("primates.txt"),nrow=4,byrow=T)

the next task is to compute the distance matrix. In this example, the distance
between two sequences is the proportion of positions at which they differ. The
following function evaluates this distance matrix:

seqdist<-function(x,n)

{

dmat<-matrix(nrow=n,ncol=n)

for(i in 1:n){

for (j in 1:n){

dmat[i,j]<-length(x[j,][x[j,]!=x[i,]])/length(x[1,])}}

return(dmat)

}

> dapes<-seqdist(seqs,4)

> dapes

[,1] [,2] [,3] [,4]

[1,] 0.00 0.15000000 0.1500000 0.15000000

[2,] 0.15 0.00000000 0.1333333 0.06666667

[3,] 0.15 0.13333333 0.0000000 0.10000000

[4,] 0.15 0.06666667 0.1000000 0.00000000

We note that other distances may be calculated using the R function dist.
The remainder of the clustering is straightforward. For single-linkage cluster-
ing, it results in the dendrogram in Fig. 10.3.

> # make dist object from the data

> dapes1<-as.dist(dapes, diag=FALSE, upper=FALSE)

> #add species labels

> species=c("Hy","Pa","Go","Ho")

276 10 Similarity, Distance, and Clustering

> plclust(hclust(dapes1,"single"),labels=species,xlab="",

+ sub="")

It is possible to draw the dendrogram with all the leaves extending to the
same level (it has the same meaning: the distances at which OTUs join are
the relevant data). Try

> plclust(hclust(dapes1,"single"),labels=species,xlab="",

+ sub="",hang=-1)

H
y

G
o

P
a

H
o0

.0
6

0
.0

8
0

.1
0

0
.1

2
0

.1
4

H
e

ig
h

t

Fig. 10.3. Dendrogram of single-linkage clustering for primate species.

10.4.2 Interpretations and Limitations of Hierarchical Clustering

The example given above is very simple. If we were clustering a much larger
number of OTUs, the question of number of clusters will arise. Consider the
dendrogram shown in Fig. 10.4. It seems natural to think that there are three
clusters: AB, CD, and EF. This impression is based upon the long distances
separating these clusters from each other and the observation that each of
the pairs (C and D, for example) are less distant from each other than either
of them is from any other OTU. However, we should recognize that the dis-
tance criterion that we use to define the clusters will determine the number
of clusters assigned. If we set the criterion at distances between 0.4 and 0.3,
we would define two clusters. If instead we focused on distances between 0.3

10.4 Clustering 277

H
e
ig

h
t

0
.0

0

0
.1

0

0
.2

0

 0

.3
0

0
.4

0

A B

E F

C D

Fig. 10.4. Dendrogram illustrating numbers of clusters for different distance crite-
ria.

and 0.15, we would define three clusters; the number of clusters is somewhat
arbitrary.

Another issue (mentioned in the previous section) is the reliability of the
particular clustering that has been produced by the procedure. The hierarchi-
cal method has a number of limitations:

1. The choice of distance measure is important. Methods for incorporating an
evolutionary model into the comparison of DNA sequences are discussed
in Chapter 12.

2. There is no provision for reassigning objects that have been incorrectly
grouped. The method proceeds in a bottom-up fashion and, once joined
to a cluster, an OTU remains at that position in the hierarchy.

3. Errors are not handled explicitly in the procedure.
4. No single method of calculating intercluster distances is universally the

best. We need to test the results by using different definitions of inter-
cluster distance. In some “head-to-head” tests, single-linkage clustering is
reportedly least successful and group average clustering tends to do fairly
well. For a review of the problem, see Everitt and Dunn (2001).

5. Single-linkage clustering may tend to join clusters whose centroids are
fairly distant if these clusters are joined by a chain of OTUs.

It is important to know how robust the hierarchical method is in any
particular application. (A statistical method is called robust if it works well for

278 10 Similarity, Distance, and Clustering

a variety of input data and initial parameters.) Reliable data analysis requires
some knowledge of the magnitude experimental error. Operationally, we can
test the topology of the clusters obtained for any particular calculation by
repeating the clustering several times after adding appropriate random errors
to coordinates of all OTUs. If the same groupings of OTUs into clusters is
achieved consistently after repeatedly adding different sets of random errors,
then the solution to the clustering problem is said to be stable. Another test of
the method with m OTUs is to repeat the analysis m times for m− 1 OTUs,
leaving out a different OTU each time. (This is sometimes called a “jackknife”
procedure since we are “flipping out” one of the OTUs like a jackknife blade.)
If the clusters of other OTUs change dramatically with the omission of one
OTU, then we might doubt the reliability of clustering based on that data
set.

The dendrograms resemble phylogenetic trees, which are presented in the
next chapter. A phylogenetic tree is a hypothesis about the genealogical rela-
tionships between organisms based upon shared common ancestors. Dendro-
grams represent the joining of OTUs or clusters based upon pairwise distances
(defined as edit distances in our example) using a stated clustering method.
Except for stating that changes at position i are independent from changes at
position j in the DNA sequence, there was no biology built into the example
above. For phylogenetic trees, it is assumed that each of the two bifurcating
branches represents a trajectory of independent evolution. Accordingly, dis-
tances between two OTUs are apportioned between the two branches (i.e., the
sum of the two branch lengths is proportional to the distance between OTUs).
The branch lengths may be proportional to the number of mutational events
from any node. In phylogenetic trees, internal nodes will correspond to an-
cestors having a set of hypothetical character states. As we will see later,
there are assumptions about nucleotide substitutions and reversions and the
rates at which these occur along each branch. Building phylogenetic trees is
procedurally similar to clustering but with biological models included.

10.5 K-means

We use K-means (Hartigan and Wong, 1979) as an example of an optimiza-
tion method. As we will see, many iterations of the procedure may be required,
so a statistical software package is necessary for anything except “toy” prob-
lems. K-means is a non-hierarchical clustering method that involves prior
specification of the number of clusters, k. It does not require prior computa-
tion of a pairwise distance matrix, because the relevant distance is the dis-
tance of each OTU from the cluster center, or centroid. The rationale is that
OTUs will be allocated into the k clusters such that the within-cluster sums
of squares of distances from cluster centroids (within-ss), summed over all
clusters, will be minimized.

10.5 K-means 279

within-ss, cluster j =
∑

i d2
ij , i = 1, . . . , mj ,

total within-ss S =
∑

j

∑
i d2

ij , i = 1, . . . , mj ; j = 1, . . . , k.

This is illustrated in Fig. 10.5 for two alternative values of k: k = 2 and
k = 3. Increasing k from 2 to 3 splits the larger cluster at the bottom into
two clusters, leaving the one at the top unchanged. The K-means calculation
involves trying different centroid positions and iteratively testing each OTU
for its distance to one of the centroids. Each OTU is assigned membership
to the cluster whose centroid is closest. Once the cluster memberships are
assigned after each iteration, new centroid positions are calculated, and the
process is repeated.

Fig. 10.5. K-means clustering of 12 objects (filled circles) having two characters.
Clusters for k = 2 (solid lines) and k = 3 (dashed lines) are indicated. Cluster
centers for k = 2 or k = 3 are denoted by open circles or squares, respectively.

It is prudent to plot the data for a visual “reality check.” This is easy if
there are just two dimensions, but if there are many dimensions, we will need
to look at projections of the data on planes defined by coordinate pairs. It
is also useful to repeat the process with different partitions or initial group
centers. This is because some choices of initial partitioning may be bad, and
results may be affected by outliers (OTUs whose coordinates are very different
from those of other OTUs). We should also repeat the process for different val-

280 10 Similarity, Distance, and Clustering

ues of k, unless we have prior information indicating the appropriate number
of clusters.

Procedures for K-means clustering

1. Partition the OTUs into k clusters. (This can be done by random parti-
tioning or by arbitrarily clustering around two or more OTUs.)

2. Calculate the centroids of the clusters.
3. Assign or reassign each OTU to that cluster whose centroid is the closest.

(Distance is calculated as Euclidean distance.)
4. Recalculate the centroids of the new clusters formed after the gain or loss

of OTUs to or from the previous clusters.
5. Repeat steps 3 and 4 for a predetermined number of iterations or until

membership of the groups no longer changes.

As a first example of how this works, we will use a “toy” problem that
can be calculated by hand. We imagine that we have five OTUs, A, B, . . . ,
E, each described by two characters, x1 and x2, and we want to place the five
objects into two clusters. The data are:

OTU x1 x2

A 1 1
B 3 1
C 4 8
D 8 10
E 9 6

The data are plotted in Fig. 10.6. We can already see by inspection what the
answer should be (A and B form one cluster, while C, D, and E form another),
but we want to get a feel for how the computation actually works.

Computational Example 10.2: K-means clustering by hand

Step 1. Start by making an arbitrary partition of OTUs into clusters: OTUs
with x1 ≤ 6 will be taken as Cluster I and the others will be taken as Cluster
II. Thus we assign A, B, and C to Cluster I, and D and E to Cluster II.
Step 2. Calculate the centroids for the first definition of clusters. For Cluster
I (defined as A, B, C), this value is x1 = 2.67, x2 = 3.33, while for Cluster II
(defined as D, E), the centroid is x1 = 8.50, x2 = 8.00.
Step 3. Now calculate the Euclidean distance between each OTU and each of
the two cluster centroids:

d(A, I) = 2.87 d(A, II) = 10.26
d(B, I) = 2.35 d(B, II) = 8.90
d(C, I) = 4.86 d(C, II) = 4.50

10.5 K-means 281

0 2 4 6 8 10 12

0
2

4
6

8
1

0
1

2

A B

C

D

E

x
1

x
2

Fig. 10.6. Plot of data and initial partitioning for a simple hand-calculated example
of K-means clustering. For details, see the text.

d(D, I) = 8.54 d(D, II) = 2.06
d(E, I) = 6.87 d(E, II) = 2.06

Step 4. A and B are closer to the centroid of Cluster I than they are to the
centroid of Cluster II, and D and E are closer to the centroid of Cluster II
than they are to the centroid of Cluster I. However, C is closer to the centroid
of Cluster II. Therefore, reassign C to Cluster II. Other OTUs retain their
previous assignments.
Step 5. Calculate centroids for Cluster I′ composed of A and B and Cluster
II′ composed of C, D, and E. For Cluster I′, this new centroid is x1 = 2.00,
x2 = 1.00, while for Cluster II′ the new centroid is x1 = 7.00, x2 = 8.00.

d(A, I′) = 1.00
d(B, I′) = 1.00

d(A, II′) = 9.22
d(B, II′) = 8.06

d(C, I′) = 7.28
d(D, I′) = 10.82
d(E, I′) = 8.60

d(C, II′) = 3.00
d(D, II′) = 2.24
d(E, II′) = 2.83

Since A and B are closer to the centroid of Cluster I′ than to that of
Cluster II′, no reassignment of cluster membership is needed. Similarly, since

282 10 Similarity, Distance, and Clustering

C, D, and E are all closer to the centroid of Cluster II′ than to the centroid of
Cluster I′, no reassignment of cluster membership is needed for them either.
The assignments shown in the boxes above are the final result, which agrees
with our “eyeball” estimate.

As a second example, consider the following living and fossil hominoid
species, each described by two characters: brain mass and body mass. (H. =
Homo, A. = Australopithecus, early and late H. erectus designated by E and
L.)

RAW DATA
body mass brain mass

(kg) (g)
H. sapiens 53 1355
H. erectusL 57 1016
H. erectusE 55 804
H. ergaster 58 854
H. habilis 42 597
A. robustus 36 502
A. boisei 44 488
A. africanus 36 457
A. afarensis 37 384
P. troglodytes 45 395
G. gorilla 105 505

SCALED DATA
body mass brain mass

H. sapiens 2.708 4.426
H. erectusL 2.913 3.318
H. erectusE 2.811 2.626
H. ergaster 2.964 2.789
H. habilis 2.147 1.950
A. robustus 1.840 1.640
A. boisei 2.249 1.594
A. africanus 1.840 1.493
A. afarensis 1.891 1.254
P. troglodytes 2.300 1.290
G. gorilla 5.366 1.649

The first step is to scale the data by dividing each value in each column of
the raw data by the standard deviation of the entries in that column. Notice
how scaling causes the ranges of the data in the two columns to become more
nearly the same. The effect of this is that both of the variables, brain mass and
body mass, will be weighted approximately equally in the clustering process.
Because K-means clustering in this example is far beyond what is reasonable
to attempt with a hand calculator or spreadsheet application, we provide the
R commands to perform it in Computational Example 10.3.

Computational Example 10.3: K-means clustering using R

This box illustrates the use of R for K-means clustering. We use the primate
data from Section 10.5. First, we import the data from a file and scale them:

> raw.dat<-read.table("Raw_Data")

> scaled.dat<-raw.dat

#Divide column entries by respective column SDs for scaling

> scaled.dat[,1]<-raw.dat[,1]/sqrt(var(raw.dat[,1]))

> scaled.dat[,2]<-raw.dat[,2]/sqrt(var(raw.dat[,2]))

10.5 K-means 283

Next, we perform K-means clustering, with k = 2. We could either specify the
number of clusters or provide a 2×2 matrix identifying initial cluster centers.
We use the latter approach, dividing the data into two groups by a horizontal
line h midway between the extreme values of scaled brain mass. We assign the
average of all values of scaled body mass (scaled.dat[,1]) to the x values
for the initial two cluster centers. The y value for one of the initial cluster
centers is assigned the mean value of scaled brain mass (scaled.dat[,2])
less than h. The y value for the other initial cluster center is taken as the
average value of scaled brain mass less greater than h.

> body<-scaled.dat[,1]

> brain<-scaled.dat[,2]

> h<-mean(c(4.425578,1.254186)) #Average of extreme values

> h

[1] 2.839882 #Horizontal line h(x)=2.839882

> x1<-x2<-mean(body) #x values for both initial clusters

> y1<-mean(brain[brain<h]) #y value for initial cluster 1

> y2<-mean(brain[brain>h]) #y value for initial cluster 2

> in.cent<-cbind(c(x1,x2),c(y1,y2))

#Matrix of coordinates for initial centers

> in.cent

[,1] [,2]

[1,] 2.638996 1.809424

[2,] 2.638996 3.871972

We apply K-means with k = 2 using in.cent, the matrix of coordinates for
initial cluster centers:

> k.dat2<-kmeans(scaled.dat,in.cent,iter.max=10)

> k.dat2

#Cluster to which OTUs 1:11 each belongs

$cluster

[1] 2 2 2 2 1 1 1 1 1 1 2

$centers #Coordinates of final cluster centers

[,1] [,2]

1 2.044293 1.536704

2 3.352640 2.961708

$withinss

[1] 0.5517516 9.2416832

$size #Number of members in each cluster

[1] 6 5

With k = 2, we find two clusters, one of which includes the first four species
of Homo together with Gorilla. Notice how the coordinates of the final cluster
centers have changed compared to the initial values. Note also that Gorilla
has a scaled brain mass of 1.649, which means that it originally belonged to

284 10 Similarity, Distance, and Clustering

cluster 1. After K-means, it has moved up to cluster 2. We try again with
k = 3, this time just specifying the number of clusters rather than the initial
cluster centers:

> k.dat3<-kmeans(scaled.dat,3,iter.max=10)

> k.dat3

$cluster

[1] 3 3 3 3 2 2 2 2 2 2 1

$centers

[,1] [,2]

1 5.366268 1.649385

2 2.044293 1.536704

3 2.849233 3.289788

$withinss

[1] 0.0000000 0.5517516 2.0205711

$size

[1] 1 6 4

This is much better, based on reduction of within-cluster sums of squares. A
plot of the data is shown in Fig. 10.7.

H

H

H
H

H

body mass

A AA
A

G

P

0 1 2 3 4 5 6

0
1

2
3

4
5

6

b
ra

in
 m

a
s
s

Fig. 10.7. K-means clustering of hominoids based upon scaled brain mass and

body mass. The genera Homo, Australopithecus, Pan, and Gorilla are indicated by

H, A, P, and G, respectively. The three clusters for k = 3 are enclosed by ellipses or

circles, and cluster centers for multimember clusters are indicated by filled circles.

10.5 K-means 285

Gorilla now forms a cluster by itself. In the other two clusters, all members
of genus Homo are indicated by H. We can see that all but one of these form
a separate cluster. On the basis of these characters, H. habilis is clustered
with Australopithecus species. (Analysis using many characters has led some
anthropologists to reclassify H. habilis as A. habilis.)

How many clusters should there be? This number is, to some extent, ar-
bitrary. If we increase k until it equals the number of OTUs, it is possible to
make the within-ss zero! But then we are back where we started: a set of m
unclustered OTUs. One way to decide the appropriate number of clusters is
to repeat the process for several different values of k and plot the sum S of
within-ss values (for all clusters) as a function of k. As k increases, we will
observe that S decreases. It is probably not prudent to increase k beyond the
point at which S is showing large decreases. This is illustrated in Fig. 10.8 for
the scaled hominoid data. Note that increasing k from 2 to 3 produced a large
drop in S, while going from k = 3 to k = 4 produced a much more modest
decrease by splitting off a single-member group. We conclude that k = 3 is an
appropriate choice, consistent with the appearance of the data in Fig. 10.7.

2 3 4 5 6

2
4

6
8

1
0

W
it
h

in
 s

u
m

s
 o

f
s
q

u
a

re
s

Number of clusters, k

Fig. 10.8. Response of within-cluster sums of squares (summed over all clusters)
to increasing values of k. Data are from clustering of hominoids (results for k = 3
shown in Fig. 10.7). Substantial reduction in within-ss occurs when k is increased
from 2 to 3. Further reductions in within-ss result for values of k larger than 3, but
improvements are comparatively small, and additional single-member clusters are
produced.

286 10 Similarity, Distance, and Clustering

10.6 Classification

We briefly touch upon the classification process, leaving the details to more
advanced studies. We applied the classification process to biological signals
in the last chapter. In that case, we determined a distribution of scores for
bona fide signals and another distribution of scores for the “background”
sequence. Classification as signal or nonsignal was based on how the score of
any sequence compared with a cutoff score, with scores defined in terms of
log-odds ratios. Assignment of a signal to one or the other class was made,
with the sensitivity and specificity of the assignment determined by the score
distributions.

In the context of this chapter, we imagine that we are provided with an
OTU, X , not employed in creating the clusters, and we ask to which of the
clusters that have already been constructed X belongs. For K-means, this is
quite straightforward: we only need to calculate the Euclidean distance from
X to the centroids of each of the k clusters and then assign X to the closest
one. For hierarchical clustering, it is common to add X to all other OTUs and
repeat the clustering. If X falls within one of the previously defined clusters,
and branches of all other defined clusters in the dendrogram are connected
as before, then its membership in a previously defined cluster is established.
However, it may be that the addition of X changes the branching order of
OTUs from two or more clusters (as might happen if they were all very similar
to start with). This would suggest that the original dendrogram was not very
robust. (The application uses the same principle as the jackknife procedure
mentioned above.)

References

Dunn G, Everitt BS (1982) Introduction to Mathematical Taxonomy. Cam-
bridge: Cambridge University Press.

Everitt BS, Dunn G (2001) Applied Multivariate Data Analysis (2nd edition).
Oxford: Oxford University Press.

Hartigan J, Wong M (1979) A K-means clustering algorithm. Applied Statis-
tics, 28:100–108.

Johnson RA, Wichern DW (2002) Applied Multivariate Statistical Analysis.
Englewood Cliffs, NJ: Prentice-Hall.

Exercises

Exercise 1. Present an expression for dissimilarity dij and its relationship to
sij when sij is the simple matching coefficient.

Exercises 287

Exercise 2. Show whether or not distances computed using zik = (xik −
µk)/sk, where µk is the mean of character k, will differ from distances com-
puted from x∗

ik (Section 10.3.2).

Exercise 3. Plot the scaled data for H. habilis, A. robustus, A. boisei, A.
africanus, A. afarensis, and P. troglodytes presented in Section 10.5 (the lower
left-hand cluster in Fig. 10.7). Use a ruler to measure distances, and sketch
what you think the hierarchical relationships would be from hierarchical clus-
tering. [Hint: You can check your answer from the results of Exercise 6 below.]

Exercise 4. This exercise explores the consequences of having different char-
acters highly correlated. Suppose that five OTUs A, B, . . . , E are being clus-
tered based upon five characters x1, x2, x3, x4, and x5. The matrix of charac-
ters, X , is

x1 x2 x3 x4 x5

A 1 1 2 1 3
B 2 3 2 3 6
C 6 8 4 7 2
D 8 9 4 3 1
E 6 6 3 9 9

a. Perform hierarchical clustering of these five OTUs, and note the topology
of the dendrogram.

b. Determine the correlation coefficients for each pair of variables, and rep-
resent values for highly correlated characters by a single column vector
(combining values for each OTU using a statistic of your choice).

c. Now use the composite character defined in part b and the remaining
columns from matrix X to form a new matrix having a lesser number of
characters, and again perform hierarchical clustering. Compare the topol-
ogy of the dendrogram to the one observed in part a.

d. Criticize or defend the approach used in part c.

Exercise 5. With the aid of R, perform hierarchical clustering for the follow-
ing OTUs measured on characters x and y. For dist use method="euclidean"
and for hclust use method="complete". Note with which OTUs C clusters.

x y
A 1.0 9.0
B 2.0 8.0
C 4.0 6.0
D 5.5 4.5
E 6.5 3.5
F 8.0 2.0

Now repeat the process for all OTUs except D, and observe the cluster
membership of C. Perform a scatter plot for OTUs A,. . . ,F using the plot and

288 10 Similarity, Distance, and Clustering

points functions, and explain why C changed its group membership when D
was omitted.

Note: OTUs arranged like this can create other problems when single-
linkage clustering is used: see Section 10.4.2 and Everitt and Dunn (2001) for
a discussion of chaining.

Exercise 6. Use K-means to cluster the data in Exercise 5, k = 2, first
including all data and then including all OTUs except for D.

a. Does the cluster membership of C change when D is excluded?
b. Try to force OTU C into a cluster with D, E, and F by setting the initial

cluster centers at the coordinates of A and D.

Exercise 7. To test the effects of different measures of intercluster distance,
perform hierarchical clustering on the following OTUs:

x y
A 1.0 1.5
B 1.0 1.0
C 3.0 1.0
D 5.5 1.0
E 7.0 1.0
F 7.0 2.0
G 7.0 5.0
H 6.0 6.0
I 8.0 6.0

a. First perform hierarchical clustering using single-linkage clustering. How
many clusters having three closely related members are there? Which two
clusters are more closely related?

b. Repeat the hierarchical clustering, except this time use complete linkage
clustering. How many three-member clusters are there? Which two of these
three-member clusters are more closely related?

c. Plot the data points, and explain the reasons why a and b above gave
different results. Also, explain with a diagram why the G, H, I clusters
differ for single-linkage and complete-linkage clustering.

Exercise 8. Perform hierarchical clustering using all of the data at the top of
Table 10.1 (see Computational Example 10.1). For characters, first produce
a string 60 characters long that represents the consensus sequence for the
regions shown. Then, for each OTU, score each position that agrees with this
consensus 1 and each position that disagrees 0. This character table should
be used as input to the R function dist using manhattan as the method.
The output of dist should be used as the input of hclust, and the output
of hclust should be used as input for plclust to produce the dendrogram.
Does the addition of Pongo change the relationships among the other OTUs
(Fig. 10.5)?

Exercises 289

Exercise 9. Perform hierarchical clustering using the scaled data for H. ha-
bilis, A. robustus, A. boisei, A. africanus, A. afarensis, and P. troglodytes
presented in Section 10.5. Use the euclidean distance metric and complete
linkage clustering. Repeat the clustering six times more, leaving out a differ-
ent OTU each time. Are the relationships implied by clustering using all of
the data robust?

Exercise 10. As implemented by R, K-means with centers = number of
clusters randomly selects rows of the data matrix as initial cluster centers. Test
the robustness of K-means in R for the scaled hominoid data in Section 10.5
by repeatedly performing the clustering while specifying 2 for centers. What
is there about this data set that produces two different pairs of clusters for
k = 2? Which result is “better”? What do you conclude about the robustness
of K-means with this method of specifying initial cluster centers?

Exercise 11. Suppose that a set of OTUs measured on n characters have
been clustered by K-means into three clusters A, B, and C, with centroids
defined by {ai}, {bi}, and {ci}, respectively. Values for within-cluster sums of
squares for A, B, and C are s2

A, s2
B, and s2

C , respectively.

a. Write the statistic(s) that should be calculated for classifying OTU X into
one of the three existing clusters.

b. What statistic(s) could be used to determine whether X should be placed
separately into a cluster different from A, B, or C?

11

Measuring Expression of Genome Information

11.1 The Biological Problem

Many biological questions are framed in terms of biochemistry and genetics.
Multicellular eukaryotes have between 104 and 105 genes, many of which code
for enzymes and other proteins involved in biochemical processes and their
control. DNA in somatic cells is the same regardless of tissue type or physiolog-
ical state. (Examples of human cells that differ in DNA content are anucleate
erythrocytes and gametes lacking either X or Y chromosomes.) Even though
all genes are generally found in all cells, not all genes are expressed at any
one time, nor are all genes expressed in every cell. For example, hemoglobin is
not produced in epithelial (skin) cells, and estradiol is not produced in brain
glial cells.

To understand the functions of cells, tissues, and organs in complex or-
ganisms, it is necessary to know what genes are expressed under different
conditions. During the cell cycle (the cellular processes involved in dupli-
cation of chromosomes and cell division), particular sets of genes are turned
on or turned off in a controlled chronological sequence. As we already indi-
cated, genes may be differentially expressed (i.e., have different expression
patterns) in different tissues in the adult plant or animal. A special case of dif-
ferential expression occurs during development, when genes are turned on and
off in an exquisitely choreographed pattern during the stepwise production of
various embryonic stages. At the other end of the spectrum, gene expression
patterns in cancer cells differ from those found in normal cells. Alterations in
expression patterns of normal or cancer cells treated with a pharmaceutical
agent may be a useful guide for assessing that agent’s toxicity or efficacy prior
to initiation of clinical trials.

How can we measure gene expression? One way is simply to analyze what
proteins are present at any particular time. The collection of proteins present
in a particular cell type under a particular set of physiological conditions is
called the proteome. Presently, proteome analysis is not easy to perform in a
highly parallel fashion because of limitations in the technology for identifying

292 11 Measuring Expression of Genome Information

and quantifying each protein. Another way to analyze gene expression is by
enumerating the abundances of mRNA species in cells. The collection of RNA
species present in a cell type for a particular physiological state is called the
transcriptome. This is much easier to measure in a highly parallel, high-
throughput manner, and such measurements are widely employed in genomic,
clinical, and drug discovery settings. The basic question answered in tran-
scriptome analysis is, “Is the transcript for gene i in cell type A for condition
X more or less abundant than in cell type B for condition Y.” A and B might
be normal and cancer cells, respectively, with conditions X and Y identical. Or
A and B might both be cancer cells, with condition X representing treatment
with 5-fluorouracil and condition Y representing a control.

Transcriptome analysis is widely employed because measurements can be
made using parallel and automatable approaches. Moreover, it is well-known
that significant gene expression control is exerted at the transcriptional level
and at the level of splicing and mRNA processing. But this is not the whole
story: production of the actual gene products can also be regulated at the
translational level and at the level of protein modification and degradation.
Measuring gene expression from assays of transcript abundance is analogous
to measuring the productivity of a law office based upon the number of reams
of paper put through the office copier. There is clearly a relationship between
the numbers of wills and legal briefs produced and the number of copies made,
but it is not a perfect correlation.

Estimates of how well protein levels correlate with mRNA levels dif-
fer, partly because of differences in experimental approaches. As shown in
Fig. 11.1, there is excellent correlation (correlation coefficient r = 0.9) be-
tween protein and transcript amounts for abundant transcripts in yeast cells.
In contrast, protein levels of low-abundance transcripts do not show a high
level of correlation with mRNA levels (correlation coefficient r = 0.2; Gygi
et al., 1999). In contrast, Futcher et al. (1999) obtained r = 0.76 for log-
transformed protein and mRNA abundance data, with no significant differ-
ence in contributions of low- and high-abundance species. For 80 E. coli genes,
the comparison between mRNA and protein levels yielded r = 0.67 (Arfin et
al., 2000). A comprehensive study of the yeast proteome using sensitive anti-
body detection methods (Ghaemmaghami et al., 2003) reported a Spearman
rank correlation coefficient of r = 0.57 between levels of protein and their
corresponding mRNA levels. We point these facts out not as a criticism of
measuring transcript levels but only as a reminder that this is exactly what
is measured: transcript levels—not gene product levels.

11.2 How Are Transcript Levels Measured?

Gene transcript analysis can be performed by using open architecture or closed
architecture approaches. Open architecture methods are independent of prior
experimental data (e.g., genome sequence or EST data; see Section 1.5 for

11.2 How Are Transcript Levels Measured? 293

0

250

500

750

1000

0 50 100 150 200 250 300

0

25

50

75

100

0.0 2.5 5.0 7.5 10.0

mRNA abundance (copies/cell)

P
ro

te
in

 a
b
u
n
d
a
n
c
e
 (

c
o
p
ie

s
/c

e
ll

x
 1

0

)

3

Fig. 11.1. Relationship between protein and mRNA abundances. The amounts of
protein per cell for abundant transcripts (more than 75 copies per cell) show a high
degree of correlation with the amount of corresponding mRNA. Correlation between
protein amounts and mRNA levels is much poorer for low-abundance transcripts
(inset box). Reprinted, with permission, from Gygi SP et al. (1999) Molecular and

Cellular Biology 19:1720–1730. Copyright © 1999 American Society for Microbiol-
ogy.

a definition of an EST). In contrast, closed architecture approaches focus on
a predetermined set of categorical data (e.g., annotated ESTs). SAGE and
TOGA are examples of open architecture approaches. Both apply particular
cloning and amplification procedures for sampling a portion of each mRNA
sequence. Spotted microarray and oligonucleotide chip technologies are closed
architecture systems in the sense that the probes are determined from prior
knowledge, as represented in sequence and EST databases, for example. In
the case of EST data, someone else did the cloning of the cDNA sequences.
Although we concentrate on the closed systems because they are currently
more extensively employed, we provide a brief description of SAGE and TOGA
here.

TOGA (TOtal Gene expression Analysis) (Sutcliffe et al., 2000) associates
with each detectable mRNA species a digital sequence tag, which depends
upon a particular set of octamer sequences and their distances from the 3′

end of the mRNA. The starting material is polyadenylated mRNA extracted
from any eukaryotic organism. After an initial reverse transcription to pro-
duce cDNA (including a NotI sequence in the primer supplied), digestion with
an enzyme such as MspI (recognition sequence 5′-C↓CGG-3′) produces a frag-
ment of characteristic length from the portion of each cDNA adjacent to the
3′ end of the mRNA (Fig. 11.2). These fragments are cloned and subjected

294 11 Measuring Expression of Genome Information

to further amplification steps, including two PCR reactions. The key is that
while the PCR steps employ a fixed 3′ primer, 5′ primers are chosen from one
of 256 possibilities that include the position of the MspI site and the next four
nucleotides N1N2N3N4. That means that 256 (44) independent PCR reactions
are performed. Each of these PCR reactions contains pools of product that
share the same octamer sequence tag at the 5′ end (5′-CCGGN1N2N3N4-3

′) but
differ in the distance of this tag from the 3′ end (i.e., each N1N2N3N4 probes a
different MspI site, producing a PCR product whose length differs from the
others). The products within each pool are resolved by gel electrophoresis, and
the fragment lengths and amounts within each reaction sample are measured.
There are typically 20 to 40 peaks resolved per sample, and it is this step
that yields parallel information (sizes) on the products in the product pool.
Endonucleases other than MspI are used to detect those cDNAs for which the
MspI site closest to the 3′ end is too distant for unambiguous electrophoretic
detection or size analysis. Note that this method does not produce the en-
tire sequence of the mRNA and that it uses different PCR primers to detect
products having different octamer sequence tags.

SAGE (Serial Analysis of Gene Expression) (Velculescu et al., 1995) is
a more widely used open approach. Like TOGA, it derives local sequence
information from near the 3′ end of the mRNA, but instead of using PCR
for sequence discrimination, SAGE employs DNA sequencing. With SAGE,
cDNA corresponding to a polyadenylated mRNA mixture is cleaved with a
restriction endonuclease that recognizes 4 bp (MspI, recognition sequence 5′-
C↓CGG-3′or NlaI, recognition sequence 5′-GATC↓-3′, for example). Such sites
occur, on average, once within the first 256bp of cDNA upstream of the
3′end. These enzymes are called anchoring enzymes. After purification of the

Fig. 11.2 (opposite page). Principles of TOGA. A set of polyadenylated (zig-zag
lines) transcripts are represented at the top. They contain sites for cleavage by a
tagging restriction endonuclease (or tagging enzyme: box with offset line; only the
site closest to the 3′ end is indicated). The four nucleotides N1N2N3N4 immediately to
the 3′ (right) side of the tagging enzyme site may vary from molecule to molecule.
Reverse transcription (step 1) using a primer with an added sequence to be used as
a right-end primer in a later step (grey box) yields cDNA versions of the transcripts.
These cDNAs are digested with the tagging enzyme and NotI (step 2). NotI cuts the
right-end primer sequence, but only very rarely in the interval between the tagging
enzyme site and the ends of the cDNAs corresponding to the 3′ ends of the mRNAs.
The digestion products are cloned and amplified (step 3) and then divided into
256 different aliquots, each of which is used as the substrate for a PCR reaction.
Each PCR reaction employs the same right-end primer but a distinctive left-end
primer ending in one of the 256 different nucleotide combinations represented by
N1N2N3N4. The resulting product molecules are thus distinguished by the tagging
enzyme site +N1N2N3N4 and by the distance from the tagging enzyme site to the
cDNA end corresponding to the 3′ end of the mRNA. Product sizes are determined
electrophoretically.

3. Cloning + multiple

 amplification steps

. . .

Left Primer

Right Primer

AAAA AAAC AAAG GGGG . . .

Reaction 1 Reaction 2 Reaction 3 Reaction 256

4. Divide into 256 aliquots.

 Perform 256 independent

 PCR reactions.

5. Analyze fragment sizes from each reaction

 (256 independent electrophoresis experiments).

. . .

1. Reverse transcribe with primer

 containing Not I site.

2. Digest with tagging enzyme

 + Not I.

N N N N1 2 3 4

N N N N1 2 3 4

N N N N1 2 3 4

N N N N1 2 3 4

N N N N1 2 3 4

N N N N1 2 3 4

N N N N1 2 3 4

N N N N1 2 3 4

N N N N1 2 3 4

N N N N1 2 3 4

296 11 Measuring Expression of Genome Information

cleaved 3′ ends, the sample is divided into two pools, A and B, each of which
is ligated to an adapter/linker that restores the anchoring enzyme site and
also supplies the recognition site for a Type IIS restriction endonuclease, such
as FokI or BsmFI (Fig. 11.3). These enzymes are called tagging enzymes. The
Type IIS endonucleases do not cut within their recognition sequences but
instead cut to the right (in the 3′ direction relative to the top strand). BsmFI,
for example, cuts 10 positions to the right on the top strand and 14 positions
to the right on the bottom strand. The key point is that the cleavage is not
within the recognition sequence but within an adjacent sequence and occurs a
short distance away (10–14 positions), leaving a single-strand overhang. After
filling in the end by in vitro DNA synthesis, the product contains (left to
right) the adapter A (or B), the tagging enzyme site, the anchoring enzyme
site, and a short specific sequence from the cDNA, terminating in a blunt end.
The products generated from the A pool are ligated with products of the B
pool (at their blunt ends), so that the specific sequences are joined tail-to-tail.
PCR primers corresponding to adapters A and B can be used to amplify the
ligated tail-to-tail products, and digestion with the anchoring enzyme “pops
out” a segment called a ditag because it usually contains specific sequences
from two different mRNAs. The ditags are concatenated by ligation and cloned
into small plasmid vectors to yield product inserts consisting of 15 to 25 ditags.
Each ditag has the same length, and it is separated from its neighbors by the
site for the anchoring enzyme. The inserts are sequenced, producing a serial
readout of sequence tags. The 14-word from each half of the ditag corresponds
to a particular mRNA species. The abundance of each mRNA is proportional
to the number of occurrences of its 14-word tag. At 50% G+C, the probability
of encountering each 14-word starting at any position in a string is (1/4)14,
or about 1 in 2.7 × 108. Since we are looking at sequences on average 256bp
from the end of the 3′ end of the gene and there are about 3 × 104 genes
in a vertebrate genome, the totality of genes subjected to this process would

Fig. 11.3 (opposite page). Principles of SAGE (Serial Analysis of Gene Expres-
sion). Two cDNA species are shown (black and grey lines) with an associated exten-
sion corresponding to a polyA addition at the 3′ end (zig-zag line). The anchoring
enzyme (box with offset in middle) usually cleaves the cDNA in several locations,
but only the one closest to the 3′ end is shown. The two linkers with distinguishing
sequences at the 5′ end (vertical and diagonal hatching) also contain a portion of
the anchoring enzyme sequence and a sequence corresponding to the tagging enzyme
recognition sequence (black box). Cleavage with the tagging enzyme (downward ar-
rows) occurs to the right of the recognition sequence and generates fragments that
are treated to form blunt ends. These fragments are ligated tail to tail (steps 4
and 5). The product (containing the ditag) can be amplified by using primers cor-
responding to the linker-specific sequences. Digestion with the anchoring enzyme
releases the ditag, which is ligated to other ditags from other cDNA molecules in
the sample to form a concatamer that can be cloned and sequenced.

1. Digest with anchoring enzyme.

2. Ligate linkers.

3. Digest with tagging enzyme.

4. Fill in ends.

5. Ligate and amplify.

6. Digest with anchoring enzyme.

Ditag

7. Ligate ditags to form concatamers.

298 11 Measuring Expression of Genome Information

contribute only about 7.7×106 bp of coding sequence. It is evident that there
is a comparatively low probability that two or more messages share the same
14-word tag this close to the 3′ end of the mRNA. In other words, there is a
nearly one-to-one correspondence between a given 14-word and a single gene.

For both TOGA and SAGE, the sequences of the mRNAs are unknown
both at the beginning and at the end; only a small part of the mRNA sequence
is actually determined. Of course, SAGE and TOGA results can be associated
with database entries, but the distinctive feature of these methods is that they
operate without prior sequence information. Both of these methods employ
cloning, amplification, and other biochemical procedures “up front” to create
“subsequence libraries,” and of course they are subject to misincorporation
errors during the PCR steps. For closed architecture approaches, these sorts
of activities had to be undertaken (by somebody else) to supply all of the
EST database entries, but they are invisible to the investigator downloading
sequences from curated databases. SAGE is experimentally accessible to any
laboratory that has facilities for DNA sequencing and for constructing and
handling of small plasmid libraries.

11.3 Principles and Practice of Microarray Analysis

Spotted or oligonucleotide microarrays are by far the most common tools
currently used for gene expression studies. These employ EST and genomic
sequence data (i.e., they rely on other bodies of experimental knowledge), and
they can be performed in a massively parallel fashion. (Over 104−105 features
on an array can be examined simultaneously.) These features are displayed in
an area whose size is approximately 1–2 cm2. Production of microarrays has
become highly automated. Optical detection methods are usually (but not
always) employed, and optical methods typically have high precisions relative
to other methods of data capture. The measured optical signals are readily
exported into computer programs for data analysis.

11.3.1 Basics of Nucleic Acids Used for Microarrays

It is important to distinguish between probes and targets. A probe is a par-
ticular DNA sequence corresponding (complementary) to an mRNA whose
abundance, presence, or absence within a sample is being evaluated. The ac-
tual sequence (especially for oligonucleotide arrays) may be known, but in
any event, each probe is characterized by some unique identifying information
(e.g., annotation with respect to gene, tissue sample, or clone name). The tar-
get is the complex mixture of nucleic acid species being tested for the presence
or absence of sequences related to the probe sequence. In most applications,
it is the cDNA representation of an mRNA sample isolated from a particular
source (e.g., human pancreatic carcinoma cells). In microarray experiments,
the probes are immobilized in a grid of positions on a substrate (usually glass

11.3 Principles and Practice of Microarray Analysis 299

or quartz, but sometimes nylon filters). Each gridded probe sample is a fea-
ture, which is indexed by its position within the array. The probe sequences
for spotted microarrays are DNA molecules (> 200 nt in length) that may
be taken from cDNA clones (ESTs), particularly when eukaryotic gene ex-
pression is being studied. PCR may be used to create gene-specific probes for
gene regions that lack introns (e.g., prokaryotic genes, most yeast genes, or
exons). Prior to hybridization, the duplex probe and target DNAs are de-
natured to produce single-stranded molecules suitable for hybridization. For
oligonucleotide microarrays, probes of about 25–60 bases are synthesized in
situ by combinatorial photolithography to produce gene “chips.” (GeneChip�

is a registered trademark of Affymetrix, Inc.)
Eukaryotic mRNAs, which have poly-A extensions on the 3′ end, can be

isolated by using oligo-d(T) columns, and cDNA can be produced from purified
mRNA by reverse transcription (Fig 1.11). The target is a complex mixture
of species (perhaps 104 different species or more) that depends upon the or-
ganism, the tissue, and the physiological condition of the tissue at the time
that the RNA is extracted. Different mRNA species may have very different
abundances. For example, mRNA for housekeeping genes may be present in
many copies, while mRNA for developmental genes may be very low in adult
organisms. Typical methods allow detection of species present at a level of
one transcript per cell in 106 cells (or about 20 pg of transcript per 20 µg of
RNA sample). The target molecules may be radioactively labeled, but now it
is far more common for them to be labeled with fluorescent dyes Cy3 or Cy5.

The specific interaction between probe and target species is based upon
DNA hybridization. Given two single-strand DNA molecules X and Y, it is
possible for them to hybridize or form a duplex if the sequence of X contains
a string of bases that is complementary to all or part of the sequence of
Y. By complementary we mean capable of base pairing in the Watson-Crick
fashion, with the two strands antiparallel. This process is called hybridization
because the two strands need not come from the original duplex molecule.
Hybridization is the reverse of denaturation, which for typical DNA under
ordinary salt conditions, pH 7.0, occurs in the range of 80◦C–100◦C, depending
upon base composition (lower for lower %G+C). The temperature at which
DNA “melts” (i.e., duplex goes to single-strand) is called Tm. Hybridization
reactions are typically fastest at about Tm − 25◦C. Hybridizations can be
performed at lower temperatures by adding denaturants such as formamide
to the hybridization solution. When labeled target molecules hybridize to
a particular feature, the fluorescent label on the target species makes the
feature capable of fluorescence when it is excited by light of an appropriate
wavelength. The amplitude of the signal is proportional to the amount of
hybridized target species. If the species is rare, the signal is correspondingly
faint.

300 11 Measuring Expression of Genome Information

11.3.2 Making and Using Spotted Microarrays

Much of what has been said up to now applies to both oligonucleotide and
spotted microarrays. Both standardized and custom-designed oligonucleotide
arrays can be produced commercially. However, many investigators prefer the
spotted microarray format because of their ability to customize the arrays
easily and to reduce expense. We focus on spotted microarrays. There is a
considerable body of literature describing how to deal with various sources
of experimental variation in spotted microarray experiments. The general ex-
perimental design is indicated in Fig. 11.4.

The probes are typically spotted onto a treated 1′′ × 3′′ glass slide using
a cluster of pins that dip into the wells of a microtitre plate (96 wells are
common, but 384- or 1536-well plates are also available). The wells in the
microtitre plate contain the probe solutions. For 20,000 features, it is necessary
to print from about 200 96-well microtitre trays, so robotic printing is usually
employed. The other reason for using robotics is that very precise printing
(e.g., ±2 micron error in spot placement) is required to obtain a high density of
features in a small area. Another method for emplacement of features employs
ink-jet technology, but currently this method is primarily available to firms
providing custom-manufactured arrays and not to individual investigators.

Often we wish to understand how gene expression differs for two differ-
ent conditions (malignant versus normal cells, for example). In these cases,
mRNAs from the two different conditions are extracted, differentially labeled,
and hybridized together to the microarray. Labeling is usually with fluorescent
dyes Cy3 or Cy5, which may be covalently attached to dUTP and employed
as one of the substrates during reverse transcription. Alternatively, reactive
groups may be attached to the dUTP, and the required dye can later be cova-
lently attached to molecules in each sample prior to mixing. Hybridizing the
samples simultaneously ensures that the hybridization conditions are iden-
tical, although, as we shall see later, the dyes may affect the hybridization
efficiencies differently.

The hybridized array is scanned by a slide reader that illuminates the
hybridized spots, stimulating fluorescence characteristic of Cy3 or Cy5. The
Cy3 emission maximum is at about 570 nm (“green”), and the Cy5 maximum
is near 670 nm (“red”). The amount of fluorescence intensity corresponding
to each condition at each microarray feature can therefore be detected. If
cDNA derived from RNA expressed during condition X is labeled with Cy3
and cDNA derived from condition Y is labeled with Cy5, an excess of green
over red fluorescence at any feature indicates that the gene corresponding to
that spot is more highly expressed under condition X than under condition
Y. The intensities of light in appropriate wavelength ranges are measured for
pixels over the entire slide and stored in the computer. They are, in effect,
an image of the detected fluorescence intensities. For each spot (feature), it
is necessary to decide over which area of the slide to count the fluorescence
intensity. If the feature has an irregular shape or aberrant size, we may be

1 2 3 4 1 2 3 4

Sample X Sample Y

Mix samples

Hybridize

Feature 1 Feature 2 Feature 3 Feature 4

Red Green

In
te

n
s
it
y

Red Green

In
te

n
s
it
y

Red Green

In
te

n
s
it
y

Red Green

In
te

n
s
it
y

R/G = 0.33 R/G = 3.0 R/G = 1.0 R/G = 2.0

Scan, measure fluorescence intensities

Fig. 11.4. Principles of spotted microarrays. Samples X and Y are cDNA represen-
tations of transcript samples isolated under two different conditions. The same four
particular species are shown for each sample, and their abundances may or may not
differ under the two conditions. Sample X has been labeled with Cy3 (open circles:
produces green fluorescence), and sample Y has been labeled with Cy5 (filled circles:
produces red fluorescence). The mixture of equal amounts of X and Y is hybridized
to a spotted microarray (four features are indicated). The number of open or filled
circles in each feature represents the amount of Cy3- or Cy5-labeled target species
hybridized. The fluorescence intensities observed for each feature in each of the two
color channels are indicated at the bottom of the illustration.

302 11 Measuring Expression of Genome Information

counting intensity from a portion of the slide where no cDNA was spotted,
leading to a low reading. Also, there may be residual nonspecific binding of
hybridization solution not attributable to a specific probe. This produces a
fluorescent background intensity, which should be subtracted from the spot
intensities. For this reason, there is automated software for locating the spot,
delineating its boundaries, and measuring the background to be subtracted
prior to recording the intensity at each wavelength.

An example of the application of this technology is shown in Fig. 11.5
(Arbeitman et al., 2004). In this example, mRNA samples from dsdD mutant
D. melanogaster (fruit flies) (labeled with Cy5) and from normal adults (la-
beled with Cy3) were each reverse transcribed to cDNA and labeled with the
indicated fluorophore prior to hybridization. Panel A shows one of 12 blocks
of 24 × 24 features from this particular experiment. Red spots correspond to
genes whose expression is higher in the mutant, and green spots correspond
to genes with reduced expression in the mutant. Panel B illustrates some ar-
tifacts that can appear in such experiments. Because such artifacts can occur,
microarray images must be inspected by humans before data are processed.
(Complete automation is not currently feasible.)

A. B.

Fig. 11.5. [This figure also appears in the color insert.] Spotted microarray hy-
bridized with target sample representing Drosophila melanogaster transcripts. Red
spots correspond to genes whose expression is increased and green spots to genes
whose expression is decreased in comparison with the control. Yellow spots indicate
no change. Panel A: Normal 24 × 24 block of features. Panel B: Portions of blocks
displaying various artifacts, including a tear in the polylysine coating the glass slide
(vertical jagged brown patch, left section), a possible dust particle (linear feature,
center section), and a possible evaporation artifact from a block near the edge of the
array (yellowish patch with streaks, right section). The greenish fluorescence at the
bottom of the center section came from contaminating material in DNA samples
prepared by nonstandard methods. (Image provided by Dr. Michelle Arbeitman,
University of Southern California.)

11.4 Analysis of Microarray Data 303

11.4 Analysis of Microarray Data

There are two very different computational issues associated with microarray
analysis. The first is processing of the experimental data to produce a result
that accurately reflects either absolute amounts of transcripts in cells or, more
commonly, the ratios of these amounts under two different experimental con-
ditions. The result of processing the data is a gene expression matrix, one
form of which is composed of n rows, each corresponding to a gene or feature
on a microarray, and m columns, each of which corresponds to a condition
(e.g., a time point) for which expression levels were measured. The content of
each element of the gene expression matrix is either a fluorescence intensity
or a ratio of two fluorescence intensities. The second computational problem
is interpretation of the intensity data in the gene expression matrix to provide
biological insight or as a guide to the design of additional experiments. We
treat the processing of the experimental data in this section and discuss data
interpretation in Section 11.5.

11.4.1 Normalization

Experimental intensity data ordinarily require processing before they are con-
verted to expression matrix entries. The need for this processing is revealed by
control experiments. Consider a control experiment for which a single mRNA
sample is divided into two equivalent portions. One of these is labeled with
Cy3 and the other with Cy5. These two labeled halves of the original sample
are then mixed and hybridized competitively to probes on a microarray. The
concentration of species that can hybridize to any particular probe spot is
identical for each of the two mRNA samples by experimental design. There-
fore, we would expect that the fluorescent intensities detected in the Cy3 and
Cy5 channels would be identical. They are not: there usually is a dye bias
that needs to be corrected. Dye bias can result from differences in the incorpo-
ration efficiencies for Cy3-dUTP and Cy5-dUTP during reverse transcription,
from differences in hybridization efficiencies for molecules having different dye
labels, and from differences in the fluorescent properties of the two dyes.

Adjusting the data to remove biases from dye labeling or other experimen-
tal parameters is called normalization. In the perfect control experiment
(equal concentrations of each species and no dye bias or other systematic
variation), we would expect a plot of Cy5 intensity versus Cy3 intensity for
spots in a microarray experiment to fall on a straight line having a slope of
1.0. In fact, Cy5 intensities are systematically lower than Cy3 intensities when
equivalent amounts of sample are present. If we indicate Cy5 intensities by
R (“red”) and Cy3 intensities by G (“green”), a regression of R against G
normally produces a slope k that is less than 1.0. If the regression is linear,
then usually

R = kG, k < 1.0.

304 11 Measuring Expression of Genome Information

To correct the observed R values so that intensities represent the abundance
of mRNA species in the sample, we should multiply R by 1/k:

Rcorr = k−1R

or
log2(R/G) = log2(kG/G) = log2 k.

In a “real” experiment, for which mRNA samples were extracted from cells un-
der two different biological conditions, k can be reasonably estimated by linear
regression of R against G for all features. This approximation is called global
normalization. It is valid because most genes are not differentially expressed,
and among the small number of genes that are differentially expressed, roughly
the same number of genes will be up-regulated as down-regulated.

But there is an additional complication: even if there is no change in ex-
pression level for a set of features, the dye bias in log2(R/G) is not constant
but varies as a function of intensity. This type of systematic variation is re-
vealed by “MA plots” (Yang et al., 2002). M is defined as log2(R/G) (i.e.,
log2 R−log2 G), and A = (log2 R+log2 G)/2 = log2(RG)/2. A is the logarithm
(base 2) of the geometric mean of the intensities, corresponding to an average
of the logarithms of the intensities. An example of an MA plot is shown in
Fig. 11.6A, and a plot of the same data after correction is shown in Fig. 11.6C.
When all such appropriate corrections have been made, the average value of
M is 0.0 for all values of A. This is called intensity-dependent normal-
ization. More complicated normalization procedures take into account the
particular pin used to print particular sets of spots and other sources of vari-
ation (Yang et al., 2002). Computational Example 11.1 illustrates global and
intensity-dependent normalization using real data.

Computational Example 11.1: Global and intensity-dependent nor-
malization of microarray data

Step 1: Examining the data

The data we use were collected for the dsxD mutant Drosophila described
above. The array shown in Fig. 11.5A represents one of 11 usable blocks from
this experiment. The data from the scanner appear in a spreadsheet con-
taining 9216 rows of entries (6912 rows with nonzero entries for intensities)
and 43 columns, plus header information. In addition to header information
describing overall conditions of the experiment, the data matrix consists of
columns describing block numbers, columns and rows of spots within blocks,
spot positions, various data related to the means and medians of spot inten-
sities, and background intensities at the two wavelengths. Rows correspond
to different genes or control spots, and rows that are unreliable or that have
zero intensity were “flagged” by the scanning software. The complete data set
can be downloaded from http://www.cmb.usc.edu. We use only the median

11.4 Analysis of Microarray Data 305

intensities measured at two wavelengths, corrected for background. The data
are preprocessed as described in Appendix C.5 to produce a matrix (5640×6)
containing A and M values for plotting. This matrix can also be downloaded
as a text file from the URL indicated. Only unflagged rows are used, and the
columns are, respectively, the spot identity (ID), red intensity, green intensity,
flag, A, and M . The first three rows of data are shown below.

array.a.m is the data matrix

> array.a.m[1:3,]

V1 V2 V3 V4 a m

1 GH01040 19404 6040 0 13.402200 1.6837336

2 GH01059 12628 3352 0 12.667572 1.9135321

3 GH01066 2236 893 0 10.464610 1.3241881

Step 2: Global normalization factor

We showed above that log2(R/G) is roughly equal to log2 k. Therefore, k =
2M . We use the average value of M to determine the normalization factor:

> mean(array.a.m[,6])

[1] 0.2903073

> 2^mean(array.a.m[,6])

[1] 1.222901

This means that the R intensity is, on average, 22.3% greater than the G
intensity for all features, most of which are expected not to differ. For global
normalization, corrected R intensity values should be obtained by multiplying
all R values by 1/1.2229, or 0.8177. It is not necessary to use this normalization
if the intensity-dependent procedure described below is used.

Step 3: Intensity-dependent normalization

We take a quick look at the data as an MA plot:

#Set parameters for plotting three graphs on the same sheet

>par(pin=c(4,2),mfrow=c(3,1))

#Initial plot to look at the data

>plot(array.a.m[,5],array.a.m[,6],pch=".",xlab="A",ylab="M")

The plot (Fig. 11.5A) shows an upward trend in M values for larger values of
A. This systematic error needs to be corrected. We do this by calculating an
“average” curve through the data and subtracting the predicted value at each
A from the actual value. There are two functions in the basic R package that
can be used: lowess() and loess(). The former stands for “locally weighted
scatterplot smoother,” and the latter is a different smoother that locally fits
scatterplots to polynomials. We won’t go into detail here, but you should
check the R documentation for a description of these methods and default
parameter settings.

0
2

4
6

M

0
2

4
6

A

-6
-4

0
2

4
6

-2
-6

-4
-2

-6
-4

-2
A.

B.

C.

4 6 8 10 12 14

Fig. 11.6 MA plots showing the effect of intensity-dependent normalization. Panel

A: Data prior to normalization. Panel B: Predicted loess curve based on data in

panel A. Panel C: Data after subtraction of predicted loess values. Note that the

data now cluster around the value M = 0, with a slope of zero. The tight clustering

of data points around the line M = 0 indicates that most genes do not change

their expression levels much under the two conditions compared (dsxD pseudomales

versus dsx null females). (Data supplied by Dr. M. Arbeitman, University of Southern

California.)

11.4 Analysis of Microarray Data 307

Applying the loess() function:

> MA.ls<-loess(array.a.m[,6]~array.a.m[,5])

#Note argument order: dependent variable is listed first.

> tmp<-predict(MA.ls,array.a.m[,5])

tmp is a vector of predicted values

predict is a standard R function

> length(tmp)

[1] 5640

#Checking that correct number of data are returned.

Plot the predicted loess curve (Fig. 12.5B):

> plot(array.a.m[,5],tmp,pch=".",xlab="A",ylab="M",

+ ylim=c(-8,6)) #Plot with same scale used in first panel.

Apply the correction to the data by subtracting the loess-predicted value from
every M datum:

> MA.norm<-array.a.m

> MA.norm[,6]<-MA.norm[,6]-tmp #Subtracting predicted value

> mean(MA.norm[,6])

[1] -0.003620717

#Check: This should be close to zero after correction.

Plot the corrected data (Fig. 11.6C):

> plot(MA.norm[,5],MA.norm[,6],pch=".",xlab="A",ylab="M",

+ ylim=c(-8,6))

Note that the data are now clustered about a line with slope zero and y
intercept zero. Furthermore, note that we did not use globally normalized
data. The procedure automatically places the mean value of all log2(R/G)norm

close to zero.

11.4.2 Statistical Background

In Chapters 2 and 3, we introduced the concepts of mean and variance for
samples drawn from a large population. We also discussed the Central Limit
Theorem, which indicated that as the sample size increases, the probabil-
ity distribution for sample means approaches the normal distribution. When
considering microarray data, there is an additional complication that must be
considered: we probably will not know the standard deviation for the measure-
ment of intensity or intensity ratios for each spot. However, with appropriate
replicate experiments, it is possible to estimate the sample standard deviation.

We should perform a number of replicates for each microarray experiment,
but because of expense or limited samples, this number may be low. As a

308 11 Measuring Expression of Genome Information

consequence, the estimates of average expression ratio and the standard error
in the expression ratio may not be reliable. The formalism that we discussed
previously employed the population mean and standard deviation. Now we
must manage with the average of a small number of measurements for each
spot instead of a mean and with the sample standard deviation instead of
a population standard deviation. Recall that the estimate of the population
variance based upon a sample is given by

s2 =
1

n − 1

n∑
i=1

(Xi − X̄)2, (11.1)

where X̄ is the sample mean and n is the sample size. The quantity s is called
the sample standard deviation. For microarray experiments, the number of
replicates, n, will often be a small number much less than 10. Although there
may be on the order of 104 spots on the microarray, the variance for each
spot generally depends upon its mean expression level (Long et al., 2001), so
it may be inappropriate to estimate s2 for any particular feature by including
results from spots having very different expression levels.

It is common to refer to the base or standard condition as the control
and the condition resulting from experimental or other perturbations as the
treatment. Suppose that we are interested in the expression level Xt

j of gene
j in cancer cells (treatment) in comparison with its expression level Xc

j in un-
affected cells (control). The null hypothesis would be that the expression level
is no different in cancer cells compared with unaffected cells, and we would
want to perform a hypothesis test to determine whether the observed mean
value for Xt

j is significantly different from the mean value for Xc
j . With large

numbers of measurements, the sample estimates of the means and standard
deviations are good approximations to the population values and the distri-
butions of the means are approximately normal, and therefore the hypothesis
could be tested by using the normal distribution in the usual way. When there
are few replicates, however, the normal distribution cannot be used, and in-
stead the distribution of the statistic t′ is appropriate for testing whether two
independent means are different:

t′ =
X̄t

j − X̄c
j√

s2

t

nt
+

s2
c

nc

, (11.2)

where nt and nc are the numbers of measurements for treatment and control,
respectively, and sc and st are the respective sample standard deviations for
treatment and control. If the standard deviations of the treatment and control
groups are equal, then the difference between the two means can be tested by
using the more familiar Student’s t statistic,

t =
X̄t

j − X̄c
j

s
√

1
nt

+ 1
nc

, (11.3)

11.4 Analysis of Microarray Data 309

where s is the standard deviation estimated from the combined samples. The
t distribution depends upon the sample size, usually expressed in terms of
degrees of freedom. In the expression above, the number of degrees of freedom
is

df = nc + nt − 2. (11.4)

When the sample sizes are identical, (11.3) reduces to

t =

√
n(X̄t

j − X̄c
j)

s
√

2
, (11.5)

with df = 2n − 2. As the sample size (and number of degrees of freedom)
becomes very large, t approaches a normal distribution.

Some investigators claim that if genes display expression intensity ratios
that differ by some arbitrary factor (e.g., 2) when two different conditions are
compared (e.g., cancer or unaffected), then those genes are differentially ex-
pressed. This approximation can only be reliable if the variances are the same
for measurements across all genes (an unlikely circumstance) and s is suffi-
ciently small. Since this is not usually the case, more careful hypothesis tests
(t tests at a minimum) are required to identify genes whose expressions differ
under the two conditions. If the variances are poorly estimated because of in-
sufficient replication of the experiment, then any inferences made from these
experiments are correspondingly unreliable. Some Bayesian approaches have
been employed for experiments having small numbers of replicates, but this
depends upon having a realistic prior probability distribution. The interested
reader may consult Long et al. (2001) for an example. However, sophisticated
statistical wizardry will not compensate for insufficient replication of experi-
ments.

Microarray experiments involve large numbers of features (spots). This
means that there may be a substantial number of features that appear to reveal
differential expression just by chance. For example, suppose that we have a
microarray having 104 spots and that we have performed three replicates (and
so have 2 × 3 − 2 = 4 degrees of freedom). Taking the average value of the
intensity ratio of Xt

j to be 2 and the average value of the intensity ratio for Xc
j

to be 1 and s = 0.2, we ask how many spots would be predicted to differ by a
factor of two or more by chance. We calculate that t = 6.12. For four degrees
of freedom, the probability that |t| > 6.12 is around 0.004, which means about
40 spots out of 10,000 will display expression ratios that differ by a factor of
two just by chance when the two conditions are compared. These represent
false positive errors.

This calculation illustrates the general problem of multiple hypotheses
testing: even though the probability of obtaining a false positive result for
any individual spot may be very small, for a large collection of spots there is a
high probability of obtaining a number of false positive results comparable to
the expected number of true positive results. A detailed description of testing
multiple hypotheses is beyond the scope of this book, but as a starting point

310 11 Measuring Expression of Genome Information

for those who wish to explore this issue further, we note that the Bonferroni
correction may be employed. The idea is that if the experiment-wide sig-
nificance level (i.e., the probability of obtaining false-positive results for the
experiment as a whole) is chosen to be αB, then a conservative significance
level α for each of the N = n × m individual features is

α = αB/N.

11.4.3 Experimental Design

Reliable conclusions based upon microarray data require estimates of the vari-
ances for measured intensities or intensity ratios, and the variances depend
upon both the experimental design and the number of experimental repli-
cates. It matters how the replicate measurements are performed (Churchill,
2002; Yang and Speed, 2002). For microarray experiments, three different
types of replication (corresponding to three general sources of variation) can
be imagined.

– Replication of samples: Individual biological organisms, even of the same
species, strain, age, and sex, are not identical. Data from several individu-
als drawn from that population are required to make a reliable conclusion
about a population.

– Replication of sample preparations (technical replicates): Multiple steps
are required to produce the target material for hybridization to an array
of probes, and these preparations may be subject to systematic or random
errors. We already described dye-specific biases (e.g., identical samples
labeled with Cy5 or Cy3 do not produce the same result).

– Replication of slide hybridization and image processing: This takes into
account slide-to-slide variation and variation in the printing of individual
spots.

These different sources of variation have very different contributions to the
overall variance of any given measurement. For example, replicate probe spots
on the same slide yield intensity ratios that have correlation coefficients of
about 0.95, replicate probe spots on different slides hybridized to the same
target sample have correlation coefficients in the range 0.6 to 0.8, and if dif-
ferent sample preparations are used for hybridization, the correlations be-
tween intensity ratios for the same spots measured for different samples may

Fig. 11.7 (opposite page). Influence of experimental design on variance in the
logarithm of the expression ratio for condition A compared with B (log2(X

A
i /XB

i)).
Target samples are prepared for conditions A, B, and C or control R. Different
experimental designs yield different values of the variance (boxes near the bottom
of each panel) and require different amounts of sample. Of these three protocols,
protocol B yields the lowest variance but requires twice as much sample.

{ log (X /X) }
2 i i

BA

Sample A
 +
Sample B

{ log (X /X) }
2 i i

BA

Sample A
 +
Sample B

{ log (X /X) }
2 i i

RB

Sample B
 +
Sample R

Var(B,R)=s

Sample cost: 1 unit A, 1 unit B, 2 units R

Var(A,B)=2s

Var(A,B)=s Var(A,B)=s

 log (X /X) =
2 i i

BA
log (X /X) -

2 i i
RA

log (X /X)
2 i i

RB

Sample A
 +
Sample R

{ log (X /X) }
2 i i

RA

Var(A,R)=s

Experiment 1 Experiment 2 Experiment 1 Experiment 2

i i

BA

2 log (X /X) =
2 i i

BA log (X /X) -
2 i i

BA
log (X /X)

21

2

Sample cost: 2 units A, 2 units B, 0 units R

Sample A
 +
Sample B

Experiment 1

Sample B
 +
Sample C

Experiment 2

Sample C
 +
Sample A

Experiment 3

{ log (X /X) }
2 i i

CB

Var(B,C)=s

{ log (X /X) }
2 i i

BA

Var(A,B)=s

{ log (X /X) }
2 i i

AC

Var(C,A)=s

2 Var(A,B)= s /22

2 2 2 2

2 2 2

3 log (X /X) =
2 i i

BA log (X /X) -
2 i i

CA

2

2

log (X /X)
2 i i

CB

Var(A,B)= 2s2

Var(A,B)= 2s /32

Sample cost: 2 units A, 2 units B, 2 units C

C.

A. B.

312 11 Measuring Expression of Genome Information

be only 0.3 (Churchill, 2002). We might suppose that oligonucleotide arrays
would produce more concordant results because of the thoughtful design and
well-defined chemical synthesis of probes. However, direct comparisons of over-
expressed genes identified by using the same sample with two different oligonu-
cleotide array platforms produced agreement in only 4–15% (α = 0.001) or
14-26% (α = 0.01) of the cases (Tan et al., 2003).

Good experimental design principles can help optimize the data that can
be extracted by minimizing the variance for the desired experimental quan-
tity (Fig. 11.7). For example, suppose that we are studying target samples
A and B and have available reference sample R. Let XA

j and XB
j be the in-

tensities measured for gene j under conditions A and B. Denote the variance
in log2(X

A
j /XR

j) as s2
j . (We are assuming the presence of multiple spots for

gene j so that s2
j can be estimated.) The log of the intensity ratio can be

measured directly as log2(X
A
j /XB

j) if samples A and B are cohybridized in
a single experiment, or the ratio can be obtained indirectly if A and B are
each hybridized independently of each other but in the presence of reference
sample R:

log2(X
A
j /XB

j) = log2(X
A
j /XR

j) − log2(X
B
j /XR

j).

The indirect approach requires two experiments, and the variance for that
case is the sum of the variances of the individual experiments:

(s2
j)AB = (s2

j)AR + (s2
j)BR.

But if we were going to perform two experiments anyway, we could measure
log2(X

A
j /XB

j) directly in two independent hybridizations. The variance (of the

average) in that case would be (s2
j)AB/2. The two indicated strategies involve

the same investment in labor and material, yet they yield a fourfold difference
in the variance of the desired quantity. Some specific examples illustrate how
designs can matter.

For example, one common experimental approach is to measure data from
samples A, B, and C relative to sample R. R might be a well-characterized
biological sample created by pooling a number of smaller samples so that the
targets in R all have about the same abundance (yielding the same level of hy-
bridization to all probes). Then we could perform three hybridizations using
mixtures A+R, B+R, and C+R, and measure log2(X

A
i /XR

i), log2(X
B
i /XR

i),
and log2(X

C
i /XR

i) for each gene. As we indicated above, if we seek relative
expression levels in samples A and B, B and C, and A and C, those quantities
can be obtained from measurements involving reference sample R by subtrac-
tion of the appropriate log terms, with a variance of 2s2

i in each case. The
experiments require one sample each of A, B, and C, and three samples of R,
for a total of three hybridizations.

There is another way of setting up the experiment. Instead of using R,
we could employ the following combinations: A+B, B+C, and A+C. In this
case, there are two measurements that produce relative expression levels of

11.5 Data Interpretation 313

A and B: the A+B experiment, measured directly with a variance of s2
i , and

the indirect measurement comprised of log2(X
A
i /XC

i)− log2(X
B
i /XC

i), with a
variance of 2s2

i . The variance for the average of the two measurements (direct
and indirect) is

s2
avg = (s2

direct/1 + s2
indirect/2)/3 = s2

i (1/1 + 2/2)/3 = 0.67s2
i .

Clearly, performing the series of direct measurements without use of a ref-
erence produces a result having a lower variance. In this case, however, two
samples each of A, B, and C were required, with no samples of R. From the
standpoint of reliability of the estimations, elimination of the reference sam-
ple is preferable in this case, provided that we have enough sample material.
For more complicated experimental designs, see Yang and Speed (2002), from
which the examples above were taken.

11.5 Data Interpretation

In the last section, we discussed processing the experimental data to obtain
reliable intensities or intensity ratios and their variances to produce gene
expression matrices. In this section, we assume that we are given an appro-
priately corrected gene expression matrix and are asked to analyze the data
to provide biological insights. As we shall see, some of the mechanisms for
doing this have already been presented in Chapter 10. The approach for data
analysis is in part dictated by the purposes of the experiment. Among those
purposes are:

– Annotating anonymous genes based upon their expression patterns over a
number of conditions. For example, if under a variety of conditions gene
j shows patterns of expression that are similar to patterns for a set of
other genes whose functions are known, then we might hypothesize that
j functions in a similar pathway and test this hypothesis experimentally.
This is known as “guilt by association.”

– Identifying genes (known or unknown) that are co-regulated and that may
function in the same biochemical pathway. This may lead to new insights
into gene regulation mechanisms and may suggest experiments for ana-
lyzing the promoter regions of co-regulated genes for shared collections of
transcription factor binding sites.

– Classifying biological specimens (e.g., tumors) based upon their gene ex-
pression patterns. This could lead to identification of a small number of
genetic markers that would be clinically useful for diagnosis.

The analytical approaches fall into one of two categories, distinguished by
whether or not information from outside the microarray experiment is em-
ployed. Supervised methods incorporate this prior knowledge by including
class labels associated with each feature. For example, we might take genes

314 11 Measuring Expression of Genome Information

of known function (e.g., translation of mRNA, DNA repair) and use their
expression patterns (suitably represented) to classify unannotated genes into
a defined functional category. As another example, the expression patterns
revealed in the mRNA from a collection of tumors might reveal patterns spe-
cific to a particular type and stage of tumor. Unsupervised methods start
with a collection of multivariate data and produce groupings of genes or com-
binations of variables based upon information inherent in the data without
additional outside information. We illustrate unsupervised approaches by clus-
tering methods and principal component analysis (PCA), described below.

The methods for data analysis depend upon the data structure. As we
have indicated, the data are contained in a gene expression matrix whose
entries correspond to intensities or intensity ratios for each feature (i.e., spot
on the microarray). In our discussion so far, we have considered the gene
expression matrix to represent data for n genes measured on m conditions,
with the data for each gene j entered in row j of the matrix. However, if the
purpose of the experiment is tumor diagnosis, it may be of greater interest to
consider m rows of conditions (e.g., m rows of tumor samples) measured over
n genes (i.e., one column for each gene). The types of variables of greatest
concern to the experimenter are called criterion or response variables. In
Chapter 10, the criterion variables were the OTUs. The variables that are
potentially useful for determining the value of the response variable are called
predictor variables or attributes (the characters in Chapter 10). If the
purpose of the experiment is classification of genes, then genes are the response
variables and the conditions under which their expression was measured are
the predictor variables. If the main interest is in classifying conditions or
grouping similar conditions, then the conditions are the response variables
and the genes are the predictor variables. In other words, either the expression
matrix of n genes ×m conditions, or its transpose, may be analyzed, depending
upon the purpose of the experiment. For each row of the expression matrix (or
its transpose), the set of predictor variables for that row is called a profile.
These profiles can be used for clustering or classification.

We discuss two general approaches to data analysis: clustering and data
reduction. In both cases, complex data that are hard for the human mind
to comprehend are organized and simplified. For example, arrays containing
104 features measured under 50 conditions contain 500,000 entries of numbers
measured on a continuous scale. Clustering assigns features (genes) into a
smaller number of categories, with all members in any category having similar
profiles. This allows the profiles of sets of individual genes to be summarized
by an average cluster profile. Data reduction may allow either elimination of
a subset of the predictor variables or perhaps formation of combinations of
them that can be used to identify a subset that explains most of the variation
in the data.

11.5 Data Interpretation 315

11.5.1 Clustering of Microarray Expression Data

Clustering methods presented in Chapter 10 (e.g., hierarchical clustering and
K-means) can be employed with microarray data to group genes having sim-
ilar expression patterns into clusters. Eisen et al. (1998) were among the first
to use hierarchical clustering to organize microarray data. Recall that with
hierarchical clustering, objects are grouped according to their similarities or
distances. A number of different measures of similarity (or distance), such as
Euclidean distance, could be employed. When comparing expression patterns
of two genes i and j measured over m conditions, we can use the Pearson
product-moment correlation coefficient as a measure of similarity (cf. Eisen
et al., 1998),

rij =

∑m
k=1(gik − ḡi)(gjk − ḡj)

(m − 1)sisj
,

where gik is the expression level for gene i under condition k, ḡi is the av-
erage expression level of gene i, and si is the standard deviation over all m
conditions. All of the correlation coefficients can be grouped into a correla-
tion matrix, R. (It is evident from Section 10.3.1 in Chapter 10 that there is
a relationship between the correlation coefficient and the Euclidean dis-
tance metric, but we won’t go into further detail on this point.) Note that the
correlation coefficients are closely related to the covariance:

Cov(gi, gj) =

∑m
k=1(gik − ḡi)(gjk − ḡj)

(m − 1)
.

The covariances can be grouped together in a covariance matrix, S. Note
that the diagonal terms of S are the variances of the respective variables.
Either the entries in the correlation matrix R or the covariance matrix S
could be used for clustering, taking only that portion above or below the
diagonal, as we did in Chapter 10. In this case, objects having the greatest
similarity (as measured by the correlation coefficients) or, alternatively, the
smallest distance would be joined first in hierarchical clustering. The matrix
R can be converted into a distance matrix D by changing the signs and adding
1.0 to each of the rij .

Computational Example 11.2: Clustering of expression data

The data (Appendix C.4) are the mRNA levels for a set of 12 yeast genes
measured at 16 successive time points. We use K-means clustering to deter-
mine how many different expression patterns there are and to group together
genes having similar patterns.

Step 1:

Read the data from a text file into an R matrix from file yeast_dat. We use
the function scan to read the data into a matrix, and then we add the row
names.

316 11 Measuring Expression of Genome Information

yeast.dat<-matrix(scan("yeast_data"),nrow=12,byrow=T)

clone.name< c("YGR027C","YLR259C","YGL189C","YEL032w",

+ "YPL240C","YLL026w","YLR274W","YBR202w","YER131w",

+ "YDR258c","YBL072c","YBL023c")

dimnames(yeast.dat)<-list(clone.name,NULL)

Step 2:

We are interested in the patterns of expression rather than the absolute
amounts. Therefore, we standardize the data points for each gene by sub-
tracting from each entry the mean value for that gene and dividing by the
standard deviation.

> for(i in 1:12){

+syeast.dat[i,]<-(syeast.dat[i,]-mean(syeast.dat[i,]))/

+sqrt(var(syeast.dat[i,]))

+ }

The first few entries of the standardized matrix syeast.dat are shown below.

YGR027C -1.8475332 -0.448629053 0.42444587 -0.1956358 ...

YLR259C 2.6423248 0.553840762 0.47351445 -1.1330117 ...

YGL189C -0.5141768 -0.994527569 1.25917287 1.5338940 ...

YEL032w -0.3421999 1.040063427 -0.27039405 -0.5396661 ...

YPL240C 3.3712044 1.212655197 0.25669716 -0.2691817 ...

Because of the standardization, the entries for all genes are now all of the
same order of magnitude.

Step 3:

Perform K-means clustering for different values of k:

k=2

> ckm2<-kmeans(syeast.dat,2,iter.max=10)

> ckm2

$cluster

[1] 1 1 1 2 1 1 2 2 1 1 1 2

$centers

[,1] [,2] [,3] [,4] [,5]

1 1.0129085 0.07897436 0.3453561 -0.1251811 0.0009998353...

2 -0.7827595 0.35531276 -0.0626123 -0.8963423 -1.0668526992...

$withinss

[1] 82.02579 10.34386

$size

[1] 8 4

11.5 Data Interpretation 317

As we indicated in Chapter 9, $ is used as a prefix to indicate each item in a
list of objects that are not necessarily of the same type: scalar, vector, matrix,
or data frame. kmeans produces five quantities as output. cluster indicates
the cluster to which each row belongs. centers contains two 16-dimensional
vectors, which are the coordinates of the two cluster centers. withinss is the
within-cluster sum of squares, a measure of how close the members of each
cluster are to the cluster centers. size summarizes the number of members in
each cluster. In this case, cluster 1 has eight members, and from the withinss
values it appears that they are on average more diffusely distributed than are
the members of cluster 2.

For subsequent iterations, we omit centers to conserve space:

k=3

> ckm3<-kmeans(syeast.dat,3,iter.max=10)

> ckm3

$cluster

[1] 2 1 2 3 1 1 3 3 2 1 2 3

$centers

...

$withinss

[1] 5.776459 17.329197 10.343858

$size

[1] 4 4 4

Since the withinss for the third cluster is the same as for the last cluster
with k = 2, it is evident that the first cluster obtained with k = 2 has been
split in two. Notice how the sum of all three withinss values has fallen as a
consequence of proceeding from k=2 to k=3.

#k=4

> ckm4<-kmeans(syeast.dat,4,iter.max=10)

> ckm4

$cluster

[1] 4 1 4 2 1 1 3 3 4 1 4 3

$centers

...

$withinss

[1] 5.776459 0.000000 6.407072 17.329197

$size

[1] 4 1 3 4

By adding a fourth cluster, all that has happened is that one of the members
of cluster 2 from k = 3 has been defined as a cluster having only one member.
(Note that withinss = 0.0.)

-3

 -

2

-1

 0

1

 2

3 Cluster 1

E
x
p

re
s
s
io

n
 L

e
v
e

l

-3

 -

2

-1

 0

1

 2

3 Cluster 2

Time point

5 10 15

-3

 -

2

-1

 0

1

 2

3 Cluster 3

Fig. 11.8. Results of K-means clustering of expression patterns for 12 yeast genes

(Computational Example 11.2). The time course of expression is similar for genes

within each derived cluster.

If this process is repeated for k = 5 and k = 6, we can sum the withinss

values for each value of k and plot them versus k to obtain a plot like Fig. 10.8.
We prefer that value of k beyond which the withinss does not drop too much
for each additional increment in k. In this case, we choose k = 3.

Step 4:

Plot the data, k = 3, making a separate plot for each cluster (Fig. 11.8). Use
$cluster identifiers to extract appropriate rows of syeast.dat. The three
panels were plotted using

11.5 Data Interpretation 319

> par(mfrow=c(3,1))

> plot(syeast.dat[2,],ylim=c(-3.5,3.5),type="l",lty=1,

+ xlab="Time Point", ylab="Expression Level")

> points(syeast.dat[5,],type="l",lty=2)

> points(syeast.dat[6,],type="l",lty=3)

> points(syeast.dat[10,],type="l",lty=4)

> title("Cluster 1")...

The lines beginning with plot and continuing through title are repeated
(with appropriate modifications to the arguments) to produce plots of the
two other clusters. Notice that time courses of members of any particular
cluster have similar patterns, as expected.

Before leaving our computational examples, we mention the
open source software for bioinformatics available in BioConductor
(http://www.bioconductor.org). In particular, this contains a num-
ber of powerful statistical tools for the analysis of microarray data.

11.5.2 Principal Components Analysis

In the example above, we were looking for shared patterns among rows of the
gene expression matrix. As we indicated above, these shared patterns could
be described by a correlation coefficient. It is often observed that there are
correlations between columns of the gene expression matrix. In other words,
there are correlations between the variables used to describe the gene expres-
sion data. For example, if xi corresponds to expression levels or ratios for all
genes at one point in the cell cycle and xj corresponds to expression levels
or ratios for these genes one generation time later, xi may be correlated with
xj . When there are correlations between the experimental variables, it may
be convenient to convert variables {xi} to a new set of variables {yi} that are
uncorrelated. If the yi are appropriately selected so that y1 has the greatest
variance and each successive yi accounts for successively lesser amounts of the
variance, it may be possible to represent the data with only the first d vari-
ables y1, y2, . . . , yd, d < m, thus achieving data reduction. The gene expression
data represented in terms of these new coordinates can then be clustered.

The procedure just described is known as principal components anal-
ysis (PCA). We do not discuss the mechanics of this process but will just
give an idea of the approach, in effect restating more carefully the procedure
described in the previous paragraph. For details, see Everitt and Dunn (2001).
Principal components analysis defines m new variables or components {yi},
with each new variable represented as a linear combination of the m original
ones {xi}:

yi =
∑

aijxj .

This in effect rotates the coordinate axes so that the variation in the data
occurs only with respect to these new axes, or components. As a consequence

320 11 Measuring Expression of Genome Information

of the transformation, the covariance matrix S (this time an m × m matrix
whose elements are Cov(xi, xj)) is converted into a diagonal matrix Λ whose
diagonal elements λii are the variances corresponding to each component. The
off-diagonal elements of Λ are all 0, indicating that with this transformation
the newly defined component vectors are uncorrelated in the new coordinate
frame of reference. Λ is constructed so that the diagonal elements become
smaller as one goes from the first element at the top left to the last element at
the bottom right. This means that λ11 represents the largest amount of varia-
tion in the data and λmm represents the least amount. The proportion of the
total variation contributed by each component i is given by λii/

∑
λii. Data

reduction can be achieved by examining the diagonal elements and ignoring
those components that contribute little to the total variation. For example,
we might retain the set of d largest components that together represent 90%
of the variation. Other components would be ignored because they do not
contribute much to the variation among genes. An example of this approach
to synchronized yeast cells has been presented by Alter et al. (2000). The
final step is to perform clustering of the genes based upon similarity in their
expression patterns described by the set of variables yi, i = 1, . . . , d.

11.5.3 Confirmation of Results

Microarray experiments are often used to identify genes that should be exam-
ined further by extensive genetic, biochemical, or other “wet lab” approaches.
Since these downstream experiments can involve many person-years of effort,
it is essential to use independent methods to confirm differential expression
of interesting genes identified by microarray experiments. This will help to
eliminate the false positive identifications discussed in Section 11.4.2.

It is beyond the scope of this book to provide detail on this topic, but we
briefly describe real-time (kinetic) PCR. For RNA samples, a reverse tran-
scription (RT) step is employed, and in that case the method is called real-
time RT-PCR. This method for quantifying DNA or RNA has a dynamic
range extending over six orders of magnitude, and after PCR has begun it
can be performed automatically without withdrawing samples from the reac-
tion tube.

Recall that the amount of DNA produced by PCR after any number of
cycles is proportional to the initial amount of the specific DNA or RNA
present (Chapter 1.5.1). After the elongation step in each cycle, duplex DNA is
formed, and this can be detected by enhanced fluorescence of dyes that insert
between the stacked bases of the double helix (a process called intercalation).
During the early stages of the PCR reaction, the amount of duplex doubles
after every cycle, but for molecules at initially low concentrations, their flu-
orescence is insufficient to be detected above the background fluorescence in
solution. Eventually, however, the concentration of the amplified molecules
grows sufficiently for the fluorescence of the solution to begin increasing. The
cycle number at which this occurs is called the threshold cycle.

11.6 Examples of Experimental Applications 321

DNA or RNA species present at initially low concentrations will require
more cycles before they can be detected, and their threshold cycles will there-
fore be greater than is the case for molecules at high concentrations. Compar-
ison of the threshold cycle number for gene X under treatment and control
conditions with values for a standard curve will provide an independent and
sensitive measure of the expression ratio. Commercial instruments are avail-
able for performing real-time PCR and automatically collecting kinetic data
for 96 samples simultaneously. Methods for quantification other than the one
described above are also available.

11.6 Examples of Experimental Applications

Before considering specific examples of applications, we should revisit the
question of data structure. Recall that the data for experiments using cDNA
or oligonucleotide microarrays are recorded in an expression matrix, often with
rows corresponding to genes and columns corresponding to conditions. The
ordering of the rows may be arbitrary, without any biological significance. We
indicated above that hierarchical clustering can organize the rows by similarity
of expression patterns (based upon distance measures in a high-dimensional
vector space or on correlation coefficients). The columns (corresponding to
different conditions) may or may not have a natural order or grouping. For
example, if each column corresponds to a different specimen of a particu-
lar type of tumor, the order of columns may be arbitrary. Alternatively, if
columns correspond to samples from a time course experiment, such as cells
synchronized by the addition of a growth component previously withheld or
embryos at different developmental stages, then interpretation of the results
is facilitated if the conditions (columns) appear in temporal order. Sometimes
data from several different time course experiments may be aggregated (e.g.,
expression patterns at different times after heat shock or the addition of a hor-
mone), and the order of these groups of conditions may be arbitrary. It can
be useful to cluster not only the genes but also the conditions (vector com-
ponents). Clustering of vector components groups together conditions that
have the same gene expression pattern. We illustrate these concepts with an
artificial example before presenting examples of actual experimental results.

The goal is to present high-dimensional multivariate data in a manner that
can easily be visualized. A conventional way of doing this is to present a color-
coded gene expression matrix after clustering by rows or by rows and columns
(Eisen et al., 1998). For example, degrees of red shading may indicate the ex-
tent of elevation in gene expression, degrees of green shading may represent
the extent of reduction in gene expression, and black may signify no change
relative to the reference state. This is illustrated by the simplified example
in Fig. 11.9 (original data from Table 11.1). In this illustration, four different
grey scale shadings are used to represent levels of gene expression for ten genes
A, B, . . . , J under ten conditions i, ii, . . . , x. In Fig. 11.9A, data have been

322 11 Measuring Expression of Genome Information

clustered by rows using the R applications dist(,method="euclidean") and
hclust(,method="average") followed by plclust(). The pattern of shad-
ing allows us to recognize the underlying expression patterns immediately, in
contrast with the effort that would be required for numerical comparisons of
each component. We define three clusters of genes, each of whose members
share similar expression patterns.

Table 11.1. Illustrative data for Fig. 11.9. Rows correspond to “genes” in alpha-
betical order, and columns correspond to conditions. Data have been scaled by rows
using the means and standard deviations for each row.

i ii iii iv v vi vii viii ix x

A −0.370 −0.370 0.560 1.50 −0.37 −1.300 −1.30 −0.37 0.560 1.50
B 1.500 0.073 −0.660 −1.40 −0.66 0.073 1.50 0.80 −0.660 −0.66
C 1.400 −0.460 −1.400 −0.46 0.46 1.400 0.46 0.46 −0.460 −1.40
D −0.280 −0.980 0.420 1.10 0.42 −0.980 −0.98 −0.98 0.420 1.80
E 1.500 0.810 −0.540 −0.54 −1.20 0.140 1.50 0.14 −1.200 −0.54
F −0.078 1.500 −0.078 −1.60 −0.85 −0.078 0.70 1.50 −0.078 −0.85
G −0.980 0.650 1.500 −0.16 −0.98 0.650 1.50 −0.16 −0.980 −0.98
H −1.300 −0.520 0.220 1.70 0.97 −0.520 −1.30 −0.52 0.220 0.97
I −0.770 −0.770 2.100 0.19 −0.77 0.190 1.20 0.19 −0.770 −0.77
J 1.500 0.700 −0.850 −0.85 −0.85 −0.078 1.50 0.70 −0.850 −0.85

Figure 11.9B illustrates additional clustering by conditions. The goal here
is to identify groups of conditions i, ii, . . . , x whose genes show similar expres-
sion patterns. We achieve this clustering by transposing the expression matrix
(after rows were reordered) and applying the same R functions as we used to
produce Fig. 11.9A. If the conditions were time points during the cell cycle,
then we would expect that time points for successive iterations of each stage
of the cell cycle would cluster together. If the conditions corresponded to sam-
ples from tumors, we would expect like tumor types to be grouped together. If

Fig. 11.9 (opposite page). Graphical representation and clustering of gene expres-
sion data. Panel A: Expression data for genes A, . . . , J in Table 11.1 were subjected
to hierarchical clustering as described in the text, and results are displayed as de-
scribed by Iyer et al. (1999), except for the use of a grey scale instead of color.
Expression levels indicated by each shade are indicated by the strip between panels
A and B. Horizontal lines separate three clusters based upon the dendrogram shown
at the left. Panel B: Same data as in panel A, except that the conditions i, ii, . . . , x
have now also been clustered based upon shared patterns of gene expression. Two
major clusters are seen (dendrogram at top and graphic), each with a characteristic
gene expression pattern (iii appears as a singleton in this example).

i vii vi ii viii iii v ix iv x

J 1.5 1.5 -0.08 0.7 0.7 -0.85 -0.85 -0.85 -0.85 -0.85

B 1.5 1.5 0.073 0.073 0.8 -0.66 -0.66 -0.66 -1.4 -0.66

E 1.5 1.5 0.14 0.81 0.14 -0.54 -1.2 -1.2 -0.54 -0.54

F -0.08 0.7 -0.08 1.5 1.5 -0.08 -0.85 -0.08 -1.6 -0.85

C 1.4 0.46 1.4 -0.46 0.46 -1.4 0.46 -0.46 -0.46 -1.4

I -0.77 1.2 0.19 -0.77 0.19 2.1 -0.77 -0.77 0.19 -0.77

G -0.98 1.5 0.65 0.65 -0.16 1.5 -0.98 -0.98 -0.16 -0.98

D -0.28 -0.98 -0.98 -0.98 -0.98 0.42 0.42 0.42 1.1 1.8

A -0.37 -1.3 -1.3 -0.37 -0.37 0.56 -0.37 0.56 1.5 1.5

H -1.3 -1.3 -0.52 -0.52 -0.52 0.22 0.97 0.22 1.7 0.97

i ii iii iv v vi vii viii ix x

J 1.5 0.7 -0.85 -0.85 -0.85 -0.08 1.5 0.7 -0.85 -0.85

B 1.5 0.073 -0.66 -1.4 -0.66 0.073 1.5 0.8 -0.66 -0.66

E 1.5 0.81 -0.54 -0.54 -1.2 0.14 1.5 0.14 -1.2 -0.54

F -0.08 1.5 -0.08 -1.6 -0.85 -0.08 0.7 1.5 -0.08 -0.85

C 1.4 -0.46 -1.4 -0.46 0.46 1.4 0.46 0.46 -0.46 -1.4

I -0.77 -0.77 2.1 0.19 -0.77 0.19 1.2 0.19 -0.77 -0.77

G -0.98 0.65 1.5 -0.16 -0.98 0.65 1.5 -0.16 -0.98 -0.98

D -0.28 -0.98 0.42 1.1 0.42 -0.98 -0.98 -0.98 0.42 1.8

A -0.37 -0.37 0.56 1.5 -0.37 -1.3 -1.3 -0.37 0.56 1.5

H -1.3 -0.52 0.22 1.7 0.97 -0.52 -1.3 -0.52 0.22 0.97

< -0.75 -0.75 - 0 0 - 0.75 >0.75Scaled Expression

A.

B.

324 11 Measuring Expression of Genome Information

the conditions were samples from different species of animals, we might expect
that conditions would form clusters that reflect the phylogenetic relationships
of those animals. In this example, we see that there are two major groups of
conditions and a singleton.

This simplified introduction sets the stage for examples of gene expression
results. There are thousands of studies reported or in progress, and we discuss
only four to illustrate the type and utility of such experiments.

11.6.1 Gene Expression in Human Fibroblasts

Animal cells growing in tissue culture ordinarily require growth factors. These
are often supplied by adding serum to the growth medium. Human fibroblast
cells isolated from foreskins were cultured in a medium lacking serum, and af-
ter 48 hours serum was restored (Iyer et al., 1999). The cells thus synchronized
with respect to phase in the cell cycle resumed growth, and the expression of
8600 human genes was assessed as a function of time over a 24 hour period.
Genes having like expression patterns were clustered to identify the stages of
the cell cycle during which their expression was elevated or reduced.

Figure 11.10 shows a portion of the clustered data (Eisen et al., 1998). Gene
annotations identified the functions of the genes in the clusters illustrated.
Cluster B (16 genes) represented genes involved in the cell cycle, and Cluster
C (9 genes) consisted of genes involved in the immediate-early response (e.g.,
transcription factors). The commonalities in expression patterns are readily
understood from this type of graphical presentation. In this case, no clustering
of conditions was required because the sampling times correspond to successive
stages in the cell cycle, and only one cell cycle was monitored.

11.6.2 Gene Expression During Drosophila Development

The developmental program of Drosophila follows a typical insect progres-
sion from embryo (E) through larval (L), pupal (P), and adult (A) stages.
Understanding the suites of genes that are coordinately expressed is crucial
to understanding the genetic networks controlling development in insects and
other metazoan animals. Accordingly, expression patterns of 4028 genes were
measured over the entire Drosophila life cycle (Arbeitman et al., 2002).

Clustering of patterns for all 4028 genes was performed based upon their
individual expression patterns at successive developmental time points (clus-
tering by rows; Fig. 11.9A). Members of the resulting clusters of genes were
often functionally related. For example, one cluster was enriched for genes ac-
tive in terminally differentiated muscle (Fig. 11.11). DNA sequences of these
coexpressed genes were analyzed for the presence of binding sites for tran-
scription factors known to be involved in muscle differentiation. The combined
data revealed within this cluster genes whose involvement in muscle terminal
differentiation had not previously been recognized. Expression of terminally
differentiated muscle tissue genes is particularly high in the late embryo/larval

11.6 Examples of Experimental Applications 325

C

B

Fig. 11.10. [This figure also appears in the color insert.] Expression of clusters
of genes from serum-deprived fibroblasts for 12 time points after serum is restored.
Each horizontal strip corresponds to the expression profile of one gene. Red or green,
respectively, indicate elevation or depression of gene activity compared with levels
in serum-deprived cells. Portions of the dendrogram resulting from clustering of the
entire set of 8600 genes are indicated at the left. Cluster B includes genes involved
in the cell cycle, and cluster C corresponds to genes involved in the immediate-early
response. Excerpted, with permission, from Eisen MB et al. (1998) Proceedings of

the National Academy of Sciences USA 95:14863–14868. Copyright 1998 National
Academy of Sciences USA.

stage and at the end of the pupal stage. Note the similarity in patterns reading
down the last few columns in stages E and P in Fig. 11.11.

The two “waves” of elevated gene expression evident at the end of the em-
bryonic and pupal stages illustrate for this particular gene cluster the general
result obtained from all 4028 genes clustered by columns (Fig. 11.9B). For
such an analysis, vectors for each time point (containing expression levels at
that time point for all genes) were clustered based on similarity of expres-
sion patterns (illustration not shown). Two large clusters were observed: time
points from the larval stage clustered with time points associated with adults,
and time points associated with the embryo clustered with time points from
the pupal stage. This indicates that similar developmental circuits employ-
ing the same genes may be involved at different stages of the developmental
process.

11.6.3 Gene Expression in Diffuse Large B-cell Lymphomas

Diffuse large B-cell lymphomas are malignancies associated with B-lympho-
cytes (antibody-producing cells of the immune system). Expression profiles
for genes corresponding to more than 20,000 cDNA clones were obtained for
tissue samples taken from 44 human biopsies and were compared with a va-
riety of normal and malignant control samples (Alizadeh et al., 2000). The
B-cell lymphoma samples showed distinctive expression patterns compared
with control samples. Clustering of genes based on their expression patterns
was performed, and then samples were clustered using a subset of the genes
tested. Gene expression patterns for the biopsy samples fell into two distinct

326 11 Measuring Expression of Genome Information

Expression level

<0.25 0.33 0.5 1 2 3 >4

Fig. 11.11. [This figure also appears in the color insert.] Expression of terminally
differentiated muscle genes during Drosophila development. Graphical conventions
are similar to Fig. 11.10, except that yellow indicates high levels of expression and
blue indicates low levels of expression. The multicolored ribbon at the top spans the
times corresponding to embryonic (E), larval (L), pupal (P), or adult (A) stages of
development. Expression patterns for transcription factors twist and dMef2, known
regulators of muscle development, are indicated immediately below the developmen-
tal stage indicator. Their expression prior to the onset of expression of muscle genes
was anticipated. Reprinted, with permission, from Arbeitman MN et al. (2002) Sci-

ence 297:2270-2275. Copyright 2002 American Association for the Advancement of
Science.

classes: those with characteristic patterns of B-cell germinal centers or those
similar to activated B-cells.

The clinical outcomes for patients treated by multiagent chemotherapy
were monitored and compared with the gene expression patterns of the corre-
sponding biopsy samples. Those patients having lymphomas with expression
patterns like germinal center B-cells had substantially higher 5 year survival
rates (76%) than did patients having lymphomas with the activated B-cell pat-
terns (16%). This expression study identified subclasses of B-cell lymphomas
that had not previously been recognized, and the expression patterns of these
subclasses were correlated with distinct clinical outcomes.

11.7 Protein Expression 327

11.6.4 Analysis of the Yeast Transcriptome Using SAGE

SAGE was used to analyze the S. cerevisiae transcriptome at three different
stages of growth (Velculescu et al., 1997). The 60,000 sequenced SAGE tags
provided estimates of the fractional amounts of each transcript per cell for
transcripts present at levels higher than 0.3 transcripts/cell. These fractions,
together with prior estimates that yeast contains 15,000 mRNA molecules,
indicated that the majority of genes were represented in the transcriptome
at levels of about 1 to 2 mRNA molecules per cell. Indeed, 55% of the total
number of transcripts came from just 160 of the 4665 genes whose transcripts
were detected. To detect transcripts present at very low levels, much higher
levels of “coverage” (number of tags sequenced/mRNA molecules present) are
needed. The advantages of an open architecture (variables not predetermined)
were realized since transcripts corresponding to 160 ORFs that had not been
annotated in the genome were detected. Comparison of expression patterns
at the different growth states indicated that less than 1% of the genes were
differentially expressed. (Using time course data and oligonucleotide arrays,
Cho et al. (1998) found that 6.7% of the yeast genes were differentially reg-
ulated over the course of the cell cycle.) These results confirm the assertion
that usually most genes are not differentially expressed (see Section 11.4.1).

11.7 Protein Expression

Because transcript levels may not accurately represent the concentrations of
their cognate proteins (Section 11.1), direct measurement of protein expression
is desirable. Much current proteome research is directed toward technology
development, so computational and statistical issues have been emphasized to
a lesser extent than has been the case for oligonucleotide- or cDNA-microarray
(collectively, DNA microarray) experiments. For this reason, we provide only
a brief summary of some of the experimental approaches for measuring protein
expression levels.

Studies of the protein complement in cells may be directed toward several
different goals:

– Discovering which known proteins are coordinately regulated;
– Characterizing the abundances of different proteins in particular cells or

cell compartments;
– Comparing protein levels in cells from diseased individuals or in cells

treated with a pharmaceutical agent with protein levels in normal (control)
cells;

– Determining what ligands are bound by different proteins;
– Identifying partners in protein-protein interactions.

Notice that the first three items in this list are similar to the goals for studies
with DNA microarrays. The last two items are new and are two of the goals
of functional proteomics.

328 11 Measuring Expression of Genome Information

Detecting protein species over the wide range of concentrations at which
they may appear in the cell is a significant technical problem. With simple
organisms such as yeast, in-frame fusions of DNA encoding an affinity tag
can be placed at the end of each ORF in the genome by recombinant DNA
techniques (Ghaemmaghami et al., 2003). This allows a single convenient pu-
rification protocol to be used for all proteins in the genome and also facili-
tates their detection by highly sensitive antibody techniques. Such methods
revealed about 4250 protein species in yeast grown in log-phase (about 75%
of the estimated total number of genes). In contrast, only 500–1500 yeast pro-
tein species were detected using liquid chromatography/mass-spectrometry
(LC/MS) methods (see below). 2D gel electrophoresis and LC/MS methods
also fail to detect a large proportion of low-abundance proteins. For exam-
ple, only 8% of yeast proteins appearing at 5000 copies per cell or less were
detected by MS methods (Ghaemmaghami et al., 2003). The less sensitive
methods for protein detection are still employed because in-frame fusion of
affinity tags is technically more difficult for complex eukaryotic genomes.

11.7.1 2DE/MALDI-MS

The older, well-established two-dimensional electrophoresis (2DE) method
has been joined to matrix-assisted laser-induced desorption/ionization
(MALDI) mass spectrometry (MS). There are two steps to this compos-
ite procedure: resolution of polypeptides on two-dimensional polyacrylamide
gels (Section 1.5) and identification of each spot by mass spectrometry. Each
well-resolved spot on the 2D gel corresponds (ideally) to a single polypeptide
characterized by a molecular mass and a pI. These parameters alone are not
sufficient to identify the actual polypeptide chains. Therefore, spots are ex-
cised from the gel, digested with a sequence-specific protease such as trypsin,
and then subjected to MALDI-MS.

Because this is a highly technical subject beyond the scope of this book, we
only provide a brief outline of the principles of MALDI-MS. There are three
principal instrumental components: an ionization source, a mass analyzer, and
a detector. With MALDI, the digested polypeptide sample is embedded in an
organic matrix, that is then dried and placed in a vacuum. Pulses from a UV
laser volatilize the sample. The molecules may become charged by acquiring
one or more H+ ions in the process. These charged polypeptides (now in
the gas phase) are accelerated toward the mass analyzer by application of a
high-voltage electric field (e.g., 25 kV). The mass analyzer employs a magnetic
field to resolve the individual polypeptides. Moving charges in a magnetic field
experience a force proportional to the charge and perpendicular to both the
velocity vector and to the magnetic field vector. Thus the ion trajectories in
the mass analyzer become broad arcs. A single peptide type may produce one
or more species having different charges, and each species follows a different
trajectory. Different peptide fragments having the same charge differ in mass,
and they also follow different trajectories because they were accelerated to

11.7 Protein Expression 329

different velocities. In general, peptide fragments having different mass (m) to
charge (z) ratios, m/z, can be resolved by the analyzer. The detector measures
the ion current at different values of m/z. The overall precision in resolving
species of different m/z is 10 ppm (!). Each particular m/z value usually
corresponds to a single polypeptide amino acid sequence, which identifies the
polypeptide.

Greater accuracy in polypeptide identification can be achieved by tandem
mass spectrometry. In this case, two components are added between the mass
analyzer and the detector: a collision cell and a second mass analyzer. Indi-
vidual polypeptides from the first mass analyzer are directed into the collision
cell, which contains a low concentration of the inert gas argon (Ar). High-speed
collision of the polypeptide with the argon atoms causes collision-induced dis-
sociation (CID). The resulting polypeptide fragments are then resolved by the
second mass analyzer. The m/z values of the constituent fragments provide a
fingerprint of the polypeptide.

This whole operation is obviously not a high-throughput, parallel analyti-
cal procedure. Efforts to improve this general approach substitute tandem mi-
crocapillary chromatography for the 2DE (e.g., strong cation-exchange chro-
matography followed by reverse-phase chromatography). The effluent from
the second column is then analyzed by MS (see Ferguson and Smith, 2003, for
a review). Obviously, it would be desirable to have analytical methods that
offer some of the same convenience as DNA microarrays.

11.7.2 Protein Microarrays

Protein microarrays employ probes that specifically recognize different target
proteins in a complex mixture of target species. One of the goals might be
simply quantification of the amounts of the different protein species (analo-
gous to DNA microarrays). Other goals might be detection of protein-protein
interactions, protein-small molecule interactions, or enzyme-substrate inter-
actions. There are two general types of protein microarrays: (1) arrays of the
proteins of interest and (2) arrays of antibodies or antibody-like molecules di-
rected against the proteins of interest. If the proteins themselves are arrayed
as probes on solid substrates, they may lose biochemical activity. Also, differ-
ent arrayed proteins may have different pH or ionic strength optima. Any one
condition is unlikely to be optimal for all proteins on the array. These issues
are less important if the probes are antibodies directed against specific target
molecules. An advantage of arrayed antibodies is that these proteins are more
robust and comparably active under a particular assay condition. However,
even for antibodies, instability on surfaces or during long-term storage may
be problematic.

We limit our discussion of arrayed antibody probes (see MacBeath, 2002,
for a review). Suppose that we had a collection of antibody samples Aba,
Abb, . . . , Abz , each capable of recognizing antigens a, b, . . . , z. We could imag-
ine using these antibodies to create an antibody microarray for detecting

330 11 Measuring Expression of Genome Information

and quantifying antigens a, b, . . . , z that might be present in a protein sam-
ple of interest. Given the necessary antibody probes, the array technology
is relatively straightforward and analogous to DNA microarray technology.
The probes (sometimes called capture antibodies) are robotically arrayed and
mapped onto a suitably prepared glass slide and exposed to a target solution
containing the proteins (antigens) to be analyzed. The antigens in the sample
specifically bind to the probes or capture antibodies, and features on the array
are then scanned to detect bound antigens.

One method to detect antigen binding is indirect labeling by detection
antibodies (Fig. 11.12A). The detection antibodies recognize the same anti-
gens as the set of probes or capture antibodies, but they recognize a different
epitope. When a cocktail of detection antibodies is placed on an antibody
array that has been incubated with the target sample, an antibody-antigen-
antibody “sandwich” is formed at those features that contain bound antigen.
The detection antibodies either contain fluorescent labels or chemical groups
that allow them to act as reporter molecules. This method obviously requires
two antibody preparations for every antigen to be assayed: one to be arrayed
as the probe and one for detection.

A second method (and the one employed with commercial arrays having
large numbers of features) is the antigen capture method, which is analogous
to the method used with DNA spotted microarrays (Fig. 11.12B). With this
method, there are two target samples: treatment and control. Each target
sample is labeled with a different fluorescent dye (Cy3 or Cy5, for example),
the samples are mixed, and then they are incubated with the probes on the
antibody microarray. The relative amounts of each antigen in the two sam-
ples are determined from the ratios of the fluorescence intensities for the two
dyes. Commercially available arrays (BD Biosciences, Palo Alto, CA) may
contain 500 different monoclonal antibodies directed against a variety of hu-
man proteins (transcription factors, receptors, cell cycle proteins, cytoskeletal
proteins, membrane proteins, and several other classes of proteins). The arrays
and reagent kits are designed for comparing two protein samples labeled with
either Cy3 or Cy5. The array format is compatible with the same instrumen-
tation used for DNA spotted microarrays. Two different slides are supplied
for use with a dye-swap protocol. If T is the treatment sample and C is the
control sample, four different labeled samples are produced: T-Cy3, T-Cy5, C-
Cy3, and C-Cy5. One slide is incubated with a mixture of T-Cy5+C-Cy3, and
the other is incubated with a mixture of T-Cy3+C-Cy5. Each feature on each
slide appears in duplicate. To study other organisms, or to include antibodies
directed against any of the other 25,000–75,000 human proteins and their in
vivo modified variants, the particular antibody probes must be produced by
the investigator or by a commercial vendor. Alternatives to antibody probes
can be produced by phage display technologies or by protein engineering, but
these will not be discussed here.

Bind targets

to probes

Add detection

antibodies

Bind labeled targets from

two different conditions

B.

A.

Fig. 11.12. Schematic illustration of antibody microarrays. Each feature on the
slide corresponds to an antibody (Y-shaped patterns) directed to a different protein
antigen (shaded spheres). Antigens and cognate antibodies have similar shadings.
Panel A: Bound antigens are quantified by indirect labeling using a mixture of de-
tection antibodies, all labeled with the same dye (open squares). Antigen becomes
sandwiched between the capture antibodies constituting each feature and the detec-
tion antibodies. Panel B: Antigen capture format. Target proteins are isolated from
two conditions and differentially labeled with two different fluorescent dyes (open
and filled squares). After binding to the antibody features, amounts of antigen cor-
responding to each condition can be quantified by measuring fluorescence intensity
in two wavelength channels.

332 11 Measuring Expression of Genome Information

11.8 The End of the Beginning

We have presented in this chapter the basics of measuring the levels of mRNA
and proteins in cells. The methods that we have discussed in-depth are mul-
tiplex approaches that measure responses of a large number of genes or gene
products to a variety of experimental conditions. The data are intrinsically
multivariate, with individual vectors (expression patterns of one gene) po-
tentially having 10 to 100 components or more. We indicated how clustering
methods could be employed to produce a cluster of genes that display similar
patterns of expression under different experimental conditions or times in the
cell cycle. We close this chapter by discussing the uses of such data.

Cells and organisms are structurally complex entities that exhibit a large
repertoire of responses to changes in their environment. We would not claim
complete understanding of a biological system unless it were possible to trace
all changes in protein and substrate concentrations and all structural changes
of a cell or organism in response to any outside perturbation (e.g., tempera-
ture shift, change in hormone concentration, amino acid starvation). There are
about 104 to 105 genes in genomes of multicellular eukaryotes, and for those
gene products that are enzymes, there are collectively thousands of prod-
ucts and substrates. The functions of proteins in regulatory and metabolic
pathways are highly coordinated, forming networks of functionally related
proteins. The biochemical system is not at equilibrium. Rather, there are di-
rectional flows of energy and reaction products through this network of related
processes. How can we describe such a complex system?

At a minimum, the description of a living cell requires a parts inventory, a
description of the concentrations of all molecules and substrates as a function
of times and conditions, and a specification of how the functions of the indi-
vidual components (molecules) are coordinated. Since living cells are dynamic,
nonequilibrium systems, we could include rate constants for all biochemical re-
actions. This type of integrative approach falls within the purview of systems
biology. It contrasts with the typical reductionist approaches (studies of
single molecules, operons, or pathways) that have been so successful in molec-
ular biology over the last half century.

Gene expression analysis (measurement of mRNA or protein concentra-
tions) provides basic initial information for an eventual integrated view of
cell function and behavior. These measurements indicate which genes are ex-
pressed under each experimental condition, and clustering methods suggest
which sets of genes may be coordinately regulated. For coordinately-expressed
genes, we can compare sequences of promoter regions in an attempt to iden-
tify transcription factor binding sites that might be fundamental to this pro-
cess. Alternatively, protein products of coordinately expressed genes might be
tested directly for protein-protein interactions. As we already indicated, ex-
pression analysis can be used to suggest functions for genes not yet annotated,
and functional annotation is an essential part of placing each gene product
into the appropriate mechanistic context.

References 333

The solution of the problems of systems biology will not come from bioin-
formatics alone, or even from current expression array data in conjunction
with bioinformatics. While these initial steps are important, systems biology
will require substantial new biotechnology methods and new types of infor-
matics.

References

Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick
JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson
J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC,
Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever
MR, Byrd JC, Botstein D, Brown PO, Staudt LM (2000) Distinct types
of diffuse large B-cell lymphoma identified by gene expression profiling.
Nature 403:503–511.

Alter O, Brown PO, Botstein D (2000) Singular value decomposition for
genome-wide expression data processing and modeling. Proceedings of the
National Academy of Sciences USA 97:10101–10106.

Arbeitman MN, Fleming AA, Siegal ML, Null BH, Baker BS (2004) A genomic
analysis of Drosophila somatic sexual differentiation and its regulation.
Development, 131:2007–2021.

Arbeitman MN, Furlong EEM, Imam F, Johnson E, Null BH, Baker BS,
Krasnow MA, Scott MP, Davis RW, White KP (2002) Gene expression
during the life cycle of Drosophila melanogaster. Science 297:2270–2275.

Arfin SM, Long AD, Ito ET, Tolleri L, Riehle MM, Paegle ES, Hatfield GW
(2000) Global gene expression profiling in Escherichia coli K12. Journal
of Biological Chemistry 275:29672–29684.

Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L,
Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, Davis RW
(1998) A genome-wide transcriptional analysis of the mitotic cell cycle.
Molecular Cell 2:65–73.

Churchill GA (2002) Fundamentals of experimental design for cDNA microar-
rays. Nature Genetics Supplement 32:490–495.

Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and
display of genome-wide expression patterns. Proceedings of the National
Academy of Sciences USA 95:14863–14868.

Everitt BS, Dunn G (2001) Applied Multivariate Data Analysis. 2nd Ed. Ox-
ford: Oxford University Press.

Ferguson PL, Smith RD (2003) Proteome analysis by mass spectrometry.
Annual Review of Biophysics and Biomolecular Structure 32:399–424.

Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI (1999) A sam-
pling of the yeast proteome. Molecular and Cell Biology 19:7357–7368.

334 11 Measuring Expression of Genome Information

Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N,
O’Shea EK, Weissman JS (2003) Global analysis of protein expression in
yeast. Nature 425:737–741.

Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between pro-
tein and mRNA abundance in yeast. Molecular and Cell Biology 19:1720–
1730.

Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JCF, Trent JM,
Staudt LM, Hudson J Jr, Boguski MS, Lashkari D, Shalon D, Botstein D,
Brown PO (1999) The transcriptional program in the response of human
fibroblasts to serum. Science 283:83–87.

Long AD, Mangalam HJ, Chan BYP, Tolleri L, Hatfield GW, Baldi P (2001)
Improved statistical inference from DNA microarray data using analysis
of variance and a Bayesian statistical framework. Journal of Biological
Chemistry 276:19937–19944.

MacBeath G (2002) Protein microarrays and proteomics. Nature Genetics
Supplement 32:526–532.

Sutcliffe JG, Foye PE, Erlander MG, Hilbush BS, Bodzin LJ, Durham JT,
Hasel KW (2000) TOGA: An automated parsing technology for analyzing
expression of nearly all genes. Proceedings of the National Academy of
Sciences USA 97:1976–1981.

Tan PK, Downey TJ, Spitznagel EL Jr, Xu P, Fu D, Dimitrov DS, Lem-
picki RA, Raaka BM, Cam MC (2003) Evaluation of gene expression mea-
surements from commercial microarray platforms. Nucleic Acids Research
31:5676–84.

Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of
gene expression. Science 270:484–487.

Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE Jr,
Hieter P, Vogelstein B, Kinzler KW (1997) Characterization of the yeast
transcriptome. Cell 88:243–251.

Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002)
Normalization for cDNA microarray data: A robust composite method
addressing single and multiple slide systematic variation. Nucleic Acids
Research 30: e15.

Yang YH, Speed TP (2002) Design issues for cDNA microarray experiments.
Nature Reviews Genetics 3:579–588.

Exercises

Exercise 1. Spotted microarrays allow measurement of fluorescence intensi-
ties corresponding to mRNA levels for each gene or feature.

a. Are intensity ratio measurements for low-abundance transcripts inde-
pendent of measurements for high-abundance transcripts when reverse-
transcribed DNA from the same mRNA sample is used for the hybridiza-
tion?

Exercises 335

b. Is there a similar dependence or independence for transcripts whose abun-
dance is measured by SAGE?

Exercise 2. Suppose that SAGE is used to analyze gene expression from a
eukaryote having 30,000 genes each expressed at a level of two transcripts
per cell on average. If the average number of ditags per cloned insert is 20,
what is the least number of clones that must be sequenced to detect, with
probability 0.95, gene expression at a level of 0.5 transcripts/cell? [Hint: This
is a coverage problem. See Section 4.5.]

Exercise 3. Perform hierarchical clustering of the yeast data in Section C.4.
Use the Euclidean distance metric with standardized data. How does cluster
membership obtained with hierarchical clustering compare with the result
from K-means (Computational Example 11.2)?

Exercise 4. Repeat the calculation in Exercise 3, except use the correlation
coefficients to calculate distances. [Hint: Use the R function as.dist().] In
previous calculations using these data, we standardized expression levels for
each gene (row) prior to clustering. Is this standardization needed for hierar-
chical clustering when correlation coefficients are used for distances? Why or
why not?

Exercise 5. Use the results from the example presented in Computational
Example 11.2 and similar results obtained by you for k = 5 and k = 6 to
produce a plot like Fig. 10.8.

Exercise 6. Examine the output for K-means, k = 3 in Computational Ex-
ample 11.2. Suppose that you wanted to perform a classification of a set of
unknown vectors based upon their similarity to the average pattern typical of
Cluster 2.

a. What pattern vector could you use to represent Cluster 2?
b. For classification, you would need to produce a score that reports how close

any candidate vector is to the pattern vector. What function discussed in
Section 11.5 could be used to produce this score?

c. Compute scores for previously defined members of Cluster 2 relative to
the pattern vector representing Cluster 2 as a whole.

d. Score previously defined members of Cluster 1 to test how well they con-
form to the pattern of Cluster 2.

Exercise 7. Intensity measurements from a single slide (Fig. 11.5) for four
replicated features corresponding with the twist gene are presented below.
Nucleic acid corresponding with dsdD flies was labeled with Cy5 (R), and
nucleic acid corresponding with wild-type flies was labeled with Cy3 (G).

336 11 Measuring Expression of Genome Information

Feature Intensitya Intensitya

number at 635 nm at 532 nm

1175 1125 1683
2329 819 1621
3407 273 532
5717 1420 1888

a Intensity values after subtraction of background
intensity

a. Correct the data using the global normalization factor obtained in Com-
putational Example 11.1.

b. What is the probability that the expression levels of twist in dsdD flies
differs from expression levels of twist in normal flies?

c. What is the probability that R/G > 2?

Exercise 8. Use the data corresponding with Fig. 11.6 to estimate the frac-
tion of features for which | log2(R/G)| > 1. If the standard errors of the
intensities for twist (Exercise 7) are typical of the average feature, is the es-
timated fraction a good indicator of the number of genes whose expression
differs between mutant and wild-type flies?

Exercise 9. Yeast cells contain approximately 15,000 transcript molecules
per cell. SAGE analysis indicated that there are roughly three broad abun-
dance classes of transcripts, as indicated below (Velculescu et al., 1997):

Component Fraction of Copies/Cell
total RNA

1 0.17 180
2 0.35 40
3 0.45 2.5

Approximately how many genes are responsible for Component 1? For Com-
ponent 1 + Component 2?

Exercise 10. For the Drosophila Cy3 data at http://www.cmb.usc.edu,
compute the fraction of the total signal represented by each gene (after remov-
ing controls, blanks, and flagged data). Sort the fractions in order of increasing
fraction, and then plot the cumulative fraction of RNA as a function of the
fraction of genes examined. What fraction of these genes accounts for the
most abundant 20% of the transcripts? Is there evidence for classes of genes
distinguished by their expression levels?

12

Inferring the Past: Phylogenetic Trees

12.1 The Biological Problem

This chapter discusses methods for analyzing and describing ancestor-descend-
ant relationships among groups of organisms. These groups may be formalized
groupings recognized by biological classification systems (species, genus, sub-
family, etc.) or they may be different populations within a species. Recognized
groups are called taxa (singular: taxon). The actual ancestor-descendant re-
lationships for a particular set of taxa are called a phylogeny. An example
was shown in Fig. 1.1 in Chapter 1.

The actual phylogeny ordinarily is not known because ancestral organisms
may have become extinct long before modern humans evolved to observe them.
Therefore, phylogeny is inferred from data derived from organisms alive today
or represented in the fossil record. In this chapter, we assume we are using
molecular data. Phylogenetic relationships are of considerable historical and
practical interest, and we first offer two specific examples that illustrate what
phylogenies are and why they are important. Then we present an informal
discussion of how to “read” trees before proceeding to quantitative methods
for inferring them.

There is some overlap with our discussion of clustering in Chapter 10.
In that chapter, we employed distances to create hierarchical clusters using
either morphological or sequence data. In the example of clustering of pri-
mates based upon sequence data, we employed the number of sites at which
two DNA sequences differ (i.e., the Hamming distance) to create a hier-
archical cluster linking human, chimpanzee, gorilla, and gibbon. How does
the construction of phylogenetic trees differ from clustering? First, ancestor-
descendant relationships are explicitly invoked in tree-building. In contrast,
points where OTUs join in hierarchical clustering need not correspond to
hypothetical ancestral OTUs. Second, evolutionary mechanisms suggest that
the distances between two OTUs in a tree should be divided between the two
branches leading back to their common ancestor. With hierarchical clustering,
the junction point was mapped to the corresponding distance, and the distance

338 12 Inferring the Past: Phylogenetic Trees

was not divided between the two branches. Finally, with tree construction we
recognize that evolutionary processes may not be adequately reflected in the
distances that are directly measured, and accordingly appropriate corrections
are applied. Hierarchical clustering employs the distances calculated directly
from the measured characters. Despite these differences, there are obvious op-
erational and conceptual connections between hierarchical clustering and the
building of trees.

12.1.1 Example: Relationships Among HIV Strains

Human immunodeficiency viruses HIV-1 and HIV-2 are the causative agents
for the AIDS pandemic (HIV-1 being more prevalent). Because HIV-1 is a
retrovirus (replicating by reverse transcription of an RNA molecule), it ac-
cumulates mutations more rapidly than does human genomic DNA. The se-
quence variation that results can be revealed by sequencing DNA copies of
the retroviral RNA molecules.

Populations of the variant HIV-1 strains constitute the groups and sub-
types of the virus found among human populations today. For example, group
M, subtype B is common among infected persons in the United States, while
group M, subtype C is more common in Southeast Asia. By examining the
sequences of HIV subtypes, it is possible to track the pattern of transmission
of the viruses around the world. Figure 12.1 shows the relationship between
HIV strains and various simian immunodeficiency viruses (SIV). It is seen
that HIV-1 types are more closely related to SIVcpz than they are to HIV-2,
which itself is more closely related to SIVs isolated from the sooty mangabey
and the stump-tailed macaque. From these and similar data we can make the
reasonable inference that the ancestors of the HIVs present today entered the
human population by transmission of simian immunodeficiency viruses found
in populations of chimpanzees and other primates. It is thus possible to infer
the origins and date of inception of the pandemic (Hahn, 2000).

12.1.2 Example: Relationships Among Human Populations

We humans are keenly interested in our own origins. Although people from
different regions of the world may differ substantially in appearance (e.g., a
Masai from Africa compared with a Dane from Northern Europe), we all be-
long to the same species. How and where did the various human populations
originate? This question can be approached by sequencing DNA from individ-
uals belonging to many human populations from all over the globe. Sometimes
chromosomal DNA (particularly X or Y chromosomal DNA) is employed, and
sometimes mitochondrial DNA (mtDNA) is used.

Mitchondrial DNA of humans is a circular molecule containing some
16,500bp. Over time, this DNA accumulates mutations (base changes) within
its genome, and these mutations are passed on to descendants by the mother.
(Mitochondrial DNA is maternally inherited.) Populations of humans that

HIV-1/U455
HIV-1/LAI
HIV-1/ELI

HIV-1/YBF30

SIVcpzUS
SIVcpzCAM3

SIVcpzGAB1

SIVcpzANT

HIV-1/MVP5180
HIV-1/ANT70

SIVlhoest
SIVsun

SIVmnd

SIVagmVerTYO

SIVagmVer3

SIVagmVer155
SIVagmGri677

SIVagmTan1

HIV-2/ROD

HIV-2/D205

HIV-2/F0748
SIVsmH4

SIVstm

SIVsyk

0.10

Fig. 12.1. [This figure also appears in the color insert.] Examples of phyloge-
netic trees. Inferred relationships between human immunodeficiency virus (HIV)
and simian immunodeficiency virus (SIV) strains isolated from humans and other
primates: agm, African green monkey; cpz, chimpanzee; lhoest, L’Hoest monkey;
mnd, mandrill; sm, sooty mangabey; stm, stump-tailed macaque; sun, sun monkey;
syk, Sykes monkey. The tree was constructed from viral sequence data but may be
confounded by recombination between different virus strains. Reprinted, with per-
mission, from Hahn BH et al. (2000) Science 287:607–614. Copyright 2000 American
Association for the Advancement of Science.

340 12 Inferring the Past: Phylogenetic Trees

share particular sets of mutations are understood to be more closely related
to each other than they are to populations lacking these mutations.

One inferred set of relationships based upon mtDNA sequences is shown
in Fig. 12.2. This tree suggests, for example, that native Australians are more
closely related to East Asians (e.g., Japanese) than they are to the major
groups of Africans. Of particular interest is the observation that populations
from the rest of the world are a subset of African populations, supporting
the anthropological hypothesis that modern humans in other parts of the
world are descendants of migrants that originated from an African population
(the“Out-of-Africa” hypothesis). Also noteworthy is the diversity of African
populations. For example, the Kikuyu people differ more from the Effik than
Europeans differ from Papua New Guinean highlanders.

12.1.3 Reading Trees

In both examples above, we stated conclusions based upon the phylogenetic
trees presented in Figs. 12.1 and 12.2. Here we will be more explicit about
how to interpret the iconography. We have already had some preparation for
this because of the material presented in Chapter 10.

The tree is seen to be a branching structure generated by successive split-
tings of prior branches. Ideally, the branches are formed by successive bifur-
cations (splits of one branch into two), but sometimes the branching order
of several taxa cannot be determined, and in that case there are multiple
branches emanating from a single branch. Eventually, branches end at tips (or
“leaves”), and these represent extant taxa (e.g., strains of HIV or contempo-
rary populations of humans). We can trace back along branches leading to two
different taxa (taxon A and taxon B, for instance) until these branches join.
This junction represents the most recent common ancestor, C. The branch
lengths connecting A and C are proportional to the distance between A and
C (e.g., using a distance metric defined in Chapter 10). Under ideal circum-
stances, the distance between A and B is the sum of distances AC and BC.
For the examples shown in Fig. 12.1 and Fig. 12.2, distances are depicted as
horizontal lines: the vertical lines joining the horizontal ones are just connec-
tors, and the lengths of the vertical connections are not related to distance. A
set of all taxa derived from a particular common ancestor is called a clade,
and the process of branching is sometimes called cladogenesis. A tree that
depicts the order of branching of taxa without regard to the distances between
them is called a cladogram.

Fig. 12.2 (opposite page). [This figure also appears in the color insert.] Phylo-
genetic relationships among representatives of human populations based upon com-
plete mtDNA sequence data (D loop region excluded). The scale is in units of the
number of nucleotide differences per site. Reprinted, with permission, from Ingman
M et al. (2000) Nature 408:708–713. Copyright 2000 Nature Publishing Group.

Chimp

39 Mandenka
40 Effik

41 Effik

33 Mkamba
34 Ewondo

35 Bamileke
36 Lisongo

37 Yoruba
38 Yoruba

Non-African

African

98

98

100

82

100

98

1 Chukchi
2 Australian

3 Australian
4 Piman

5 Italian
6 PNG Highland

7 PNG coast
8 PNG Highland

9 Georgian
10 German

13 Crimean Tatar
12 Saam
11 Uzbek

14 Dutch
15 French
16 English

17 Samoan
18 Korean

19 Chinese

20 Asian Indian
21 Chinese

22 PNG coast
23 Australian

24 Evenki
25 Buriat

26 Khirgiz
27 Warao
28 Warao
29 Siberian Inuit
30 Guarani

31 Japanese
32 Japanese

42 Ibo
43 Ibo

44 Mbenzele
45 Biaka

46 Biaka
47 Mbenzele

48 Kikuyu
49 Hausa

50 Mbuti
51 Mbuti

52 San
53 San

0.0005

*

342 12 Inferring the Past: Phylogenetic Trees

To construct a tree, we often must identify the ancestral state of the char-
acters employed (e.g., the ancestral DNA sequence). To do this, we employ
an outgroup, which is a taxon that is clearly more distantly related to the
taxa of interest than any of them is to another of these taxa. In Fig. 12.2, the
outgroup is chimpanzee. If we look at the branches of humans at the bottom,
we see results for two San individuals, preceded above by branches for two
Mbuti, and then above those (skipping the Hausa) we see the branch for a
Kikuyu individual. Using the convention described above, we can see that the
distances separating the two San is less than the distance separating either of
the San from either of the Mbuti, indicating (as expected) that the San are
more closely related to each other than either is to either of the Mbuti.

The depiction of the data should be distinguished from the quantitative
aspects, which relate to branch lengths and branching topology. The top-
to-bottom ordering of the branches in this representation is chosen for con-
venience and has no quantitative significance. If we transposed the top-to-
bottom order of the branches leading to the San and the Mbuti+Hausa, the
tree would have the same meaning. Similarly, the chimpanzee branch could
be “flipped” up to the top, to lie adjacent to the non-Africans, with the same
meaning as before. If we look at the lower African branches, we notice that
branches emanate from longer branches, whereas non-Africans are related to
each other through shorter branches. This implies that African populations
diverged from each other earlier, which could produce greater genetic diver-
sity among them. More sampling of African populations is needed to explore
this point. Trees help us to interpret the data. For example, notice the pat-
tern of the ten taxa at the top of Fig. 12.1. The first four branches of HIV-1
isolates (HIV-1/U455, /LA1, /EL1, /YBF30) emanate from one side of a bi-
furcation, the other of which contains SIVcpzUS and SIVcpzCAM3. This set
of six viruses represents one of two branches, the other of which contains
SIVcpzGAB1. The four HIV-1 strains mentioned are said to form a sister
group of SIVcpzUS and SIVcpzCAM3. These six together form a sister group
of SIVcpzGAB1, and by parsimony type arguments (see below) they share
a common ancestor that was an SIVcpz. The appearance of HIV-1 strains
among branches that are otherwise SIVcpz suggests that the first four HIV-1
strains mentioned are derived from SIVcpz as a result of a cross-species trans-
fer event. Considering the next connection back, we find two HIV-1 strains
forming a sister group with respect to the first seven mentioned above and
derived from an ancestor shared by SIVcpzANT. Again, we can argue that
this ancestor was an SIVcpz. Notice that there are two clades of HIV-1 within
a larger clade that is otherwise SIVcpz: the clade formed from HIV-1 strains
U455, LAI, ELI, and YBF30, and the clade formed from strains MVP5180
and ANT70. This suggests that there were at least two interspecies transfer
events involved in generating the first ten viruses.

Trees such as those shown in Figs. 12.1 and 12.2 are inferences based upon
a particular data set and employing one of several possible methods of tree
construction. Such trees may or may not represent the actual phylogeny or

12.2 Tree Terminology 343

evolutionary tree. There are underlying assumptions used in the construction
of any tree, as will become clear in the following sections. It is possible to pour
data thoughtlessly into a tree-building software application and get a “result”
at the end. If the data are poor or represent inappropriate sampling, or the
assumptions for building the tree don’t match the data, then the result may
be misleading or worthless.

12.2 Tree Terminology

In the previous section, we discussed two particular examples of trees to il-
lustrate why they are important. In that context, we have already introduced
some nomenclature. Now we formalize the presentation. A tree is a particular
kind of graph, which is defined as a set of vertices connected by edges. Each
vertex has a degree, which is the number of edges that emanate from that
vertex. A directed graph has a defined ordering between vertices connected
by one or more edges. A cycle in a graph is a collection v1, . . . , vr of vertices
with edges between v1 and v2, v2 and v3, . . . , vr−1 and vr, and finally vr

and v1. Trees are cycle-free graphs whose vertices correspond to current or
ancestral species or populations. Vertices immediately below a vertex v and
connected to it by edges are called the children of v. Similarly, a vertex u
immediately above v and connected to it by an edge is called the parent of
v.

12.2.1 Conventions

Trees relate species or other biological entities to each other by invoking
ancestor-descendant relationships. In this discussion, we consider relation-
ships between species, but remember that the related objects could be gene
sequences or populations within species. The observed species (correspond-
ing to the data) appear at the tips of the branches, and these are sometimes
called leaves. Leaves are vertices of degree 1. Vertices in the tree where leaves
or branches join are also called internal nodes. For molecular sequences, the
actual data correspond to the terminal vertices or leaves. Internal nodes corre-
spond to ancestral species that are not part of the data. Ancestors temporally
precede their descendants, and we can sometimes infer likely character states
of these ancestral species. However, these states are not usually directly ob-
served.

Binary trees are ones for which each internal node has two children.
Internal nodes are connected by internal branches, and leaves are connected
to the rest of the tree by external branches emanating from an internal node.
The lengths of the branches connecting leaves to nodes and nodes to nodes
correspond to distances between them. The trees discussed here are all binary,
or bifurcating.

344 12 Inferring the Past: Phylogenetic Trees

A tree is said to be rooted (or have a root) if there is a single ancestral
node from which all other nodes descend, and in this case the root node is
connected to two branches. Trees may be either rooted or unrooted, as illus-
trated in Fig. 12.3. If the tree is rooted, direction is defined by the evolution-
ary time-scale, and we usually associate increasing time with the downward
or rightward direction. If there is no root, all we can say is that the leaves
correspond to the ultimate descendants of some ancestor, but we do not know
whether the internal node adjacent to any leaf is its ancestor, nor do we know
the ancestral relationships of the internal nodes. Put another way, we don’t
know which direction along the edges corresponds to increasing time. In the
unrooted tree shown in Fig. 12.3A, OTU 7 may be an ancestor of 8, corre-
sponding to placement of the root as indicated by arrow R1, or 8 might be
an ancestor of 7, as would be the case if the root were placed as indicated
by arrow R2. Once the root is placed, the ancestor-descendant orientation
of all edges is established. Figure 12.3B shows the two different rooted trees
corresponding to the two different placements of the root in Figure. 12.3A.

We have so far been representing trees graphically, and we will continue
to do so. However, note that there are other representations. For instance, if
we construct a tree with branches like those illustrated in Fig. 10.3, that tree
could be represented as

(((Ho,Pa),Go),Hy).

12.2.2 Numbers of Trees

Before proceeding to a discussion of methods for constructing trees, we need
to be aware of the magnitude of the problem. What we seek is the tree or
collection of trees that best represents the ancestor-descendant relationships
implicit in the data. We might naively imagine that we could draw all possible
trees and see how well each fits the data. The unsuitability of this approach is
evident if we calculate the possible trees that can be drawn relating n different
species. We first consider unrooted trees. The simplest unrooted tree is shown
below.

1 2

3

It connects three species, has a single internal node, and contains no internal
branches. The number of internal branches is thus n − 3 = 0. Now consider
the case n = 4 by adding one leaf or species (connected between the internal
node and 1, for example), as shown in the diagram below.

12.2 Tree Terminology 345

2 4

3

1 5

6

7

8

R1 R2A.

B.

1 2 3 4 5

R1

6

7

8

1 2 3 5 4

R2

6

7

8

Fig. 12.3. Distinctions between unrooted (panel A) and rooted (panel B) trees. In
panel A, R1 and R2 represent two of the seven possible edges in which the root
could be placed. Rooted trees corresponding to these two placements are shown in
panel B. Note that in the absence of a root, the ancestor-descendant relationships
among the vertices are not established beyond the trivial observation that leaves are
not ancestors. R1 and R2 imply very different ancestors for most taxa.

4

1 2

 3

There is now one additional leaf and one additional node; there is one internal
branch (the thick line). The number of internal branches is now n−3 = 4−3 =
1. Repeating this step n − 4 additional times results in a tree with n leaves
and n − 4 additional internal branches for a total of n − 3 internal branches.

346 12 Inferring the Past: Phylogenetic Trees

The total number of branches is therefore the sum of n external branches and
n − 3 internal branches. There are thus 2n − 3 branches in an unrooted tree
with n leaves.

We now find the number bn of unrooted trees having n leaves; clearly
b3 = 1. We calculate this number by first asking how many ways there are to
connect the last leaf; it is just the total number of branches for n − 1 leaves.
Then we ask how many ways there are to add branch n − 1 (which is the
number of branches in a tree with n − 2 leaves) and so on until we reach
n = 1. The total number of possible trees is the product of the numbers of
ways of adding each successive branch. The number of ways of adding the last
branch is

bn = [2(n − 1) − 3]bn−1 = (2n − 5)bn−1, n = 3, 4,

The number of ways of adding the second-to-last branch is

bn−1 = [2(n − 2) − 3]bn−2 = (2n − 7)bn−2, n = 4, 5,

The terms may now be calculated successively until reaching b3 = 1. Hence

bn = (2n − 5) × (2n − 7) × · · · × 3 × 1

=
(2n − 5)!

(n − 3)!2n−3
, n = 3, 4, (12.1)

The proof of the last equality appears in the exercises.
The number of rooted trees with n leaves is closely related to the number

of unrooted trees. All that is required is the multiplicative term for the number
of ways of placing the root on one of the branches. That number is equal to
the number of branches, which we saw above was 2n− 3. Thus the number of
rooted trees b′n for n leaves is

b′n = (2n − 3)bn

=
(2n − 3)!

(n − 2)!2n−2
, n = 3, 4,

Now we are ready to calculate how many unrooted trees there are for
several values of n. The result is shown in Table 12.1. For the example in
Fig. 12.1, there were 24 leaves on the unrooted tree. The number of possible
trees in that case is then approximately 5.64×1026. With the naive approach,
we would have to search through all these trees to find the “best” one; this is
currently a computationally impossible task.

12.3 Parsimony and Distance Methods

There are three basic methods for building trees from molecular data: par-
simony methods, distance methods, and likelihood-based methods. In this
section, we briefly introduce parsimony and distance methods. We defer dis-
cussion of the likelihood method to Section 12.5.

12.3 Parsimony and Distance Methods 347

Table 12.1. Numbers of possible unrooted trees bn corresponding to different num-
bers of taxa or leaves, n.

n 3 4 5 6 7 8 9 10
bn 1 3 15 105 954 10,395 135,135 2,027,025

12.3.1 Parsimony Methods

Finding a tree relating n species or sequences by parsimony employs the idea
that the tree requiring the least number of mutations to relate those sequences
is the preferred one. This approach is a specific application of Ockham’s Razor:
“Plurality should not be posited without necessity.” We illustrate this with an
example. The method tests hypothetical trees and then calculates the number
of base changes needed to yield the observed data.

Suppose the observed data are:

Site:
1 2 3 4 5

Species:
1 A C T T T

2 A C A T T

3 A A C G T

4 A A T G T

5 A A T T T

Expressions in the last section indicate that there are 105 possible rooted
trees. We illustrate two of these alternative trees and evaluate which one is
most parsimonious. First, we examine the tree (((3,4),5),(1,2)) with root at 9,
diagrammed in Fig. 12.4A. What is the smallest number of changes required
to produce the five sequences according to the species relationships implied by
this particular tree? We have drawn a set of four mutations that explains the
data given this tree. (We illustrate how to obtain these particular mutations
a bit later.)

Now let’s consider the tree ((((1,2),3),4,),5) diagrammed in Fig. 12.4B.
Notice that this tree requires at least six mutations to account for the rela-
tionships that the tree implies. Since the second tree requires a greater number
of changes than does the first, it is less parsimonious. We therefore prefer the
first tree (Fig. 12.4A). Is this tree the correct one? We actually don’t know.
All we can say is that the probability of mutation at any position is usually
very small over relatively short timescales (e.g., 1 to 100 million years) and
that the probability of six independent mutations is less than the probability
of four mutations.

But how did we decide what the mutations should be and what the se-
quences at the ancestral nodes might have been? We focus on one position,

348 12 Inferring the Past: Phylogenetic Trees

 3
AACGT

 4
AATGT

 5
AATTT

 2
ACATT

 1
ACTTT

6 (AATGT)

7 (AATTT)

8 (ACTTT)

9 (AATTT)

T C

T G

T A

A C

A.

 3
AACGT

 4
AATGT

 5
AATTT

 2
ACATT

 1
ACTTT

6 (ACCTT)

7 (AACGT)

8 (AATGT)

C T

A C

T G

B.

C A

G T

T C

9 (AATTT)

Fig. 12.4. Alternative trees for five different taxa. Nodes are indicated by num-
bers. The sequences in parentheses at internal and ancestral nodes would normally
be inferred. Mutations required to transform the sequence at any particular node
to the sequence at the node immediately below are indicated on the appropriate
branches. Positions at ancestral nodes altered to produce the mutant descendant are
highlighted. The highlighted position at each of the leaves is used for the parsimony
illustration in the text. Panel A: More parsimonious tree. Panel B: less parsimonious
tree.

position 3, and determine the smallest number of changes needed at that po-
sition to be consistent with the tree in Fig. 12.4A. (Bases at position 3 for
the five leaves are indicated in boldface type.) Start for example, with the (3,
4) join, corresponding to the letters {C, T}. The parent node, labeled 6, can
therefore be either C or T. Next consider joining species 5, which has a T at
that site, at the node labeled 7. The most parsimonious assignment is to put
T at node 7. If we were to put a C in position 3 at node 7, we would then
need to add another mutation leading to 5, which is less parsimonious. Now

12.3 Parsimony and Distance Methods 349

consider joining species 1 and 2 at node 8. The sites are A, T, so that at node
8 we must have either A or T. Thus node 8 is {A, T} and node 7 is T. Thus
the most parsimonious assignment is to put the T at node 8. This allows us to
read off the assignment at each internal node: T (8), T (7), T (6). The resulting
assignments of bases at position 3 imply two base changes over the tree. The
same method is employed for the five other positions to determine the total
number of changes for the tree as a whole.

We now formalize the approach a little. It is convenient to think of the tree
as rooted, as for example in Fig. 12.4A. The root node is labeled 2n−1, which
in Fig. 12.4A is 2×5−1 = 9. We are going to work our way up the tree in the
following way. Let Fi denote the set of possible base assignments at a node
labeled i, and let Li denote the number of changes that have accumulated up
to that node. We start with Li = 0 if i is a leaf. We want to obtain values
(F3, L3) at the next node up as a result of combining two nodes with values
(F1, L2) and (F2, L2). The rules for doing this are as follows:

1. If F1 ∩ F2 = ∅, then L3 = L1 + L2 + 1, F3 = F1 ∪ F2.
2. If F1 ∩ F2 	= ∅, then L3 = L1 + L2, F3 = F1 ∩ F2.

Reminder: For sets A and B,

A ∩ B, read as “A intersect B,” denotes the elements in A and B that
appear both in A and in B.
A∪B, read as “A union B,” denotes the set of elements that appear in A
or B or both.
∅, called the “empty set,” is a set that contains no elements at all.

Let’s try this out at position 4 using the tree in Fig. 12.4A. We start with
(F3, L3) = ({G}, 0) and (F4, L4) = ({G}, 0), so that (F6, L6) = ({G}, 0) as a
result of applying rule 2. Moving onto node 7, we have (F5, L5) = ({T}, 0), so
that (F7, L7) = ({G, T}, 1) as a result of applying rule 1 for nodes 6 and 7. Next,
since (F1, L1) = ({T}, 0) and (F2, L2) = ({T}, 0), we have (F8, L8) = ({T}, 0)
(rule 2). To complete the assignments at node 9, we note that (F7, L7) =
({G, T}, 1) and (F8, L8) = ({T}, 0), which by rule 2 yields (F9, L9) = ({T}, 1).
Now that we are at the top, we can read off the number of changes required in
the tree from L9 = 1. We have explored all possible paths to the root, and we
then backtrack down the tree to construct the assignments to the ancestral
states and the base changes that have occurred at each step. At position 4,
the change was T→ G after node 7, leading to node 6.

We can perform this calculation for each site in the sequences related by
the tree. The total parsimony cost for a tree is the sum of the parsimony scores
for all the sites. The method in its simplest form is to compute the parsimony
cost of all possible trees, and choose the minimum-cost tree. Reconstructing
the collection of best trees by this approach can be hard though! (The reason
is indicated in Section 12.2.2). For larger trees, a variety of heuristic search

350 12 Inferring the Past: Phylogenetic Trees

methods are used to attempt to identify the best ones without examining all
of the trees. There are also versions of weighted parsimony in which different
weights are given to different types of substitutions.

12.3.2 Distance Methods

Assume for the moment that we have a set of pairwise distances linking n se-
quences, and write dij for the distance between sequence i and sequence j. Let
D be the distance matrix whose elements are dij . This is formally the same
type of data employed for the hierarchical clustering described in Chapter 10.
In the evolutionary context, the distances meet the three criteria listed in
Section 10.3.1. Now that we are interpreting the data in the context of a tree,
we need to recognize that biological mechanisms may impose additional con-
ditions on the distances under particular circumstances. These are described
below.

We call a tree additive if the distance between any pair of leaves is the
sum of the distances between those leaves and the first node that they share in
the tree. Furthermore, a rooted additive tree is called ultrametric (or clock-
like) if the distances between any two leaves and their common ancestor are
equal. An example of an ultrametric tree is shown in Fig. 12.5. There is an
interesting and important biological concept related to the idea of ultrametric
trees. In actuality, mutations may not occur at the same rate in different
branches of the tree. For example, mutations accumulate more slowly among
primates than among rodents. If the ticking of the molecular clock is not at
the same rate on two different branches, then the branch lengths for a given
amount of time since the last common ancestor will differ. With ultrametric
trees, however, clocks “tick” at the same rate on both branches emanating
from a bifurcation.

One natural question is: Given a distance matrix D, can we determine
whether we can construct an additive or ultrametric tree corresponding to
those distances? The answer is contained in the following result. Let D be the
distance matrix.

(i) Three-point condition for ultrametric trees: D corresponds to an ultramet-
ric tree if and only if for any three sequences i, j, k, the distances satisfy
dij ≤ max(dik, dkj).

(ii) Four-point condition for additive trees: D corresponds to an additive tree
if and only if for any four sequences (labeled here 1, 2, 3, 4) two of the
sums d12 + d34, d13 + d24, d14 + d23 are equal and greater than or equal to
the third.

The interpretation of part (ii) becomes evident when we sketch out trees
with three or four leaves and examine the relevant sums (Fig. 12.6). Note that
if the tree is ultrametric, part (i) states that two distances must be the same
and the third must be smaller. This is shown algebraically and graphically in
Figs. 12.6A and 12.6B, respectively.

12.3 Parsimony and Distance Methods 351

5 4 2 3 1

6

7

8

9

0.0

0.2

0.4

0.6

0.8
d

is
ta

n
c
e

1.0

Fig. 12.5. Example of an ultrametric tree. The distance from the leaves to node
6 = 0.2, to node 7 = 0.4, to node 8 = 0.6, and to node 9 = 1. Note the equal
lengths of the branches from any node to all leaves derived from that node. This is
a distinguishing feature of ultrametric trees.

The hierarchical clustering method discussed in Chapter 10 is one way
to calculate an ultrametric tree from a set of distances. When the distance
between two clusters is defined by group average linkage (see Section 10.4.1),
the method produces what is called the UPGMA tree (UPGMA meaning
“unweighted pair group method with arithmetic means”). Finding an additive
tree is also an interesting problem, but in practice the distances estimated
from molecular sequence data do not satisfy the conditions of the theorem
and we are left with more work to do. There are several approaches. For an
approximately additive tree, a popular method uses Saitou and Nei’s neighbor
joining method, implemented for example in the software package MEGA.

Another approach uses weighted least squares to fit a best additive tree
for which the distances in any tree to be evaluated are denoted by parameters
pij and the observed pairwise distances dij as before. We find the assignment
of sequences or species to nodes that minimizes the function E given by

E =
∑

i

∑
j

wij |dij − pij |α,

where α typically has the value 1 or 2 and the wij are weights. Choices of
weights such as wij = 1, d−1

ij , or d2
ij are typical. This also allows for missing

data by putting wij = 0 if there is no distance for pair (i, j).

1 2 3

c

a b

A.

B.

1

2

3 4

a
c

d

b

e

d + d = a + b + d + e12 34

d + d = (a + c + d) + (b + c + e)

 = (a + b + d + e) + 2c
13 24

d + d = (a + c + e) + (b + c + d)

 = (a + b + d + e) + 2c
14 23

C.

c

a b
1

2

3

d < max(d , d)

 for all i, j, k = 1, 2, 3
ij ik kj

=> min(a,b) < c,

 min(c,a) < b, and

 min(c,b) < a.

If b < a, we have b < c,

so b < min(a,c).

Hence, if c > a, b = min(a,c) = a.

the tree is ultrametric

 (c < a is similar).

Fig. 12.6. Illustrations of distance constraints imposed by the ultrametric require-
ment (panels A and B) and additive distances (panel C). Panel A: An arbitrary
relationship between three taxa 1, 2, and 3 is shown with distances from the com-
mon node indicated. Assuming the three conditions shows the tree is ultramet-
ric. Panel B: With taxa at the leaves of a rooted tree, the ultrametric condition
(a + b) ≤ (a + c) = (b + c) can be observed directly. Panel C: Illustration of the
four-point condition for additive trees (or a portion of a larger additive tree). The
dashed line indicates a potential connection to a larger tree. As indicated earlier, two
of the summed distances are equal to each other and larger than the third summed
distance.

12.4 Models for Mutations and Estimation of Distances 353

An example serves to illustrate the rationale behind this approach. Con-
sider the tree for three taxa shown below:

b

 a c d

 1 2 3

We assign parameters a, b, c, and d to each branch segment, with a, b, c, d ≥ 0.
For this particular tree, p12 = a + b + c, p13 = a + b + d, and p23 = c + d. If
we select α = 2 and let wij = 1, then according to the equation, we seek to
minimize the sum

E = [d12 − (a + b + c)]2 + [d13 − (a + b + d)]2 + [d23 − (c + d)]2,

with the appropriate choices of a, b, c, and d ≥ 0. In practice, if the number
of sequences or taxa is sufficiently small, one calculates the optimal value of
E using numerical analysis methods. The tree having the lowest value of E is
the preferred tree.

12.4 Models for Mutations and Estimation of Distances

There are two additional conceptual issues to be addressed before we proceed
further. The first concept is modeling the evolutionary process, and the second
is using this model to obtain the distance matrix, given that this evolutionary
process is operating. In Section 12.1, we indicated that a difference between
hierarchical clustering and construction of trees is the inclusion of evolutionary
models in the latter case. Before proceeding to the actual construction of trees,
we need to introduce a quantitative description of the evolutionary processes
that influence the distances used for tree construction. An important aspect
of this is the introduction of time and its relationship to distances.

We use a simple stochastic model for the evolution of a DNA sequence
through time. Much of the requisite mathematical framework has already
been presented in Chapters 2 and 3. For simplicity, we assume that changes
in the sequences occur through base substitutions only. Suppose that we have
two aligned DNA sequences (in which any sites with gaps have been removed).
How can we measure the distance between the two sequences? We have already
used the Hamming distance, calculated as the proportion of sites at which the
two sequences differ. This measure is not sufficient for many evolutionary
studies because it does not allow for the possibility of repeated substitutions
at the same site. For example, at a given position in the sequence, there
might be an initial A → G transition that later reverts by a G → A transition,
restoring the original state at this position. Because of this phenomenon, we
might underestimate the true number of substitutions between our sequences.

354 12 Inferring the Past: Phylogenetic Trees

We treat the substitution process as a stochastic process and define the
distance between the two sequences, measured on the path in a tree separat-
ing them, as the expected number of substitutions that change the base at
that site. Note that the Hamming distance counts a difference between two
sequences at a position as one change. The new definition of distance recog-
nizes that a sequence difference at a position may be the result of more than
one change.

12.4.1 A Stochastic Model for Base Substitutions

We consider first a single homologous site in our two sequences and assume
the two sites have diverged for time length t. Since the evolutionary clock is
running on both paths from the two sequences back to their common ancestor,
they are separated by time 2t. Suppose that the number of substitutions that
arise in any branch of length t has a Poisson distribution with mean λt; the
probability that k substitutions arise is given by the Poisson probability

e−λt(λt)k

k!
, k = 0, 1, 2, (12.2)

We then have to decide what happens at each site where a potential substi-
tution can occur. A general model specifies

P(substitution results in base j | site was base i) = mij .

A simple example of this mechanism, Felsenstein’s (1981) model, specifies

mij = πj , (12.3)

with πi ≥ 0 and π1 + π2 + π3 + π4 = 1. From here on we employ the numeric
notation introduced previously: 1, 2, 3, and 4 correspond to bases A, G, C, and
T, respectively. This implies that the substitution that appears at a position
in the sequence does not depend on the type of the base at that position when
the substitution occurred. We also assume that the set of probabilities πj is
the same at every position in the sequence.

Next we calculate the probability qij(t) that a base that was i at time 0
has mutated to base j a time t later. For the model in (12.3), this is easy to do.
We calculate the probability by conditioning on whether or not any mutations
occurred in time t. Suppose first that i = j. If there were no mutations on
that branch (probability e−λt), then the base time t later must still be j. On
the other hand, if there is at least one mutation, then the chance that the
resulting base is j is just πj ; this follows because the mutation mechanism
does not care about the type at a site when a mutation occurs. Summing over
the two possibilities gives

qjj(t) = e−λt + (1 − e−λt)πj . (12.4)

When i 	= j, the same argument shows that

12.4 Models for Mutations and Estimation of Distances 355

qij(t) = (1 − e−λt)πj . (12.5)

We need to assume something about the base that is the type of the
most recent common ancestor of the two sites we are considering. The usual
assumption is to make the evolution of base frequencies along a single branch
stationary. By stationary we mean that the distribution of base frequencies
is the same for every time t. Thus, if π0

j denotes the chance that the ancestral
base is of type j, then we want

P(base a time t later = j) = π0
j

for any time t. Finding the probability distribution that makes this last equa-
tion true requires some linear algebra. It turns out that we have to solve the
equations

π0
j =

∑
i

π0
i mij (12.6)

subject to
∑

i π0
i = 1. It can be checked that for the model (12.3),

π0
j = πj , j = 1, 2, 3, 4. (12.7)

If the π0
i do satisfy (12.6), then it can be shown that for any t > 0

π0
j =

∑
i

π0
i qij(t), (12.8)

so that, indeed, the base frequencies are not evolving with time.

12.4.2 Estimating Distances

For building the tree, we usually employ distances that take into account
the mutation mechanism. Here we present the mathematical background for
determining the distance K for any position. The set of Kij for a set of taxa
or sequences forms the elements of the distance matrix, analogous to those
distance matrix elements employed for clustering in Chapter 10.

Mean Number of Substitutions in Time t

We know that an average of λt substitutions occur at a particular site on a
branch of length t. However some of these substitutions result in a given base
being “replaced” by the same base. In terms of the end product, this would not
be detected as a substitution at all. Now consider a particular substitution.
Because of the stationarity assumption, the base at this time is i with chance
πi. In the model in (12.3), the chance that a base of type i changes is just
1 − πi. Hence the chance that a mutation results in a change of base is

H =

4∑
i=1

πi(1 − πi) = 1 −
4∑

i=1

π2
i , (12.9)

356 12 Inferring the Past: Phylogenetic Trees

and the average number of real substitutions in time t is therefore (average
number of mutations) × (proportion that result in change) = (λt)H . In the
general case with stationary ancestral frequencies, this number can be calcu-
lated as

λt
∑

i

πi(1 − mii).

If we assume the same mutation mechanism applies in the path from the
common ancestor to each of its descendants then the expected number of real
substitutions between the two present-day bases for the model in (12.3) is

K = 2λtH. (12.10)

We use K as our measure of distance.

Estimating K

We want to estimate K from the sequence data. To do this, we first have to
calculate the chance that we observe an i in one species and a j in the other
when they have diverged for time t. We denote this probability by Fij(t). By
averaging over the possible ancestral nucleotides, we get

Fij(t) =
∑

l

πlqli(t)qlj(t), (12.11)

assuming that the two sites evolved independently of each other after splitting
from their common ancestor.

The result in (12.11) can be simplified if the mutation process is reversible
with respect to the stationary distribution π. This means that the detailed
balance equations

πimij = πjmji for all i 	= j

hold. From this it can be shown that

πiqij(t) = πjqji(t) for all i, j and t > 0. (12.12)

It is easy to check that the model in (12.3) is reversible. When the model is
indeed reversible the result in (12.11) can be simplified, since

Fij(t) =
∑

l

[πlqli(t)]qlj(t) =
∑

l

[πiqil(t)]qlj(t)

= πi

∑
l

qil(t)qlj(t) = πiqij(2t). (12.13)

The second equality follows from reversibility and the final equality from ele-
mentary probability considerations.

Next we compute the probability F = F (t) that the letters at a particular
position in two immediate descendants from the same node are identical.
Averaging over the possible ancestral bases gives

12.4 Models for Mutations and Estimation of Distances 357

F =
∑

i

πiqii(2t)

for a reversible model, and for the model in (12.3), this reduces to

F = e−2λt + (1 − e−2λt)(1 − H). (12.14)

Putting the Sites Together

We assume that sites evolve independently of one another, with identical
mutation processes at each site. We discuss these assumptions later. We can
now glue together the information from each site in the sequence by thinking
in coin-tossing terms. Look at the aligned sequences (with no gaps), and define

Xi =

{
1, if the ith pair of sites differs,
0, otherwise.

If there are s sites in all, then the Xi are independent and (for the model
(12.3)) satisfy

P(Xi = 1) = 1 − F = (1 − e−2λt)H. (12.15)

Then D = X1 + · · · + Xs, the number of mismatched pairs of bases, is a
binomial random variable with parameters s and 1 − F . (Note that D is the
Hamming distance.)

Of course, F is unknown and we have to estimate it from the sequence data.
Returning to the coin-tossing example, we know that a sensible estimator of
the binomial success probability is the observed proportion of successes. Thus
we can estimate 1−F with the quantity D/s. We can then use this to estimate
K by solving the equation

D

s
= (1 − e−2λt)H,

obtaining (after taking logs and simplifying)

2λt = − log

(
1 − D

sH

)
.

Recalling the definition of K in (12.10), we obtain

K = 2λtH = −H log

(
1 − D

sH

)
. (12.16)

This estimate of the distance K between the two sequences is known as the
Jukes-Cantor formula.

If we knew H , we could estimate K using the Jukes-Cantor formula.
Typically we do not know H , and we have to estimate this from the data
also. The usual strategy is to estimate the base frequencies πA, πC, πG, πT from

358 12 Inferring the Past: Phylogenetic Trees

the collection of homologous sequences being compared, and then calculate
H = 1 −∑i π2

i .
Pairwise distances such as K can be calculated for many other models

of the evolutionary process. These often arise by changing the form of the
mutation parameters mij in (12.3), and finding the transition probabilities
qij(t) for the new model. The subsequent analysis is simplified if the model is
reversible.

12.5 Maximum Likelihood Methods

Now that we have seen how to calculate distances and to build trees based
upon those distances, we move to the third of our methods, developing a sta-
tistical method for tree-building based upon a maximum likelihood approach.
For illustration, we assume that we are trying to construct an ultrametric, or
clock-like, tree.

12.5.1 Representing a Tree

A clock-like tree can be represented in many ways. Here is a simple one. First,
we label the n species 1, 2, . . . , n at the leaves and assign labels n+1, . . . , 2n−1
to the n−2 internal nodes. This should be done in such a way that any internal
node has a label larger than any of its descendants. This labeling lists the
names of the descendants of each internal node and hence the complete tree
shape. The other missing ingredient is the times of the joins in the tree. For
an ultrametric tree, it is natural to record the distance to each internal node
measured from the present time back into the past. For example, the tree
described by

6 2 3 0.2

7 6 4 0.4

8 7 5 0.6

9 1 8 1.0

has n = 5 species. The left-hand column gives the internal node labels; these
are followed by the labels of the two direct descendants and the distance from
the internal node to the leaves. In the example, species 2 and 3 join first at
node 6, 0.2 units back in time; node 6 is then joined to leaf 4 at node 7, the
distance being 0.4 units. Leaf 5 joins the tree at node 8, a distance of 0.6 units
from the present, and finally leaf 1 joins at the root node 9, a distance of 1
unit from the present. The resulting tree was shown in Fig. 12.5. Note that it
is easy to represent other tree topologies using this data structure.

12.5.2 Computing Probabilities on a Tree

We use the evolutionary model of substitutions described in Section 12.3. As
earlier, we assume that the sequences under comparison have been aligned

12.5 Maximum Likelihood Methods 359

and that any gaps have been removed. We also assume we know the topology
of the phylogenetic tree linking the species. First, we calculate the probabil-
ity p(i1, i2, . . . , in) that species 1, 2, . . . , n have bases i1, i2, . . . , in at a given
nucleotide site. To see what is involved, let’s do the calculation for the case
of three species with a tree of the form

4 1 2 t1
5 3 4 t2

We get

p(i1, i2, i3) =
∑

a

∑
b

πaqai3(t2)qab(t2 − t1)qbi2(t1)qbi1(t1). (12.17)

This formula arises by considering the possible assignments a for the root node
5 and b for the node 4 and summing over the possibilities for a and b. Here
the πa are the stationary base frequencies (i.e., base frequencies assuming the
same distribution both for ancestral and descendant bases). The qij(t) give
the probability of base j at a site given base i at that site a time t earlier. A
formula of this type can be written down for any tree topology, but it can be
very complicated.

The standard way to arrange the computations is to use the peeling al-
gorithm, due in this context to Felsenstein (1981). This recursive algorithm
goes through the tree calculating at each internal node the probability of the
subtree data below that node as a function of the base at the node. This algo-
rithm is routinely implemented in most tree-building software. The principle
behind it is to “move all summation signs as far to the right as possible.” See
Exercises 11 and 12 for further details.

12.5.3 Maximum Likelihood Estimation

We compute the likelihood of the data by multiplying the likelihood terms
p(i1, i2, . . . , in) calculated using the peeling algorithm at each site in the data.
This comes about because we assume that the sites are evolving independently
of each other. The maximum likelihood estimator of the parameters of the
mutation model and the branch lengths are found in two steps: first, maximize
the likelihood over the model parameters for a given tree, and then repeat this
maximization over all possible trees. The maximum likelihood estimator we
are looking for is the one that maximizes these maximized likelihoods. This
recipe is manageable for small numbers of species but impractical for large
numbers (bigger than 5, say). In such cases, a variety of heuristic search
algorithms have been devised to explore tree space (see, e.g., Hillis et al.,
1996).

An important question to be addressed is: What can be estimated? It is
conventional to reduce the number of parameters to be estimated by setting
the stationary frequencies to be the observed proportions of each base in the
entire data set. We do this, too. For a given topology, for the simple mutation

360 12 Inferring the Past: Phylogenetic Trees

model we are using, there is one parameter, λ, for the substitution rate, as
well as n − 1 node heights that might be estimated. However, looking at the
form of the qij(t) in (12.4) and (12.5) shows that times and the rate λ are
confounded ; that is, they cannot all be estimated separately. We then have
two different (but equivalent) choices:

(i) We can fix the height of the tree (the distance to the root node) and
estimate λ and n − 2 other node heights, or

(ii) We can fix parameter λ (at value 1, say) and estimate the n − 1 node
heights.

The program used in the exercises allows for either possibility. This obser-
vation shows why we need external calibration of the tree height in order to
obtain node heights in years and mutation rates in units of changes per year.

12.5.4 Statistics and Trees

Often we want to use molecular data to test different hypotheses about the
phylogenetic relationships between species or to estimate (and perhaps find
confidence intervals for) parameters in the mutation model (see, e.g., Huelsen-
beck and Rannala, 1997). A common guiding heuristic is to compare like-
lihoods among different models. This is a subtle business, but a couple of
examples should illustrate what can be done.

One problem concerns whether or not a given phylogeny explains a data
set better than another phylogeny. We have already discussed this problem in
our description of parsimony and distance methods. In the present context,
we could compare the log-likelihoods of the data under each model; presum-
ably the one with the highest log-likelihood provides a better description of
the data. This can be formalised into a rigorous statistical procedure (e.g.,
Goldman, 1993), but we do not present the details here.

Another problem concerns estimation of parameters in a mutation model
given a particular phylogenetic tree topology. We can test (formally at least)
whether a simpler model (the “reduced hypothesis” in what follows) provides
an adequate fit to a data set, as opposed to a model with more parameters
(the “general hypothesis”). We can use a χ2 test as follows:

1. Calculate the maximized likelihood L1 under the general hypothesis.
2. Calculate the corresponding likelihood L0 under the reduced hypothesis.
3. Calculate W = −2[logL0 − log L1].
4. Under the reduced hypothesis, the distribution of W is approximately χ2

with degrees of freedom given by the difference between the dimension of
the general hypothesis and the dimension of the reduced one.

References 361

12.6 Problems with Tree-Building

There are numerous problems associated with tree-building using molecular
data. We might wonder about the adequacy of a given mutation model as a
description of the data. We have made a number of assumptions, among them

(a) Sites evolve independently of one another.
(b) Sites evolve according to the same stochastic model.
(c) The tree is rooted.
(d) The sequences are aligned.

Point (c) is easy to deal with; there are likelihood methods for unrooted trees
(assuming reversible models of substitutions) with the additive property (see,
e.g., Felsenstein, 2004). Point (b) is clearly violated in a coding region: it is
well-known that third positions evolve faster than first positions, which in turn
evolve faster than second positions. It is possible to fit models with a common
tree while allowing for this type of rate variation. It is sometimes useful to try
a model of random rate variation, in which each site evolves independently but
with a rate drawn independently across sites from a given distribution. Some
of the computational and biological problems are described in Yang (1996).
There have been some attempts to alleviate the difficulties of assumption (a),
which can arise, for example, in sequences with secondary structure. Point (d)
has proved more difficult to address. Usually, gaps in aligned sequences are
removed before tree-building. The effects of this are hard to assess, especially
in distantly related species in which alignment is hard. Finally, we remark
that there are computational problems with exploring tree space adequately.
One way to address this issue is through the use of Bayesian computation,
in particular the Markov chain Monte Carlo methods (see Huelsenbeck et al.,
2001).

When the goal is to understand the evolutionary relationships between
organisms, the distinction between a gene tree and a species tree becomes
important. This distinction is illustrated in Fig. 12.7. A gene tree is a tree
drawn from DNA or protein sequences corresponding to a particular gene
shared by a set of organisms. Each different gene may (or may not) produce a
different tree for the same set of organisms. A species tree is often produced
from sets of macroscopic characters but also may be produced from sequence
data. Generating a consensus species tree from a collection of gene trees is a
difficult problem that is beyond the scope of this book.

References

Felsenstein J (1981) Evolutionary trees from DNA sequence data: A maximum
likelihood approach. Journal of Molecular Evolution 17:368–376.

Felsenstein J (2004) Inferring Phylogenies. Sunderland, MA: Sinauer.

362 12 Inferring the Past: Phylogenetic Trees

G
en

e
1

G
e
n
e
 2

G
e
n
e
 3

T
im

e
Gene tree topology:

((1,2),3)

Species tree topology:

(1,(2,3))

Species 1 Species 2 Species 3

Fig. 12.7. Distinction between gene trees and species trees. The thick black lines
denote the gene tree constructed from homologous regions of the same gene found
in species 1, 2, and 3. The shaded bands represent the species tree. Underlying this
diagram is the concept that species are represented by populations, which at any
time may have multiple alleles for any gene. Genes transmitted to the next generation
are sampled from these populations. For example, at the time corresponding to the
dashed line, there are three alleles of the gene present in a single species. The allele
for gene 2 that became fixed in species 2 actually diverged later than the allele that
became fixed in species 3. Mechanisms of sampling of alleles from populations are
discussed in Chapter 13.

Goldman N (1993) Statistical tests of models of DNA substitution. Journal
of Molecular Evolution 36:182–198.

Hahn BH, Shaw GM, De Cock KM, Sharp PM (2000) AIDS as a zoonosis:
Scientific and public health implications. Science 287:607–614.

Hillis DM, Moritz C, Mable BK (1996) Molecular Systematics (2nd edition).
Sunderland, MA: Sinauer.

Huelsenbeck JP, Rannala B (1997) Phylogenetic methods come of age: Testing
hypotheses in an evolutionary context. Science 276:227–232.

Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference
of phylogeny and its impact on evolutionary biology. Science 294:2310–
2314.

Ingman M, Kaessmann H, Pääbo S, Gyllensten U (2000) Mitochondrial
genome variation and the origin of modern humans. Nature 408:708–713.

Yang Z (1996) Among site rate variation and its impact on phylogenetic anal-
yses. Trends in Ecology and Evolution 11:367–372.

Freely available software programs:
http://evolution.genetics.washington.edu/phylip/software.html

Site for PHYLIP, maintained by Joe Felsenstein.

Exercises 363

http://www.megasoftware.net

Site for MEGA2.1, which focuses on distance methods.
http://abacus.gene.ucl.ac.uk/software/paml.html

Site for PAML, which focuses on likelihood methods.
http://morphbank.ebc.uu.se/mrbayes/

Site for MrBayes. This is good for a Bayesian perspective.

Exercises

Exercise 1. Draw all rooted and unrooted trees with n = 5 leaves labelled
{a, b, c, d, e}.

Exercise 2. Use Stirling’s approximation

x! ∼ (2π)1/2x(x+1/2)e−x

as in Section 6.5 to find the corresponding approximation for bn in (12.1). Use
this to find an approximation for b100.

Exercise 3. Suppose dab, dac and dbc are distances that form an additive tree
for the unrooted tree with leaves {a, b, c}. (There is only one such tree.) The
tree has length x for the leaf a, length y for the leaf b and length z for the leaf
c. Derive a formula for x, y and z in terms of dab, dac and dbc. [Hint: Draw a
picture.]

Exercise 4. Using the results of the previous problem, find the unique tree
with distances given by

a b c d
a 0 3 6 5
b 0 7 6
c 0 3
d 0

Exercise 5. You are given the following set of species and aligned sequences:

Site:
1 2 3 4

Species:
1 T C A A

2 G C A T

3 T T T T

4 G A T A

5 G A A C

6 A T A G

Find the parsimony score for the tree ((((1, 2), (3, 4)), 5), 6). Indicate the F
sequence at each vertex of the tree.

364 12 Inferring the Past: Phylogenetic Trees

Exercise 6. Table 10.1 gives a 60 bp region of the cytochrome oxidase sub-
unit II coding sequence for five primates.

a. Write an R function to calculate the matrix of pairwise distances defined
in (12.16) for these data.

b. Find a UPGMA tree based on these distances, and compare to the results
in Section 10.4.

Exercise 7. Discuss the logical connection between the data structure in-
troduced in Section 11.5.1 and the procedure for agglomerative clustering
described in Section 10.4.1.

Exercise 8. For the data structure introduced in Section 11.5.1, devise an
algorithm that computes the number of leaves below each internal node of a
rooted binary tree. Can you modify your algorithm to return the number of
nodes and leaves below each internal node?

Exercise 9. Devise an R function that takes a tree described by the data
structure in Section 11.5.1 as input, and produces a plot such as the one
shown in Fig. 12.5 as output, using the standard R function plclust (see
Computational Example 10.1).

Exercise 10. Consider a tree with just two leaves. Suppose the branch to
species 1 has length t1 and the branch to species 2 has length t2. Show that
for a reversible mutation model, the probability Fij of observing base i in
species 1 and base j in species 2 depends on t1 and t2 only through the
sum t1 + t2. This result is known as the pulley principle, which says that
we cannot tell the direction of time. (For the meaning of “pulley principle,”
imagine that two leaves are connected by a rope through a pulley mounted
at the node immediately above it. If you lengthen the rope on one side of the
pulley, the rope length on the other side must correspondingly shorten.)

Exercise 11. This exercise illustrates an important principle in calculating
likelihoods on trees. Equation (12.17) gives the probability of observing par-
ticular bases at the leaves of a tree with n = 3 species as

p(i1, i2, i3) =
∑

a

∑
b

πaqai3(t2)qab(t2 − t1)qbi2 (t1)qbi1(t1).

This can also be written in the form

p(i1, i2, i3) =
∑

a

πaqai3(t2)
∑

b

qab(t2 − t1)qbi2 (t1)qbi1(t1).

Evaluate carefully how many addition and multiplication operations are per-
formed in these two formulae, and deduce that the first form is less efficient
than the second.

Exercises 365

Exercise 12. This exercise, an extension of Exercise 11, provides more details
about the peeling algorithm used to compute probabilities on trees. Consider
the tree with four species and topology given by (((1, 2), 3), 4). Let c denote
the internal node linking species 1 and 2, b denote the node linking c and 3,
and a denote the root node.

a. Write a formula for the probability p of observing particular bases at the
leaves of the tree in the form∑

a

∑
b

∑
c

{an expression involving the product of 7 terms}

and find this expression.
b. Evaluate the number of addition and multiplication operations needed to

evaluate p.
c. The peeling algorithm is based on the principle of “moving all summa-

tion signs as far to the right as possible.” Write down the corresponding
formula for p and evaluate the number of addition and multiplication
operations needed to calculate it. Comment.

d. Describe in a few sentences how the peeling algorithm works.

Exercise 13. For this example you need the primate data for Pongo, Pan,
Gorilla and Homo from Table 10.1. Pongo is taken to be the outgroup in this
example. This exercise investigates whether Pan is more closely related to
Homo than Gorilla is.

a. Using the approach in Section 12.5.1, give the representation of the tree
in which Pan and Homo split first. Calculate the likelihood of the data
for this topology.

b. Repeat the previous problem, but for the tree in which Gorilla and Homo
split first.

c. What do you conclude about the divergence of these three species?
d. What is the effect on the estimated topology of the tree if you use more

of the cytochrome oxidase sub-unit sequence? If you use other sequences?

[Note: this exercise can be completed using likelihood software available at
www.cmb.usc.edu.]

13

Genetic Variation in Populations

13.1 The Biological Problem

In Chapter 12, we showed how evolutionary relationships between organisms
(taxa or OTUs) could be inferred from DNA sequence data. In that discus-
sion, it was assumed that the variation among taxa being analyzed was much
greater than any variation within taxa, so that each taxon (species) could
be represented by a unique set of characters. Because mutations (variations)
accumulate over time, this is equivalent to stating that the phylogenetic trees
that were constructed corresponded to taxa that had diverged from each other
relatively long ago. Suppose, however, that we look at a population of organ-
isms alive today and examine the allele frequencies within this population.
What inferences can we make about the history of this population? Now that
we are focusing on variation within a taxon, we are concerned with a time-
scale that is short compared with the time-scale associated with phylogenetic
trees.

The concept of population is extremely important for understanding bio-
logical organisms and their evolution. A population is a localized collection
of individuals of a species that are capable of exchanging the genes that char-
acterize that species. The San people of southern Africa or the brown pelicans
living on Anacapa Island off the coast of Southern California are examples of
populations. A biological population observed today is a “snapshot” within
a particular taxon of the current state of a process that has been occurring
for about 3.9 billion years. The concept of population is intimately connected
with evolution. Evolution may be parsimoniously defined as the process of
change over time of the allele frequencies within populations.

In this chapter, we consider the parameters and statistics required to de-
scribe the genetic properties and genetic changes in populations of diploid
sexual organisms. The criteria used to characterize a population must take
into account the dynamic properties of that population. Populations are un-
dergoing constant change because the individuals that comprise the popula-
tion are themselves changing from birth to mate selection, reproduction, and

368 13 Genetic Variation in Populations

eventually death. In addition, individuals may migrate into or away from a
particular population. When a portion of a population relocates, the mem-
bers of that subpopulation introduce a sample of the alleles from the original
population into the new locale. The subpopulation may then grow to become
different from the original population, possibly leading to a speciation event.
When individuals migrate into a population from another distinct popula-
tion, they may introduce new alleles. Added to these processes of change is
the inexorable accumulation of point mutations, which adds new alleles to any
population (other types of mutations, such as deletion or inversion, usually
inactivate genes rather than create new alleles). It is evident that populations
and the forces acting upon them can be complex, thus requiring correspond-
ingly complex statistical models.

There are a number of reasons why we wish to study populations. Arguably
the most important is that variation within populations is the basis for nat-
ural selection. Another reason is to infer population history. For example, we
can measure allele frequencies in human populations and use them to infer mi-
gration patterns that affected recent human evolution. In addition, we might
look for alleles associated with genes implicated in particular genetic diseases.
A special case of this is analyzing genes associated with diseases for which
particular human subpopulations have elevated risk (e.g., adult diabetes in
some native American populations in the southwestern United States).

13.2 Mendelian Concepts

In Chapter 1, we briefly discussed genetics, deferring detailed discussions to
the occasions when they would be needed. Since we describe populations in
terms of their genes, it is appropriate at this point to review some basic
Mendelian genetics.

Every diploid organism has two copies of each genetic locus carried on
pairs of autosomes (chromosomes other than sex chromosomes). A locus is
an identifiable region on a chromosome, and it may correspond to a gene or
to a physical marker such as a sequence-tagged site (STS). We discuss genes
for simplicity. Gene nomenclature can vary from organism to organism, and
we use conventions like those used in human genetics. Genes are represented
as uppercase italicized letters (up to four for humans), and phenotypes are
represented by the corresponding Roman letters: phenotype A corresponds to
gene A. We are concerned with diploid organisms, and the alleles residing on
different members of a corresponding pair of chromosomes are separated by a
forward stroke: A1/A2 means that allele A1 of gene A resides on one chromo-
some and allele A2 resides on the other. The two gene copies corresponding
to a particular locus in an organism may or may not be exactly identical.
For example, in human populations from equatorial Africa, the β-globin gene
HBB may appear in at least two forms: type A, which is associated with
the normal phenotype, and type S, which is associated with sickle-cell dis-

13.3 Variation in Human Populations 369

ease. These alternative forms of the same gene are examples of alleles. During
meiosis (see Section 1.3.1), alleles corresponding to a particular locus segre-
gate, which means that one copy of any locus appears in any given gamete. In
contrast, two different genes on the same chromosome do not segregate unless
recombination has occurred.

If two alleles at a given locus are identical in an individual, then that
individual is said to be homozygous for the genes at that locus. If the two
alleles are different, then the individual is heterozygous with respect to the
genes at that locus. A special case of homozygosity is autozygosity, which
means that two alleles are identical because they have descended from the
same common ancestral allele. Suppose that phenotype A is associated with
allele A1, and that phenotype A− is associated with allele A2. If an A1/A2

heterozygote has phenotype A, then A1 is said to be the dominant allele and
A2 is said to be the recessive allele. In humans, cystic fibrosis is associated
with a mutant form of the CFTR gene (located on chromosome 7). Individuals
who have two copies of the normal gene, or one copy of the normal allele
and one copy of the defective allele, are not affected, but persons who have
two defective alleles are affected. The wild-type allele is thus dominant, and
the disease is said to be autosomal recessive. Sometimes the phenotype of
the heterozygote is intermediate between those of the parents, each of whom
is homozygous for different alleles. This circumstance is called incomplete
dominance. Sometimes the phenotype associated with a gene fails to appear
because of the particular constellation of other genes in that individual or
particular environmental circumstances. The probability that a gene confers
the phenotype associated with it is called its penetrance.

It is very important to note that a large proportion of phenotypes in
complex organisms depend upon the cumulative effects of several genes. Such
phenotypes are called polygenic traits. For example, height and skin color
in humans do not depend on single genes but rather on the collaboration of a
number of genes. Skin color in humans is thought to be controlled by three to
six loci. Teasing out the contributions of multiple genes, each of which might
contribute in a quantitative way (so-called quantitative trait loci), can be a
complicated exercise in genetics.

13.3 Variation in Human Populations

In this section, we use populations drawn from different regions of the world
to show how genetic variation is distributed across human populations. Be-
cause only a small proportion of alleles are unique to a particular population,
knowing what population or region an individual belongs to does not help
much in predicting which alleles the individual will have. On the other hand,
by studying information across different loci, we can often predict which pop-
ulation or region an individual comes from by knowing which combination of
alleles is present in the individual.

370 13 Genetic Variation in Populations

The data are taken from 52 populations in seven geographic regions of the
world measured for genotypes at 377 loci (Rosenberg et al., 2002). An exam-
ple of a region is sub-Saharan Africa, and examples of populations within this
region are Bantu, Mandenka, Yoruba, San, Mbuti Pygmy, and Biaka Pygmy.
The loci examined were microsatellites, which are tandem repeats of short
k-words (see Section 13.4.2). Corresponding to each locus is a characteristic
number of different alleles. An example of the allele frequencies for two loci
measured for seven different geographical regions is shown in Fig. 13.1. For
the particular locus D12S2070, there are eight alleles. Clearly, the allele fre-
quencies differ for different regions. For example, one allele represents 85% of
the total in native American populations, but that same allele represents only
7% of the total in populations from the Middle East. Allele frequencies for
other loci may not vary much across regions, as illustrated by D6S474.

D12S2070

Africa Europe Middle
East

Central/
South Asia

East
Asia

Oceania America

D6S474

Africa Europe Middle
East

Central/
South Asia

East
Asia

Oceania America

Fig. 13.1. [This figure also appears in the color insert.] Allele frequencies associated
with two microsatellite markers in human populations taken from seven different
regions. Each allele has a different color code, and the size of the sector in the pie
chart indicates allele frequency. Reproduced with permission. Copyright 2002 NA
Rosenberg.

13.3.1 Describing Variation Across Populations

We now introduce some statistics for describing population variation. Let K
be the number of alleles for any given locus, and let pj be the relative frequency
of allele j. The probability F that two randomly chosen genes at a locus are
identical is

13.3 Variation in Human Populations 371

F =

K∑
i=1

p2
i . (13.1)

We note that the population frequencies pj are unknown parameters of our
population and must be estimated from a sample of individuals from that
population. F can then be calculated from the estimated allele frequencies.
The heterozygosity H for any locus is defined as H = 1 − F :

H = 1 −
K∑

i=1

p2
i . (13.2)

Computational Example 13.1: Calculating heterozygosities

Heterozygosity provides a measure of the amount of variation within a pop-
ulation. Exercise 1 at the end of this chapter should now be completed. The
results illustrate how H behaves for different numbers of alleles and allele
probability distributions. Observe that for a fixed number of alleles, the het-
erozygosity is greater if the distribution of the allele probabilities is uniform
than if some alleles predominate. Also, for uniform allele distributions, the
heterozygosity is greater if the number of alleles is greater.

Heterozygosities can be calculated within populations, within regions, or
globally. Table 13.1 exemplifies the typical structure of the underlying data
for a single locus having three alleles. There would be similar tables for every
other locus, each with its characteristic number of alleles. The heterozygosity
reported for each population measured over 100 loci would be the heterozy-
gosity averaged over all 100 loci.

Examples of Calculated Heterozygosities

For the data in Table 13.1, we can calculate a variety of heterozygosities.

Population 1, region 1:

HPop1−1 = 1 − [(3/10)2 + (5/10)2 + (2/10)2] = 0.620.

Region 1 as a whole:

HR1
= 1 − [(15/30)2 + (10/30)2 + (3/30)2] = 0.611.

Average of populations in region 1 (see (13.3)):

HR1,P = (0.62 + 0.62 + 0.46)/3 = 0.567.

World as a whole:

HW = 1 − [(31/120)2 + (44/120)2 + (45/120)2] = 0.658.

372 13 Genetic Variation in Populations

Table 13.1. Example of data structure and heterozygosities for a single gene having
three alleles examined in four world regions, each containing three populations. The
three rightmost columns show the number of instances of the alleles a, b, c.

Allele
a b c

Region 1 Pop 1-1 3 5 2
Pop 1-2 5 3 2
Pop 1-3 7 2 1

Total for region 15 10 5

Region 2 Pop 2-1 3 3 4
Pop 2-2 4 3 3
Pop 2-3 3 4 3

Total for region 10 10 10

Region 3 Pop 3-1 0 1 9
Pop 3-2 1 1 8
Pop 3-3 0 2 8

Total for region 1 4 25

Region 4 Pop 4-1 2 7 1
Pop 4-2 1 7 2
Pop 4-3 2 6 2

Total for region 5 20 5

World 31 44 45

In addition to the direct measures of heterozygosity, it is useful to consider
particular averages, as illustrated in Computational Example 13.1. If there
are B populations in a region with heterozygosities H1, H2, . . . , HB, then the
average heterozygosity for that region is

HR,avg =
1

B

B∑
i=1

Hi. (13.3)

We can also calculate the average regional heterozygosity over R regions,

HR =
1

R

R∑
i=1

HRi
, (13.4)

where the HRi
correspond to the heterozygosities of each region as a whole,

obtained by pooling data from all populations (i.e., not calculated as in (13.3)).
Now we are prepared to take a look at the actual population heterozygosi-

ties estimated for different human populations (Table 13.2). The first column

13.3 Variation in Human Populations 373

of heterozygosities are the regional data calculated directly from the allele fre-
quencies of the pooled populations—not calculated as averages. The bottom
line, first column, is computed from a pool of all the data, taking the world
as a single region. Data above the last entry in the second column (HR,avg)
were calculated as averages of population heterozygosities using (13.3). The
average regional heterozygosity, HR, calculated according to (13.4), is 0.733.
The average subpopulation heterozygosity, HS (bottom line, second column),
can be calculated from the entries above it as a weighted average using the
numbers of each population as weighting factors.

Table 13.2. Heterozygosities for 377 human microsatellite alleles by population and
region. HR: region as whole; HR,avg: average of populations in region. The number
of populations in each region is given in parentheses. Source: Rosenberg NA et al.
(2002) www.sciencemag.org/cgi/content/full/298/5602/2381/DC1.

Region HR HR,avg

sub-Saharan Africa 0.792 0.774 (6)
Europe 0.753 0.751 (8)
Middle East 0.761 0.756 (4)
Central/S. Asia 0.759 0.752 (9)
East Asia 0.730 0.723 (18)
Oceania 0.695 0.683 (2)
America 0.644 0.599 (5)

World 0.771 0.727

Remember that the heterozygosities provide measures of population vari-
ation. With the data in Table 13.2 and the population averages described
above, we can estimate the fractions of human variation that occur within
populations, among populations within regions, and among regions of the
world. Let HT be the heterozygosity for the total population of the world (see
Table 13.2, column 1, last entry). Since we can write

HT = HT − HR + HR − HS + HS ,

we see that

1 =
(HT − HR)

HT
+

(HR − HS)

HT
+

HS

HT
. (13.5)

The first term on the right-hand side of (13.5), the fraction of variation that
occurs among regions of the world, is (0.771 − 0.733)/0.771 = 0.049. The
second term, the fraction of variation that occurs among populations within
a region, is (0.733 − 0.727)/0.771 = 0.008. The last term, the fraction of
variation within populations, is 0.727/0.771 = 0.943. This means that 94%
of the human variation in the world occurs at the level of local populations,

374 13 Genetic Variation in Populations

and only about 5% of the variation occurs among regions of the world. On
average, for each locus, there is more variation between two African people
than there is between the average African and the average Chinese person.

The last statement does not mean that we can’t distinguish East Asians
from Africans. A simple example that shows why can be illustrated from the
allele frequency data in Table 13.3. Suppose that we have two populations, I
and II, and estimated allele frequencies at three unlinked loci, each of which
has two alleles. We score a particular individual (Joe) for his genotype with
respect to these three genes and find him to be A1/A1, B1/B1, and C1/C1—
that is, homozygous with respect to the first alleles of genes A, B, and C. The
joint probability of this occurrence for an individual belonging to population
I is (0.8)2 × (0.8)2 × (0.8)2 = 0.26. The joint probability of this genotype for
an individual belonging to population II is (0.2)2 × (0.2)2 × (0.2)2 = 0.00006.
Clearly, Joe’s genotype is far more common in population I than in population
II, and we would conclude that Joe is more likely to be “I-ese” than“II-ian.”

Table 13.3. Example of allele frequencies for two populations measured with respect
to three genes having two alleles. Both alleles of all genes are present in both popula-
tions. While the minor allele of each gene is somewhat common in each population,
particular combinations of alleles may be quite rare (e.g., A2/A2, B2/B2, C2/C2 in
population I).

Allele Frequencies
Gene Population I Population II

1 2 1 2

A 0.8 0.2 0.2 0.8
B 0.8 0.2 0.2 0.8
C 0.8 0.2 0.2 0.8

13.3.2 Population Structure

The world’s human population displays population structure: there are
clear subpopulations indicated by the data (eg, locus D12S2070, Fig. 13.1).
The populations are hierarchical in the sense that each local population can
be grouped into successively larger inclusive groupings (local population →
regional population → world population). Because the local populations are
genetically distinct, the total population for the world as a whole is said to be
stratified. For such populations, there are particular relationships between
heterozygosities calculated as averages of subpopulation data and heterozy-
gosities calculated from pooled data. Note in Table 13.2 that the heterozy-
gosity computed from population values, HR,avg, is always less than HR, the
heterozygosity computed by pooling all individuals in a region (the region as a

13.3 Variation in Human Populations 375

whole). This type of behavior is a general occurrence when a population (e.g.,
in a region) is broken down into subpopulations (the individual populations
in the example above). This can be shown as follows.

Suppose we wish to compare the heterozygosities for a total population,
which is broken down into B subpopulations, to the average heterozygosity of
the subpopulations. We perform measurements on one gene having K alleles.
We let pi be the average fraction of allele i in the population as a whole
and pib be the fraction of allele i in subpopulation b. The total population
homozygosity, FT , is

FT =

K∑
i=1

p2
i ,

and the homozygosity of subpopulation b is

Fb =

K∑
i=1

p2
ib.

The average homozygosity for the subpopulations, FS , is

FS =
1

B

B∑
b=1

Fb

(analogous to (13.3)). We are interested in the difference between FS calcu-
lated by averaging the Fb for the subpopulations, and FT calculated from
pooled data:

FS − FT =
1

B

B∑
b=1

K∑
i=1

p2
ib −

K∑
i=1

p2
i . (13.6)

In Exercise 3 we show that

FS − FT =

K∑
i=1

[
1

B

B∑
b=1

(pib − pi)
2

]
. (13.7)

The terms in the brackets are seen to be the variances of the frequencies
(across subpopulations) of each allele, measured with respect to the population
average. In terms of variances σ2

i ,

FS − FT =

K∑
i=1

σ2
i . (13.8)

In terms of heterozygosities, HT = 1 − FT and HS = 1 − FS , so we finally
obtain

HT − HS =

K∑
i=1

σ2
i . (13.9)

376 13 Genetic Variation in Populations

Since the variances σ2
i are always positive, the heterozygosity for a pooled

population is always larger than the average of the heterozygosities of the
subpopulations of which it is constituted.

The quantities we have been discussing are closely related to the F-
statistics defined by Wright (1951). These statistics were called fixation in-
dices, and they describe the heterozygosities of structured populations at dif-
ferent levels,

FST =
HT − HS

HT
,

FSR =
HR − HS

HR
,

FRT =
HT − HR

HT
,

where subscripts S, R, and T stand for subpopulation, region, and total in the
same sense that we have been using them above. These subscripted quantities
should not be confused with homozygosities, F . Note that the terms in (13.5)
are related to the fixation indices.

13.4 Effects of Recombination

The discussion up to now has not included recombination, which permits
alleles on one chromosome to substitute for alleles on other copies of that
chromosome (Section 1.3.2). When describing a population in terms of indi-
vidual loci, it suffices to report allele frequencies corresponding to each locus.
Sometimes we are interested in several different loci that reside on the same
chromosome. The specification of the alleles for loci on the same chromosome
is called the haplotype. The distinction between genotype and haplotype is
shown in Fig. 13.2. Without recombination, new haplotypes would be gen-
erated only by new mutations. However, new haplotypes are produced by
recombination because chromosome pairs usually recombine during gamete
formation.

Given a group of individuals affected by a particular genetic disease pheno-
type, how do we identify the gene or set of genes that confer that phenotype?
One way is to identify linkage of the locus associated with the disease with
mapped genetic markers. Such linkage analysis may be performed by using
families containing affected individuals. One limitation of such an approach
is that the numbers of individuals in families available for genetic study are
usually rather small, which means that the number of meioses represented
in the pedigree (family tree) is correspondingly small. As we shall see in the
next section, low numbers of meioses mean that there will be a low number
of recombination events, which means that any linkage detected will probably
be to genetic markers that are comparatively far away from the locus causing

13.4 Effects of Recombination 377

Haplotypes:

Genotype:

x

I

II

Single cross-over (I):

and

Double cross-over (II):

A1

A1

A2

A2 D
1

A1B2C2D2

A2B1
C

1
D

1

A2A1 B2B1/ /, , C1 C2
/ , D1 D2

/

B2

B2

B1

B1
C

1

C
1

C2

C2

D2

D2

D
1

and

A1

A2

B2

B1

C
1

C2

D2

D
1

A.

B. Gamete chromosomes

Fig. 13.2. Distinctions between haplotypes and genotypes, and the effects of recom-
bination. Panel A: A portion of two chromosomes is shown containing four genes,
each of which has two alleles. Two different recombination events (broken lines) are
diagrammed. Recombination I involves a single crossover, while recombination II
involves a double crossover. The products from these events are illustrated in Panel
B.

the disease. Another limitation is that the interpretation of linkage analysis
data is tied to a model of inheritance. An alternative to linkage analysis is
association analysis, which seeks statistical relationships between alleles
within a larger population and the disease phenotype. An example of asso-
ciation analysis is the case-control study. The population can now be much
larger than one or a few families, so many meioses usually will have occurred
since the appearance of the disease-causing allele in the population. If a par-
ticular allele of gene X is usually co-inherited with the disease state, then
the disease locus is probably close to gene X . To apply this logic, we need
to know the sizes of genomic regions for which allelic combinations have not
been disrupted by recombination. Such regions (called haplotype blocks) are
discussed in Section 13.6.

378 13 Genetic Variation in Populations

13.4.1 Relationship Between Recombination and Distance

We first develop an expression that relates the probability of recombination
to distance. Two crossover events are diagrammed in Fig. 13.2. Crossover I
involves a single genetic exchange in interval x and joins the left segment of
the top chromosome to the right segment of the bottom chromosome and vice
versa. An odd number of crossover events anywhere in region x will produce
products that are recombinant for markers to the left and right of region x, in
this case alleles of genes A and D. Crossover II involves two genetic exchanges
in region x. Even numbers of exchanges may generate products recombinant
for genes that lie to the left (or right) of x and genes lying within x, but
they do not generate products recombinant for genes that flank region x. We
are interested in how frequently haplotypes are shuffled by genetic exchange.
The recombination fraction r is the probability that alleles at two loci on
a chromatid come from different parental chromosomes. The recombination
fraction, which is used to measure genetic map distance, is related to m, the
expected number of crossovers between the two loci.

The simplest model relating r to m was first proposed by Haldane. He as-
sumed that the crossovers occurring between two loci on a given chromatid fol-
low a Poisson process with mean m. In particular, the number C of crossovers
has a Poisson distribution, with

P(C = k) =
mke−m

k!
, k = 0, 1,

As we can see from Fig. 13.2, odd numbers of crossovers lead to recombination
between loci on both sides of x (A and D), and even numbers of crossovers
do not. Thus the relevant probability is

r = P(C is odd) =
∑

k odd

mke−m

k!
. (13.10)

The sum on the right-hand side of (13.10) can be expressed as

∑
k odd

mk

k!
=

em − e−m

2
.

(This can be verified by performing series expansions of the exponential terms
on the righthand side.) Therefore,

r = P(C is odd) =
1

2
(1 − e−2m). (13.11)

This is the Haldane mapping function, which relates recombination frequency
(probability) with map distance, m. When m is small, we can neglect terms of
order m2 and higher in a series expansion of the exponential term in (13.11) to
see that for short distances r ≈ m. Note that as m gets very large in (13.11),

13.4 Effects of Recombination 379

the probability of recombination approaches 0.5. This means that relative to
a chosen locus on one chromosome, there is a 50:50 chance that an allele at a
distant locus has become associated with the partner chromosome. In such a
case, the loci appear to be unlinked. (Note that because of random assort-
ment of chromosomes during meiosis, the probability that genes appearing on
different chromosomes will appear in the same gamete is also 0.5.)

Loci that are close together are therefore less likely to be separated by
recombination than are loci that are far apart, and for sufficiently short dis-
tances, there is an approximately linear relationship between recombination
frequency and distance. This is the rationale for measuring genetic distances
in terms of recombination frequencies, and the map units used for eukaryotes
are centimorgans (named after Thomas Hunt Morgan). One centimorgan
distance between two loci corresponds to having (on average) one recombina-
tion event separating these loci every 100 meioses. Because meiosis is different
in male and female mammals (oocytes are arrested in meiosis I in females),
the relationship between map distances in human males and females is differ-
ent. In males, it is estimated that there are 0.92 cM per Mb, but for human
females, there are 1.7 cM/Mb (Yu et al., 2001). The sex-average relationship
between recombination frequency and distance is thus very approximately
1 cM/Mb. These numbers are only averages: recombination rates vary from
chromosome to chromosome and at different positions in any particular chro-
mosome. Local recombination rates measured at genetic map resolution range
from 0.1 cM/Mb to 3 cM/Mb for Chromosome 3 (Kong et al., 2002). In some
regions rates are even larger, as described in Section 13.6. The total genetic
map length of an organism can be obtained by multiplying the number of
cM/Mb by the physical length, or more accurately by concatenating map dis-
tances separating all loci. Using the latter approach, the genetic length of
the human female autosomal genome (i.e., excluding the X chromosome) is
estimated to be 4821 cM, and the corresponding length for the human male
autosomal genome is about 2590 cM (Kong et al., 2002).

13.4.2 Genetic Markers

Appropriate genetic markers that can easily be assayed are required for ge-
netic mapping or measurement of recombination. If recombination is to be
detected between two loci, there must be more than one allele for each locus.
For example, the recombination events I and II shown in Fig. 13.2 (bottom)
produced new haplotypes that are different from the parental haplotypes.
Given suitable assays, these haplotypes could be detected. However, suppose
that the genotype for the rightmost marker was D1/D1: if we were scoring
recombination using loci A and D, we would not be able to detect recombi-
nation because the state of the allele at position D (D1/D1) would remain
unchanged even if recombination occurred. What is required are polymor-
phic markers—genes or loci that have two or more alleles with sufficiently
high frequency in the population. We say that a locus is polymorphic if it has

380 13 Genetic Variation in Populations

at least two alleles with frequency greater than 1/100. (This cutoff is arbitrary,
serving only to remove alleles with extremely small frequencies.)

There are three major considerations affecting the utility of any type of
genetic marker: (a) the density of the marker along the genome, (b) the type
of assay of marker alleles, and (c) amenability to high-throughput screening.
Genes were the earliest markers employed in genetics. With estimates of 25,000
genes in the human genome, the marker density is roughly 1/105 bp. Tradition-
ally, genes were scored by different methods, depending upon the phenotype
that they confer. For example, different blood group alleles might be distin-
guished by by immunological assays. Genes contributing to complex traits
might have no corresponding simple phenotypic assay. If different assay meth-
ods are needed for scoring different loci, prospects for high-throughput screens
based on gene products are poor.

Recombinant DNA technologies provided assays for new types of genetic
markers that could be scored using the same experimental platform. One
approach is gel electrophoresis of DNA digested by a particular restriction
endonuclease followed by Southern blotting (i.e., transfer of resolved DNA
fragments to membranes for hybridization to a labeled probe). One type of
marker that can be detected in this way is the restriction fragment length
polymorphism (RFLP), which arises when a particular restriction endonu-
clease cleavage site is inactivated (i.e., mutated) in a subpopulation. Another
type of polymorphism is the presence or absence of a transposable element,
often Alu elements for human DNA. There are about 106 Alu sequences in
the human genome, but different human populations may display characteris-
tic Alu insertions or deletions, which alter sizes of restriction fragments from
particular chromosomal regions. Thus, Alu elements are another source of
RFLPs. Microsatellite and minisatellite polymorphisms, variable number
of tandem repeat (VNTR) polymorphisms, can sometimes be detected
by gel electrophoresis and Southern blotting. These consist of tandem rep-
etitions of DNA segments occurring at numerous locations throughout the
human genome. The number of repeated bases may differ for different indi-
viduals or populations. One type (minisatellite DNA) tends to have extensive
repetition of elements ranging in size from 14 to 500bp. These are often found
in telomeric regions of chromosomes. Another type (microsatellite DNA) com-
prises shorter blocks of sequence with repeat sizes of 1 to 13 bp. Di-, tri-, and
tetra-nucleotide repeat units are common. Microsatellite DNA is distributed
throughout the genome. Examples of di- and tri-nucleotide repeats are (CA)n

and (AAT)n, with the polymorphism arising from differing values of n among
members of the population.

The advent of the polymerase chain reaction (PCR) revolutionized genome
analysis because of its sensitivity (as little as one molecule can be detected)
and specificity (particular regions within a vast “sea” of genomic DNA can
be selectively amplified). PCR is an automatable method that can be used
to assay for VNTR and restriction site polymorphisms, obviating the need
for Southern blotting (which is hard to automate and employs radioactive

13.5 Linkage Disequilibrium (LD) 381

probes). A disadvantage of PCR is the required design and synthesis of specific
primer pairs for each region to be amplified.

A single-nucleotide polymorphism (SNP) is variation in the identity
of the base appearing at a particular position in the genome. There are an esti-
mated 1.5×106−107 polymorphic SNP sites in the human genome (Cargill et
al., 1999; International SNP Map Working Group, 2001; Venter et al., 2001),
corresponding to resolution at a level of hundreds of base pairs. Detection can
employ either DNA sequencing or oligonucleotide array technologies, which
means that SNP analysis can be readily automated and multiplexed. If de-
tection is by hybridization, the underlying principle is that mismatched bases
reduce the melting temperature of DNA-DNA hybrids. In the simplest exam-
ple, four different oligonucleotide features, each having one of the four different
bases at the polymorphic site, can be arrayed on a solid substrate. The state
of the base at the polymorphic site is indicated by which of the four features
hybridizes with the DNA being tested. An alternative detection method is
primer extension. The underlying principle in this case is the ability of DNA
polymerase to add the correct base to a growing chain during synthesis along
a DNA template. The oligonucleotide probe sequences arrayed on a solid sub-
strate act as primers, so designed that the next base to be added corresponds
to the polymorphic site. The polymorphism can be detected by supplying
dXTP molecules bearing distinctive fluorescent tags and detecting the wave-
length of fluorescence emission after DNA synthesis. When the primers are
not immobilized, other detection methods such as standard DNA sequencing
gels or MALDI-TOF mass spectrometry may be employed.

13.5 Linkage Disequilibrium (LD)

Linkage disequilibrium (hereafter abbreviated LD) refers to the nonran-
dom association of alleles in haplotypes. It is measured by comparing the
proportion of an observed haplotype with the proportion that would be pre-
dicted based upon the population frequencies of the alleles at each locus. In
this section, we discuss a number of properties and consequences of LD.

13.5.1 Quantitative Description of LD

Linkage disequilibrium may be quantified as the difference between the ob-
served and predicted frequencies for allele combinations at two or more loci.
The predicted frequencies are computed using the population frequencies of
the alleles. For a system in which each locus has two alleles, let pA1B1

and
pA2B2

be the probabilities in the population of haplotypes A1B1 and A2B2, re-
spectively. The allele frequencies of the genes contributing to these haplotypes
are pA1

, pB1
, pA2

, and pB2
. Note that the allele frequencies are population

quantities, which are unaffected by recombination. We introduce a quantity

382 13 Genetic Variation in Populations

D that measures the difference between these observed and predicted frequen-
cies:

D = pA1B1
− pA1

pB1
.

Similarly (see Exercise 4),

D = pA2B2
− pA2

pB2
. (13.12)

If the A1B1 and A2B2 haplotypes are in excess of their predicted frequencies,
as indicated above, then there must be corresponding deficits in the haplotypes
A1B2 and A2B1 (having probabilities pA1B2

and pA2B1
, respectively):

pA2B1
− pA2

pB1
= −D,

pA1B2
− pA1

pB2
= −D. (13.13)

Some straightforward algebra shows that

D = pA1B1
pA2B2

− pA1B2
pA2B1

(13.14)

(taking into account the fact that pA1
pB1

+ pA2
pB2

+ pA1
pB2

+ pA2
pB1

=
(pA1

+pA2
)(pB1

+pB2
) = 1). The value of D can be either positive or negative,

and the sign depends on the arbitrary labeling of the alleles. If D = 0, the
loci are said to be in linkage equilibrium.

The magnitude of D depends upon the probabilities of the individual al-
leles. For example, in the special case for which pA1

= pA2
= pB1

= pB2
=

0.5, the maximum value of D occurs when pA1B1
= 0.5 (which requires that

pA2B2
= 0.5 and that pA1B2

= pA2B1
= 0.0). The value of D in this case is

0.52, or 0.25. Alternatively, with the probabilities of all alleles again set at
0.5 and pA1B1

= pA2B2
= 0, then pA1B2

= pA2B1
= 0.5, and from (13.14),

D = −(0.52) = −0.25.
In practice, it is convenient to express the data in terms of |D′|, where

D′ = D/Dmax and Dmax is the maximum value of D. We show in Exercise 5
that

Dmax = min{pA2
pB1

, pA1
pB2

}, if D > 0,

Dmax = min{pA1
pB1

, pA2
pB2

}, if D < 0. (13.15)

|D′| has the convenient property that 0 ≤ |D′| ≤ 1, with |D′| = 1 correspond-
ing to complete LD.

Another convenient measure of LD, r2, is obtained by dividing D2 by
pA1

pA2
pB1

pB2
:

r2 =
D2

pA1
pA2

pB1
pB2

. (13.16)

The quantity r2 is the square of the Pearson product-moment correlation
coefficient, which we encountered in Section 11.4. The equivalence between
(13.16) and the definitional form for r2 can be seen by noting that for binary

13.5 Linkage Disequilibrium (LD) 383

alleles of gene X (X1 and X2), the variance is σ2
X = pX1

pX2
. This means that

the denominator of (13.16) is σ2
Aσ2

B .
Another way of expressing r2 with the use of (13.12) is

r2 =

(
pA1B1

pA1
pB1

− 1

)(
pA2B2

pA2
pB2

− 1

)
. (13.17)

The quantity r2 measures the correlation between alleles at the two sites.
For markers that have complete disequilibrium and that have the same allele
frequency, it takes the maximal value 1.0 (= [(0.5/0.25−1)]2). If there is com-
plete equilibrium, the numerators and denominators of the ratios in (13.17)
are equal and r2 = 0.

13.5.2 How Rapidly Does LD Decay?

LD decays over time. It is also possible to obtain an expression for D at any
generation in a population in terms of the recombination parameter (recom-
bination fraction) r between two markers. Suppose that we want to calculate
the change in frequency of a haplotype in going from one generation to the
next. Consider a particular A1B1 haplotype. This could have arisen as a non-
recombinant copy of an A1B1 haplotype in the previous generation (frequency
(1 − r)pA1B1

) or as a result of recombination in the previous generation be-
tween two haplotypes that were A1∗ and ∗B1 (the ∗ denoting that the allele
at the other locus is immaterial). The frequency of these latter events is just
r pA1

pB1
. Combining the possibilities, we see that the fraction p′A1B1

of hap-
lotype A1B1 is

p′A1B1
= (1 − r)pA1B1

+ rpA1
pB1

. (13.18)

If we subtract pA1
pB1

from both sides of (13.18), we get

p′A1B1
− pA1

pB1
= (1 − r)pA1B1

− (1 − r)pA1
pB1

,

which, with the definition of D in (13.12) and the fact that the allele frequen-
cies do not change with time for a simple recombination model, becomes

D′ = (1 − r)D. (13.19)

This recursion formula can be applied over t generations to relate the LD Dt

at generation t to the initial linkage disequilibrium D0:

Dt = (1 − r)tD0. (13.20)

Equation (13.20) indicates how linkage disequilibrium changes over time.
LD will decrease to 0 after a large number of generations because 0 < r ≤ 0.5.
We can estimate the number of generations necessary to reduce LD to half
of its present value. We take r = 0.01 (corresponding to 1 cM—conveniently
close linkage for association studies). We solve the equation

384 13 Genetic Variation in Populations

Dt

D0
=

1

2
= (1 − r)t

for t, with r = 0.01. The result is t ∼ 69. Taking the human generation time
to be 20 years, we calculate that the human LD half-life is about 1400 years
for markers separated by 1 cM.

13.5.3 Factors Affecting Linkage Disequilibrium

In the previous section, we modeled LD using a population model that al-
lowed recombination to occur. Other forces acting on populations can lead to
association of alleles. For example, smaller populations will experience greater
sampling variation, leading to genetic drift (Section 13.7.1). Effects of genetic
drift are balanced by recombination (which breaks up haplotypes) and muta-
tion (which introduces new haplotypes). The magnitude of LD between two
polymorphic loci in a stable population is expected to depend on population
size, recombination fraction, and mutation rate. Moreover, LD can also re-
flect the precise mutational history of a population, even if no recombination
occurs. Consider, for example, a haplotype A1B1C1 in an ancestor, with dis-
tances A−B and B −C being identical. Now assume that a particular set of
mutations occurs in the pedigree shown in Fig. 13.3. The computed values of
LD for loci AB and BC are not the same, even though no recombination has
occurred (see Exercise 6).

Another force operating is the founder effect, which is observed with a
small population that has grown rapidly, largely in isolation. For example,
the population of Finland (now about 5 × 106) rapidly grew from a founding
population of about 1000 individuals 2000 years ago. If there is rapid pop-
ulation expansion over a short interval, linkage disequilibrium will be higher
than for a population of comparable size that has been in existence for a long
period of time.

Natural selection also can affect the association of alleles in haplotypes
if the individual’s genotype influences reproductive fitness. If the effect on
fitness of an allele at one locus is changed by an allele at another locus, there
will be a disproportionate increase in the frequency of individuals with both,
at the expense of individuals having only one of the alleles.

Finally, LD can be affected by the mixing of populations having different
allele frequencies. For example, suppose that we had a composite popula-
tion composed of three different subpopulations having the allele frequencies
and population sizes shown in Table 13.4. Suppose further that each of the
three subpopulations have individually reached equilibrium with respect to
alleles A and B (i.e., there is no mating between subpopulations). By taking
weighted averages, we can obtain the proportions of alleles within the com-
posite population: pA = 0.0923, pB = 0.177, and pAB = 0.0277. From (13.12),
we calculate that D = pAB − pApB = 0.0114. In other words, even though
the D values for each of the subpopulations were 0.0, because of population

13.5 Linkage Disequilibrium (LD) 385

A1 A2

C1 C2

B1 B2

A1 B1 C1

A1 B1 C1

A1 B1 C1

A1 B1 C1

A1 C1B2

B2

B2

A2

A2

C2

C2

B2

B2

A2

A2

B2A2

C1

C1

C1

A.

B.

Fig. 13.3. Measures of linkage disequilibrium are dependent upon the genealogical
history of mutations, independent of any recombination. A particular genealogical
tree for ten haplotypes is shown in panel A. The haplotypes corresponding to the
leaves of the tree immediately above each column are diagrammed in panel B.

structure (stratification), the computed D for the composite population was
not zero.

Table 13.4. Example of effects of population stratification on estimated linkage
disequilibrium. Probabilities of allele A at locus A and allele B at locus B are
reported. Each individual subpopulation is at linkage equilibrium.

Population
Population size N pA pB pAB D

I 1,000 0.3 0.5 0.15 0
II 2,000 0.2 0.4 0.08 0

III 10,000 0.05 0.1 0.005 0

I+II+III 13,000 0.0923 0.177 0.0277 0.114

386 13 Genetic Variation in Populations

We conclude then that the state of allelic associations in a population is
the result of interplay among many aspects of the evolutionary history of the
population. Unless the history is “known,” it is hard to model LD between
pairs of loci. This means that in general, data for the present state of LD in
populations are insufficient for making inferences about parameters such as
recombination fraction, population size, or mutation rate.

13.6 Linkage Disequilibrium in the Human Genome

There are two major reasons for interest in the pattern of linkage disequilib-
rium in the human population. First, there are medical reasons, as indicated
in Section 13.4. Recall that identification of genes associated with genetic
diseases depends upon relating the disease phenotype with readily scorable
genetic markers, either by using pedigree analysis or through statistical asso-
ciation. If there are few genetic markers on the map, disease states associated
with any one of them may not be physically close, meaning that the hunt
for the disease gene must cover an extensive area. Using markers such as
microsatellite repeats has produced genetic maps with a resolution of about
0.5 cM (Kong et al., 2002). Association of such markers with a disease gene
would (on average) allow us to restrict the search to a 500,000bp region of
the genome. The numerous single-nucleotide polymorphisms in the human
genome provide an opportunity for an even finer scale of mapping (hundreds
to thousands of bp map resolution). However, if there is substantial LD, a
much smaller number of “tag SNPs” may serve to mark regions in linkage
disequilibrium, which in turn may contain the disease-causing alleles. The
second major reason is that patterns of LD reflect the evolutionary history of
human populations over the last 250,000 years (e.g., effects of selection, mi-
gration, population expansion, and admixture). Different populations might
have different patterns of LD, which would reflect the population history.

The ability to solve these problems has been augmented by DNA sequenc-
ing technologies and the consequent ability to detect single-nucleotide poly-
morphisms (SNPs). Remember that SNPs are the character states at individ-
ual nucleotide positions in a genomic sequence. In most cases examined so far,
SNPs are biallelic: there are just two alleles, a major and a minor allele. This
means that we can employ the equations developed in Section 13.5 to describe
LD in the human genome. When we inquire about LD patterns in a genome,
we are really asking about the frequency distribution of chromosomal lengths
having |D′| or r2 values exceeding some arbitrary threshold value. These pat-
terns could equivalently be described in terms of recombination frequencies
within intervals separating the genes.

It is helpful to think about LD patterns in terms of some simple models.
For example, suppose that the recombination parameter r is approximately
constant throughout the length of a chromosome. In that case, we might model
the locations of recombinational crossovers as a Poisson process, which would

13.6 Linkage Disequilibrium in the Human Genome 387

produce an exponential distribution of lengths for segments in linkage disequi-
librium if all recombination events were to occur in a single generation. Such
a model applied over several generations will produce regions with high LD:
loci in close proximity are less likely to be separated by recombination than
distant loci, and for close loci, there simply may not have been enough meioses
during the history of the population to produce short-range equilibrium. This
is illustrated in Fig. 13.4. Alternatively, we might try to imagine some simple
patterns to which the observed data might conform. For example, we might
imagine that the genome is divided into haplotype blocks, which consist of
consecutive chromosomal loci showing high levels of local LD, separated by
short regions within which many recombination events have occurred. This is
equivalent to a punctate recombination model (where the recombination
fraction r is not constant). Whether or not these or more complicated models
are appropriate, we want statistics to describe the observed patterns. For the
haplotype block model, these might be (a) mean block size, (b) numbers of
blocks per Mb in a region, and (c) the fraction of the region contained in (or
covered by) haplotype blocks.

Descriptions of LD in terms of haplotype blocks are influenced by a number
of different factors:

– The history of the sampled populations (Section 13.5.2): Populations sam-
pled after a bottleneck will display greater amounts of LD, and populations
that have experienced exponential growth will have lesser amounts of LD,
than populations that have continued at stable population sizes for a long
period of time. As noted above, pooled samples may produce LD by ad-
mixture.

– Sample size: The estimated haplotype frequencies are only a sample from
a larger population, and estimates of the population frequencies from the
sample frequencies are less reliable when the number of genomes sampled
is small.

– Methods for determining haplotypes: Haplotypes may be determined di-
rectly, but often they have been inferred by statistical methods based upon
allele frequencies in the sample (i.e., they are estimated from diploid geno-
types). Such estimates may be less reliable than direct measures, because
of required assumptions in a population model.

– Spacing between SNPs: If the marker density is high (SNPs have close
spacing), short segments in LD can be detected, but if marker densities
are low, only larger haplotype blocks will be observed.

– Cutoffs imposed to exclude rare alleles: To simplify interpretation of pat-
terns, some investigators employ only more common alleles to define hap-
lotypes. But rare alleles are found in the “younger” haplotypes, and com-
mon alleles are biased toward older haplotypes. Older haplotypes have
had more time for recombination to occur, so that the length distribution
of haplotype blocks may be skewed toward lower values than in younger
haplotypes.

A
1

B
1
C

1
D

1
E

1

A
2

B
2
C

2
D

2
E

2

A
1

B
1
C

1
D

1
E

1

A
2

B
2
C

2
D

2
E

2

A
1

B
1
C

1
D

1
E

1

A
2

B
2
C

2
D

2
E

2

A
1

B
1
C

1
D

1
E

1
A

2

B
2
C

2
D

2
E

2

A
1

B
1
C

1
D

1

E
1

A
2

B
2
C

2
D

2

E
2

A
1

B
1
C

1
D

1

E
1

A
2

B
2
C

2
D

2

E
2

A
1

B
1
C

1
D

1

E
1

A
2

B
2

C
2
D

2
E

2

A
1

B
1
C

1
D

1

E
1

A
2

B
2
C

2
D

2

E
2

A
1

B
1

C
1
D

1

E
1

A
2

B
2
C

2
D

2

E
2

A
1

B
1
C

1
D

1

E
1

A
2

B
2

C
2
D

2
E

2

A
1

B
1
C

1
D

1

E
1

A
2

B
2
C

2
D

2

E
2

A
1

B
1

C
1
D

1

E
1

A
2

B
2
C

2
D

2

E
2

g
e
n
e
ra

ti
o
n

1

g
e
n
e
ra

ti
o
n
 2

g
e
n
e
ra

ti
o
n
 3

g
e
n
e
ra

ti
o
n
 0

F
ig

.
1
3
.4

.
R

el
a
ti
o
n
sh

ip
b
et

w
ee

n
re

co
m

b
in

a
ti
o
n

a
n
d

h
a
p
lo

ty
p
e

b
lo

ck
s
fo

r
a

p
o
p
u
la

ti
o
n

re
p
re

se
n
te

d
b
y

si
x

ch
ro

m
o
so

m
es

.
In

it
ia

l
ch

ro
m

o
-

so
m

es
(g

en
er

a
ti
o
n

0
)

h
av

in
g

a
ll
el

es
A

1
,B

1
,.

..
,E

1
a
re

in
d
ic

a
te

d
b
y

b
la

ck
li
n
es

,
a
n
d

in
it
ia

l
ch

ro
m

o
so

m
es

h
av

in
g

a
ll
el

es
A

2
,B

2
,.

..
,E

2

a
re

sh
ow

n
b
y

g
re

y
li
n
es

.
C

h
ro

m
o
so

m
es

fo
r

su
b
se

q
u
en

t
g
en

er
a
ti

o
n
s

a
re

p
ro

d
u
ce

d
b
y

re
co

m
b
in

a
ti
o
n

b
et

w
ee

n
in

d
ic

a
te

d
p
a
ir
s

o
f
ch

ro
m

o
-

so
m

es
(b

ra
ck

et
s)

.
In

th
is

si
m

p
li
fi
ed

m
o
d
el

,
th

e
p
ro

b
a
b
il
it
ie

s
o
f
re

co
m

b
in

a
ti
o
n

w
it
h
in

a
ll

su
b
in

te
rv

a
ls

o
f
th

e
sa

m
e

le
n
g
th

a
re

id
en

ti
ca

l.
A

ft
er

se
v
er

a
l
g
en

er
a
ti
o
n
s,

m
o
re

cr
o
ss

ov
er

s
b
et

w
ee

n
d
is
ta

n
t

m
a
rk

er
s

w
il
l
h
av

e
o
cc

u
re

d
th

a
n

b
et

w
ee

n
cl

o
se

m
a
rk

er
s.

T
h
u
s,

h
a
p
lo

ty
p
es

o
f

cl
o
se

m
a
rk

er
s

(C
1
D

1
a
n
d

C
2
D

2
in

th
is

ex
a
m

p
le

)
a
re

le
ss

li
k
el

y
to

b
e

d
is
ru

p
te

d
,
le

a
d
in

g
to

h
ig

h
er

li
n
ka

g
e

d
is
eq

u
il
ib

ri
u
m

.
R

eg
io

n
o
f
th

e
C

D
h
a
p
lo

ty
p
e

b
lo

ck
is

in
d
ic

a
te

d
b
y

th
e

b
ox

.

13.6 Linkage Disequilibrium in the Human Genome 389

The observations above imply that any statistic describing LD in a particu-
lar case is meaningful only within the context of the methods and sampling
protocols employed for making the estimate.

Computational Example 13.2 illustrates how SNPs can be used to identify
genomic regions that display LD. In this illustration, there are five SNP loci,
and the state of each is represented by one of only two alleles. Invariant loci are
indicated by dashes in this illustration, but in the literature, SNP characters
are usually listed in positional order with no representation of the positions
between the SNPs. The measure of LD employed is |D′|, calculated for all
possible pairings of alleles [n(n − 1)/2 pairings of n alleles]. The result is
displayed at the end of the box in a triangular grid, with each element shaded
to represent the magnitude of |D′| for the corresponding pair of alleles. If the
order of SNPs representing rows and columns is as shown, then the elements
representing LD between SNP j + 1 and SNP j appear in order along the
diagonal set of elements (reading from bottom left to top right). Haplotype
blocks would appear as clusters of shaded elements near the diagonal. (Only
one block, comprised of SNPs 3 and 4, is illustrated in this simplified example.)
Figure. 13.5 presents the results for real data.

Computational Example 13.2: Calculation of pairwise linkage dis-
equilibrium statistic |D′|
Below are the SNP data for our example.

SNP number
1 2 3 4 5

--A----------------T---G--T-------------------T----

--T----------------T---G--T-------------------T----

--A----------------A---G--T-------------------A----

--T----------------T---G--T-------------------A----

--A----------------T---G--T-------------------A----

--T----------------T---C--A-------------------T----

--A----------------A---C--A-------------------A----

--T----------------A---C--A-------------------A----

--A----------------T---C--A-------------------T----

--T----------------A---C--A-------------------A----

The calculations are shown below.

D Dmax |D′|
[1, 2] pAT = 0.3, pA = 0.5, pT = 0.6 0.00 0.20 0.00
[1, 3] pAG = 0.3, pA = 0.5, pG = 0.5 −0.05 0.25 0.20
[1, 4] pAT = 0.3, pA = 0.5, pT = 0.5 −0.05 0.25 0.20

390 13 Genetic Variation in Populations

D Dmax |D′|
[1, 5] pAT = 0.2, pA = 0.5, pT = 0.4 0.00 0.20 0.00

[2, 3] pTG = 0.4, pT = 0.6, pG = 0.5 −0.10 0.20 0.50
[2, 4] pTT = 0.4, pA = 0.6, pT = 0.5 0.10 0.20 0.50
[2, 5] pTT = 0.4, pT = 0.6, pT = 0.4 0.16 0.24 0.67

[3, 4] pGT = 0.5, pG = 0.5, pT = 0.5 −0.25 0.25 1.00
[3, 5] pGT = 0.2, pG = 0.5, pT = 0.4 0.00 0.20 0.00

[4, 5] pTT = 0.2, pT = 0.5, pT = 0.4 0.00 0.20 0.00

 1 2 3 4 5

5

4

3

2

1

White: |D′| ≤ 0.2
Light Grey: 0.2 < |D′| ≤ 0.5
Dark Grey: 0.5 < |D′| ≤ 0.8
Black: 0.8 < |D′| ≤ 1.0

Currently, data on LD in human populations has focused either on genome
samples or short chromosomes (Hsa19, Hsa20, Hsa21, and Hsa22). “Haplotype
block” may be defined differently in different studies. For example, haplotype
blocks have been defined as a series of three or more markers in a contig
for which all estimated values of |D′| exceed 0.9 (Phillips et al., 2003) or as
a region over which fewer than 5% of the markers show evidence of recom-
bination (Gabriel et al., 2002). The study of Hsa19 (Phillips et al., 2003)
indicated that with a median 5.5 kb spacing between SNPs, about 32% of the
chromosome was contained in haplotype blocks. The observed distribution of
block lengths resembled an exponential distribution, and simulations indicated
that similar distributions could be produced without invoking selection, spe-
cial population histories, or recombination hotspots. The median block length
was approximately 20 kb. In the case of Hsa21, individual chromosomes were
separated by using somatic cell hybrids, so that haplotypes were measured
directly (Patil et al., 2001). The mean SNP spacing was 1300bp, and an opti-
mization method was employed to define blocks such that the entire genome
was covered. About 80% of the chromosome was contained in blocks defined
by three or more SNPs, and the mean size of these blocks was about 16 kb. The
mean size of all blocks (including smaller ones) was 7.8 kb. The dependence of
inferred haplotype block sizes on marker spacing is shown in Table 13.5. This

13.6 Linkage Disequilibrium in the Human Genome 391

294.8 kb

0.49 cM/Mb
450.8 kb
0.94 cM/Mb

Sub-Saharan African sample,
region 19a

A. Sub-Saharan African sample,
region 32a

B.

Fig. 13.5. Plots of pairwise |D′| for two different human genomic regions drawn
from a sample of sub-Saharan African populations. Plotting is analogous to the
diagram in Computational Example 13.2. Dark grey squares indicate strong LD,
light grey represents intermediate LD, and medium grey indicates no LD. Markers
and marker spacings are indicated by lines below and to the right of the triangular
grids. Reprinted, with permission, from Wall JD and Pritchard JK (2003) Nature

Reviews Genetics 4:587–597. Copyright 2003 JD Wall.

emphasizes the assertion that marker spacings that are too large will fail to
detect smaller blocks of disequilibrium, in effect sampling only the tail of the
LD block length distribution function.

The large number of SNPs allows estimation of recombination rate varia-
tion across the human genome. Although Innan et al. (2003) found that the
observed LD for chromosomes Hsa19 and Hsa21 could be modeled by us-
ing uniform but lower-than-average recombination rates, other experiments
indicated that recombination “hotspots” are present in the Class II region
of the major histocompatability complex (MHC) in humans (Jeffreys et al.,
2001; Kaupi et al., 2003). Substantial LD and apparent haplotype blocks were
noted based upon genetic data alone, and recombination events were detected
experimentally by assaying SNPs in DNA extracted from single sperm cells.
Five recombination hotspots were identified, each extending for 1–2 kb and
lying between the observed haplotype blocks. Whereas the average genomic
recombination rate is about 1.1 cM/Mb, the rates at these hotspots range
from about 3 cM/Mb up to 130 cM/Mb—100- to 1000-fold higher than rates
within the haplotype blocks themselves. A more comprehensive statistical
study employing SNP data for Hsa20 indicated that punctate recombination
(i.e., presence of hotspots and coldspots) is a general feature of the human
genome (McVean et al., 2004). This study found that half of all recombination
events occur within just 10% of the genome sequence and that the average

392 13 Genetic Variation in Populations

spacing between hotspots is no more than 200kb. Recombination rates were
as low as 0.01 cM/Mb for coldspots and approached 100 cM/Mb for hotspots.

Table 13.5. Effects of marker spacing on predicted haplotype block length (Phillips
et al., 2003).

Distance between Predicted mean
markers (kb) block length (kb)

0.1 0.5
1.0 4.0
5.0 16.8

10.0 32.4
50.0 148.6

As we mentioned above, it is estimated that there are some 1.5×106−107

common SNP loci in the human genome, a number far too large to be eco-
nomically feasible for routine screening of individuals. LD structure offers
the opportunity to reduce the labor while still reaping the benefit of having
more closely spaced markers than are available on current genetic maps. With
regions of substantial LD extending for about 20 kb (see above) and the as-
sumption that most of the genome lies within such blocks, there would be
about 150,000 such regions in the human genome. If we were to use a corre-
sponding number of tag SNPs, then the resolution of the human genetic map
would be improved to about 0.02 cM (3700 cM (average) /150,000), while re-
taining a manageable number of markers to screen for association with genes
implicated in genetic diseases.

13.7 Modeling Gene Frequencies in Populations

13.7.1 The Wright-Fisher Model

To understand the effects of different forces on the distribution of gene fre-
quencies in populations, it is helpful to use stochastic or deterministic models.
We saw an example of the latter type when we discussed the rate of decay of
LD in Section 13.5.2. In this section, we introduce some Markov chain models
to describe gene frequencies in finite populations.

We begin with the simplest model, which was introduced by Fisher (1930)
and Wright (1931). The assumptions we make to build this model are:

– The population size N is constant from generation to generation.
– Organisms are diploid (so there are 2N copies of each gene).
– All members of each generation reproduce simultaneously: generations do

not overlap.

13.7 Modeling Gene Frequencies in Populations 393

0

1

2

3

4

5

6

7

8

9

Starting Population

T
im

e

Present

G
e
n
e
ra

ti
o
n
s
 a

g
o

Fig. 13.6. Schematic illustration of Wright-Fisher model for a population of size
N = 5, with two alleles (A = white circles, B = black circles) at equal starting
frequencies. Each horizontal line of 2N = 10 circles corresponds to a different gen-
eration. The total population size does not change from generation to generation.
Copies of each gene to be reproduced for the next generation are chosen randomly,
so that some may be copied more than once and others not at all. This leads to ge-
netic drift, illustrated here by the excess of B alleles in the present population (0
generations ago). Note that three generations ago there was an excess of W alleles.

– Mating among individuals is random.
– Allele frequencies are not perturbed by mutation, migration, or selection.

The term “random mating” deserves further explanation. To form an off-
spring, choose an individual at random from the population and then choose
one if its gametes at random. Return the chosen individual to the population,
and repeat the experiment. This results in two gametes that form an individ-
ual in the next generation. This procedure is repeated N times to form the
next generation. Our model, diagrammed in Fig. 13.6, describes a population
in terms of a gene pool from which genes are randomly drawn to constitute

394 13 Genetic Variation in Populations

the next generation. To describe a population containing N individuals, it
is not necessary to keep track of each individual. Instead, we follow the fate
of the 2N copies of each gene. Suppose that each gene is either allele A or
allele B. If at generation n there are i copies of allele A, then the number of
A alleles at generation n + 1 has a binomial distribution with 2N trials and
success probability p = i/2N .

Because of the random components in this model, allele frequencies change
over time, even though the model does not allow for mutation or selection.
This process is called genetic drift. The random number of offspring per indi-
vidual implies that an initial population allowed to evolve over t generations
will produce different outcomes for different “trials.” (In the real world, we
observe populations that have experienced only one trial during the course of
evolution.) The simulation below illustrates genetic drift in a population for
a gene having two different alleles. Notice that the allele frequencies evolve
differently for different trials. At some point, one allele or the other “wins”
(fixation of that allele) and the other allele is lost (it is “unlucky”). The
surviving allele has become fixed, not as a result of selection based upon any
benefit it may confer but merely as a result of the random nature of the
process.

Computational Example 13.3: Simulation of genetic drift

We can see the effects of genetic drift for a two-allele system by employing the
R function below. The parameters are population size, N ; the number of alleles
A in the population at the beginning, M ; and the number of generations, G.
(The initial generation is labeled 1 here.) The function drift is employed:

drift<-function(N,G,M){

N = number of genes in population

G = number of generations of simulation

M = number of A alleles in population

pop<-matrix(nrow=N, ncol=G)

Holds resulting alleles, each generation

prop<-rep(NA,G)

Holds proportion of allele A in each generation

prop[1]<-M/N

#Initialize the first generation

pop[,1]<-c(rep(1,M),rep(0,(N-M)))

for(j in 2:G){ #looping over generations

for (i in 1:N){

pop[i,j]<-sample(pop[,j-1],1,replace=TRUE)

}

##

Alternative code to replace interior loop:

pop[,j]<-sample(pop[,j-1],replace=TRUE)

##

prop[j]=sum(pop[,j])/N

}

return(prop)

}

We perform four different runs for 100 generations with an initial population
of 60 genes, with M = 30:

> tmp<-matrix(nrow=4,ncol=100)

> for(i in 1:4){tmp[i,]<-drift(N,G,M)}

Plots for each run are shown in Fig. 13.7.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Generations

M
a

jo
r

a
lle

le
 f

ra
c
ti
o

n

0 20 40 60 80 100 0 20 40 60 80 100

A. B.

C. D.

Fig. 13.7 Simulation of genetic drift after 100 generations for 60 biallelic genes,

with both alleles initially at the same frequency. Four independent realizations of

396 13 Genetic Variation in Populations

this process are illustrated. One allele or the other becomes fixed in simulations A,

B, and D. For simulation C, neither allele has been fixed after 100 generations.

The plots were produced using:

> par(mfrow=c(2,2))

> plot(1:G,tmp[1,],type="s",lty=1,ylim=c(0,1.0))

Repeat for tmp[2,],...,tmp[4,]

Observe that in one of the runs (panel A) the A allele has drifted to a
relative frequency of 1.0, and in two of the cases (panels B and D) the A allele
has become extinct. In one run (panel C), the A allele has been enriched but
has not been lost or fixed in 100 generations. Notice that, in this case, the A
allele almost became fixed by generation 94, after which the other allele began
to experience a run of “good luck.”

13.7.2 The Wright-Fisher Model as a Markov Chain

If we denote the number of A alleles in the population in generation n by Xn,
then we recognize that the sequence X0, X1, . . . is a Markov chain, the set of
possible outcomes being {0, 1, 2, . . . , 2N}. The transition matrix of the chain
(see page 52) is given by

pij =

(
2N

j

)(
i

2N

)j (
1 − i

2N

)2N−j

, i, j = 0, 1, . . . , 2N.

We note that, conditional on Xn = i,

E(Xn+1 | Xn = i) = 2N × i

2N
= i,

so that
EXn = EX0 for all n.

This result says that on average the A allele frequency does not change. This
result is akin to the Hardy-Weinberg law, but it gives a very misleading im-
pression of the behavior of the model. Recall that in our simulations we saw
trajectories in which the A allele became fixed! Because there is no mutation
in this model, the states 0 and 2N are absorbing—once the frequency of al-
lele A reaches 0 or 2N , it remains there forever after. It can be shown that
the chance that allele A becomes fixed is its initial relative frequency (see
Exercise 7).

We know that fixation or loss of the A allele must occur. We can find
the rate at which this loss occurs by calculating the expected heterozygosity
h(n) in the population in generation n. This is the probability that two genes
chosen at random (with replacement) are different alleles. It can be shown
that

13.7 Modeling Gene Frequencies in Populations 397

h(n) =

(
1 − 1

2N

)n

h(0). (13.21)

Variation is therefore lost at a geometric rate, and this rate is faster in a small
population than in a large one (see Exercise 8).

13.7.3 Including Mutation

The model in Section 13.7.1 does not allow for mutation. In this section,
we add neutral mutations to the Wright-Fisher model. Neutral mutations
do not affect the survival or reproductive success of an organism. Neutral
mutations thus can lead to a variety of alleles that are not subject to natural
selection. A subset of neutral mutations are those that occur in the third
position of codons such that the specified amino acids remain unchanged.

We employ the infinitely many alleles model, which states that each
mutation produces a novel allele. This implies that any homozygous individ-
uals are also autozygous because, under this mutation model, if two alleles
are the same, they must have descended from the same ancestor. This also
implies that alleles cannot back-mutate. Of course, the number of alleles can-
not actually be infinite, but this is a good approximation, provided the actual
number of possible alleles is sufficiently large. For example, a look at a table
of the genetic code shows that, given any specification of first and second
positions in a codon, there are on average 2.7 third-position variants that will
specify the same amino acid. For a polypeptide chain containing about 400
amino acid residues (a reasonable average for eukaryotes), there are about
2.7400 possible alleles involving third positions of codons and producing the
same amino acid sequence. This number does not take into account amino
acid composition, which would affect the average number of third position
variants. This works out to approximately 3.5× 10172 alleles that would code
for the same polypeptide chain. This number is not infinite but still is very
large.

We now compute some population statistics in terms of this model. As
before, we track 2N copies of each gene at each generation. Let µ be the
rate of mutation of each gene; this rate is assumed to be constant for all
genes and for all generations. We obtain an expression for the probability Ft

that two genes are identical by descent in generation t. This event can occur
in two ways: either both genes are copies of a single gene from generation
t − 1 (probability 1/2N) and neither copy is mutant, or the two genes are
nonmutant copies of different genes in the previous generation and those two
genes are identical by descent. Thus,

Ft =
1

2N
(1 − µ)2 +

(
1 − 1

2N

)
(1 − µ)2Ft−1. (13.22)

If enough generations pass, genetic drift and mutation lead to a steady-state
condition in which the probability of homozygosity does not change. After

398 13 Genetic Variation in Populations

this point, Ft−1 = Ft = F, a constant. Because µ in 13.22 is a very small
number (around 10−6 amino acid substitutions per coding region per year),
we can ignore terms in µ2. Also, since N is ordinarily a large number, we can
also ignore terms in µ/N . Expanding the terms (1 − µ)2 in (13.22), applying
the approximations, and rearranging gives the result

F =
1

1 + 4Nµ
. (13.23)

The heterozygosity H is just 1 − F (by definition), so

H =
4Nµ

1 + 4Nµ
. (13.24)

Equation (13.24), unlike (13.2), was derived in terms of a model, without
explicit knowledge of the individual allele frequencies. As we see later, the
product 4Nµ appears repeatedly in other contexts, so for convenience we
write

θ = 4Nµ. (13.25)

We will discover in Section 13.8.2 that θ is the expected number of differ-
ences in two sequences drawn at random from a population of size N . The
parameters µ and N are usually confounded—they appear together in θ as
a product—and from population data from a single generation alone they
cannot be estimated independently. The quantity θ is called the mutation
parameter.

13.8 Introduction to the Coalescent

We note that (13.22) was found by asking how the relevant statistic in gener-
ation t, Ft, could have been obtained, given its value in the prior generation.
In other words, rather than considering how the statistic changes as we go
forward in time, we found it practical to look backward. In a sense, this is
a very natural thing to do when considering the genetics of populations. We
are given a population as it exists now, and we may want to make inferences
about how it reached its current state. (Predicting the future is beyond the
realm of observational science unless one can afford to wait a suitably long
time to check predictions.) The coalescent (Kingman, 1982) is a very use-
ful stochastic process that allows us to model the ancestry of genes in the
population. This section describes the nature of the coalescent.

13.8.1 Coalescence for Pairs of Genes

We illustrate how the coalescent works by discussing two aspects: the time to
the most recent common ancestor (TMRCA) for two gene sequences from the

13.8 Introduction to the Coalescent 399

sampled population and the expected number of pairwise differences between
a pair of sequences. We use the Wright-Fisher model. The population contains
2N copies of each autosome or autosomal single-copy gene at each generation.
(Don’t worry about mutation yet—that is dealt with at the end of the argu-
ment.) We discuss the model in terms of an autosomal gene. We count time
backward from the present, so at the present g = 0, and successive generations
back in time are at times g = 1, 2, (We use g to denote generation in this
section, as a reminder that time is running back into the past.) Each gene in
generation g − 1 had an ancestor in generation g. (Note the direction for the
generation scale!) The coalescent model is implemented by allowing each gene
in generation g − 1 to “choose” its ancestor from among the 2N gene copies
that existed in generation g. Clearly, some of the gene copies in generation
g may be chosen multiple times, and others may be chosen not at all. The
process is repeated, going back from generation g to generation g+1. Because
some gene copies are not chosen in each generation going back, the number of
ancestors becomes smaller and smaller until the lineages coalesce to a single
ancestor some number of generations ago (Fig. 13.8). Note that the process
is stochastic: this means that different “runs” of this process yield different
values of the TMRCA. We seek the expectation of this quantity for two genes.

Pick one gene out of the 2N copies in generation g−1. It came from one of
2N ancestors in generation g. The probability that a second gene in generation
g − 1 came from the same parent is 1/2N . The probability that the second
gene came from a different parent is therefore 1− 1/2N . The probability that
two genes have not coalesced to a common ancestor within g generations is
the product of the probabilities that they have not coalesced at generations
1, 2, . . . , g:

P(First coalescence > g generations) =

(
1 − 1

2N

)g

. (13.26)

We see that TMRCA for a pair of genes has a geometric distribution with

P(First coalescence g generations ago) =
1

2N

(
1 − 1

2N

)g−1

, g = 1, 2,

From Exercise 9b in Chapter 3, it follows that

ETMRCA = 2N.

When the population size N is large, we can approximate the distribution
of the time to the most recent common ancestor by an exponential distribution
with mean 1. To do this, we measure time in units of 2N generations. Then,
for t = g/2N ,

P(First coalescence > t units ago) =

(
1 − 1

2N

)2Nt

≈ e−t.

400 13 Genetic Variation in Populations

0
(Present)

1

2

3

4

5

6

7

8

9

G
e

n
e

ra
ti
o

n
s
 a

g
o

T
MRCA

Fig. 13.8. Model for coalescence. Ten successive populations are shown. Time,
measured in generations, is counted backward from the present (bottom population).
Each member of population g − 1 “chooses” its ancestor randomly from population
g. Black circles in the bottom population represent the present members of three
lineages. Going back in time (increasing the number of generations g), the lineages
successively coalesce until they unite at a shared common ancestor (black circle,
top line). This type of analysis relates the time to most recent common ancestor,
TMRCA, to population size.

Thus, in a large population with time measured in units of 2N generations,
the time to the most recent common ancestor of a pair of genes has probability
density function f2(t) given by

f2(t) = e−t, t > 0. (13.27)

13.8.2 The Number of Differences Between Two DNA Sequences

We can use the previous results to obtain the expected number of differences
between any two DNA sequences sampled in the present generation. The

13.8 Introduction to the Coalescent 401

number of mutations that occur along a single lineage of length g generations
has a binomial distribution with parameters g and µ. With g = 2Nt and
µ = θ/4N and N large, we can use the Poisson approximation to the binomial
distribution to see that on our new timescale the number of mutations along
a lineage of length t time units has a Poisson distribution with mean θt/2. If
the two sequences have a coalescence time of TMRCA, then they are separated
by an amount of time equal to 2TMRCA. Given TMRCA, we see that the total
number of mutations separating the two sequences has a Poisson distribution
with mean (2TMRCA) × (θ/2) = θTMRCA.

We use the infinitely many sites model, under which each mutation
occurs at a site in the DNA sequence that has not had a mutation before.
These sites are said to be segregating—the site contains two bases, the ances-
tral one and the mutant one. Letting Π represent the number of segregating
sites in the two sequences, we see that the expected number of segregating
sites is just the expected number of mutations separating the two sequences:

E Π = E θ TMRCA = θ ET2 = θ × 1 = θ. (13.28)

This quantity is seen to be the same as (13.25).
One statistic commonly used to describe the variation in a set of n DNA

sequences is the so-called nucleotide diversity. This is the average pairwise
distance between the n sequences; the result in (13.28) shows that the average
value of the nucleotide diversity is the compound mutation parameter θ (see
Exercise 9).

13.8.3 Coalescence in larger samples

To study the ancestral relationships among a sample of size n taken from a
large population we proceed as follows. The probability that the n genes have
distinct ancestors in the previous generation is

n−1∏
j=1

(
2N − j

2N

)
=

n−1∏
j=1

(
1 − j

2N

)
≈ 1 −

∑n−1
j=1 1/j

2N
= 1 −

(
n
2

)
2N

. (13.29)

Repeating this argument, we see that the probability that no coalescence
events have occurred in g generations is (1−

(
n
2

)
/2N)g. When time is measured

in units of 2N generations, we obtain

P(First coalescence > t units ago) =

(
1 −

(
n
2

)
2N

)2Nt

≈ e−(n

2)t.

Thus the time Tn taken for the first coalescence event in the sample has an
exponential distribution with parameter

(
n
2

)
. It can be shown that when this

event occurs, it results in the coalescence of precisely two randomly chosen
members of the sample; the possibility of three or more members of the sample

402 13 Genetic Variation in Populations

coalescing simultaneously can be ignored. At that time, the sample has n− 1
distinct ancestors. We can repeat the previous argument to see that, with time
measured in units of 2N generations, we wait a further amount of time Tn−1

having an exponential distribution with parameter
(
n−1

2

)
, and then choose

two of those n − 1 ancestors to coalesce. This process of randomly joining
pairs of ancestors continues back to the common ancestor of the sample.

In summary, the waiting times Tn, . . . , T3, T2 for coalescence events are
independent of each other and have exponential distributions with

ETj =
2

j(j − 1)
j = n, n − 1, . . . , 2. (13.30)

At each coalescence event a randomly chosen pair of ancestors is chosen to
coalesce.

We can find the expected time to the most recent common ancestor TMRCA

of the sample of n genes by noting that

TMRCA = Tn + Tn−1 + · · · + T2,

so that

ETMRCA = E(Tn + Tn−1 + · · · + T2)

= ETn + ETn−1 + · · · + ET2

=
2

n(n − 1)
+

2

(n − 1)(n − 2)
+ · · · + 2

2 × 1

= 2

(
1

n − 1
− 1

n

)
+ 2

(
1

n − 2
− 1

n − 1

)
+ · · · + 2

(
1

1
− 1

2

)

= 2

(
1 − 1

n

)
.

Thus, the expected height of the ancestral tree linking n genes is about 2
coalescent time units. The variance of the height can be computed in a similar
way (see Exercise 10). When measured on the original time scale, the expected
height of the coalescent tree is 2N × 2(1 − 1/n) generations, or about 4N
generations in a large sample.

The coalescent can be thought of as a random bifurcating tree whose
properties can be studied by simulation. In Fig. 13.9, some random coalescent
trees for samples of size 5 are shown. Notice the large variability in the height
of the trees, and observe that most of this variability is due to the deep
coalescence events, those near the top of the tree. On average, over half of the
height of the coalescent tree comes from the deepest coalescence.

13.8.4 Estimating the Mutation Parameter θ

Experimental estimation of recombination and mutation rates is very difficult,
primarily because these rates are so small. In this section, we outline two
model-based approaches for estimating mutation rates.

13.8 Introduction to the Coalescent 403

Fig. 13.9. Six realizations, drawn on the same scale, of coalescent trees for a sample
of n = 5. (In each tree, the labels 1, 2, 3, 4, 5 should be assigned at random to the
leaves.)

Under the coalescent model, mutations are placed on the tree according to
independent Poisson processes of rate θ/2 down each branch of the tree. Since
a coalescent tree has j branches of length Tj, the length of the coalescent tree
of a sample of size n is

Ln =
n∑

j=2

jTj , (13.31)

and the mean length, from Exercise 11, is

ELn = 2

n−1∑
j=1

1

j
. (13.32)

If we suppose that each mutation results in a new segregating site, then
we see that the number of segregating sites in the sample is precisely the total
number of mutations that have arisen on the coalescent tree. The Poisson
nature of the mutations means that given the length Ln of the tree, the
number of mutations is Poisson with mean θLn/2. Hence, by averaging over
all possible tree lengths and using (13.32), we find that the expected number
of segregating sites in our sample is

404 13 Genetic Variation in Populations

E(Number of segregating sites) = θ

n−1∑
j=1

1

j
. (13.33)

We can use the result in (13.33) to provide an estimator of the parameter
θ. If we observe S segregating sites in the sample of n (aligned) sequences,
then we can use the Watterson estimator

θW =
S∑n−1

j=1
1
j

. (13.34)

This estimator is, by design, unbiased (that is, EθW = θ). We can compute
its variance (Exercise 12a), from which we find a rather surprising result:
the variance of the estimator decays at a rate proportional to 1/ logn (as
opposed to a rate proportional to 1/n that would be expected for estimates of
a population parameter based on an independent sample). It is precisely the
dependence caused by the relatedness of genes in the sample that reduces the
amount of information contained in that sample. This phenomenon is typical
of estimators based on coalescent models. In Exercise 13, the properties of θW

are studied by simulation.
An alternative approach to inference for population parameters is a

Bayesian one (cf. Tavaré et al. 1997). In this approach, we find the poste-
rior distribution of θ given the number of segregating sites S observed in the
sample. We start by specifying a prior distribution π(θ) for the parameter
θ, and then compute the posterior distribution f(θ|S) via Bayes’ Theorem
(recall (2.24)) in the form

f(θ|S = k) =
P(S = k|θ)π(θ)

P(S = k)
. (13.35)

Recalling (3.3), we see that the normalizing constant is

P(S = k) =

∫
P(S = k|θ)π(θ)dθ.

All our inferences about θ are contained in the posterior density rather than
point estimates such as θW . Finding the form of the posterior density usually
requires a computational approach, one of which is outlined below.

We solve an apparently harder problem first. We simulate observations
from the posterior distribution of θ and the coalescence times T2, . . . , Tn, given
that we observe S = k segregating sites in the sample. Write T = (T2. . . . , Tn),
and note that the posterior distribution of (θ, T) given S = k is given by

f(θ, T |S = k) ∝ P(S = k|θ, T)π(θ)f(T), (13.36)

where f(T) is the prior probability density for T obtained from the coalescent
model. The likelihood P(S = k|θ, T) can be found as follows. Writing L =
2T2 + · · · + nTn, we see that

References 405

P(S = k|θ, T) = P(Poisson with mean θL/2 = k)

= e−θL/2(θL/2)k/k!, (13.37)

the last coming from the form of the Poisson distribution in (3.2). A rejection
algorithm for simulating observations from (13.36) is as follows:

1. Simulate an observation θ having density π(θ), and simulate T having
independent exponential distributions with means given in (13.30).

2. Calculate L = 2T2 + · · · + nTn and h = e−θL/2(θL/2)k/k! .
3. Simulate U from a uniform density on (0, 1). If U ≤ h, accept the obser-

vation (θ, T) if U < h, and ignore it otherwise. Return to step 1.

Because the probability density of accepted observations is proportional to
the product of P(S = k|θ, T) and π(θ), the algorithm does indeed generate
observations from the posterior density in (13.36). The θ values then have the
distribution (13.35) that we wanted. Implementation in R and further details
are discussed in Exercise 14.

13.9 Concluding Comments

Our introduction to stochastic models of gene frequencies and estimation of
population parameters such as the mutation rate θ has necessarily been very
brief. In particular, we have not made explicit reference to the effects of re-
combination or population expansion in this setting. There is an extensive
body of literature about coalescents with recombination. It provides a useful
theoretical tool for interpreting patterns of LD in natural populations, and
for inference about recombination rates. For a taste of this, see Nordborg and
Tavaré (2002) for example.

References

Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Lane CR, Lim
EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, War-
rington J, Lipshutz R, Daley GQ, Lander ES (1999) Characterization of
single-nucleotide polymorphisms in coding regions of human genes. Nature
Genetics 22:231–238.

Fisher RA (1930) The Genetical Theory of Natural Selection. Oxford: Claren-
don Press.

Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Hig-
gins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C,
Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002)
The structure of haplotype blocks in the human genome. Science 296:2225–
2229.

406 13 Genetic Variation in Populations

Innan H, Padhukasahasram B, Nordborg M (2003) The pattern of polymor-
phism on human chromosome 21. Genome Research 13:1158–1168.

International SNP Map Working Group (2001) A map of human genome se-
quence variation containing 1.42 million single nucleotide polymorphisms.
Nature 409:928–933.

Jeffreys AJ, Kaupi L, Neumann R (2001) Intensely punctate meiotic recom-
bination in the class II region of the major histocompatibility complex.
Nature Genetics 29:217–222.

Kaupi L, Sajantila A, Jeffreys AJ (2003) Recombination hotspots rather than
population history dominate linkage disequilibrium in the MHC class II
region. Human Molecular Genetics 12:33–40.

Kingman JFC (1982) On the genealogy of large populations. Journal of Ap-
plied Probability 19A:27–43.

Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richards-
son B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Pals-
son ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A
high-resolution recombination map of the human genome. Nature Genetics
31:241–247.

McVean GA, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P (2004)
The fine-scale structure of recombination rate variation in the human
genome. Science 304:581–584.

Nordborg M, Tavaré S (2002) Linkage disequilibrium: What history has to
tell us. Trends in Genetics 18:83–90.

Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer
CR, Lee DH, Marjoribanks C, McDonough DP, Nguyen BTN, Norris MC,
Sheehan JB, Shen N, Stern D, Stokowski RP, Thomas DJ, Trulson MO,
Vyas KR, Frazer KA, Fodor SPA, Cox DR (2001) Blocks of limited haplo-
type diversity revealed by high-resolution scanning of human chromosome
21. Science 294:1719–1723.

Phillips MS et al. (2003) Chromosome-wide distribution of haplotype blocks
and the role of recombination hot spots. Nature Genetics 33:382–387.

Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky
LA, Feldman MW (2002) Genetic structure of human populations. Science
298:2381–2385.

Tavaré S, Balding DJ, Griffiths RC, Donnelly P (1997) Inferring coalescence
times for molecular sequence data. Genetics 145:505–518.

Venter JC et al. (2001) The sequence of the human genome. Science 291:1304–
1351.

Yu A et al. (2001) Comparison of human genetic and sequence-based maps.
Nature 409:951–953.

Wall JD, Pritchard JK (2003) Haplotype blocks and linkage disequilibrium in
the human genome. Nature Reviews Genetics 4:587–597.

Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159.
Wright S (1951) The genetical structure of populations. Annals of Eugenics

15:323–354.

Exercises 407

Exercises

Exercise 1. Calculate the heterozygosities corresponding to each of the allele
probability distributions presented below.

Probabilities for allele Heterozygosity
1 2 3 4

1 0 0 0 ?
0.8 0.2 0 0 ?
0.67 0.33 0 0 ?
0.5 0.5 0 0 ?
0.5 0.3 0.2 0 ?
0.33 0.33 0.33 0 ?
0.4 0.3 0.2 0.1 ?
0.25 0.25 0.25 0.25 ?

Exercise 2. Prove that for a particular locus for which there are k alleles,
the heterozygosity is maximized when all alleles have the same frequency.

Exercise 3. This exercise establishes the equality of (13.6) and (13.7). To see
this, note that (13.6) can be rewritten as

FS − FT =
K∑

i=1

[
1

B

B∑
b=1

(p2
ib − p2

i)

]
.

Completing the square for the term in parentheses gives

FS − FT =

K∑
i=1

[
1

B

B∑
b=1

(p2
ib − 2pibpi + p2

i) +
1

B

B∑
b=1

(2pibpi − 2p2
i)

]
.

Recalling that we defined

pi =
1

B

B∑
b=1

pib,

show that the second summation in the brackets is zero.

Exercise 4. Establish the identities in (13.12) and (13.13).

Exercise 5. Show that the expressions in (13.15) correctly represent the val-
ues of Dmax. [Hint: Work with the definitions in (13.11) and (13.12). For D < 0
set pA1B1

or pA2B2
= 0, and note the constraints on pA1

pB1
and pA2

pB2
, given

the requirement that probabilities are always positive. Use a similar approach
for D > 0.]

408 13 Genetic Variation in Populations

Exercise 6. Suppose that the proportions of haplotypes in a population
are reflected by the proportions diagrammed in Fig. 13.3B (e.g., pA1B1

=
(4/10); pA1

= 5/10). To confirm that the genealogy of mutations shown in
Fig. 13.3A produces LD, use the data to compute |D′| for loci A, B and |D′|
for loci B, C.

Exercise 7. For the Wright-Fisher Markov chain in Section 13.7.2, show that
the probability that allele A becomes fixed is its initial relative frequency.
[Hint: define

πi = P(Xreaches 2N before reaching 0|X0 = i),

with π0 = 0, π2N = 1. By conditioning on the value of X1, justify the following
equation satisfied by the πi:

πi =
2N∑
j=0

pijπj

and verify that πj = j/(2N) solves the equation.]

Exercise 8. For the Wright-Fisher Markov chain in Section 13.7.2, find the
variance of Xn, and use this to verify (13.21).

Exercise 9. The nucleotide diversity Πn among a set of n aligned sequences
was introduced in Section 13.8.2. It is defined by

Πn =
2

n(n − 1)

∑
i<j

dij ,

where dij is the number of segregating sites between sequences i and j. (This is
the Hamming distance between the sequences.) Show that under the infinitely
many sites model of mutation, the expected value of the nucleotide diversity
is θ.

Exercise 10. In Section 13.8.3 we found a formula for ETMRCA for a sample of
n genes. Calculate the variance of TMRCA and find its value for large samples.

Exercise 11. Calculate the mean and variance of the tree length Ln in (13.31)
of a coalescent tree of size n.

Exercise 12. Watterson’s estimator θW of θ was defined in (13.34).

a. Calculate the variance of θW .
b. Show that it decays at a rate proportional to 1/ logn in large samples,

and comment on the practical implications of this result.

Exercise 13. R can be used to simulate observations having the distribution
of θW .

Exercises 409

a. Write a function to simulate an observation � having the distribution of
Ln in (13.31). Exponential random variables T2, . . . , Tn can be generated
using rexp.

b. Given the value of �, generate a Poisson variable s having mean θ�/2.
Poisson random variables can be generated using rpois. Given the value
of s, calculate an observation from θW from (13.34).

c. For θ = 1, 5, 25 and n = 10, 25, 100 simulate observations from the distri-
bution of θW , and compare the results.

Exercise 14. This exercise focuses on the rejection algorithm for simulating
from the posterior distribution of mutation rate and coalescence times de-
scribed at the end of Section 13.8.4. It builds on the method developed in
Exercise 13. For definiteness, assume that π(θ) is a uniform density over some
range, so prior observations for θ can be generated using runif.

a. Implement the rejection algorithm in R.
b. The quantity h in Step 2 of the rejection algorithm can be replaced by

h =
e−θL/2(θL/2)k/k!

e−kkk/k!
= ek−θL/2(θL/2k)k,

resulting in a faster algorithm. Verify this by modifying your function in
a.

c. Given that k = 5, generate 1000 observations from the posterior distri-
bution of θ for samples of size n = 10, and plot the estimated posterior
density. The function density is useful for this. Explore the effects of
different prior distributions on the posterior.

d. How could you use the algorithm to generate observations from the pos-
terior distribution of the time to the most recent common ancestor?

14

Comparative Genomics

Computational biology provides insights into the nature of genomes and or-
ganisms, and provides tools for understanding how an organism’s characters
or phenotypes are determined by its genome sequence. In prior chapters, we
presented a number of computational methods addressing a variety of specific
biological questions. In this concluding chapter, we indicate in more detail
how these tools can be employed in the context of complete genomes. Com-
putational analysis of genome sequence data has transformed the approach
to answering biological questions because now they can be formulated in the
context of all genes operating as a coordinated system. This more integrated
approach complements the reductionist approach of traditional molecular bi-
ology.

Comparisons can be performed within genomes and between genomes.
Within-genome comparisons focus on the genome of organism X and scan
it from beginning to end, analyzing variations in base composition, k-tuple
frequency, gene density, and numbers and kinds of transposable elements,
and identifying any duplicated regions. Between-genome comparisons employ
closely related organisms (e.g., to help identify conserved genes, gene organi-
zations, and control elements) or more distant organisms (to identify genes
that are restricted to particular clades of a phylogenetic tree). Such data can
help trace evolutionary trajectories of organisms.

What properties can be used to describe genomes? We start with composi-
tional measures stated in terms of k-word content. As indicated in Chapter 2,
even simple measures such as this can prove very informative. Second, we
examine the fraction of the genome represented by transposable elements.
These elements may or may not represent a large proportion of the genome.
Although they do not code for organism-specific proteins, the sequences of
these elements can be used as tracers for defining the evolutionary histories
of groups of like organisms. Third, we examine how sequence organization
in chromosomes reflects duplication within genomes or evolutionary relation-
ships between genomes. We have already touched on this question in Chap-
ter 5. Fourth, we provide a brief introduction to the identification and char-

412 14 Comparative Genomics

acterization of genes. Finally, we indicate how the predicted proteome can be
functionally annotated and how proteomes of organisms can be compared.

14.1 Compositional Measures

Summaries and statistical descriptions of genomes are essential for compre-
hending genome content. The page that you are reading now can accommodate
approximately 3500 characters. Approximately 500 to 1000 such pages would
be required to print out the sequence of an “average” microbial genome, and
about a million pages would be required to print out the sequence of the
human genome. The human mind cannot grasp such quantities of data in
this form. In this section, we illustrate what can be learned from simple k-
word statistics, especially when these statistics are combined with other data.
Even as simple a number as genome size, when combined with gene number
(Table 14.1), imposes important constraints on genome composition. This is
discussed in detail in Section 14.4.

k-word compositions of genomes measured as a function of position along
the chromosome are not uniform. Even simple compositional measures can be
very informative. The simplest measure is the base composition (correspond-
ing to k = 1). Figure 14.1 shows distributions of GC content, transposable
elements, and genes along human chromosome 17. Distributions of these fea-
tures along chromosomes provide a statistical analog of a genetic map, and
they are useful for understanding chromosome structure and function. The
third panel from the top shows the %G+C as a function of position. The three
regions where this quantity is the lowest correspond to regions where genes
are particularly sparse. (Compare this with the bottom panel in Fig. 14.1).
In the human genome, gene-rich regions typically have a higher %G+C than
regions that are gene-poor.

Another statistic based on k = 1, and particularly useful for prokaryotic
genomes, is the GC skew, defined in Chapter 2 as (#G − #C)/(#G + #C).
This statistic is computed for sliding windows of length w along the genome.
Prokaryotic chromosomes are usually circular and usually have a single repli-
cation origin and a terminus located approximately 180◦ away from the origin.
This means that in one half of the chromosome, the genomic DNA strand as
written in the sequence file corresponds to DNA produced by leading strand
DNA synthesis, while the other half of that strand is produced by lagging
strand DNA synthesis. In many bacteria, the leading strand exhibits an ex-
cess of G relative to C, or a positive GC skew. The GC skew has been used to
infer the origin of replication in sequenced genomes. An example is shown
in Fig. 14.2 for Borrelia burgdorferi, which has a linear rather than circular
chromosome (lower panel). The predicted replication origin would be near the
450kb position based upon the pattern of GC skew.

Genome regions having unusual shifts in one or more statistics may have
particular biological interest. For example, Yersinia pestis, the causative or-

Position (Mb)

Alu/100 kb

EST/100 kb

Percent G+C

Genes/Mb

0 50

429

0
1443

0
65

26
64

0

Fig. 14.1. Composition of human chromosome 17 (Hsa17). Various properties have
been summarized for 100 kb intervals along the length of the chromosome. Reprinted,
with permission, from Venter JC et al. (2001) Science 291:1304–1351. Copyright 2001
American Association for the Advancement of Science.

Kilobases

0 200 400 600 800 910.725

TTGTTTTT
Distribution

(G-C)/(G+C)

0.200

0.000

-0.200

Fig. 14.2. GC skew for the Borrelia burgdorferi linear chromosome (lower panel) and
distribution of eight-letter word TTGTTTTT on “top” and“bottom” strands (upper two
panels). GC skew measures the relative excess of G (compared with C) on a particular
strand. Reprinted, with permission, from Fraser CM et al. (1997) Nature 390:580–
586. Copyright 1997 Nature Publishing Group.

414 14 Comparative Genomics

Table 14.1. Statistics describing genomes of common and model organisms. Human
mitochondrial DNA is included as an example of an organellar genome.

Number of Genome
Organism Genes Size (Mb) Chromosomesa

(Human mtDNA 37 0.016 ∼ 103 − 104)b

Mycoplasma genetalium 517 0.58 1
(bacterium)

Escherichia coli 4,288 4.64 1
(bacterium)

Saccharomyces cerevisiae 6,000 12.05 16
(baker’s yeast)

Caenorhabditis elegans 18,400 97 5+X
(nematode worm)

Drosophila melanogaster 13,600 180 4
(fruit fly)

Arabidopsis thaliana 25,500 125 5
(dicotyledonous plant)

Fugu rubripes 31,000 365 22
(Pacific puffer fish)

Homo sapiens 25,000 3,080 23
(mammal)

Allium cepa NA 15,000 8
(onion)

a Haploid number N is reported for diploid organisms.
b Organelle. Chromosome number is DNA copy number in somatic cells.

ganism for plague, or “Black Death,” is a potential biowarfare agent. Yersinia
pestis is closely related to another Yersinia species, Y. pseudotuberculosis,
which is not a blood-borne pathogen, but instead causes gastrointestinal dis-
ease. Yersinia pestis is thought to have evolved relatively recently from an
ancestor shared with Y. pseudotuberculosis (perhaps during the last 20,000
years). Properties of the Y. pestis genome are summarized in Fig. 14.3. The
inner circle in Fig. 14.3 is a plot of the GC skew. Notice that, for the most part,
the genome is divided into approximate halves with the right half having a
mostly positive GC skew and the left half having a mostly negative GC skew.
There are three regions where the GC skew reverses sign for comparatively
short portions of the genome, suggesting relatively recent inversion events.

Genes involved in Y. pestis pathogenicity or adaptation are marked in dark
blue on the two outer circles of Fig. 14.3. It is known that genes conferring
pathogenicity traits are often located in clusters, called pathogenicity islands,
and that these may be acquired by horizontal transfer (from conjugative plas-
mids, bacteriophages, or other gene transfer mechanisms). DNA from such
sources will not, in general, exhibit the same base composition or other statis-

0

1

2

3

4

Yersinia pestis

4,653,728 bp

Fig. 14.3. [This figure also appears in the color insert.] Properties of the Yersinia

pestis genome. Numbers on the outer circle denote coordinates in millions of bp
clockwise of the map origin at 0. Two bands of short radial lines just inside the
coordinate circle represent the genes on the two DNA strands. Dark blue lines denote
genes related to pathogenicity and adaptation. The innermost circle represents GC

skew, and the next one out (black) depicts variations in base composition relative to
the mean. Reprinted, with permission, from Parkhill J et al. (2003) Nature 413:523–
527. Copyright 2003 Nature Publishing Group.

416 14 Comparative Genomics

tical properties as the genome that receives it. Notice that the pathogenicity
genes at the 2.15 Mb position on the genome (between 5 and 6 o’clock) are
clustered on one strand and that a peak of elevated %G+C appears at the same
position (second circle from the inside). This type of pattern could result if a
block of pathogenicity genes had been acquired from another organism.

Genomes can also be described by dinucleotide measures (k = 2; Sec-
tions 2.5 and 2.6). For example, probability distributions for dinucleotides
can be organism-specific (Karlin et al., 1998). In human DNA, 5′-CG-3′ (also
known as CpG, where p stands for the phosphate residue) occurs with about
20% of the frequency anticipated for iid bases having the base composition of
human DNA (IHGSC, 2001). However, there are regions of the genome where
their frequency is closer to the predicted value. These regions are called CpG

islands. In the human genome, there are approximately 29,000 CpG islands (a
number similar to the predicted gene number), and most of them are less than
1800bp long. There is a correlation between the density of CpG islands and the
gene density, which is expected from prior experiments showing association
between CpG islands and the 5′ ends of vertebrate genes (see Strachan and
Read, 2003, and references therein).

14.2 Transposable Elements

Studies of eukaryotic DNA by reassociation kinetics in the 1960s and 1970s
showed that eukaryotic genomes contain different sequence components that
vary by copy number. Some genomic sequences appear once or a few times
(unique sequence), while others appear many times (repeated sequences).
One class of repeated sequences is the telomeric repeats (the short repeated
sequences found at the ends of chromosomes), which are important for chro-
mosome stability. Another class of repeated DNA consists of multiple copies
of one or more types of transposable elements. These can represent a sub-
stantial fraction of some eukaryotic genomes. For example, about 45% of the
human genome is attributable to transposable elements. In contrast, the per-
centages of transposable element DNA in Arabidopsis, Caenorhabditis elegans,
and Drosophila genomes are 10.5%, 6.5%, and 3.1%, respectively (IHGSC,
2001). For efficient computational analysis of genomes, it is necessary to know
the number of transposable element classes, the number of elements in each
class, and how the elements are distributed along the genome. These multiple
copies can complicate DNA sequence assembly in whole-genome shotgun ap-
proaches. Highly repetitive sequences are usually “masked” (omitted) before
applying exon prediction tools, or before making interspecies comparisons.

The types and copy numbers of transposable elements within the human
genome are shown in Fig. 14.4. There are generally two categories of each
type of transposon. One category encodes functions required for autonomous
transposition, and the other category lacks one or more of these functions (i.e.,
elements of this category are defective). Transposition of defective elements

14.2 Transposable Elements 417

requires gene products supplied in trans from related elements. One type of
transposon is the LTR transposon, where LTR stands for long terminal re-
peat, a characteristic of retroviruses. Its nonautonomous counterparts possess
the LTRs, but they lack the reverse transcriptase. Another general type of ele-
ment is the LINE (long interspersed nuclear element), which also uses reverse
transcription to transpose but does not require or possess LTRs. Its nonau-
tonomous counterparts are the SINEs (short interspersed nuclear elements.)
The third type of element consists of DNA transposons (whose mechanism
does not require reverse transcription) and their defective partners, which
lack the transposase encoded by the autonomous counterpart.

LINEs

SINEs

Retrovirus-like

elements

DNA

transposon

fossils

Autonomous

Nonautonomous

Autonomous

Nonautonomous

Autonomous

Nonautonomous

6-8 kb

100-300 bp

6-11 kb

1.5-3 kb

2-3 kb

 80-3000 bp

850,000

1,500,000

450,000

300,000 3%

8%

13%

21%

Length
 Copy

number

Fraction of

 genome

gag pol (env)

(gag)

transposase

[]

AAA
ORF1 ORF2 (pol)

AAA
A B

Fig. 14.4. Types and numbers of transposable elements found in the human genome.
Reprinted, with permission, from International Human Genome Sequencing Consor-
tium (2001) Nature 409:860–921. Copyright 2001 Nature Publishing Group.

Also shown in Fig. 14.4 are the numbers of each type of element. Over a
million copies of Alu elements (a type of SINE) are found within the human
genome. They comprise about 10% of the human genome, and they appear on
average once every three kb. They do not contribute to the protein encoded
by those genes into which they are inserted. Since the average human gene
extends over 27kb, we would expect (on average) to find nine such elements in
the noncoding regions of an average gene, provided Alu elements are targeted
uniformly throughout the genome. (It should be obvious why Alu elements
are absent from coding sequences.) In fact, targeting preferences to different
parts of the genome are not the same (Alu elements seem to target AT-rich
DNA more frequently), but the observed distribution of these elements is
complicated by post-transpositional losses (deletion). There are more than
500,000 copies of LINE L1 elements in the human genome, suggesting that
they appear on average once every 6 kb. Thus, we would also expect to find
several L1 elements in regions the size of an average gene. L1 elements, like
Alu sequences, also seem to preferentially target AT-rich DNA.

418 14 Comparative Genomics

Most transposable elements in genomes are defective. If all were active,
the mutational “load” associated with the large numbers of transposable ele-
ments found in many eukaryotes would probably be incompatible with species
survival. Because most genomic transposable elements have been mutation-
ally inactivated during the course of evolution, they are not under selection
for function, and therefore they continue to accumulate additional mutations.
If we align instances of any particular type of transposon, we can define a
consensus sequence for that element (presumably corresponding to a func-
tional element having no mutations). We can then distribute all elements into
“bins” having differing levels of sequence divergence from this consensus. The
degree of sequence divergence from the consensus is a measure of how long
ago the elements in each bin were transpositionally inserted: higher levels of
divergence correspond to more remote times. An example of this is shown
in Fig. 14.5. Bins of each element type having large proportions of elements
correspond to periods when transposition of that element was particularly ac-
tive. It is evident that most Alu transpositional events were relatively recent
in humans but that LINE L2 elements were primarily active in the remote
past and are no longer transposing at a significant rate. The distribution of
transposable element sequences as a function of sequence divergence provides
a measure of the evolutionary trajectory of the organism. Even recently trans-
posed elements can provide evolutionary information over shorter timescales.
For example, Alu insertions can be used to analyze phylogenetic relationships
among great apes (Salem et al., 2003).

14.3 Sequence Organization within Chromosomes

Even before the advent of genome sequencing, it was clear that DNA within a
chromosome could be divided into distinguishable regions. The first division
of DNA into types is its assignment to either euchromatin or heterochro-
matin. Recall that chromatin is composed of DNA with the bound histones
and other chromosomal proteins. Euchromatin is more actively transcribed,
less condensed during interphase, and exhibits cytological staining properties
different from heterochromatin, which remains condensed during interphase
and is relatively inactive transcriptionally. Heterochromatic regions are com-
monly found near the centromeres of chromosomes. Recently, heterochromatin
has been defined operationally as that portion of the genome that cannot be
readily cloned in high-capacity cloning vectors such as BACs (Adams et al.,
2000). This latter property, thought to relate to the relatively large number
of repeated sequences in heterochromatin, has slowed the completion of ge-
nomic sequencing in some organisms. Organisms can differ significantly in
the amounts of heterochromatin that they contain. For example, heterochro-
matin represents about 6.5% of the human genome but approximately 33%
of the Drosophila melanogaster genome. Draft sequences at the time of initial
publication may exclude large proportions of the heterochromatic regions. In

14.3 Sequence Organization within Chromosomes 419

<1 4 7 10 13 16 19 22 25 28 31 34
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

F

ra
c
ti
o

n
 o

f
h

u
m

a
n

 g
e

n
o

m
e

c
o

m
p

ri
s
e

d
 b

y
 r

e
p

e
a

t
c
la

s
s
 (

%
)

Percentage substitution from consensus sequences

SINE/Alu SINE/MIR SINE/other LINE/L1 LINE/L2 LTR DNA

Fig. 14.5. [This figure also appears in the color insert.] Abundance and sequence
divergence of different classes of human transposable elements. Light blue: SINE Alu
I; dark blue: SINE Mir; green: LTR transposons; orange, LINE L1; yellow: LINE
L2; red: DNA transposons. Higher percentages of substitution from the consensus
sequence correspond to more ancient copies of elements. The higher proportion of
Alu elements at lesser amounts of substitution indicates more recent transpositional
activity among this class of elements, while the absence of LINE L2 elements at
low levels of substitution indicates that L2 elements were not transposing recently.
Reprinted, with permission, from International Human Genome Sequencing Con-
sortium (2001) Nature 409:860–921. Copyright 2001 Nature Publishing Group.

the case of Drosophila, this amounted to about one-third of the total genome
(Adams et al, 2000).

Genetic mapping studies allow comparisons within and between genomes
at a map resolution determined by marker or gene densities. Map compar-
isons can reveal genome segments that have been duplicated within genomes
or segments whose genetic organization has been conserved between genomes.
Genome sequences increase map resolution by several orders of magnitude,
which allows for much more detailed comparisons within and between genomes.

420 14 Comparative Genomics

If two species are very closely related, we might expect that their genetic maps
would be very similar. In other words, the gene orders and relative locations
may be similar, at least over short distances. We already saw an example of
this in Fig. 5.1 of Chapter 5, where contents of a mouse chromosome and
human chromosomes were compared. We also saw in that chapter how al-
terations in gene orders could serve as measures of the evolutionary distance
between organisms.

14.3.1 Conservation of Synteny and Segmental Duplication

As indicated in Section 1.3.2, two or more genes are said to be syntenic if
they reside on the same chromosome. A set of genes g1, . . . , gn that is syn-
tenic in organism A and also syntenic in organism B represents a conserved
synteny. Note that the chromosomes in the respective organisms may not be
related to each other in a simple way. A group of genes that display conserved
synteny and that appear in the same order and relative map positions in
the two genomes constitutes a conserved segment (also called a conserved
linkage or syntenic segment; see Fig. 1.4B). As was illustrated in Fig. 5.1,
there are multiple instances of conserved segments shared by the human and
mouse genomes, even though these two lineages diverged from each other more
than 83 million years ago. The existence of conserved segments indicates that
analysis and annotation of such segments in one genome can guide analysis
in a related genome. For example, the human genome sequence provided a
useful framework for generating a high-resolution physical map for the mouse
genome (Gregory et al., 2002). This was done by matching end-sequence reads
from inserts in a mouse BAC library with the assembled human genome se-
quence. The tiling could be checked by comparing fingerprints (patterns of
insert restriction fragments) of overlapping BACs.

Once conserved segments between genomes have been identified by ap-
proaches to be described below, the rearrangements that have occurred since
the two organisms diverged from the common ancestor can be inferred. A par-
ticularly simple example is the X chromosome in humans (HsaX) and mice
(MmuX). The plot in Fig. 5.3 showed that runs of contiguous loci in MmuX
have homologs in HsaX. These runs in the two organisms could be related by
a series of reversals. Other mouse-human chromosome comparisons (Fig. 14.6)
show much more complicated relationships involving many chromosomes. For
example, Hsa3 has conserved segments corresponding to six different mouse
chromosomes. Of course, both mouse and human contain DNA unique to
each organism (white regions, Fig. 14.6). Moreover, each organism contains
organism-specific transposable elements.

Within-genome comparisons can reveal large and small genomic regions
that appear repeatedly, even though they are not transposable elements. Seg-
mental duplication refers to duplicated regions that encompass only a frac-
tion of the genome. The Arabidopsis genome provides a striking example of

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 X Y

13 14 15 16 17 18 19 20 21 22 X Y

Fig. 14.6. [This figure also appears in the color insert.] Regions containing conserved
segments in human and mouse chromosomes. Ideograms of human chromosomes are
shown at the top. Color coding indicating the identity of mouse chromosomes (bot-
tom) shows which regions of the human chromosomes are similar to the respective
mouse chromosomes. Note that nearly all of the small human chromosome Hsa20 cor-
responds to a portion of the large mouse chromosome Mmu2. Portions corresponding
to Mmu2 are also found on Hsa2, Hsa9, Hsa10, Hsa11, and Hsa15. Reprinted, with
permission, from International Human Genome Sequencing Consortium (2001) Na-

ture 409:860–921. Copyright 2001 Nature Publishing Group.

422 14 Comparative Genomics

within-genome segmental duplication (Fig. 14.7). The obvious extensive du-
plication of sequences between chromosomes accounts for about 60-80% of
the entire nuclear genome (Arabidopsis Genome Initiative, 2000; Simillion et
al., 2002). In contrast, only about 5.3% of the human genome is segmentally
duplicated (IHGSC, 2004).

14.3.2 Identifying Conserved Segments and
Segmental Duplications

What statistical criteria are used to define instances of segmental duplication
or conserved sequence segments? These criteria can be stated for different
levels of resolution (Fig. 14.8). At the first level, we might assert that two
regions are segmentally duplicated (or represent conserved segments in two
different organisms) if they share the same set of protein-coding genes in the
same order (Fig. 14.8A). Such sets of genes are called collinear gene clusters.
Mural et al. (2002) defined collinear gene clusters as clusters having at least
three genes meeting this criterion.

At higher resolution, we can perform sequence alignments of genomic seg-
ments with other segments in the same or a different genome. A segmental
duplication (or conserved segment) of segment X would be identified if other
segments are found having lengths and levels of sequence identity above arbi-
trary thresholds. (Clearly, transposable element sequences should be ignored
before the comparison is performed.) There are two different implementations
of this second approach. We could set a low sequence identity threshold, but
demand alignment over larger regions, as was done in one of the analyses of the
Arabidopsis genome. In that case, segments longer than 1000bp and having
more than 50% sequence identity were sought (Fig. 14.8B). Or we could use a
set of smaller “anchor” sequences between regions being compared. These are
relatively short (e.g., 200bp) DNA segments (not necessarily within genes)
having higher levels of sequence conservation (e.g., more than 85% sequence
identity). Regions corresponding to segmental duplication or conserved seg-
ments would be recognized as “runs” of corresponding anchor sequences in
the same order in the two regions being compared (Fig. 14.8C).

A third way of identifying segmental duplication (applicable for compar-
isons within but not between genomes) relies on statistics associated with
sequence reads generated during whole-genome shotgun assembly. This is il-
lustrated in Fig. 14.9. Recall that whole-genome shotgun assembly employs
reads from the ends of large- and small-insert clones. These reads are rela-
tively short, usually around 500-800bp. The average coverage (read “depth”)
is sufficiently large (typically greater than 5) to ensure collection of sequence
data from almost all of the genome. Now consider a DNA segment Z that
became duplicated sometime in the past (Fig. 14.9A). Since that time, both
copies, Z1 and Z2, have independently accumulated mutations, so that the
reads pooled from these two regions will have lesser amounts of sequence
identity than would be the case for unique sequences. The method starts with

5
 M

b
1

0
 M

b
1

5
 M

b
2

0
 M

b
2

5
 M

b
3

0
 M

b

5
 M

b
1

0
 M

b
1

5
 M

b
2

0
 M

b
2

5
 M

b
3

0
 M

b

F
ig

.
1
4
.7

.
[T

h
is

fi
g
u
re

a
ls
o

a
p
p
ea

rs
in

th
e

co
lo

r
in

se
rt

.]
S
eg

m
en

ta
l
d
u
p
li
ca

ti
o
n
s

w
it
h
in

th
e

A
ra

b
id

o
p
si

s
th

a
li
a
n
a

g
en

o
m

e.
B

la
ck

b
ox

es
d
en

o
te

th
e

ce
n
tr

o
m

er
es

in
ea

ch
o
f
th

e
fi
v
e

ch
ro

m
o
so

m
es

.
C

o
lo

r-
co

d
ed

co
n
n
ec

ti
n
g

ri
b
b
o
n
s

in
d
ic

a
te

si
m

il
a
r

d
u
p
li
ca

te
d

re
g
io

n
s

b
et

w
ee

n
a
n
d

w
it
h
in

ch
ro

m
o
so

m
es

.
R

ib
b
o
n

ed
g
es

th
a
t

cr
o
ss

in
d
ic

a
te

in
v
er

si
o
n

o
f
g
en

e
o
rd

er
in

o
n
e

se
g
m

en
t

co
m

p
a
re

d
w

it
h

th
e

o
th

er
.
R

ep
ri
n
te

d
,

w
it
h

p
er

m
is
si
o
n
,
fr

o
m

T
h
e

A
ra

b
id

o
p
si
s

G
en

o
m

e
In

it
ia

ti
v
e

(2
0
0
0
)

N
a
tu

re
4
0
8
:7

9
6
–
8
1
5
.
C

o
p
y
ri
g
h
t

2
0
0
0

N
a
tu

re
P

u
b
li
sh

in
g

G
ro

u
p
.

B.

Genome X

Genome Y

%
 I
d
e
n
ti
ty

50

100

0

Length > 1000 bp

4 6 7

1 2 3 4 5 6 7 8 9 10

A.

collinear gene cluster

Genome X

Genome Y

C.

Genome X

Genome Y

%
 I
d
e
n
ti
ty

50

100

0 %
 I
d
e
n
ti
ty

50

100

0

%
 I
d
e
n
ti
ty

50

100

0

average spacing

 ~8 kb

syntenic anchors

Fig. 14.8. Criteria for identifying conserved sequence segments in two genomes, X
and Y. Conserved segments are regions between the vertical dashed lines. Panel A:
Conserved segment defined by collinear gene clusters. Shaded genes are unrelated
to unshaded ones. Panel B: Conserved segment identified by alignment with low
identity threshold (dotted horizontal line) and minimum alignment length. Panel C:
Use of anchor sequences having high identity thresholds and identified as reciprocal
“best hits” in genomes X and Y. For the human genome at 88% identity, typical
lengths of syntenic anchors are approximately 200 bp, and typical spacings are about
8 kb (Mural et al., 2002).

14.3 Sequence Organization within Chromosomes 425

the assembled genomic sequence and then aligns with it all reads that exceed
a specified threshold of sequence identity (e.g., 95%). Because sequence reads
from both duplicated regions can align within each region, there is an increase
in the coverage (read depth) within the duplicated region (twofold in the il-
lustration). Moreover, the percentage identity of reads covering these regions
is lower than for unique sequence regions. Regions of the genome having in-
creased read depth and decreased levels of sequence identity may be identified
as segmental duplications, as shown in Fig. 14.9B (Bailey et al., 2002).

14.3.3 Genome Evolution by Whole-Genome Duplication

As indicated earlier (Section 14.3.1 and Chapter 5), one way that genomes
evolve is by duplication of genome segments with subsequent genome re-
arrangement and deletion. In 1970, Susumu Ohno proposed an alterna-
tive model. He suggested that vertebrate genomes have evolved by whole-
genome duplications of ancestral genomes. Such processes have occurred in
higher plants (angiosperms): extant variants having two genome equivalents
(tetraploids) and three genome equivalents (hexaploids) are well-known. For
Arabidopsis and baker’s yeast (Saccharomyces cerevisiae), evolution of con-
temporary genomes as a result of one or more earlier whole-genome dupli-
cation events is now well-supported. These two alternative mechanisms for
genome evolution—independent segmental duplication with rearrangement or
whole-genome duplication—have been epitomized as the “Slow Shuffle” or the
“Big Bang,” respectively (Smith et al., 1999).

Whole-genome duplication can provide raw material for evolution because
it produces paralogs of every gene in the genome. One member of each paral-
ogous pair is available to supply the necessary ancestral gene function, while
the other may be mutationally inactivated, deleted, or may evolve new func-
tions (usually related to the original function). The presence of numerous
duplicated genes within a genome is one indicator of an earlier, whole-genome

Fig.14.9(Following page). Identifying duplicated regions from the number of reads
generated during whole-genome shotgun sequencing. Panel A: Effects of segmental
duplication on the number of reads and degree of sequence conservation between
duplicated regions. In the assembled sequence, the heavy line represents unique
sequences and open boxes represent duplicated sequences. Vertical lines represent
positions that differ between duplicated sequences. Some of the sequence reads in
the assembled sequence that are wholly or partially composed of the duplicated
elements are indicated in grey and labeled. When sequence reads are aligned with the
assembled sequence, reads from the second element also align with the first and vice
versa. Dashed boxes enclose sequence reads from aligned duplicated sequences. Panel
B: Illustration of how read “depth” and dissimilarity increase within duplicated
regions in a portion of the human genome. Panel B excerpted, with permission, from
Bailey JA et al. (2002) Science 297:1003–1007. Copyright 2002 American Association
for the Advancement of Science.

a e

d

c

b

h

g

f

h

i o

p

n

m

l

k

j

q

Reads producing assembled sequence

Reads aligned with assembled sequences

m

pl

ok

nj

qd h

c g

a

b f

e

m

pl

ok

nj

q d h

c g

a

b f

e

Z1 Z2

Assembled sequence

A.

B.

98%

99%

100%

S
im

ila
ri
ty

U52111 (X chromosome)

ABCD1

SLC6A8

 47

100

200

226

R
e

a
d

s
/5

 k
b

14.3 Sequence Organization within Chromosomes 427

duplication. However, over time, deletions, translocations, and inversions may
erase some of the evidence of the original duplication event, making it hard to
detect from within-genome sequence comparison. Although the baker’s yeast
genome is the result of a whole-genome duplication (see below), its genome is
only 12% larger than the unduplicated genome of a comparable yeast species,
Kluyveromyces waltii, and the number of predicted genes is only 10% greater.

There are several ways to infer whole-genome duplication events that have
led to a contemporary genome. An obvious potential indicator is the pres-
ence of duplicate genes. However, these can also arise from independent du-
plication events, and if a sufficient proportion of paralogs has been lost, it
may be difficult to distinguish the results of whole-genome duplication from
the consequences of many smaller independent duplications. Sometimes se-
quence comparisons allow estimates of the time elapsed since the paralogs
were formed, and many paralog pairs dated to the same historical time inter-
val may indicate whole-genome duplication rather than a set of independent
segmental duplication events. Patterns of collinear gene clusters or anchor se-
quences, described above, may also be indicators of whole-genome duplication.
Collinear gene clusters can be used to detect whole-genome duplications even
if the fraction of paralogous genes is small. We illustrate this for two different
methods using either between-genome or within-genome comparisons.

Between-genome comparisons for identifying genome duplications leading
to species D requires a closely-related species A whose genome is undupli-
cated and not extensively rearranged. A simplified illustration of this process
is shown in Fig. 14.10. Actually, a particular organism whose genome has
been duplicated might lie at any stage in the overall path illustrated, and the
comparison shown in Fig. 14.10E will apply to syntenic segments rather than
the whole genome because of translocations and inversions (not illustrated)
that also occur. The processes of mutation and deletion are also concurrent
rather than strictly sequential, as shown in this simplified diagram.

We can simulate the overall process by using standard playing cards. Select
one suit (♦ for example), and shuffle cards of that suit to represent the gene
order of an unduplicated genome. Then lay out ♠ and ♥ in two adjacent
horizontal rows, each with cards in the same order as the ♦ cards. The ♠ and
♥ together represent the duplicated genome. To simulate the result when only
one member of each paralog remains after a series of deletion events following
the initial duplication, sequentially “delete” either a ♠ or a ♥ of each card
type, going from left to right. The suit to be deleted for each card type is
chosen randomly by a coin toss. One realization of this procedure is shown
below:

♦ 6 7 5 4QK A23 9 10 J 8 (ancestral order)

♠ 5 4A2 9 J (descendant after
♥ 6 7Q K310 8 duplication and deletion)

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

whole-genome duplication

mutation: modification or

 loss of function

deletion

1' 4 5 7 10

1 2 6 7' 8 93

1' 4 5 7 10

1 2 6 7' 8 93

deletion

A. Unduplicated ancestral genome

B.

C.

D. Descendant genome

1 2 3 4 5 6 7 8 9 10

1 2 6 7' 8 93

1' 4 5 7 10

E. Alignment

chromD1

chromD2

chromD1

chromD2

Fig. 14.10. Identifying whole-genome duplication by between-genome comparison.
The unduplicated genome is shown in panel A. Genes are represented as pentagons
with a gradient of shading. After whole-genome duplication (panel B), two copies of
every gene are produced (unshaded pentagons). Genes can mutate (panel C), and
these mutations may destroy functions (indicated by broken bounding lines) or alter
them (shaded genes labeled with primes). Deletions may occur (panel D), subject
to the constraint that essential genes be retained. Alignment of chromosomes D1
and D2 with the unduplicated genome of another descendant of the shared common
ancestor (panel E) supports the whole-genome duplication because nonparalogous
genes in the two chromosomes appear interleaved and in the same order as genes in
the unduplicated chromosome.

14.3 Sequence Organization within Chromosomes 429

There is no obvious way to determine from ♠ and ♥ cards alone that
they resulted from a duplication event since each “gene” is a single copy. But
observe the result of alignment with the unduplicated ♦ genome:

♠ – – 5 4 – – A 2 – 9 – J –
| | | | | |

♦ 6 7 5 4 Q K A 2 3 9 10 J 8
| | | | | | |

♥ 6 7 – – Q K – – 3 – 10 – 8

The “genes” shared by ♠ and ♦ are in corresponding gene order, as is also
true for genes shared by ♥ and ♦. Furthermore, when aligned with the undu-
plicated ♦ genome, ♥ and ♠ genes are interleaving (i.e., ♠ appears where ♥
is missing, and vice versa). This illustrates two results expected from genome
duplication using the model specified in Fig. 14.10: conserved gene order, and
interleaving of genes within corresponding duplicate segments (Fig. 14.10E).
These observations are unlikely by the alternative (slow shuffle) model. (Try
aligning the original ♦ sequence with ♣ that have been shuffled from the same
starting sequence and then cut into two rows of six and seven cards.)

Whole genome duplications in yeast have been recognized from the con-
served gene order or interleaving of genes in duplicate regions (Wong et al.,
2002). This approach verified that the Saccharomyces cerevisiae genome is a
product of whole-genome duplication, as evidenced by comparison with the
genomes of yeasts Kluyveromyces waltii (Kellis et al., 2004) or Ashbya gossypii
(Dietrich et al., 2004). The duplicate mapping and interleaving of genes near
the centromeres of S. cerevisiae chromosomes Scer12 and Scer10 relative to
K. waltii chromosome Kwal5 is shown in Fig 14.11. Note that for S. cerevisiae
there are 16 chromosomes, compared with 8 from K. waltii. This is consis-
tent with a whole-genome duplication event, which will double the number of
centromeres. The S. cerevisiae gene set includes about 88% of the K. waltii
genome and contains about 457 paralogous gene pairs (8% of the S. cerevisiae
gene set) (Kellis et al., 2004). Because of genome rearrangements and other
effects in the independent lineages leading to K. waltii and S. cerevisiae from
their common ancestor, gene orders and orientations are not conserved over
entire chromosomes, but rather are limited to conserved segments spanning
27 genes on average.

The second method, within-genome comparison, has been used to identify
multiple genome duplications even when substantial genome rearrangements
have occurred. The method (Fig 14.12) is illustrated for collinear gene clusters
(see Fig 14.8A) whose homologous genes have been detected by using BLAST.
Two whole-genome duplications are depicted. Although this should produce
four collinear gene clusters, cluster C has been lost as a result of subsequent
deletion events. Thus, the multiplication level (number of duplicate copies)
for this genome region is three rather than four. Shared homologous genes
define a collinear gene cluster contained within A′ and B′ and another cluster
contained within B′ and D′. A′ and D′ do not share any homologous genes,

430 14 Comparative Genomics

Scer12

Kwal5

Scer10

YLR002YLL009

YJR003YJL005

Fig. 14.11. Example of duplicate mapping of centromeric regions from S. cere-

visiae chromosomes Scer12 and Scer10 to the same region near the centromere of
K. waltii chromosome Kwal5. Although neither S. cerevisiae chromosome has all of
the genes found in this region of Kwal5, the gene orders are the same as in Kwal5,
and the genes of S. cerevisiae interleave to tile almost the entire portion of Kwal5
shown. Excerpted, with permission, from Kellis M et al. (2004) Nature 428:617–624.
Copyright 2004 ES Lander.

but transitive homology can be inferred: since region A′ is homologous to B′

and region B′ is homologous to D′, we conclude that A′ is homologous to D′.
This type of analysis gives a better assessment of multiplication levels.

This method has been used to determine the number of whole-genome
duplications in the history of Arabidopsis (Simillion et al., 2002). Multipli-
cation levels for direct homologies of collinear gene clusters measured along
the genome mostly ranged from two to four. When transitive homologies were
included, many regions with multiplication levels of five to eight were ob-
served. This suggested that three whole-genome duplication events had oc-
curred (5 > 22 and 8 = 23). The fraction of synonymous substitutions per
synonymous site, Ks, was used to estimate dates of 75, 160, and 220 million
years ago for these duplication events.

Other methods for identifying and dating genome duplication events are
available (Van de Peer, 2004). Some of these methods employ clusters of ho-
mologous genes that appear together at different chromosomal locations, but
not necessarily in the same order. The statistical significance of these ho-
mologous clusters can be estimated by randomly shuffling the gene map and
identifying any homologous clusters that appear. For each pair of homologs,
additional homologs closer than a specified distance (measured either by win-
dow size or by the number of unduplicated genes that separate them) con-
stitute randomly-generated gene clusters. The probability of observing these
gene clusters is approximated after 1000 such simulations. For recent research
on this and related statistical problems, see Durand and Sankoff (2003).

Analysis of the human genome by using clusters of paralogous genes, or
paralogons, indicates that at least one whole-genome duplication has occurred
in the chordate lineage (McLysaght et al., 2002). The estimated date for this
duplication is 350-650 million years ago. As additional complete genome se-
quences from throughout the phylogenetic tree become available, it will be

1 2 3 4 5 6 7 8 9 10

mutation: modification or

 loss of function

1' 4 5 7 10

1 2 6' 7' 8' 93

deletion

translocation

recombination

Unduplicated ancestral genome region

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

10'

2' 6 8 9'

1' 4 5 7 10

1 2 6' 7' 8' 93 10'

2' 6 8 9'

A

B

C

D

A'

B'

D'

whole-genome duplication

whole-genome duplication

Fig. 14.12. Identifying whole-genome duplication by within-genome comparison.
Open boxes represent genes not involved in this duplication event. Other graphical
conventions are the same as in Fig. 14.10. A segment of the unduplicated genome
is shown at the top. Two rounds of whole-genome duplication produce four copies
A, B, C, and D. After subsequent deletion, mutation, translocation or other events,
collinear gene clusters within (A′, B′) and (B′,D′) remain, indicating a multiplication
level of three for this region. Homology of D′ with A′ is inferred even though they
share no homologous genes.

432 14 Comparative Genomics

possible to refine hypotheses about genome evolution by whole-genome dupli-
cation.

14.4 Gene Content

Two major tasks to accomplish after assembly of a complete genome sequence
are identifying gene sequences and assigning gene functions. Functional as-
signment is discussed in Section 14.5. Here we focus on identifying genes and
their associated regulatory sequences. Three types of information employed
in gene finding are signals (e.g., splice sites), sequence content (e.g., k-word
frequencies), and similarities with cDNAs or ESTs (Stormo, 2000). The first
two types of information depend upon the local sequence context, while the
latter type employs comparison with database entries.

The different categories of genome sequence are shown schematically in
Fig. 14.13. Once transposable elements and other repeated sequences have
been identified and suitably masked, the remaining single-copy genomic se-
quence can be further characterized as either coding sequence or noncod-
ing sequence. Information represented in coding sequences will eventually
appear in gene products either as RNA (e.g., tRNA) or proteins. Coding re-
gions represent only a small proportion of the genomes of complex eukaryotes
such as plants and animals (Table 14.2). The percentage of the DNA that
codes for genes indicates the magnitude of the gene identification problem.
The yeast S. cerevisiae genome, for example, contains 70% coding sequences,
which means that the signal-to-noise ratio is high. The human genome, in
contrast, contains only about 1.2% protein coding sequences, and just 5% of
each protein-coding gene actually codes for amino acid residues (the signal-
to-noise ratio is low). Such genome properties will affect which experimental
and computational approaches are appropriate.

The classical experimental approach to gene finding is to generate muta-
tions in an organism, characterize the resulting phenotypes, genetically map
the locations of the mutations in the genome, and then identify the altered
gene products biochemically. This traditional method is arduous and time-
consuming. Genetic engineering methods for systematically targeting partic-
ular genes for mutation (i.e., gene “knockout” methods) are available and
practical for some organisms. For example, 96% of the open reading frames
of baker’s yeast (S. cerevisiae) were deleted one at a time, and effects upon
cell morphology and growth were measured under a variety of conditions (Gi-
aever et al., 2002). However, knockout technologies may not be available for
all organisms, or in the case of humans are not applicable for ethical reasons.
For such cases, and in general as a preliminary, it is usual and convenient
to employ computational methods for initial characterization of sequenced
genomes.

g
e
n
e
 X

T
E

1
T

E
1

T
E

1
T

E
1

T
E

1
T

E
1

T
E

1
T

E
1

T
E

1
T

E
2

T
E

2
T

E
2

T
E

3

E
2

E
1

E
3

T
ra

n
s
c
ri
p
ti
o
n

fa
c
to

r
b
in

d
in

g

s
it
e
s

5
' U

T
R

3
' U

T
R

In
tr

o
n
 1

In
tr

o
n
 2

T
E

In
te

rg
e
n
ic

/n
o
t
T

E

In
tr

o
n
/n

o
t
T

E

C
o
d
in

g

U
n
tr

a
n
s
la

te
d

0
.1

0
0
.2

0
0
.3

0

L
o
c
a
l
g
e
n
o
m

e
 f
ra

c
ti
o
n

F
ig

.
1
4
.1

3
.

T
y
p
es

o
f

se
q
u
en

ce
s

fo
u
n
d

in
eu

ka
ry

o
ti
c

g
en

o
m

es
.

C
o
d
in

g
se

q
u
en

ce
s

(o
p
en

b
ox

es
w

it
h
in

ex
o
n
s

E
1
,

E
2
,

a
n
d

E
3
)

m
ay

re
p
re

se
n
t

o
n
ly

a
sm

a
ll

fr
a
ct

io
n

o
f
eu

ka
ry

o
ti
c

g
en

o
m

es
.
N

o
n
co

d
in

g
se

q
u
en

ce
s

m
ay

b
e

in
te

rg
en

ic
(t

h
in

li
n
es

),
in

tr
o
n
ic

se
q
u
en

ce
s

w
it
h
in

g
en

es
(t

h
ic

k
li
n
es

),
o
r

u
n
tr

a
n
sl
a
te

d
p
o
rt

io
n
s

o
f

ex
o
n
s

(g
re

y
b
ox

es
).

In
te

rs
ec

ti
n
g

v
er

ti
ca

l
li
n
es

re
p
re

se
n
t

tr
a
n
sc

ri
p
ti
o
n

fa
ct

o
r

b
in

d
in

g
si
te

s
(t

h
in

li
n
es

)
o
r

th
e

co
re

p
ro

m
o
te

r
(t

h
ic

k
li
n
e)

.
T
ra

n
sp

o
sa

b
le

el
em

en
ts

o
f
va

ri
o
u
s

ty
p
es

(fi
ll
ed

b
ox

es
)

m
ay

re
p
re

se
n
t

a
fe

w
p
er

ce
n
t

o
r

th
e

m
a
jo

ri
ty

o
f
a

g
en

o
m

ic
se

q
u
en

ce
.
T

h
e

fr
a
ct

io
n
a
l
a
m

o
u
n
t

o
f
ea

ch
se

q
u
en

ce
ty

p
e

in
th

is
g
en

o
m

e
re

g
io

n
is

sh
ow

n
a
t

th
e

b
o
tt

o
m

.

T
a
b
le

1
4
.2

.
M

ea
su

re
s

o
f
co

d
in

g
se

q
u
en

ce
co

n
te

n
t

fo
r

eu
ka

ry
o
ti
c

m
o
d
el

o
rg

a
n
is
m

s.

G
en

o
m

ic
D

N
A

G
en

e
si
ze

m
R

N
A

si
ze

b
E

x
o
n

si
ze

E
x
o
n
s/

g
en

e
G

en
o
m

e
N

o
.
G

en
es

%
C

o
d
in

g
a

p
er

g
en

e
(b

p
)

(a
v
er

a
g
e

b
p
)

(a
v
er

a
g
e

n
t)

(a
v
er

a
g
e

b
p
)

(a
v
er

a
g
e)

S
a
cc

h
a
ro

m
y
ce

s
ce

re
v
is

ia
e

5
,5

0
0

7
0

2
0
6
0

1
4
5
0

1
4
5
0

1
4
5
0

1
c

C
a
e
n
o
rh

a
bd

it
is

e
le
g
a
n
s

1
8
,4

0
0

2
7

5
1
0
0

2
7
0
0

1
4
0
0

2
4
0

6
D

ro
so

p
h
il
a

m
e
la

n
o
g
a
st

e
r

1
3
,6

0
0

2
0

8
5
5
0

3
2
5
0

1
7
7
0

4
2
5

4
A

ra
b
id

o
p
si

s
th

a
li
a
n
a

2
6
,4

0
0

2
6
.3

4
8
7
0

1
9
7
0

1
2
8
0

1
6
4

5
.2

H
o
m

o
sa

p
ie

n
s

2
5
,0

0
0

1
.2

1
3
7
,0

0
0

2
7
,0

0
0

1
3
4
0

1
4
5

9
-1

0

a
%

co
d
in

g
co

m
p
u
te

d
re

la
ti
v
e

to
a
ss

em
b
le

d
se

q
u
en

ce
,
w

h
ic

h
m

ay
n
o
t

in
cl

u
d
e

h
et

er
o
ch

ro
m

a
ti
n
.

b
m

R
N

A
si
ze

is
fo

r
th

e
p
ro

ce
ss

ed
tr

a
n
sc

ri
p
t,

w
it
h

in
tr

o
n
s

re
m

ov
ed

.
c
A

n
es

ti
m

a
te

d
2
4
0

y
ea

st
g
en

es
co

n
ta

in
o
n
e

o
r

m
o
re

in
tr

o
n
s.

9
6
%

o
f
th

e
y
ea

st
g
en

es
h
av

e
n
o

in
tr

o
n
s.

D
a
ta

:
S
.
ce

re
v
is

ia
e

(G
o
ff
ea

u
et

a
l.
,
1
9
9
6
)

C
.
e
le
g
a
n
s

(C
.
el

eg
a
n
s

S
eq

u
en

ci
n
g

C
o
n
so

rt
iu

m
,
1
9
9
8
)

D
.
m

e
la

n
o
g
a
st

e
r

(A
d
a
m

s
et

a
l.
,
2
0
0
0
)

A
.
th

a
li
a
n
a

h
t
t
p
:
/
/
m
i
p
s
.
g
s
f
.
d
e
/
p
r
o
j
/
t
h
a
l
/
d
b
/
t
a
b
l
e
s
/
t
a
b
l
e
s
g
e
n
f
r
a
m
e
.
h
t
m
l

H
.
sa

p
ie

n
s

(I
n
te

rn
a
ti
o
n
a
l
H

u
m

a
n

G
en

o
m

e
S
eq

u
en

ci
n
g

C
o
n
so

rt
iu

m
,
2
0
0
1
;
2
0
0
4
)

E
x
o
n
/
in

tr
o
n

st
a
ti
st

ic
s

fo
r

la
st

fo
u
r

o
rg

a
n
is
m

s
a
b
ov

e
a
re

a
ls
o

av
a
il
a
b
le

in
:
D

eu
ts

ch
a
n
d

L
o
n
g
,
1
9
9
9
.

14.4 Gene Content 435

14.4.1 Gene Prediction from Local Sequence Context

Computational gene prediction in a genomic sequence is an important and
complex problem, particularly for eukaryotic genomes. Complete character-
ization of a gene includes identifying the promoter, all transcription factor
binding sites, all introns and exons, the transcriptional start site and termi-
nation sites, and sites involved in pre-mRNA processing. These tasks are all
computationally nontrivial in their own right, so the complete identification
of genes based only upon their local sequence context is rarely achieved for
eukaryotes.

Identifying eukaryotic promoter sequences is an important (and difficult)
problem. Promoter sequences are recognized by general transcription factors,
such as TATA-binding protein, TBP. Not counting regulatory regions, promot-
ers often span a region 200 bp or more upstream of the transcriptional start
site at +1. Critical promoter elements are the TATA box, the CAAT box, and
the GC box. The TATA box and CAAT box (when present) occur about 25 bp and
100bp upstream (in the 5′ direction) of the transcriptional start site, respec-
tively, but these locations can vary. The GC box may be found about 200bp
upstream of the transcriptional start site. There are “TATA-less” promoters,
which may contain multiple copies of the GC box at a variety of positions
upstream of the transcriptional start site. Positional weight matrices for the
TATA box and the start site are shown in Table 14.3.

A major task for eukaryotic gene prediction is identifying exons and introns
from sequence data. Introns contain at least three potential signals recognized
by the splicing apparatus for processing mRNA: the 5′ donor site, the 3′

acceptor site, and the branch site. The splicing occurs on an RNA substrate,
but gene finding is usually performed on DNA, so we write this as the DNA
version. The simplest description of an exon-intron relationship is:

5′ exon | GT . . . branch site . . . AG | 3′ exon

where 5′ and 3′ refer to the exons immediately flanking a particular intron
(not necessarily the exons at the extreme 5′ and 3′ ends of genes), and the
vertical lines separate exons from the intron, which lies between the vertical
lines. Conserved dinucleotides GT and AG obviously can occur very frequently
by chance, so additional positions are used to define the splice junctions (Ta-
ble 9.4). These extended sequences provide a better representation (patterns
less likely to occur by chance), but as we might expect of consensus methods,
these patterns fail to represent completely the range of allowable splice sites.
For example, a small proportion of introns contain GC at the 5′ splice junction.

Positional weight matrices (expressed as probabilities of occurrence of each
base at each position) provide a more complete description for the 5′ and 3′

splice sites and the branch site (Table 14.3) (Zhang, 1998). Another set of
matrices has been compiled for high %G+C genes (Zhang, 1998), and the donor
and acceptor sequence preferences for the minority of introns having GC at the
5′ splice site have also been determined (Thanaraj and Clark, 2001). With

436 14 Comparative Genomics

Table 14.3. Positional weight matrices (profiles) for a variety of features associated
with human genes. Positions are labeled by various biological conventions. Entries
are probabilities. Intron profiles are for low %G+C loci. All data are taken from Zhang
(1998).

Branch profile

 -5 -4 -3 -2 -1 0 +1

A 0.25 0.25 0.00 0.00 0.39 1.00 0.18

C 0.19 0.22 0.60 0.02 0.24 0.00 0.33

G 0.15 0.17 0.00 0.00 0.32 0.00 0.03

T 0.41 0.36 0.40 0.98 0.05 0.00 0.46

5' Splice site profile (low G+C):

 -3 -2 -1 0 +1 +2 +3 +4 +5

A 0.38 0.62 0.12 0.00 0.00 0.71 0.73 0.11 0.21

C 0.31 0.10 0.04 0.00 0.00 0.02 0.06 0.06 0.10

G 0.18 0.12 0.77 1.00 0.00 0.24 0.08 0.75 0.14

T 0.13 0.16 0.07 0.00 1.00 0.03 0.13 0.08 0.55

3' Splice site profile (low G+C):

 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1

A 0.15 0.14 0.13 0.11 0.10 0.10 0.11 0.12 0.13 0.11 0.10 0.26 0.07 1.00 0.00 0.26 0.24

C 0.24 0.21 0.20 0.22 0.21 0.22 0.25 0.28 0.28 0.25 0.22 0.25 0.55 0.00 0.00 0.11 0.15

G 0.10 0.12 0.10 0.09 0.10 0.09 0.10 0.10 0.08 0.05 0.05 0.15 0.01 0.00 1.00 0.50 0.20

T 0.51 0.53 0.57 0.58 0.59 0.59 0.54 0.50 0.51 0.59 0.63 0.33 0.37 0.00 0.00 0.13 0.41

TATA box profile

 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11

A 0.12 0.06 0.69 0.02 0.70 0.57 0.69 0.42 0.24 0.13 0.20 0.18 0.19 0.18 0.15

C 0.39 0.22 0.04 0.15 0.06 0.06 0.09 0.05 0.18 0.35 0.36 0.31 0.32 0.30 0.30

G 0.35 0.15 0.07 0.11 0.12 0.05 0.16 0.26 0.46 0.41 0.34 0.34 0.31 0.35 0.36

T 0.14 0.57 0.20 0.72 0.12 0.32 0.07 0.27 0.12 0.12 0.11 0.17 0.17 0.18 0.19

Start site profile

 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3

A 0.21 0.15 0.21 0.21 0.18 0.24 0.57 0.31 0.15 1.00 0.00 0.00 0.26

C 0.28 0.38 0.38 0.24 0.35 0.49 0.05 0.43 0.53 0.00 0.00 0.00 0.20

G 0.31 0.27 0.22 0.42 0.27 0.22 0.36 0.17 0.27 0.00 0.00 1.00 0.41

T 0.19 0.20 0.19 0.13 0.20 0.05 0.02 0.10 0.04 0.00 1.00 0.00 0.10

such matrices and the background base frequencies qa, scoring matrices having
log2(pai/qa) as their elements can be prepared to aid in exon prediction.

For eukaryotic genomic sequences, computational gene prediction tools
such as GeneMark, Genie, or Genscan can be employed. Some of these are ab
initio gene finders, meaning that they generate a prediction based upon the
statistics and signals associated with the input string of the DNA sequence be-
ing searched. These methods have associated false-positive and false-negative
error rates that affect our ability to identify genes in any organism. Their

14.4 Gene Content 437

accuracy (measured as the average of the sensitivity and specificity of exon
prediction) can range from around 45% to 75%, depending upon which tool
is employed (Rogic et al., 2001). With metazoan genes, which typically have
several exons per gene (Fig. 14.13, Table 14.2), it is clear that the likelihood
of correctly predicting an entire gene (all exons) is low (30%–40% correct
predictions for HMMGene and Genie applied to a portion of the Drosophila
genome; Reese et al., 2000).

14.4.2 Exon and Intron Statistics

The sizes of exons and numbers of introns affect gene identification. Average
exon and intron statistics for several genomes are presented in Table 14.2.
These numbers indicate how complicated genome analysis will be for each or-
ganism. For example, only 4% of yeast genes contain introns; therefore, large
open reading frames in yeast will be strongly correlated with actual genes,
and gene finding will be comparatively easy. In contrast, human protein cod-
ing genes contain nine to ten introns on average, and correct gene prediction
will require correct identification of about 18 to 20 exon-intron or intron-exon
boundaries for each gene. Exon size distribution data can be useful when an-
alyzing genes. Exon size distributions for three different eukaryotes are shown
in Fig. 14.14. These distributions are very broad and skewed right (see also
Deutsch and Long, 1999). Lengths of candidate exons predicted from 5′ and
3′ splice signals (see below) can be tested against the exon length distribution
for that organism to determine whether the lengths are improbably short or
long.

14.4.3 Comparative Methods for Identifying Genes

A simple computational approach for gene finding is a sequence similarity
search using alignment applications such as BLASTX to compare translations
of genomic sequence in all six reading frames against a protein database. This
is particularly appropriate if most genes are not interrupted by introns. If the
organism’s genes have many introns, the translated string used for searching
may not accurately correspond to an exon, which will reduce the sensitivity of
the comparison. A similar approach is to compare genomic sequences directly
to entries in EST (expressed sequence tag) databases. ESTs contain short
sequences derived from cDNAs and are frequently determined by single-pass,
high-throughput sequencing of thousands of cDNAs derived from particular
tissues and particular physiological conditions. ESTs usually contain more
sequencing errors than does finished genomic DNA. Also, they frequently only
represent the 3′ end of the mRNA—not the full-length transcript. Estimates
of gene numbers may be confounded by fragments of a single gene that are
attributed to separate transcripts and by the failure to recognize pseudogenes.
An additional problem for both prokaryotic and eukaryotic genomes is the

438 14 Comparative Genomics

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700 800 900 1000

Exon length (bp)

P
e

rc
e

n
ta

g
e

 o
f

e
x
o

n
s

Human

Worm

Fly

Fig. 14.14. [This figure also appears in the color insert.] Distributions of exon
lengths in H. sapiens, C. elegans, and D. melanogaster. Only a small proportion of
human exons exceed 300 bp in length, indicating that such a threshold might be used
as an additional probabilistic criterion for exon scoring. Reprinted, with permission,
from International Human Genome Sequencing Consortium (2001) Nature 409:860–
921. Copyright 2001 Nature Publishing Group.

absence of significant database matches for substantial fractions of predicted
genes (30–40% for early sequencing projects).

Comparative genomics provides an additional approach to gene finding
(coding sequences and regulatory sequences) that employs several related
genomes to reduce the signal-to-noise ratio. After applying gene-finding meth-
ods to the genomic sequence of any single organism, we usually do not know
whether all exons have been correctly identified, nor do we know what tran-
scription factors regulate the expression of that gene. Now suppose that the
corresponding genomic sequences from other related organisms are known. We
perform multiple alignment on their corresponding regions. Since the gene and
its regulatory sequences have been evolutionarily selected for function, we ex-
pect to find a higher level of sequence conservation within the coding and
regulatory sequences than in the introns or “spacer” regions between tran-
scription factor binding sites.

This concept is diagrammed in Fig. 14.15. After multiple sequence align-
ment, correct translational start sites, stop sites, and exon boundaries can
be inferred from the “consensus” assignment for the whole set. Regulatory
sequences are particularly difficult to identify from a single genome because

14.4 Gene Content 439

the motifs may be short and may display considerable sequence degeneracy at
positions within the sequence pattern. If we were to use PWMs to search for
regulatory sequences (Chapter 9), there would typically be a substantial false
positive error frequency. But with aligned genomic sequences, the regulatory
sequences become more apparent because of their conserved sequences and po-
sitions relative to the coding sequences. Identifying regulatory sequences by
comparing sequences from corresponding genomic regions of related organ-
isms is called phylogenetic footprinting (Gumucio et al., 1992; see Zhang
and Gerstein, 2003, for a review).

A

B

C

XD

orfX orfY

E

Consensus
geneX

X

X

X

Fig. 14.15. Phylogenetic footprinting using related organisms A, B,. . . ,E. Open
boxes represent coding sequences, grey boxes represent untranslated ORFs, and
black or striped boxes represent candidate regulatory elements in orthologous gene
regions. “X” indicates a stop codon. In any one genome, it may be hard to determine
which regulatory elements are functional, but conserved elements shared by the
whole set most likely represent the actual functional elements. Similar logic can be
used to identify functional ORFs. Although orfY appears in A, its absence in the
other strains (note stop codons) suggests that it may not be functional.

The power of such methods is illustrated by the comparative study of S.
cerevisiae and three close relatives (Cliften et al., 2003; Kellis et al., 2003).
As we mentioned earlier, yeast gene identification is relatively easy, because
of the 6062 ORFs listed in the Saccharomyces Genome Database, only 240
were indicated to have one or more introns. Even with this simple genome, the
comparative genomic approach showed that about 500 of the approximately
6000 previously annotated “genes” were probably not genes at all. The phylo-
genetic footprinting approach identified 40 new regulatory motifs in addition
to many of the 55 regulatory motifs that had previously been identified (Kellis

440 14 Comparative Genomics

et al., 2003). With the availability of additional genome sequences throughout
the phylogenetic tree, this comparative approach will be a powerful addition
to other methods of computational gene analysis.

14.4.4 Gene Numbers

The size, number of genes, and fraction transcribed are important properties
distinguishing genomes. Genome sizes and estimates of numbers of genes al-
ready give us significant information (Table 14.1). We start by noting that
there is no clear relationship between the amount of DNA and the genetic
complexity of an organism. For example, Arabidopsis has more genes than
Drosophila but less DNA. Next, note the number of genes contained in the
Mycoplasma genitalium genome. This number (about 500) gives us an upper
bound for the minimum number of genes required to operate an autonomous,
free-living organism. Experimental gene knockout studies on this organism
suggest that the minimal genome for autonomous existence is in the range of
250–350 genes (Fraser et al., 1995). If we compare the numbers of genes of
M. genitalium and E. coli, we see that E. coli has about 8 times the number
of genes found in M. genitalium. This may mean that E. coli has accumu-
lated genes that are useful for growth under a broader range of environmental
conditions. Genes for the utilization of particular sugars such as lactose and
xylose exemplify this phenomenon (genes in the lactose operon are not sig-
nificantly expressed in the absence of lactose). If we compare the numbers
of genes of S. cerevisiae (a eukaryote) and E. coli (a prokaryote), we find
numbers that are similar, suggesting that the eukaryotic lifestyle is not just a
matter of having more genes but rather having particular sets of gene types.
For example, there are 1105 yeast genes that are essential for growth in rich
medium (Giaever et al., 2002) compared with an estimated minimal genome
of 250–350 for Mycoplasma. Of course, numbers of genes are insufficient to
represent the complex organization of eukaryotic regulatory networks.

Comparison between metazoan genomes is instructive. For example, C.
elegans (a nematode “worm”) is a very simple organism that as an adult
hermaphrodite consists of 959 somatic cells. (This is the actual cell number,
not the number of cell types.) Its genome is predicted to contain about 18,400
genes. The adult D. melanogaster is a much more complex organism, both
morphologically and behaviorally, yet it is predicted to have 13,600 genes.
As indicated above, we conclude that it is not just the number of genes that
determines the complexity of an organism but rather the types of genes or the
complexity of the interactions between genes and gene products that matters.

A comparison of the human genome with that of Arabidopsis thaliana is
also informative. Both are multicellular eukaryotes, and both contain roughly
the same number of genes. We tend to view humans from the standpoint of be-
havioral complexity, while we say that plants just “vegetate.” However, plants
have additional biochemical complexity that humans do not possess (e.g., hu-
man cells cannot manufacture all of the essential amino acids, nor can they

14.5 Predicted Proteome 441

engage in photosynthesis), and thus the similarity in number of genes is per-
haps understandable. Note, however, that the human genome is about 25 times
larger than the Arabidopsis genome, even though the numbers of genes are
comparable. This size difference could be explained by a number of hypothe-
ses, including the suggestion that more of the human genome is devoted to
gene control, or alternatively the more trivial explanation that nonfunctional
DNA has accumulated to a greater extent in the human genome. We saw
earlier (Section 14.2) that the human genome contains a higher proportion of
transposable elements than does the genome of Arabidopsis.

14.5 Predicted Proteome

We now consider how to annotate and catalog predicted genes. Our goal is to
assign one or more functions to each predicted polypeptide. Having annotated
genes to the extent possible, the next job is to catalog them and to make a
list of all different types of genes by functional category. This indicates the
repertoire of functional pathways available to the organism.

14.5.1 Assigning Gene Function by Orthology

We must specify what is meant by “function.” Recognizing a need for a com-
mon descriptive vocabulary and classification scheme for the various concepts
subsumed by the term “function,” the Gene Ontology Consortium has defined
three families of hierarchical descriptors corresponding to molecular functions,
biological processes, and cellular components (Gene Ontology Consortium,
2004). In terms of molecular function, a protein might, for example, be a per-
mease, a phosphatase, or a DNA-dependent ATPase. Although they are pre-
cise designations, these descriptions do not describe the processes in which the
proteins participate. For example, the permease might be involved in utiliza-
tion of a sugar, the phosphatase might be part of a signaling pathway, and the
DNA-dependent ATPase might be a helicase involved in DNA replication. In
terms of cellular components to which the proteins belong, the permease might
be associated with the plasma membrane, and the helicase (DNA-dependent
ATPase) might be associated with the replication fork. Clearly, a complete
description of the function of any gene product will include (but not necessar-
ily be limited to) a specification of its molecular function, biological process,
and cellular location.

Ordinarily, protein functions cannot be deduced from first principles using
the predicted polypeptide sequences. Instead, functions are predicted based
upon patterns of gene expression from microarray data (see Chapter 11) or by
sequence similarity to other proteins whose functions have been characterized
biochemically. Assume that we are starting with the collection of predicted
polypeptide sequences for a particular genome. Each one of these polypeptides
can be used as a query sequence to search appropriate databases. The hits

442 14 Comparative Genomics

(database matches) that display significant similarity with the query sequence
are retrieved and listed. If the similarity is sufficiently high and if the functions
of some of the hits are known, then it may be reasonable to attribute some of
their functional annotations to the query sequence.

As we indicated in our discussion of alignment (Chapter 6), sequence sim-
ilarity means the degree of agreement of the character states at positions of
one sequence aligned with another. (Remember that similarity over short seg-
ments of two strings need not imply an evolutionary relationship between two
proteins: the agreement could have occurred by chance.) We indicated in Sec-
tion 6.1 that genes or proteins that have descended from a common ancestor
are said to be homologs, which are expected to show sequence similarity,
provided that the evolutionary distance separating them is not too great. Re-
call that if gene homologs gB and gC (descended from gene gA) are observed
in organisms B and C, respectively, then gB and gC are said to be orthologs.
The functions of orthologs are often the same as the function of the ancestral
gene gA, so for annotation of sequences, orthologous relationships are par-
ticularly helpful (i.e., if the function of gB is known but that of gC is not,
the function of gC is likely to be the same if gB and gC are orthologs). But
suppose that after the lineage of organism B split from the C lineage, dupli-
cations of gB occurred, leading to production of gB1 and gB2. Genes gB1 and
gB2, products of intragenomic duplication, are said to be paralogs. One of
these (gB1, for example) may retain the same function as gC, but gB2 may
have acquired a different function as a result of mutation and selection. This
is possible because the other copy, gB1, is still available to supply the origi-
nal function. Gene gC (function unknown) might show sequence similarity to
both paralogs gB1 and gB2. In this case, the match with gB1 would provide a
correct functional assignment, but the match with gB2 would not.

Identifying orthologs is an important activity in comparative genomics
because experimentally determined functions of genes in tractable model or-
ganisms can be associated with their orthologs found in newly examined or-
ganisms. For example, ribosomes in E. coli have been shown experimentally
to contain 52 different protein species. Identification and characterization of
these proteins required many years of genetic and biochemical research. Be-
cause ribosomal functions are highly conserved, we expect orthologs of most
of these 52 proteins to appear in most bacteria. Orthologous relationships
make it unnecessary to repeat all of the extensive “wet lab” work to identify
and characterize ribosomal proteins for each new eubacterium whose genome
is sequenced.

As increasing numbers of complete genome sequences become available,
more and more orthologous relationships can be established. A consistent
way of defining and cataloging these relationships is through the use of clus-
ters of orthologous genes (or COGs; Tatusov et al., 1997). Originally
defined for prokaryotes (for which many more complete genome sequences are
available), they have been extended to include orthologous groups within eu-

14.5 Predicted Proteome 443

karyotic genomes as well. These groups are called KOGs. COGs are produced
as follows:

1. Start with a data set containing predicted proteins encoded in a set of
complete genomes (43 prokaryotic genomes in a recent release).

2. Perform an “all-against-all” series of BLASTP comparisons using the pre-
dicted protein sequences. This means that each protein sequence in an
organism is used as a query sequence for a BLASTP comparison against
all other protein sequences in all of the organisms (including the one from
which it came).

3. Multiple “hits” from within-organism comparisons are indicative of par-
alogs, which are treated as a single group—not as multiple instances.

4. Identify best hits for each gene in each organism with comparable genes
in other organisms.

5. Define a COG as the set of mutually consistent best hits found between
genomes in a minimum of three organisms. Genes correspond to nodes, and
the mutual relationships define the edges of a triangular graph defining
the minimal COG.

6. Expand the graph of any COG by merging graphs with COGs that share
edges in common with it.

This process is illustrated in Fig. 14.16. Because genome D may be evolution-
arily remote from A, the similarity between a particular protein in D and its
ortholog in A may not be recognized, whereas its similarity to the correspond-
ing genes in B and C is significant. The last step allows orthology between the
genes in D and A to be identified, because of their relationships to orthologs
in B and C.

Each COG corresponds to a particular function represented in a collection
of genomes. There are currently 3300 COGs. Some functions may appear in
all genomes, whereas others have a more restricted distribution. For example,
small ribosomal subunit protein S3 appears in all 43 reference genomes, but
ribonuclease I appears in only three. COGs have been organized into the
functional categories listed in Table 14.4.

14.5.2 Assigning Gene Function by Patterns of Occurrence

In the previous section, we described the assignment of a gene’s function based
upon orthology, which was recognized on the basis of sequence similarity be-
tween gene products from two different organisms. This type of functional
assignment includes all three aspects of function—molecular activity, bio-
chemical process, and cellular localization—provided those annotations are
available for one member of the orthologous pair. However, there are pro-
teins that participate in the same functional process but are not orthologs.
(For example, DNA polymerases and helicases both may be involved in DNA
replication). How can we recognize function at the level of process or cellu-
lar location if the participating proteins are not orthologs or if there are no

444 14 Comparative Genomics

gB

gA

gC

gD

Fig. 14.16. Definition of COGs. Orthologs of gene g in organisms A, B, and C
can be recognized because the predicted polypeptides are each other’s best “hit”
for every genome pair (indicated by arrows). The minimal COG consists of this
type of pairwise relationship for a particular gene represented by orthologs in three
genomes (shaded boxes). Another COG including genomes B, C, and D might also
be recognized. Even though gD and gA may have diverged from each other enough
to make their orthologies hard to detect (dashed line), the common side shared by
these two COGs is sufficient to join them, thus placing these orthologs from all four
organisms into relationship.

suitable annotated orthologs available? As we mentioned earlier, this situa-
tion is not uncommon: 30% or more of the genes found in a newly sequenced
organism may have no database matches.

At least three genomic methods for identifying shared processes are partic-
ularly successful for prokaryotes and also are applicable to eukaryotes. These
methods rely on patterns of gene distribution in three different contexts: distri-
bution of genes within genomes (gene neighbors), association of independent
polypeptides in one organism with gene fusions in another, and distribution
of genes among a reference collection of organisms (phylogenetic profiles).
These methods can be applied individually, together, or in combination with
experimental approaches, such as expression profiling, to identify networks
of genes (not necessarily orthologs) that participate in a shared functional
process.

The gene neighbors approach relies on the observation that genes having
related functions tend to be more closely linked genetically than genes having
unrelated functions. This association in map positions is particularly strong
for prokaryotes, whose genes are commonly organized into operons. (Even the
eukaryote C. elegans has 25% of its genes within operons.) The close proximity
of related genes allows the sharing of promoter elements for coordinated gene
expression. Suppose that in genome i we observe that gene A (for which the
functional process is known) is located next to gene B (for which the func-

14.5 Predicted Proteome 445

Table 14.4. Summary of clusters of orthologous genes (COGs) by functional cate-
gories (Tatusov et al., 2000). Data from http://www.ncbi.nlm.nih.gov/COG/.

Number of Number of
Code COGs Domains Description

Information storage and processing

J 217 6449 Translation, ribosomal structure, and biogenesis
K 132 5438 Transcription
L 184 5337 DNA replication, recombination, and repair

Cellular processes

D 32 842 Cell division and chromosome partitioning
O 110 3165 Post-translational modification, protein turnover,

chaperones
M 155 4079 Cell envelope biogenesis, outer membrane
N 133 3110 Cell motility and secretion
P 160 5112 Inorganic ion transport and metabolism
T 97 3627 Signal transduction mechanisms

Metabolism

C 224 5594 Energy production and conversion
G 171 5262 Carbohydrate transport and metabolism
E 233 8383 Amino acid transport and metabolism
F 85 2364 Nucleotide transport and metabolism
H 154 4057 Coenzyme metabolism
I 75 2609 Lipid metabolism
Q 62 2754 Secondary metabolite biosynthesis, transport,

and catabolism

Poorly characterized

R 449 11948 General function prediction only
S 750 6416 Function unknown

tional process is unknown). Moreover, suppose that these genes also appear
in close proximity in genomes j, k, l, The conserved neighboring relation-
ships across a range of organisms suggests that these two genes may share in
the same functional process (Dandekar et al., 1998; Overbeek et al., 1999).

The second method depends upon the observation that proteins often con-
tain several functional domains that fold in a structurally independent man-
ner. For example, genes trpG and trpD, which are involved in the biosynthesis
of tryptophan, encode glutamidotransferase and anthranilate phosphoribosyl
transferase activities, respectively. The products of these two genes appear on
separate polypeptide chains in Serratia marcesens. However, these activities
appear together on a single polypeptide chain (a product of the trpD gene) in
E. coli. Similarly, in E. coli, the DNA polymerase III holoenzyme contains ten

446 14 Comparative Genomics

subunits. One of these is the α subunit, which is encoded by dnaE and displays
polymerase activity, and another is the ε subunit, encoded by dnaQ and hav-
ing 3′→5′ exonuclease activity. In Bacillus subtilis, the replication polymerase
PolIIIα contains the domains for polymerase and 3′→5′ exonuclease fused on
a single polypeptide chain. Notice that in both of these examples, each pair
of polypeptides (or domains) functions in the same process (a result of exper-
imental observation). Fusion of these domains into a single polypeptide chain
is predicted to facilitate the process on biochemical grounds. If we reverse the
logic, we can predict that if two polypeptides Ai and Bi occur separately in
organism i but each is similar to different portions of a larger polypeptide in
organism j (i.e., gene gj appears to be a fusion of regions encoding polypep-
tides resembling Ai and Bi), then Ai and Bi probably participate in the same
biological process (Enright et al., 1999). Note that genes Ai and Bi are not
similar to each other, so their functional assignment does not depend upon
orthology. In addition, appearance of these domains in a single polypeptide
chain, where a degree of interaction will occur, suggests that these domains
also physically interact when they occur on separate polypeptide chains. Tests
of this method using independently annotated genes showed that 32%–68%
of genes associated by domain fusion shared keywords in their annotations
(for yeast and E. coli, respectively), while pairs of genes selected at random
shared keywords in 14%–15% of their annotations (Marcotte et al., 1999).

The third method, identification of phylogenetic profiles (Pellegrini et al.,
1999), employs statistical tools similar to those that we used for classification
and clustering. The procedure is, in a sense, the “transpose” of what we
were doing before. Before, we used matrices that looked like the one below to
summarize the properties of OTUs :

characters
OTU i ii iii iv . . . n

1 0 1 1 0 . . . 0
2 1 0 1 1 . . . 0
3 0 1 1 0 . . . 0
4 0 1 1 0 . . . 1
· · · · · . . . ·
· · · · · . . . ·
m 1 0 0 0 . . . 0

Instead of using anatomical characters, we could use the presence (1) or
absence (0) of particular proteins p1, p2, . . . , pn in m completely sequenced
genomes (the genomes must be completely sequenced) as our characters. At
least some of the pi should be annotated functionally in some model organism.

14.5 Predicted Proteome 447

OTU p1 p2 p3 p4 . . . pn

1 0 1 1 0 . . . 0
2 1 0 1 1 . . . 0
3 0 1 1 0 . . . 0
4 0 1 1 0 . . . 1
· · · · · . . . ·
· · · · · . . . ·
m 1 0 1 1 . . . 0

Now transpose the matrix to represent the distribution of each protein across
taxa. Each row represents the phylogenetic profile of a particular protein.
Remember, some of these proteins pi will have been functionally annotated
in one or more genomes.

Proteins OTU1 OTU2 OTU3 OTU4 . . . OTUm

p1 0 1 0 0 . . . 1
p2 1 0 1 1 . . . 0
p3 1 1 1 1 . . . 1
p4 0 1 0 0 . . . 1
· · · · · . . . ·
· · · · · . . . ·

pn 0 0 0 1 . . . 0

Boldface entries highlight the vectors of two proteins having similar profiles.
The key idea for using such data is that genes encoding proteins partic-

ipating in the same functional pathway tend to be coordinately present or
absent in a collection of genomes. The phylogenetic profile of a protein is the
n-dimensional vector representing its presence (1) or absence (0) in each of n
genomes (OTUs). Proteins having similar profiles are inferred to be function-
ally linked. In the illustration above, proteins p1 and p4 are expected to be
functionally related, and if the functional process is known from annotation of
one of them, that process will be attributed to the other. Or, if a new protein
px with no database matches has the profile

OTU1 OTU2 OTU3 OTU4 . . . OTUm

px 0 1 0 0 . . . 1

then it would be inferred to be functionally related to p1 and p4. This approach
has been evaluated for vectors generated from 16 genomes by examining the
number of pairs of proteins matched by their phylogenetic profiles that also
share keywords from prior independent annotations. This number was com-
pared with the number of keyword matches for gene pairs selected at random
and found to be substantially higher (Pellegrini et al., 1999).

14.5.3 Gene Content Within and Between Organisms

Our attempts to conceptualize the complex biological world raise questions
such as, “What is an archaebacterium?”, “What is a eukaryote?”, or “What

448 14 Comparative Genomics

is an animal?” Traditional systematics has employed large numbers of phe-
notypic characters to answer these questions, guided by an evolutionary per-
spective. With the availability of whole-genome sequences, it is informative
to ask these questions again from the perspective of gene content. After all,
the genes and the networks of interactions between genes and gene products
give rise to those phenotypes that we associate with each organism. Within-
genome analysis gives a picture of what biochemical or physiological functions
the cells of a particular organism can perform. Between-genome comparisons
reveal gene categories that are or are not shared by taxa (e.g., What gene cat-
egories are shared by vertebrates? What gene categories are found in animals
but not fungi?).

Comparison of gene contents among organisms requires a unified concep-
tual framework for categorizing genes. For example, genes might be grouped
into the functional categories defined by COGs (Table 14.4). Some of the
higher-level categories for each of the three conceptual definitions of function
proposed by the Gene Ontology Consortium (see Section 4.5.1) are shown in
Table 14.5. To see how these definitions apply, consider just three categories of
genes from H. sapiens and Arabidopsis thaliana (IHGSC, 2001) using molec-
ular function to define categories. In the “defense and immunity” class, there
are over a thousand human genes, while Arabidopsis has only about 200 such
genes. In the “intracellular signaling” category, humans and Arabidopsis have
similar numbers of genes (about 1800 and 1700, respectively). For “general
metabolism,” Arabidopsis has over 1000 more genes than humans (about 4600
for Arabidopsis compared with 3300 for humans). The comparisons for the
first and last functional categories are as expected from the known biology of
plants and animals (e.g., plants don’t produce antibodies, and humans don’t
photosynthesize or produce cellulose).

An alternative way of comparing proteome content across organisms is by
the inventory of domains found among the proteins encoded by their genomes.
Many proteins can be described in terms of their constituent motifs, profiles,
and domains. A protein motif is a short polypeptide sequence pattern asso-
ciated with a particular function. An example is the ATP/GTP-binding site
motif A (amino acid sequence (A/G)-x-x-x-x-G-K-(S/T), where x is any
amino acid residue). A domain is a coherent structural polypeptide unit that
is associated with a particular function. A domain may include one or more
motifs. A profile is a probabilistic description of a protein sequence pattern,
perhaps in terms of a positional weight matrix. Table 14.6 provides a com-
parison of the domain content of humans, pufferfish, C. elegans, and fruitflies,
listing only some of the more common domains. The numbers of different
types of domains encoded provide a measure of the genetic capabilities of the
organisms. For example, note the lower number of homeobox domains in C.
elegans compared with the vertebrates.

Identifying genes shared by animals but absent in other eukaryotes is a
partial answer to the question, ”What is an animal?” Sets of proteins shared
by two or more organisms are determined by using alignment scores obtained

T
a
b
le

1
4
.5

.
E

x
a
m

p
le

s
o
f

g
en

e
o
n
to

lo
g
y

h
ig

h
-l
ev

el
ca

te
g
o
ri
es

(G
en

e
O

n
to

lo
g
y

C
o
n
so

rt
iu

m
,

2
0
0
4
).

In
fo

rm
a
ti
o
n

ta
k
en

fr
o
m

h
t
t
p
:
/
/
f
t
p
.
g
e
n
e
o
n
t
o
l
o
g
y
.
o
r
g
/
p
u
b
/
g
o
/
G
O
s
l
i
m
s
/
g
o
s
l
i
m
g
e
n
e
r
i
c
.
g
o
.

B
io

lo
g
ic

a
l
p
ro

ce
ss

C
el

lu
la

r
co

m
p
o
n
en

t
M

o
le

cu
la

r
fu

n
ct

io
n

B
eh

av
io

r
C

h
ro

m
o
so

m
e

A
n
ti
ox

id
a
n
t

a
ct

iv
it
y

C
el

l
co

m
m

u
n
ic

a
ti
o
n

C
il
iu

m
A

p
o
p
to

si
s

re
g
u
la

to
r

a
ct

iv
it
y

C
el

l
re

co
g
n
it
io

n
C

y
to

p
la

sm
B

in
d
in

g
C

el
l-
ce

ll
si
g
n
a
li
n
g

C
y
to

p
la

sm
ic

ch
ro

m
o
so

m
e

C
el

l
a
d
h
es

io
n

m
o
le

cu
le

a
ct

iv
it
y

H
o
st

-p
a
th

o
g
en

in
te

ra
ct

io
n

C
y
to

p
la

sm
ic

v
es

ic
le

C
h
a
p
er

o
n
e

a
ct

iv
it
y

E
n
d
o
g
en

o
u
s

st
im

u
lu

s
re

sp
o
n
se

C
y
to

sk
el

et
o
n

C
h
a
p
er

o
n
e

re
g
u
la

to
r

a
ct

iv
it
y

E
x
te

rn
a
l
st

im
u
lu

s
re

sp
o
n
se

C
y
to

so
l

D
ef

en
se

/
im

m
u
n
it
y

p
ro

te
in

a
ct

iv
it
y

S
ig

n
a
l
tr

a
n
sd

u
ct

io
n

E
n
d
o
p
la

sm
ic

re
ti
cu

lu
m

C
a
ta

ly
ti
c

a
ct

iv
it
y

C
el

l
g
ro

w
th

/
m

a
in

te
n
a
n
ce

E
n
d
o
so

m
e

E
n
zy

m
e

re
g
u
la

to
r

a
ct

iv
it
y

C
el

l
cy

cl
e

G
o
lg

i
a
p
p
a
ra

tu
s

M
o
to

r
a
ct

iv
it
y

C
el

l
g
ro

w
th

L
ip

id
p
a
rt

ic
le

P
ro

te
in

st
a
b
il
iz

a
ti
o
n

a
ct

iv
it
y

C
el

l
o
rg

a
n
iz

a
ti
o
n
/
b
io

g
en

es
is

M
ic

ro
tu

b
u
le

o
rg

a
n
iz

in
g

ce
n
te

r
P

ro
te

in
ta

g
g
in

g
a
ct

iv
it
y

C
el

l
p
ro

li
fe

ra
ti
o
n

M
it
o
ch

o
n
d
ri

o
n

S
ig

n
a
l
tr

a
n
sd

u
ce

r
a
ct

iv
it
y

C
h
em

i-
m

ec
h
a
n
ic

a
l
co

u
p
li
n
g

P
er

ox
is
o
m

e
N

u
tr

ie
n
t

re
se

rv
o
ir

a
ct

iv
it
y

C
el

l
h
o
m

eo
st

a
si
s

P
la

st
id

S
tr

u
ct

u
ra

l
m

o
le

cu
le

a
ct

iv
it
y

M
et

a
b
o
li
sm

R
ib

o
so

m
e

T
ra

n
sc

ri
p
ti
o
n

re
g
u
la

to
r

a
ct

iv
it
y

R
es

p
o
n
se

to
st

re
ss

V
a
cu

o
le

T
ra

n
sl
a
ti
o
n

re
g
u
la

to
r

T
ra

n
sp

o
rt

N
u
cl

eu
s

T
ra

n
sp

o
rt

er
a
ct

iv
it
y

D
ea

th
N

u
cl

ea
r

ch
ro

m
o
so

m
e

T
ri
p
le

t
co

d
o
n
/
a
m

in
o

a
ci

d
a
d
a
p
te

r
D

ev
el

o
p
m

en
t

N
u
cl

ea
r

m
em

b
ra

n
e

C
el

l
d
iff

er
en

ti
a
ti
o
n

N
u
cl

eo
lu

s
E

m
b
ry

o
n
ic

d
ev

el
o
p
m

en
t

N
u
cl

eo
p
la

sm
M

o
rp

h
o
g
en

es
is

P
la

sm
a

m
em

b
ra

n
e

T
h
y
la

k
o
id

T
a
b
le

1
4
.6

.
C

o
m

p
a
ri
so

n
o
f
a
n
im

a
l
p
ro

te
o
m

e
co

m
p
le

x
it
ie

s
b
a
se

d
u
p
o
n

se
le

ct
ed

d
o
m

a
in

co
n
te

n
t.

D
o
m

a
in

s
a
re

li
st

ed
in

d
ec

re
a
si
n
g

o
rd

er
o
f
fr

eq
u
en

cy
a
m

o
n
g

h
u
m

a
n

p
ro

te
in

s.
V

a
lu

es
co

rr
es

p
o
n
d

to
th

e
a
p
p
ro

x
im

a
te

n
u
m

b
er

o
f
in

st
a
n
ce

s
o
f
ea

ch
d
o
m

a
in

in
ea

ch
o
rg

a
n
is
m

.a

In
te

rP
ro

N
u
m

b
er

o
f
ea

ch
d
o
m

a
in

ty
p
e

in
:

A
cc

es
si
o
n

N
a
m

e
H

.
sa

p
ie

n
s

F
.
ru

b
ri

p
e
s

C
.
e
le
g
a
n
s

D
.
m

e
la

n
o
g
a
st

e
r

0
0
0
8
2
2

Z
n
-fi

n
g
er

,
C

2
H

2
ty

p
e

8
0
0

5
0
0

2
0
0

3
5
0

0
0
0
2
7
6

R
h
o
d
o
p
si
n

G
P

C
R

7
5
0

5
0
0

4
0
0

1
0
0

0
0
3
0
0
6

Im
m

u
n
o
g
lo

b
u
li
n
/
M

H
C

7
5
0

5
0
0

5
0

1
5
0

0
0
0
7
1
9

E
u
ka

ry
o
ti
c

p
ro

te
in

k
in

a
se

5
5
0

6
5
0

4
0
0

2
0
0

0
0
3
5
9
3

A
T

P
a
se

4
0
0

3
5
0

2
5
0

2
5
0

0
0
1
9
0
9

K
R

A
B

b
ox

3
0
0

0
0

0
0
0
1
6
8
0

G
-p

ro
te

in
b
et

a
W

D
-4

0
re

p
ea

t
3
0
0

3
0
0

1
5
0

2
0
0

0
0
1
8
4
1

Z
n
-fi

n
g
er

,
R

IN
G

3
0
0

3
0
0

1
5
0

1
0
0

0
0
1
8
4
9

P
le

k
st

ri
n
-l
ik

e
d
o
m

a
in

2
5
0

3
0
0

5
0

5
0

0
0
0
5
0
4

R
N

A
-b

in
d
in

g
R

N
P

-1
2
5
0

2
0
0

1
0
0

1
0
0

0
0
2
1
1
0

A
n
k
y
ri
n

2
5
0

2
5
0

1
0
0

1
0
0

0
0
1
3
5
6

H
o
m

eo
b
ox

2
5
0

3
0
0

1
0
0

1
0
0

0
0
1
6
1
1

L
eu

ci
n
e-

ri
ch

re
p
ea

t
2
5
0

2
5
0

5
0

1
0
0

0
0
0
5
6
1

E
G

F
-l
ik

e
d
o
m

a
in

2
5
0

2
5
0

5
0

5
0

0
0
2
0
4
8

C
a
lc

iu
m

-b
in

d
in

g
E

F
-h

a
n
d

2
5
0

2
5
0

5
0

1
0
0

0
0
1
4
5
2

S
H

3
d
o
m

a
in

2
0
0

2
5
0

5
0

5
0

a
G

en
e

n
u
m

b
er

s
fo

r
H

.
sa

p
ie

n
s,

F
.

ru
b
ri

p
e
s,

C
.

e
le
g
a
n
s,

a
n
d

D
.

m
e
la

n
o
g
a
st

e
r

w
er

e
ta

k
en

to
b
e

2
7
,0

0
0
,

3
0
,0

0
0
,

1
8
,4

0
0
,

a
n
d

1
3
,6

0
0
,

re
sp

ec
ti
v
el

y.
G

en
e

n
u
m

b
er

s
fo

r
ea

ch
d
o
m

a
in

ty
p
e

w
er

e
ca

lc
u
la

te
d

b
a
se

d
u
p
o
n

p
er

ce
n
ta

g
es

li
st

ed
in

M
o
u
se

G
en

o
m

e
S
eq

u
en

ci
n
g

C
o
n
so

rt
iu

m
(2

0
0
2
).

G
en

e
n
u
m

b
er

s
w

er
e

ro
u
n
d
ed

o
ff

to
th

e
n
ea

re
st

5
0
,
to

re
fl
ec

t
cu

rr
en

t
u
n
ce

rt
a
in

ty
in

g
en

e
n
u
m

b
er

s.

14.5 Predicted Proteome 451

by using FASTA or some species of BLAST. This type of comparison can be
performed in a pairwise manner (e.g., what fraction of Drosophila genes are
also found in C. elegans, and vice versa). There are n(n−1)/2 possible pairwise
comparisons between n organisms, and for each of these, there are two choices
for the reference genome. For example, in a Drosophila/C.elegans comparison,
we could state that 7.8% of the Drosophila genes are found in C. elegans or
that 5.9% of C. elegans genes are found in Drosophila.

The number of shared proteins depends upon two factors, one statistical
and one conceptual. The conceptual issue is whether comparisons are to be
made at the level of proteins or from their functional domains. If compar-
isons of complete genes are made, then the result may be confounded by gene
fusions. (We have noted this phenomenon in the previous section.) The statis-
tical issue is the cutoff score chosen as the criterion for orthology. The score
might be an E-value from an all-versus-all BLAST search. Are two genes or-
thologs when E < 10−100? When E < 10−50? When E < 10−10? Obviously,
with E < 10−10, more orthologs will be identified than if E < 10−100 were
chosen.

For example, the number of Drosophila genes shared by the fly, worm, and
yeast was determined (Rubin et al., 2000). This is one approximate measure
of the gene set shared by eukaryotes. At a cutoff of E < 10−100, there are
435 fly genes shared with the worm and yeast. Pairwise comparison of yeast
with the worm and the worm with yeast yielded 330 and 370 shared genes,
respectively, at a similar cutoff. These results would suggest that the “core
proteome” distinguishing eukaryotes is approximately 300–400 genes. When
shared genes at a cutoff of E < 10−50 (about 1000 genes) were divided into
functional categories, the number of genes in each category was found to
be about the same in both the worm and yeast (e.g., approximately equal
numbers of genes involved in nucleic acid metabolism in both organisms and
approximately equal numbers of genes involved in signal transduction in both
organisms) (Chervitz et al., 1998). This would be expected for those core
functions shared by eukaryotic cells.

Another between-genome study compared the human proteome to pro-
teomes of the fly, worm, and yeast (IHGSC, 2001). Reciprocal best hits in-
stead of numerical cutoff scores were used to define orthologous groups of genes
that were shared among all four organisms. (These groups included paralogs.)
There were 1308 such groups. When orthologs only were considered (one gene
in each of the four organisms), this number was reduced to 564 proteins, which
would correspond to the eukaryotic “core proteome” defined by this clustering
criterion (which is different from the cutoff criterion described in the previous
paragraph). This number (564) is nevertheless of the same order of magni-
tude as the size of the core proteome estimated from genes shared by the fly,
worm, and yeast. Over half of the proteins in this group (where functional
assignments could be made) were associated with “housekeeping” functions
(e.g., transcription, translation, DNA replication, etc.).

452 14 Comparative Genomics

Rather than searching for genes shared by a group of organisms, we can
also look for genes that distinguish one group from another. For example,
genes shared among archaebacteria but not with eubacteria or eukaryotes have
been sought (Graham et al., 2000). In this study, an all-versus-all compari-
son was made among genes in Methanococcus jannaschii, Methanobacterium
thermoautotrophicum, Archaeblobus fulgidus, and Pyrococcus species. Genes
having E < 10−20 were clustered (including orthologs and paralogs). Graham
et al. (2000) identified 351 clusters containing no matches to eubacterial or
eukaryotic genes. These represented 1149 protein-coding genes. Of these, 81%
were hypothetical proteins (i.e., having no functional annotation). Of the 351
clusters, 20% were represented in each of the four genomes. The archaeal-
specific genes constitute a genome signature for this domain of life, and when
functions become known, these genes may help define what an archaebac-
terium is at the biochemical level.

14.6 New Biological Perspectives from Genomics

Genome sequences and massively parallel gene expression data added to prior
biochemical and genetic knowledge create a more comprehensive way of think-
ing about the biology of organisms. Now it is possible to examine organisms
at a number of different levels of generalization, ranging from the very partic-
ular (Does the organism encode anthranilate synthase?) to the very general
(How are human developmental functions regulated and expressed?). Given
the breadth of genome sequencing efforts still in progress, it is premature to
designate the present time as the “Post-Genome Era,” but it is clear that
questions concerning proteomics and interaction networks are becoming more
prominent. This means that genes and gene products soon will be under-
stood from an integrated perspective. Any student of genomics (undergradu-
ate, graduate, post-doctoral, or professor) needs to develop skills to think at
all levels of generalization and to be equipped with the computational skills
to do so. The reward for learning these skills is the ability to think and work
in one of the most revolutionary scientific areas of our time. The result will be
an appreciation and understanding of how biology “works” to produce living
organisms from an inorganic world.

References

Adams MD et al. (2000) The genome sequence of Drosophila melanogaster.
Science 287:2185–2195.

The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence
of the flowering plant Arabidopsis thaliana. Nature 408:796–815.

Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV, Schwartz S, Adams MD,
Myers EW, Li PW, Eichler EE (2002) Recent segmental duplications in
the human genome. Science 297:1003–1007.

References 453

C. elegans Sequencing Consortium (1998) Genome sequence of the nematode
C. elegans: A platform for investigating biology. Science 282:2012–2021.

Chervitz SA, Aravind L, Sherlock G, Ball CA, Koonin EV, Dwight SS, Harris
MA, Dolin-ski K, Mohr S, Smith T, Weng S, Cherry JM, Botstein D (1998)
Comparison of the complete protein sets of worm and yeast: Orthology and
divergence. Science 282:2022–2028.

Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston
R, Cohen BA, Johnson M (2003) Finding functional features in Saccha-
romyces genomes by phylogenetic footprinting. Science 301:71–76.

Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order:
A fingerprint of proteins that physically interact. Trends in Biochemical
Sciences 23: 324–328.

Deutsch M, Long M (1999) Intron-exon structures of eukaryotic model organ-
isms. Nucleic Acids Research 27:3219–3228.

Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, Steiner S, Mohr C,
Pohlmann R, Luedi P, Choi S, Wing RA, Flavier A, Gaffney TD, Philipsen
P (2004) The Ashbya gossypii genome as a tool for mapping the ancient
Saccharomyces cerevisiae genome. Science 304:304–307.

Durand D, Sankoff D (2003) Tests for gene clustering. Journal of Computa-
tional Biology 10:453–482.

Enright AJ, Illopoulos I, Kyrpides NC, Ouzounis CA (1999) Protein inter-
action maps for complete genomes based on gene fusion events. Nature
402:86–90.

Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD,
Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman JL, Weidman JF,
Small KV, Sandusky M, Fuhrmann J, Nguyen D, Utterback TR, Saudek
DM, Phillips CA, Merrick JM, Tomb J-F, Dougherty BA, Bott KF, Hu P-
J, Lucier TS, Peterson SN, Smith HO, Hutchison CA III, Venter JC (1995)
The minimal gene complement of Mycoplasma. Science 270:397-403.

Fraser CM, Casjens S, Huang W-M, Sutton GG, Clayton R, Lathigra R,
White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty
B, Tomb J-F, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR,
Quackenbush J, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams MD,
Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P,
Bowman C, Garland S, Fujii C, Cotton MD, Horst K, Roberts K, Hatch
B, Smith HO, Venter JC (1997) Genomic sequence of a Lyme disease
spirochaete, Borrelia burgdorferi. Nature 390:580–586.

Gene Ontology Consortium (2004) The Gene Ontology (GO) database and
informatics resource. Nucleic Acids Research 32:D258–D261.

Giaever G et al. (2002) Functional profiling of the Saccharomyces cerevisiae
genome. Nature 418:387–391.

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Galibert F, Hoheisel
JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakamai Y, Philippsen
P, Tettelin H, Oliver SG. (1996) Life with 6000 genes. Science 274:546–567.

454 14 Comparative Genomics

Graham DE, Overbeek R, Olsen GJ, and Woese CR (2000) An archaeal ge-
nomic signature. Proceedings of the National Academy of Sciences USA
97:3304–3308.

Gregory SG et al. (2002) A physical map of the mouse genome. Nature
418:743–750.

Gumucio DL, Heilstedt-Williamson H, Gray TA, Tarle SA, Shelton DA, Tagle
DA, Slightom JL, Goodman M, Collins FS (1992) Phylogenetic footprint-
ing reveals a nuclear protein which binds to silencer sequences in the human
gamma and epsilon globin genes. Molecular and Cell Biology 12:4919–4929.

International Human Genome Sequencing Consortium (IHGSC) (2001) Initial
sequencing and analysis of the human genome. Nature 409:860–921.

International Human Genome Sequencing Consortium (IHGSC) (2004) Fin-
ishing the euchromatic sequence of the human genome. Nature 431:931–
945.

Karlin S, Campbell AM, Mrázek J (1998) Comparative DNA analysis across
diverse genomes. Annual Review of Genetics 32:185–225.

Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of
ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature
428:617–624.

Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES (2003) Sequencing
and comparison of yeast species to identify genes and regulatory elements.
Nature 423:241–254.

McLysaght A, Hokamp K, Wolfe KH (2002) Extensive genomic duplication
during early chordate evolution. Nature Genetics 31:200–204.

Marcotte EM, Pellegrini M, Ng H-L, Rice DW, Yeates TO, Eisenberg D (1999)
Detecting protein function and protein-protein interactions from genome
sequences. Science 285:751–753.

Mouse Genome Sequencing Consortium (2002) Initial sequencing and com-
parative analysis of the mouse genome. Nature 420:520–562.

Mural RJ et al. (2002) A comparison of whole-genome shotgun-derived mouse
chromosome 16 and the human genome. Science 296:1661–1671.

Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) The use
of gene clusters to infer functional coupling. Proceedings of the National
Academy of Sciences USA 96:2896–2901.

Parkhill J, Wren BW, Thompson NR, Titball RW, Holden MTG, Prentice
MB, Sebaihia M, James KD, Churcher C, Mungail KL, Baker S, Basham
D, Bently SD, Brooks K, Cerden̈o-Tárrage AM, Chillingworth T, Cronin
A, Davies RM, Davis P, Dougan G, Feltwell T, Hamlin N, Holroyd S, Jagels
K, Karlyshev AV, Leather S, Moule S, Oyston PCF, Quall M, Rutherford
K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG (2003)
Genome sequence of Yersinia pestis, the causative agent of plague. Nature
413:523–527.

Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999)
Assigning protein functions by comparative genome analysis: Protein phy-

References 455

logenetic profiles. Proceedings of the National Academy of Sciences USA
96:4285–4288.

Reese MG, Hartzell G, Harris NL, Ohler U, Abril JF, Lewis SE (2000)
Genome annotation assessment in Drosophila melanogaster. Genome Re-
search 10:483–501.

Rogic S, Mackworth AK, Ouellette FBF (2001) Evaluation of gene-finding
programs on mammalian sequences. Genome Research 11:817–832.

Rubin GM et al. (2000) Comparative genomics of eukaryotes. Science 287:2204–
2215.

Salem A-H, Ray DA, Xing J, Callinan PA, Myers JS, Hedges DJ, Garber
RK, Witherspoon DJ, Jorde LB, Batzer MA (2003) Alu elements and
hominid phylogenetics. Proceedings of the National Academy of Sciences
USA 100:12787–12791.

Simillion C, Vandepoele K, Van Montagu MCE, Zabeau M, Van de Peer Y
(2002) The hidden duplication past of Arabidopsis thaliana. Proceedings
of the National Academy of Sciences USA 99:13627–13632.

Smith NGC, Knight R, Hurst LD (1999) Vertebrate genome evolution: a slow
shuffle or a big bang? BioEssays 21:697-703.

Stormo GD (2000) Gene-finding approaches for eukaryotes. Bioinformatics
10:394–397.

Strachan T, Read AP (2003) Human Molecular Genetics (3rd edition). New
York:Wiley-Liss.

Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein
families. Science 278:631–677.

Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database:
a tool for genome-scale analysis of protein functions and evolution. Nucleic
Acids Research 28:33–36.

Thanaraj TA, Clark F (2001) Human GC-AG alternative intron isoforms with
weak donor sites show enriched consensus at acceptor exon positions. Nu-
cleic Acids Research 29:2581–2593.

Van de Peer Y (2004) Computational approaches to unveiling ancient genome
duplications. Nature Reviews Genetics 5:752-763.

Wong S, Butler G, Wolfe KH (2002) Gene order evolution and paleopoly-
ploidy in hemiascomycete yeasts. Proceedings of the National Academy of
Sciences USA 99:9272–9277.

Zhang MQ (1998) Statistical features of human exons and their flanking re-
gions. Human Molecular Genetics 7:919–932.

Zhang Z, Gerstein M (2003) Of mice and men: Phylogenetic footprinting aids
the discovery of regulatory elements. Journal of Biology 2:11.

Glossary

Italicized words in the definitions are also glossary entries.

2DE Two-dimensional electrophoresis for proteins, usually accomplished by
isoelectric focusing in the first dimension, followed by SDS polyacrylamide
gel electrophoresis in the second.

5′ to 3′ The direction of nucleic acid synthesis such that the 5′ phosphate
of ribose or deoxyribose is joined to the 3′ hydroxyl of the immediately
preceding ribose or deoxyribose in a growing RNA or DNA chain. When a
single strand is written, the 5′ end of the molecule is conventionally written
on the left and the 3′ end is written on the right.

additive tree A tree for which the distance between leaves can be obtained
by adding the weights of the edges on the path between them.

alignment Placing the elements of sequence strings in register to establish
degrees of relationship between them. Individual elements will either be
aligned as matches or mismatches or will not be aligned opposite another
element (indicating an indel).

alignment matrix A matrix whose rows correspond to elements of one
sequence string and whose columns correspond to elements of the other
in a pairwise alignment. The alignment matrix element mij contains the
best score resulting from aligning the first i elements of one string with
the first j elements of the other.

allele One of two or more possible sequence variants for any particular chro-
mosomal locus or gene.

antibody (≡ immunoglobulin) A protein produced by vertebrate immune
systems for binding and inactivating molecules that are not normally found
in the body. Also known as immunoglobulins, these molecules occur in a
number of different forms having specialized functions.

antibody microarray A two-dimensional grid of individual antibody sam-
ples placed at recorded positions on a solid substrate. It is used to identify
presence and concentrations of protein species (antigens) in complex pro-
tein mixtures.

458 Glossary

antigen A molecule that elicits an immune response leading to the produc-
tion of antibodies. Antigens usually differ from normal molecules of the
organism, except in autoimmune disorders.

Archaea One of the three major domains of life. Archaea (also called Ar-
chaebacteria) are prokaryotes, and in many cases, they are found living in
extreme environments (e.g., at high salt or high temperature).

archaebacteria See Archaea.
assembly The process (or result) of combining short DNA sequence reads

derived from a larger molecule or genome to construct the sequence of the
complete molecule or genome.

association analysis The statistical method that uses correlation between
the presence of alleles and disease phenotypes to suggest candidate genes
causing those phenotypes.

attribute See predictor variable.
autosome A chromosome other than a sex chromosome. In humans, the

autosomes are chromosomes 1 through 22.
autozygous A condition in which two alleles are identical because they

descended from the same ancestral allele.
balanced graph An edge bi-colored graph is balanced if each node has an

equal number of edges of each color.
base-calling The identification of bases in output from a DNA sequencing

reaction, particularly assignment of bases to peaks in graphical output.
biallelic The property of genes represented by two different alleles.
binary search A process for searching lists that relies on reducing the search

space by half at each subsequent step.
binary tree A tree for which internal nodes have at most two descendant

nodes, or children. Each internal node of a binary tree splits into two
descendant lineages.

binomial distribution The probability distribution describing the number
of successes and failures in a fixed number of independent trials when only
two outcomes are possible.

BLAST Basic Local Alignment Search Tool: a method for rapidly searching
protein or nucleic acid sequence databases to detect statistically significant
local alignments.

BLOSUM Block substitution matrices based upon short sequence blocks
conserved among different proteins. Used for aligning protein sequences,
the various BLOSUMs specify the score to be assigned when amino acid
X is aligned opposite amino acid Y.

Bonferroni correction A correction to the significance level associated
with multiple hypothesis testing, and reflecting the fact that if multiple
independent hypotheses are tested for significance as a group, the prob-
ability of obtaining a false positive result will increase as the number of
hypotheses increases.

Glossary 459

bottom-up An approach to genomic sequencing that begins with small insert
clones and builds the larger physical map by overlapping the maps of the
small inserts.

branch site The conserved position within intronic sequences to which the
5′ end binds during the splicing of mRNA precursors.

categorical character A character whose states differ in kind and that
cannot be related on a numerical scale. An example would be hair color
of mice: white, brown, or grey.

cDNA (complementary DNA) A DNA molecule produced by reverse tran-
scription of an RNA molecule. Usually refers to DNA representations of
spliced mRNA molecules. See also library

cell cycle The ordered stages during cell growth, chromosome replication,
and cell division. Usually refers to the stages G1−S−G2−M for the eu-
karyotic cell.

centimorgan (abbreviated cM) A unit of genetic map distance, such that
two markers A and B that are 1 cM apart on the same chromosome are
separated by recombination in 1 out of every 100 meioses (i.e., 1% of the
time).

central limit theorem Sums of independent, identically distributed obser-
vations, when properly normalized, have a limiting normal distribution.

centroid For a set of m points in n-dimensional space, the centroid is a point
in that space such that each of its n components is the average of the m
values for that component.

challenge set A set of sequences known not to contain the signal of interest.
Sometimes produced by a probabilistic model. See training set, validation
set.

character A feature or property used in classification; a property that can
differ among OTUs.

child(ren) In directed graphs, points connected immediately below or fol-
lowing a vertex are children of that vertex.

ChIP See chromatin immunoprecipitation.
χ2 statistic. A statistic computed to test the significance of differences

between observed values of response variables and those predicted by a
specified null model. Distributions of the χ2 statistic vary with the number
of degrees of freedom, which is computed as the number of independent
variables minus the number of fitted parameters (if any).

chloroplast A membrane-bound organelle in cells of plants and green algae
containing the biochemical components for photosynthesis. Sequences of
chloroplast DNA molecules suggest a relationship of these organelles to
cyanobacteria.

chromatin DNA complexed with histones and other chromosomal proteins.
chromatin immunoprecipitation (ChIP) A method for trapping DNA

that specifically interacts with proteins of interest. Bound proteins are
chemically cross-linked to DNA and then selectively precipitated by using
cognate antibodies.

460 Glossary

city-block metric Measure of distance based on steps from point to point
parallel to Cartesian coordinate axes in multidimensional space. Some-
times referred to as Manhattan distance.

clade A grouping in a cladogram that includes all taxa descended from any
particular node. A clade is defined in terms of character states or features
shared by taxa belonging to that clade.

cladogenesis The process of producing clades during evolution.
cladogram A directed graph connecting taxa (OTUs) through shared com-

mon ancestors. All taxa (extinct or not) appear at the leaves. Cladograms
are hypotheses about relationships among OTUs based upon shared fea-
tures. Internal nodes correspond to the set of features shared by descen-
dants and not necessarily to an ancestral species.

classification The process of distributing objects into categories based upon
the states of characters describing these objects.

clone coverage The number of times that the average base in a genome is
represented within cloned inserts in a collection of clones. See coverage.

cloning vector A replicating molecule (usually a plasmid, bacteriophage, or
artificial chromosome) into which a desired DNA fragment can be inserted
for amplification by growth in an appropriate host organism.

cluster of orthologous genes (COG) A set of orthologous genes from
different organisms that are (a) each other’s best hits in an all-versus-
all BLAST search and (b) include at least three organisms for which the
criterion in (a) applies for all possible pairs.

clustering The process of grouping together objects, OTUs, or taxa based
upon similarities or distances calculated from a number of characters that
describe those objects.

coalescent Stochastic model for the evolutionary relationships among DNA
fragments sampled from a population.

coding sequence DNA sequence that encodes all or part of a gene product
such as a protein or a stable RNA species. Translated exons are examples
of coding sequences.

coding strand The strand of duplex DNA containing codons that, in the
RNA alphabet, would specify a protein product. Standard genetic code is
used, except for substitution of U by T.

codon A trinucleotide (triplet, or 3-word) that specifies an amino acid or
stop when parsed by the translation apparatus. The codons in mRNA
molecules base pair with the anticodons of the cognate tRNAs during
protein synthesis.

codon adaptation index A measure of similarity in codon usage for the
coding sequence of a given protein compared with codon usage for highly
expressed genes.

COG See cluster of orthologous genes.
consensus sequence A short DNA or protein sequence representing a signal,

with the letter at each position in the consensus sequence corresponding
to the most probable letter at that position.

Glossary 461

conserved segment A region found in two genomes in which homologous
genes retain the same order and relative map position in both genomes.

conserved synteny The co-occurrence of a specified set of homologous
genes or loci on a single chromosome in organism X and also on a sin-
gle chromosome in organism Y. This classical definition is expanded by
some investigators to include conservation of gene orders. (Compare with
conserved segment).

contig A gap-free assembly of a larger DNA sequence from smaller, over-
lapping component sequences. Contigs can be determined from DNA se-
quences or from restriction mapping data.

continuous character A quantitative character whose states can take values
from a continuous numerical scale. An example is the cranial volume of
fossil hominids. This contrasts with discrete characters.

control A data set corresponding to the null hypothesis (i.e., that has not
been subjected to experimental treatment).

correlation coefficient A measure of the dependence between two random
variables. The correlation coefficient can range between −1 and +1, the
extremes arising when one random variable is a linear function of the other.
See covariance.

covariance A measure of the degree to which two variables change in the
same direction relative to their respective means. When scaled by the
product of the standard deviations of the two variables, the covariance is
converted to a correlation coefficient.

covariance matrix For m random variables X1, . . . , Xm the covariance
matrix is the m×m matrix of elements cij that are the covariances of Xi

and Xj . The cii are the variances for the Xis.
coverage The number of times that the average base in a genome is rep-

resented in a collection of clones. Coverage can be calculated in terms of
the entire clone inserts (clone coverage) or in terms of sequences actually
determined for each clone (sequence coverage).

cycle In a graph, a sequence of vertex–edge–vertex–· · · that ends at the
vertex at which it began.

cytoskeleton Structures within eukaryotic cells composed of networks of
microtubules, microfilaments, and other molecules. The cytoskeleton helps
establish cell shape and architecture and is involved in directed cell move-
ment.

DDP See double digest problem.
deletion An alteration in DNA sequence resulting from removing one or

more contiguous bases from the sequence string.
denature (DNA or RNA): Disruption of basepairing, thus converting duplex

or partially duplex molecules to single-strand forms. (Proteins): Disruption
of secondary, tertiary, and quaternary structures to produce polypeptide
chains lacking their in vivo (normal) conformations.

462 Glossary

dendrogram A graphical representation of the results of hierarchical clus-
tering. OTUs and clusters are joined at positions corresponding to the
distances between them.

dichotomous character Any character that can take one of only two pos-
sible states. Contrast with continuous character.

dideoxy sequencing A DNA sequencing method that employs DNA syn-
thesis to produce products extending from a fixed primer to any of the
positions at which the letter being tested can appear. If positions contain-
ing A are sought, these terminations are produced by using dideoxy-ATP
(ddATP), which lacks a 3′-OH and is therefore not a substrate for further
extension.

differential expression The expression of one or more genes to different
extents, depending upon growth conditions, treatments applied, or the
state of the cell cycle.

diploid The condition of organisms or cells having two copies of each au-
tosome (and hence two copies of each autosomal gene) per somatic cell.
Diploid cells contain 2N chromosomes, whereas haploid cells contain N
chromosomes.

directed graph A graph whose vertices are connected by directed edges.
discrete character A numerical character whose states can take on only a fi-

nite number of values. The number of legs of animals or numbers of codons
in open reading frames are examples of discrete characters. Contrast with
continuous character.

dissimilarity A measure of the degree of difference between objects or taxa
(OTUs) computed with respect to a specified set of characters.

distance A dissimilarity measure that has the properties of a metric. An
example is Euclidean distance.

distance matrix For m objects or taxa (OTUs), the m×m distance matrix
D contains elements dij that are the distances between OTUs i and j.

dominant The property of an allele to confer its phenotype to diploid indi-
viduals that are heterozygous for the corresponding gene.

dot matrix An alignment matrix whose elements contain dots for matches
and no specification for mismatches. Matching subsequences produce di-
agonal patterns of dots.

double digest problem (DDP) The problem of determining the restric-
tion map of a DNA molecule based upon fragment sizes produced by two
restriction endonucleases employed individually and fragment sizes gen-
erated when the molecule is digested with both restriction endonucleases
together.

draft sequence A preliminary DNA sequence assembly from data with low
sequence coverage and containing unresolved ambiguities.

dye bias Differences in fluorescence intensities of two fluorophores for dye-
labeled molecules present at identical concentrations in spotted microarray
experiments.

edge That part of a graph connecting two vertices.

Glossary 463

edge disjoint Two cycles in a graph are said to be edge disjoint if they do
not share a common edge.

edit distance The number of changes required to transform one sequence
string into another. If substitutions are used to effect this transformation,
the distance is called the Hamming distance. If both substitutions and in-
dels are allowed, the number of changes is called the Levenshtein distance.

electrophoretic mobility-shift assay (EMSA) An electrophoretic method
for identifying DNA fragments that bind to DNA-binding proteins. DNA
fragments that are specifically bound produce a band migrating with lower
than normal mobility. Also known as gel-shift assay.

epitope A particular portion of an antigen that is specifically recognized by
an antibody species.

EST See expressed sequence tag.
Eubacteria One of the three domains of life corresponding to typical bacteria

found in soils, low-temperature marine and aquatic environments, foods,
infections, and intestinal flora . Eubacteria are prokaryotes and are distinct
from archaebacteria, which also are prokaryotes.

euchromatin That portion of chromosomes that is less condensed and more
transcriptionally active during interphase. DNA in euchromatin can usu-
ally be stably maintained in typical cloning vectors. Contrast with hete-
rochromatin.

Euclidean distance Distances defined by the shortest distance between
points in a multidimensional Cartesian space.

eukaryote One of the three major domains of life. Eukaryotes are charac-
terized by a true membrane-bound nucleus containing chromosomes com-
plexed with histones, a cytoskeleton, and membrane-bound organelles such
as mitochondria and chloroplasts.

exon A contiguous segment of DNA that is represented in a processed,
mature RNA molecule after splicing has removed intronic sequences. Exon
sequences may be translated or untranslated. Information in translated
exons appears in polypeptide sequences. Contrast with intron.

expected value (expectation, mean) A measure of central tendency of a
probability distribution or a sample of observations.

expressed sequence tag (EST) An EST is part of the cDNA corresponding
to a gene. It can be used to identify or locate that gene on a clone or in
the chromosome by sequence similarity, hybridization or PCR.

expression vector A cloning vector containing a regulatable promoter that
initiates transcription directed into the cloned insert, thus allowing expres-
sion of genes contained on the insert.

false discovery rate In classification, the fraction of those features identified
as positives that are in fact false positives.

FASTA A rapid local alignment method based upon locations of k-words in
an alignment matrix. Use of k-words produces a sparse matrix, inviting
more detailed examination of regions where hits are frequent.

FDR See false discovery rate

464 Glossary

feature For microarrays, a feature is a gridded location with defined coor-
dinates, where a specific DNA probe sequence (oligonucleotide, cDNA, or
other) has been spotted or synthesized.

fingerprint A collection of restriction or PCR fragment sizes derived from
and identifying a particular cloned DNA insert or other DNA molecule.

finished sequence In a sequencing project, finished sequence specifies the
letter at each position of the sequenced region based upon high coverage
data with ambiguities resolved by resequencing or other methods.

fixation The endpoint of genetic drift, where one allele replaces all others in
a population.

footprint A DNA region protected by bound proteins from DNA cleavage
reagents. It identifies binding sites for sequence-specific binding proteins
such as transcription factors.

gamete A haploid germ cell, ovum (egg) or sperm, produced by sexual
organisms. Fusion of two gametes produces a zygote.

gene A genomic locus (or nucleic acid segment) specifying or contributing
to a heritable trait associated with an organism. A gene usually codes for
a single RNA species or (after translation) a single polypeptide chain.

gene expression matrix For n genes whose expression is measured for
m conditions, the n × m matrix of expression levels (typically ratios of
treatment to control conditions) is the gene expression matrix.

gene fusion The joining of two or more genes as a continuous in-frame
DNA sequence encoding a single polypeptide chain containing domains
corresponding to each of the two original gene products.

gene neighbors Genes mapping close together on the genome. Particularly
for organisms whose genes are organized into operons (often prokaryotes),
neighboring genes are more likely to be functionally related than genes
that are more distant.

gene pool The totality of genes contributed by all individuals of a popula-
tion.

gene tree An evolutionary tree constructed by using sequences of a particular
gene drawn from different species rather than using species properties.
Gene trees and species trees need not be congruent.

genetic drift The change in allele frequencies over successive generations
of a population arising from sampling effects in the absence of selection,
migration, or other specific biological mechanisms.

genetic map A diagram for all or part of a genome showing the relative
positions of genes or other loci and the distances between them. Distances
in genetic maps traditionally are related to frequencies of recombination
between pairs of genes, but in current usage may be measured in numbers
of base pairs.

genome The entire genetic complement of an organism. For eukaryotes in
particular, “genome” can refer to the nuclear genome, consisting of the
DNA on all of the individual chromosomes. Mitochondrial or chloroplast

Glossary 465

genomes are separate genomes characteristic of the organisms that they
inhabit.

genomic library A set of cloned fragments representing the entire (usually
nuclear) genome of an organism.

genotype The specification of alleles for one or more genes in the genome of
an organism. For diploid organisms, the alleles contributed by both parents
are listed.

germ line The lineage of cells that will eventually produce gametes. Germ
line cells are set aside early in development and may undergo fewer cell
divisions than somatic cells.

global alignment Alignment between two sequences such that all letters of
both sequences are aligned opposite letters or indels. Contrast with local
alignment.

global normalization In two-dye microarray experiments, global normal-
ization employs all the features on the array to correct for systematic bias
in intensities. This method is based on the assumption that expression
under treatment and control conditions is identical for most genes.

graph A set of vertices or nodes along with a set of edges connecting pairs
of vertices.

greedy algorithm Method for optimizing the value of a function by taking a
sequence of locally optimal steps. The method does not guarantee a global
optimum.

Hamiltonian path problem The problem of specifying a path through a
graph such that each vertex is visited only once. See travelling salesman
problem.

Hamming distance The number of substitutions needed to transform one
sequence string into another without using indels. Contrasts with Leven-
shtein distance.

haploid The genetic condition of organisms or cells having only one copy of
each chromosome per cell. Gametes of diploid sexual organisms are hap-
loid. If the diploid condition corresponds to 2N chromosomes, the haploid
state corresponds to N chromosomes. Contrasts with diploid.

haplotype The combination of alleles of genes on a single chromosome.
Contrasts with genotype.

haplotype block A segment of genomic DNA that contains markers in
linkage disequilibrium within a particular population.

heterochromatin The portion of chromatin that is highly condensed and
less commonly transcribed throughout the cell cycle. Heterochromatin of-
ten is difficult to maintain stably in cloning vectors. Contrast with euchro-
matin.

heterozygosity A measure of the genetic variation in a population. Often
calculated as the chance that two randomly chosen genes at a given locus
have different alleles.

heterozygous The condition that results if two different alleles of a gene
are present in the diploid state. Contrast with homozygous.

466 Glossary

hierarchical clustering A process that groups OTUs into successively more
inclusive groupings using similarity or distance measures.

hit A database entry matching a query sequence after a database search.
homologs Related genes or loci whose similarity is a consequence of descent

from a shared common ancestor. Homologs in different species of organisms
are orthologs, and homologs within a species are paralogs.

homozygous The condition that results if the same alleles of a gene are
present in the diploid state. Contrast with heterozygous.

hybridization Formation of duplex nucleic acid species during renaturation
of single-strand precursors, some fraction of which may be heterologous.

identity An instance of the same letter at an aligned position in two nucleic
acid sequence strings.

immunoglobulin See antibody.
indel An insertion or deletion of letters applied to either of two sequence

strings being aligned.
independent Two events are said to be independent if the probability that

they both occur is the product of their individual probabilities. Intuitively,
events or random variables are independent if the outcome of one of them
is unaffected by knowledge of the outcome of the others.

infinitely many alleles model In population genetics, the approximation
that mutations always produce novel alleles.

infinitely many sites model In population genetics, the approximation
that mutations always occur at positions in DNA that have not been pre-
viously mutated.

information Nonrandomness in a sequence string or signal. This can be
measured, for example, by relative entropy.

insertion The addition of one or more nucleotides (or amino acid residues)
into a nucleic acid (or protein) sequence.

intensity-dependent normalization Adjustment of data in microarray
analysis to compensate for intensity-dependent dye bias.

intron A segment of noncoding DNA separating exons (regions represented
in processed mRNA) within genes. Introns are removed by splicing of pre-
cursor RNA molecules to form mature mRNAs.

inversion The appearance of a substring of complementary letters in reverse
order within an otherwise unchanged nucleic acid sequence string.

inverted repetition In DNA, a second copy of a sequence appearing imme-
diately adjacent or some distance away but on the opposite strand, pre-
serving the proper 5′ to 3′ polarity. For sequences appearing as inverted
repeats, the sequence of letters read left to right on the “top” strand is the
same as the sequence of letters read right to left on the “bottom” strand.

island In DNA sequence assembly or physical mapping, an island is a series
of overlapping reads or clones representing part of a sequence or physical
map. An island can be a single read or clone, or a contig built from several
reads or clones.

Glossary 467

isoelectric focusing A method for resolving a mixture of protein com-
ponents in solution using an electric field and a stationary pH gradient.
Separated protein bands are located at positions in the pH gradient corre-
sponding to their pI (pH for which the net charge on each protein species
is zero).

Jaccard’s coefficient A measure of similarity between OTUs that does not
count characters absent from both OTUs.

K-means A nonhierarchical clustering method that iteratively places OTUs
into a predefined number (k) of clusters, such that the sum of the within-
cluster variances is minimized.

k-tuple (or k-word) A short sequence of k letters.
lagging strand The strand of a replicating DNA duplex that is synthesized

discontinuously in a direction opposite to the direction of replication fork
movement.

landmark A DNA sequence used to denote position within the genome. A
landmark might be some or all of a gene sequence, or a sequence-tagged
site.

layout The process of constructing a contig by arranging overlapping se-
quence reads based on pairwise comparison scores.

LD See linkage disequilibrium.
leading strand The strand of a replicating DNA duplex that is synthe-

sized continuously, with the 5′ to 3′ direction identical to the direction of
replication fork movement.

leaves The terminal nodes of a tree together with their edges. Terminal
nodes are connected to the tree by a single edge.

Levenshtein distance The number of substitutions or indels required to
transform one sequence string into another.

library A collection of DNA clones whose inserts are a sample of all sequences
in a genome or transcriptome. The former collection is called a genomic
library, and the latter is called a cDNA library.

likelihood function The probability or probability density function of a
data set, viewed as a function of the parameters in the underlying statis-
tical model for those data. Used to find maximum likelihood estimator of
those parameters.

linkage analysis The determination of the relative order and positions of
genes based upon patterns of coinheritance.

linkage disequilibrium (LD) The non-random association of alleles at dif-
ferent loci on a chromosome.

linked Genes that tend to be inherited together are said to be genetically
linked.

local alignment Alignment of substrings taken from each of two different
sequence strings. Contrasts with global alignment.

locus A position on a genetic or genome map defined by the gene or DNA
sequence appearing at that position.

468 Glossary

LTR Long terminal repeat. Repeated retroposon or retrovirus end sequences
required for transposition.

MALDI Matrix-assisted laser-induced desorption and ionization. A method
of generating ionized molecular fragments for analysis by mass spectrom-
etry.

Markov chain A probabilistic model for a sequence of dependent random
variables. The probability distribution of the next outcome depends on
the identity of the k previous outcomes. The case k = 1 is often called a
one-step Markov chain.

mate pairs The DNA sequence reads derived from opposite ends of the same
cloned insert. Also called paired end sequences.

maximum likelihood estimator (MLE) An estimate of a population pa-
rameter based on maximizing the likelihood function of the data.

mean See expected value.
meiosis The process of cell division and chromosome segregation that pro-

duces haploid gametes from diploid germ line cells.
metric A distance measure that has appropriate properties of symmetry and

distinguishability and that satisfies the triangle inequality.
minimal tiling clone set A subset of cloned inserts that represents a

complete DNA sequence with minimal coverage. Coverage is greater than
1.0 because of overlaps required to recognize adjacent clones.

mismatch Nonidentity between two letters, each derived from one of two
different sequence strings being aligned or compared.

mitochondria (singular: mitochondrion). Membrane-bound organelles in
nearly all eukaryotic cells where biochemical processes for oxidative phos-
phorylation and ATP production occur. Mitochondria, which contain mul-
tiple copies of a small DNA genome, are thought to have resulted from a
symbiotic relationship established between a eubacterium and an ancestor
of eukaryotic cells.

mitosis The process of cell division and chromosomal copying that produces
two daughter cells, each having the same number of chromosomes as the
parent cell. This is the usual mode of propagation for somatic cells.

MLE See maximum likelihood estimator.
model organism An organism chosen for extensive biochemical and genetic

analysis based upon favorable economics, growth properties, generation
times, and similarity to other organisms of interest.

monoclonal antibody An antibody derived from a clone that produces only
one antibody species recognizing a single epitope of a particular antigen.
Contrasts with polyclonal antibody.

motif A short, conserved local sequence pattern found among a set of proteins
or DNA sequences. Motifs are identified on the basis of sequence similarity.

MS Mass spectrometry. A method for analyzing charged molecular species
accelerated in an electric field and spatially resolved by a magnetic field.
Species are distinguished by their differing mass-to-charge ratios, m/z.

Glossary 469

multiple alignment Alignment of more than two sequence strings. See
pairwise alignment.

multiple hypothesis testing The simultaneous testing of two or more
alternative hypotheses.

mutation A heritable change in nucleic acid sequence relative to a defined
“wild-type” reference sequence. Mutations can include base substitutions,
insertions, deletions, and other alterations. Classically, mutations are rec-
ognized by alteration of one or more corresponding phenotypes.

neighborhood sequences A collection of sequences found from a given
sequence by allowing changes in that sequence.

network A collection of interactions and dependencies among genes or gene
products.

neutral mutations Mutations that do not change the phenotype or, for
proteins, mutations that do not change the amino acid sequence.

nodes Vertices in a graph.
noncoding sequence DNA sequence that does not appear in the completed

gene products. This includes intergenic sequences, introns, and untrans-
lated regions of exons.

normalization (1) Scaling of random variables, often by subtracting the
mean and then dividing by the standard deviation, such that their values
sum to 1.0. (2) The term used to describe the process of removing sys-
tematic variation (such as differences in labelling efficiency between the
two dyes in a two-color experiment) from intensity measurements prior to
estimating gene expression levels.

nucleotide diversity In population genetics, a measure of genetic variation
in a population. Often measured as the average pairwise distance among
an aligned set of homologous sequences.

null hypothesis The standard hypothesis to which a set of data or outcomes
are to be compared. The null model is usually conceptually simple, positing
a lesser number of assumptions than alternatives being examined.

object One of several distinguishable entities under investigation.
open reading frame (ORF) A succession of triplet codons uninterrupted

by stop codons. There are six possible reading frames corresponding to any
duplex DNA sequence, three on the top strand and three on the bottom
strand.

operational taxonomic unit (OTU) A general term referring to taxa or
objects subjected to clustering or evolutionary analysis. Abbreviated OTU,
they may be species or populations within species.

ORF See open reading frame.
ortholog Homologs appearing in different species. Orthologs normally retain

the same function. Contrasts with paralogs.
OTU See operational taxonomic unit.
outgroup A more distantly related OTU to which a set of more closely

related OTUs is compared during construction of a phylogenetic tree. The

470 Glossary

outgroup aids assignment of the ancestral state of the characters employed
for building the tree.

p-value The probability of obtaining a more extreme value of a test statistic
than that observed in a data set. Used as a statistical measure of the degree
of support for a hypothesis.

paired end sequences See mate pairs.
pairwise alignment Alignment of two sequence strings. Compare with mul-

tiple alignment.
palindrome In the general case, palindromes are sequence strings that yield

the same letter sequence when parsed left to right or right to left (example:
madamimadam). In molecular biology, adjacent inverted repetitions are
sometimes called palindromes. For these, adjacent or nearly adjacent DNA
sequences on the top and bottom strands are identical when read 5′ − 3′.

PAM See point-accepted mutation.
paralog A homolog arising from gene duplication within a single lineage or

species instead of arising by descent in diverging lineages.
parent In a directed graph, a vertex immediately above other vertices and

connected to them by edges is a parent of those vertices, which in turn are
called children.

PCR See polymerase chain reaction.
penetrance The frequency with which the phenotype associated with a gene

actually appears among progeny containing that gene. Not equivalent to
dominant or recessive properties.

permutation An ordering of a set of objects. Also, the process of generating
a different ordering given an initial ordering.

phage display A method for expressing protein binding motifs, particularly
the binding regions of antibodies fused to proteins that are components of
filamentous bacteriophage coats.

phylogenetic footprint A DNA sequence pattern recognized by its consis-
tent appearance in aligned regions of related genomes.

phylogenetic profiles Vectors for different genes whose elements indicate
the presence or absence of these genes in a collection of organisms whose
genomes have been completely sequenced. Genes having the same pattern
of occurrence in the set of organisms may participate in the same or similar
functions.

phylogeny The ancestor-descendent relationships leading to the production
of specified organisms during the course of evolution. In contrast with a
cladogram, a phylogeny may associate internal nodes with living or extinct
ancestral species.

physical map A map of the locations of, and distances between, landmarks
on DNA (e.g., genes).

point-accepted mutation (PAM) A set of matrices for scoring amino acid
substitutions in alignment of polypeptide sequences. An alternative is the
series of BLOSUM matrices.

Glossary 471

point mutation A mutation changing the identity of a single base in a
genome.

polycistronic The property of genes so organized that they are transcribed
from the same promoter and transcriptionally controlled by the same set
of regulatory elements.

polyclonal antibody A complex mixture of antibodies recognizing a variety
of epitopes of the same antigen and arising from a population of antibody-
producing cells. Contrasts with monoclonal antibody.

polygenic trait A phenotype resulting from the cooperative interaction of
two or more genes.

polymerase chain reaction (PCR) A method for exponentially amplifying
a restricted length of DNA sequence lying between two locations bound by
specific primers. Primers bound to opposite strands direct DNA synthesis
toward each other so that the intervening sequence is copied. Repeated
cycles of denaturation, primer annealing, and DNA synthesis amplify the
DNA approximately twofold during each amplification cycle.

polymorphic marker A term describing a gene or locus on DNA having two
or more alleles, each appearing at a significant frequency in a population.

polymorphism The condition of having polymorphic loci or genes.
population A collection of interbreeding organisms from the same species

occupying the same geographic locale.
population structure The collection of subpopulations that together con-

stitute the whole.
position-specific scoring matrix (PSSM) A matrix whose rows correspond

to letters that occur at positions in a DNA signal or protein motif and
whose columns correspond to the positions. Matrix elements are the log-
odds scores for each letter at each position, computed relative to an ap-
propriate null model. A PSSM is a particular type of PWM.

positional weight matrix (PWM) A probabilistic description of a DNA or
protein motif employing a matrix whose rows correspond to the possible
letters at each position, and whose columns correspond to positions in that
motif. Elements of this matrix are related to the probability of occurrence
of each letter at each position. See PSSM.

predictor variable A variable representing a characteristic of an object and
appropriate for describing its properties.

prefinished sequence A DNA sequence assembly based on data with the
intended degree of sequence coverage but still containing sequence ambi-
guities requiring resequencing using other clones or primers.

primer A relatively short single-strand oligonucleotide that, when base-
paired to the complementary region of a DNA or RNA strand, provides
the 3′-OH required for elongation by DNA polymerase. Primers are used
in PCR, reverse transcription, and dideoxy sequencing reactions.

principal components analysis (PCA) A statistical method of data re-
duction that defines a limited number of predictor variables to account

472 Glossary

for a specified large proportion of the variance in the data. The redefined
predictor variables are linear combinations of the original variables.

probability density function (probability mass function) A function that
is used to calculate the probability of events associated with a random
variable. The density function is used for continuous random variables,
the mass function for discrete ones.

probability distribution A function that gives the probability of observing
the possible values of a random variable.

probe For microarray experiments, probes are known sequences emplaced as
features on a solid substrate. The probes are used to indicate the presence
and amounts of complementary sequences in a sample being tested.

profile A probabilistic description of a protein motif in terms of a PWM.
prokaryote A type of unicellular organism that does not contain a true nu-

cleus, membrane-bound organelles, or complex cytoskeleton. Prokaryotes
are usually small (length approximately 1 micron), and some are capable
of very short generation times (< 1 hour) under favorable conditions.

promoter A DNA sequence element required for initiation of transcription of
a gene, including sites where transcription factors bind to control the time
and cell type in which transcription occurs. The core promoter consists of
the more limited region where the transcription complex is assembled.

proteome (1) The complete set of all protein species expressed in a particular
cell type under a specified set of physiological and environmental condi-
tions. (2) All proteins that can be encoded and produced by a particular
genome.

PSSM See position-specific scoring matrix.
punctate recombination A recombination model invoking short genomic

regions having high frequencies of recombination and separated from each
other by long regions having very low frequencies of recombination.

PWM See positional weight matrix.
qualitative character See categorical character.
quantitative character A character that takes values from a numerical

scale.
query A sequence for which matches are sought in database searches.
random variable A variable whose value is determined by the outcome of

an experiment in which the outcome is not known ahead of time.
read depth Sequence coverage at any particular position in the genome.
recessive The property of an allele that does not confer its associated phe-

notype when in the heterozygous condition. Phenotypes in such cases are
determined by the dominant allele.

recombination The biochemical process of breaking and rejoining DNA
molecules, possibly leading to new combinations of alleles. Recombination
in eukaryotes occurs during meiosis.

recombination fraction The probability that alleles at two loci on a chro-
matid come from different parental chromosomes.

Glossary 473

reductionist approach The notion that complex biological phenomena
can be understood in terms of their components. Compare with systems
biology.

relative entropy A measure of information content that compares the ob-
served probability distribution of outcomes with the distribution for a
specified background model. Compare with Shannon’s entropy.

repeated sequence A DNA sequence that appears more than once in a
genome. Repeated sequences may be highly repetitive or show lesser de-
grees of repetition down to simple duplications.

respiration The biochemical process for breaking down molecules such as
sugars in the presence of oxygen to produce H2O, CO2, and chemical
energy in the form of ATP.

response variable A variable whose values are determined by the distribu-
tion of one or more predictor variables. In statistics, the response variable
is often the quantity of most interest to the investigator, and the predictor
variables are those variables that influence the value of that quantity.

restriction endonuclease (restriction enzyme) An enzyme that cleaves du-
plex DNA at or near characteristic short (usually palindromic) sequence
motifs internal to the ends of the molecule. Type II restriction endonucle-
ases cleave within their respective recognition sequences, which typically
range in size from 4bp to 8 bp. This type of restriction enzyme is partic-
ularly useful for genetic engineering.

restriction fragment length polymorphism (RFLP) A variation in the
presence or absence of a restriction fragment at a particular region of the
genome, resulting from the loss or gain of a restriction site.

restriction map A physical map of a piece of DNA showing positions of
recognition sites of one or more restriction endonucleases.

restriction site The recognition sequence for binding and directing cleavage
by a restriction endonuclease.

reversal Given a sequence of elements Xi, Xi+1, . . . ,
Xj−1, Xj , a reversal is a permutation that presents these elements in re-
verse order: Xj, Xj−1, . . . , Xi−1, Xi. The elements may be gene blocks,
genes or letters in a DNA sequence. An example of the latter case is alter-
ation of · · · ATGACTGA· · · changing to · · ·ATTCAGGA· · · .

RFLP See restriction fragment length polymorphism.
root The node of a tree from which all other nodes descend. The root is

characterized by two edges directed away from it and no edges directed
toward it.

SAGE See serial analysis of gene expression.
scaffold A construct displaying the relative positions and orientations of

sequence contigs as a step toward complete genome sequence assembly.
Scaffolds serve as frameworks for completing the assembly.

scoring matrix A matrix of rewards and penalties to be applied for aligning
different letters opposite one another during sequence alignment. PAM and
BLOSUM matrices are specific examples of scoring matrices for proteins.

474 Glossary

search space A set on which a function is to be optimized. One example is
the collection of subsequences in a database being searched for matches to
a query sequence.

segmental duplication Duplication of one or more genome fractions so
additional copies of these genomic segments appear nearby or elsewhere
within the genome. Compare with whole genome duplication.

sensitivity In classification, the fraction of all true “positive” members of
a class scored as “positive.” If TP are true positives and FN are false
negatives, sensitivity = TP/(TP+FN).

sequence anchor A fixed locus on a genome identified by its specific DNA
sequence and used for mapping. An STS is one type of sequence anchor.

sequence coverage The average number of times a nucleotide in a genome
is represented in a collection of DNA sequence reads. For whole-genome
sequencing projects using end sequencing of library inserts, sequence cov-
erage is usually less than clone coverage.

sequence logo A representation of the probability of occurrence of letters
at each position in a signal sequence or profile by a stack of letters, each
of whose heights is proportional to the frequency of that letter.

sequence-tagged connector A DNA sequence (usually an STS) mapping
at one end of a cloned insert and used to probe for overlaps with other
inserts in a library. Ovelapping clones so identified can be merged with it
to form contigs.

sequence-tagged site (STS) A unique locus on a genomic sequence identi-
fied by its DNA sequence, usually associated with a pair of PCR primers
that will amplify that site. It is unnecessary for the DNA sequence between
the primers to be known a priori.

serial analysis of gene expression (SAGE) An open-architecture method
for identifying and quantifying expressed sequences by cloning and se-
quencing concatamers of 3′ end sequences derived from mRNA molecules.

Shannon’s entropy A measure of information content of a signal (e.g., a
sequence string) based upon observed probabilities of outcomes compared
with a uniform distribution of possible outcomes. Compare with relative
entropy.

short interspersed nuclear element (SINE) A class of transposable DNA
elements found in eukaryotic genomes, often at high copy number.

shotgun sequencing Determining the sequence of a larger DNA molecule
by the assembly of sequences contained in shorter, random sequence reads
derived from it.

signal A DNA or RNA sequence pattern that specifically binds or interacts
with proteins or other macromolecules.

similarity (1) The extent to which letters of two different strings match,
sometimes expressed as percentage identity. Homology usually implies sim-
ilarity, but similarity does not necessarily indicate homology. (2) In clus-
tering and classification, the extent to which character states describing
two OTUs match.

Glossary 475

similarity matrix A matrix whose entries give a measure of similarity
between pairs of objects.

simple matching coefficient A measure of similarity between OTUs that
includes matches of character states present in both and absent in both
OTUs. Contrast with Jaccard’s coefficient.

simulation The use of random numbers to investigate the behavior of a
stochastic model. Used in many applications in statistics including infer-
ence, model fitting and finding the distribution of test statistics. Also, a
computational method for generating observations from particular proba-
bility distributions.

SINE See short interspersed nuclear element.
single-nucleotide polymorphism (SNP) A polymorphism involving alter-

native letters at a particular position in a DNA sequence.
SNP See single nucleotide polymorphism.
somatic cells Body cells of multicellular organisms. Somatic cells leave no

descendants in the next generation. Contrast with germ line cells.
species tree An evolutionary tree showing ancestor-descendant relationships

among extant and/or extinct species based upon a collection of different
characters or genes. Contrast with gene tree.

specificity In classification, the fraction of all members of a class scored as
“positive” that are true “positives.” If TP are true positives and FP are
false positives, specificity = TP/(TP+FP).

splicing Processing of primary RNA transcripts to remove introns and pro-
duce mature mRNA molecules containing a continuous coding sequence
composed of joined exons.

spotted microarray A collection of DNA probes, applied as small aliquots
of solutions in a defined pattern onto a solid substrate, used for measuring
gene expression levels.

standard deviation A measure of the degree of “spread” of a random
variable or measured values for a sample drawn from a population. The
standard deviation is equal to the square root of the variance.

standardize To center a series of values relative to the mean and then
scale them in units of standard deviation. Resultant values are sometimes
represented as the dimensionless quantity Z. If the original values are
normally distributed, their standardized values will have a distribution
that is N(0,1).

stationary distribution The distribution of the first observation in a
Markov chain that makes the remaining observations have the same dis-
tribution.

stratified A property of a population that is composed of distinguishable
subpopulations.

STS See sequence-tagged site.
substitution matrix A matrix specifying scores to be applied for matching

amino acid residues in an alignment. Examples are PAM and BLOSUM
matrices.

476 Glossary

supervised Supervised learning arises in classification problems in which a
particular classification is already identified from a training sample, and
the investigator wants to predict those classifications in a new testing
sample.

syntenic Two or more loci on the same chromosome are said to be syntenic.
syntenic block A set of two or more syntenic segments with constituent

landmark sequences not necessarily in the same order.
syntenic segment A set of three or more high-density landmark sequences

that exist on a single chromosome and in the same order in two or more
species. Similar to conserved segment, for which spacing between markers
may be greater.

systems biology An integrative approach to biology that investigates mul-
tiple inputs producing complex biological phenomena. Resulting descrip-
tions often are in terms of networks of interactions between component
subsystems. Contrasts with the reductionist approach.

target A sequence sought in a background or mixture of other sequences,
usually identified by relationship or matches to a query sequence. A target
is sought based on prior knowledge that a relationship should exist between
it and the query. In database searches, a target is expected to be one of
the hits, but not all hits are targets.

taxon (plural: taxa) A lineage at a particular level of hierarchical classifi-
cation for biological organisms. At the animal phylum level, examples of
taxa are Mollusca and Arthropoda.

template strand The DNA strand that is copied by RNA polymerase during
transcription to produce mRNA.

TOGA Total gene analysis. An open-architecture approach for gene ex-
pression analysis that tags cDNA representations of mRNAs by oligonu-
cleotide sequences. Different species having the same tag are distinguished
electrophoretically.

top-down An approach to genome analysis that employs large-scale map-
ping of large clones as a prerequisite to finer-scale mapping and eventual
sequencing of smaller clones.

training set A set of sequences known to contain the signal of interest. See
challenge set, validation set.

transcriptome The complete collection of mature transcripts in a particular
cell type under a specified set of physiological and environmental condi-
tions.

transition A DNA mutation in which one purine base is replaced by the
other (e.g., A→G) or one pyrimidine base is replaced by the other (e.g.,
C→T). Contrast with transversion.

translocation A chromosomal or DNA alteration caused by relocating a
chromosome segment to another position in the same or a different chro-
mosome.

transposable element Any of several types of genomic DNA elements that
can propagate themselves by insertion into new locations in the genome.

Glossary 477

Some elements encode the transposition functions, but other elements rely
on functions supplied by related elements.

transversion A DNA mutation in which a purine is substituted by a pyrim-
idine, and vice versa. Contrast with transition.

travelling salesman problem (TSP) The problem of specifying edges con-
necting vertices of a graph such that all vertices appear once in a cycle
and the sum of the edge lengths is minimized. Equivalent to Hamiltonian
path problem with minimization of the path length.

treatment A perturbation applied to cells or organisms, such as application
of a drug. Can also refer to a selected physiological state compared with
a control state.

tree A graph of ancestor-descendant relationships among a set of organisms
according to a specified evolutionary model. Contrast with a dendrogram,
which specifies statistical relationships among OTUs without any evolu-
tionary model and whose nodes do not correspond to ancestors.

triangle inequality A criterion met by metrics indicating that for any
three points a, b, and c, the distance from a to b is less than or equal to
the distance from a to c plus the distance from c to b.

TSP See travelling salesman problem.
Type I error In classification or hypothesis testing, rejecting a hypothesis

when it is true. Equivalent to a false-negative assignment in classification.
Type II error In classification or hypothesis testing, failing to reject a

hypothesis when it is false. Equivalent to a false-positive assignment in
classification.

U-unitig A unitig composed of unique sequence DNA, except for possible
short stretches at the ends of the unitig.

ultrametric tree A tree is ultrametric if the distances between any two
leaves and their shared common ancestor are equal.

uniform distribution A probability distribution over an interval [a, b] such
that the probability of any subinterval of a given length is identical, re-
gardless of the location of that subinterval in [a, b]. The discrete uniform
distribution assigns equal probability to each point.

unique sequence DNA sequence segments in a genome that occur only once
in that genome. Contrast with repeated sequences.

unitig A short assembly of DNA sequence from a set of DNA sequence reads
that contain no contradictory overlaps. The assembly is uncontested.

unlinked A property of genes or other genetic markers, that segregate during
mitosis at frequencies expected for markers on independent chromosomes.
After mitosis, unlinked markers appear in the same daughter cell 50% of
the time.

unsupervised Unsupervised learning arises when an investigator wants to
identify structure or clusters in data that may not be readily observable
and have not been prespecified. In the clustering context, the clusters are
not predetermined.

478 Glossary

validation set A set of sequences used to test a classification procedure. See
challenge set, training set.

variable number of tandem repeats (VNTR) Motif copy number varia-
tion at a genomic locus composed of tandem repeats of a motif.

variance A measure of the dispersion about the mean of a random vari-
able or a sample of observations, computed as the average of the squared
differences between the values and the mean.

vertex The position of an object or node to be related to other objects in a
graph. Relationships to other objects are indicated by one or more edges
connecting the vertex to other vertices.

VNTR See variable number tandem repeat.
WGS See whole-genome shotgun.
whole-genome shotgun (WGS) A method of genome sequence determina-

tion based on assembly of the whole genome from numerous small sequence
reads at high coverage without requiring reference to genetic or physical
map locations for those reads.

zygote The cell resulting from the fusion of two gametes during reproduction
of sexual organisms. A zygote gives rise to an embryo after cell division
commences.

A

A Brief Introduction to R

A.1 Obtaining R and Documentation

R is a language that is Similar to S (developed at Bell Laboratories) and
its commercial implementation S-PLUS (see http://www.insightful.com/

products/splus/default.asp). R is a software package that provides oper-
ation in the interactive mode, powerful statistical analysis tools, and support
for good graphics; it also allows programming in a simple way that is a bit
like C. Many of the S-PLUS functions and conventions can be used directly
with R. If you have a computer account with a university or institute, you
may already have access to S-PLUS. Much of what is covered in this appendix
applies to S-PLUS as well as R.

R is available for free download: follow the appropriate link at http://www.
r-project.com to the CRAN (Comprehensive R Archive Network) mirror
nearest your location. The current release at the time of writing (1.9.1) is avail-
able for the Linux, Microsoft Windows, and Apple Macintosh OSX operating
systems. There is extensive documentation. An Introduction to R (108pp.) can
be downloaded as a PDF file from the R Project URL. A number of relevant
books are listed at the end of this appendix.

The brief introduction in this appendix is designed to get you “up and
running” quickly. It does not cover many of the features of R, and you will
need to consult one of the other available resources for details. We have tried
to write this so that you can still become functional even if you have never
done computations interactively from the command line. (The meaning of the
last bit will become clear momentarily.)

If you are already familiar with C, you will find that R is like having
instant compilation: you can write out functions and perform applications
directly without first having to write source code, compile, and then invoke
the executable program. However, because of the way R is constructed, an R

program and the objects it uses may require more memory than a comparable
program written in C. Therefore, you may find that programs written in R

will run much more slowly than comparable C programs if the data sets are

480 A A Brief Introduction to R

large. In this appendix, names of functions, computer code, and output from
R will be written in the courier font, as is customary.

A.2 First Steps

A.2.1 Starting, Stopping, and Getting Help

After we have downloaded the R package and it has been uncompressed, we
can launch the application from the Start menu (Windows) or by double-
clicking the icon (Macintosh). A new window called R Console will open, and
after a few seconds we should see something like this:

R :Copyright 2004, The R Foundation for Statistical Computing

Version 1.9.1 (2004-06-21), ISBN 3-900051-00-3

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ‘license()’ or ‘licence()’ for distribution details.

R is a collaborative project with many contributors.

Type ‘contributors()’ for more information and

‘citation()’ on how to cite R in publications.

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or

‘help.start()’ for an HTML browser interface to help. Type

‘q()’ to quit R.

>

The “>” is the R prompt. We type the commands needed for our particular
task after this prompt. The command that we have typed in is executed after
we hit the Return key. This may take a few moments, and when the operation
is complete, the prompt reappears. To quit R, simply type q(). We will then
be asked if we wish to save our “workspace image”: this contains the set of
objects that have been created during this particular session. The result of
this differs depending upon the operating system. If we type “y” (for yes),
then a pop-up window may open with the workspace image given the name
“Rdata.” We can save the workspace image in different directories (folders),
each associated with a different project to avoid confusion later.

BAILING OUT: If an R process seems to “hang” (no return of output, no
return to the R prompt), the “Escape” key will interrupt the process. We may
need to enable the interruption from the Config pull-down window (Macin-
tosh). The Microsoft Windows GUI provides a “stop” icon that also interrupts
the process.

A.2 First Steps 481

Once we have started R, we can get help in two ways. At the R prompt, type
help(function.name). This opens a new window that displays text with brief
documentation on the particular function (e.g., function function.name).
For example, type help(var) to get information about the variance func-
tion named var. The same result is obtained by typing ?function.name after
the R prompt. More extensive documentation can be obtained using the de-
fault browser. Type help.start() after the R prompt. This should launch
the browser, and we can navigate to the desired link in the HTML document
that appears in the browser window.

A.2.2 Objects

Once R has been launched, it is ready to execute commands immediately
without the need to write or compile source code. We can just type things
such as

> 2*2

[1] 4

>

and obtain an answer directly. Unlike C and many other languages, there is
no need to declare variables—R knows what they are, depending on how we
created them. The [1] is a tip-off about R: it is designed to work with vectors,
matrices, arrays, and other complicated objects. The result of multiplying 2×2
(using * as the multiplication operator) is a scalar quantity composed of one
element, and the [1] counter indicates that this first element is what is shown.

Let’s now create some objects. We do this at the command prompt for
now. Later, we indicate how to input and output data to and from R. All
variables (scalars, vectors, matrices, etc.) created by R are called objects. In
C, we assign values to variables (after they have been suitably declared) with
the “=” sign. In R, this assignment is done with an arrow: “<-”. If we assign
to variable x the value 2 × 2, an R object x is created.

> x<-2*2

To view any R object, just type its name, and the contents of that object will
be displayed:

> x

[1] 4

>

WARNING: Don’t use an underscore in object names ("object_name"). In
earlier versions of R and S-PLUS, the underscore is equivalent to <- ! Don’t
get in the habit of using the underscore mark as a substitute for <-.

To find out what R objects we have created, just type objects() at the R

prompt and a list of them is returned:

482 A A Brief Introduction to R

> objects()

[1] "ckm2" "ckm3" "ckm4" "ckm5" "clone.name"

[6] "i" "last.warning" "syeast.dat" "x" "y"

[11] "yeast.dat"

These objects are in the .RData subdirectory or workspace within the
chosen subdirectory or folder. Under UNIX, it is possible to read R objects
using the more command, but the resulting gibberish is uninformative: the
objects have, in effect, been compiled by R and must be viewed from within
the R application by typing their names at the R prompt. If we have large
objects (e.g., matrices with thousands of entries), we may want to be careful
about checking the sizes of objects first rather than just typing their names.
Otherwise we get many screens full of frustrating blur for very large objects
(thousands of lines). We can appropriately use the length command first to
find out how many elements there are in a dimension of an object. This gives
an indication of the object size.

A.3 Types of Objects

R provides for a number of different data types: scalars, vectors, matrices,
arrays, data frames, and lists. Data frames and lists may include elements
such as characters in addition to numeric quantities. In this brief introduction,
we only deal with the first four object types with numeric elements. In the
last section, we showed how to create a scalar. To make vectors, matrices, and
arrays, multiple data entries are required. The scan() function provides for
this. At this point, we should indicate what the "()" means. Functions usually
require arguments, which are variables to be operated upon (i.e., objects)
that are passed to the function. Some functions (q() and help.start() are
examples) require no arguments. scan() as we use it here does not require
arguments because we supply them from the keyboard. scan can be used with
arguments to read in data from external files.

Let’s start by making a vector to contain the homework scores of five
students for homework set 1. We use the scan() function and type in the
numbers at the keyboard, hitting Return after each entry:

> HW1<-scan()

1: 8

2: 6

3: 9

4: 10

5: 5

6:

>

After item 6, the Return key is depressed without making an additional entry.
This completes the creation of the object HW1 and returns the R prompt. To

A.3 Types of Objects 483

read the contents of the object that we just created, we only need to type its
name:

> HW1

[1] 8 6 9 10 5

>

We see that a vector has been successfully created. The [1] is the index of
the first element of the vector. We can extract any element of the HW1 vector
by typing the object name with the index of that element given in square
brackets []:

> HW1[4]

[1] 10

We could also have created this vector by using the “combine” or “concate-
nate” command c(). The result is the same:

> HW1<-c(8,6,9,10,5)

> HW1

[1] 8 6 9 10 5

Now suppose that we want to enter the grade from four homework sets and
one mid-term examination for five students. This information can be stored
in a matrix, each row of which corresponds to a particular student. Each
column corresponds to the item that was graded (homework set or mid-term
examination, for example). We can create a matrix as follows:

> grades<-matrix(scan(),byrow=T,ncol=5)

1: 8 14: 8

2: 9 15: 85

3: 7 16: 10

4: 4 17: 9

5: 89 18: 10

6: 6 19: 10

7: 8 20: 90

8: 10 21: 8

9: 10 22: 6

10: 87 23: 5

11: 9 24: 10

12: 7 25: 92

13: 10 26:

Read 25 items

Input is printed in two columns to conserve space. We can read the contents
of grades by just typing its name after the R prompt:

484 A A Brief Introduction to R

> grades

[,1] [,2] [,3] [,4] [,5]

[1,] 8 9 7 4 89

[2,] 6 8 10 10 87

[3,] 9 7 10 8 85

[4,] 10 9 10 10 90

[5,] 8 6 5 10 92

We make a number of comments about this code:

– The matrix() function was invoked to tell R to make a matrix, and scan()

(without an argument) is one of the arguments of the matrix() command.
scan() is used to tell R to accept values entered from the keyboard.

– byrow=T says that we are entering the data in rows (true).
– ncol=5 says that there are to be five columns.
– Note the designation of rows and columns: [4,] for row 4, [,3] for col-

umn 3. The space after or before the comma implies all the column entries
for the given row or all the row entries for a given column.

If we want to add names for the rows and columns, we can use the
dimnames() function together with the list() function:

> dimnames(grades)<-list(c("Aaron A", "Jones J", "Patel P",

+ "Smith J","Zhang Q"),c("HW1","HW2","HW3","HW4","MT1"))

We get the result of this operation by just entering the object name:

> grades

HW1 HW2 HW3 HW4 MT1

Aaron A 8 9 7 4 89

Jones J 6 8 10 10 87

Patel P 9 7 10 8 85

Smith J 10 9 10 10 90

Zhang Q 8 6 5 10 92

Analysis:

– The character (non-numeric) items are denoted by the quotation marks.
– c(...,...,...) concatenates or combines the elements in parentheses.
– Note: The + in front of "Smith J" indicates that the command is wrapping

onto the next line. Do NOT include the + when typing R commands.
– We can extract any element from this matrix by designating either the

dimension names or the row and column numbers: both grades[4,3] and
grades["Smith J","HW3"] return the same value: 10.

We can join vectors to other vectors or matrices by using the cbind() or
rbind() functions. cbind() joins columns, and rbind() joins rows. Suppose
that a student, Hisako Yamane, transfers into the section whose scores are
recorded in grades. Her records can be added to a new grade object as follows:

A.3 Types of Objects 485

> Yamane.H<-c(5,8,10,7,84)

> grades.1<-rbind(grades,Yamane.H)

> grades.1

HW1 HW2 HW3 HW4 MT1

Aaron A 8 9 7 4 89

Jones J 6 8 10 10 87

Patel P 9 7 10 8 85

Smith J 10 9 10 10 90

Zhang Q 8 6 5 10 92

Yamane.H 5 8 10 7 84

Yamane’s name can be tidied up using row.names:

> row.names(grades.1)[6]<- "Yamane H"

Note: UNIX and Linux users already know not to employ spaces as separators
in file names. If we try to use an object name with a space as separator, R

will return a syntax error message. File names that include spaces must be
enclosed in quotes " ". As we indicated above, use of “_” is discouraged with
earlier versions of R.

We can also select a subset of the data from a matrix. For example, the
following command makes a homework matrix:

> HW.grades.1<-grades.1[,1:4]

> HW.grades.1

HW1 HW2 HW3 HW4

Aaron A 8 9 7 4

Jones J 6 8 10 10

Patel P 9 7 10 8

Smith J 10 9 10 10

Zhang Q 8 6 5 10

Yamane H 5 8 10 7

This simultaneously constructs a new object, HW.grades.1, and extracts only
columns 1 through 4 inclusive. (In [,1:4], 1:4 means 1, 2, 3, and 4 inclusive.)

Suppose that data are stored as a table of numbers with row and column
labels in a text file called classlist. This is not an R object, but we would
like to import the data into R. We will have no problems importing data from
this text file into R if we created the text file using a UNIX text editor such
as pico, vi, or emacs. Microsoft Word documents are not pure text files unless
they have been saved as “text only.” We can import data into R by using the
read.table() function:

> grades2<-read.table("classlist")

> grades2

HW1 HW2 HW3 EX1 PD

486 A A Brief Introduction to R

Merrill 9 0 7 89 y

Lynch 3 6 5 62 n

Pierce 8 8 7 75 y

Fenner NA 6 2 44 y

Smith 9 10 8 94 n

Here are some useful comments:

– The object created is not a matrix but a data frame since it includes
categorical information (last column) in addition to numeric data. We can
use is.data.frame() to check whether something is a data frame. Not
all entries are numeric.

– In this case, classlist was a text file in the same working directory (see
below). Note the quotes used when this file name is called by read.table.

– To be read in as a data frame, the external file needs to have a standard
format: the first line of the file should have a name for each variable (i.e.,
column), and each additional line should start with a row name and be
followed by the values of each variable (usually separated by spaces).

– Data frames must have row and column names; these are supplied by R if
they are absent. Lines can be skipped from the beginning of a file by using
the argument skip.

You can also read data from an external file by scan("filename"), but the
dimension names and categorical information may not be handled gracefully.
You may need to edit the input file if you wish to use the scan() function for
this purpose.

At this point, we should be clear about directories and paths to them.
Persons familiar with UNIX, Linux, and MS-DOS are already well-acquainted
with this concept. The R application needs to know where to look for external
files. We may have launched R from a folder on our desktop. This folder is
a subdirectory of our “Desktop” directory. To find out the working directory
for R, type the command getwd() after the R prompt.

> getwd()

[1] "Macintosh HD:Desktop Folder:rm180:"

The result is the path name to the subdirectory in which R is operating. In this
case, the working directory is the subdirectory rm180 within the subdirectory
Desktop Folder of the directory Macintosh HD. (With Windows, the result of
this command would be something like C:/Program Files/R/rw1091.) Sup-
pose that we have a folder Rwork in which we are storing individual workspaces
(collections of objects created during different working sessions) and their cor-
responding data files. We may need to change the directory to this folder. You
can do this with the setwd() command as follows:

>setwd("Macintosh HD:Desktop Folder:Rwork:")

There are GUI items that do this as well.

A.4 Computations 487

Another type of data object is the array. We can think of this as a gen-
eralization of the matrix. For example, an array of dimension 3 is a stack
(first dimension) of matrices (two dimensions each—rows and columns). An
example of an array with three levels can be created by

> data<-c(1:24)

> A<-array(data,c(4,2,3))

This generates a four-deep stack of 2 × 3 matrices using data (contents 1, 2,
. . . , 24) to supply the elements. The first level can be viewed as follows:

> A[1,,]

[,1] [,2] [,3]

[1,] 1 9 17

[2,] 5 13 21

Try looking at A[,1,] and A[,,1] to see cross sections through the stack in
each of the three dimensions. Notice the default method of filling the array
elements. We have seen how to import data from files using read.table() and
scan(). There are several ways to save data to an external file (i.e., a file that
is not an R object). The first is to use the write.table() function. Suppose
that we wanted to save grades2 into an external file called gradelist. This
could be done as follows:

> write.table(grades2,"gradelist")

The second method is to use the sink() function:

> sink("gradelist")

> grades2

> sink()

The first command created a file called gradelist in the working directory
and directed all subsequent output to this file—not to the terminal. When
grades2 was entered at the R prompt, the contents of grades2 were returned,
but now to the external file gradelist rather than to the screen. The final
sink() command redirects output to your screen.

To remove objects from the working directory, use rm(), supplying the
names of the objects to be deleted as arguments:

> rm(grades2)

deletes the object grades.

A.4 Computations

We now show how to perform some simple computations with R using the
objects that we created in the previous section. We can calculate the class
average for the first examination in column 5 of grades using the R function
mean():

488 A A Brief Introduction to R

> mean(grades[,5])

[1] 88.60

The definition of mean is self-evident. grades[,5] means that all rows in col-
umn 5 will be used to calculate the mean. As we indicated above, if we don’t
specify a row (e.g., [2,5] = row 2, column 5) but leave the row designation
blank, all rows are implied. This is computationally useful. For example, sup-
pose that exam 1 scores are out of 105, and we want to state the percentage.
We can make a vector of these percentages by the following:

> ex1pct<-grades[,5]*100/105

> ex1pct

Aaron A Jones J Patel P Smith J Zhang Q

84.76190 82.85714 80.95238 85.71429 87.61905

Since no rows were specified, the computation was done with all of them, and
in this case the result was saved in a new vector.

There is an important and useful notation that allows us to do logical
manipulation of matrix elements. Suppose that we decided that anyone who
earned more than 90 on the first exam should receive a mid-term grade of A.
We can pick out just those elements with the following notation:

> ex1<-grades[,5]

> ex1A<-ex1[ex1>90]

> ex1A

Zhang Q

92

The key feature is embodied in the syntax ex1[ex1>90]. The logical compar-
ison “greater than” is being performed on all elements in ex1.

If each homework is worth 12 points, we can convert the table to a per-
centage by:

> HW.grades.1.pct<-HW.grades.1*100/12

> HW.grades.1.pct

HW1 HW2 HW3 HW4

Aaron A 66.66667 75.00000 58.33333 33.33333

Jones J 50.00000 66.66667 83.33333 83.33333

Patel P 75.00000 58.33333 83.33333 66.66667

Smith J 83.33333 75.00000 83.33333 83.33333

Zhang Q 66.66667 50.00000 41.66667 83.33333

Yamane H 41.66667 66.66667 83.33333 58.33333

Notice how this scalar multiplication operated on all rows. We can find the
sum of Aaron’s points by applying the sum() function to row 1:

> sum(grades.1[1,])

[1] 117

A.4 Computations 489

By using analogous syntax, we can perform computations on elements or
groups of elements in matrices, the numeric portion of data frames, and arrays
as well.

By the way, we can also perform matrix computations. Suppose that we
have the following system of equations:

5x -2y + z =15

x + y + z =8

-x -5y =2

In matrix notation, this would be represented as⎛
⎝ 5 −2 1

1 1 1
−1 −5 0

⎞
⎠
⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝15

8
2

⎞
⎠ .

Enter the data into a matrix A and a vector v as described above:

> A<-matrix(scan(),ncol=3,byrow=T)

1: 5

2: -2

...

8: -5

9: 6

10:

Read 9 items

> A

[,1] [,2] [,3]

[1,] 5 -2 1

[2,] 1 1 1

[3,] -1 -5 6

Notice that we keyed in an incorrect value. We simply correct this as shown
below:

> A[3,3]<- 0

> A

[,1] [,2] [,3]

[1,] 5 -2 1

[2,] 1 1 1

[3,] -1 -5 0

Now enter the v vector:

> v<-c(15,8,2)

Invoke the solve() function, providing as arguments the matrix of coefficients
A and the vector of values v:

> solve(A,v)

[1] 1.2608696 -0.6521739 7.3913043

490 A A Brief Introduction to R

The result is a vector containing the values of x, y, and z. We can check
the result by entering the results into one of the equations. Using the first
equation, we find:

> 5*1.2608696-2*(-0.6521739) + 1*7.3913043

[1] 15

By the way, solve() will also calculate the inverse of a matrix:

> Ai<-solve(A)

> Ai

[,1] [,2] [,3]

[1,] 0.21739130 -0.21739130 -0.1304348

[2,] -0.04347826 0.04347826 -0.1739130

[3,] -0.17391304 1.17391304 0.3043478

We also could have solved the system of equations above by using matrix
algebra, ⎛

⎝x
y
z

⎞
⎠ = A−1 A

⎛
⎝x

y
z

⎞
⎠ = A−1

⎛
⎝15

8
2

⎞
⎠ ,

where A−1 denotes the inverse of A. We can compute x, y, and z by using the
appropriate matrix multiplication:

> Ai%*%v

[,1]

[1,] 1.2608696

[2,] -0.6521739

[3,] 7.3913043

This is the same answer as we obtained before, now expressed as a 3×1 matrix
or column vector.

WARNING: Note the use of the %*% operator for matrix multiplication. If we
employ the * operator, we get an entirely different result. Try it, and observe
what happens. Sometimes we may want to use *, however.

Note that matrices can also be created from numerical-valued parts of data
frames. For example, the command

> HWscores <- grades.1[,1:4]

extracts columns 1 to 4 from the data frame grades.1, and the command

> HWscores<-as.matrix(HWscores)

makes HWscores a matrix. (This can be checked by using is.matrix(HWscores).)

In closing, we note two different operators, ** and ^, used to indicate
exponentiation:

A.5 Simple Statistical Applications 491

> 9**2

[1] 81

> 9^2

[1] 81

A.5 Simple Statistical Applications

R provides powerful tools for statistical analysis. The natural way to see simple
data is as a matrix, with each column representing the values of a variable. We
illustrate the most basic statistical functions using a data set containing body
weights and brain volumes of five primate species. Using a text editor, the
data are written into a text file called primate.dat in the working directory,
and then they are read with read.table() into a matrix as indicated above:

> primate.data<-read.table("primate.dat")

> primate.data

bodyweight brainvol

H.sapiens 54000 1350

H.erectus 55000 804

H.habilis 42000 597

A.robustus 36000 502

A.afarensis 37000 384

Calculate the mean and standard deviation (as the square root of the variance)
of the brain volume:

> mean(primate.data[,2])

[1] 727.4

> sqrt(var(primate.data[,2]))

[1] 380.5362

We can use cor() to determine the correlation coefficient between bodyweight

and brainvol:

> cor(primate.data[,1],primate.data[,2])

[1] 0.828422

We can also fit a linear model to the data by using the lm() function:

>primate.lm<-lm(primate.data[,2]~primate.data[,1])

> primate.lm

Call:

lm(formula = primate.data[, 2] ~ primate.data[, 1])

Coefficients:

492 A A Brief Introduction to R

(Intercept) primate.data[, 1]

-816.29988 0.03446

The slope is 0.03446. For more detail, and a tiny indication of what else R can
do, issue the command summary(primate.lm) after doing the computation
above, and see what is returned.

When we start performing computations, output may contain far too many
significant digits. The number of digits displayed on output can be controlled
by the digits argument in options:

> 22/7

[1] 3.142857

> options(digits=4)

> 22/7

[1] 3.143

> options(digits=7)

> 22/7

[1] 3.142857

round, floor, and ceiling are other functions that are useful for controlling
data output.

A.6 Functions

A.6.1 Writing Functions

We have been using built-in R functions such as mean(), var(), cor(),

scan(), and so forth. We can create our own functions in R to perform the
tedious calculations. These can be typed out in a text file using a text editor
and then, in effect, compiled (converted to R objects) using the source()

command. This command seeks the file in the working directory, reads it, and
then writes the instructions into an executable R function.

Suppose we created the following file, contained in a text file named
xavg.r:

xavg<-function(x)

#calculate the average value of a set of numbers

#expressed as a vector

{

avg<-sum(x)/length(x)

return(avg)

}

This function will calculate the mean of x, where x is a vector of numbers.
This example duplicates what the supplied R function mean() already does.
There are a number of points to make about this function:

A.6 Functions 493

– “Comment” lines are preceded by the # sign. Such lines are ignored by R

at execution. As in any programming language, we can use the comments
as a way of “commenting” out lines when debugging code. When copying
text files back and forth between text editors, it is possible that comment
lines in new files may wrap to produce unintended new lines lacking the
needed # sign. R will complain bitterly about this, and the function will
not be created when we source() it. Make sure that comments don’t get
divided.

– The braces {} enclose the body of the function.
– Note the use of the <- notation.
– Two of the functions supplied with R are called within this new function:

sum() and length(). sum() calculates the sum of the elements contained
in the object provided in the argument, and length() calculates the num-
ber of elements in the object supplied as its argument.

– The return() statement returns the calculated value to the workspace.
Note that variables defined within functions have local scope: the variable
names apply only within the function—new objects are not created in our
workspace.

Of course, the code written above is still a text file—it has not been converted
to an R object. To do that, we use the source() command:

> source("xavg.r")

If the function has no syntactical errors (e.g., a missing “)” or “}”), the R

prompt is returned. The xavg() function is now available for use and will be
listed as an object in the workspace. To examine the code that makes up a
function, just type its name (without any parentheses). Try this by typing
xavg.

We apply xavg to the primate data from the previous section:

> xavg(primate.data[,2])

[1] 727.4

If xavg() had failed to return the same value as was obtained by the function
mean() in the last section, we would know that we had made a conceptual
error (as opposed to a syntactical error) in writing the function. Unlike syn-
tactical errors, conceptual errors do not generate error messages. We can often
avoid conceptual errors by testing functions on simple, abbreviated test data
for which hand calculation is feasible. debug(fn) can be used to debug the
function fn; it steps through fn one line at a time, allowing you to track the
values of different variables during function evaluation. undebug(fn) turns it
off.

A.6.2 Loops

The vector notation of R frequently allows us to circumvent writing loops—a
feature called “vectorizing loops.” For example, in Section A.4, we noted that

494 A A Brief Introduction to R

the code ex1A<-ex1[ex1>90] allows us to pick out all items in ex1 that are
greater than 90. Sometimes we may need to write loops, and R allows us to
write loops containing a number of statements. The syntax for the for loop
is illustrated by:

for(i in 1:10){

print(i)

print(i**2)

}

Here are some comments on this code.

– i is the counter for the number of cycles through the loop.
– Note that the statements included in the loop are all grouped between

{ }. This is in addition to the {} employed in the function in which this
loop might be embedded.

– As written, this loop can be typed in at the R prompt, and it will be
executed after the last } is entered. It does not have to be located within
a function. This means that we can debug an R function in fragments of
code.

Another useful command, which can often be faster than loops, is apply.
For example,

> apply(x,1,mean)

gives the row mean for each row of the matrix x; replacing 1 by 2 gives the
column means.

To illustrate the while loop, suppose that we create a vector called result

with ten elements, all initialized to zero. Suppose integers is a vector con-
taining integers from 1 through 10.

> integers<-c(1:10) #Make a vector of integers

> result<-c(1:10) #Make a result vector & initialize

> result[]<-0

The last two steps can be done in one shot using the rep function:

> result<-c(rep(0,10))

> result

[1] 0 0 0 0 0 0 0 0 0 0

We can run the following bit of code to see how the while loop works:

> i<-1

> while(i<=5)

+ {

+ result[i]<-integers[i]**2

+ i<-i+1

+ }

> result

[1] 1 4 9 16 25 0 0 0 0 0

A.6 Functions 495

If we type a return after each line is entered from the terminal, R realizes
after it has seen while that more commands will be coming, and it prompts
us with + to continue commands until the end of the loop is reached with the
final }. We do not type in the +.

With the ability to write a series of statements in a function and to perform
loops, we can write some reasonably decent programs. The program is called
a function in R. Input is handled by supplying one or more arguments to
the function (e.g., xavg(hbrain[,1]) in the example above), and output is
achieved by creating an object within the function and returning it using the
return() statement. We may wish to store the result in an object that we
name tmp:

> tmp<-xavg(integers)

We can write tmp to a file in the working directory by using sink() as de-
scribed above.

Example: Calculating base composition

The following function calculates the base composition of a DNA sequence
string (represented numerically as A->1, C->2, etc.); i.e., it returns the pro-
portion of each type of base. It employs the supplied function length() that
we have discussed plus the ability to perform logical comparisons (in this case,
== means “is equal to”) on vector elements, as described in Section A.4.

> basecomp<-function(inseq)

#Calculate base composition of an input sequence

#inseq is a vector of integers

{

f<-rep(0,4) #vector to store base counts

for(i in 1:4)

{

f[i]<-length(inseq[inseq==i])/length(inseq)

}

return(f)

}

A.6.3 Libraries

Many authors have written R packages for performing a wide variety of analy-
ses. These smay be installed and loaded from within the R GUI. For example,
to load the package MASS, use

> library(MASS)

This now makes the routines in MASS available in our R session.

496 A A Brief Introduction to R

A.7 Graphics

Graphics help us grasp complex data at a glance. R allows the production of
a variety of plots, including 2-D scatterplots, histograms, piecharts, Boxplots,
and perspective plots. For this brief introduction, we indicate only how to do
simple two-dimensional plotting and histograms.

A.7.1 Basic Plotting

The first step is to open the graphics device. This is done automatically when
we issue the plot() command with appropriate arguments or when we set
the plotting parameters with the par() command. We can close the plotting
window either by using the close box on the window or by typing dev.off()

or graphics.off() at the command line. As an example, we plot brainvol

(y axis) against bodyweight (x axis) for primate.data.

> plot(primate.data[,"bodyweight"],primate.data[,"brainvol"])

To set the limits on the axes, we can add arguments to plot():

> plot(primate.data[,1],primate.data[,2],xlim=c(0,60000),

+ ylim=c(0,2000))

If we want axis labels, we add more arguments to the plot() function:

> plot(primate.data[,1],primate.data[,2],xlim=c(0,60000),

+ ylim=c(0,2000),xlab="Body Weight",ylab="Brain Vol.")

Then we add a title:

> title("Brain Volumes as a Function of Body Weights for

+ Hominoids")

The result is shown in Fig. A.1A.
Sometimes we may wish to preset the plot size and the ranges rather than

using the default parameters.

> par(pin=c(5,5))

This command sets parameters for the plot area in inches at 5 × 5. Plotting
symbols other than the default can be used by adding the pch argument:

plot(x,y, pch=n)

where n is an integer from 1 through 18. For example, n = 1, 2, or 3 plots
the data points as open boxes, open circles, or open triangles, respectively,
whereas n = 15, 16, or 17 plot data points as filled versions of the symbols
above. If we use pch="A", the plotting symbol is the character A. If we want to
plot points with connector lines, we issue the command plot(x,y,type="b").
For a plot with connector lines only, use the argument type="l".

Suppose that we want to add a horizontal, vertical, or other line to a plot.
R supplies the abline() function to do this:

A.7 Graphics 497

Histogram of x.num

x.num

-10 -5 0 5 10

0

 5

 1

0

 1
5

F
re

q
u

e
n

c
y

B.

0

5

0
0

0

1
0

0
0

1

5
0

0

2
0

0
0

B
ra

in
 V

o
l.

0 10000 20000 30000 40000 50000 60000

Body Weight

A.

Brain Volumes as a Function of Body Weights for Hominids

Fig. A.1. Graphical output from plot and hist functions. For function calls, see
the text. Font sizes have been modified for legibility in this book format.

abline(h=0) #Adds horizontal line y = 0

abline(v=3) #Adds vertical line, x = 3

abline(-0.1,0.2) #Adds line y = 0.2x + (-0.1)

Corresponding to lines() there is a function points(), which adds data
points to the plot in the graphics window. For example,

>plot(x,y) #Generates scatterplot for data x,y.

>points(u,v,pch=2) #Data points for u, v added with

different print character.

When plotting data from different sources on the same plot, we may wish to
change the line types for connector lines. This can be done by adding the argu-
ment lty=n, where n = 1, 2, . . . will generate different types of lines (different
sizes of breaks, for example). For example, points(u,v,type="l",lty=2)

adds to an existing plot additional data as broken lines only.

A.7.2 Histograms

Histograms are another common graphical application. We illustrate this by
first generating a set of numbers drawn from a normal distribution to give us
something to plot.

> x.num<-rnorm(75,mean=2,sd=2)

> hist(x.num)

498 A A Brief Introduction to R

We use the supplied R function rnorm(). The first argument is the number
of data points to generate, and the second and third arguments set the mean
and standard deviation, respectively. The result is shown in Fig. A.1B. We can
control the appearance of the histogram by including additional arguments.
Often we want to alter the number of classes (nclass) or the range of the
plot, as in:

> hist(x.num,nclass=10,xlim=c(-10,10))

barplot is useful for plotting from categorical data. matplot and matlines

are useful for plotting rows and columns of a matrix in a single plot. boxplot
is also useful for summarizing data. We can plot multiple figures (of any
type supported by R) on a single display by setting the parameters mfrow or
mfcol. mfrow places the figures on the display sequentially by row, and obvi-
ously mfcol does the same thing but by column. Data plotted in the graphics
window can be printed or saved in a number of different formats, such as
PostScript, PDF, JPEG, or PNG. For example, we can select “Print” from the
“File” pull-down menu and then choose “Virtual Printer” and “PostScript
Settings” in the pop-up window to write a PostScript file to the chosen desti-
nation folder or directory.

References

Dalgaard P (2002) Introductory Statistics with R. New York: Springer-Verlag.
Krause A, Olson M (2002) Basics of S-PLUS (3rd edition). New York:

Springer-Verlag.
Maindonald J, Braun J (2003) Data Analysis and Graphics Using R. Cam-

bridge: Cambridge University Press.
Venables WN, Ripley BD (2002a) Modern Applied Statistics with S (4th edi-

tion.) New York: Springer-Verlag.
Venables WN, Ripley BD (2002b) S Programming. New York: Springer-Verlag.
Venables WN, Smith DM, and the R Development Core Team (2002) An

Introduction to R. Bristol:Network Theory, Ltd.

B

Internet Bioinformatics Resources

A huge amount of genomic and computational biology information is accessi-
ble via the Internet. It is impossible to provide a comprehensive overview in
the scope of a brief appendix. We therefore focus on key entry points from
which to start gathering data. We define three important classes of Web sites:
general entry points, databases, and applications. General entry points are
sites that offer links allowing convenient navigation to a variety of resources.
An example is the NCBI Web site (see below). Database sites are those that
acquire, curate, and distribute information of a specific type, possibly but
not always limited to a specific organism. Examples are the Saccharomyces
Genome Database and InterPro. Application-oriented sites offer online access
to computational tools. An example of this is the link from the Oak Ridge
National Laboratory Web site to the gene recognition tool GRAIL.

Reliability and stability are important issues for Internet resources. Almost
anyone can post almost anything (that is not blatantly criminal) on a Web
site, and URLs that were active yesterday may not be active today. The
examples that we provide below are from reputable sources that are likely
to exist for a considerable period of time. Other worthy examples have been
omitted because of space limitations.

B.1 General Entry Points

B.1.1 National Center for Biotechnology Information (NCBI)

The NCBI Web site at http://www.ncbi.nlm.nih.gov is one of the most
useful starting points. It also provides links to databases and applications.
The NCBI site is an excellent place to begin the search for genomic in-
formation, and the numerous links allow many different ways of navigating
through the site. The Web site is divided into literature databases, molecular
databases, genome biology resources, data-mining tools, learning resources,

500 B Internet Bioinformatics Resources

and a variety of other more specialized functions, some of which are species-
specific (e.g., human-mouse homology maps, rat genome resources, retrovirus
resources). We briefly describe just two of these features, molecular databases
and data-mining tools, but note that the other sections of this site are ex-
tremely information-rich. In particular, the “Books” link provides full-text
online access to some of the best biochemistry, cell biology, and genetics text-
books, as well as to a variety of more specialized monographs.

A frequent starting point is a keyword search of one of the available
databases: PubMed, Nucleotides, Protein, Online Mendelian Inheritance in
Man, or structures, to name a few. Alternatively, Entrez can be used in the
keyword search to examine the different databases included collectively. Often
the purpose is to find and download desired DNA sequences. For example, if
the protein database is searched for the string “topoisomerase I” AND ar-
chaea, more than sixty hits are returned, each with an accession number that
is hyperlinked to the data file. There are a number of data display options.
The default provides sometimes lengthy header information, but if the FASTA

format is chosen, the result is one header line followed by the sequence string
starting on a new line. In either case, data can be transferred (with the “Send
To” button) to a local file or to text, or can be copied and pasted into other
applications.

Researchers frequently access the NCBI site to employ the data-mining
tools. Examples include various forms of BLAST, Electronic PCR, and ORF

finder. The first tool that most people will employ is BLAST, to inquire whether
a particular given nucleic acid or peptide sequence displays local sequence
similarity to database entries. Nearly every NCBI page has a link to BLAST.
Access to the BLAST server is through an HTML-based form that supplies a
space to paste the query sequence or search string and menus for selecting
databases and setting parameters. The search string can be specified either as
FASTA format, a simple character string, or by accession number. Once the
search is initiated, seconds to minutes will elapse before the results can be
retrieved in a new browser window.

B.1.2 European Bioinformatics Institute (EBI)

The EBI Web site at http://www.ebi.ac.uk/index.html is maintained by
one of the European Molecular Biology Laboratory’s (EMBL) outstations
located in Hinxton, Cambridge, UK. It provides a wealth of information,
but most visitors will probably find the “Database” and “Tools” links most
useful. Databases include literature databases (e.g., MEDLINE), nucleotide
databases (e.g., the EMBL nucleotide database), protein-related databases
(e.g., InterPro), macromolecular structure databases, and microarray data-
bases. Much of this information is also available at the NCBI Web site.

The “Toolbox,” which contains additional applications not directly avail-
able on the NCBI site, is broken down into five categories: Homology and

B.2 Databases 501

Similarity, Protein Functional Analysis, Sequence Analysis, Structural Analy-
sis, and Miscellaneous. For example, the Sequence Analysis category includes
pairwise alignment using the Smith-Waterman algorithm, multiple sequence
alignment using ClustalW, and alignment of proteins with genomic sequences
(GeneWise).

B.1.3 Science Magazine Functional Genomics Resources

As with the NCBI and EMBL sites, the Science magazine site at http://www.
sciencemag.org/feature/plus/sfg/index.html, maintained by the Amer-
ican Association for the Advancement of Science (AAAS), contains a wealth
of useful links. Most computational researchers will immediately follow the
“Scientific Resources” link to find the practical resources, including links to
expression data, model organisms, protein structure and function, genome
maps, and sequence data. The site does not provide access to computational
applications running on AAAS servers; instead, it provides a compendium of
useful links to sites that do. The link to “Special Issues” provides subsidiary
links to full-text versions of some key genomics articles published in Science.
This is noteworthy because articles in Science are presently otherwise unavail-
able for download except to members of AAAS.

B.2 Databases

The many bioinformatics databases provide collections of a wide variety of
data, including publications, DNA or protein sequences, genes, transcription
factors, and protein structures. There are so many databases that it is hard
to know where to stop looking for data. (We often start by using Entrez at
the NCBI Web site). Fortunately, a compendium of databases is published
annually in the database issue of Nucleic Acids Research, for which there is a
current link at the Nucleic Acids Research/Oxford University Press Web site
(Table B.1). Access to the full contents of this particular issue is free. Indi-
vidual articles in the database issue describe the content and changes of both
older and new databases. The 2004 database issue listed 548 databases rang-
ing from AANT (Amino acid-nucleotide interaction database) to ZmDB (Zea
mays genome database). These two databases also exemplify the wide range
of information available. To find a database containing particular information
of interest, start with the database issue “Contents” page, follow the link to
“Database Listing” in the first article, and then select “Category List.” This
provides a set of links that are subcategorized in conceptual hierarchies.

Some databases archive information for individual organisms or for whole
collections of organisms (Table B.1). The organism-specific databases may
provide the user with different interfaces to the data, and the type of content
and organization may differ for each database. Taking TAIR (The Arabidop-
sis Information Resource, Table B.1) as an example, we find access not only

502 B Internet Bioinformatics Resources

Table B.1. A small sample of useful bioinformatics resources.

General entry points:
National Center for Biotechnology Information (NCBI):

http://www.ncbi.nlm.nih.gov

European Bioinformatics Institute (EBI):
http://www.ebi.ac.uk/index.html

Science magazine functional genomics resources:
http://www.sciencemag.org/feature/plus/sfg/index.html

Databases:
Nucleic Acids Research (annual Database Issue: link from page below):

http://nar.oupjournals.org

a. Collections of organisms
Ensemble (Metazoan animals; e.g., humans, chimps, insects, worms):

http://www.ensembl.org/

International Sequencing Consortium (eukaryotic genome sequencing projects):
http:/www.intlgenome.org/

DNA Data Bank of Japan (DDBJ) Genome Information Broker:
http://gib.genes.nig.ac.jp/

The Institute for Genomic Research (TIGR):
http://www.tigr.org

UCSC Genome Browser (human, mouse, Fugu, yeast, et al.):
http://genome.ucsc.edu/

b. Individual organisms
The Arabidopsis Information Resource (TAIR):

http://www.arabidopsis.org

coliBASE (E. coli, Salmonella, Shigella):
http://colibase.bham.ac.uk/

FlyBase (Integrated genomic and genetic data for Drosophila):
http://flybase.bio.indiana.edu/

MaizeGDB (database for corn genomics):
http://www.maizegdb.org/

SGD Saccharomyces Genome Database:
http://www.yeastgenome.org/

WormBase (data for C. elegans and nematodes):
http://www.wormbase.org/

c. Molecules and structures
ExPASy (includes links to Swiss-Prot)

http://www.expasy.org

InterPro
http://www.ebi.ac.uk/interpro/

B.2 Databases 503

Table B.1. A small sample of useful bioinformatics resources.

Applications:
Smith-Waterman alignment (MPsrch at the European Bioinformatics Institute):

http://www.ebi.ac.uk/MPsrch/index.html

GrailEXP (gene discovery, Oak Ridge National Laboratory)
http://compbio.ornl.gov

HMMER (protein sequence analysis using profile hidden Markov models):
http://hmmer.wustl.edu

to sequence and gene data but also links to seed stocks and experimental
methods. Some databases provide data for a whole variety of organisms that
can be viewed with a uniform graphical interface. Examples are the Genome
Information Broker of DDBJ (the DNA Data Bank of Japan, Table B.1)
and TIGR (The Institute for Genomic Research, Table B.1). Investigators at
TIGR pioneered whole-genome sequencing, and their Comprehensive Micro-
bial Resource provides access to genome sequences of more than 130 different
microbial genomes and to several eukaryotic parasite and plant genomes. An
attractive feature of this site is the different ways of presenting genome in-
formation. After specification of an organism, selection of “Analyses” under
the “Genomes” tab leads to extensive summary information, such as GC plots,
codon usage, and gene categories. If we want information on human and other
animal genomes, The Ensemble Genome Browser (provided by the EBI and
the Sanger Institute in the UK) or the Genome Browser at the University
of California, Santa Cruz, are particularly useful (Table B.1). Databases with
listings to multiple organisms often allow searches for features shared among a
whole collection of genomes—an obvious benefit to investigators interested in
comparative genomics. The International Sequencing Consortium Large-scale
Sequencing Project Database provides an overview of all eukaryotic sequenc-
ing projects and also supplies links to the sites described above.

Other important databases provide data on molecules and molecular
structures. A good example is the ExPASy (Expert Protein Analysis Sys-
tem) proteomics server maintained by the Swiss Institute of Bioinformat-
ics (Table B.1). Here are found not only links to the venerable Swiss-Prot
database but also access to three-dimensional views of molecules and to a
number of sequence analysis tools. An alternative route to structure infor-
mation is through the NCBI Web site: select “Structures” and navigate to
the Molecular Modeling Data Base (MMDB). After we search using a par-
ticular search string, the files returned can be displayed by using an appro-
priate “viewer” (e.g., Cn3D, RasMol, or MAGE), which can be downloaded
for running at local terminals. For example, Cn3D displays the structures in
three dimensions, and the structures can be rotated by clicking on the struc-
ture and moving the mouse. Note that commercial vendors may also provide

504 B Internet Bioinformatics Resources

access to useful molecular information. For example, New England Biolabs
(http://www.neb.com/nebecomm/default.asp) provides extensive informa-
tion about restriction endonucleases (cleavage sites and reaction conditions)
and common cloning vectors (sequences and restriction digest maps).

With the proliferation of databases, each with a potentially different pre-
sentation of content to users, databases that integrate content from several
different databases are particularly useful. An excellent example of this is
InterPro (Table B.1). Maintained at the European Bioinformatics Institute,
InterPro integrates information from the UniProt, PROSITE, Pfam, PRINTS,
ProDom, SMART, TIGRFAMS, PIRSF, and SUPERFAMILY databases and
provides different descriptions of structure patterns, motifs, and domains for
proteins of interest.

B.3 Applications

Many bioinformatics application programs are available for download or for
online use at no charge. For example, the Smith-Waterman alignment program
can be implemented online from the European Bioinformatics Institute Web
site as MPsrch (see Section B.1.2) using their server. The “Tools and software
packages” link at the ExPASy site provides a link to MPsrch.

Other specific applications may be distributed less widely. For example,
GRAIL (Gene Recognition and Assembly Internet Link) and the extended
GrailEXP (Grail Experimental Gene Discovery Suite) are implemented mainly
by Oak Ridge National Laboratory (Table B.1). Applications at a particular
site may be available only for download and are not run on the host server.
HMMER (profile hidden Markov models for analyzing protein sequences), pro-
vided from the site listed in Table B.1, is an example of such an application.

Some services are freely available from for-profit organizations. For exam-
ple, the IBM Bioinformatics and Pattern Discovery Group provides access
to a number of applications, including tandem repeat discovery, multiple se-
quence alignment, and gene identification (http://www.research.ibm.com/
bioinformatics).

B.4 Concluding Remarks

Internet resources in bioinformatics are vast. There are resources other than
those listed here that also would have been excellent examples. We have pre-
sented several types of reliable resources from a number of different coun-
tries and kinds of organizations (academic, governmental, nonprofit institute,
industrial). Using the links provided at these sites and Internet search en-
gines, you will be able to find and bookmark your own favorite list of useful
bioinformatics sites tailored to your specific needs and interests. For a more
comprehensive treatment, see, for example, Baxevanis and Ouellette (2001).

B.4 Concluding Remarks 505

References

Baxevanis AD, Ouellette BFF (2001) Bioinformatics: A Practical Guide
to the Analysis of Genes and Proteins (2nd edition) New York: Wiley-
Interscience.

C

Miscellaneous Data

C.1 IUPAC-IUB Symbols

Table C.1. IUPAC-IUB symbols for amino acids and combinations of bases.

Amino acid residues:

Alanine Ala A Leucine Leu L

Arginine Arg R Lysine Lys K

Asparagine Asn N Methionine Met M

Aspartic acid Asp D Phenylalanine Phe F

Cysteine Cys C Proline Pro P

Glutamine Gln Q Serine Ser S

Glutamic acid Glu E Threonine Thr T

Glycine Gly G Tryptophan Trp W

Histidine His H Tyrosine Tyr Y

Isoleucine Ile I Valine Val V

Unspecified Xaa X

Bases and base combinations in nucleic acids:

A = Adenine R = A or G (purine) M = A or C
C = Cytosine Y = T or C (pyrimidine) B = T, G, or C
G = Guanine S = G or C V = A, G, or C
T = Thymine W = A or T H = A, T, or C
U = Uracil K = G or T D = A, T, or G

N = any base

508 C Miscellaneous Data

C.2 Genetic Code

Amino acid residues encoded by each codon are tabulated using the code as
it appears in DNA. For RNA code, substitute U for T. Each codon is formed
by concatenating three letters taken from successive levels in the tree.

A Lys

C Asn

G Lys

T Asn

A Thr

C Thr

G Thr

T Thr

A Arg

C Ser

G Arg

T Ser

A Ile

C Ile

G Met

T Ile

A Gln

C His

G Gln

T His

A Pro

C Pro

G Pro

T Pro

A Arg

C Arg

G Arg

T Arg

A Leu

C Leu

G Leu

T Leu

A

C

G

T

A

C

G

T

A

C

A Glu

C Asp

G Glu

T Asp

A Ala

C Ala

G Ala

T Ala

A Gly

C Gly

G Gly

T Gly

A Val

C Val

G Val

T Val

A STOP*

C Tyr

G STOP*

T Tyr

A Ser

C Ser

G Ser

T Ser

A STOP*

C Cys

G Trp

T Cys

A Leu

C Phe

G Leu

T Phe

A

C

G

T

A

C

G

T

G

T

Amino

 acid

Position

1 2 3

Amino

 acid

Position

1 2 3

C.3 E. coli Promoter Sequences 509

C.3 E. coli Promoter Sequences

Table C.2. A collection of promoter sequences from E. coli. These sequences have
been aligned relative to the transcriptional start site at position +1. Sequences from
−40 to +11 are shown. Close matches to consensus −35 and −10 hexamers are
underlined in the first nine entries, and the +1 position is indicated in boldface
(Hershberg et al., 2001; http://bioinfo.md.huji.ac.il/marg/promec).

−35 −10 −1
ORF83P1 | | |

CTCTGCTGGCATTCACAAATGCGCAGGGGTAAAACGTTTCCTGTAGCACCG

ada

GTTGGTTTTTGCGTGATGGTGACCGGGCAGCCTAAAGGCTATCCTTAACCA

amnP4
TTCACATTTCTGTGACATACTATCGGATGTGCGGTAATTGTATGGAACAGG

araFGH

CTCTCCTATGGAGAATTAATTTCTCGCTAAAACTATGTCAACACAGTCACT

aroG

CCCCGTTTACACATTCTGACGGAAGATATAGATTGGAAGTATTGCATTCAC

atpI

TATTGTTTGAAATCACGGGGGCGCACCGTATAATTTGACCGCTTTTTGATG

caiT

AATCACAGAATACAGCTTATTGAATACCCATTATGAGTTAGCCATTAACGC

clpAP1
TTATTGACGTGTTACAAAAATTCTTTTCTTATGATGTAGAACGTGCAACGC

crrP2-I
GTGGTGAGCTTGCTGGCGATGAACGTGCTACACTTCTGTTGCTGGGGATGG

cynT

GACTTTTACCTTATGACAATCGGCGAGTAGTCTGCCTCTCATTCCAGAGAC

damP2
TCAGTTGCCAAACCCGCTGGAGTATTGAGATAATTTTCAGTCTGACTCTCG

dnaAP1
ATCGTGCCCGCCTCGCGGCAGGATCGTTTACACTTAGCGAGTTCTGGAAAG

dnaQP2
GTGAAAATTTCTACCTGTTTAAGCATCTCTGGTAGACTTCCTGTAATTGAA

fabA

TCGGACTTGTTCAGCGTACACGTGTTAGCTATCCTGCGTGCTTCAATAAAA

fimBP2
CTGAATTTTTTATGTTGATTTTACTTGTTACAGAACATATCACATGATATA

ftsJ

TGGGATTGAAAACGGGTCATTCTACCGCCATCTCCCATATATCACCAAATA

furPb
GGGACTTGTGGTTTTCATTTAGGCGTGGCAATTCTATAATGATACGCATTA

gapB

AAACATTCCTTTTATTCCACGTTTCGCTTATCCTAGCTGAAGCGTTTCAGT

510 C Miscellaneous Data

Table C.2. [continued]

−35 −10 −1
glnAP1 | | |

GTCATTGCACCAACATGGTGCTTAATGTTTCCATTGAAGCACTATATTGGT

glpD

AATGTTACCTAAAGCGCGATTCTTTGCTAATATGTTCGATAACGAACATTT

gnd

GCTATTTATACTTTAATAAGTACTTTGTATACTTATTTGCGAACATTCCAG

hisA

AATTAATAAATAGTTAATTAACGCTCATCATTGTACAATGAACTGTACAAA

hypB

TTGCCGCGGCAGCGTGGCGGAAGGTTGTAAACTGCACCTCGAAGAACAAGA

ilvIHP
TGCCAATTGCTTAAGCAAGATCGGACGGTTAATGTGTTTTACACATTTTTT

lep

CTCAATGTTGTAGTGTAGAATGCGGCGTTTCTATTAATACAGACGTTAAGC

leu

AGGGTTGACATCCGTTTTTGTATCCAGTAACTCTAAAAGCATATCGCATTC

lysUP2
GAGGTAAGCGTTAGTTTCGATAAGATAAACTGAGTTACTAATAGTCGAGGC

melA

GCCGGAGGTTTTCTGCAGATTCGCCTGCCATGATGAAGTTATTCAAGCAAG

melR

ACTCGCAGTCATCCTCCCTCACTCCTGCCATAATTCTGATATTCCAGGAAA

nagBP1
GCTTAAAGATGCCTAATCCGCCAACGGCTTACATTTTACTTATTGAGGTGA

nrd

ATGCACTTGCAAGAGGGTCATTTTCACACTATCTTGCAGTGAATCCCAAAC

osmBP1
GGCAAATCATCCGCTCTAAGATGATTCCTGGTTGATAATTAAGACTATTTA

PdhR

CTGTATGGACATAAGGTGAATACTTTGTTACTTTAGCGTCACAGACATGAA

pflP6
TATCAATTTCTCATCTATAATGCTTTGTTAGTATCTCGTCGCCGACTTAAT

phoS

TTACATATAACTGTCACCTGTTTGTCCTATTTTGCTTCTCGTAGCCAACAA

prs

GAGGTTGATGCGGTGCTTTCCTGGCTGTTAGAATACGCCCCGTCGCGCCTG

purFP2
GAATGCGCCCCGAACAGGATGACAGGGCGTAAAATCGTGGGACACATATGG

pyrBIP1
ACTCCGCCCTATAAGTCGGATGAATGGAATAAAATGCATATCTGATTGCGT

recA

AAACACTTGATACTGTATGAGCATACAGTATAATTGCTTCAACAGAACATA

C.4 Yeast Gene Expression over Two Cell Cycles 511

Table C.2. [continued]

−35 −10 −1
rnh | | |

AATTGCAGTGCTCATAGCGGTCATTTATGTCAGACTTGTCGTTTTACAGTT

rpoDPhs
CACCCTTGAAAAACTGTCGATGTGGGACGATATAGCAGATAAGAATATTGC

rpsUP2
GCTTTACAAAGCAGCAGCAATTGCAGTAAAATTCCGCACCATTTTGAAATA

sodA

GATAATCATTTTCAATATCATTTAATTAACTATAATGAACCAACTGCTTAC

ssbP1
AGTATTGGAATGCATTACCCGGAGTGTTGTGTAACAATGTCTGGCCAGGTT

tau

AATTCTTTTAATGAATGTTTTTATTCCTGAATACTGCTCCCATAACAAGAC

treB

TCCCGTTTTTAAATTTTTCCGCGCAATATATTCTGCAGCCAACCAAAAATG

tufB

TTAGTTGCATGAACTCGCATGTCTCCATAGAATGCGCGCTACTTGATGCCG

umu

ATCAGTATTGATCTGCTGGCAAGAACAGACTACTGTATATAAAAACAGTAT

uvrCP3
CAGTTTGTCTGAACGTGAATTGCAGATTATGCTGATGATCACCAAGGGCCA

C.4 Yeast Gene Expression over Two Cell Cycles

mRNA was extracted from yeast cells at ten-minute intervals after reinitiation
of the cell cycle and was converted to cDNA. The cDNA from each time point
was hybridized to oligonucleotide arrays and then labeled with a fluorophore.
The data entries below are fluorescence intensities for a single dye at each
time point (Cho et al., 1998). The first entry for each vector is the yeast ORF
name.

YBL023c 60.0 135.0 176.0 91.0 67.0 99.0 143.0 238.0 260.0

161.0 124.0 113.0 72.0 113.0 140.0 163.0

YBL072c 2422.0 3077.0 4824.0 2810.0 4349.0 2241.0 3858.0

2948.0 2166.0 5325.0 4145.0 2527.0 4755.0 5332.0 5043.0 5300.0

YBR202w 114.0 273.0 179.0 125.0 115.0 145.0 289.0 491.0

478.0 369.0 218.0 187.0 176.0 295.0 483.0 411.0

YDR258c 714.0 322.0 49.0 60.0 45.0 60.0 27.0 54.0 65.0

74.0 78.0 80.0 69.0 82.0 129.0 143.0

512 C Miscellaneous Data

YEL032w 180.0 257.0 184.0 169.0 153.0 146.0 216.0 337.0

276.0 208.0 164.0 164.0 143.0 134.0 222.0 232.0

YER131w 1968.0 2104.0 2719.0 2919.0 3276.0 2260.0 2804.0

2252.0 1721.0 2458.0 2591.0 2261.0 2762.0 1892.0 3040.0

3111.0

YGL189C 3347.0 3055.0 4425.0 4592.0 3955.0 3215.0 4154.0

3204.0 2558.0 3744.0 3764.0 3094.0 3440.0 3268.0 4622.0

4116.0

YGR027C 493.0 775.0 951.0 826.0 721.0 640.0 927.0 707.0

650.0 983.0 1108.0 746.0 933.0 1122.0 1191.0 1074.0

YLL026w 756.0 325.0 143.0 126.0 140.0 101.0 117.0 109.0

182.0 154.0 235.0 208.0 143.0 168.0 257.0 341.0

YLR259C 2038.0 1466.0 1444.0 1004.0 1194.0 982.0 1103.0

1227.0 968.0 1301.0 1197.0 1188.0 1400.0 1491.0 1615.0

1411.0

YLR274W 209.0 262.0 231.0 140.0 148.0 165.0 184.0 271.0

416.0 351.0 243.0 198.0 162.0 179.0 252.0 324.0

Identifications of ORFs:

Heat shock Members of the Ribosomal protein
genes MCM complex genes

YDR258c: HSP78 YBL023c: MCM2 YBL072c: RPS8A
YLL026w: HSP104 YEL032w: MCM3 YER131w: RPS26B
YLR259C: HSP60 YLR274W: CDC46 YGL189C: RPS26A
YPL240C: HSP82 YBR202w: CDC47 YGR027C: RPS31A

C.5 Preprocessing of Microarray Data

This section gives a brief overview of how to preprocess microarray data in R.

Step 1: Read in the data

The original data are in a spreadsheet that displays the output from the ar-
ray reader (downloadable from http://www.cmb.usc.edu). Using the spread-
sheet application program, we collect together (a) the column of identifiers, (b

C.5 Preprocessing of Microarray Data 513

and c) the columns for background-subtracted median values for each wave-
length, and (d) the column of flags (four columns total). This is saved as a
tab-delimited text file. If we parse down the identifier column (first column),
we see that some identifiers contain spaces and characters that will be read
as R operators. This creates problems importing the data into R. Remove all
spaces from the tab-delimited file, and then convert all tabs to spaces. Failure
to remove spaces in the identifier column yields the following result when we
try to use read.table():

>array.dat<-read.table("array_ex.txt_s",row.names=TRUE)

Error in scan(file = file, what = what, sep = sep,

quote = quote, dec = dec,):

line 3361 did not have 4 elements

It is tedious to remove various other non-alphanumeric characters (e.g., -,",

’, (,)) so that read.table() will work. Eventually, we may need to use:

> array.dat<-read.table("array_ex.txt_s",as.is=TRUE)

> array.dat[1:5,]

V1 V2 V3 V4

1 GH01040 19404 6040 0

2 GH01059 12628 3352 0

3 GH01066 2236 893 0

4 GH01085 474 801 0

5 GH01088 820 1062 0

Without the as.is=TRUE argument, you may get the following error message:

Error in read.table("array_ex.txt_s", row.names = TRUE) :

invalid row.names specification

The identifier column has experimental meaning to the biologist and reflects
idiosyncracies of biological nomenclature. Remove the offending characters
without complaining.

Step 2: Remove flagged data

The flags are in the fourth column. Nonzero values indicate rows that should
be eliminated because the data for that feature are unreliable. We create
an object called array.dat.r and then use the code below to extract the
appropriate rows. The original data set contains 9216 rows, so the process
may take several minutes to complete.

> array.dat.r<-array.dat[1,]

> array.dat.r

V1 V2 V3 V4

1 GH01040 19404 6040 0

> for(i in 2:length(array.dat[,1])){

514 C Miscellaneous Data

+ if(array.dat[i,4]==0)

+ array.dat.r<-rbind(array.dat.r,array.dat[i,])

+ }

#Two lines above specify inclusion of a row only if

#its flag is equal to zero.

> length(array.dat.r[,1])

[1] 5641 #Number of rows not flagged

We see that only 5641 rows out of 9216 are not flagged. (The original data had
a “bad” block, and many rows near the end contained zero for all intensity
values.)

Step 3: Calculate M and A, and obtain the factor for global normalization

We make vectors of appropriate length and then compute the appropriate
logarithms in base 2:

> M<-rep(0,5641)

> M[]<-log2(array.dat.r[,2]/array.dat.r[,3])

> A<-rep(0,5641)

> A[]<-log2((array.dat.r[,2]*array.dat.r[,3])**0.5)

At this point, we can compute the factor needed for global normalization.
Remember that we found that log2(R/G) = log2 k,so we seek the mean value
of M :

> mean(M[])

[1] NaN

The “NaN” indicates a number not available. To find out where the problem
lies, we hunt for the offending row in M and check in A as well:

> (1:length(M))[M[]=="NaN"]

[1] 2096

> (1:length(A))[A[]=="NaN"]

[1] 2096

Only row number 2096 is problematic. We look in array.dat.r to identify
the problem:

> array.dat.r[2096,]

V1 V2 V3 V4

2292 string -9 2968 0

Obviously, we can’t take the logarithm or square root of a negative number;
therefore, we need to exclude this row. (Note that the listed row number of
the original matrix is not the same as the actual row number after the flagged
rows were removed.)

> a<-A[c(1:2095,2097:5641)] #Include all but row 2096

> m<-M[c(1:2095,2097:5641)]

References 515

Now we can find the global normalization factor:

> mean(m[])

[1] 0.2903073

> 2^mean(m[])

[1] 1.222901

This means that for all spots taken as a whole, R is 1.22 times greater than
G. Normalization of this type would correct the R values by multiplying by
1/1.22, or 0.8177.

Remove row 2096 from array.dat.r, and finally combine the data into a
larger matrix.

> array.dat.r2<-array.dat.r[c(1:2095,2097:5641),]

> array.a.m<-cbind(array.dat.r2,a,m)

> array.a.m[1:10,]

V1 V2 V3 V4 a m

1 GH01040 19404 6040 0 13.402200 1.6837336

2 GH01059 12628 3352 0 12.667572 1.9135321

3 GH01066 2236 893 0 10.464610 1.3241881

4 GH01085 474 801 0 9.267201 -0.7569152

5 GH01088 820 1062 0 9.866024 -0.3730880

6 GH01132 3054 2032 0 11.282585 0.5877997

7 GH01314 3104 1507 0 11.078688 1.0424491

8 GH01331 479 683 0 9.159812 -0.5118599

9 GH01338 2469 784 0 10.442210 1.6550013

10 GH01353 903 560 0 9.473933 0.6892992

This matrix (5640 × 6) contains the data necessary for generating the MA
plot.

A text version of this file is available for download at http://www.cmb.usc.
edu.

References

Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L,
Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, Davis RW
(1998) A genome-wide transcriptional analysis of the mitotic cell cycle.
Molecular Cell 2:65–73.

Hershberg R, Bejerano G, Santos-Zavaleta A, Margalit H (2001) PromEC:
An updated database of Escherichia coli promoters with experimentally
identified transcriptional start sites. Nucleic Acids Research 29:277.

Index

**, 490
#, 492
%*%, 490
^, 490
2D gel electrophoresis, 328
2DE, see gel electrophoresis, 328
3′ acceptor site, 435
3′ to 5′, 20
5′ donor site, 435
5′ to 3′, 20

Ab, see antibody
abline, 496
abundance, 327
acceptor group, 228
accession number, 500
adapter, 296
additive, 350

distance, 352
tree, 351, 352

adjacency, 127
affinity tag, 328
agglomerative

clustering, 272
hierarchical clustering, 272

algorithm, 105
rejection, 405

alignment, 144, 167
global, 145, 147, 152, 163
highest-scoring, 146
local, 145, 155, 156, 163
matrix, 148, 153, 157, 173, 204
multiple, 161, 205
multiple-sequence, 145

number of, 159

pairwise local, 163

parsimonious, 145

protein, 184

score, 153

all

-against-all, 443
-versus-all, 451

allele, 9, 15, 362, 368, 394

frequency, 367, 368, 370, 374

new, 368

allelic association, 386

alphabet, 38, 70

alternating cycle, 133

alternative

splice variants, 28

splicing, 17

Alu element, 380, 417

amino
acid, 6

acid residue, 21

terminal, 21

amplifying DNA, 67

ancestor-descendant relationship, 337

ancestral

node, 348

state, 340, 349

anchor sequence, 424, 427

anchoring enzyme, 294, 296

animal, 2, 448

cell, 6

phylogeny, 100
annotate, 313

518 Index

annotation, 189, 443
anonymous gene, 313
antibody, 32, 227, 329

microarray, 329
antigen, 32, 329

capture, 330
antiparallel, 20
apparent island, 113
apply, 494
Arabidopsis thaliana, 4
ARACHNE, 210
Archaea, 2
archaebacteria, 2
architecture

closed, 292, 298
open, 292, 327

argument, 482
array, 90, 242, 487
array, 90, 487
artifact, 302
as.dist, 275
as.is, 513
as.matrix, 490
assembler

ARACHNE, 210
CAP, 210
EULER, 210
Phrap, 210
TIGR, 210
Whole-genome Assembler, 210

assembly, 112
association analysis, 377
attribute, 314
automated sequencing, 200
autosome, 7, 368

autosomal recessive, 369
autozygosity, 369
average, 308

genomic recombination rate, 391
heterozygosity, 372, 375
regional heterozygosity, 372

B. subtilis, see Bacillus subtilis

BAC, see bacterial artificial chromo-
some, 418

clone, 212
library, 212, 217

Bacillus subtilis, 2
background, 302

distribution, 249
intensity, 304
sequence, 254

bacterial
artificial chromosome, 68, 100, 108
genome, 216
transformation, 60

bacteriophage, 34
lambda, 69

bactig, 214
balanced, 130
barplot, 498
base

calling, 209
change, 349
composition, 22, 38, 71, 238, 412
frequency, 355
pair, 21, 23, 99
pairing, 32, 299
substitution, 353

basic operation, 105
Bayes’ Theorem, 51, 404
Bayesian

approach, 309, 404
computation, 361

between-genome comparison, 411, 427,
448

biallelic, 386
bifurcation, 340
Big Bang, 425
big O, 105, 157
bilateria, 2
binary

search, 171, 172
tree, 343

binding, 225
protein, 226

binomial
coefficient, 44
distribution, 44, 45, 47, 72, 74, 394,

401
random variable, 47
success probability, 357

BioConductor, 319
biodiversity, 2
bioinformatics, 333
biological

classification, 337
diversity, 263

Index 519

replication, 310
bivalents, 8
BLAST, 178, 182, 189, 500
BLASTP, 443
BLASTX, 437
block, 186
BLOCKS, 185
Blocks database, 185
blocks substitution matrix, 183, 187
BLOSUM, see blocks substitution

matrix
BLOSUM matrix, 186
BLOSUM62, 183
Bonferroni correction, 310
bottleneck, 387
bottom-up approach, 110, 195
Boxplot, 496
boxplot, 498
bp, see base pair
branch

length, 340
site, 435

branching topology, 342
breakpoint, 125, 127
byrow, 484

c, 483
CAAT box, 435
Caenorhabditis elegans, 4
CAI, see codon adaptation index
CAP, 210
capillary array electrophoresis, 202
capture antibody, 330
carboxy-terminal, 21
case-control study, 377
catalytic proteins, 19
categorical character, 264
cbind, 484
cDNA, 28, 35, 437

library, 28
ceiling, 492
cell, 2, 5

cycle, 291
division, 8

cellular components, 441
clusters, 316
centimorgan, 9, 379
Central Limit Theorem, 79
central tendency, 43

centroid, 278, 280
centromere, 418
challenge set, 233
character, 13, 263, 264

categorical, 264
dichotomous, 265, 268
quantitative, 265
state, 265

charge-to-mass ratio, 32
chemical cross-linking, 227
Chi sequence, 60
χ2 test, 89, 360
child, 343
ChIP, see chromatin immunoprecipita-

tion
chloroplast, 5, 125

genome, 19
chordata, 2
chromatid, 8
chromatin immunoprecipitation, 226
chromosome, 2, 121

rearrangement, 125
walking, 219

cI, 231
CID, see collision-induced dissociation
cistron, 15
city-block

distance, 270
metric, 270

clade, 340
cladogenesis, 340
cladogram, 340
classification, 253, 254, 263, 286, 313
clock-like tree, 350, 358
clone

-by-clone shotgun, 212, 214
coverage, 217
library, 109, 216

cloning, 27
vector, 27, 100, 108

closed architecture, 292, 298
cluster

analysis, 275
center, 272
membership, 281
of orthologous genes, 442, 445

cluster, 316
clustering, 187, 263, 272, 282, 314, 315,

332

520 Index

co-regulated, 313
coalescence, 400, 401
coalescent, 398, 402

tree, 403
coding, 24

region, 361
sequence, 15, 432–434
strand, 15

codon, 11, 57
adaptation index, 58–60, 62
frequencies, 57
usage, 24, 25, 57, 58

coexpressed genes, 324
COG, see cluster of orthologous genes,

444, 445
coin tossing, 82, 357

experiment, 72, 74
coldspot, 391
collapsed unitig, 220
collinear gene cluster, 422, 424, 427
collision-induced dissociation, 329
comment, 492
common ancestor, 354
comparative genomics, 438
comparison by content, 170
complement, 51
complementary, 20, 299

sequence, 32
strand, 38

complete linkage, 273
compression, 209
computational problem, 105
computer code, 105
conceptual error, 493
condition, 321
conditional probability, 51, 53
confidence interval, 81
confounded, 360, 398
consensus, 234, 438

sequence, 203, 231, 250, 418
conserved

element, 439
linkage, 420
segment, 11, 12, 134, 135, 420, 422,

429
sequence segment, 424
synteny, 9, 11, 123, 135, 420

contig, 108, 110, 111, 195, 218, 219
continuous, 265

random variable, 76
control, 308, 330

experiment, 303
spot, 304

copy number, 27, 416
cor, 491
core

promoter, 15
proteome, 451

correctness, 105
correlation

coefficient, 64, 315, 491
matrix, 315

cosmid, 68, 100, 108
library, 195

covariance, 64, 315
matrix, 315, 320

coverage, 109, 114, 168, 203, 208, 217
CpG island, 416
criterion, 314
Cro, 229, 230
cross

-linking, 35
-validation, 237

crossover, 378
cutoff, 187, 258, 387

score, 253
Cy3, 299–301, 303, 330
Cy5, 299–301, 303, 330
cyanobacteria, 4
cycle, 130, 320, 343

-free graph, 343
alternating, 133
decomposition, 129

cytoskeleton, 5, 7
cytoskeletal proteins, 28

D, 381
D′, 382
Danio rerio, 4
data

mining, 500
reduction, 314, 320
structure, 242, 314, 321

database, 167, 499, 501
DDP, see double-digest problem
debug, 493
decomposition, 131, 133

cycle, 129

Index 521

edge-disjoint, 134
degeneracy, 227
degree, 343
degrees of freedom, 309
deletion, 13, 99, 145
denaturation, 299
denature, 30
dendrogram, 188, 272, 275, 278
density, 409
deoxyribonucleotide, 20
dependent, 42
detailed balance equations, 356
detection antibody, 330
deuterostomes, 2
dev.off, 496
developmental

gene, 299
process, 325
program, 324

diagonal, 138, 174
sums of scores, 174, 176

dichotomous character, 265, 268
dideoxy sequencing, 196, 198, 199
differential expression, 320
differentially expressed, 291
digital sequence tag, 293
digits, 492
dimnames, 315, 484
dinucleotide, 24, 48, 416

frequency, 49, 242
diploid, 7
direct descendant, 358
directed graph, 343
discrete, 265

distribution, 76
random variable, 41

disease gene, 386
disjoint, 51
dissimilarity, 269

matrix, 273
dist, 275
distance, 126, 134, 268, 269, 337, 355,

358
matrix, 272, 315, 350, 355
method, 346, 350
physical, 99

distinguishability, 269
distribution, 249

binomial, 44, 45, 72, 74, 394, 401

discrete, 76
exponential, 77, 84, 402
geometric, 97
hypergeometric, 159
normal, 77, 78
of restriction sites, 73
Poisson, 75, 112, 181, 354, 378
posterior, 404
uniform, 77

ditag, 296
divergence, 143
divide-and-conquer, 213
divisive hierarchical methods, 272
DNA, 21

-protein complex, 226
hybridization, 299
microarray, 327
polymerase, 196, 197
precursor, 197
replication, 10, 19
sequence assembly, 195
sequencing, 34

domain, 2, 448, 450
content, 450
structure, 189

dominant allele, 369
dot

matrix, 173
matrix plot, 174
plot, 138

double
-digest problem, 101, 102
crossover, 377

down-regulated gene, 304
draft sequence, 219
Drosophila melanogaster, 4
duplicate

gene, 427
mapping, 430

duplicated sequence, 121
duplication, 411, 425
dye

bias, 303
fluorescent, 203
primer, 203
swap, 330
terminator, 203

dynamic
programming, 162, 163

522 Index

range, 320

E-value, 181
E. coli, see Escherichia coli

eBAC, see enriched BAC
EBI, see European Bioinformatics

Institute
ecdysozoa, 2
edge, 129, 219, 343, 443

-colored graph, 132, 133
-disjoint, 130

alternating cycle, 135
cycle, 131
decomposition, 134

edit distance, 265, 273
efficiency, 105
electrophoresis, 30
electrophoretic mobility-shift assay, 226
electrostatic interaction, 227
emission maximum, 300
empty set, 349
enriched BAC, 214
Ensemble, 503
Entrez, 500
enzyme, 19
epitope, 33, 330
error, 277

message, 493
Type I, 252
Type II, 252

Escherichia coli, 2
EST, see expressed sequence tag, 293,

437
eubacteria, 2
euchromatin, 219, 418
Euclidean distance, 269, 270, 280
eukaryote, 2, 5, 451

eukaryotic
cells, 5
genes, 15
promoter sequence, 435

EULER, 210
European Bioinformatics Institute, 500
evolution, 9, 17, 367, 418
evolutionary

clock, 354
distance, 188, 267, 442
process, 353
relationship, 143, 367

tree, 342
exact occurrences, 96
exhaustive, 51
exon, 15, 435

and intron statistics, 437
size distribution, 437

ExPASy, 503
expectation, see expected value
expected

heterozygosity, 396
number of islands, 114
number of occurrences, 89
value, 43

experimental design, 310, 312
exponential

distribution, 77, 84, 402
growth, 387
random variable, 77

expressed sequence tag, 28
expression

matrix, 321
pattern, 313, 324, 325, 327, 332
profile, 325
ratio, 308, 310, 321
vector, 30

extinction, 18

F-statistic, 376
failure, 81
false

discovery rate, 254
negative, 252, 253

assignment, 253
positive, 189, 252, 253, 309, 320

assignment, 253
FASTA, 173, 178, 182, 189, 500
FDR, see false discovery rate
feature, 299, 309
Felsenstein’s model, 354
fingerprint, 68, 115, 214
finished sequence, 219
first-order Markov chain, 52
fitness, 384
fixation, 394, 396

index, 376
floor, 492
fluorescence, 320

intensity, 300
fluorescent dye, 203, 299, 330

Index 523

fold, 24
footprint, 226
footprinting, 35, 226
fossil record, 337
founder effect, 384
four-point condition, 350, 352
fr(G + C), 38
fractional overlap, 114
fragment

length distribution, 87
order, 103

frameshift mutation, 161
function, 168, 441, 443, 495
functional

annotation, 168, 442
categories, 445
domain, 445
element, 439
proteomics, 327

fungi, 2

gamete, 8, 9
gap, 114, 161, 361

closure, 110
length penalty, 176
penalty, 161

GC

box, 435
content, 412
skew, 39, 61, 412

gel electrophoresis, 30, 31, 35, 68, 101
gel-shift, 35

assay, 226
gene, 13, 368

-specific probe, 299
chip, 299

experiment, 35
content, 448
copy number, 30
down-regulated, 304
expression, 291, 324

analysis, 332
data, 322
matrix, 303, 314
pattern, 325

fusion, 444
homeotic, 168
neighbor, 444
ontology, 449

orientation, 132
pool, 393
prediction tools, 436
recognition, 25
regulation, 35, 313
tree, 361, 362
up-regulated, 304

Gene Ontology Consortium, 441, 448
genealogical history, 385
general hypothesis, 360
generation, 362
genetic

code, 4, 24, 397, 508
cross, 9
disease, 386
diversity, 342
drift, 384, 393–395
exchange, 378
linkage, 11
map, 9, 68, 121, 386

distance, 378
mapping, 34, 419
marker, 9, 99, 379
network, 324
variation, 18, 369

genome, 1, 19, 121, 414
chloroplast, 19
equivalent, 109
human, 13
mammalian, 28
metazoan, 440
mitochondrial, 19
nuclear, 19
rearrangement, 123, 135, 425
sequence assembly, 219
sequencing, 213
signature, 452
size, 108, 412, 440

genomic library, 108
genotype, 18, 377
geographic regions, 370
geometric

distribution, 97
geometric mean, 59
germline, 8
getwd, 486
global

alignment, 145, 147, 152, 163
number of, 157

524 Index

normalization, 304, 514
Golgi apparatus, 5
graph, 129, 343

edge-colored, 132, 133
graphics.off, 496
greedy procedure, 205
group average, 273

linkage, 351
guilt by association, 313

Haldane mapping function, 378
half

-bits, 187
-site, 229

Hamiltonian path problem, 215, 216
Hamming distance, 337, 353, 357
haploid, 7
haplotype, 9, 11, 376, 377, 385

block, 387, 388, 390
frequency, 387

Hardy-Weinberg law, 396
hclust, 276, 322
help, 56, 481
help.start, 481
heterochromatin, 219, 418
heterozygosity, 371, 372, 375, 398
heterozygote, 369
heuristic, 162

search, 349, 359
hidden Markov model, 162, 252, 504
hierarchical

classification, 263
cluster, 337
clustering, 272, 315, 322, 350, 353

high-copy-number plasmid library, 217
high-scoring

diagonal, 177
segment pair, 179, 189

highest-scoring
alignment, 146
path, 153

hist, 47, 81, 241, 497
histogram, 45, 496, 497
histones, 6, 28
hit, 180, 443
HIV, 339
HIV-I, 338
homeotic gene, 168
homodimer, 229

homogeneous, 52
chain, 242

homolog, 143, 168, 189, 442
homologous recombination, 8, 13
homology, 143
homoplasy, 143
homopolymer, 39
homozygosity, 375
homozygous, 369
horizontal transfer, 414
host

organism, 27
specificity, 27

housekeeping gene, 299
HSP, see high-scoring segment pairs
human

genome, 13
immunodeficiency virus, 338
populations, 338, 340, 369, 386

Human Genome Project, 68, 212
hybrid strategy, 214
hybridization, 299, 381

efficiency, 303
hybridoma, 33
hydrodynamic shear, 67
hydrogen

bond
donor, 23, 228
receptor, 23

bonding, 227
hydrophobic interactions, 227
hypergeometric distribution, 159
hypothesis

general, 360
reduced, 360
test, 308

hypothetical protein, 452

identity, 146, 149, 152
permutation, 126

iid, see independent and identically
distributed

model, 72, 238
immune

response, 32
system, 32

immunoglobulin, 32
in-frame fusion, 328
incomplete

Index 525

digestion, 106, 110
dominance, 369

incorporation efficiency, 303
indel, 14, 145, 146, 149, 153
independence, 42
independent

and identically distributed, 42
parameters, 237

indirect labeling, 330
infinitely many

alleles model, 397
sites model, 401

information, 249, 250
content, 236
theory, 248

inheritance, 7
initial

distribution, 55
probability distribution, 53, 244

input, 105
insects, 2
insertion, 13, 99, 145
intensity

-dependent normalization, 304–306
ratio, 309, 310, 312

inter-cluster distance, 277
intercalation, 320
interleaved position, 103
interleaving of genes, 429
internal

branch, 343
node, 343, 358

Internet, 499
interphase, 8
InterPro, 504
intersect, 349
intersection, 51, 349
interval, 155
intron, 15, 435
inverse, 490
inversion, 13, 99, 123, 125, 145
inverted repetition, 73, 227
is.data.frame, 486
is.matrix, 490
island, 111, 112
isoelectric

focusing, 30, 31
point, 30, 31

IUPAC-IUB symbols, 507

Jaccard’s coefficient, 269
jackknife procedure, 278
joint probability distribution, 64
Jukes-Cantor formula, 357

K-means, 272, 278, 282, 318
clustering, 279

k-tuple, 38, 169, 173, 251
distribution, 60

k-word, 38, 89, 94, 411
composition, 412
frequency, 92

kb, see kilobase pairs
keyword, 447, 500
kilobase pairs, 20, 99
kilodalton, 33
kinetic PCR, 320
kmeans, 283, 316
Kullback-Leibler distance, 249

lagging strand, 60, 412
DNA synthesis, 412

lambda vector, 100
landmark, 11, 135

sequence, 12
law of total probability, 51, 53
layout, 203, 204
LC/MS, 328
LD, 381, see linkage disequilibrium,

384, 391, 405
decay, 383

leading strand, 39, 60
DNA synthesis, 412

leaf, 343, 358
learning, 233
leaves, 340
length, 85, 482, 493, 495
letter occurrence, 96
Levenshtein distance, 265
library, 27

screening, 117
library, 495
likelihood

-based method, 346
function, 83
methods, 361

LINE, 417, 419
linear model, 491

526 Index

lines, 81, 497
linkage, 376

analysis, 376
disequilibrium, 381, 385, 388
equilibrium, 382

linker, 296
liquid chromatography, 328
list, 92, 170, 239

ordered, 172
list, 315, 484
lm, 491
local

alignment, 145, 155, 156, 163
pairwise, 163
score, 181

match, 179
scope, 493

locally weighted scatterplot smoother,
305

locus, 13, 368
loess, 305, 306
log-likelihood, 360

function, 83
logical comparison, 488
look-up table, 176
lophotrochozoa, 2
low-copy-number plasmid library, 217
lowess, 305
LTR transposon, 417, 419
lty, 497

M. genitalium, see Mycoplasma

genitalium

MA plot, 304, 306
macromolecular complexes, 30
macrorearrangement, 136
major groove, 21, 23, 227
MALDI, 328, see matrix-assisted laser-

induced desorption/ionization
-MS, 328
-TOF, 381

mammal, 2
mammalian

cell, 27
genome, 28

Manhattan distance, 270
map

-based, 195
distance, 379

genetic, 68, 121
optical, 100
physical, 67–69, 99, 121
restriction, 67, 99

marker, 99
genetic, 99

Markov
chain, 50, 242–244, 396

first-order, 52
Monte Carlo, 361
second-order, 59

model, 54, 244
property, 52, 53

mass spectrometry, 35, 328
match, 146, 149

model, 182
mate pair, 217, 218
maternally inherited, 338
matlines, 498
matplot, 498
matrix

alignment, 204
computation, 489
overlap, 205
scoring, 184
substitution, 183

matrix, 56, 90, 94, 245, 394, 484
matrix-assisted laser-induced desorp-

tion/ionization, 328
max, 153, 156
max, 87
maximum likelihood, 83, 358

estimator, 83, 359
Mb, see megabase pairs
mean, 43, 491

number of substitutions, 355
mean, 305, 487, 492
MEGA, 351
megabase pairs, 20
meiosis, 6–10, 369, 377, 379
Mendelian genetics, 368
metazoan genome, 440
methylation, 69
metric, 269
mfcol, 498
mfrow, 138, 318, 498
microarray, 27, 298

data, 512
microrearrangement, 136

Index 527

microsatellite, 370, 380
repeat, 386
repeats, 161

min, 158
min, 87
minimal

genome, 440
tiling

clone set, 115
path, 111
set, 214

minisatellite, 380
Minkowski metric, 271
minor

allele, 374
groove, 21, 23, 227

mismatch, 146, 149, 152
penalty, 160
sequence, 180

mismatched base, 381
mitochondria, 5, 100, 125

mitochondrial DNA, 27, 338
mitochondrial genome, 19

mitosis, 6–8
mitotic spindle, 7

mixing of populations, 384
MLE, see maximum likelihood

estimator
model

for DNA sequence, 71
match, 182
organisms, 4, 167
random, 182

molecular
clock, 350
cloning, 67
evolution, 18
function, 441, 448
mass, 30

monoclonal antibody, 33
most recent common ancestor, 340
motif, 448
mRNA, 5, 13, 19, 28, 298, 332

abundance, 292, 296
processing, 292

MS, see mass spectrometry
mtDNA, see mitochondrial DNA, 338,

340
m/z, 329

multiple
-sequence alignment, 145
alignment, 161, 203, 205, 438
hypothesis testing, 309

multiplication rule, 42
multivariate, 264

data, 321
Mus musculus, 4
mutation, 11, 145, 348

mutational load, 418
parameter, 401
rate, 386, 402

Mycoplasma genitalium, 49, 55

N(0, 1), see standard normal distribu-
tion

N(µ, σ2), see normal distribution
National Center for Biotechnology

Information, 499
natural selection, 18, 368, 384
NCBI, see National Center for

Biotechnology Information
nclass, 498
ncol, 484
neighbor joining, 351
neighborhood

sequence, 179
size, 180

Neisseria gonorrhoeae, 60
network, 332, 444
neutral mutation, 397
node, 348
non-hierarchical clustering, 278
noncoding

region, 417
sequence, 432, 433

nonsite, 252
nonspecific binding, 302
normal distribution, 77, 78
normalization, 303, 515

intensity-dependent, 304–306
global, 304

normalizing constant, 404
NP-complete, 106, 216
nuclear genome, 19
nuclei, 2
nucleoid, 5
nucleosome, 20
nucleotide, 20

528 Index

diversity, 401
null

hypothesis, 252, 308
model, 92
set, 89

number of
alignments, 159
branches, 345
clusters, 276
differences, 400
genes, 440
global alignments, 157
islands, 112
mutations, 400
parameters, 242
rooted trees, 346
trees, 344
unrooted trees, 346

object, 263, 264, 481
objects, 481
Ockham’s Razor, 347
odds ratio, 234
offset, 174, 178

diagonal, 178
oligomer, 227
oligonucleotide

array, 381
chip, 293
probe, 381

one-
step transition matrix, 52
tailed p-value, 95

open
architecture, 292, 327
reading frame, 25, 26

operational taxonomic unit, 264
operator, 17, 231
operon, 17, 444
optical

detection, 298
mapping, 100, 106

optimization, 272, 278
options, 492
ordered list, 172
ORF, see open reading frame
organelles, 2
organisms, 1
ortholog, 144, 442, 444

orthology, 441, 443
OTU, see operational taxonomic unit,

337
Out-of-Africa, 340
outcomes, 72
outgroup, 342
outlier, 279
output, 105
overcollapsed unitig, 219
overlap, 108, 111, 112, 115, 204, 217

alignment, 203
matrix, 205, 207

p-value, 82, 95, 180
paired-end sequence, 217
pairwise

comparison, 203, 204
linkage disequilibrium, 389
local alignment, 163

palindrome, 73
PAM, see point accepted mutation
par, 138, 305, 318, 496
paralog, 144, 425, 442
paralogous gene pair, 429
parameter, 75

estimation, 83, 360
number of, 242

parent, 343
parsimonious alignment, 145
parsimony, 342, 346, 348

cost, 349
partial restriction map, 117
partition, 51, 280
parts inventory, 332
path, 157

highest-scoring, 153
pattern

discovery, 96, 229
recognition, 34

PCA, see principal components analysis
pch, 138, 496
PCR, see polmerase chain reaction, 294,

320, 380
Pearson product-moment correlation

coefficient, 315, 382
pedigree, 376
peeling algorithm, 359
penetrance, 369
permutation, 100, 121, 125, 134

Index 529

identity, 126
worst-case, 129

perspective plot, 496
phage, 34

display, 34, 330
phagemid, 196
phenotype, 13, 368, 380
phosphodiester backbone, 21, 23, 227
photolithography, 299
photosynthesis, 4
Phrap, 210
Phred, 209
phylogenetic

footprinting, 439
profile, 444, 446
relationship, 360
tree, 18, 34, 126, 278, 339, 340, 367

phylogeny, 126, 337, 360
physical

distance, 99
map, 67–69, 99, 121, 420
mapping, 34

pI, see isoelectric point
piechart, 496
pin, 496
plant, 2
plasma membrane, 5
plclust, 276, 322
plot, 138, 258, 305, 318, 496
pnorm, 78, 95
point, 368

accepted mutation, 183
mutation, 13

points, 258, 318, 497
Poisson

approximation, 74, 75, 401
distribution, 75, 112, 181, 354, 378
process, 76, 84, 403

poly-A, 299
tail, 17

polyacrylamide gel, 198
polyadenylation, 17
polycistronic, 15
polyclonal antibody, 32
polygenic traits, 369
polymerase chain reaction, 27, 380
polymorphic

locus, 384
marker, 379

polymorphism, 380
polypeptide, 21, 328
pooled population, 376
population, 18, 159, 337, 362, 367, 370,

400
expansion, 405
genetics, 18, 367
history, 368
mean, 308
model, 384
size, 386, 399
stratification, 385
structure, 374, 384
variance, 308

position-specific scoring matrix, 235
positional weight matrix, 233, 236, 238,

242, 251, 254, 257, 435, 436
posterior

distribution, 404
ppois, 75
pre-finished sequence, 219
predict, 307
predictor variable, 314
primary structure, 24
primer, 196

extension, 381
universal sequencing, 197

principal components analysis, 314, 319
prior probability distribution, 309
probability, 40

density function, 76, 77, 400
distribution, 41, 44, 232

background, 238
initial, 244
joint, 64
prior, 309

mass function, 41
probe, 298
processes, 441
profile, 251, 314, 436, 448
program, 495
prokaryote, 2, 5, 7

prokaryotic
chromosome, 7, 412
gene, 15

promoter, 15, 89, 225, 234, 235, 435,
509

prophase I, 8
PROSITE, 185

530 Index

protein, 21
-DNA complex, 35
-protein interaction, 35, 327, 329
alignment, 184
binding, 226
expression, 327
microarray, 329
modification, 292
regulatory, 225

proteome, 35, 291, 327, 450
protists, 2

Protista, 2
protostomes, 2
pseudo-random number, 45
pseudocount, 237
PSSM, see position-specific scoring

matrix
punctate recombination, 387, 391
PWM, see positional weight matrix

q, 480
qualitative, 264
quality

file, 211
score, 209

quantitative character, 265
quaternary structure, 24
query, 167

sequence, 179

R, 479
prompt, 480

random
assortment, 379
bifurcating tree, 402
model, 182
number generator, 46
rate variation, 361
variable, 41, 76

rare
allele, 387
word, 171

ratio of fluorescence intensities, 303
rbind, 484
rbinom, 47, 80
read depth, 214, 219, 422, 425
read.table, 244, 282, 485, 487, 491,

513
real-time

PCR, 320
RT-PCR, 320

rearrangement, 139, 420
reassigning objects, 277
recessive allele, 369
reciprocal best hit, 424
recognition

sequence, 70, 71
sites, 60

recombination, 7–9, 60, 376, 377, 405
coldspot, 391
fraction, 378, 383, 386
frequency, 379
homologous recombination, 8, 13
hotspot, 391
parameter, 383, 386
rate, 379, 402, 405

variation, 391
recursion, 162

formula, 383
reduced hypothesis, 360
reductionist approach, 332
reference sample, 312
region, 370
regulatory

protein, 225
sequence, 251

rejection algorithm, 405
relative entropy, 249
rep, 86, 394, 494
repeated sequence, 215, 216, 416
replicate, 307, 310
replication, 4

biological, 310
origin, 39, 225
slippage, 161
technical, 310

resolution, 392
respiration, 5
response variable, 314
restriction

endonuclease, 34, 67, 68, 70, 71, 99
Type II, 70

enzyme, 69, 99
fragment length

distribution, 84
polymorphism, 380

map, 67, 99
mapping, 34, 107

Index 531

Smith-Birnstiel, 200
site, 71
site polymorphism, 99

retrovirus, 338
return, 493, 495
reversal, 100, 102, 123, 126, 127, 420

distance, 132, 134
reverse

complement, 204, 205
transcriptase, 197
transcription, 19, 28

reversible, 356
rexp, 409
RFLP, see restriction fragment length

polymorphism
rm, 487
rnorm, 498
robust, 277, 286
root, 343

node, 343
rooted tree, 343
round, 492
rpois, 409
rRNA, 19
r2, 383
runif, 409

Saccharomyces cerevisiae, 4
SAGE, see serial analysis of gene

expression
sample

correlation, 65
covariance, 65
size, 387

small, 237
space, 51
variance, 45

sample, 46, 56, 85, 94, 255
sampling, 159

variation, 384
scaffold, 214, 218, 219
scale, 282
scaling, 271
scan, 315, 482, 486, 487
scatterplot, 305, 496
Schizosaccharomyces pombe, 4
score, 233, 234

alignment, 153
distribution, 253, 255, 257

scoring
matrix, 147, 160, 176, 181, 184
rules, 160
system, 146

search space, 167
second-order Markov chain, 59
secondary structure, 21, 22, 24, 361
segmental duplication, 13, 145, 420,

422, 423, 425
segregating site, 401, 403
selection, 189, 266
sense strand, 26
sensitivity, 189, 252
sequence

-tagged
connector, 117, 212, 213
site, 99

anchor, 135
assembler, 210
assembly, 207, 211
coverage, 212, 214, 219
divergence, 418
file, 210, 211
identity, 422
logo, 250
mismatch, 180
neighborhood, 179
paired-end, 217
pattern, 225
query, 179
read, 208
similarity, 174, 443, 500

search, 437
trace, 209
variation, 338

sequence-tagged
connector, 212
site, 368

sequencing
automated, 200
dideoxy, 196
strategy, 212
technology, 195

serial analysis of gene expression, 35,
293, 297, 327

set.seed, 46
setwd, 486
sex chromosomes, 7
Shannon’s entropy, 248

532 Index

shotgun sequencing, 68, 168, 196, 203,
212

signal, 96, 225, 232, 249
signif, 241
significance level, 310
significant diagonal, 177
simian immunodeficiency virus, 338,

339
similarity, 143, 144, 268

coefficient, 265
matrix, 269

simple matching coefficient, 268
simulate, 236, 254, 427
simulated sequence, 40
simulation, 40, 45, 47, 85, 93, 94, 136,

139, 394
algorithm, 40

SINE, 417, 419
single

-linkage clustering, 273
-nucleotide polymorphism, 12, 381,

386
crossover, 377
linkage, 273

singleton, 111, 112, 114
sink, 487
sister chromatid, 8
site, 252

distribution, 71
SIV, see simian immunodeficiency virus
size, 316
size selection, 110
skip, 486
slab gel, 202
slippage, 209
Slow Shuffle, 425
small sample correction, 245, 246
Smith-Birnstiel restriction mapping,

200
Smith-Waterman, 189

alignment, 504
local alignment, 163, 173

SNP, see single nucleotide polymor-
phism

solve, 489
somatic cells, 7, 8
source, 492
space efficiency, 104, 106
speciation, 18, 368

species
tree, 361, 362

specificity, 189, 252
splice junction, 435
splicing, 15, 435
spot intensity, 304
spotted microarray, 35, 293, 301
spread, 43
stable, 278
standard

deviation, 44, 73, 271, 307, 491
normal distribution, 77, 78, 80, 82, 94

standardize, 80, 316
stationary, 355

base frequencies, 359
distribution, 54

statistic, 308
statistical significance, 94
STC, see sequence-tagged connector
steady-state, 397
Stirling’s approximation, 158
stochastic

model, 353, 392
process, 353

stop codon, 24
stratification, 384
stratified, 374
string, 70, 144, 155
structural proteins, 19
STS, see sequence-tagged site
Student’s t statistic, 308
subpopulation, 368, 374, 375, 385
subsequence library, 298
substitution, 145, 146, 149

matrix, 183
subtree, 359
success, 72, 81
sum, 91, 493
supervised, 313

learning, 231
surprise, 82, 181
SWISS-PROT, 184
Swiss-Prot, 503
symmetry, 269
synonymous change, 266
syntactical error, 493
syntenic, 420
synteny

block, 137

Index 533

syntenic block, 11, 121, 122, 136
syntenic segment, 11, 12

systematics, 448
systems biology, 332

tag SNP, 386
tagging

enzyme, 294, 296
restriction endonuclease, 294

tandem
mass spectrometry, 329
repeat, 370

target, 145, 167, 298, 329
TATA

-less promoter, 435
box, 435

taxa, 263, 337, 367
taxon, 263, 367
technical replication, 310
telomere, 123

telomeric repeat, 416
template, 196

strand, 15, 26
termination site, 435
tertiary structure, 22, 24
text editor, 244
The Institute for Genomic Research,

503
third position, 361
three-point condition, 350
threshold, 170, 177, 180

cycle, 320
TIGR, see The Institute for Genomic

Research
TIGR assembler, 210
time, 353

course, 318
efficiency, 104

time to most recent common ancestor,
398

tissue culture, 6
title, 318, 496
Tm, 299
TMRCA, 398, 399, 401, 402
TOGA, see total gene expression

analysis
top-down, 195, 212
total gene expression analysis, 35, 293,

295

t′, 308
tracing back, 151
training set, 233, 237, 252, 254
transcript, 327

abundance, 292
transcription, 19

factor, 251, 324
binding site, 252

reverse, 19
transcriptional start site, 435

transcriptome, 35, 292, 327
TRANSFAC database, 237
transition, 161

matrix, 52, 54, 55, 242, 243, 246, 396
translation, 5, 19

translational terminators, 15
translocation, 13, 121, 125, 127, 145
transposable element, 13, 380, 411, 416,

417, 419
transversion, 161
traveling salesman problem, 105
treatment, 308, 330
tree, 2, 162, 343, 350

building, 361
construction, 342
gene, 361, 362
species, 361, 362
topology, 359

triangle inequality, 269
trinucleotide, 24
triplet, 24
tRNA, 19
true positive, 189, 309
TSP, see traveling salesman problem
twofold rotational symmetry, 229
type, 496
Type I error, 252
Type II

error, 252
restriction endonuclease, 70

Type IIS endonuclease, 296

U-unitig, 219
ultrametric

condition, 352
tree, 350, 351

unbiased, 404
undebug, 493
ungapped extension, 180

534 Index

uniform
distribution, 77
random number, 46

uniformly distributed, 45
union, 51, 349
unique sequence, 215, 219, 416
unitig, 217, 218
universal sequencing primer, 197
unlinked, 379
unrooted, 344
unsupervised, 314

approach, 229
unweighted pair group method with

arithmetic means, 351
up-regulated gene, 304
UPGMA, see unweighted pair group

method with arithmetic means
uracil, 21

validation set, 233, 237
Var, see variance
var, 316
variable number of tandem repeats, 99
variable number tandem repeats, 380
variance, 43, 45, 73, 310, 312, 491
variation, 9
vector component, 321
vertex, 129, 219, 343
VNTR, see variable number of tandem

repeats

Watterson estimator, 404
weighted

least squares, 351
parsimony, 350

WGS, see whole-genome shotgun
while, 494
whole-genome

duplication, 425, 428
shotgun, 196, 212, 213

assembly, 422
sequence assembly, 168
sequencing, 214, 425

Whole-genome Assembler, 210
window, 233
within

-cluster sum of squares, 285, 317
-genome

analysis, 448
comparison, 411, 420

-ss, 279, 285
withinss, 316
word, 38

content, 169
count, 91, 96
decomposition, 96
frequency, 38
list, 170, 172
overlap, 93, 96
rare, 171

workspace, 486
worst-case permutation, 129
Wright-Fisher model, 392, 393, 397
write.table, 487

X2, 49
xlab, 496
xlim, 496

YAC, see yeast artificial chromosome
YAC library, 195
yeast artificial chromosome, 68, 108
Yersinia, 100, 414

pestis, 414
ylab, 496
ylim, 496
Y. pestis, see Yersinia pestis

Zea mays, 4
zygote, 8

	1 Biology in a Nutshell
	2 Words
	3 Word Distributions and Occurrences
	4 Physical Mapping of DNA
	5 Genome Rearrangements
	6 Sequence Alignment
	7 Rapid Alignment Methods: FASTA and BLAST
	8 DNA Sequence Assembly

