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Section 1
Introduction

Chapter 1
What are Gene Regulatory NETWOIKS? .........coiiiiiiiie ettt e 1
Alberto de la Fuente, CRS4 Bioinformatica, Italy

This book deals with algorithms for inferring and analyzing Gene Regulatory Networks using mainly
gene expression data. What precisely are the Gene Regulatory Networks that are inferred by such algo-
rithms from this type of data? There is still much confusion in the current literature and it is important
to start a book about computational methods for Gene Regulatory Networks with a definition that is as
unambiguous as possible. In this chapter, I provide a definition and try to clearly explain what Gene
Regulatory Networks are in terms of the underlying biochemical processes. To do the latter in a formal
way, | will use a linear approximation to the in general non-linear kinetics underlying interactions in
biochemical systems and show how a biochemical system can be ‘condensed’ into a more compact de-
scription, that is Gene Regulatory Networks. Important differences between the defined Gene Regulatory
Networks and other network models for gene regulation, that is Transcriptional Regulatory Networks
and Co-Expression Networks, will be highlighted.

Chapter 2

INEFOAUCTION £0 GRINS.....oeiitii ittt e e et e e st e e st e e st it e e sat e e sateesabessabesesbaeesraeesraeeas 28
Ugo Ala, Universita di Torino, Italy
Christian Damasco, Universita di Torino, Italy

The post-genomic era shifted the main biological focus from “single-gene’ to ‘genome-wide’ approaches.
High throughput data available from new technologies allowed to get inside main features of gene
expression and its regulation and, at the same time, to discover a more complex level of organization.
Analysis of this complexity demonstrated the existence of nonrandom and well-defined structures that



determine a network of interactions. In the first part of the chapter, we present a functional introduc-
tion to mechanisms involved in genes expression regulation, an overview of network theory, and main
technologies developed in last years to analyze biological processes are discussed. In the second part,
we review genes regulatory networks and their importance in system biology.

Section 2
Network Inference

Chapter 3

Bayesian Networks for Modeling and Inferring Gene Regulatory Networks ...........c.ccocoeviiiiiicnnn. 57
Sebastian Bauer, Charité Universitatsmedizin Berlin, Germany
Peter Robinson, Charité Universitatsmedizin Berlin, Germany

Bayesian networks have become a commonly used tool for inferring structure of gene regulatory networks
from gene expression data. In this framework, genes are mapped to nodes of a graph, and Bayesian
techniques are used to determine a set of edges that best explain the data, that is to infer the underlying
structure of the network. This chapter begins with an explanation of the mathematical framework of
Bayesian networks in the context of reverse engineering of genetic networks. The second part of this
review discusses a number of variations upon the basic methodology, including analysis of discrete vs.
continuous data or static vs. dynamic Bayesian networks, different methods of exploring the potentially
huge search space of network structures, and the use of priors to improve the prediction performance.
This review concludes with a discussion of methods for evaluating the performance of network structure
inference algorithms.

Chapter 4

Inferring Gene Regulatory Networks from Genetical Genomics Data..........c.ccccevvvvevieveieiievic e, 79
Bing Liu, Monsanto Co., USA
Ina Hoeschele, Virginia Polytechnic Institute and State University, USA
Alberto de la Fuente, CRS4 Bioinformatica, Italy

In this chapter, we address techniques that can be applied to establish causality between the various nodes
in a GRN. These techniques are based on the joint analysis of DNA marker and expression as well as
DNA sequence information. In addition to Bayesian networks, another modeling approach, statistical
equation modeling, is discussed.

Chapter 5
Inferring Genetic Regulatory Interactions with Bayesian Logic-Based Model..............ccccoviviinenns 108
Svetlana Bulashevska, German Cancer Research Centre (DKFZ), Germany

This chapter describes the model of genetic regulatory interactions. The model has a Boolean logic se-
mantics representing the cooperative influence of regulators (activators and inhibitors) on the expression
of a gene. The model is a probabilistic one, hence allowing for the statistical learning to infer the genetic
interactions from microarray gene expression data. Bayesian approach to model inference is employed



enabling flexible definitions of a priori probability distributions of the model parameters. Markov Chain
Monte Carlo (MCMC) simulation technique Gibbs sampling is used to facilitate Bayesian inference.
The problem of identifying actual regulators of a gene from a high number of potential regulators is
considered as a Bayesian variable selection task. Strategies for the definition of parameters reducing the
parameter space and efficient MCMC sampling methods are the matter of the current research.

Chapter 6

A Bayes Regularized Ordinary Differential Equation Model for the Inference

Of Gene RegUIALOrY NEIWOTKS .......c.viiiieiie ettt sttt et sbe e e b be s 139
Nicole Radde, University of Leipzig, Germany
Lars Kaderali, University of Heidelberg, Germany

Differential equation models provide a detailed, quantitative description of transcription regulatory
networks. However, due to the large number of model parameters, they are usually applicable to small
networks only, with at most a few dozen genes. Moreover, they are not well suited to deal with noisy
data. In this chapter, we show how to circumvent these limitations by integrating an ordinary differen-
tial equation model into a stochastic framework. The resulting model is then embedded into a Bayesian
learning approach. We integrate the-biologically motivated-expectation of sparse connectivity in the
network into the inference process using a specifically defined prior distribution on model parameters.
The approach is evaluated on simulated data and a dataset of the transcriptional network governing the
yeast cell cycle.

Section 3
Modeling Methods

Chapter 7
Computational Approaches for Modeling Intrinsic Noise and Delays
iN GenetiC REQUIALOIY NEIWOIKS. .........oiiiiiiieiiit et 169
Manuel Barrio, University of Valladolid, Spain
Kevin Burrage, The University of Oxford, UK
Pamela Burrage, The University of Queensland, Australia
André Leier, ETH Zurich, Switzerland
Tatiana Marquez Lago, ETH Zurich, Switzerland

As noise and delays are intrinsic to biochemical processes, they must be accounted for when dealing
with the most detailed differential equation models of GRNSs. The issue is addressed in this chapter. A
basic Monte Carlo simulation technique to simulate noisy biochemical reactions, as well as a general-
ization to include delays, is described in this chapter. The chapter follows this with a study into ‘coarse
grain’ approaches, which reduce computational costs when dealing with larger biochemical systems.
The methodology is demonstrated with a few case studies.



Chapter 8

Modeling Gene Regulatory Networks with Delayed Stochastic Dynamics..........ccocceevvviverevennnane 198
Andre S. Ribeiro, Tampere University of Technology, Finland
John J. Grefenstette, George Mason University, USA
Stuart A. Kauffman, University of Calgary, Canada

We present a recently developed modeling strategy of gene regulatory networks (GRN) that uses the
delayed stochastic simulation algorithm to drive its dynamics. First, we present experimental evidence
that led us to use this strategy. Next, we describe the stochastic simulation algorithm (SSA), and the
delayed SSA, able to simulate time-delayed events. We then present a model of single gene expression.
From this, we present the general modeling strategy of GRN. Specific applications of the approach are
presented, beginning with the model of single gene expression which mimics a recent experimental
measurement of gene expression at single-protein level, to validate our modeling strategy. We also
model a toggle switch with realistic noise and delays, used in cells as differentiation pathway switches.
We show that its dynamics differs from previous modeling strategies predictions. As a final example,
we model the P53-Mdm2 feedback loop, whose malfunction is associated to 50% of cancers, and can
induce cells apoptosis. In the end, we briefly discuss some issues in modeling the evolution of GRNs,
and outline some directions for further research.

Chapter 9

Nonlinear Stochastic Differential Equations Method for Reverse Engineering

Of Gene ReguIAtory NETWOTK ..o 219
Adriana Climescu-Haulica, Université Joseph Fourier, France
Michelle Quirk, Los Alamos National Laboratory, USA

In this chapter we present a method to infer the structure of the gene regulatory network that takes in
account both the kinetic molecular interactions and the randomness of data. The dynamics of the gene
expression level are fitted via a nonlinear stochastic differential equation (SDE) model. The drift term
of the equation contains the transcription rate related to the architecture of the local regulatory network.
The statistical analysis of data combines maximum likelihood principle with Akaike Information Criteria
(AIC) through a Forward Selection Strategy to yield a set of specific regulators and their contribution.
Tested with expression data concerning the cell cycle for S. Cerevisiae and embryogenesis for the D.
melanogaster, this method provides a framework for the reverse engineering of various gene regulatory
networks.

Chapter 10

Modelling Gene Regulatory Networks Using Computational Intelligence Techniques.................... 244
Ramesh Ram, Monash University, Australia
Madhu Chetty, Monash University, Australia

This chapter presents modelling gene regulatory networks (GRNS) using probabilistic causal model and the
guided genetic algorithm. The problem of modelling is explained from both a biological and computational
perspective. Further, a comprehensive methodology for developing a GRN model is presented where the
application of computation intelligence (CI) techniques can be seen to be significantly important in each



phase of modelling. An illustrative example of the causal model for GRN modelling is also included and
applied to model the yeast cell cycle dataset. The results obtained are compared for providing biological
relevance to the findings which thereby underpins the CI based modelling techniques.

Section 4
Structure and Parameter Learning

Chapter 11

A Synthesis Method of Gene Regulatory Networks based on Gene Expression

DY NETWOIK LEAIMING ...ttt bbbttt 266
Yoshihiro Mori, Kyoto Institute of Technology, Japan
Yasuaki Kuroe, Kyoto Institute of Technology, Japan

Investigating gene regulatory networks is important to understand mechanisms of cellular functions.
Recently, the synthesis of gene regulatory networks having desired functions has become of interest to
many researchers because it is a complementary approach to understanding gene regulatory networks,
and it could be the first step in controlling living cells. In this chapter, we discuss a synthesis problem
in gene regulatory networks by network learning. The problem is to determine parameters of a gene
regulatory network such that it possesses given gene expression pattern sequences as desired properties.
We also discuss a controller synthesis method of gene regulatory networks. Some experiments illustrate
the performance of this method.

Chapter 12
Structural Learning of Genetic Regulatory Networks Based on Prior Biological Knowledge
and Microarray Gene EXpPression MEASUIEMENTS .........cereireieirinierieieese st 289
Yang Dai, University of Illinois at Chicago, USA
Eyad Almasri, University of Illinois at Chicago, USA
Peter Larsen, University of Illinois at Chicago, USA
Guanrao Chen, University of lllinois at Chicago, USA

The reconstruction of genetic regulatory networks from microarray gene expression measurements has
been a challenging problem in bioinformatics. Various methods have been proposed for this problem
including the Bayesian Network (BN) approach. In this chapter we provide a comprehensive survey of
the current development of using structure priors derived from high-throughput experimental results
such as protein-protein interactions, transcription factor binding location data, evolutionary relationships
and literature database in learning regulatory networks.

Chapter 13

Problems for Structure Learning: Aggregation and Computational Complexity ..........cc.cceoveverenenn. 310
Frank Wimberly, Carnegie Mellon University (retired), USA
David Danks, Carnegie Mellon University and Institute for Human & Machine Cognition, USA
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Machine learning methods to find graphical models of genetic regulatory networks from cDNA microar-
ray data have become increasingly popular in recent years. We provide three reasons to question the
reliability of such methods: (1) a major theoretical challenge to any method using conditional indepen-
dence relations; (2) a simulation study using realistic data that confirms the importance of the theoretical
challenge; and (3) an analysis of the computational complexity of algorithms that avoid this theoretical
challenge. We have no proof that one cannot possibly learn the structure of a genetic regulatory network
from microarray data alone, nor do we think that such a proof is likely. However, the combination of (i)
fundamental challenges from theory, (ii) practical evidence that those challenges arise in realistic data,
and (iii) the difficulty of avoiding those challenges leads us to conclude that it is unlikely that current
microarray technology will ever be successfully applied to this structure learning problem.

Section 5
Analysis & Complexity

Chapter 14
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Constructing computational models of genomic regulation faces several major challenges. While the
advances in technology can help in obtaining more and better quality gene expression data, the com-
plexity of the models that can be inferred from data is often high. This high complexity impedes the
practical applications of such models, especially when one is interested in developing intervention
strategies for disease control, for example, preventing tumor cells from entering a proliferative state.
Thus, estimating the complexity of a model and designing strategies for complexity reduction become
crucial in problems such as model selection, construction of tractable subnetwork models, and control
of the dynamical behavior of the model. In this chapter, we discuss these issues in the setting of Boolean
networks and probabilistic Boolean networks—two important classes of network models for genomic
regulatory networks.
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With advances in high throughput methods of data collection for gene regulatory networks, we are now
in a position to face the challenge of elucidating how these genes coupled with environmental stimuli
orchestrate the regulation of cell-level behaviors. Understanding the behavior of such complex systems
is likely impossible to achieve with wet-lab experiments alone due to the amount and complexity of the
data being collected. Therefore, it is essential to integrate the experimental work with efficient and ac-
curate computational methods for analysis. Unfortunately, such analysis is complicated not only by the
sheer size of the models of interest but also by the fact that gene regulatory networks often involve small



molecular counts making discrete and stochastic analysis necessary. To address this problem, this chapter
presents a model abstraction methodology which systematically performs various model abstractions to
reduce the complexity of computational biochemical models resulting in substantial improvements in
analysis time with limited loss in accuracy.
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A better understanding of the behavior of a cell, as a system, depends on our ability to model and under-
stand the complex regulatory mechanisms that control gene expression. High level, qualitative models,
of gene regulatory networks can be used to analyze and characterize the behavior of complex systems,
and to provide important insights on the behavior of these systems. In this chapter, we describe a num-
ber of additional functionalities that, when supported by a symbolic model checker, make it possible
to answer important questions about the nature of the state spaces of gene regulatory networks, such as
the nature and size of attractors, and the characteristics of the basins of attraction. We illustrate the type
of analysis that can be performed by applying an improved model checker to two well studied gene
regulatory models, the network that controls the cell cycle in the yeast S. cerevisiae, and the network
that regulates formation of the Dorsal-Ventral boundary in D. melanogaster. The results show that the
insights provided by the analysis can be used to understand and improve the models, and to formulate
hypotheses that are biologically relevant and that can be confirmed experimentally.
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The expression of genes depends on the physical structure of DNA, how the function of DNA is regu-
lated by the transcription factors expressed by other genes, RNA regulation such as that through RNA
interference, and protein signals mediated by protein-protein interaction networks. We illustrate different
approaches to determining information about the network of gene regulation from experimental data.
First, we show that we can use statistical information of the mRNA expression values to determine
the global topological properties of the gene regulatory network. Second, we show that analyzing the
changes in expression due to mutations or different environmental conditions can give us information
on the relative importance of the different mechanisms involved in gene regulation.
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This chapter relaxes the requirements in random Boolean network models, that genes operate in synchrony
and that their connectivity remain fixed. These modifications, it is argued, enable Boolean networks to
better capture some characteristics present in gene expression, such as activation sequences in genes
and periodic attractors.
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Heterogenous Data

Chapter 19
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There exist many heterogeneous data sources that are closely related to gene regulatory networks. These
data sources provide rich information for depicting complex biological processes at different levels and
from different aspects. Here, we introduce a linear programming framework to infer the gene regulatory
networks. Within this framework, we extensively integrate the available information derived from mul-
tiple time-course expression datasets, ChlP-chip data, regulatory motif-binding patterns, protein-protein
interaction data, protein-small molecule interaction data, and documented regulatory relationships in
literature and databases. Results on synthetic and real experimental data both demonstrate that the linear
programming framework allows us to recover gene regulations in a more robust and reliable manner.
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In this chapter we outline a methodology to reverse engineer GRNs from various data sources within
an ODE framework. The methodology is generally applicable and is suitable to handle the broad error



distribution present in microarrays. The main effort of this chapter is the exploration of a fully data
driven approach to the integration problem in a “soft evidence” based way. Integration is here seen as
the process of incorporation of uncertain a priori knowledge and is therefore only relied upon if it lowers
the prediction error. An efficient implementation is carried out by a Linear Programming formulation.
This LP problem is solved repeatedly with small modifications, from which we can benefit by restarting
the primal simplex method from nearby solutions, which enables a computational efficient execution.
We perform a case study for data from the yeast cell cycle, where all verified genes are putative regula-
tors and the a priori knowledge consists of several types of binding data, text-mining, and annotation
knowledge.
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In this chapter, we describe the use of evolutionary methods for the in silico generation of artificial
gene regulatory networks (GRNs). These usually serve as models for biological networks and can be
used for enhancing analysis methods in biology. We clarify our motivation in adopting this strategy by
showing the importance of detailed knowledge of all processes, especially the regulatory dynamics of
interactions undertaken during gene expression. To illustrate how such a methodology works, two dif-
ferent approaches to the evolution of small-scale GRNs with specified functions, are briefly reviewed
and discussed. Thereafter, we present an approach to evolve medium sized GRNs with the ability to
produce stable multicellular growth. The computational method employed allows for a detailed analysis
of the dynamics of the GRNSs as well as their evolution. We have observed the emergence of negative
feedback during the evolutionary process, and we suggest its implication to the mutational robustness
of the regulatory network which is further supported by evidence observed in additional experiments.
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In this chapter, we propose a new model for Gene Regulatory Networks (GRN). The model incorporates
more biological detail than other approaches, and is based on an artificial genome from which several
products like genes, mMRNA, miRNA, noncoding RNA, and proteins are extracted and connected, giving
rise to a heterogeneous directed graph. We study the dynamics of the networks thus obtained, along with
their topology (using degree distributions). Some considerations are made about the biological meaning
of the outcome of the simulations.
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In this chapter, a computational formalism for modeling and reasoning about the control of biological
processes is explored. It comprises five main sections: a survey of related work, a background on methods
(including discussion of the Wnt5a gene regulatory network, the coefficient of determination method for
deriving gene regulatory network models, and the partially observable Markov decision process model
and its role in modeling intervention planning problems), a main section on the approach taken (including
algorithms for solving the intervention planning problems and techniques for representing components
of the problems), an empirical evaluation of the intervention planning algorithms on synthetic and the
Whnt5a gene regulatory networks, and a conclusion and future directions section. The techniques de-
scribed present a promising avenue of future research in reasoning algorithms for improved scalability
in planning interventions in gene regulatory networks.
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Gene regulation plays a central role in the development and functioning of living organisms. Develop-
ing a deeper qualitative and quantitative understanding of gene regulation is an important scientific
challenge. The switch is commonly used as a paradigm of gene regulation. Verbal descriptions of the
structure and functioning of the switch have appeared in biological textbooks. We apply fuzzy modeling
to transform one such verbal description into a well-defined mathematical model. The resulting model is
a piecewise-quadratic second-order differential equation. It demonstrates functional fidelity with known
results while being simple enough to allow a rather detailed analysis. Properties such as the number,
location, and domain of attraction of equilibrium points can be studied analytically. Furthermore, the
model provides a rigorous explanation for the so-called stability puzzle of the switch.

Chapter 25
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In this chapter, modeling of GRNSs using Petri net theory is considered. It aims at providing a conceptual
understanding of Petri nets to enable the reader to explore GRNs applying Petri net modeling and analysis
techniques. Starting with an overview on modeling biochemical networks using Petri nets, the state-of-
the-art with focus on GRNSs is described. Other modeling techniques, for example, hybrid Petri nets are



discussed. Basic concepts of Petri net theory are introduced involving special analysis techniques for
modeling biochemical systems, for example, MCT-sets, T-clusters, and Mauritius maps. To illustrate these
Petri net concepts, a more complex case study—the gene regulation in Duchenne Muscular Dystrophy—
is explained in detail, considering the biological background and the interpretation of analysis results.
Considering both, advantages and disadvantages, the chapter demonstrates the usefulness of Petri net
modeling, in particular for GRNSs.
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Preface

For decades, molecular geneticists have been intensively studying the individual genes of various
organisms and how these genes influence their phenotypic behavior. Unfortunately, it is usually very
difficult, if not impossible, to isolate specific genetic signals for any arbitrary behavioral aspect or trait.
The problem is analogous to that of finding a grass skirt in a very large haystack. Even if one locates a
plausible-looking bit of grass, until its connections are laboriously traced out, one cannot know if it is
part of the skirt or, as is much more likely, just an unrelated piece of straw. As an example, there are over
100 genes that are known to affect flowering time in the model plant Arabidopsis thaliana. Together, the
interactions of these genes comprise acomplex signal processing network that integrates multiple internal
and external cues to make one of the most critical decisions in a plant’s life cycle-when to reproduce.
Yet, all together, these genes comprise only 0.4% of the species’ complete gene network.

Recent advances in molecular genetic technologies are beginning to shed light on the complex in-
terplay between genes that elicit phenotypic behavior characteristic of any given organism. Even so,
unraveling the specific details about how these genetic pathways interact to regulate development, shape
life histories, and respond to environmental cues remains a very daunting task.

A wide variety of models depicting gene-gene interactions, which are commonly referred to as gene
regulatory networks (GRNS), have been proposed in recent literature. While a GRN must be able to
mimic experimentally observed behavior, reproducing complex behaviors accurately may entail com-
putationally prohibitive costs. Under these circumstances, model simplicity is an important trade-off for
functional fidelity. Consequently, modeling approaches taken are wide and disparate. Machine learning
based GRN models are specifically meant for simplicity and/or algorithmic tractability. They rely heavily
on computational learning theory, and usually are used to simulate qualitatively, phenotypic behavior
of GRNs. We refer to these as high level models. At the other end are more detailed models that take
into account the underlying biochemical processes. These models are capable of reproducing realistic
gene expressions with great fidelity.

This book is a collection of articles on the various computational tools that are available to decode,
model, and analyze GRNSs. It is conveniently organized into separate sections, beginning with an in-
troductory section. Each section contains a handful of chapters written by researchers in the field that
focus on a specific computational approach.

SECTION 1: INTRODUCTION

The first section contains two introductory chapters on GRNs. Chapter 1 (“What are Gene Regulatory
Networks™) provides a conceptual framework for GRNSs. It shows how the complex nonlinear biochemi-
cal processes can be linearized and portrayed as simple graphical models. The nodes of such a network
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are either individual genes or groups of functionally related ones. The network can have both directed
as well as undirected edges. The chapter also highlights the differences between such networks and two
other similar structures, transcriptional regulatory networks and co-expression networks.

The next chapter in this section (Chapter 2) is entitled “Introduction to Gene Regulatory Networks”
and has a slightly different focus. While introducing the GRN as a graph, it also details further biologi-
cal insights into the various underlying biochemical processes within GRNs. The chapter also surveys
recent advances in array-based technologies that are available to study such processes. Only minimum
background in advanced mathematics is assumed here, making the chapter very useful to biologists
interested in this subject.

SECTION 2: NETWORK INFERENCE

While the previous section introduces GRNSs as graphical structures, the chapters in this section focus
on systems identification; they shed light on how GRNs can be reverse engineered from experimental
data. While simply arranging genes into various functional units may be accomplished easily through
simple statistical means, depicting causality between these units is more challenging.

To varying degrees, all four chapters in this section deal with Bayesian network approach. Bayes-
ian networks, a marriage between graph theory and probability theory, are a high level abstraction of
GRNSs. An introductory, yet thorough mathematical description of Bayesian networks in provided in
Chapter 3 (“Bayesian Networks for Modeling and Inferring Gene Regulatory Networks”). This chapter
considers both discrete probabilities as well as continuous probability distributions. Dynamic Bayesian
networks are taken up briefly to show how cyclic graphs can be modeled. The latter half of the chapter
casts the tasks of discovering the structure of the Bayesian network and estimating the parameters of its
probability distribution(s) as two aspects of learning. Lastly, it addresses issues relating to assessing the
performance of inferred networks.

Chapter 4 (“Inferring Gene Regulatory Networks from Genetical Genomics Data””) addresses techniques
that can be applied to establish causality between the various nodes ina GRN. These techniques are based
on the joint analysis of DNA marker and expression as well as DNA sequence information. In addition
to Bayesian networks, another modeling approach, statistical equation modeling, is discussed.

Boolean networks are a GRN modeling approach where each gene is associated with a simple logical
function. Chapter 5 (“Inferring Genetic Regulatory Interactions with Bayesian Logic-Based Model”)
combines this modeling approach with Bayesian networks. Using simple Boolean semantics to depict
underlying interactions among gene products allows for the analysis of larger networks, while the Bayes-
ian framework helps penalize overly complex models. As examples, results of applying this method to
data from S. cerevisiae and to Plasmodium falciparum are provided.

Depicting the dynamic interactions of genes within a network as a set of ordinary differential equa-
tions helps preserve biochemical fidelity. Unfortunately, this detailed approach is too complex to be
extended beyond a few genes. Chapter 6 (“A Bayes Regularized Ordinary Differential Equation Model
for the Inference of Gene Regulatory Networks”), makes use of the stochastic nature of GRNs to inte-
grate the differential equation models within a probabilistic network. Bayesian learning is applied to
determine the parameters of the differential equation model. The effectiveness of this overall approach
is demonstrated by applying it to the yeast cell.
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SECTION 3: MODELING METHODS

As noise and delays are intrinsic to biochemical processes, they must be accounted for when dealing
with the most detailed differential equation models of GRNs. This issue is addressed in Chapter 7
(“Computational Approaches for Modeling Intrinsic Noise and Delays in Genetic Regulatory Networks”)
and in the following one, Chapter 8 (“Modeling Gene Regulatory Networks with Delayed Stochastic
Dynamics”).

A basic Monte Carlo simulation technique to simulate noisy biochemical reactions, as well as a
generalization to include delays, are described in both chapters, although to different ends. Chapter 7
follows this with a study into ‘coarse grain’ approaches, which reduce computational costs when deal-
ing with larger biochemical systems. The methodology is demonstrated with a few case studies. In
contrast, Chapter 8 discusses simulation studies with single genes as well as simple networks of genes.
It concludes with a genetic algorithm® based simulation to investigate how simple GRNSs evolve.

Chapter 9 (“Nonlinear Stochastic Differential Equations Method for Reverse Engineering of Gene
Regulatory Networks™) is a study on how structures of GRNs can be obtained from expression data. It
uses stochastic differential equation models, where noise is depicted as a Brownian process. The authors
show how regulators for genes are selected using heuristics based on statistical and information theoretic
principles, and demonstrate this concept with a few case studies.

The last chapter in this section, Chapter 10 (“Modelling Gene Regulatory Networks with Computa-
tional Intelligence Techniques”) introduces computational intelligence techniques in GRNs with a focus
on genetic algorithms. The authors propose the guided genetic algorithm as an optimization method
for causal modeling of GRNs. Case studies involving both simulated data as well as real yeast data are
described to show how their approach works.

SECTION 4: STRUCTURE AND PARAMETER LEARNING

This section contains a set of chapters that are most directly related to algorithmic approaches for learning
structures and parameters of GRNs. It begins with Chapter 11 (“A Synthesis Method of Gene Regulatory
Networks based on Gene Expression by Networking Learning”), which addresses how GRNs can be
modeled to produce oscillatory behavior. This is an important problem as oscillations such as circadian
rhythm are routinely observed in gene expression patterns. The chapter proposes a recurrent neural
network modeling approach to derive networks of low complexity that can produce desired oscillatory
sequences.

Chapter 12 (“Structural Learning of Genetic Regulatory Networks Based on Prior Biological Knowl-
edge and Microarray Gene Expression Measurements™) is a survey of current methods on Bayesian
network models of GRNs. It focuses on structure priors derived from experimental results such as
protein-protein interactions, transcription factor binding locations, evolutionary relationships as well
as existing literature.

Thefollowing chapter, Chapter 13 (“Problemsfor Structure Learning: Aggregation and Computational
Complexity”) offers a critique on current approaches to inferring model structure using standard machine
learning techniques. The authors identify three specific factors in support of their argument: that the
methods reported in the literature make use of synthetic as opposed to real data, that they claim success
when the actual gene network structure is not known, and that only isolated successes are published.
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SECTION 5: ANALYSIS AND COMPLEXITY

Large, heterogeneous datasets arising from a variety of experiments, intricacies involved at various
stages of the modeling process, as well as the intrinsically complex nature of the genetic interactions
within the organisms themselves—shaped through millenia of evolution—all contribute to models that
are often difficult to analyze and comprehend. A collection of articles that address this issue is included
in this section.

Chapter 14 (“Complexity of the BN and the PBN Models of GRNs and Mappings for Complexity
Reduction”) is intended to provide a generic framework for model complexity reduction in Boolean and
probabilistic Boolean networks. Statistical and information theoretic views of complexity are described.
Approaches to map larger GRNs into smaller, more tractable ones, while preserving the overall dynami-
cal behavior, are considered within this scheme.

Chapter 15 (“Abstraction Methods for Analysis of Gene Regulatory Networks”) also addresses the
issue of reducing the complexity in GRNs. It details steps that can be taken to merge similar reactions
and eliminate insignificant ones from large-scale models of biochemical reactions. Using these simpli-
fications, models based on chemical kinetics can be abstracted into higher level ones called finite state
systems.

Chapter 16 (“Improved Model Checking Techniques for State Space Analysis of Gene Regulatory
Networks”) describes a software tool that applies model checking—a technique used to analyze computer
programs—to discrete GRN models. Using this technique, steady state characteristics of the models can
be examined. Two case studies, the gene network for cell cycle of yeast, as well as that for wing forma-
tion in D. melanogaster, illustrate the effectiveness of this technique.

Chapter 17 (“Determining the Properties of Gene Regulatory Networks from Expression Data”)
shows how topological properties of GRNSs can be applied to the practical analysis of experimental gene
expression data. Using examples that apply this approach, the authors argue that there is much more to
regulation between genes than just transcription factors.

Chapter 18 (“Generalized Boolean Networks: How Spatial and Temporal Choices Influence Their
Dynamics”) relaxes the requirements in random Boolean network models, that genes operate in synchrony
and that their connectivity remain fixed. These modifications, it is argued, enable Boolean networks to
better capture some characteristics present in gene expression, such as activation sequences in genes
and periodic attractors.

SECTION 6: HETEROGENEOUS DATA

Linear programming—a simple technique for the constrained optimization of linear functions—can be
used to synthesize GRNs from multiple data sources, as the next two chapters show.

In Chapter 19 (*A Linear Programming Framework for Inferring Gene Regulatory Network by In-
tegrating Heterogeneous Data™), the authors use linear differential equation models of GRNs to which
matrix decomposition methods and linear programming are applied. Data from heterogeneous sources,
such as documented literature, protein-protein interaction data, and so forth are added as constraints.
Using this formulation, the authors attempt to obtain robust GRN models that are consistent with mul-
tiple datasets.

Chapter 20 (“Integrating Various Data Sources for Improved Quality in Reverse Engineering of Gene
Regulatory Networks”) shows how to reverse engineer large-scale GRNs by integrating various data
sources, such as information gleaned by text mining of published research. Using this prior knowledge as
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soft evidence, a methodology is proposed to obtain GRN models that can account for large error distribu-
tions in microarrays. Simulations with yeast cell data corroborate the effectiveness of this method.

SECTION 7: NETWORK SIMULATION STUDIES

Chapter 21 (“Dynamic Links and Evolutionary History in Simulated Gene Regulatory Networks”) de-
scribes computational studies on the evolution of GRNs. Using evolutionary strategies, an algorithmic
approach similar to genetic algorithms, the authors are able to simulate the evolution of GRNs that
produce stable multicellular growth. They observe that the evolutionary process favors the appearance
of negative feedback in the evolved networks. They hypothesize that this is because negative feedback
imparts the network with robustness to potentially deleterious mutations.

A new GRN model that incorporates greater biological detail than traditional methods is outlined in
the other simulation study in this section (Chapter 22 “A Model for a Heterogeneous Genetic Network”).
The authors report computer experiments to generate GRNs using this biologically-motivated approach.
They examine the topological features and dynamic behaviors of models obtained in this manner, and
provide arguments that such models possess features that correlate well with biological observations.

SECTION 8: OTHER STUDIES

One of the purposes of GRNs is to model cellular dynamics, which are usually characterized by stable
attractors. In this context, planned external interventions to redirect these networks from abnormal
states (as in with the onset of cancer) to more regular ones is important for many applications, such as
prescribing effective drugs. In Chapter 23 (“Planning Interventions for Gene Regulatory Networks as
Partially Observable Markov Decision Processes™), this intervention problem is modeled as a Markov
decision process. Two well known algorithms borrowed for artificial intelligence are proposed to solve
the problem.

There are two modes of propagation of a bacterial virus known as the A phage: direct replication
and integration with the host bacterium. The decision concerning which mode to adopt is controlled
by a simple GRN called the A switch. Chapter 24 “Mathematical Modeling of the & Switch: A Fuzzy
Logic Approach” uses fuzzy logic to model the switch, making it tractable to mathematical treatment.
Using this approach, the chapter suggests explanations for certain behavioral aspects of the A switch,
particularly how the bacterium switches to the direct replication mode of transmission when DNA dam-
age occurs in the host.

Chapter 25, “Petri Nets and GRN Models,” introduces Petri nets, a graphical modeling approach
for modeling GRNSs. An introduction to Petri nets as well as related techniques useful in modeling bio-
chemical processes is provided. The application of this approach for the gene regulation in Duchenne
muscular dystrophy (DMD) is taken up. An analysis of the results sheds lights on the advantages and
disadvantages of the method.

CONCLUSION

This book provides a bird’s eye view of the vast range of computational methods used to model GRNs.
It contains introductory material and surveys, as well as articles describing in-depth research in various
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aspects of GRN modeling. The editors expect it to be useful to researchers in a variety of ways. It can
provide a comprehensive overview of artificial intelligence approaches for learning and optimization and
their use in gene networks to biologists involved in genetic research. It can assist computer science and
artificial intelligence theorists in understanding how their methodologies can be applied to GRN model-
ing. Although not intended to be a textbook, the book can be of immense use as a reference for students
and classroom instructors. As the book would bridge the gap between computer science and genomic
research communities, it will be very useful to graduate students considering research in this direction.
Finally, this book would be useful to industrial researchers involved in gene regulatory modeling.

Sanjoy Das
Doina Caragea
Stephen M. Welch
William H. Hsu
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GRNSs, but stems from the fact that these algorithms loosely mimic biological evolution.
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Chapter 1

What are Gene Regulatory
Networks?

Alberto de la Fuente
CRS4 Bioinformatica, Italy

ABSTRACT

This book deals with algorithms for inferring and analyzing Gene Regulatory Networks using mainly
gene expression data. What precisely are the Gene Regulatory Networks that are inferred by such algo-
rithms from this type of data? There is still much confusion in the current literature and it is important
to start a book about computational methods for Gene Regulatory Networks with a definition that is as
unambiguous as possible. In this chapter, I provide a definition and try to clearly explain what Gene
Regulatory Networks are in terms of the underlying biochemical processes. To do the latter in a formal
way, | will use a linear approximation to the in general non-linear kinetics underlying interactions in
biochemical systems and show how a biochemical system can be ‘condensed’ into the more compact
description of Gene Regulatory Networks. Important differences between the defined Gene Regulatory
Networks and other network models for gene regulation, such as Transcriptional Regulatory Networks
and Co-Expression Networks, will be highlighted.

INTRODUCTION

Several terms have been used to indicate models of regulatory processes and functional relations between
genes, such as Gene Regulatory Networks, Gene Networks, Gene Expression Networks, Co-Expression
Networks, Genetic Regulatory Networks, Transcriptional Regulatory Networks and Genetic Interaction
Networks. While often used as such in the literature, not all of the above terms are actually synonyms.
I therefore will provide a precise definition of the ‘Gene Regulatory Network’ and point out the essen-
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tial differences with two other network models frequently used for gene regulation, i.e. Transcriptional
Regulatory Networks and Co-Expression Networks.

Before a clear definition of Gene Regulatory Networks can be given, we first need to consider the
abstract definition of a ‘network’, also formally called ‘graph’. The mathematical theory of graphs is
called graph theory (Bollobas, 1998; Erdos & Renyi, 1959), but recent advances in Complex Network
Science go beyond graph theory alone and incorporate ideas from physics, sociology and biology (Barabasi
& Oltvai, 2004; Dorogovtsev & Mendes, 2003; Newman, 2003; Pieroni et al., 2008; Watts & Strogatz,
1998). Three main types of graphs are essential in the context of Gene Regulatory Networks:

An undirected graph G is an ordered pair G: = (V, U) that is subject to the following conditions:

V is a set, whose elements are called vertices or nodes (the later will be used in the remainder of the
chapter) and U is a set of unordered pairs of distinct vertices, called undirected edges, links or lines (‘un-
directed edges’ will be used in the remainder of the chapter). For each edge uij = {vi, vj} the nodes vi and
vj are said to be connected, linked or adjacent to each other. Undirected graphs can be effectively used
to represent the existence of associations or functional relationships (edges) between entities (nodes).

A directed graph or digraph G is an ordered pair G: = (V, D) with V being a set of nodes and D a
set of ordered pairs of vertices, called directed edges, arcs, or arrows (“directed edges’ will be used in
the remainder of the chapter). A directed edge dij = {vi, vj} is considered to be directed from node vi
to vj; vj is called the head or target and vi is called the tail or source; vj is said to be a direct successor,
or child, of vi, and vi is said to be a direct predecessor, or parent, of vj. If a directed path leads from vi
to vj, then vi is said to be an ancestor of vj. Directed graphs can be effectively used to represent causal
influences or communication between the nodes.

A mixed graph G is a graph in which some edges may be directed and some may be undirected. It is
written as an ordered triple G:= (V, U, D) with V, U, and D defined as above. Directed and undirected
graphs are special cases of such mixed graphs. These graphs can thus represent associations as well as
causal influences between the nodes. As we will see, Gene Regulatory Networks can most completely
be represented as mixed graphs.

GENE REGULATORY NETWORKS

| start out by giving a possible formal definition for Gene Regulatory Networks. The remainder of the
chapter is entirely dedicated to provide a detailed explanation of this definition.

Definition — Gene Regulatory Network (GRN): a Gene Regulatory Network is a mixed graph G:=
(V, U, D) over a set V of nodes, corresponding to gene-activities, with unordered pairs U, the undirected
edges, and ordered pairs D, the directed edges. A directed edge dij from vi to vj is present iff a causal
effect runs from node vi to vj and there exist no nodes or subsets of nodes in V that are intermediating
the causal influence (it may be mediated by hidden variables, i.e. variables not in V). An undirected edge
uij between nodes vi and vj is present iff gene-activities vi and vj are associated by other means than a
direct causal influence, and there exist no nodes or subsets of nodes in V that explain that association
(it is caused by a variable hidden to V).

What do the nodes in GRNs precisely represent? The nodes in GRNSs are often said to correspond to
‘genes’. More precisely, they rather correspond to ‘gene-activities’ (‘gene expression levels’ or ‘RNA
concentrations’) as these are the dynamical and quantitative variables that are related by the algorithms
discussed in this book. Of course ‘gene-activity’ could be included in the definition of ‘gene’. Therefore,
there will be no need to adapt the name ‘Gene-activity Regulatory Networks’.
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Figure 1. Abstract depiction of cellular physiology. Reprinted with permission from Elsevier from Bra-
zhnik, P., de la Fuente, A., & Mendes, P. (2002). Gene Networks: How to Put the Function in Genomics.
In Trends in Biotechnology, 20(11), 6.
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What do the edges in GRNs precisely represent? The directed edges in GRNs correspond to causal
influences between gene-activities. These could include regulation of transcription by transcription fac-
tors, but also less intuitive causal effects between genes involving signal-transduction or metabolism
(Figure 2). It is of uttermost importance to realize that when inferring GRNs from gene-expression data
alone, the metabolites and proteins act as hidden variables. These variables mediate communication
between genes, but since they are not included explicitly in the GRNSs, only their effects appear as edges
between the observed variables, i.e. the gene-activities. Only cause-effect relations between observed
guantities can be established. No matter of how many hidden intermediate causal steps are involved
between them, the effects appear to be direct with respect to the set of observed variables. GRNs thus
describe communication between genes implicitly including all regulatory processes inside living cells
and therefore give a complete description of cellular regulation projected on the gene activities. GRNs
are phenomenological, since the mechanisms underlying the edges are generally unknown (yet) and
could correspond to complicated paths through proteins and metabolites. However, GRNs are based
on a dynamic view of gene regulation: the presence of communication is important, while the precise
mechanism of communication is of secondary importance.



What are Gene Regulatory Networks?

Figure 2. The GRN corresponding to the system depicted in figure 1. Reprinted with permission from
Elsevier from Brazhnik, P., de la Fuente, A., & Mendes, P. (2002). Gene Networks: How to Put the
Function in Genomics. In Trends in Biotechnology, 20(11), 6.
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Figure 1 shows a simplified depiction of the biochemistry of living cells conceptually decomposed
in three ‘spaces’ (also referred to as ‘levels’ in this chapter). Influences between gene-activities, with-
out explicitly taking account for the proteins and metabolites, result from a projection of all regulatory
processes on the ‘gene space’ (Brazhnik, de la Fuente & Mendes, 2002).

Figure 2 shows the GRN resulting from the projection. The influence of gene-activity 1 on gene-
activity 2 could have astraightforward interpretation: gene 1 codes for a Transcription factor that regulates
gene 2. But an alternative explanation is also possible: protein 1 could modify the rate of gene 1’'s RNA
degradation. The GRN representation doesn’t distinguish between the mechanisms as it only accounts
for the causal effects: inhibiting a gene’s activity could occur through inhibition of transcription or ac-
tivation of RNA degradation. The effects of gene-activities 3 and 4 are more complicated: their protein
products form a complex and then regulate gene 2. The effect gene 2 on gene 4 involves all three levels.
Note that the edge from gene-activity 2 to gene-activity 4 will never be present in a Transcriptional
Regulatory Network (discussed below), because the protein product of gene 2 does not physically bind
to the promoter region of gene 4 to establish its effect. Nevertheless, as we consider only the causal re-
lations between gene-activities, by all means, this effect is considered direct, as the underlying cascade
of causality is hidden with respect to the observed quantities.

The undirected edges in GRNs represent ‘associations’ (for example ‘correlations’) between gene-
activities, due to effects of confounding hidden variables (such as metabolites and proteins). The undi-
rected edges should not be confused with reciprocal effects, i.e. two nodes that are connected by directed
edges in both directions. In many studies of complex networks, for example in sociological networks (in
which nodes are human individuals and edges represent human interactions such as ‘friendships’), the
undirected edges are interpreted as such. When two human individuals are friends, information flows
in both directions between them (at least it is supposed to be that way!) and in this sense such networks
are thus actually directed networks with reciprocal directed edges between each connected pair. Then
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simply out of convenience they are represented as undirected networks. The undirected edges in GRNs
can not be interpreted this way: these edges represent associations between pairs of gene-activities that
do not correspond to causal influences between the pair. In Genetic Interaction Networks as defined
in (Tong et al., 2004) two genes are linked whenever they result in a lethal phenotype when knock-out
together, while individual knockouts are viable. The undirected edges in these networks thus reflect a
functional similarity between the nodes with respect to a certain phenotype, in contrast to undirected
edges in GRNs, which reflect a dynamic association between gene-activities.

As an example, figure 3 shows a partial GRN recently inferred for the yeast S. cerevisiae (Mancosu
et al., 2008). The network consists of 4239 nodes and 14,723 directed edges. It is partial in the sense
that it lacks the undirected edges that form part of the GRN: only directed edges are presented. The
layout is performed according to the networks ‘bow tie’ structure. Similar structure has been found in
metabolic networks of many organisms (Ma & Zeng, 2003) as well as in the World Wide Web (Broder
et al., 2000).

In the middle of the network there appears a Giant Strongly Connected Component (GSCC) of 339
genes and 1643 edges. In this component all nodes are connected by cycles. A directed cycle is defined
by a directed path starting at a certain node and ending at that same node. The nodes in the IN component
(74 nodes and 78 edges) can reach the GSCC through directed paths, but not vice versa. The nodes in the
OUT component (3268 nodes and 1559 edges) can be reached from the GSCC but not vice versa. ‘Tubes’
contain nodes connecting IN to OUT without going through the GSCC. Nodes which are reached from
the IN and reach the OUT but which do not belong to any of the aforementioned components are called
‘tendrils’ (530 nodes and 197 edges). Many edges interface the components: between IN and GSCC 113
edges, GSCC and OUT 9630 edges and between IN and OUT 769 edges.

It is not possible to identify causality from all types of experimental data. In certain cases the algo-
rithms will only be able to produce an undirected network as a final result in which the undirected edges

Figure 3. The bow-tie structure of the yeast GRN. The picture was obtained by combining several layout
algorithms implemented in Pajek (Batagelj & Mrvar, 2003). Arrows indicate the direction of the flow
of information (taken from (Mancosu et al., 2008)).
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could correspond to direct causal influences. Such networks are not GRNs, but rather Co-Expression
Networks (CENSs).

Co-Expression Networks (CENSs)

Similar to GRNs, CENs are inferred from gene expression data. In CENs two genes are connected
by an undirected edge if their activities have significant association over a series of gene expression
measurements, usually quantified by Pearson correlation (Butte, Tamayo, Slonim, Golub & Kohane,
2000; D’Haeseleer, Liang & Somogyi, 2000), Spearman correlation (D’Haeseleer, Liang & Somogyi,
2000) or Mutual Information (Butte & Kohane, 2000; Steuer, Kurths, Daub, Weise & Selbig, 2002).
Again, it is also important to emphasize the difference between GRNs and CENSs, since the latter has
also been mistakenly called GRNs in the literature by several authors. Gene activities can be correlated
due to different causal relationships 1) direct effects 2) indirect effects (correlation is transitive) and 3)
confounding. Several algorithms have been proposed to eliminate edges corresponding to 2 and 3 (if
the confounding variables are measured), thus resulting in a network which is the undirected version of
the GRN (de la Fuente, Bing, Hoeschele & Mendes, 2004; Schafer & Strimmer, 2005a, 2005b; Veiga,
Vicente, Grivet, de la Fuente & Vasconcelos, 2007; Wille & Buhlmann, 2006; Wille et al., 2004).

Still, a correlation does not imply causation and many of the undirected edges may be due to hidden
confounding factors. In a later section I will explicitly demonstrate how such edges arise. Only gene
expression data obtained through a strategy of ‘gene perturbations’, or other targeted disturbances to the
system, allow for inferring causal relationships. While it has been shown that under certain assumptions it
is possible to infer causality without making experimental interventions (Pearl, 2000; Spirtes, Glymour &
Scheines, 1993), such assumptionsare unfortunately not justified in this context. The strongest assumption
is that there are no hidden variables with confounding effects on the observed variables (Spirtes, Glymour
& Scheines, 1993). Given the fact that gene-activities are generally the only observed quantities in the
data used to infer CENs or GRNs, and that all variables mediating the causal effects between them, i.e.
the proteins and metabolites are hidden, such assumption can not be justified under any circumstance.
Gene perturbations are thus necessary to infer causality and thus GRNs. Such perturbations could be
experimentally created by knocking-out or over-expressing genes (de la Fuente, Brazhnik & Mendes,
2001, 2002; Gardner, di Bernardo, Lorenz & Collins, 2003; Hughes et al., 2000; Mnaimneh et al., 2004;
Wagner, 2001), or as will be discussed in other chapters in this book, also natural occurring genetic
polymorphisms could be used to infer causal relationships between gene-activities (Bing & Hoeschele,
2005; Liu, de la Fuente & Hoeschele, 2008; Zhu et al., 2004) (see also Liu et al. — this book).

Transcriptional Regulatory Networks (TRNs)

As the name already implies, Transcriptional Regulatory Networks (Guelzim, Bottani, Bourgine &
Kepes, 2002; Lee et al., 2002; Luscombe et al., 2004; Shen-Orr, Milo, Mangan & Alon, 2002) only
include gene-regulation through transcription, which as we saw is only a small fraction of mechanisms
by which the communication between gene-activities occurs. TRNs have directed edges between source
and target genes only if it has been experimentally established that the protein product of the source gene
physically binds to the promoter region of the target gene and thus potentially regulates transcription,
using experimental techniques such as the ChIP-Chip (Buck & Lieb, 2004; lyer et al., 2001; Lee et al.,
2002; Lieb, Liu, Botstein & Brown, 2001; Ren et al., 2000). All edges in TRNs are directed and the only
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source nodes are genes coding for Transcription Factors (TFs). TRNs are a mechanistic description of
gene regulation with a clear molecular interpretation, straightforwardly connecting to the paradigm of
‘molecular biology’, while the concept of GRNs considered throughout this book requires one to take
the point of view of ‘systems biology’, i.e. taking a more abstract, but integrated system-wide approach,
rather than collecting sets of molecular relationships. Given that GRNs summarize the whole of cellular
regulation, to gain insight into the global functional and dynamical organization of gene regulation,
GRNs rather than TRNs should be studied.

Can we expect large overlap between experimentally identified GRNs and TRNs of a particular or-
ganism? While intuitively one would think so, I claim this is not necessarily the case for the following
reasons:

1. Noise: First of all, in general there may be mistakes in both networks. GRNs are predominantly
based on gene expression data (Brazhnik, de la Fuente & Mendes, 2002; D’Haeseleer, Liang &
Somogyi, 2000). TRNs are based on predominantly ChlP-Chip data (Harbisonetal., 2004; Leeetal.,
2002). Both gene expression data and ChIP-Chip data are plagued by inaccuracies. Gene expression
data have several sources of error and ChIP-Chip measurements suffer from a-specific binding. A
recent paper showed that TFs bind many sites in the genome; many of which are not believed to be
near coding sequences at all (Li et al., 2008). It was also shown that many genes whose promoters
were bound were not transcribed in response to the binding event (Li et al., 2008). Furthermore,
there is a Multiple Hypothesis Testing (MHT) problem (Storey & Tibshirani, 2003). While many
algorithms for GRN inference employ (or at least try to do so) a formal procedure to deal with
MHT, most TRNs were obtained using arbitrary p-value thresholds (c.f.Storey & Tibshirani, 2003).
Better statistical approaches to obtain TRNs from ChIP-Chip data are in development (Margolin,
Palomero, Ferrando, Califano & Stolovitzky, 2007).

2. Physiologically active regulatory processes: Edges in TRNSs that are not present in GRNs could
be explained as follows: to formulate TRNs, the ChIP-Chip experiments are often performed in-
vitro after cells have been subjected to many different experimental conditions (Harbison et al.,
2004). Thus, the TRN could be expected to nearly completely account for all possible transcrip-
tional regulatory events by the TFs. However, as was shown for the yeast TRN, in each particular
physiological state only subsets of these regulatory events are dynamically active (Luscombe et
al., 2004). Also, in a recent study, the E. coli TRN was compared to a network obtained through
gene expression data measured in many different conditions (Faith et al., 2007). Still, only 10% of
the ‘known’ E. coli transcription regulatory interactions were recovered (Faith et al., 2007), in ac-
cordance with the observation that only small parts of TRNs are dynamically active or too weakly
active to detect from expression data. It was shown for the yeast TRN that only relatively small
parts are active in specific physiological states and that the active sub-networks in those states
show widely different topological properties (Luscombe et al., 2004), suggesting that topological
analysis of TRNs as a whole is rather meaningless. GRNs inferred in a particular physiologically
setting will be entirely active since it is constructed from dynamic information on gene-activities.
Therefore, it is justified to explore the whole GRNSs for topological features, rather than of sub-
graphs. It must be stressed that the structure of GRNs are context dependent as well: in different
experimental settings (different culture media, temperatures, pH etc.) different causal influences
between gene-activities will be physiologically active, leading to a different structure of the inferred
GRNSs. | expect that the structures of the GRNSs obtained for different cell types of a multi-cellular
organism can be quite different, both in quantitative as well as in qualitative sense.
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3. Regulation beyond Transcription Factors: The edges in the GRNSs not present in the TRN have
a straightforward explanation: the GRN contains much regulation beyond simply transcription
factors. Certain processes regulate gene expression independently of transcription, for example
regulation through RNA degradation and the small interfering RNAs, which were discovered to
play a mayor role in regulation of gene-expression levels (Shimoni et al., 2007). Other processes
do involve transcription, but the source nodes are not TFs. For example, genes that code for kinases
that activate/inactivate TFs upon phosphorylation will have directed edges to the targets of the TFs.
Genes coding for enzymes producing metabolites that in turn activate/inactivate TFs by binding to
them, will have directed edges to the targets of the TFs.

Comment on Cyclicity

Cyclic network patterns have been found only rarely in TRNs (Lee et al., 2002; Shen-Orr, Milo, Mangan
& Alon, 2002). In the TRN of E. coli from RegulonDB (Gama-Castro et al., 2008; Huerta, Salgado, Thi-
effry & Collado-Vides, 1998; Salgado et al., 2004; Salgado et al., 2006a; Salgado et al., 2000; Salgado
et al., 2001; Salgado et al., 2006b; Salgado et al., 1999) there were no cyclic dependencies at all (Shen-
Orr, Milo, Mangan & Alon, 2002). This observation was made in 2002 and since then RegulonDB was
subjected to several updates. Still, in current updates of RegulonDB only very few cyclic dependencies
are listed. In the TRN studied in (Luscombe et al., 2004) there is a cyclic component involving only
25 nodes. The fact that between genes coding for TFs not much feedback seems to be present does not
imply that GRNs are largely acyclic as well. Since GRNSs result from a projection of all regulatory pro-
cesses onto gene space, many cycles can be expected. Indeed the cyclic component of the yeast GRN
presented in figure 1 shows a large component of 339 nodes. This component will be responsible for
most of the dynamical properties of the whole network. Cyclic dependencies are associated with many
(if notall!) fundamental properties of living systems, such as homeostasis, robustness, excitability, multi-
stationarity and biological rhythms (e.g. cell cycle, circadian rhythm) (Kauffman, 1969; Noble, 2006;
Thieffry & Thomas, 1998; Thomas, 1973; Tyson, Chen & Novak, 2003; von Bertalanffy, 1968; Weiner,
1948; Westerhoff & van Dam, 1987). Again, this emphasizes that TRNs are only representing a part of
the global regulatory system, lacking the regulation on the Proteome and Metabolome levels. GRNs, on
the other hand, represent the entire global regulatory system, but in a more phenomenological way.

Physiological State Dependent ‘Rewiring’

The structures of GRNs may quantitatively as well as qualitatively depend on the physiological state of
the cell. Each of the cell types of a multi-cellular organism can be expected to have GRNs with different
structures. Yeast grown in presence of oxygen may have a physiologically active GRN that is different
from the physiologically active GRN in anaerobic conditions, etc. How does this ‘rewiring’ happen?
One explanation comes from the fact that gene-expression rates are dependent on the activator/inhibitor
concentrations in a non-linear (usually hyperbolic or sigmoidal) fashion. Consider the ‘dose-response
curve’ given in Figure 4. This example displays the sigmoidal dependence of one gene’s activity on
the activity of an activating gene. There are three qualitatively distinct regions in the curve, indicated
by the dashed lines. Only in the middle part will the activity of gene i appreciably change upon (small)
fluctuations in gene j. In the left and right part the effects are very small, for example, increasing gene-
activity j from value 3 to 4 hardly result in any change in gene-activity i. At physiological values of
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gene-activity below 0.5 or above 2, gene-activity i will not ‘feel’ changes in gene-activity j, effectively
thus not receiving input from gene-activity j. In each specific physiological state gene-activity j will have
different values determined by its inputs in turn. In each physiological state, fluctuations in gene-activity
j will ‘sample’ different parts of this curve, resulting in different strengths of causal influences. This
results in quantitative changes in the network structure. If very small effects are ignored (since they are
too small of significance to the behavior of the system, or at least can not be determined experimentally)
this would translate into qualitative changes in the GRN: edges that appear in one physiological state
may not appear in other physiological states.

Several authors (Kauffman, 1969; Thieffry & Thomas, 1998; Thomas, 1973; Wagner, 2001; Yeung,
Tegner & Collins, 2002) have argued that GRNs are sparsely connected. However, there are simple
arguments that suggest the opposite for GRNs of which | will list a few here. All transcription steps
dependent on metabolic energy. Consequently, genes that code for enzymes that have control on the
cellular energy level may causally affect all gene-activities. The rates of transcription depend on the
concentrations of nucleotides as these are the building blocks of nucleic acids; so all genes coding for
enzymes involved in nucleotide synthesis may be inputs of all other genes. Any other genes that affect
transcription or RNA degradation, in some general way, will be inputs to all genes. For instance, genes
that code for transporters that are responsible for transport of regulating metabolites or proteins into the
nucleus. There are many other examples of causal influences that could arise from the complex interplay
between the unobserved Proteome and Metabolome and the observed Transcriptome. Since the rate of
production of each of the gene-activities competes for the same energy, building blocks, polymerases and
transcriptional machinery, an increase in the formation rate of one gene-activity may cause a decrease in
all others, implying that GRNs are essentially ‘complete graphs’, i.e. networks with edges between all
pairs of nodes. Whether these numerous potential interactions have a significant magnitude or not is an

Figure 4. Sigmoidal dependence of the value of gene-activity i on the value of gene-activity j. The
dashed lines separate regions where gene-activity i is (almost) insensitive to the value of gene-activity
j (left and right regions) from the region where gene-activity i is sensitive to the value of gene-activity
j (middle region).
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open question. Certainly, almost all of these interactions will have small magnitude, as for example in
many physiological situations there are plenty of nucleotides such that transcription rates are saturated
with them, reducing the related effects to negligible strengths. This situation corresponds to the part of
the curve in the third region in figure 4.

‘CONDENSING’ BIOCHEMISTRY INTO GRNS
Directed Edges

Here 1 will show how to ‘condense’ biochemical systems into GRNs in order to clearly demonstrate
what the directed edges in GRNs mean in terms of the underlying biochemical processes (de la Fuente
& Mendes, 2002). | use the word ‘condense’, because the GRN is a compact representation of the whole
biochemical system; a condensed description of the whole. To this effort is useful to represent a bio-
chemical system as a dynamical system. For each concentration x; in a biochemical system (metabolites,
proteins, gene-activities) a non-linear differential equation can be written to relate its rate of change to
a set of parameters k and the set of concentrations x in the system:

) &
_ =T ’x
dt '
For simplicity, | will consider a linearization of the model, but the following reasoning should in
principle hold for non-linear systems as well. The linearization describes deviations from a reference
state:

n

= Z a, Az, + Au, @)
J

dt

A dz,

The a-coefficients are non-zero iff xj directly affects the rate of change of xi and zero otherwise.
These coefficients are elements of a matrix A that represents the wiring structure of the biochemical
system. Matrix Ais square with dimension nxn, with n the number of variables (e.g. metabolites, proteins
and gene-activities) in the biochemical system. An element in row i and column j, i.e. aij, provides the
strength by which xj affects xi. If aij is positive, xj activates xi and if negative xj inhibits xi. Matrix A
is a so-called weight matrix and corresponds to the Jacobian matrix of the linearized system with ele-

ments 0 (dﬂii / dt) / 396]., the partial derivatives of rates of changes with respect to the variables. Another
matrix representation of networks is the adjacency matrix, which contains simply the number 1 on
non-zero positions of A and 0 otherwise. It therefore is a qualitative version of matrix A. Az are the
deviations of xj out of the reference state. Aw_ are deviations from the values in the reference state of

a rate-parameter that specifically affects dz, / dt . These deviations can be either seen as experimentally
created, i.e. experimental perturbations (interventions), or as spontaneously occurring fluctuations due
to ‘biological variability’: the fact that no repeated observations on the same (or similar) system are
identical (even when experimental noise is ignored).

While the study of dynamics in time of GRNs is certainly relevant, especially in studies of organ-
ismal development (Bolouri & Davidson, 2003), | will here consider systems in a stable steady state
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for the relative simplicity of the following discussion. Note that the main train of thought applies to
time-dynamics as well. In a steady state of the biochemical system all activities are constant in time
(the time-derivatives are zero) and we can express a relationship between rate-parameter perturbations
(fluctuations) and interactions between gene-activities:

0= ZaUij + Aui or Q)= Z%Aggj + Aui (3)
J j
These relations can be written in matrix format
AX = _U (4)

Here A (nxn) is the weight-matrix, U (nxk) is amatrix containing rate fluctuations Awu,_, with elements
the deviation of the rate specific to xi in observation k, and X (nxk) is a matrix containing responses
(deviations from the reference state) resulting from the fluctuations in U. k is the number of observa-
tions made to the system.

Eqg. 4 can be written explicitly in terms of the three functional levels of organization of cells, i.e. the
Transcriptome, Proteome and Metabolome. One could argue that a ‘functional’ distinction should not
be made, since all bio-molecules, big or small, are ‘metabolized’ through production and degradation
reactions and thus all could be seen as one Metabolome (Cornish-Bowden, Cardenas, Letelier & Soto-
Andrade, 2007). Nevertheless, from the point of view of the experimental accessibility of the three levels,
it is certainly a useful ‘conceptual’ distinction. Matrix A can be written in blocks corresponding to the
interactions within (diagonal blocks) and between the levels (off-diagonal blocks). Matrices X and U
are partitioned accordingly in three separate blocks of rows:

o A A | X U,
A, APP APM X,|=—1U, ©)
Ay AL AL Xy U,

The subscript T refers “Transcripts’ or “Transcriptome’(gene-activities), P to ‘Proteins’ or ‘Proteome’
and M to ‘Metabolites’ or ‘Metabolome’. Lets take nt as the number of transcripts in the system, np
the number of proteins and nm the number of metabolites. The elements of ATT (dimensions ntxnt)
represent the effects of the transcript concentrations on the rates of change of transcript concentrations.
These effects are mainly due to the degradation rates, since each transcript increases its own degrada-
tion rate, transcripts usually do not interfere with the synthesis or degradation of other transcripts (again
making the assumption that energy, building bocks and polymerases are not limiting) and transcription
is an irreversible process. In the simplest case ATT is merely a lower diagonal matrix with negative
numbers: the self-effect due to the enhancement of the degradation rate. Regulation of gene expression
by microRNAs will lead to a more complicated form of ATT.

The elements of ATP (ntxnp) represent the effects of the protein concentrations on the rates of change
of transcript concentrations. RNA-polymerases, Transcription Factors and RNases, for example, are some
of the proteins involved in these effects. Also the proteins that make up the spliceosome and proteins
that transport mRNA from the nucleus to the cytoplasm will appear in this sub matrix.

11
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ATM (ntxnm) describes the effect of the metabolites on the rate of change of transcript concentra-
tions. Certain metabolites interfere with the transcription of genes by changing the binding affinities of
regulating proteins, leading to a change in transcript formation rate. A famous example is tryptophan
synthesis in E. coli, in which the trp-operon is inhibited by the concentration of L-tryptophan, the product
metabolite of the pathway (Morse, Mosteller & Yanofsky, 1969; Santillan & Mackey, 2001).

APT (npxnt) describes the effects of the transcriptome on the proteome. Since the rate of translation
depends on the number of available mMRNA molecules each gene-activity positively influences the con-
centration of the protein it codes for. The columns referring to rRNAs will have positive values in almost
every row, since they are part of the ribosomes and thus stimulate the formation rate of all proteins. Also
the regulation of translation by microRNAs will give non-zero elements in this sub-matrix.

APP (npxnp) contains information of many different types of interaction between proteins. The col-
umns of proteases will have many negative elements; ribosomal proteins will have positive entries in
almost all rows. The effects of phosphatases and kinases, and other components of signaling cascades
appear in this sub matrix, as well as any other form of protein-protein interaction.

APM (npxnm) shows the effects of metabolites on rate changes in the proteome. Some metabolites
interfere with the synthesis or degradation of proteins. For example, protein synthesis and many post-
translation modification reactions depend on ATP, GTP and other metabolite concentrations.

AMT (nmxnt) would represent the rare cases of ribozymes catalyzing metabolic reactions, and most
entries can be expected to be zero.

AMP (nmxnp) mainly contains the effects of metabolic enzymes on the rates of change of substrates
and products of the reactions it catalyses. Also contained are the effects of transporters that pump me-
tabolites in and out the cell.

AMM (nmxnm) describes the effects that metabolites have on the rate of change of metabolite con-
centrations. These are the effects of substrates, products and metabolic modifiers on metabolic reaction
rates.

XT (ntxk), XP (npxk), XM (nmxk), UT (ntxk), UP (npxk) and UM (nmxKk), with k the total number
of measurements made to the system. Experimentally the elements in UT could be accessed by knocking-
out genes or over-expressing them (de la Fuente, Brazhnik & Mendes, 2002; Gardner, di Bernardo,
Lorenz & Collins, 2003). Experimental perturbations in UP require inhibition/stimulation of for example
translation and perturbations in UM could be created by adding inhibitors of metabolic rates.

In the following, the inverse of A is assumed to exist. This is equivalent to assume that the system is
present in a structurally stable steady state and that none of the variables can be written as a linear com-
bination of other variables (Heinrich & Schuster, 1996). The responses of the state variables (deviations
of the xs from the reference state) towards the perturbations can be written as follows.

-1

X, A, A, A U,
XP = APT APP APM UP ©)
X, Ay Ay Al Uy

This equation clearly shows how the network of the biochemical system, represented as a weighted
matrix, through its inverse transforms the rate-deviations into responses of the concentration of the
system variables.

12
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Using the relationship for the inverse of block matrices (Gantmacher, 1960), the inverse of a matrix
can be expressed in terms of its blocks (assuming that matrices P and S are non-singular, again related
to the structural stability of the sub-systems):

x Y|/[p q 1 o

Z U|R S| |0 I

[y (P-Qs'R)  -PQ(s-RP'Q)
z U —S’lR(P—QS’lR)% (S—RP”Q)A

In the present context we are only interested in the top left block, because that is the block that trans-
forms the rate-fluctuations (perturbations) originating in each gene UT into gene-activity responses XT.
For the sake of clarity of the following explanation it is assumed that no fluctuations arise or perturba-
tions are made in the Proteome and Metabolome, i.e. UP =0 and UM = 0. In a later section I will show
the implication of fluctuations in those levels separately. Applying the above rule we obtain:

-1

A A

PP PM

A A

MP MM

PT

A

MT

Yr ™

The block rule is applied again on the inverse matrix on the inside and by taking

-1

A

MM ) MP

B,=A4A,-A (A
-1
B = AMM B AMP (APP) A

MM

PM
PM

we can write XT as:

T

TP (BPP )71 APT -
-1 -1

TP <APP> APM (BMM) AMT + UT

-1

A —

MM ) MT

- AMP (1 PP )71 A (®)

X]
A
A
A

A, (B

™

ATM (A

MM ) PT

Now we have an expression of AGRN, the weight matrix describing the directed part of the GRN
structure: non-zero elements in AGRN correspond to directed edges in the GRN.
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AGRN 7
-1
ATP (BPP APT -
-1 -1
ATP (APP) APM (BMM) AMT +
-1
ATM <BMM> AMT - 9
-1 -1
ATM (AMM) AMP (1 PP) APT )

Thewaythisequation is presented shows clearly howthe communication between genes, given by the weight-
matrix A .., iscomposed of several contributionsthatrunthroughtheentiresystem. A , . isthena‘condensed’

representation of the whole system. First of all, there is a ‘local’ effect on the gene-activities, i.e. A.,.. Then,
-1

-1
influences mediated separately by the Proteome, A, <B PP) A, and Metabolome, A, (BMM) A

-1 -1

AMP (’ PP) APT and
-1 -1
Metabolome and Proteome, A, (APP) A, (BMM) A ... Note that even though I mention that

MT

as well as influences through the Proteome and Metabolome, A, (AMM)

—1 -1
A, (BPP> A, and A, (BMM) A . are effects that separately run thorugh the Proteome and
Metabolome, the presence of the B matrices in these expressions show that the strengths of the influ-
ences depend on cyclic communication between the two levels.

To clearly demonstrate the meaning of the rather abstract derivation of A, above I will here consider
an example. The example is chosen to be as simple as possible: it concerns two gene-activities commu-
nicating through a metabolite (figure 5). Note that synthesis and degradation rates are explicitly included
in the depiction, in order to emphasize that the communication occurs through modifying rates.

The whole matrix A for this system reads:

Q. 0 Ay
ATT ATP AT]\[ ATT 0 ATM 0 aTZTz O O aTZJW
A=A, v Aoy | = A App 0 | =0, 0 app 0 0
A A, A, 0 A, A, app 0 a,, 0
0 Gyp  Gyp Gy (20)

The diagonal elements (‘self-effects’) appear due to the fact that the degradation rates of each variable
depend on their concentrations. Self-effects will always be negative, except if there is an auto-catalytic
effect (e.g. aprotein that stimulates its own translation) that exceeds the degradation effects in magnitude.
When considering the effects between the gene-activities in A we see that each gene-activity only
affects itself: without the other system-levels there is no communication between the genes.

By using the expression for A, above, the GRN structure corresponding to the system in figure
5 can be derived. Because A, = 0 (a matrix full with zeros) note that

B,=A

PP PP

B, =A

MM MM
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Figure 5. A system consisting of two mRNAs, two proteins and a short metabolic pathway of two steps
and one metabolic intermediate. There is feedback from the metabolome to the transcriptome. T, P and
M represent transcript (MRNA), protein and metabolite, respectively. ts and td stand for rate of transcript
synthesis and degradation, respectively; ps and pd stand for rate of protein synthesis and degradation,
respectively; and R1 and R2 for metabolic rates. Solid lines indicate mass flow and dashed lines regula-
tory effects, with arrowheads indicating activation and blunt ends inhibition. Substrates and products
of each reaction are not explicitly shown.
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Thissimplification only happens for systems for which there are no direct cycles between the Proteome
and Metabolome. The cycles could run indirectly through the Transcriptome as is the case in the current

example. Also A,, =0 andA,,, = 0, so that the expression for A, for this system simplifies to:

-1

-1
AGRN = ATT + ATM (AMM) AMP (APP) APT (11)
Explicitly written out:
* *
Q, a
A | |
GRN a* a*
O,
1
—_— 0
O, 0 | | L ( ) U, Gy 0|
MP, MP, -
0 ay, ) g L0 A
U,
Or e Opr, Ar Qe Op,
aTLT[ a a a a
MM PIP] MM Psz
Y1 ® i, Y, Y, i, Py,
a,. a “ur, a, . a (12)
umrp, MM r,p,
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The now appearing coefficients a* are the strength of causal influences between genes in the GRN:
both gene-activities causally affect each other and themselves. As can be seen in Eqg. 12, the weight of
these ‘phenomenological’ coefficients are expressed as a product of a-coefficients along the interaction
path (read from right to left), scaled by the self effects of the mediators of the path. The effects of the

genes on themselves consist of two parts. One part through degradation (i.e. %z ) and then an effect
through the protein and metabolite, which again is expressed as a product of coefficients along the in-
teraction path (read from right to left), scaled by the self effects of the mediators of the path.

Directed edges in GRNs arise through mechanisms such as outline here, i.e. through paths of inter-
actions through the proteome and metabolome. These causal influences are direct in the sense that they
are mediated by variables that are not experimentally observed. Only effects mediated by the observed
gene-activities are indirect. Consider a path T1 -> P1 -> M1 -> T2 -> P2 -> T3. This path corresponds
to an indirect causal influence from T1 to T3, because it crosses T2, which is an observed variable. The
GRN will thus not contain a directed edge from T1 to T3, but includes only edges from T1 to T2 and
T2 to T3. However, if the transcript T2 is not experimentally measured (or excluded from analysis for
some other reason), the GRN resulting from the analysis of the data would include the edge from T1 to
T3, because then T2 has the same effect as the proteins and metabolites: it acts as a hidden mediator (de
la Fuente, Brazhnik & Mendes, 2001, 2002, 2004).

Undirected Edges

Undirected edges in GRNs arise due to fluctuations in ‘confounding’ hidden variables. For example,
fluctuations in the concentration of a protein that affects two gene-activities will cause the gene-activities
to be correlated. Since the protein is not explicitly represented in the GRN, its effect simply remains as
an undirected edge representing the association between the gene-activities it causes.

Undirected edges could be represented through for example ‘covariances’ (or their scaled version
‘Pearson correlation’). Covariances can be calculated as follows (assuming that the mean coincides with
the reference steady state of Eq. 3 and the fluctuations are random variables identically and independently
distributed (i.i.d.) around the mean):

0, = ZAxikijk (13)

k=1

Az, and Az 5 are deviations from the mean of gene-activity xi and xj, respectively, in observation k.
n is the total number of observations.
Using the matrix equation (Eg. 4), the co-variance matrix can be expressed as

T T
L, =XX"=A"UU"(A") =A%, (A7) (14)
The covariances depend in a complicated way on the structure of A, i.e. through its inverse. This is
the reason that covariances and correlations are known to be transitive: if A affects B and B affects C

there will be correlation between A and C. In addition, if B affects A and B affects C there will be cor-
relation between A and C. X, is a covariance matrix containing covariances between rate-fluctuations.
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It is often assumed to be diagonal, i.e. all rate-fluctuations are independent and it only contains the
rate-fluctuation variances (Bollen, 1989). For the Metabolome is not completely a justifiable assump-
tion, since metabolites are coupled by fluxes and a fluctuation in a conversion rate between substrate
and product will directly cause a dependent fluctuation in both metabolites (Camacho, de la Fuente &
Mendes, 2005): nevertheless the assumption is made for simplicity of the coming discussion.

The ‘“inverse covariance matrix’ (Dempster, 1972; Edwards, 1995) has a simpler relationship to the
structure of the system A.

Q =X '=A"Z A (15)

The inverse covariance matrix holds partial variances on its diagonal and partial covariances in its
off-diagonal elements (Schafer & Strimmer, 2005a). The interpretation of the partial covariances is
the covariance that remains after conditioning on all other variables. If X, is diagonal, there is a clear
relationship between the inverse of the co-variance matrix and to the structure of the system: A pre-
multiplied by its transpose scaled by the variance of the fluctuations. The matrix A" A corresponds to
the ‘moral graph’ of the network corresponding to A. The moral graph is an undirected graph and can
straightforwardly be obtained from the original graph by ‘undirecting’ the directed edges and placing
an undirected edge between any pair of nodes that share the same target (Cowell, Dawid, Lauritzen
& Spiegelhalter, 1999). So, when a series of i.i.d. observations on all variables in the system is made,
one can estimate the co-variance matrix using for example, shrinkage estimation (Schéfer & Strimmer,
2005b), take the inverse, decide on a threshold for non-zero elements and obtain a matrix corresponding
to an undirected version of the network with certain additional edges (between the parent-nodes of each
child-node). These latter edges are unwanted and could in principle be removed by low-order partial
correlation tests (de la Fuente, Bing, Hoeschele & Mendes, 2004; Pearl, 2000).

However, in general not the whole system is observed. The data considered pre-dominantly in this
book contains observations on only the gene-activities. Again, consider the subdivision of the whole
system into the Transcriptome, Proteome and Metabolome. The covariance matrix contains diagonal
blocks with covariances between variables in the same level and off-diagonal blocks with covariances
between variables across levels.

-1

ZTT ZTP ETM QTT QTP sETM
Z'X = Z'PT z"PP ZPM = QPT QPP QPM (16)
ZMT 2MP ZMM QMT QMP SzMM

Of all the sub-matrices only can be estimated from gene-expression measurements. Therefore, it is
relevant to show what in theory is obtained by taking its inverse. Again, the block inverse relationship
is used.
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Again, like for the causal representation was shown that communication between genes arose through
paths through the Proteome and Metabolome, here it is seen that the edges between gene-activities in
the moral graph of the GRN arise due to partial covariances of the gene-activities with proteins and
metabolites. These covariances may arise through paths of communication between genes-activities, as
described above, but also occur due to confounding by hidden variables of the other levels. If all vari-
ables would be measured and the complete covariance matrix is considered, these covariances would
drop out. But not incorporating this information (simply because the data is usually not available) will
result in undirected edges in the inferred GRNSs.

Consider again the simple system in Figure 5. For the following demonstration a modification is
considered in which the proteins do not affect the metabolic rate, i.e. A, , = 0. Without these effects
there is no causal influence between the gene-activities. The metabolite still regulates both gene-activities
and it will be shown that fluctuations in the metabolite will give rise to an undirected edge between the
two genes. For clarity of the following demonstration X, is set to the identity matrix. A diagonal =, with
different values will merely result in scaled coefficients. The general case of having a non-diagonal £,
will result in having yet additional covariances obscuring the simple relationship between the network
structure and the inverse covariance matrix.

The A matrix of the system under consideration reads:

Ay 0 Qy
ATT ATP ATM ATT 0 ATM 0 aTZTZ aTZM
A=A, A, A, |=|A, A, 0 |=lg, 0 a, 0 0
AMT AMP AMM 0 0 AMM a’PZTZ 0 a’PzPZ 0

0 0 0 a,, (18)

The corresponding concentration matrix reads:

18



What are Gene Regulatory Networks?

Q =A"A=
X
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0 Yr, 0 G Gl | (R L @,
Opplpy 0 W 0 0 =2, Q, 0
0 appQpp 0 Wy 0 Q. 0 Q.
0 0 0 w,, (19)

Note that the partial variances are not explicitly written out, since we are only interested in the off-
diagonal elements. No edges between the Metabolome and the Proteome are present in the concentration
matrix, but their covariance will be non-zero, as there is a causal influence from the metabolite to the
proteins through the transcripts. X, for this example system indeed is fully nonzero (result not shown):
all variables are correlated to some extend.

For this system the general equation reduces to:

—1

ZTTil =Q,-Q, (QPP )71 Q,, +2,, (‘QMM) Ly (20)

Written out explicitly:
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Again the diagonal terms are not written out. Note that now off-diagonal elements are observed in the
concentration matrix although there are no causal effects between the genes: both genes are dependent
on the metabolite and the corresponding element in the inverse of the covariance matrix will be non-zero
due to this effect. Since the metabolite is hidden in the analysis of gene-expression data the undirected
edge will appear in the GRN: none of the observed variables, i.e. gene-activities, can explain this cor-
relation. The covariance with the Proteome only affects the partial variances of the gene-activities. The
demonstration here confirms what already was intuitively clear: hidden variables with confounding
effects will create associations between the observed associated.

CONCLUSION
In this chapter | tried to convey several messages. First, | gave a formal definition of GRNs. Second,

I pointed out the conceptual differences between GRNs, CENs and TRNs. Contrary to what is often
believed, GRNs and TRNs are conceptually very different. Directed edges in GRNs do no necessarily
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originate in Transcription Factors. The directed edges in GRNs correspond to causal paths of influence
through the Proteome and Metabolome, which are usually not considered in data used to infer GRNSs.
The undirected edges in GRNSs correspond to confounding influences on gene-activities by the Proteome
and Metabolome. Again, since metabolites and proteins are hidden to the analysis methods, such edges
can not be removed, since none of the observed gene-activities can explain these. Third, | argued that
the directed edges in GRNs can only be inferred through perturbation data. The assumptions needed
to be able to infer causality from non-perturbation data (also called ‘non-experimental data’ or ‘obser-
vational data’) can never be justified for biochemical systems: too many hidden variables are into play
and could act as hidden confounding disturbances with respect to the observed part of the system, i.e.
the gene-activities.

Perturbation data is required to establish the directed edges in GRNs. Several methods have been
proposed for that purpose based on experimental perturbations (de la Fuente, Brazhnik & Mendes, 2001,
2002; Gardner, di Bernardo, Lorenz & Collins, 2003; Wagner, 2001) and using naturally occurring genetic
perturbations, i.e. polymorphisms in genes (Bing & Hoeschele, 2005; Liu, de la Fuente & Hoeschele,
2008; Zhu et al., 2004) (see also Liu et al. — this book). Observational (i.d.d.) data allows for inferring
CENs and the undirected edges in GRNs. Several methods have been proposed for this purpose too
(de la Fuente, Bing, Hoeschele & Mendes, 2004; Schafer & Strimmer, 2005a, 2005b; Veiga, Vicente,
Grivet, de la Fuente & Vasconcelos, 2007; Wille & Buhlmann, 2006; Wille et al., 2004). A complete
GRN is the superposition of the CEN and the collection of directed edges. Such superposition may lead
to a GRN with many pairs with both directed and undirected edges. In that case the undirected edge
could be dropped, assuming that the undirected edge is caused by the causal influence represented by
the directed edge. This is not necessarily a correct assumption: there could be a causal influence between
gene-activities and in addition a confounding effect by a hidden variable. It seems to me that this situa-
tion is impossible to recognize by analyzing gene-expression data alone, making the above assumption
the only alternative.

As shown throughout this chapter, GRNSs are rather abstract networks. In contrast to TRNs there is
not simple way to associate a clear molecular mechanism to the edges. Nevertheless, since the GRN is a
projection of all regulation occurring in the biochemical system it is a complete description of the system
in terms of communication and associations between the genes. Given that GRNs summarize the whole
of cellular regulation, to gain insight into functional dynamical organization of genetic regulation, GRNs
rather than TRNs should be studied. Recent papers indeed show that profound biological insight can
be obtained by studying GRNs (Bystrykh et al., 2005; Keurentjes et al., 2007; Mehrabian et al., 2005;
Schadt et al., 2005). It is therefore an important goal to infer and analyze these networks, emphasizing
the need for books like this one, on computational methods for Gene Regulatory Networks.
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KEY TERMS AND DEFINITIONS

Co-Expression Network: A network model in which nodes represent gene-activities and the undi-
rected edges represent significant associations.

Cyclic Network: A network with at least one directed path that starts and ends in the same node.

Directed Graph: A network with only directed edges between the nodes.

Gene Regulatory Network: A network model in which nodes represent gene-activities and the
directed edges represent direct causal influences and undirected edges represent associations due to
confounding.

Hidden Variables: Variables that are not explicietely represented in the network model, often because
these have not been experimentally observed.
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Mixed Graph: A network with undirected as well as directed edges between the nodes.

Transcriptional Regulatory Network: A network model of transcription factor-target relationships.
Directed edges run from transcription factor nodes to target nodes.

Undirected Graph: A network with only undirected edges between the nodes.
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ABSTRACT

The post-genomic era shifted the main biological focus from ‘single-gene’to ‘genome-wide’ approaches.
High throughput data available from new technologies allowed to get inside main features of gene
expression and its regulation and, at the same time, to discover a more complex level of organization.
Analysis of this complexity demonstrated the existence of nonrandom and well-defined structures that
determine a network of interactions. In the first part of the chapter, we present a functional introduc-
tion to mechanisms involved in genes expression regulation, an overview of network theory, and main
technologies developed in recent years to analyze biological processes are discussed. In the second part,
we review genes regulatory networks and their importance in system biology.

INTRODUCTION

In the last two decades, biologists have drastically changed their approach to the study of the cell. In the lit-
erature, several works describe functional and biochemical analysis focusing on a single gene (Menasche et
al., 2003; Miles et al., 2005) or a protein family (Logan et al., 2004; Sasaki et al., 2005). This “single-gene”
approach led to a comprehensive knowledge about how or where a single gene of interest works. Recently,
some innovative technologies are generating a great amount of biological data and represent a fertile source of
knowledge. The most significant of these techniques, described in the Technology Background section of this
chapter, are DNAmicroarrays, serial analysis of gene expression (SAGE) and chromatin immunoprecipitation
chips (ChIP-chip). The availability of high-throughput data on the role of biological molecules allows a more
exhaustive analysis of biological processes, that is the main focus of system biology.
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The need for atool to integrate high-throughput biological data attracted the attention of the scientific
community to the network paradigm as one of the most powerful and versatile theory for the study of
complex systems (Albert et al., 2002).

In particular, the network approach offers a theoretical picture that can be used to explain and ana-
lyze the structure of biological systems and their evolution. Many theoretical studies on networks have
demonstrated their application to model metabolic networks (Fiehn et al., 2003), neuronal networks
(Kullander, 2005), gene regulatory networks (GRNs) (Olson, 2006), and other biological networks
(Hollenberg, 2007).

What are networks? Networks are simply sets of items, called nodes, joined by specific types of
relationships called links.

At the level of gene regulation, the nodes represent genes, proteins, MRNA and biological molecules
in general, depending on which molecular products are considered. The links represent molecular in-
teractions such as protein-protein interactions (Vidal et al., 1996), protein-DNA interactions (Gao et al.,
2008), gene co-expression (Ala et al., 2008) and others.

Many different kinds of gene networks can be obtained, depending on which particular biological
target is considered. Transcriptional regulation is a complex process that involves a great amount of
elements and network theory helps to construct a comprehensive view about this process. However,
a precise and commonly accepted definition of Gene Regulatory Network (GRN) does not yet exist
(Brazma et al., 2003; Dewey et al., 2002). Under this label, it is possible to define various complemen-
tary models describing regulatory processes and functional relationships. The most common models
are Coexpression Networks (CNs) based on similar expression profiles, Transcription Factors Networks
(TENSs) centred on transcription factors activity, Signal Transduction Networks (STNs) that explore
gene-activities and causal-effect relationships among genes and proteins under different environmental
conditions (as defined in Galperin, 2004; Martelli et al., 2006; Tran et al., 2007) and Genetic Interaction
Networks (GINSs) that define logical relationships between genes, as defined in (Beyer et al., 2007; Tong
et al., 2004), by comparing observed phenotypes of wild-type and mutant individuals of a species. In
this chapter, we will focus on CNs and TFNs.

Biological networks can be constructed in different ways: from differential equations (Climescu-
Haulicaetal., 2007) to statistical correlation integrated by other biological information, such as phyloge-
netic conservation or gene function (Stuart et al., 2003), to minimize false positives among the inferred
interactions, from Bayesian (Mukerjee et al., 2008) to Boolean networks (Martin et al., 2007).

Although the widespread use of experimental data provides an opportunity to investigate GRNs from
another point of view, some limitations exist: it is not possible to analyze all genes and evaluate every
biological status, information about the variability of expression profiles is lost, and experimental noise
decreases data quality.

Some global properties of abstract network models can be used to analyze GRNs: mapping a real
network to an abstract model allows the application of statistical inference to detect specific network
fetaures. GRNs often display characteristic network features such as short path lengths and high cluster
coefficient, typical of highly connected graphs, as described in Barabasi et al. (2004). The degree dis-
tribution of a typical GRN is often scale-free and described by a power-law (Albert, 2005), but GRNs
could also show small world networks features (Watts et al., 1998). At a smaller scale, GRNs display
typical structures as highly connected nodes (hubs), communities and their organization into hierarchi-
cal modules (Ravasz et al., 2003).
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Applications of GRNSs can be classified into two categories: the first one mainly descriptive (quali-
tative approach) and the second more pragmatic, useful to make predictions (quantitative approach).
Qualitative analysis can give an explanation of evolution of the genome and of genetic interactions,
thus joining network theory (with particularly regards to the preferential attachment hypothesis) with
biological evidence like gene duplications (Bhan et al., 2002; Rzhetsky et al., 2001). On the other hand,
quantitative analysis starts from a global point of view to focus again the attention on particular details
such as single transcriptional units, functional annotation, relationship to genetic diseases and pathway
investigation (Herrgard et al., 2008; Mo et al., 2008).

The starting point of the chapter is a brief exposition of the current knowledge about transcriptional
regulation of gene expression with special attention to transcription factors and their interactions. Then,
an introduction to network theory is offered, in order to allow the merging of biological information and
mathematical model. New high-throughput technologies employed are described in the third section
of the Background topic. The main thrust of the chapter is an overview of some pioneering and more
recent works on network modelling of biological systems to show how these structures are evolutionarily
conserved in Eukaryotes. In the conclusions we suggest possible improvements of GRN analysis and
co-operative combination of information focusing on future perspectives in network biology.

BACKGROUND
Biological Background

Analysis of the mechanisms regulating gene expression is one of the most exciting fields of research
involving various areas, from molecular and computational biology to molecular genetics, from physics
and mathematics to biochemistry. Mechanisms underlying this process became increasingly complex as
organisms evolved (Gustincich et al., 2006; Huang et al., 1999; Rockman et al., 2006).

In Prokaryotes it is possible to discovery complex and very organized regulation pathways. In the
bacterium Escherichia Coli, gene expression is strongly regulated by the environment and the avail-
ability of source of food. This happens because Bacteria live in environments subjected to frequently
changes; to reduce energetic waste, gene transcription in Bacteria is directly regulated by the presence
of some metabolites (Madan Babu et al., 2003). To further on optimize regulatory processes, Bacteria
show a typical genetic organization called operon. The operon is a group of adjacent genes expressed
as a single RNA molecule together with their genomic control regions. The expression of an operon is
submitted to the presence of the responsible metabolite; its presence (or absence) induces the expression
of genes block that it regulates. One of the most studied system is the lactose operon (lac operon) and its
activation is regulated by the repressor lac, the activator protein CAP and their interactions with RNA
polymerase. Only in the presence of lactose and absence of glucose, maximal transcription of the lac
operon occurs. In this situation, the lac repressor does not bind to DNA, CAP binds its control region
on the DNA and this combination promotes the transcription (Alberts et al., 2002).

Transcriptional regulation of gene expression in Eukaryotes is a crucial step in the definition of the fate of
cells and cellular structures (Wray, 2003). The differential expression of genes during developmental stages,
cell-cycle phases or across tissues determines the differentiation process of a cell and their future roles. The
extensive knowledge about genomes gained in the last years led to the discovery and analysis of the key control
mechanisms of gene regulation (Kornberg, 1999) showing a complexity greater than in Prokaryotes.
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DNA molecules are usually ultra-condensed into structures called nucleosomes (Mellor, 2006) where
they bound histone proteins to form a complex structure that protect cells from abundant and useless
transcription events (a structural state known as heterochromatin). To activate transcription, cells need
to unclench this structure (Horvath et al., 2001). This first coarse level of regulation is given by mo-
lecular modifications that unwrap the condensed structure and release the DNA portions that have to be
transcribed (state called euchromatin). These changes are essentially due to two molecular processes:
the acetylation of histone proteins responsible for chromatin architecture and the methylation of specific
regions on DNA strands known as CpG islands. This mechanism is controlled by two well-defined
classes of enzymes: histone acetyltransferases (HAT) and methyltransferases (HMT). Both acetylation
and methylation are very important and they are subject to rigorous patterns that determine cell type-
specific gene expression profiles (Fraga et al., 2005; Robertson, 2002). Sometimes, other cellular fac-
tors in the cell can bind DNA packaged in a chromatin conformation more accessible and initiate gene
transcription by remodelling nucleosomes.

On the unrolled DNA strand, both coding and non-coding sequences become accessible and can
interact with factors present in the cell. This configuration allows a control mechanism of transcription
regulation based on the binding of proteins of the transcription machinery on specific sequences acting
as their substrate (Muller et al. 2004). DNA sequences bound by the machinery are known as cis-regu-
latory elements, genomic sequences different in length mainly located in the non-coding fraction of the
double helix. Parallel, trans-regulatory elements are DNA binding proteins that regulate transcriptional
events interacting with their specific sequence on the genome (Scannell et al, 2004; Wittkopp, 2005).
The fundamental trans-regulatory element is the enzyme responsible for the effective transcription of
DNA, the RNA-polymerase. RNA-polymerase binding sites are usually located upstream of and close
to the transcription start site (TSS) in the region known as core promoter. The polymerase forms the
regulatory machinery complex with other very important co-factors that influence its binding to the
consensus sequence on the DNA strand.

Many other DNA sequences are binding-sites for eukaryotic gene activators, originally termed
enhancers, since their presence increases dramatically the rate of transcription acting directly on the
polymerase activity. Enhancers are bound by DNA-binding proteins that control gene transcription in
a positive (activators) or negative (repressor) manner. A surprising discovery regarding enhancers was
that activator proteins can be bound thousands of nucleotide pairs away from the promoter (Carter et al.,

Figure 1. Diagram of a typical gene control region
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2002). Moreover, they can influence transcription of a gene when bound either upstream or downstream
from it or in non-coding regions of a transcription unit. For this reason, today we define a gene control
region (Figure 1) as the whole expanse of DNA involved in regulating transcription of a gene, including
the core promoter, where the general transcription factors (GTFs) and the polymerase assembly, and all
of the regulatory sequences to which gene regulatory proteins bind.

Specific regulatory proteins are known as Transcription Factors (TFs), proteins that bind well-defined
sites on DNA molecules known as DNA-binding domains (specific for each TF) and co-attend to the
transcription of genetic information from DNA to mRNA by activating or repressing the process driven
by the RNA polymerase (Kadonaga, 2004; Muller, 2001). TFs show a modular structure containing
some necessary domains: a DNA-binding domain (DBD) that attaches to specific short DNA sequences
and a trans-activating domain (TAD) that contains binding sites for other proteins such as transcrip-
tional coregulators. For example, many TFs are involved in the development of the organism, turning
on transcription of genes that regulate cells morphology and differentiation (Wray, 2003). Responses
to intracellular signals are often mediated by TFs; cells communicate by releasing molecules produc-
ing signalling cascades associated to the upregulation or the downregulation (Brivanlou et al., 2002).
Different responses and variations in gene expression are carefully regulated by TFs action. Binding
sites for TFs are well-defined; for each TF, in order to determine conserved nucleotides that compose a
binding site, we can define a position specific scoring matrix (PSSMs). In a PSSM, for every position,
every nucleotide has a score associated to the probability to find it in that position and the global score
of the matrix define a consensus sequence (Stormo, 2000). PSSMs are collected into public and com-
mercial databases of matrices like TRANSFAC (Matys et al., 2006) or JASPAR (Bryne et al., 2008).
Looking for an over-representation of matrices in gene control regions is a very active research field
in computational biology (Brown, 2008; Wasserman et al., 2004). However, evolutionary analysis of
genomes and organisms complexity recently showed that the new horizon in studies on transcriptional
is represented by combinatorial analysis (van Dijk et al., 2008).

Genome sequencing and analysis of many model organisms confirmed the hypothesis that organisms
complexity not only depends on the number of transcription units, but also on the regulatory complexity
of their expression (Markstein et al., 2002). The large size of promoter region sequences allows them
to host many binding sites for different transcription factors. As a symbolic example, it is sufficient to
compare the fruitfly Drosophila melanogaster and the nematode Caenorhabditis elegans: the fly has less
than 14,000 genes, while the worm has about 20,000. However, anatomical, developmental and other
biological observations suggest that Drosophila can be considered more complex than Caenorhabditis
elegans. If the complexity of different species is not directly proportional to the number of genes, what is
the element that determines these developmental differences? The answer is hidden behind an elementary
concepts widely studied in the last few years: transcription factors act on gene expression regulation not
independently, but following a combinatorial and coordinated control mechanism that finely adjusts gene
expression profiles for developmental stages, tissues or cell types (Pilpel et al., 2001). Combinatorial
and coordinated control means that gene transcription is not regulated by a single signal of activation or
repression, but by the correct integration of all signals originating from a combination of transcription
factors that are alternatively bound and functionally active.

Considering as an example an extensively studied gene regulation control region like promoter of
gene even-skipped (eve) in Drosophila Melanogaster leads to a clear explanation (Janssens et al., 2006).
This control region regulates expression of gene eve during different developmental stages and in dif-
ferent positional stripes of larvae. It is composed of 12 partially or totally overlapping binding sites for
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Figure 2. Promoter region of the even-skipped gene control specific transcription bands in the Droso-
phila Melanogaster embryo. Different combination of cis-regulatory modules bound determines different
expression patterns.
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4 transcription factors that synergistically modulate the transcription rate. Gene expression levels are
precisely regulated in different stripes because of different combinations of bound and active transcription
factors (figure 2). This illustrates why current research privileges combinatorial analysis of transcription
factors and DNA regulatory elements (Morgan et al., 2007).

The mechanisms described so far involve mostly proteins as transcription regulators, but the com-
plexity of multicellular organisms further increases due to another class of regulators.

The RNA-polymerase product is a primary transcript that after the processing driven by cellular enzymes
is transformed in the messenger RNA (MRNA). At the level of post-transcriptional control, entirely new
mechanisms of gene regulations arise; they are mediated by the action of a large class of non-coding RNAs
known as microRNAs (miRNAs), which function as repressors in almost all organisms (Ambros, 2004).
miRNASs suppress specific transcripts by binding to complementary sequences on the RNA molecules usu-
ally located in the untranslated region (3’-UTR) of gene of interest; RNA bound by a miRNA is processed
by a couple of enzymes, Dicer/Drosha, and degraded inside the cell. Various studies have demonstrated
that miRNAs have important roles in animal and plant development (Kloosterman, 2006; Kosik, 2006).
Interest in miRNAs and their role in transcriptional regulation has sensationally increased during the last
years because only the integration of regulatory signals of both transcription factors and miRNAs can give
a comprehensive and unified framework of gene regulation (Chen, 2007).

Post-translational control of gene regulation is the last mechanism to act. After the translation of
MRNAS, proteins product can be subjected to modification that increase or reduce their activities or
change proteins localization inside the cell. A great number of proteins are substrates of two class of
enzymes, called kinases and phosphatases, that phosphorylate and dephosphorylate them respectively.
Many metabolic pathways are regulated through the balanced action of these enzymes (Cohen, 2002).

Other proteins can be engaged with fatty acids chains that translocate them from the cytoplasm to the
membrane of the cell. Various protein involved in signal transduction are subjected to these modifica-
tions. Two examples are the Src family of protein kinases that is myristoylated and the effector protein
Ras that is anchored to the membrane through a farnesyl-group (Resh, 2006).
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A post-translational modification that reduces protein levels in the cell is the ubiqutination. This
modification is driven by a group of enzymes that act on the targeted protein functional groups that
redirect it to the proteasome, the protein degradation system (Elsasser et al., 2005).

Network Background

Network theory is a field of applied mathematics and physics, deeply related to graph theory. It is ap-
plied in a variety of disciplines including sociology, computer science, biology and economics. Net-
work theory concerns the study of graphs as a representation of either symmetric relations (undirected
connections) or asymmetric relations (directed connections) among discrete objects, that can represent
human beings in social networks (Wellman, 1998), computers or links in computer science networks
(Albert et al., 2002), genes or proteins in biological networks (Barabasi et al., 2004) and enterprises for
economic networks (Manski, 2000).

A network is simply a set of items, called nodes or vertices, connected by lines called links or
edges.

A network can be represented by a graph, where links may be undirected, when a line from point
Ato point B is considered to be the same thing as a line from point B to point A (Ssymmetric relation),
or directed, when the two directions are counted as being distinct arcs or directed edges (asymmetric
relation).

Such a set of nodes connected by edges represents the simplest kind of network, but we can have
different types of vertices (characterized by different information content) and different types of edges
(Figure 3).

In a biological context, we consider a type of network called “complex network”, characterized by
certain non-trivial topological features that do not occur in simple networks. Such non-trivial features

Figure 3. Some examples of different kinds of networks; 1a) undirect network (edges linking nodes have
no directions), 1b) direct network, 1c) direct network with varying node and edge weights.
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include: a long tail in the degree distribution, a high clustering coefficient, community structure at many
scales and evidence of a hierarchical structure.

We first examine these new concepts that can help in understanding network characteristics and
topology (Table 1), then we give a brief definition of two particular kinds of complex networks.

The two most well-known and specific examples of complex networks are small-world networks
and scale-free networks.

A network is called a small-world network by analogy with the small-world phenomenon (known
as “six degrees of separation”), first tested experimentally by Milgram (1967). The basic result of this
experiment was that two arbitrary people are connected on average by approximately six degrees of
separation, i.e. the diameter of the corresponding graph of social connections is not much larger than
six. The first small-world network model was proposed by Watts and Strogatz (1998). In this model, the
transformation of a regular graph, in which the diameter is proportional to the size of the network, into
a “small world” one, in which the average number of edges between two vertices is very small (while
the clustering coefficient stays large), is obtained and the authors demonstrate that the addition of only
a small number of long-range links is required. Summarizing, a graph is considered small-world if:

»  the mean shortest distance between nodes pairs scales logarithmically or slower with network
size;

. the average clustering coefficient is significantly higher than a random graph constructed on the
same vertex set.

A network is named scale-free if its degree distribution follows a particular mathematical function
called power law where few nodes with many links (hubs) co-exist among many nodes with few links.

Table 1. Definitions of network characteristics

FEATURE DEFINITION
Degree The number of links connected to a node. A direct graph has both an in-degree and an out-degree for each
node, corresponding to the number of in-coming and out-going links, respectively.
Degrees distribution The probability that a node selected at random has a certain number of links.
Clustering coefficient A measure of the interconnectivity among neighbours of a node N. Neighbours of N are nodes connected

to N by an edge.

Average clustering coefficient | The average of the clustering coefficient for each node (Watts et al., 1998). It provides a global measure
of how well the neighbors of nodes are locally interconnected.

Community structure A natural division of the network into sets characterized by groups of nodes that share a high density of
internal links and a lower density of links to external nodes (Newman, 2006). In biology, communities are
also called modules, motifs or clusters.

Average path length The average number of steps along the shortest paths for all possible pairs of network nodes (Strogatz, 2001).
Distance The length in number of edges along the shortest (geodesic) path connecting two nodes.

Diameter The maximal distance between any pair of node of a graph.

Betweenness The number of shortest paths going through a certain node.

Bottlenecks Nodes with the highest betweenness. They control most of the information flow in the network, represent-

ing critical points of networks (Yu et al, 2007).

Hierarchical organization In a complex networks implies that small groups of nodes can be organized into increasingly larger groups,
maintaining at the same time a scale-free (see below) topology (Ravasz et al., 2003).
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Networks obtained from lattice models, where every node has roughly the same degree, show a single
well-defined scale; in contrast, the power law implies that the degree distribution of these networks has
no characteristic scale. An example of networks with a well-defined scale is the Erd6s—Rényi random
graph (Erdos et al., 1959). In a network with a scale-free degree distribution, nodes with a degree that
is orders of magnitude larger than the average (hubs) are present. The interest in scale-free networks
began to flourish in the late “90s with the discovery of a power-law degree distribution in many real
world networks such as the World Wide Web, protein interaction networks, and many others. Although
many of these distributions are not unambiguously power laws, their particular topology shows that
networks characterized by this kind of distribution are very different from what could be expected if
edges would be generated at random (for example, by a Poisson distribution). There are many different
ways to generate a network with a power-law degree distribution, but the most well known is based on
the preferential attachment rule proposed by Barabasi and Albert (2002).

The average path length for scale-free networks is smaller than in random graphs, indicating that
scale-free topology, more heterogeneous than topology of random graph, deeply affects the distance
between nodes; however a theoretical expression giving a good approximation for scale-free model has
not been found. Also for the clustering coefficient there is no known analytic model. Observations on
some models revealed that the clustering coefficient of scale-free networks decreases with network size
following approximately a power law decay: a difference from small-world models, where the cluster
coefficient is independent of the size of the network. Networks with a power-law degree distribution can
be highly resistant to the random deletion of nodes, since only few hubs are essential for maintaining
normal topology: the vast majority of nodes remains connected together in a giant component (i.e., a
connected sub-graph that contains the majority of the graph’s nodes).

Technology Background

A number of array-based technologies has been developed over the last several years, and technological
development in this area is likely to continue. These technologies are mainly based on DNA, proteins,
antibodies and combinatorial chemistry arrays but every biological molecule could be probably studied
with an array-based method. So far, DNA arrays designed to determine gene expression levels in living
cells have received the greatest attention. Since they allow simultaneous measurements of thousands of
MRNA target molecules and genome probes, they are rapidly producing amounts of raw data on a scale
never approached before. We now present an overview of current DNA array technologies and briefly
describe also a non-array-based technigque to measure gene expression levels based on serial analysis
(SAGE) and another innovative approach to study transcriptional regulation based on accessibility of
chromatin regions (ChIP-on-Chip).

DNA arrays, also called DNA chips, simultaneously measure the level of mMRNAs product in a living
cell. ADNA array is defined as an orderly arrangement of tens to hundreds of thousands of unique DNA
molecules (called probes) of known sequence. Every probe is individually synthesized on a rigid surface
or pre-synthesized and then attached to the array platform, dependent on the technology employed. The
first method developed is commonly known as cDNA microarrays (also called spotted microarrays)
because probes are usually oligonucleotides, cDNAs or small fragments of polymerase chain reaction
(PCR) products that correspond to mRNAs.

Successively, specialized manufacturers optimized the technique and they obtained specific oligo-
nucleotide microarray triggering a drastic decrease of cDNA microarrays use. Although oligonucleotide
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probes are often used in “spotted” microarrays, the term “oligonucleotide microarrays” most often refers
to a specific technique of manufacturing. The first synthesis method for manufacturing DNA arrays was
the photolithographic method developed by Fodor etal. (1993) and today commercialized by Affymetrix.
Aset of oligonucleotide probes of 25 nucleotides in length is selected, able to hybridize complementary
sequences in target genes of interest. For each gene of interest, all probes matching are collected to define
a probeset. Statistical software is then used to elaborate raw expression data of probes and to obtain an
absolute expression level of a transcript. Other companies, like Agilent, have developed array platforms
with a standard piezoelectric (ink-jet) printing process that fix on a glass support longer sequences, up
to 60 nucleotides.

Currently, novel approaches to microarrays are rapidly spreading. The most important are lllumina
microarray technology and exon-specific arrays. lllumina company has presented the BeadArray®
technology. It yields beads assembled on two substrates, fiber optic bundles or planar silica slides. Each
bead is covered with hundreds of thousands of copies of a specific oligonucleotide that act as the capture
sequence in an Illumina’s assays.

GeneChip® exonarray, instead, is the new technology developed by Affymetrix in which a probeset
is associated to each potential exon in the genome. With approximately four probes per exon and roughly
40 probes per gene, exon arrays enable two complementary levels of analysis: simple gene expression
and alternative splicing.

When arrays are combined with other techniques and molecules, it becomes possible to obtain new
methods to study the transcription. A powerful example is represented by ChlP-on-chip, a technique
for the isolation and the identification of the DNA sequences occupied by DNA-binding proteins that
combines chromatin immunoprecipitation (ChIP) with microarray technology (chip). The goal of ChlIP-
on-chip is to locate protein binding sites which results in the identification of functional elements in
the genome. The ChlP-on-chip technique was first successfully applied in yeast (Lieb et al., 2001) but
today, with little variations in protocols, is also performed on mammalian cells.

Figure 4. Example of an oligonucleotide microarray with enlarged inset to show detail (source: Wikipedia
http://en.wikipedia.org/wiki/File:Microarray?2.gif)
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Finally, gene expression can be evaluated also with another technique called serial analysis of gene
expression (SAGE) (Velculescu et al., 1995). SAGE analyzes all mMRNA molecules in the cell, defined
as the transcriptome; for each transcript, it is possible to define a small chunk of RNA that unambigu-
ously identifies each RNA molecule. These small pieces, called tags, are extracted through the cleavage
of restriction enzymes and are linked together in a long chain called concatemer. Then, the concatemer
is cloned into a vector and long chains produced are sequenced to count the number of small sequence
tags for every RNA that compose the chain. This integer number for every transcript is converted in
an expression value. The comparison of tags to a specific database determines which ones come from
known, well-studied genes and which ones are new.

The diffusion of these technologies allowed the development of specific approaches like time-course
and tissue-specific experiments. In time-course experiments cells are dynamically studied during their life
cycle and gene expression changes are monitored step-by-step. In this way, for each gene the expression
level can be studied as a function of the expression level of all the other genes.

Instead, tissue-specific experiments give more specific information about groups of functionally
co-expressed genes and gene expression profiles of tissues and cell lines.

Collapsing information from the transcriptional regulation machinery, the huge amount of data avail-
able on biological molecules from the technologies we have described and network theory, it is possible
to create models that give a revolutionary way to study genes regulation.

GENE REGULATORY NETWORKS OVERVIEW

The analysis of biological network models produces results (links among genes, communities identifi-
cation, network topology, etc.) whose mode of analysis can be subdivided into two main categories. As
reported in the introduction of the chapter, the first is characterized by qualitative approaches, while the
second is focused on quantitative applications.

Qualitative analysis tries to establish a reference frame to explain some aspects of genomes and their
evolution. For example, it has been shown that gene regulatory networks grow by duplication (Teichmann
etal., 2004). When genes undergo a duplication event, regulatory interactions in networks can be either
conserved or lost during the subsequent divergence process (Bhan et al., 2002). Another interesting re-
sult is that the development of scale-free networks implies linear preferential attachment (Eriksen et al.,
2001). Linear preferential attachment exists when the probability of attachment to a particular node is
proportional, at least asymptotically, to the number of links already attached to that node. Combination of
these two results, from molecular biology and network theory respectively, opens an intriguing scenario
which describes the origin and evolution of highly connected proteins, usually known as hubs.

Analysis of network modularity gives another strong contribution to understand how biological networks
organization evolves. One of the main contributors to the robustness and evolvability of biological networks
is their modularity of function, with modules defined as sets of genes that are strongly interconnected but
whose function is separable from those of other modules (Kirschner et al., 1998). Hintze (2008) states that
modularity must be a consequence of the evolutionary process, because modularity implies the possibility
of change with minimal disruption of function. In particular, the evolution of complex biological networks
in silico allows to simulate real biological systems to understand their complexity.

Quantitative analysis starts from a global point of view to focus the attention on particular details.
Key methods to extract quantitative information from biological networks are the identification of net-
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work motifs and communities (Zhang et al., 2007) and the gene clustering that is performed following
different algorithms (D’haeseleer, 2005; Zhao et al., 2005). Their application results in the isolation of
clusters of genes that can be combined with information stored into various biological databases. For
example, the Gene Ontology (GO)* project offers the necessary information to develop statistical tools
looking at the overrepresentation of GO terms within network communities, in order to obtain putative
gene functional annotations (Pellegrino et al., 2004). In a similar way, the combination with the Online
Mendelian Inheritance in Man™ database (OMIM™)? gives the possibility to predict disease-related
genes (Ala et al., 2008; Lage et al., 2007).

In this section, we review some examples for two of the most studied GRNs. The first part is dedi-
cated to Transcription Factor Networks (TFNSs) and to highlight the conservation of network structures
from plants to mammals. In the second part, the focus shifts to Coexpression Networks (CNs) where
phylogenetic information combined with network theory is used to make functional predictions.

Transcription Factors Networks (TFNSs)

TFNs can be inferred directly from experimental results of physical associations between transcription
factors and their DNA binding sites defined as PSSMs (Frith et al, 2002). Networks based on transcrip-
tion factors can be divided in two types.

In the first one, the analysis concerns transcription factors and their target genes. A network built
using these elements will show transcriptional factors and genes as nodes and regulatory interactions
as edges. In this way, it is possible to highlight cellular signalling pathways. The second type takes into
account a smaller version of the previous configuration: only transcription factors are considered, so
that they represent nodes linked by a regulatory interaction. Interactions exist when two factors bind the
same promoter region of at least one gene, regulating its expression.

In Arabidopsis thaliana (thale cress), cell identity during the three main phases of root development
(primary root meristem establishment and maintenance, root hair differentiation, and lateral root for-
mation) is controlled by specific transcription factor networks. The analysis of the whole Arabidopsis
genome sequence revealed that approximately 5% of the genes encode transcription factors that interact
not only with other regulatory proteins but also with the other 95% of the genes (Riechmann et al., 2000).
Montiel (2004) states that transcription factors give the opportunity to decrypt gene regulatory networks
that control development programs and can be considered as major keys to better understand root tissue
differentiation and root development in response to internal growth regulators as well as environmental
signals. They also deduce that transcription factors must be considered at a higher level not just for their
DNA-binding functions, but rather as crucial members of regulatory networks.

Saccharomyces cerevisiae (yeast) was the first eukaryotic model organism used to study mechanisms
of transcriptional regulation. The complexity level of its network is neither trivial nor too high (like
that of Mammalian regulatory networks) and the huge amount of expression data available made this
unicellular organism the most attractive to test a global scale approach. Yeast studies led to an important
new insight: networks of regulator-gene interactions are the background of pathways that are used to
regulate global gene expression programs. Extensive studies identified network motifs, the simplest units
of network architecture, and demonstrated that these motifs are the building blocks of the transcriptional
regulatory process. (Wu et al., 2006).

Rising to a higher complexity level and moving to Caenhorabditis elegans (nematode) we can see
that network architecture is strongly maintained and very useful to characterize gene regulation. As previ-
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ously observed in Arabidopsis, also in metazoans 5%-10% of the genes encode predicted transcription
factors (Reece-Hoyes et al., 2005), each of which regulates the expression of one or more target genes.
Vermeirssen (2007) evaluates protein-DNA interactions between transcription factors and their target
genes. He shows, for example, that the core neuronal protein-DNA interactions network is organized
into two transcription factors modules. Moreover, this study represents an important step because for
the first time the subdivision into clusters of a metazoan protein—-DNA interactions network defines
function-specific transcription factors modules.

Studies on Drosophila melanogaster (fruitfly) confirm the effectiveness of representing transcrip-
tion factors interactions as a network (Aerts et al., 2007; Fowlkes et al., 2007; Segal et al., 2007). The
segmentation genes network is a common example to explain the role of transcription control in pattern
formation (Scott et al., 1987). The regulation within this network is almost entirely transcriptional, and
cis- and trans-acting components are well characterized. The network includes maternal and zygotic fac-
tors that act in a four-tiered hierarchical fashion to generate increasingly refined and complex expression
patterns along the anterior-posterior axis in the blastoderm embryo (Schroeder et al., 2004). In this case,
the global analysis allows to show strongly connected modules and signalling activation or repression
cascades that traditional single-gene approaches cannot easily unravel.

Mammals, and in particular Mus musculus (mouse) and Homo sapiens, represent the most difficult
test-bed and at the same time the main goal of the application of network theory to transcription factor
analysis and modelling. A large number of studies were published in the last few years (Duncan et al.,
1998; Zenke et al., 2006) and some mathematical and statistical methods were developed (Rastegar et
al., 2000). From the biological point of view, advances in transgenic mice production made possible to
obtain specific experimental data. Exploiting these innovations, Maroulakou (2000) demonstrates the
need of a network of Ets transcription factors family to maintain tissue remodelling and integrity, in
particular during embryonic developmental stages in mammals. The large family of Ets transcription
factors control a spectrum of developmental processes and nearly 30 mammalian family members have
been isolated (Dejana et al., 2007). Actions of Ets transcription factors expressed at different levels are
crucial for hematopoietic and endothelial cells development. The authors conclude that to investigate
the roles of the Ets family of transcription factors, mammalian models based on a network of Ets genes
and their targets, rather than on a single gene in a pathway, are necessary, as we argued previously.
These results, first shown for the Ets family were successively found in all transcription factors families
(Kang et al., 2005; Tsantoulis et al., 2005). Moreover, more recent approaches to TFNs integrate both
computational and molecular biology techniques. As described by Kel (2004), one suitable approach
is to develop genetic algorithms to analyze global gene expression microarrays. Their computational
strategy analyzes the promoters of genes regulated by aryl hydrocarbon receptor (AhR) with a genetic
algorithm previously described by Kel-Margoulis (2002). The analysis reveals a network of transcription
factors with several feedback loops and signalling cascades. This network of transcription factors can
also explain the regulation of several genes that are not direct targets of AhR binding. Their regulation
can be mediated through other transcription factors directly regulated by AhR.

Coexpression Networks (CNs)
Coexpression Networks (CNs) can be inferred from microarrays experiments, a very powerful technol-

ogy that allows to simultaneously measure the expression level of thousands of genes as described in
the “Technology background” section. Microarray data are stored in matrices where rows (i) are related
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Table 2. An example of a matrix from microarray experiments containing n rows and m columns

Exp 1 Exp 2 Expj Expm
Probe 1 Value (1,1) Value (1,2) Value (1,)) Value (1,m)
Probe 2 Value (2,1) Value (2,2) Value (2,)) Value (2,m)
Probe 3 Value (3,1) Value (3,2) Value (3,)) Value (3,m)
Probe i Value (i,1) Value (i,2) Value (i,j) Value (i,m)
Probe n Value (n,1) Value (n,2) Value (n,j) Value (n,m)

to probes, representing genes, and columns (j) are different experimental conditions; for each matrix
element (i,j) an expression value is reported (table 2).

In a CN, the abstraction from biological data to a mathematical model is realized by mapping genes
to nodes and putting edges representing similarity of gene expression according to a given quantitative
notion of similarity (or dissimilarity). Given two genes in an expression matrix it is possible to use dif-
ferent quantitative measures of coexpression to construct different coexpression networks. Here, we
present two of the most often used dissimilarity measures to evaluate coexpression. A coexpression link
exists when the dissimilarity measure between two genes is lower than a defined cutoff. Let X and Y
be two genes and their expression values for the N columns of the matrix: the expression data are real
numbers for microarray data and integer counts for SAGE.

The Pearson linear dissimilarity is defined as:

dP(X,Y):ﬂ

where r is the Pearson correlation coefficient defined as:
S xv - Do XYY XZ Y
2 2
(= Zyz_m
N N
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The Euclidean distance is:

8 (xy)= (e -4

i=1
These two measures can be applied to both microarray and SAGE data; in addition, measures specifi-
cally targeted to SAGE data and based on Poisson distribution were also developed (Cai et al., 2004).

41



Introduction to GRNs

Data from high-throughput gene expression measurements are affected by a relatively high level
of noise; it is therefore necessary to adopt specific strategies to reach a good compromise between
specificity and sensitivity of the statistical analysis. Two most common approaches to prevent these
problems are:

«  the imposition of a more stringent cutoff for dissimilarity measures;
. the use of filters to select interactions between coexpressed genes that share also other biological
features.

A pioneer work in the landscape of CNs was performed by Stuart (2003). In order to elucidate gene
function on a global scale, they identified pairs of genes that are coexpressed over DNA microarrays
from multiple species. The filter employed in this work was the phylogenetic conservation because the
coexpression of orthologous gene pairs confers a selective advantage and therefore indicates a functional
relationship. Four species were compared in the phylogenetic analysis: Saccharomyces Cerevisiae,
Caenhorabditis Elegans, Drosophila Melanogaster, Homo Sapiens. The use of species not so close from
the evolutionary point of view increased the efficiency and selectivity of the filter but allows to study
only genes involved in core biological functions. They found that the distribution of gene expression
links in the gene-coexpression network is highly non-random, containing significantly more nodes with
a larger number of gene expression links than random networks obtained from the same microarray data
after permutation. The connectivity of the network followed a power-law distribution suggesting the
existence of a selective force in the overall design of genetic pathways to maintain a highly connected
class of genes. Finally, the predictions referred to proliferation function for several genes implied by
some of these links have been experimentally confirmed.

Later, Jordan (2004) reduced the number of species focusing only on human and mouse in order
to increase the knowledge about mammalian gene regulation. In addition, instead of heterogeneous
experiments, he took into account only data coming from tissue-specific datasets (Su et al., 2002). The
similarity measure choosen in the study is the Pearson correlation coefficient (r). The cutoff for the
correlation was set to r > 0.7 since for this value the distribution showed a good fit to a generalized
Pareto distribution with a power law tail which implied asymptotically scale-free properties and, at the
same time, retained enough data for significant statistical analysis. In this case, a small number of hubs
emerged and characterized this kind of scale-free networks.

The approach of Lee (2004) was more selective because it extracted homo-specific relationships
among genes from multiple human microarray datasets. The coexpression analysis was based on the
standard Pearson correlation coefficient and performed independently on the collected datasets. Two
genes were defined as “coexpressed” if a statistical significant coexpression was observed in more than
one dataset. In addition, anticorrelation was examined and the comparison with correlation showed that
the latter is much more significant. A possible explanation proposed for this result is that biological
meaningful of negative correlations are harder to detect using microarrays.

Finally, we summarize the work of Ala (2008). The goal was the generation of human-mouse con-
served coexpression networks, in order to develop a predictor for unknown gene-disease relationships
based on OMIM catalogue. In this case, experimental data were collected from various tissues (Roth
et al., 2006; Su et al., 2004) and cell lines (Sherlock et al., 2001) and they were used to generate two
human-mouse conserved coexpression networks (CCNs), based on Affymetrix and cDNA microarray
platforms, respectively.
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Figure 5. A graph of a conserved gene coexpression network from Ala et al. (2008). Links highlight
coexpressed genes among different experimental conditions.

Both networks contained a large connected component with some other small connected components
containing only a few nodes. As expected from previous studies on gene coexpression networks (Stuart
etal., 2003; van Driel et al., 2006), the two networks were topologically similar to other biological net-
works, characterized by the existence of a few hubs, but they showed a connectivity distribution more
similar to an exponential law than to a power law.

Despite previously described works led to many important and original results, a more holistic view
on GRNs could include “younger” transcriptional regulation factors like miRNAs (Ke etal., 2003). Actu-
ally, a “miRNAs-only” network does not exist but it is known that miRNAs activity must be considered
as an integral part of the complex regulation network. Tsang (2007) give a demonstration of this new
paradigm observing that miRNA-containing networks have recurrent circuit motifs (usually defined
feedback and feedforward loops) corresponding to positive and negative transcriptional coregulation of
a miRNA and its targets. Using gene expression data analyzed with a specific computational pipeline,
they show the existence in mammals of two classes of circuits, corresponding to positive and negative
transcriptional coregulation of a miRNA and its targets.

Problems

Network theory applied to biology has drastically changed biological research and has offered very pow-
erful instruments to tackle unsolved problems. However, these instruments still have important limits:
intrinsic limits in biological techniques to detect the level and the activity of biological molecules inside
the cell and the optimization of mathematical models.

Although great advances were made in the last years, microarrays and gene expression measure
techniques are still affected by some problems already highlighted in theoretical work as reported by
Chu (2003).
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Arelatively novel technology as oligonucleotide microarray is influenced by systematic errors (Eads et
al., 2006). For example, probesets fixed on the support are not always correctly mapping over target-genes
sequences; this manufacturer error defines incorrect probesets annotations and, successively, a wrong
association of expression values to genes. Technical mistakes in printing or preparation and labelling of
samples can generate problems with microarray hybridizations that range from no signal detection to data
of apparently high quality that nevertheless are artefacts. After the hybridization, scanner-software read
microarray output images. They are based on the elaboration of pixel intensities (or colours, depending
on technology employed) to obtain for each sample a correspondent numerical value. After that, raw data
obtained from software are normalized with statistical analysis and at the current time, there isnotaunique
normalization algorithm. The most common are *Significance Analysis of Microarray’ (SAM, Tusher et
al., 2001), “Microarray Affymetrix Suite’ (MAS,Hubbell et al., 2002) and ‘Robust Multichip Average’
(RMAIrizarry et al., 2003; Katz et al., 2006) algorithms. As shown in Lim’s work (2007), depending on
what we want to learn from microarray data, the choice of the algorithm is fundamental.

Gene expression is also affected by stochastic regulatory events that occur when transcriptional regu-
lators are present at very low concentrations, so that binding and release of regulators from their binding
sites become stochastic events. In these conditions, current high-throughput technologies are not able to
correctly quantify very low proteins levels. The suspicion that stochasticity had a significant effect on
genes expression came from the observation that genetically identical cells diverge phenotypically.

The work of Elowitz (2002), based on a single-cell approach, enabled determination of two mecha-
nisms by which stochasticity (or noise) is generated. The first one is the extrinsic noise generated from
fluctuations in the amount, activity or location of cellular components, such as transcription factors or
RNA polymerase, that regulate genes transcription. These fluctuations depend on temporal or spatial
variation that determine a probability that a gene will be activated or not.

Instead, intrinsic noise is linked to random microscopic events that govern reactions occurred in
genes transcription. Intrinsic noise is a very subtle snag because, also in a hypothetical cell population
where cellular components are expressed at the same concentrations, it is responsible for variation in
the expression rate among cells.

CONCLUSIONS AND PERSPECTIVES

Transcriptional regulation is a key process in the life cycle of a cell and many biological molecules that
contribute to control it are well-known (Rockman et al., 2006). During evolution, transcriptional regu-
lation significantly changed and its complexity increased as demonstrated by the much more complex
regulation of higher eukaryotic genes than prokaryotic ones (Adami et al. 2000).

The approaches described in this chapter showed the existence and evolutionary conservation among
many species of GRNs, demonstrating their fundamental role for living organisms.

Recently, network theory was successfully combined with transcriptional regulation and other biologi-
cal processes allowing to handle the complexity of cellular systems, even if the technologies employed
can be improved and mathematical modelling can be optimized. In order to obtain more precise and
correct information from experiments, the basic feature is the optimization of experimental design, data
acquisition and analysis. Successively, the data produced need appropriate statistical and dynamical
model to be integrated together. The current models are promising, but do not take into account all the
factors involved in biological processes.
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A comprehensive combination of biological data and mathematical models originating in different
contexts opened the way for the rapid progress of system biology.

Forexample, the meeting of genomics and pharmacology is resulted inthe origin of pharmacogenomics
that studies what target molecules inside the cell are bound by the therapeutic molecules tested. Current
pharmacogenomics research is focused on drug discovery, that is the scan of peptides library to search
interactions between peptides tested and host target molecules. A new paradigm for drug target selection
takes into account global network regulatory interactions among molecules in the genome.

Another example is the comparison between GRNs extracted from data available on gene expres-
sion in normal and cancer-affected tissues. This comparison brings to light genes that are differentially
expressed in tumors as compared to normal tissue, determining gene-signatures for different tumours.
These genes selections combined with the analysis of their regulatory sequences could be employed
as diagnostic markers to predict the cancer predisposition in patients and responsible elements in the
genome.

Looking at the amount of biological databases available, a great challenge of system biology is the
integration of information coming from many biological fields of research (like genome sequencing,
gene expression, protein domains, protein-protein interactions, etc.) and constantly increasing.

Now, like never before, network biology and GRNs analysis are employed in many original applica-
tions butthe integration of well-defined functional biological maps (genomes, proteomes, transcriptomes,
phenome, etc.) into an exhaustive model is necessary. Future research will go in this direction and will
focus on the optimization of methods and new applications.
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ENDNOTES

! The Gene Ontology project (http://www.geneontology.org) provides a controlled vocabulary to
describe genes and gene product attributes in any organism.

2 OMIM™ (http://www.ncbi.nlm.nih.gov/omim/) is a catalogue of human genes and genetic disor-
ders.
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ABSTRACT

Bayesian networks have become a commonly used tool for inferring structure of gene regulatory networks
from gene expression data. In this framework, genes are mapped to nodes of a graph, and Bayesian
techniques are used to determine a set of edges that best explain the data, that is, to infer the underly-
ing structure of the network. This chapter begins with an explanation of the mathematical framework
of Bayesian networks in the context of reverse engineering of genetic networks. The second part of this
review discusses a number of variations upon the basic methodology, including analysis of discrete vs.
continuous data or static vs. dynamic Bayesian networks, different methods of exploring the potentially
huge search space of network structures, and the use of priors to improve the prediction performance.
This review concludes with a discussion of methods for evaluating the performance of network structure
inference algorithms.

INTRODUCTION

A multiplicity of mathematical tools has been developed to represent gene regulatory networks (GRNSs)
with different levels of detail. In the setting of network structure inference from microarray data, Bayes-
ian networks (BNs) represent a commonly used tool to describe the network in a comparatively high
level manner, in contrast, say, to ordinal differential equations. The purpose of this chapter is to provide
necessary background knowledge of BNs.

The structure of this chapter is as follows: in the first section we provide a brief introduction into
the biology of GRNs and the mathematical concepts on which the Bayesian networks are based. In
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the next section we present the theory of Bayesian networks and show how they can be adapted to
model GRNs. We learn how we can use the model to infer or predict activity states of genes in terms
of probability theory, which in general has been one of the classic uses of BNs. Yet, the probably most
prominent application of Bayesian networks in computational biology has been for reverse engineering
of gene regulatory networks, especially since the advent of high-throughput screening methods such as
gene-expression microarrays. This is covered in the fourth section, in which we also discuss the issue
of variable time lags in time-series data whereby the response time of one gene regulated by another
varies greatly among the genes. We finish the chapter with conclusions, and provide directions which
might be of interest for future research.

BACKGROUND
Biology

GRNs coordinate the changes in cellular behavior associated with development or response of the cell or
organism to extracellular stimuli. Transcription factors are the molecules that activate or repress down-
stream genes by binding to promoter and other sequences (cis-regulatory modules) of genes, thereby
modulating the rate of transcription of genes. Combinations of transcription factor binding events in any
one promoter are one of the important factors determining the level of the corresponding mRNA in the
cell. The regulatory state of the cell has been described as the total set of active transcription factors.
However, a number of other molecules influence the activation state and concentration of transcription
factors. For instance, signaling pathways consisting of ten or hundreds of proteins can transduce an ex-
tracellular event (such as the binding of a ligand to a receptor) into an intracellular biochemical signal
by cascading protein modification events. For instance, a receptor-ligand binding event may induce
phosphorylation (and activation) of an intracellular signaling molecule, which in turn phosphorylates
other molecules, thereby propagating the signal through a cascade or network of proteins, some of
which activate transcription factors and thereby influence the transcription of target genes. Other factors,
such as non-coding RNAs, histone modifications, and CpG methylation, can also influence the level
of MRNA of target genes. Therefore, measurement of MRNA levels can provide only a partial view of
the regulatory state of a cell. At present, however, there remain major technical difficulties in obtaining
large-scale measurements of protein levels or protein modifications, so that network structural inference
has for the most part been attempted with mRNA data.

Graph Theory

Graphs are abstract entities of discrete mathematics which are used to encode relationships of interest
between objects of the same domain. Formally, a graph is a pair G=(V,E), in which V is finite set of
vertices, representing the objects, and E a set of pairs of distinct elements of V, which is a binary relation
over V. Elements of E are called edges (or arcs). The pairs may be ordered or not. An order implies a
direction. If all edges of G are directed, the graph is directed. If at least one edge is directed we call the
graph a partially directed graph. Otherwise the graph is an undirected graph.

A path with length n is a sequence of vertices (v,,...,v,) which respects the edges, i.e., (v,,v,,,) € E
for all i. A cycle is a special path whose start vertex v, equals to the end vertex v . A directed path is a
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path, in which the edges between the vertices are all directed. A directed graph is acyclic if it contains
no directed cycle; such graphs are referred to as directed acyclic graphs (DAGs). A partially directed
acyclic graph (PDAG) is a graph which contains directed and undirected edges, but which doesn’t
contain any directed cycle.

Probability Theory

A probability space is a triplet (Q,%,P), in which the sample space Q defines all possible elementary
events of an experiment. The set X contains events, based upon the sigma-algebra of subsets of Q. The
probability measure P maps any event £ € ¥ to a real value between 0 and 1 such that 0<P(E)<I. In
addition, a probability measure must satisfy P(2)=1, and for any number of sequences of n disjoint

events P(E, UE,U...UE )= P(E,).

A random variable is a functiofi that maps elements from the sample space Q to a measurable space,
the state space (often real-valued). A probability distribution is a probability measure over the state
space.

If the sample space of a random variable is finite or countable then the random variable is said to
be discrete. The probability measure is then described by a probability mass function (pmf). As an
example consider throwing a coin. The sample space is countable, it can be Heads or Tails, therefore
Q={Heads,Tails}. The state space could be {0,1}, mapping the outcomes to measurable entities, i.e.,
entities that we can calculate with. The pmf of such variables is a Bernoulli distribution, which, in this
particular case, would assign to both elementary events 0.5 if the coin is fair.

Now consider a random experiment, in which every trial results in one of k possible outcomes, where
the probability of observing an outcome i is given by p.. When repeating this random experiment m
times, let X, count the number of times outcome i is observed. The pmf is then described by a multino-
mial distribution which is given by

(371 —i—...—l—x’) . .
P(Xlle"”’Xk:xk):f<x17”"xk;p1""’pk):Wpl pL , (1)
where Zx . Note that for coin example we would have k=2, and p,=p,=0.5.

The concept of random variables can be extended to uncountable sets as well. Arandom variable X is
said to be continuous if its probability distribution is continuous, i.e., it is a probability density function
f(x), which is f(x)>0 for all z € R and

[ s -

The probability of a<X<b denoted as P(a<X<b) can be calculated by integrating the density function
from a to b. Note that this implies that for continuous random variables P(X=a)=0, for all a € R.

As itis in the discrete case, there are several common classes of continuous probability distributions.
A very popular distribution for continuous variables is the normal distribution, also referred to as the
Gaussian distribution. The density function of the Gaussian is given by
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f(z) =

e
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where p is the mean and 6° the variance. The density function is often abbreviated as N(u,6?). The mul-
tivariate normal distribution is a generalization of the normal distribution to more than one variable.

Another continuous distribution is the Dirichlet distribution. It is a multivariate distribution, whose
density of order k with parameter a,>1 for 1<i<x is given by

)t @

assuming that 0<x<1 and Z;l z, =1, The gamma function I'(*) is a generalization of the factorial for
real numbersz € R, thatis, I'(z + 1) = zI'(x).

For any probability space, two events, say A and B, are said to be independent if and only if
P (A N B) = P(A)P(B). The conditional probability of event A given B denoted by P(A|B) is defined

P(ANB)
as P (B) . It represents the probability of A if it is known that B has occurred. If A and B are inde-
pendent, it follows that P(A) = P(A|B). We say that A and B are conditionally independent given a third
eventC, if P (A NB| C) = P(A|C)P(B | C).Tworandom variables X and Y are said to be independent
if and only if any outcome of X is independent given any outcome of Y, denoted by I(X;Y). That is X and
Y are independent in their probability distribution. X and Y are conditionally independent given another
random variable Z, if they are independent given any outcome of Z. We denote this by 1(X;Y|2).

A joint probability distribution (jpd) is a probability distribution of two or more random variables
together. The joint probability distribution of two variables X and Y is denoted by P(X,Y). The marginal
probability distribution (mpd) of X is the probability distribution of X ignoring Y altogether. Depending
whether Y is discrete or continuous, it can be determined by summarizing or integrating according to the
probability distribution over Y’s state space. If the jpd consists of more than one other variable in addition
to X then we summarize over all combinations of the states of the other variables, denoted by Z

{xh
Bayes’ Theorem

Bayes’ theorem follows from the definition of the conditional probability and relates the conditional
probability P(A|B) to P(B|A) for two events A and B such that

p(4| By = 2ELAPA) (BP (g]; ()

Inthis context, P(B|A) is referred to as the likelihood, as it is a probability of parameter B, in contrast to
P(A|B) which called the posterior; it is derived from the knowledge of B. P(A) is referred to as the prior,
as it represents the knowledge of A prior to the knowledge of B. P(B) is the normalization constant.
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If the posterior P(A|B) has the same algebraic form as the prior P(A) then the prior is said to be the
conjugate prior to the likelihood. For instance, if the likelihood is a multinomial distribution (Equa-
tion 1) and the prior is a Dirichlet distribution (Equation 2) then the posterior will also have a Dirichlet
distribution, albeit with updated hyperparameters a.. Therefore the Dirichlet distribution is a conjugate
prior to the multinomial distribution.

BAYESIAN NETWORKS

Bayesian Networks can be seen as a mixture of graph theory and probability theory. ABN is pair B=(G,0)
consisting of a directed acyclic graph G=(V,E) and a set ® of local probability distributions (LPDs).

The vertices (nodes) of the graph V={1,...,n} bidirectionally map to variables X={X,...,X }. The
directed edges in E stand for direct dependency relations of one variable to another. We say that X is a
parent of X, if there is an edge from node i to node j. The set of indices of all parents of X is denoted
by pa(i). A family is defined as the set of a variable and all of its parents. For a concrete realization (as-
signment) of a set of variables we use the term configuration.

The DAG encodes independence relations following the Markov condition, which states that a vari-
able given the parents doesn’t depend on any other non-descendants, i.e., those variables to which no
directed path exists.

In addition to the structural properties, for every X, € X there is a local probability distribution
(LPD) defined which depends only on the configuration of the parents denoted as p(Xi|Xpa(i)). As a vari-
able given the configuration of the parents is independent to all other variables, the multidimensional
joint probability of all variables can be calculated as:

p(X,.. X, |G):ﬁp(XZ_ |Xpa<i))_ ®)

DAGs encoding a certain conditional independence are not necessarily unique in the space of all
DAGs. For example consider the following conditional independence relation: 1(Y;Z|X). All three con-
ceivable Bayesian network structures for which this relation is true are shown in Figure 1.

In contrast, the first structure depicted in Figure 2 encodes quite a different independence relation:
I(Y;Z). Such structures, that is, subgraphs consisting of three nodes in which the edges of two nodes
converges into the other one are referred to as v-structures.

In general we say that two DAGs are equivalent if they encode the same set of conditional inde-
pendences. As proven in Pearl and Verma (1990) this is the case only for such graphs that have the
same skeleton, which is constructed from a DAG by omitting the direction of the edges, and the same
v-structures. The equivalence relation naturally imposes a set of equivalent classes onto the space of
all DAGs. The equivalent classes can be represented uniquely by PDAGs. The second part of Figure 2
displays the PDAG for the example (which is a simple undirected graph here).
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Figure 1. Three different DAGs that all encode 1(Y;Z|X) and therefore belong to the same equivalence
class

Figure 2. The first structure a) represents the I(Y;Z) but not I(Y;Z|X). The second b) represents the
equivalence class of the three DAGs depicted in Figure 1.

TWO COMMON LPDS

Although any LPD can be used for BN analysis, two are extensively used in practice: the multinomial
distribution (MD) for discrete variables and the normal (Gaussian) distribution (GD) for continuous
variables.

The MD for a variable X, with m discrete states is a function of all members of the variable’s family
which maps all possible configurations to a probability value between 0 and 1 such that for every parent
configuration 7,

j=1

Usually, the MD is given as a conditional probability table (CPT).

For the GD, the distribution for each variable follows a normal distribution whose mean depends
linearly on the configuration of the parents:

p(XZ ’ Xpa(i)) = N(X,’IUQ + Z bz‘]’(Xj - :u7)70-z2)

i)
j€pal(i)

where b, defines the strength of the influence of variable X; on X;. Note that b,70, otherwise one would
not include X; in the parent set of X.

Note that while non-linear relationships can be modeled using the MD, the fact that the mean of the
GD isa linear function of the states of the parents means that non-linear relationships cannot be modeled
with the GD. Also note that a BN is not required to have either discrete or continuous nodes. Instead one
can mix nodes by defining different types of LPDs for the nodes.
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Figure 3. Two common gene regulatory network motifs; a) feed-forward loop b) single-input module
consisting of the master transcription factor X and n regulated genes

CY

a)

MODELING GENE REGULATORY NETWORKS

In order to model gene regulatory networks using the BN framework, the genes are mapped to corre-
sponding random variables. The transcriptional regulations, i.e., activation or deactivation, are modeled
intuitively by the edges in the graph such that there is an edge from every regulator gene to its target
gene. A transcriptional family consists of a single target gene and all its regulator genes. The precise
transcriptional influence within a transcriptional family is given using the LPD for the target gene.

Avariety of network motifs have been described for gene regulatory networks. The feed-forward loop
(FFL) is typical for transcriptional networks, and indeed is one of the most frequent motifs in sensory
transcriptional networks consisting of three genes (Alon 2007). Let us name the genes X, Y, and Z. The
characteristic of the motif is that gene X regulates gene Y and that gene Z is regulated by both X and
Z. The FFL motif as depicted in Figure 3a can be easily mapped to a Bayesian network. The concrete
influence, that is, whether an edge activates or deactivates the target gene can be modeled via the GD
or MD. A synergistic effect, however, can be modeled with the MD only.

Another important motif is the single-input module (SIM) as depicted in Figure 3b. This motif is as
common for both sensory and developmental transcription networks as the FFL is. The main feature is
that there is a so-called master transcription factor which exclusively regulates a set of target genes in the
same regulatory fashion (i.e., all of them are either activated or deactivated). As the activation thresholds
of the target genes’ transcription varies, often the SIM occurs when there is a need for kind of assembly
line, in which the temporal order of the expression is important. The system which is responsible for
the construction of the flagella in E.coli (Kalir et al. 2001) is a prominent example that employs such a
motif. Although the principal relationships can be mapped easily to a BN, the characteristic time depen-
dent properties (i.e. the order of the gene transcription) can hardly be modeled by this class of Bayesian
networks, also referred to as static Bayesian networks.

For instance, Le et. al. (2004) constructed a network for the hepatic glucose homeostasis. The net-
work contains 35 genes, some of which genes map to the insulin, glucagon, and glucocorticoid signal-
ing pathways. Every gene is modeled as a discrete variable with two states representing low and high
activity. For the construction of the relationships they used domain knowledge gained from intensive
literature research resulting in 52 regulatory interactions. The graphical representation of their network
is depicted in Figure 4. The CPT for gene EBH is given as an example in Table 1.
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Table 1. Depicted is the CPT for gene EBH which is regulated by CBA (activating) and CBB (dominantly
repressing). If both transcription factors CBA and CBB are low then the activity is modeled as 30%.

CBB CBA Low High
Low (0) Low (0) 0.7 0.3
Low (0) High (1) 0.1 0.9
High (1) Low (0) 0.9 0.1
High (1) High (1) 0.9 0.1

Figure 4. The structure of the Bayesian network of hepatic glucose homeostasis process as constructed
by Le et al (2004)

A drawback of the Bayesian network approach is that it is not possible to model motifs which consist
of a loop. In addition to the motifs described above, another common motif of gene regulatory networks
is the feed-back loop (FBL), which often appears in developmental transcription networks. Here gene
X and Z both regulate gene Y, but gene X and Z also regulate each other. The graphical representation
is depicted in Figure 5a. However, as this graph is not acyclic, it is not a valid structure for a Bayesian
network which requires the structural graph to be acyclic.

In real biological networks genes and therefore transcription factors are transcribed in a different
amount at different rates depending on the process they are involved in. Furthermore, the threshold for
an activity of a transcription factor depends not solely on its amount but also on the specific properties of
the protein (e.g., its affinity to the DNA) and varies greatly. Thus, the regulation of one gene by another
doesn’t result in instantaneous changes of the expression level of the regulated gene. In fact, the time

Figure 5. The structure of the feed-back loop network motif. The network shown in panel a) cannot be
represented as a BN because there is cycle. Unrolling the temporal relationships as shown panel b)
leads to a valid dynamic BN.

@ X X

w
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required to transcribe a gene ranges from about 1 minute in bacteria and yeast to 30 minutes (including
MRNA processing) in mammals (Alon 2007).

The common way to incorporate such time delays is to duplicate the set of variables as many times
as discrete time steps need to be taken into account. The first set of variables is used to represent genes
at time point i. The other sets are assigned to subsequent time steps, i.e., i + 1, i + 2, and so forth. Edges
existing between these sets can be seen as a directed time-delayed regulation. These kinds of Bayesian
networks are usually referred to as dynamic Bayesian networks (DBN). By unrolling a graph contain-
ing directed loops such as the mentioned FBL one can derive a dynamic Bayesian network as depicted
in Figure 5b.

INFERENCE

Using a fully specified BN instance, one can make predictions about an outcome given the states of a set
of variables (the evidence). This is one of the main applications of the Bayesian networks. For example,
consider that we know that the gene IPA is in the state high and that the gene G6P is in state low, which
state is the most likely one for the gene LCP?

Recall that a BN is just a way to express a joint probability distribution, P(X) with X being the
vector of all random variables of the BN. Therefore we can answer such questions by calculating the
marginal probability distribution of the respective objective variable, whereby all the observations (evi-

dence) are incorporated during the calculations. In particular, for the question given above, we calculate

P(LCP) = 3" P(X|IPA = high, G6P = low) Atthe firstsight, this summary operation seems to be

carried over gﬂﬁge space because the network consists of a total of 35 genes. However, as the Bayesian
network factorizes the joint probability distribution as a product of local distributions due to Equation
1 the problem becomes more easily solvable, after some rearrangements such as the exploitation of the
distribution law. The procedure is commonly termed belief propagation.

A general algorithm for the so-called marginalize product-of-functions problem (MPF) is the sum-
product algorithm which is applied on a factor graph. (Frey etal. 1998, Kschischang et al. 2001) A factor
graph is an undirected graph which expresses how a global function is factorized using local functions,
also referred to as the factors. It is a bipartite graph, in which the first set of vertices represents the
variables, and the second set the factors. There is an edge between a variable vertex and a factor vertex,
if and only if the factor depends on the variable. The derivation of a factor graph representing the same
joint probability as a particular Bayesian network therefore can be easily achieved: Take twice as many
nodes as there are variables in the BN; the first half represents the variables, the second represent the
factors. Every factor corresponds to the LPD attributed to a variable. Then, for every random variable X
draw an edge from its associated factor to those nodes that are located in the first set and represent the
family members of X. Figure 6 illustrates the factor graph of a subnet of the hepatic glucose homeostasis
network mentioned above.

The sum-product algorithm can be described in terms of a message passing algorithm acting on the
factor graph. Here we consider an acyclic factor graph. The algorithm begins at the leaves of this factor
graph, i.e. nodes that only have a single neighbor. Leaf variable nodes send a trivial identify function
message to their neighbors, leaf factor nodes send a description of the function to their neighbors.
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Figure 6. On the left side a subnet of the hepatic glucose homeostasis is depicted, while the corresponding
factor graph is depicted on the right side. This graph encodes the structure of the joint probability density
function with aid of two set of nodes: the variables (depicted as circles) and the factors representing the
LPDs (depicted as squares). The edges between the nodes represent the variables’ dependencies.

IPA

ORC
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Each node v waits for a message from all but one of the adjacent nodes before it sends a message
along the remaining edge to a node w based upon a computation according to its type: a variable node
computes the product of the received factor messages, a factor node representing function f forms the

product of f with the received variable messages and applies the summary operator E where x repre-
sents the variable of node w. o

Node v then waits for a returning message from node w. Then it sends a new message back to all
adjacent nodes except for w. The algorithm terminates as soon as for each edge one message for each
direction has passed. Thus, by calculating the product of all incoming messages, all variable nodes x,
then have determined their corresponding marginal function.

BAYESIAN NETWORK LEARNING

In the previous section, we showed how Bayesian networks can be used to predict the outcome of an
event, e.g., to find out the downstream result of a perturbation. Before one can apply any inference
algorithm, of course, a meaningful model of the process in question is needed.

One possibility is to use expert knowledge to build a network for a gene regulatory process as it was
done in the example of hepatic glucose homeostasis. This is practicable for smaller or less detailed net-
works, which are described in literature. Another possibility is to let the computer find statistical relations
in observed data, as, for instance, obtained by microarray technology. These so-called learning procedures
have an important role in research: they enable scientists to discover relations that have not been listed
yet, which is the actual goal of molecular biology. One nice feature of the presented Bayesian network
framework is that it unifies these two approaches, and as we will see, in a quite elegant fashion.
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For Bayesian networks there are two kinds of properties which can be learned from observed data:

»  the parameter of the local probability distribution, and
«  the structure of the graph.

In the following we will concentrate on the latter method, as for a biologist this is the most interesting
feature of GRNSs, especially if only little about the studied GRN is known.

Learning the structure of a Bayesian network means that we like to find such a network that best
explains the observed data. This can be done using a variety of approaches, e.g., by formulating the
problem as an optimization problem.

The intuition behind optimization algorithms is that we use a scoring measure to evaluate the goodness
of a single network with respect to the given data. By scoring every feasible network of the space of all
networks we then take the one which scores best. However, this approach is bound to fail as the number
of possible DAGs is super-exponential in the number of vertices as derived by Robinson (1973). Worse
yet, Chickering (1996) showed that such a problem is NP hard with respect to the number of variables
which essentially means that with current knowledge there is no algorithm known that is capable of
finding an optimal solution in acceptable amount of time.

In such cases we can usually fall back to approximation algorithms, heuristics or stochastic proce-
dures, which will be the topic of this section. This is also the part in which the gene-expression data
comes into play. Due to the probabilistic nature of Bayesian networks such learning procedures have
the advantage that they can deal with noisy data inherent to the microarray technology fairly well.
Moreover, they also allow prior knowledge to be easily incorporated which can improve the ability to
infer the correct network.

One important aspect of learning in general is the issue of overfitting. Intuitively, overfitting means
that the learned model represents the training data too well. For instance, Bayesian networks whose
structure is determined by a fully connected directed graph can surely explain more data than a less dense
graph could do. What we ought to look for are structures that explain the data fairly well but avoid the
model becoming too complex. This process, i.e., the process of balancing complex models against less
complex models which may not entirely reflect all relationships, is termed regularization.

Let (G, ®) be a Bayesian network as defined above. Furthermore, let D be the complete data con-
sisting of ¢ cases D= (d,,...,d) from which we want to learn the structure. In order to find a structure
reflecting the observed data, one seeks a model, whose graph structure G maximizes P(G | D). This
reflects the application of a maximum a posteriori (MAP) approach, because according to the Bayes’
theorem we have

P(GD)—%P(D\G)P(G), 4)

where P(D|G) is marginalizedlikelihood, and P(G) in general the prior, in particular the structural prior.
The divisor

Z:;P(D\G)P(G) (5)
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is referred to as the normalization constant. Because the model space is super-exponential in size cal-
culating Z is not possible if the number of variables is large. In order to find a maximum it suffices to
consider the product P(D|G)P(G). If no prior knowledge is available then the uniform distribution is
assigned to P(G), i.e., every model is equal likely. In this special case it suffices to maximize P(D|G).
The marginalized likelihood P(D|G) is the result of the integration of the likelihood with respect to the
parameter prior over the whole parameter space ®

P(D\G):fP(D]G,G)P(@\G)d@. (6)

It can be shown that, if the data is complete, this integral becomes analytically solvable for certain
probability distributions of the likelihood, especially for the multinomial distribution and the normal
distribution, when a conjugate prior is used.

This averaging and weighting according to the parameter prior amounts to Occam’s razor, because
overly complex network models with many free parameters are penalized. This is intuitively explained
in Riggelsen (2006): consider a dense graph and sparse graph and note that the models are different in
the number of free parameters: for the dense graph, more parameters need to be determined than for the
sparse graph. Therefore the distribution of the parameter prior P(®|G) of the dense graph has a flatter
shape than the distribution P(®|G) of a sparse graph. As the density of every point is smaller, complex
structures are penalized.

Let score(D,G) be a function which assigns the graph G with respect to data D a certain real number.
An important property of the scores that we will consider in the following is the property of decompos-
ability. That s, in order to calculate the score of a graph it suffices to calculate the score of every family.
The score of the graph is then composed by determining the product of all these scores denoted as:

score (D, G) = ﬁ score (Di‘pam, X, Xpa(i))

Previously, we have already noticed that more than one DAG graph may capture the same conditional
independence. While this doesn’t impose a problem if an expert defines the network structure as he
defines the causal relation, we cannot distinguish DAGs from other DAGs belonging to the same score
equivalence class from data alone. Therefore algorithms which learn from observational data alone
can merely produce PDAGSs. In order to learn causal relations we somehow have to fix a variable and
re-initiate the experiment which generated the data. In the setting of learning GRNs this means that we
have to perturb a gene’s expression, for instance, by doing a knockout or overexpression study, and apart
from that repeat the experiment under the same conditions. In their study Werhli et al. (2006) showed
that the ability to correctly detect edges increased significantly.

Note that the case is different if we consider learning from time course data as the casual relations
are defined by the time. Yet, perturbations also help here to uncover the regulatory relationships as the
purpose of perturbations is changing the dynamics.

Note that even though we can only distinguish score equivalent classes most algorithms operate on
the space of DAGs although an operation on the smaller space of PDAGs seem to be more suitable. This
however is mainly due the simplicity of the natural operations in the space of DAGSs. In contrast local
operations in the space of all PDAGs are more complicated.
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Discrete Scoring Metrics

As already noted above, the conjugate prior for the multinomial is the Dirichlet distribution. For x; let

N(X;X,q,) be the number of configurations with X;=x; and X =x . within the data. Furthermore, let

”(%M) = ZJ,”(”?: Jf}m(i)) be the number of configurations for which x is marginalized out. For the
discrete case, the likelihood can be determined using

I T I . n (x.

: (’ (())) (1 (‘”” ‘”pa@)+ (”()))
p(|¢)=11TI

0 @6 Yo (“””()))H rofs,g))

where a is the prior belief of the certain configuration following from the P(6 |G) of Equation 6. It could
be given by an expert for a particular G, but obviously this is impracticable. Rather than specifying the
parameter for every model we can select a single probable model, say G’, along with its parameters,
say 0’. We then let

a(cﬂj,xmw) =FESS - P(xj,xmm | G',@'),
where ESS is the so-called equivalent sample size. Both parameters contribute to the regulation. ESS
represents, as the name suggests, the magnitude of the belief in the prior, i.e., to how many samples
have been already seen on which the prior is founded. While therefore the ESS can be attributed to the
global regulation, the factor P(X,Xpa(i)|G’, 0”) amounts to the local regulation, that is, the regulation for
every vertex. The score is then referred to as the Bayesian Dirichlet equivalent (BDe).

The specification of such a probable G” and 0’ is often not possible. If we let G’ be the empty graph
and assign a uniform distribution to P(x|G’,0”) we get what is termed Bayesian Dirichlet equivalent
uniform in literature. This eventually leads to

e ESS
o) = o ) H)Q(ﬂfj)

jepali
where a [Q(x)| gives the number of discrete states of variable x..

The K2 score simply assigns all a(xi,xpa(i)) avalue of 1. Its main drawback is that it is not score equiva-
lent in contrast to the previous scores. Therefore, it is not really suited when learning the model solely
from data. However, the K2 score initially was derived as part of the K2 algorithm (Cooper et al., 1992)
which assumes that the order of the nodes is known. In this setting the criterion of score equivalence is
not relevant (Riggelsen 2006).

A disadvantage when applying a discrete score is that data has to be available in discrete form. This
may require a discretization step beforehand, and thus an associated loss of information. But then it
may also lead to the reduction of noise. A basic method to discretize the continuous microarray data
was applied by Friedman and co-workers (2000). Based upon a control, they assigned three states to
the values, depending on whether they are overexpressed, underexpressed, or equally expressed. Others
take the mutual information of the genes’ expression values into account with the objective to preserve
it as much as possible as done by Hartemink and co-workers (2002).
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Figure 7. All possible structures that can be derived by applying a rule to the graph G. Graphs which
are placed in the same box represent the same equivalence class. The last graph of the bottom row is
not in the neighborhood as the proposed change would make it cyclic. The neighborhood N(G) therefore
contains six graphs that can be obtained from G by single operations.

Continuous Scoring Metrics

Analogous to the multinomial case a score for the case, in which the LPD of nodes follows a normal
distribution, a continuous scoring metric was derived by Geiger (1994). This score is referred to Bayesian
Gaussian equivalent (BGe) score. The advantage of using this score is that the data doesn’t need to be
discretized, bypassing a potential information loss. The disadvantage is again that non-linear dependen-
cies cannot be detected.

Strategies for Finding a Good Model

As noted in the first part of the section, a brute force attempt to find the optimal model can only suc-
ceed for relatively small sized networks. So far, conceiving an efficient algorithm is also not possible
unless P=NP. Several heuristics to find good fitting models have been proposed. In the following we
will introduce the most widely used algorithms.

One of the general approaches to find a good solution of an optimization problem is the so-called
greedy hill-climbing algorithm. Given an instance of a model we systematically perform small local
changes to the model in order to find that modification that increases the objective score at most. Using
this model we repeat the procedure until no other change can produce a model which fits the optimiza-
tion criteria better. With this algorithm, only a local optimum can be found.

In the setting of Bayesian networks the rules for local changes that can be applied encompass adding
an edge between two nodes, removing an edge, or switching an edge. Given a fixed structure G we call
the set N(G) the neighborhood of G, which encompasses all DAGs that can be derived from G by the
application of a single operation, as depicted in Figure 7.
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Technically, because of the scores’ decomposability, it is enough to recalculate the scores of the af-
fected families to weight the change. One further important result of studies of gene regulatory networks
or biological networks in general is that the underlying graph is sparse. Applied to the Bayesian networks
framework this means that the size of atranscriptional family is relatively small, i.e., the number of parents
of a gene doesn’t exceed a certain constant, say k. Such gene is said to have a maximum fan-in of k.

An early adopter of this observation is the so-called Sparse Candidate Algorithm (SCA) of Friedman et
al. (1999). SCAis a variant of the greedy algorithm. Every iteration j can be divided into two phases:

1. Intherestrictionphase, weselectforeveryvariable X acandidateset C, with|C |<kwhichdefinesall poten-
tial parents of X.. This induces another graph: H’ = {XL s X }, {(Xi,Xj)| Vi, j: X, € C,}
2. In the maximization phase we enumerate all possible acyclic subgraphs of H! in order to find the

graph G!, which maximizes the optimization score.

The algorithm stops, either if score(G)=score(G!) and if H' = Hi"* or if score(G')=score(G?) for a
certain number of iterations. A crucial aspect of the procedure is the way the candidates are selected in
the restrict phase. One requirement is that set of candidates of parents for a variable always includes the
current parents. Therefore for each iteration we get at least a structure which is as good as the previous
one, ensuring the termination of the algorithm. Furthermore, a new parent variable is chosen for each
variable X, based upon the current parent set of X,, whereby the candidate parent is selected whose inclu-
sion into the family leads to the highest improvement of the score. Previous candidates of X, which are
not present in the parent set are discarded.

From an algorithmic point of view we note that the detection of directed loops doesn’t come for free.
When using a static algorithm this can take up to O(n + m) steps where n is the number of nodes and m
the number of edges in the graph. The cycle detection test is necessary for every operation which pos-
sibly can construct a cycle, i.e., the adding or reversing of an edge. For the SCA this would be performed
in the maximization phase. Thus, rather than applying a static algorithm for detecting cycles it makes
sense to consider using a dynamic algorithm such as the one of Marchetti-Spaccamela et al.(1996) or of
Katriel and Bodlaender (2006). The property of these algorithms is that they maintain the topological
order of nodes while edges are inserted and removed. The problem of topological sorting is related to
directed cycle detection.

When we want to infer the structure of a dynamic Bayesian network, however, the test for acyclicity
can be omitted: edges may be only directed from an earlier time point to a later time point. The cardinal-
ity of the neighborhood is always the same.

MCMC in the Space of DAGs

When inferring the network structure from microarray data, the data usually is sparse, which means that
the number of available samples is relatively small compared to the number of variables (genes). The
probability distribution P(G|D) is then expected to have a wide shape, so no single network has a clear
maximum score. Rather than that there can be networks whose scores are close to each other.

This suggests the idea to sample networks according to the posterior P(G|D), which essentially means
that good models have higher chance to be sampled than models which explain the data poorly. From this
set of sampled networks, interesting features can be extracted as formalized in Friedman et al. (1999).
For instance, one could construct a weighted DAG in which the edges are weighted according to the
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number of their occurrences in sampled DAGs. This way, a kind of ranking about the confidence of the
edges can be obtained. Also more complicated features such as counting particular network motifs are
conceivable. However, at first glance the sampling doesn’t seem to be possible due to the normalization
constant in (4).

Asolution to this problem was brought up by Madigan and York (1995) who adapted the Metropolis-
Hastingsalgorithm for process of learning Bayesian networks. As for the context of finding gene regulatory
networks it has been for instance used by Husmeier (2003). First note that in general a time-homogeneous
Markov chain is stochastic process over the space of models G, which is defined as

ZH@J:Z:NQ!%V1@J,

where T(G, | G,) determines the probability of going into state G, given that we are at state G,. Under
fairly mild conditions this converges to a stationary distribution P_ uniquely defined by T from which
we can sample from just by running the chain.

For learning structural properties of Bayesian networks the model space is made up of all possible
DAGs with a fixed number of vertices. As above a transition is a small local change that leads to a graph
in the neighborhood N(G,). All we have to do is to define T such that the stationary distribution of the
Markov chain P_ equals the posterior P(G|D), that is:

P(G | D)= ;T(Gi |G, )P(G, | D).
But this is the case if the so-called equation of detailed balance holds:

T(G.|G) P(G, |D)

T(G|G) P(G|D)

Usually T(G, | G)) is composed as a product of a proposal probability Q(G, | G,) = [N(G)|*and an ac-
ceptance probability A(G, | G,). The intuition behind this is that first we randomly select a new structure
following the proposal distribution and then accept it corresponding to the acceptance probability. The
acceptance probability is determined as

A(@, | G yomin | DG IDRG G
e 10 P(G, | D)QG, |G ]

which, after applying Bayes’ theorem, becomes

A(G, | G )=min [1;((1; ”

This means that one can also plug-in an arbitrary score and incorporate prior knowledge. Note that,
if a uniform structural prior is assumed, then these priors can be cancelled out. Also note that, in case of
a dynamic Bayesian network, the proposal distribution can also be cancelled out, as the neighborhoods
are all equal in size.
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Using these properties, it is now possible to formulate the algorithm to sample the networks. First,
we start with an arbitrary initialized network (e.g., an empty graph), say G,. Then, for i=1to N, we

+  randomly select a structure G from the proposal distribution Q(G|G, )
+  accept the new model, i.e., G, = GP, with probability A(M, | M. ).

Before one can consider the G, as proper samples, i.e., before the Markov chain reaches its stationary
distribution, the chain has to be run several steps, though. This phase is also referred to as the burn-in
phase of the Markov chain. This value and therefore the parameter N can go into the thousands or ten of
thousands, but this highly depends on the size of the network and on the data. Often it makes sense to
monitor the acceptance probability: if it is subject to high fluctuations, it is very unlikely that the chain
has reached the equilibrium. In order to determine the confidence, it is also helpful to repeat the run for
several times using different initialization settings.

MCMC in the Space of the Orders

So far, when we scored networks we dealt with fully specified network structures based upon DAGs.
Another approach is to forget the structure for a moment and concentrate in a first step on the topologi-
cal order of the n nodes as suggested by Friedman and Koller (2000). The authors showed how one can
compute the posterior of network structures using this order. Furthermore, it is possible to apply other
algorithms that benefit from this information in the construction of the true structure, such as the already
mentioned K2 algorithm. But it could be also interesting per se, as the order can indicate genes upstream
the regulation process, for example, providing feasible candidates for perturbation experiments.
Denote by O the order of the nodes. Analogous to the previous section, we want to sample from the
posterior P(O|D). In order to do so, we construct a Markov chain which consists of all n! possible orders
such that the Markov chain has the stationary distribution P(O|D). Denote by Q(O’|O) the probability
of moving from O to O’. This could involve flipping the order of two randomly selected nodes, i.e., we

change the order (il,...,ij,...ik,...in) to (il...ik...ij...in). We accept the proposal with probability of
P(O"|D)Q(O |0’

A(0"| 0) = min ( | )Q( | >,1 _
p(o|D)Q(0']0)

Notice that according to Bayes’ theorem for any O we have

P(D|0)P(0) p(0'|D) P(D|0O') PO

P(O|D)=
The relation of P(O) against P(O’) can be again neglected, if no prior information is available, i.e.,

all orders are equally possible. The likelihood P(D|O) can be indeed calculated in a closed form as given
by Friedman and Koller (2000).

P(D | O) = H Z score(Di‘j,Xi,XJ.).

i ‘761/1',()
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where U, ; contains the sets of all parents, which can precede X; in the given Order O. The cardinality
of the elements of Ui,o can be restricted to not exceed a certain size of k, meaning that the maximum
fan-in of gene represented by X is k.

Structural Priors

The term P(G) allows the user to favor some models over others to the extent that graphs with certain
edge configurations, i.e., that lack of or feature a particular edge, are assigned a higher probability. This
way, information can be integrated which is not derivable by microarray data alone.

Sequence based properties of the involved genes can be seen as one source of a prior. That is, if a
promoter of a gene X is predicted to have binding sites of a product of another involved gene Y it can
be assumed that the final network consist an directed edge from Y to X. The existence of such predicted
relationships is used to build a prior graph. A simple but rigid incorporation of such links would be to
attribute a probability of zero to those structures which lack the links which are in the prior graph as for
instance done in Hartemink et al. (2002). A procedure which adheres to the noisy nature of the predicted
binding sites was used in Husmeier (2003): basically for every agreement between the prior graph and
G on an edge the prior of G is weighted by a value of ¢>1. A more involved method is due to Segal et
al. (2002).

Other priors involve limitations on the maximum fan-in of genes or favor net conformations such that
genes encoding interacting proteins are more likely to be regulated by a common transcription factor.
The Bayesian framework is quite flexible in this respect, and it is possible to incorporate almost any
kind of biological information into the prior.

Time Lags

In the setting of inferring the network structure from a time series, for which one can use the DBNs,
the incorporation of knowledge about time lags can improve the quality of the network considerably.
Hence an important issue of any inferring algorithm applied on time series is the capability to detect
the time a transcription factor needs to influence the transcription of its target gene in order to take the
full advantage of the data.

In the following we briefly describe a method which can be used to determine the time lags. The
method is due to Zou and Conzen (2005). They define that a gene j may be regulated by another gene
i if its expression values changes after the value of gene i changed. Gene i is then called a potential
regulator of j.

The first part of the procedure involves finding all potential regulators of any gene whereby a gene’s
expression is considered as changed when it reaches a certain threshold. The biological relevant tran-
scription time lag between a regulator i and its target gene j is defined as the difference between the
time points of initial expression change of i and j. The second part of the algorithm determines for every
potential regulator-target pair the time lag according to this definition. This information is then used to
set up the dynamic Bayesian network consisting of multiple time points.
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Assessing Performance

Of course, running any algorithm on any data will always produce some models. But how much reality
is really reflected in such model?

A major difficulty in assessing the performance of algorithms for reverse engineering GRNSs is the
fact that our knowledge about such networks is far from complete. Therefore, in most cases no gold
standard is available against which the results of network structure inference could be compared. How-
ever, it is possible to use literature-derived regulatory interactions for comparison of results (e.g., Zou
and Conzen, 2005). For example, typically one asks how many known interactions are identified as
edges in the inferred network structure. Caution is needed, though, simply due to the fact that if an edge
between two genes is predicted by the reverse engineering algorithm but was not previously known in
the scientific literature, it may not be possible to distinguish between a lead towards a new discovery
(the actual goal of the analysis!) and a false-positive prediction.

Another approach was performed by Friedman and coworkers (2000), taking advantage of the boot-
strap method to generate multiple “perturbed” versions of the original dataset which still are reasonable
models of the data, performing network inference, and determining the proportion of experiments in
which a feature such as an edge between two genes is identified. In one experiment, the authors showed
that analysis using a multinomial model on randomized data did not identify any feature in over 80%
of the bootstrapped trials. They concluded that features identified in a greater proportion of trials using
the original data were unlikely to represent mere artifacts.

A number of groups simulated GRNSs to generate data for Bayesian network inference. In this case,
since the structure of the “true” network is a given, it is possible to calculate the specificity and sensitiv-
ity of structural inference methods. Multiple approaches for simulating data have been proposed. One
simple method is to construct a complete Bayesian network to reflect either known or synthetic networks
(Husmeier 2003; Le et. al 2004; Geier et al. 2007). Then, as the structure as well as the parameters is
known, we sample data according to this model. We then apply the inferring algorithm to this data. By
determining the agreement of the resulting model to the original one we can assess the quality of the
algorithm in certain respects, for instance ability to find the correct network subject to the number of
data samples or to the amount of prior information.

Several groups used more realistic modeling procedures to generate synthetic network data. One
approach is due to Zak and co-workers (2001). A small sized network described by chemical reactions
consisting of a certain amount of genes, and includes transcription factor binding, transcription, transla-
tion, as well as protein-protein interaction events. Following the reaction-rate approach, these reaction
equations can be shaped into a set of ordinary differential equations (ODEs). These can be integrated
using an arbitrary initial value to obtain a function of the concentration against time for every involved
species.

One then can imitate a typical microarray experiment, in which merely the abundance of the mRNA
species can be measured, by only considering the mRNA profiles. One selects certain time points as one
would in the real experiment. One can then feed the data obtained from the ODE model to the inference
algorithm. As above we compare the resulting model with the original model in aspects of our choice.

In one elegant experiment, Husmeier (2003) adapted the network constructed by Zak et al. (2001)
to include an additional 41 unconnected genes which were up- and down-regulated at random, and at-
tempted to infer the original network structure from the simulated data using a DBN approach. Although
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it was not possible to recover all true edges without false positive edges, the results did suggest that
Bayesian network analysis could be used to make searching for novel genetic interactions significantly
more effective than a search from tabula rasa (Husmeier 2003).

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Bayesian networks provide an intuitive way to describe relationships in the settings of gene regulatory
networks and have become a popular tool for attempts at reverse engineering GRNSs. For instance, Zhu
and co-workers (2006) predicted a link between glucose repression and the YHB1 gene, which they
verified by subsequent experiments.

An important open question for Bayesian network analysis and also other procedures for network
structure inference is how to be measure performance of the algorithms and thus determine which al-
gorithms are superior for application in biology. Current biological knowledge is far from complete;
For instance, it has been estimated that only about 10% of all human protein-protein interactions are
known (Hart et al., 2006). Therefore we think it is very important to develop modeling techniques using
techniques such as ODEs, the stochastic Master equation, or hybrids, to develop systematic and realistic
benchmarks. Other areas of research likely to be fruitful include the development of methods to take
the different time courses of different biochemical reactions into account, i.e., better ways of capturing
dependencies over multiple time points of a series of experiments. As new forms of high-throughput
data become available (for instance, genome-wide binding data resulting from ChIP-Chip experiments),
it will be important to incorporate this knowledge into appropriate priors.
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ADDITIONAL READING AND RESOURCES

A comprehensive list of software for Bayesian networks can be found at http://www.csse.monash.edu.
au/bai/book/appendix_b.pdf.
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Bayesian Networks for Modeling and Inferring Gene Regulatory Networks

A fairly complete introduction to the theory of Bayesian networks is provided in the book “Learning
Bayesian Networks” by Richard E. Neapolitan published by Prentice Hall in April 2003.

Anice free software package for both Bayesian network construction and inference is GeNle, developed
by the Decision Systems Laboratory group at the University of Pittsburgh. It is available from http://
genie.sis.pitt.edu/ and requires a Windows operating system.

The homepage of our group dealing with gene regulatory networks is located at http://compbio.charite.
de/genereg/. For instance, we provide the model of hepatic glucose homeostasis process ready to be
fed into Genie.

With WinMine, which is a collection of tools rather than a single program, you can create models of
Bayesian networks fromdiscrete data. Itisavailable from http://research.microsoft.com/~dmax/winmine/
tooldoc.htm and requires a Windows operating system.

KEY TERMS AND DEFINITIONS

Bayesian Networks: A Bayesian network is a probabilistic graphical model. It contains of a graph
whose vertices represent variables, for instance random variables. The directed edges of the graph en-
code direct dependency relation of one variable to another. Bayesian networks can be used to predict
the state of variables, when other variables are fixed. In addition, Bayesian networks can be learned
from sampled data.

Bayesian Scoring Metrics: A Bayesian Scoring Metric is a function that scores how well a given
graph explains given data.

MCMC: The MCMC (Markov chain Monte Carlo) is a procedure which allows sampling instances
from complex probability distribution. With respect to GRNs MCMC is used to sample from the space
of all DAGs whereby the sampling scheme follows a distribution that is based on a Bayesian scoring
metrics. Thus more probable DAGs, that is, DAGs that may better explain the data, are sampled more
often and therefore one can construct a likely network structure.

Priors: A prior can be specified during a learning procedure that takes advantage of Bayes’ theorem
and may represent properties that are already known and therefore don’t need to be rediscovered. It is
especially useful when data is sparse, which is the case in micro array analysis, as it can significantly
reduce the space of all DAGs that is used during the search.

Sparse Candidate Algorithm: The SCA is an approximation algorithm for the problem of finding
a structure of a Bayesian network that maximizes a given Bayesian scoring metrics. It employs the
feature that biological networks are usually sparse and consists of two phases, the restriction and the
maximization phase.
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ABSTRACT

In this chapter, we review the current state of Gene Regulatory Network inference based on ‘Genetical
Genomics’ experiments (Brem & Kruglyak, 2005; Brem, Yvert, Clinton & Kruglyak, 2002; Jansen, 2003;
Jansen & Nap, 2001; Schadt et al., 2003) as a special case of causal network inference in ‘Systems
Genetics’ (Threadgill, 2006). In a Genetical Genomics experiment, a segregating or genetically random-
ized population is DNA marker genotyped and gene-expression profiled on a genomewide scale. The
genotypes are regarded as natural, multifactorial perturbations resulting in different gene-expression
‘phenotypes’, and causal relationships can therefore be established between the measured genotypes
and the gene-expression phenotypes. In this chapter, we review different computational approaches to
Gene Regulatory Network inference based on the joint analysis of DNA marker and expression data and
additionally of DNA sequence information if available. This includes different methods for expression
QTL mapping, selection of regulator-target pairs, construction of an encompassing network, which
strongly constrains the network search space, and pairwise and multivariate methods for Gene Regulatory
Network inference, such as Bayesian Networks and Structural Equation Modeling.
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Inferring Gene Regulatory Networks from Genetical Genomics Data

INTRODUCTION

Afruitful abstraction of biochemical systems is that of ‘networks’ (Barabasi & Oltvai, 2004; Dorogovtsev
& Mendes, 2003; Newman, 2003; Pieroni et al., 2008; Watts & Strogatz, 1998). Such networks include
Transcription Regulatory Networks (TRNs) (Lee et al., 2002; Luscombe et al., 2004; Shen-Orr, Milo,
Mangan & Alon, 2002), Protein Interaction Networks (Pieroni et al., 2008; Schwikowski, Uetz & Fields,
2000), Metabolic Networks (Jeong, Tombor, Albert, Oltvai & Barabasi, 2000; Wagner & Fell, 2001),
Gene Regulatory Networks (GRNs) (Brazhnik, de la Fuente & Mendes, 2002; D’Haeseleer, Liang &
Somogyi, 2000) (see also A. de la Fuente — this book}, and Phenotype Networks (Nadeau et al., 2003).
Inferring, or ‘reverse engineering’, such biological networks is therefore currently an area of research
receiving a lot of interest and attention. It advances our knowledge about the integrated biochemical
machinery of living cells (systems biology) and our understanding of general features of complex traits
(complex trait biology). Constructing phenotype networks provides information about the functionality
of complex systems (such as cardiovascular function) at the organismal level, and constructing GRNs
furthers our understanding of the molecular basis of complex traits and diseases (Chen et al., 2008; Lum
etal., 2006; Schadt et al., 2005). GRNs have other applications (Brazhnik, de la Fuente & Mendes, 2002),
including the discovery of direct drug targets (di Bernardo et al., 2005; Gardner, di Bernardo, Lorenz &
Collins, 2003). It has been shown that classical concepts from genetics, such as dominance and epistasis,
can be readily understood in terms of networks and their properties (Kacser & Burns, 1981; Omholt,
Plahte, Oyehaug & Xiang, 2000).

Many different experimental and computational approaches to GRN inference have been proposed.
Data from experiments without targeted perturbations, or data from observational studies, only allow for
inference of undirected Co-Expression Networks that are based on a measure of association between the
expression profiles of pairs of genes (e.g.de la Fuente, Bing, Hoeschele & Mendes, 2004; Ghazalpour
et al., 2006; Schafer & Strimmer, 2005a,, 2005b; Wille & Buhlmann, 2006; Wille et al., 2004; Zhang
& Horvath, 2005). In particular, one can construct an Undirected Dependency Graph (UDG), which
contains edges only between those genes that interact directly, and which can be estimated based on
partial correlations (de la Fuente, Bing, Hoeschele & Mendes, 2004; Shipley, 2002). The construction
of a UDG can be a first step in a regulatory network analysis of a Genetical Genomics or Systems Ge-
netics experiment.

Astrategy of targeted perturbation is required to enable causal inference needed for the identification
of the directed structure of GRNSs. In such a strategy, targeted perturbations are created and responses
of the gene-expression levels to the perturbations are measured. It has been shown that this approach
can provide a reliable identification of GRNs (Brazhnik, de la Fuente & Mendes, 2002; de la Fuente,
Brazhnik & Mendes, 2002; Gardner, di Bernardo, Lorenz & Collins, 2003; Wagner, 2001). There are
two major types of targeted perturbation experiments. One approach uses one-at-a-time, specific per-
turbations in the expression of individual genes (e.g.Hughes et al., 2000; Mnaimneh et al., 2004). These
experimental perturbations are relatively expensive and difficult to perform, especially in quantities
required for comprehensive GRNs identification. Such perturbations (knock-outs, over-expressions)
also tend to have strong biological effects, making it potentially difficult to distinguish between ‘normal’
functional relationships and relationships that emerge when the ‘normal’ functionality of a system is
compromised.

The second type of targeted perturbation experiments, Genetical Genomics and Systems Genetics, uses
naturally occurring, multi-factorial perturbations in segregating or genetically randomized populations
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(Jansen, 2003; Jansen & Nap, 2001). Genetical Genomics is also referred to as ‘the genetics of gene-
expression’ (Brem & Kruglyak, 2005; Brem, Yvert, Clinton & Kruglyak, 2002; Emilsson et al., 2008;
Schadt et al., 2003), while Systems Genetics is defined more generally as the integration and anchoring
of multi-dimensional data-types to underlying genetic variation (Threadgill, 2006). Genetical Genomics
approaches integratively analyze gene-expression data and genotype data (measurable DNA sequence
polymorphisms) and make use of DNA sequence information when available. DNA sequence polymor-
phisms that are identical to or genetically closely linked with some of the measured polymorphisms have
been found to be an important source of gene-expression variation (e.g.Brem & Kruglyak, 2005), and
hence they are the main reason why we can establish cause-effect relations. Multi-factorial perturbations
offer an important advantage: “Any conclusion ... has a wider inductive basis when inferred from an
experiment in which the quantities of other ingredients have been varied ...” (Fisher, 1954).

In this chapter, we review the current literature on GRN inference based on Genetical Genomics
experiments and we indicate directions for further research.

BACKGROUND

In a Genetical Genomics experiment, a population for genetic mapping (a ‘mapping population’) con-
sisting of hundreds of individuals is expression profiled for (ten) thousands of genes and genotyped for
hundreds to thousands of genetic markers (measurable DNApolymorphisms). Inyeast (Brem & Kruglyak,
2005; Brem, Yvert, Clinton & Kruglyak, 2002), plants (Keurentjes et al., 2007; West et al., 2007) and
animal model systems (e.g. mouse) (Bystrykh et al., 2005; Schadt et al., 2003), such populations can
be created by crossing two or more inbred strains and include backcrosses, Recombinant Inbred Lines
(RILSs), intercrosses, double haploids, etc.. For humans (Goring et al., 2007) and some farm animals,
creating such crosses is not feasible, but existing segregating populations can be used, including large
pedigrees and collections of ‘unrelated” individuals. The variation in the expression levels of genes in a
segregating population is influenced by the variation (genotypes) in many DNA polymorphisms across
the genome (e.g. microsatellites, single nucleotide polymorphisms (SNPs) or Single Feature Polymor-
phisms (SFPs) to be discussed later). Establishing causal links between the genotype at each marker and
one or more phenotypes of interest is known in genetics as Quantitative Trait Locus (QTL) mapping
(Darvasi, 1998; Lander & Schork, 1994). QTL mapping identifies chromosomal regions (QTLs) that
causally affect a phenotypic trait under consideration. Statistically, a QTL is a confidence interval for the
genomic location of a DNA polymorphism that is causal for the phenotype of interest. This confidence
interval is typically 1 to 20 centi Morgans (the unit of genetic distance whose relationship to physical
distance varies between organisms) in length and hence can contain tens to hundreds of candidate causal
polymorphisms. Because in Genetical Genomics the gene-expression levels are considered as phenotypic
traits, the identified QTLs are referred to as “‘expression-QTLs’ or ‘eQTLs’. Similarly, in the remainder
of this chapter we will refer to gene-expression levels as ‘expression traits’ or ‘etraits’.

Currently, mainly two Genetical Genomics datasets have been analyzed in the literature, yeast (Brem
& Kruglyak, 2005; Brem, Yvert, Clinton & Kruglyak, 2002) and mouse (Schadt et al., 2005), but ad-
ditional Genetical Genomics datasets have already been created for C. elegans (Li et al., 2006b), A.
thaliana (DeCook, Lall, Nettleton & Howell, 2006; Keurentjes et al., 2007; Vuylsteke, van Eeuwijk, Van
Hummelen, Kuiper & Zabeau, 2005; West et al., 2007), fruit fly (Anholt et al., 2003), human (Cheung
et al., 2003; Cheung et al., 2005; Goring et al., 2007), and soybean (Zhou et al., 2008).
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The widely used yeast data were created by crossing two genetically diverse yeast strains (Brem &
Kruglyak, 2005; Brem, Yvert, Clinton & Kruglyak, 2002; Yvert et al., 2003). For a population of 112
haploid offspring, the gene-expression levels of 5736 genes and the genotypes of 2956 genetic markers
were measured (Brem & Kruglyak, 2005). The yeast marker map in this study is very dense; for 90%
of adjacent markers fewer than 10 recombinations occurred (Storey, Akey & Kruglyak, 2005). Brem et
al. (Brem & Kruglyak, 2005) found that 3,546 gene-expression levels have a heritability of higher than
69%, meaning that 69% or more of their variance can be explained by genotypic variation. The median
contribution to heritable expression variability by of a single identified QTL was 27%, and only 23% of
all etraits were affected by a single QTL that explained more than half of the genetic variance, indicating
that most expression traits are under the control of multiple polymorphisms (Brem & Kruglyak, 2005).
The marker genotypes thus can be seen as naturally occurring ‘genetic perturbations’ responsible for (at
least a large part of) the variation in gene-expression levels. In Figure 1 we present a nice illustration of
the procedure for creating and using Genetical Genomics data, which we borrowed from the review on
eQTL mapping by (Rockman & Kruglyak, 2006).

Theresultof eQTL mapping (see below for different approaches) is the knowledge that certain genomic
regions likely have causal effects on the expression levels of particular genes. Then, genes located in an
eQTL region can be identified as candidate regulators that are potentially responsible for the observed
causal effects of the eQTL on the affected etraits. Since eQTLs can have wide confidence intervals, there
may be many candidate regulators in a single eQTL. For the purpose of candidate regulator selection,
several approaches have been proposed, including partial correlations (Bing & Hoeschele, 2005), between-
strain SNPs followed by selection using Bayesian Networks (Li et al., 2005) and multiple-regression
tests (Liu, de la Fuente & Hoeschele, 2008). The eQTL analysis and the candidate regulator identifica-
tion provide strong constraints on the space of all possible GRNs underlying the data. The final task
in inferring GRNs from Genetical Genomics data is to search for one or more optimal GRN structures
within the constrained search space. Bayesian Networks have been used for this purpose (Lum et al.,
2006; Zhu et al., 2004; Zhu et al., 2007). Bayesian networks use partially directed graphical models to
represent conditional independence relationships among variables of interest and are suitable for learning
from noisy data (e.g. microarray data) (Pearl, 2000; Spirtes, Glymour & Scheines, 1993). Unfortunately,
Bayesian Networks are acyclic by definition and can thus not discover important feedback processes
occurring in GRNs. Recent papers point to the need for methods that can infer cyclic networks, note the
limitation of the Bayesian network approach (Lum et al., 2006) (see also de la Fuente — this book), and
show better performance of a linear regression method over a Bayesian network algorithm most likely
due to the presence of cycles (Faith et al., 2007). Therefore, Liu et al. (Liu, de la Fuente & Hoeschele,
2008) use a network model selection approach based on Structural Equation Modeling (SEM), which
is related to Bayesian Network analysis, but it can model cyclic networks.

The approach summarized above for GRN inference consists of three steps: 1) eQTL mapping, 2)
candidate regulator selection, and 3) refinement of the network structure. Below we will discuss each
of the steps in detail.

EXPRESSION-QTL (EQTL) MAPPING
eQTL mapping is a major component of GRN inference in Genetical Genomics experiments. The qual-
ity of the network inference (measured for example as the false positive and false negative rates for the

edges in the network) thus depends critically on the eQTL mapping accuracy.
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Figure 1. The experimental design for a cross between two yeast strains; B: At a given genomic loca-
tion, the samples are separated according to the inherited marker alleles, and linkage is declared if the
groups differ significantly in expression; C: an actual linkage from a yeast cross; D: The eQTLs can be
detected using molecular genetics tools. (From Rockman and Kruglyak, 2006. Reprinted with permis-
sion from the Publisher.)
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Single-etrait-Single-eQTL Approach

The most straightforward approach to eQTL mapping is to use existing QTL mapping methods that have
been devised for the analysis of a single or of a small number (say 2 to 20) of correlated phenotypes.
The simplest method is to test the effect of each genetic marker in marker analysis (or of each candidate
QTL position in interval mapping; see (Doerge, 2002; Doerge, Zeng & Weir, 1997) for reviews of these
mapping methods) on each etrait individually. This method has been applied by several authors (e.g.Bing
& Hoeschele, 2005; Brem & Kruglyak, 2005; Li et al., 2005; Liu, de la Fuente & Hoeschele, 2008;
Yvert et al., 2003; Zhu et al., 2004) usually in combination with a significance threshold obtained by
making adjustments for multiple testing based on the false discovery rate (FDR) control (e.g.Benjamini
& Hochberg, 1995; Storey & Tibshirani, 2003).

This approach can produce large confidence intervals (in particular due to the presence of multiple
linked QTLSs), which can be at least partially remedied by using sliding three-marker regression (Thal-
ler & Hoeschele, 2000) or composite interval mapping (CIM) (Jansen, 1993; Zeng, 1993; Zeng, 1994).
Achieving the smallest possible confidence intervals is important to minimize the number of candidate
gene regulators in each QTL region. Moreover, this approach has limited power, due to the large number
of tests involved and the fact that pairwise relationships may not be strong enough and higher order
relationships may need to be evaluated (although at the present time the evidence for the presence of
interactions (epistasis) among eQTL is not strong). The simplest QTL (or here eQTL) mapping method,
single marker regression, is based on the model

ym = bz'() + bijxjn + €m (1)
where y. is the etrait value for gene i and individual n of the segregating population, Xy the genotype
code for marker j and individual n, b, represents a mean expression value of gene i in the segregating
population, bij is the (additive) effect of marker j on etrait i, and ¢, is a residual etrait value not explained
by the effect of the marker. Based on this model a statistical test is performed to determine whether the
marker effect b, is nonzero. This analysis is repeated for every marker j in a set of markers covering the
genome. With this analysis, when there is an eQTL located on chromosome c, then the effect of every
marker j located on chromosome ¢ may be found to be nonzero. When using sliding three-marker regres-
sion or composite interval mapping, model (Eq. 1) is expanded to also include the effects of two markers
whose genome positions flank the position of marker j, while only the effect of marker j is tested. Then,
the effect of marker j is expected to be nonzero only if an eQTL is located between the two flanking
markers, allowing for a more precise determination of the position of eQTLS in particular when there
are multiple eQTLs on the same chromosome (when there are multiple eQTL on the same chromosome
and only one marker is fitted in the model, then it is well-known that estimates of the eQTL position, i.e.
determination of the marker nearest to an eQTL, can be biased). The choice of the flanking markers for
each marker j is not a trivial task and requieres a compromise between maintaining sufficient power to
detect a true effect of marker j and sufficient proximity of the flanking markers to marker j to minimize
bias in the estimated eQTL position.

To determine which markers have nonzero effect b, on any etrait, one must choose a significance
threshold by accounting for multiple testing across genes (etraits) and markers (eQTL positions). The
False Discovery Rate (FDR) (Benjamini & Hochberg, 1995) has been a popular criterion for multiple
testing control in standard QTL analyses and in eQTL analyses. However, the use of this criterion in
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eQTL analysis is problematic, as described by Chen and Storey (Chen & Storey, 2006), essentially due
to the strong correlation in signal among all marker tests on a chromosome containing at least one eQTL.
Keurentjes et al. (Keurentjes et al., 2007), analyzing a Genetical Genomics dataset from an Arabidop-
sis RIL population, determined by simulation that achieving FDR control near the 0.05 level actually
required using a more stringent (0.01) threshold. Alternatively, researchers have chosen to control the
Family-Wise-Error Rate (FWER) (often referred to as the genome-wise error rate in the context of QTL
mapping) separately for each etrait (by estimating adjusted, genome-wise p-values using data permutation
(Churchill & Doerge, 1994)), and then to apply FDR control across the etraits (e.g.Brem & Kruglyak,
2005; Brem, Yvert, Clinton & Kruglyak, 2002; Chesler et al., 2005; Hubner et al., 2005). We applied
this more conservative approach recently to a Genetical Genomics experiment with 300 RILs, 28395
etraits and 941 markers. We retained either the single top marker, or the top two, top three or top five
markers for each etrait, and we applied FDR control to the resulting list of 1x28935, 2x28935, 3x28935
and 5x28935, respectively, genome-wise p-values. For an FDR level of 0.05 (0.01), we identified 21361
(21361), 31719 (30026), 35328 (23313), and 23453 (16970) eQTLs. These results show that including
more than 2 or 3 candidate eQTL per etrait in the FDR control step actually led to a reduction in the
total number of eQTL identified, indicating the limited power of this approach.

Multiple-etrait-Single-eQTL Approach

In standard multiple trait QTL mapping, the effect of each marker or QTL position on a set of correlated
traits is evaluated. Multi-trait mapping can be more powerful than single trait mapping for detecting
pleiotropic QTLs (e.g.Jiang & Zeng, 1995). However, this approach is computationally more demanding
even for small numbers of traits and it is infeasible for (ten) thousands of etraits. It has been shown that
using a small number of ‘PC traits’ (obtained by Principal Component Analysis of the original traits) is
very effective for QTL mapping, when the original traits are (highly) correlated (in groups of traits). The
PC traits are uncorrelated and can therefore be analyzed individually, and essentially the same QTL are
identified by single trait analyses of few PC traits and by multi-trait analysis of the original traits (Jiang
& Zeng, 1995; Mahler et al., 2002; Mangin, Thoquet & Grimsley, 1998). Therefore, the correlated nature
of the large number of etraits can be utilized by deriving a much smaller number of (approximately)
uncorrelated composite etraits. Several groups have used Principal Component Analysis, Hierarchical
Cluster Analysis and K-means clustering individually or in combination to define composite etraits
used to identify eQTLs with pleiotropic effects (Boomsma, 1996; Comuzzie, Mahaney, Almasy, Dyer
& Blangero, 1997; Lan et al., 2003; Liu, de la Fuente & Hoeschele, 2008; Zeng et al., 2000).

Another approach to utilize correlated etraits when performing eQTL mapping for a particular etrait
was suggested by (Pérez-Enciso, Quevedo & Bahamonde, 2007), proposing to include other etraits as
covariates in the model. They showed that this approach can increase the power of eQTL identification
and that the presence of other etraits in the model can strongly affect the results - some eQTL positions
may be shifted, some eQTL may disappear, and some new eQTL may appear. These authors use infor-
mation criteria for variable selection but other approaches could be used as well.

Multiple-eQTL Approaches Using Information Across Etraits
The methods described above are essentially applications of standard QTL mapping methods to eQTL

mapping. The method of Kendziorski et al. (Kendziorski, Chen, Yuan, Lan & Attie, 2006) is probably
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the first method specifically designed for eQTL mapping, but it has the disadvantage of mapping at most
one eQTL per etrait. The power of eQTL mapping can be increased by simultaneous mapping of two
or more eQTL, due to a reduction in the residual variance of the multiple QTL model, and because the
multiple QTL model can incorporate the effects of interactions among eQTL that may sometimes be more
importantthan their main effects. Multiple eQTL analysis can be performed by a multi-dimensional search,
by simultaneously fitting the effects of all markers (or eQTL positions), or by a conditional or sequential
approach, where a single QTL is identified first for a given trait, followed by a search for a second QTL
based on a model including the already identified QTL and any second candidate QTL. An extension of
these methods to the large number of etraits is not trivial and must utilize information across all etraits to
be as powerful as possible. Storey et al. (Storey, Akey & Kruglyak, 2005) proposed a sequential method
for identifying up to two eQTL per etrait and compared it with a complete two-dimensional search.
With this method, some eQTL were identified that were not found with the single-etrait-single-marker
approach (Brem, Storey, Whittle & Kruglyak, 2005; Storey, Akey & Kruglyak, 2005).

Jia and Xu (Jia & Xu, 2007) proposed a Bayesian model that allows for multiple eQTLs and utilizes
information across transcripts. Their Bayesian method uses a well-known mixture prior distribution that
explicitly models the null (zero effect) and alternative (non-zero effect) hypotheses for the effect of each
marker on each etrait. It is essentially an extension of a well-known Bayesian variable selection method
called Stochastic Search Variable Selection (McCulloch, 1996), which has previously been applied to
QTL mapping (e.g.Yi, George & Allison, 2003, 2004), to eQTL mapping with a large number of etraits.
However, Lucas et al. (Lucas, Carvalho, Wang, Bild & West, 2006) propose a modified mixture prior
that may better account for sparsity in the analysis of a very large number of etraits. There are also
non-Bayesian shrinkage methods for variable selection, including the Lasso (Tibshirani, 1996) and the
Elastic Net (Zou & Hastie, 2005).

Multiple-etrait-Multiple-eQTL Approaches Based on Dimension Reduction

Methods that model individual etrait — eQTL associations are expected and have been found to have
relatively low power, as stated earlier, and can be improved by utilizing information across etraits and
fitting multiple markers or eQTLs simultaneously. However, such methods are computationally de-
manding and might still miss markers or eQTLs having fairly weak but consistent effects on a group
of etraits that are also jointly affected by several other markers. Canonical Correlation Analysis (CCA)
is a well-known multivariate statistical method that assumes two sets of normally distributed variables
and finds a linear combination of the original variables in the first set and another linear combination
in the other set that have the maximum correlation among all linear combinations. This pair of linear
combinations is the first pair of canonical variates. Additional pairs of canonical variates that are maxi-
mally correlated after the previously identified pairs are also determined such that canonical variates
from different pairs are uncorrelated.

Application of this classical CCA to the two sets of variables representing the etraits and the markers
(or eQTL candidate positions) is not straightforward for several reasons. First, calculation of the canoni-
cal variates requires the estimation of the covariance matrices within and between sets, but the standard
estimator of these covariance matrices fails because sample size is usually much smaller than the number
of variables in each set, requiring some type of regularization. Secondly, the marker variables are discrete
rather than normally distributed. Third, classical CCA is well-known to overfit small datasets, and hence
a good tool for selecting the number of canonical variate pairs and for avoiding spurious correlations is
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needed. Fourth, the results of classical CCA would be difficult to interpret, as all variables contribute
to the linear combinations (as for PC analysis applied to the entire set of etraits (Liu, de la Fuente &
Hoeschele, 2008)). Recently, several modifications of the classical CCA to identify associations among
a set of etraits and a set of markers have been proposed (Beyene et al., 2007; Parkhomenko, Tritchler &
Beyene, 2007; Waaijenborg, Verselewel de Witt Hamer & Zwinderman, 2008) that overcome some of the
stated problems by using penalized versions of CCA. Further adaptations of CCA may be obtained based
on a probabilistic interpretation of CCA (e.g.Wang, 2007). Other dimension-reduction methods for two
sets of variables exist, but they have not yet been applied to Genetical Genomics, to our knowledge.

eQTL Mapping Using Sequence Information

The availability of sequence information implies that we know the physical location of the markers and
the expression profiled genes. This knowledge allows us to perform eQTL mapping much more effectively
by taking into account two distinct types of genetic regulation: cis- and trans-regulation. In the case of
cis-regulation, a cis-eQTL affects a particular etrait X and is located at the physical location of gene X
(the gene coding for etrait X) on a chromosome. The polymorphism of this cis-eQTL likely corresponds
to a promoter region polymorphism in gene X (Doss, Schadt, Drake & Lusis, 2005; Jansen, 2003; Jansen
& Nap, 2001; Liu, de la Fuente & Hoeschele, 2008; Rockman & Kruglyak, 2006; Ronald, Brem, Whittle
& Kruglyak, 2005). The eQTL that cis-affects etrait X will have an indirect effect on the expression of
those genes that are regulated by gene X (Doss, Schadt, Drake & Lusis, 2005). Such indirect effects
have been referred to as cistrans effects (Kulp & Jagalur, 2006; Liu, de la Fuente & Hoeschele, 2008).
Trans-eQTLs influence the expression levels of genes, but do not need to be co-located with any of these
genes. A trans-eQTL likely is a coding region polymorphism in a regulator gene (Jansen & Nap, 2001;
Liu, de la Fuente & Hoeschele, 2008; Rockman & Kruglyak, 2006; Yvert et al., 2003). While a trans-
eQTL does not affect the expression level of the regulator gene, the coding region polymorphism affects
the kinetic properties of the protein encoded by the regulator gene, which in turn affects the expression
levels of the target genes. Since by definition the location of a cis-eQTL must physically coincide with
the location of the gene whose etrait is affected, only the marker(s) closest to the location of an etrait’s
gene are tested to detect cis-eQTLs (Carlborg et al., 2005; Doss, Schadt, Drake & Lusis, 2005; Ronald,
Brem, Whittle & Kruglyak, 2005). For network inference, finding cis-linked etraits by itself is not very
informative. However, as shown on mouse data (Doss, Schadt, Drake & Lusis, 2005), the secondary
targets of the cis-eQTLs, or the ‘cistrans’ regulated etraits, can be obtained by testing the effects of the
identified cis-eQTL regions on all other etraits.

Trans-regulated target etraits are affected by both the eQTL genotype and the etrait of the regulator
gene simultaneously. Therefore, it was proposed (Kulp & Jagalur, 2006; Liu, de la Fuente & Hoeschele,
2008) that, in order to specifically detect trans-eQTLs, in addition to the eQTL effect, the etrait of an
associated candidate regulatory gene should be included as a covariate in the mapping model. In this
way, eQTL mapping and regulator-target pair identification are incorporated in one step. Kulp and
Jagalur performed interval mapping for any etrait i with a model including the effects of another etrait
J, the effect of an eQTL at the physical location of gene j, and the etrait-by-eQTL interaction (Kulp &
Jagalur, 2006). Liu et al. (Liu, de la Fuente & Hoeschele, 2008) performed trans-eQTL mapping by also
including the etrait covariate of a candidate regulator gene associated with a candidate trans-eQTL, but
they used marker regression and performed an Intersection-Union-Test (IUT) (Casella & Berger, 1990;
Roy, 1957) to determine whether the eQTL genotype and the etrait of the candidate regulator gene both
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significantly affect the target etrait, in whch case a trans-regulation was declared. Analyzing the yeast
dataset of Brem and Kruglyak (Brem & Kruglyak, 2005), it was found that the etrait-by-eQTL interac-
tion was rarely significant and essentially ignorable. While Liu et al. (Liu, de la Fuente & Hoeschele,
2008) found that this form of trans-eQTL mapping considerably increased the power of eQTL mapping,
(Mancosu et al., 2008) further improved power by including in the trans-eQTL mapping model not only
the etrait covariate for regulator gene j associated with the trans-eQTL, but also the effect of a cis-eQTL
affecting target gene i.

Genetic Markers for eQTL Mapping

In a Genetical Genomics experiment, a segregating population of hundreds of individuals must be both
expression profiled and marker genotyped on a genome-wide scale. Both types of large-scale profiling
are expensive and time consuming. It was therefore a major breakthrough when it was realized that the
expression data obtained by using Affymetrix chips could be used for in silico genome-wide marker
genotyping by identifying so-called Single Feature Polymorphisms (SFP). Several groups, including
our own, have now used SFP markers for eQTL mapping and the current evidence suggests that SFPs
are reliable, provide quite dense coverage of the genome, and integrate well with existing conventional
marker maps (Borevitz et al., 2003; Cui et al., 2005; Luo et al., 2007; Ronald, Brem, Whittle & Krug-
lyak, 2005; Rostoks et al., 2005a; Rostoks et al., 2005b; West et al., 2007), at least when using mapping
populations with only two genotypes per polymorphism, in particular RIL populations. The quality of
the SFP genotype data depends on the quality of the in silico SFP discovery and genotyping algorithm,
and several such algorithms have been suggested at the present time (see (Luo et al., 2007) for a com-
parison among several methods). At this time, SFP typing has been mostly performed in populations
with only two possible genotypes at each locus (in particular in RIL populations). How well SFP typing
will work in other populations with three or more genotypes (e.g. intercrosses, human populations) is not
yet known. Further validations of this SFP genotyping methodology and applications to other mapping
populations are expected in the near future.

SELECTION OF REGULATOR — TARGET PAIRS

The selection of candidate regulators or regulator-target pairs for each identified eQTL described in this
section depends on the availability of sequence information, i.e. knowledge of the genomic location of
the expression profiled genes relative to the markers and eQTL regions. The outcome of the selections
presented here is a strongly constrained GRN space.

The problem of identifying candidate regulatory genes from eQTL confidence regions has been ap-
proached with various methods. Some authors consider one eQTL at a time to select candidate regula-
tors (Bing & Hoeschele, 2005; Keurentjes et al., 2007), while others simultaneously consider all eQTLs
affecting a given etrait (Li et al., 2005). Bing and Hoeschele used partial correlation tests to identify
candidate regulator genes located in the identified eQTL regions. In this approach, correlations between
the etraits of genes located in the eQTL and the etraits affected by the eQTL are evaluated, since the
etrait of the candidate regulator gene containing the causal polymorphism underlying the eQTL should
correlate with the etrait(s) of the target gene(s) of the eQTL most strongly. But correlations can be due
to indirect rather than direct causal influences or due to confounding (de la Fuente, Bing, Hoeschele
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& Mendes, 2004; Shipley, 2002). To identify only the direct causal influences, partial correlations are
calculated between the etrait of any gene located in an eQTL and the etrait of any target gene affected
by the eQTL, conditional on the etraits of one (first order partial correlation) or two (second order partial
correlation) other genes that are also located in the eQTL.

Li et al. (Li et al., 2005) use analysis of between-strain Single Nucleotide polymorphisms (SNPs)
to exclude many possible candidate genes. Data for around 3 million SNPs are available for the two
progenitor strains used in their study. These dense SNP data were used to determine whether the coding
regions of the candidate regulator genes are identical by descent in the parents. Only genes with mis-
sense and nonsense SNPs were considered as potential regulators (Li et al., 2005).

The accuracy of the candidate regulator selection for each eQTL is clearly limited when using Geneti-
cal Genomics data alone. Therefore, it is very important to incorporate additional (external) biological
information such as the SNP data, and several other approaches have been proposed. Keurentjes et al.
(Keurentjes et al., 2007) first ranked the candidate regulators based on correlations and then selected
candidates using the Iterative Group Analysis approach (Breitling, Amtmann & Herzyk, 2004). Stylianou
et al. use automated literature database and manual search to find candidate genes (Stylianou et al.,
2006). Tu et al. use a stochastic algorithm to also incorporate available protein-protein interaction, pro-
tein phosphorylation, and transcription factor—-DNA binding information (Tu, Wang, Arbeitman, Chen
& Sun, 2006).

Lee et al. proposed a probabilistic method called “Geronemo”, which extends the module network
approach of Segal et al. (Segal et al., 2003) to incorporate both expression and marker genotype data
(Lee, Pe’er, Dudley, Church & Kaoller, 2006). Their approach iterates between the following steps until
convergence is reached: 1) Assign genes to regulatory modules with clustering. 2) Learn the network for
each module using a Bayesian scoring approach. With this approach, they were able to detect regulatory
relationships that are indiscernible when genes are considered in isolation (Lee, Pe’er, Dudley, Church
& Koller, 2006).

Liuetal. (Liu, de laFuente & Hoeschele, 2008) use local regression models separately for eacheQTL
to identify regulator-target pairs, taking into account that the candidate regulators may affect a target
through cis, trans or cis-trans regulation. Given the results from cis, cistrans and trans eQTL mapping and
from other non-sequence based QTL mapping methods, regulator-target pairs were selected in several
steps: 1) For each identified cis-eQTL affecting several potential cis-regulated genes (these genes are all
affected by the same marker or eQTL and co-locate with it), for each potentially cis-regulated gene it is
determined whether the gene is most likely truly cis-regulated or more likely cistrans affected. 2) For any
eQTL where gene t was identified as a target (affected by but not co-located with the eQTL) and gene r
was identified as cis-regulated (affected by and co-located with the eQTL), it is determined whether r is
most likely trans or cistrans regulated. 3) For each target genes t retained in step 2) in an eQTL region,
the most likely candidate regulator gene r (located in the eQTL) is determined. The determinations in
steps 1) and 2) can be made based on the regression model

y, =pu+by +br +¢ ; n=1,..,N )
where y, is the etrait value of target gene, x is the overall mean of etraitt, y _is the etrait value of regulator

gene, and x is genotype indicator of the eQTL (marker). In steps 1) and 2), if the null hypothesis b, = 0
cannot be rejected for some gene r, then a cistrans regulation of t is indicated. For step 3), an additional
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term (b,y,..) for another candidate regulator r’ in the same eQTL is added to model (Eg. 2), and r is re-
tained as candidate regulator of t only if the null hypothesis b, = 0 is rejected in the presence of any r '#
r. 4) Lastly, using the results from trans-eQTL mapping, for each target gene t with at least two identified
regulator genes, for each identified regulator r of t, another identified regulator (r’) of t and its nearest
marker are included in model (Eq. 2) to check whether the null hypothesis b, = 0 can be rejected in the
presence of any other regulator » £ 7, in which case r is retained as a candidate regulator of t..

GRN INFERENCE IN THE CONSTRAINED NETWORK SPACE

In this section we review approaches for search and evaluation of global network models within the
strongly constrained network model space as defined by the eQTL analysis and candidate regulator
and regulator-target pairs selection. Two main approaches have been taken. The first approach uses the
eQTL mapping results to define constraints on the network space, and the search is conducted using
Bayesian Network analysis (Zhu et al., 2004). The second approach first constructs an Encompassing
Directed Network (EDN) based on the results from eQTL mapping and regulator-target pair selection by
assembling all retained candidate regulator target pairs and then searches for an optimal network model
embedded in this EDN using Structural Equation Modeling (Liu, de la Fuente & Hoeschele, 2008).

The first approach makes use of the fact that it is possible to derive constraints on the GRN space
and to perform causal inference in the absence of sequence information (and other external biological
information). This analysis will have (maybe substantially) reduced power, but it is relevant not only
for organisms where sequence information is not yet available, but also when the quantities of interest
are not (just) the gene-expressions, but also or instead include phenotypic traits, metabolomic profiles
etc.. In these cases we cannot establish causality based on a regulator (gene) being located in an eQTL
that affects a target (gene). To infer a gene regulatory (causal) network without sequence information,
and based on the results from the eQTL analysis, Zhu et al. (Zhu et al., 2004) consider regulations only
among any two genes whose etraits have common eQTLs. For any two genes whose etraits do not share
at least one eQTL, it is assumed that no regulatory relationship exists. To quantify the extent of ‘QTL
overlap’, a weighted average correlation was used. The motivation behind this constraint is that if two
etraits are controlled by the same eQTL, then either they are independently affected by the eQTL, or
etrait 1 is directly affected by the eQTL and in turn affects etrait 2, or etrait 2 is directly affected by the
eQTL and in turn affects etrait 1. Schadt et al. (Schadt et al., 2005) use a Likelihood-based Causality
Model Selection (LCMS) method to select the most likely one of these three cases based on the Akaike
information criterion. The eQTL overlap of two etraits does not need to be complete as any gene and its
etrait can have several inputs associated with different eQTLS. In fact (not noted by those authors), it is
helpful for the etraits of two genes not to share all their eQTLs. For example, suppose that two genes
(etraits) 1 and 2 share a subset of eQTLs (subset A), while another subset of eQTLs (subset B) affects
only etrait 2. Then, the evidence for regulation of gene B by gene A, as opposed to vice versa, is stronger
than it would be without marker(s) B. Several other papers deal with the detection of candidate genes
by using overlap of eQTLs and complex trait QTLs, including (Chen et al., 2008; Chesler et al., 2005;
Cheung et al., 2005; DeCook, Lall, Nettleton & Howell, 2006; Schadt et al., 2003).
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Bayesian Networks

The Bayesian Network (BN) approach has been applied to GRN inference from gene-expression data
soon after the first datasets appeared (Friedman, 2004; Friedman, Linial, Nachman & Pe’er, 2000;
Murphy & Mian, 1999). Using gene-expression data alone and without any constraints on the network
space, causal inference for relationships among genes is very limited (see the book by Shipley (Shipley,
2002) on how to direct some edges in an undirected network derived from observational data or without
interventions), and BN analysis is computationally very demanding and becomes infeasible for hundreds
(or even thousands) of genes. Zhu et al. (Zhu et al., 2004) proposed to infer GRNs with a BN approach
and a local structure search algorithm after constraining the network (structure) space by using com-
mon eQTLs as described in the previous section and by limiting the number of regulators per gene to at
most three. Recently, these authors showed with a simulation study that GRN inference from Genetical
Genomics data using BNs was much more accurate than GRN inference from expression data alone
(Zhu et al., 2007), a very expected finding. Other authors including (Li et al., 2005) also employed a
BN approach in a constrained search space defined by the eQTL mapping results.

BNs can be graphically represented as Directed Acyclic Graphs (DAG), i.e. networks in which no
directed cycles are present (Pearl, 2000; Spirtes, Glymour & Scheines, 1993). The graphical model rep-
resents a conditional distribution for each node given its parents. The full joint distribution is defined as
the product of the local conditional distributions. For BNs, the global directed Markov property permits
the joint probability distribution of the variables to be factored according to the DAG (Pearl, 2000;
Spirtes, Glymour & Scheines, 1993). For this reason the assumption of an acyclic network is so attrac-
tive: The factorization implies that only local likelihoods need to be calculated, which is computationally
much more efficient than evaluating joint likelihoods involving possibly many variables. Let V be the
random variable associated with a particular node (an etrait in our context). The factorization can be

represented as, P (Vu Vz’---ym) = Hp (V] v (Parents of j) ' ]-) where V (parents of j) is a vector of
Vs of the parent vertices of vertex j. and 0, is the parameter vector of the local likelihood p(VJ. |.) (Pearl,
2000). Therefore, the likelihood for each target etrait can be maximized separately. This factorization is
a major computational simplification.

Model evaluation with BNs includes fitting parameters of each conditional probability distribution
and search for the network structure (the graph topology). Structure learning is in general an NP-hard
problem (Chickering, 2002), and many (heuristic) search algorithms are available, including greedy
hill-climbing, greedy search with restarts, simulated annealing, and Monte-Carlo methods. For acompre-
hensive introduction to BNs, we refer the reader to the book by Jensen and Nielsen (Jensen & Nielsen,
2007), and specifically on ‘learning” with BNs, to Heckerman’s book chapter (Heckerman, 1999).

Being defined as DAGs, BNs cannot represent networks with cyclic relationships. However, there is
strong evidence for GRNSs to contain directed cycles (A. de la Fuente — this book). Recently, Chen et al.
obtained evidence for extensive feedback control in the network they studied, due to the fact that strongly
perturbing some genes in the network induced significant expression changes in a large number of the
genes in the network (Chen et al., 2008). GRNs are therefore better modeled as Directed Cyclic Graphs
(DCGSs) (Liu, de la Fuente & Hoeschele, 2008) (see also A. de la Fuente — this book). Based on the as-
sumption that a cyclic graph represents a dynamic system at equilibrium (Fisher, 1970), this problem can
be theoretically resolved by including a time dimension, which produces causal graphs without cycles
(DAGsS) that can then be studied using BNs, an approach called Dynamic BNs (Hartemink, Gifford,
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Jaakkola & Young, 2002; Murphy & Mian, 1999). However, this approach requires the collection of
time series data, which is difficult to accomplish, as it requires synchronization of cells and close time
intervals not allowing for feedback (Spirtes et al., 2000). Samples at wider time intervals represent near
steady state data and hence require cyclic network reconstruction.

Structural Equation Modeling and Network Search

Structural Equation Modeling (SEM) is a linear statistical modeling framework that has been widely
used in econometrics, sociology and psychology, usually as a confirmatory procedure instead of an ex-
ploratory analysis for causal inference (Bollen, 1989; Johnston, 1972; Judge, Griffiths, R.C, Ltkepohl
& Lee, 1985). Shipley (Shipley, 2002) discusses the use of SEM in biology with an emphasis on causal
inference. SEM has been used for association and linkage mapping of QTL (e.g.Neale, Boker, Xie &
Maes, 2003; Stein etal., 2003). Xiong et al. (Xiong, Li & Fang, 2004) were the first to apply SEM to GRN
reconstruction using gene-expression data (outside of the Genetical Genomics context). Their applica-
tion was limited to GRNs without cyclic relationships by using a recursive SEM, which has an acyclic
structure and uncorrelated errors and is equivalent to a Gaussian BN. These authors reconstructed only
small networks with less than 20 genes. Li et al. (Li et al., 2006a) analyzed both phenotypic and DNA
marker data on a segregating population to construct networks including a small number sub-phenotypes
and QTL related to obesity and bone geometry, by SEM analysis using standard SEM software.

In the context of Genetical Genomics experiments, Liu et al. (Liu, de la Fuente & Hoeschele, 2008)
developed an SEM analysis for GRN inference within the constrained network search space obtained
from the eQTL mapping results and the regulator-target pair selection, which produced three lists of
causal regulatory relationships: (1) a list containing all identified cis-regulations (eQTL A affects gene
A located in its confidence region), (2) a list containing all cistrans regulations (cis-regulated gene A
regulates gene B), and (3) a list containing all trans regulations (gene A regulates gene B and eQTL
A affects gene B (but not gene A)). All the identified and retained regulator-target relationships were
assembled into the EDN, which consisted of directed edges from eQTLs to cis-regulated target genes,
from cis-regulated genes to cistrans regulated target genes, from trans-regulator genes to target genes
and from trans-eQTLSs to target genes. The EDN consisted of two types of nodes: Continuous nodes for
the genes (etraits), and discrete nodes for the eQTLs (genotypes). The EDN thus defines a constrained
network search space as the GRN we wish to identify is embedded in the EDN. Additional constraints
were considered: certain edges cannot be removed from the EDN, because their removal would contradict
the results from the eQTL analysis. If an etrait was found to be influenced by an eQTL, then there must
remain either a direct or indirect path from the eQTL to that etrait’s gene in the network. Liu et al. (Liu,
de la Fuente & Hoeschele, 2008) then employed SEM to evaluate models within this model space. Due
to the fact that the EDN contained many cycles, BN approaches could not be used. In contrast, SEM
can be applied to cyclic network inference.

In general, SEM consists of a structural model describing (causal) relationships among latent vari-
ables and a measurement model describing the relationships between the observed measurements and
the underlying latent variables. Any SEM can be represented both algebraically as well as graphically.
Liu et al. (Liu, de la Fuente & Hoeschele, 2008) use SEM with observed variables only (there is no
measurement model), which can be represented as
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y, =By +Fx +e; e ~(0,E) i=1,..,N @)

In this model, for member i of the segregating population (i=1,...,N),y,= (yil,...,yip)T is the vector
of expression values of all (p) genes in the network, and x; = (xil,...,xiq)T denotes the vector of marker
or eQTL genotype codes. The y, and x, are deviations from means, €, is a vector of error terms, and E
is its covariance matrix (we note that a mean structure could be incorporated in the SEM as needed).
Matrix B contains coefficients for the direct causal effects of the etraits on each other. Matrix F contains
coefficients for the direct causal effects of the eQTLs on the etraits. The structure of matrices B and F
corresponds to the path diagram or directed graph representing the structural model, in which vertices or
nodes represent genes and eQTLs, and edges correspond to the non-zero elements in B and F. Matrices
B and F are sparse when the model represents a sparse network. When the elements in e, are uncorrelated
and matrix B can be rearranged as a lower triangular matrix, the model is recursive, there are no cyclic
relationships, and the corresponding graph is a Directed Acyclic Graph (DAG). If the error terms are
correlated (E is not diagonal), or matrix B cannot be rearranged into a triangular matrix (indicating the
presence of cycles), the model is non-recursive. The graph corresponding to a non-triangular matrix B
is a Directed Cyclic Graph (DCG).

In Genetical Genomics experiments, the x, are random vectors because individuals are sampled from
a segregating population. However, the joint likelihood of the y, and x, can be factored into the condi-
tional likelihood of the y, given the x, times the likelihood of the x;, and the latter does not depend on any
of the network parameters in B, F and E and can therefore be ignored. Thus, we only need to assume
multivariate normality for the residual vectors e, when specifying the likelihood function.

Liuetal. (Liu, de la Fuente & Hoeschele, 2008) factor the joint likelihood function of the {y, ; i=1,...
,N} into a product of local likelihoods which depend on different sets of parameters and are maximized
individually in analogy with BN analysis. A network with cyclic components (systems of connected
cycles, in which any gene can find a path back to itself through other genes) becomes acyclic when a
set of genes pertaining to the same cyclic component is collapsed into a single node. The joint likeli-
hood can therefore be factored as a product of conditional likelihoods pertaining to individual genes
which do not belong to any cyclic component, and of conditional joint likelihoods each pertaining to a
set of genes in a cyclic component. For the genes involved in a cyclic component, their joint likelihood
was maximized using a Genetic Algorithm (GA) based global optimization procedure. The constrained
network space defined by the EDN will typically be still much too large to exhaustively enumerate all
possible network structures. Therefore, a heuristic search strategy based on the principle of Occam’s Win-
dow model selection (Madigan & Raftery, 1994), which potentially selects multiple acceptable models,
was adapted. Alternative models or network structures were compared using the Bayesian Information
Criteron (Raftery, 1993). The selection of multiple models may be important for two reasons: First, the
data may provide (nearly) the same support for multiple models, and this information would otherwise
be missed. Secondly, for DCGs it can happen that two models with different edges have the same like-
lihood (they are equivalent) (Richardson, 1996; Richardson & Spirtes, 1999). In contrast, two DAG
models can only be equivalent if they have the same edges but differ in the direction of an edge (Pearl,
2000), and this equivalence would not occur with Genetical Genomics data where the edge directions
are fixed by the eQTL information. Based on the factorization of the overall joint likelihood, the strongly
constrained network topology search space defined by the EDN, and a careful choice of starting values
for GA optimization, the algorithm proposed by Liu et al. (Liu, de la Fuente & Hoeschele, 2008) can
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infer GRNs of hundreds of variables. In (Mancosu et al., 2008) a computationally very efficient local
‘sparsification’ approach rather than using the global model selection approach via SEM. This simpli-
fication made it feasible to analyze a genome scale yeast dataset, thus compiling a genome-wide yeast
GRN (see figure 1 in A. de la Fuente — this book). It is important however to evaluate the final model(s)
selected via SEM in order to verify that the models fit the data sufficiently well.

Undirected Networks in the Context of eQTLsS

Multiple studies have inferred Co-Expression Networks (see A. de la Fuente — this book) using associa-
tion measures between the etraits of pairs of genes (Butte et al. 2000; Wille et al. 2003; Magwene and
Kim 2004), or partial correlation resulting in an approximate Undirected Dependency Graph (UDG) (de
la Fuente, Bing, Hoeschele & Mendes, 2004; Shipley, 2002). We note that some other authors have used
Graphical Gaussian Modeling (or covariance selection) (e.g.Schéfer & Strimmer, 2005a,, 2005b), but in
this approach of constructing an undirected graph there is an edge between any two genes whose partial
correlation conditional on all other genes has been found to be nonzero. As opposed to the UDG, such
a graph would contain an edge between two genes that do not regulate each other and are not regulated
by some common cause but jointly regulate another (‘child’) gene. In any of these graphs, an edge is
retained if the corresponding correlation coefficient exceeds a chosen threshold or has been found to be
significant by a statistical correlation test. Consequently, between any two genes an edge either exists
or does not exist. As an alternative, weighted Co-Expression Networks have been proposed, where first
a matrix of the absolute values of the simple correlations between any two genes is computed, which is
then converted into a matrix of ‘connection strengths’ using a power function of the absolute correlation
coefficients (Zhang & Horvath, 2005). This weighted network is seen as being robust, in contrast with
the other (unweighted) undirected networks which depend on a chosen (significance) threshold.

Some studies have combined these undirected networks with eQTL information. An undirected
network can be constructed in the context of Genetical Genomics by only using the expression data.
Genotype data can help to reduce the number of false positive edges. For example, when constructing
co-expression networks, Lum et al. required a pair of linked etrait nodes to be regulated by at least one
common eQTL (Lum et al., 2006). Ghazalpour et al. (Ghazalpour et al., 2006) constructed weighted
Co-Expression Networks and identified highly interconnected network modules. They then detected
module-specific “genomic hotspots” (mQTLs) that regulate the expression of these modules, and they
investigated the co-location of these mQTL with physiological traits of mice. With mouse data, Chen et
al. (Chen et al., 2008) constructed Co-Expression Networks using both genotype and expression data
as in Lum et al. (Lum et al., 2006), and detected highly interconnected modules in the constructed co-
expression networks using an iterative search algorithm. They then established directed relationships
between the QTLs, metabolic traits and etraits using the LCMS method as described previously (Schadt
et al., 2005). A sub-network was detected as having a causal relationship with the metabolic traits of
interest if the sub-network was enriched for etraits that had causal associations with the metabolic traits.
Emilsson etal. (Emilssonetal., 2008) constructed co-expression networks with similar approaches using
human data, and identified a sub-network that was highly conserved in mice — the macrophage-enriched
network (Chen et al., 2008). They performed cis-eQTL mapping for this network and found that the cis-
eQTLs detected showed some evidence of association to obesity related traits (Emilsson et al., 2008).

It is possible to obtain a regulatory or causal network in the absence of sequence information (when
an organism does not yet have a sequence assembly, or when working with non-expression phenotypes
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such as metabolic traits) by first constructing an undirected network using only the phenotypes, then
performing QTL mapping, and subsequently orienting all edges in the network for which there is QTL
information by using and further developing an approach such as the LCMS method, i.e. by using local
structural equation modeling. Instead of a multi-step approach, where an undirected network and highly
connected modules are first identified and then module-QTLs are detected, one may search directly for
QTLs, or groups of QTLs, that jointly regulate groups of genes, e.g. by adapting CCA as mentioned
earlier.

CONCLUSIONS AND FUTURE DIRECTIONS

In this chapter, we have reviewed Gene Regulatory Network inference with *‘Genetical Genomics’ data
(Brem & Kruglyak, 2005; Brem, Yvert, Clinton & Kruglyak, 2002; Jansen, 2003; Jansen & Nap, 2001;
Schadt et al., 2003). For a detailed biological application of similar approaches, please refer to another
chapter in this book “Gene-expression Regulatory Regions in Yeast Amino Acid Biosynthetic Pathways
Unveiled by Quantitative Trait Locus Mapping”. An important component of any Genetical Genomics
analysis is the mapping of eQTL. Although eQTL mapping was initially performed by simply using
standard QTL mapping methods and software (developed for the analysis of one or few phenotypic traits),
it was soon recognized that such analyses are very sub-optimal and miss important information. Clearly
the quality of GRN inference crucially depends on the quality of the eQTL mapping results. There is still
a critical need for further development and evaluation of methodology and software for eQTL mapping,
such as developing full Bayesian analyses modeling individual eQTL — etrait relationships or involving
dimension reduction such as Canonical Correlation Analysis, developing and using more appropriate
criteria and controlling methods for multiple testing, and identifying epistatic eQTL.

Likewise, further development and evaluation of methods for GRN inference in the constrained
network search space is still warranted. We previously have proposed SEM due to its ability to fit cyclic
network models (Liu, de la Fuente & Hoeschele, 2008). Our current implementation of SEM, which
is capable of analyzing networks with a few hundred gene and eQTL nodes, uses a heuristic search
strategy and maximum likelihood inference. A Markov Chain Monte Carlo Bayesian implementation
of SEM would have multiple advantages, including an ability to incorporate prior information, an abil-
ity to select multiple models and represent uncertainty about the network model (and the values of its
parameters) given the data, and possibly an ability to analyze a larger network space. The use of the
Bayesian Information criterion and related criteria for network model selection and the use of sparsity
priors in a Bayesian analysis would strongly favor sparse networks, although bio-molecular systems are
not necessarily most parsimonious. For at least some of the edges (regulator-target pairs) in the EDN,
there may be prior biological knowledge from various sources, for example transcription factor binding
location data, information on pathway relationships (Franke et al., 2006), SNP presence in candidate
regulators (Li et al., 2005), and information on protein-protein interactions (Tu, Wang, Arbeitman, Chen
& Sun, 2006). A principled incorporation of such prior knowledge into methods for GRN reconstruction
from microarray data has been considered by several authors via prior distributions in Bayesian analysis
(e.g.Bernard & Hartemink, 2005; Imoto et al., 2002; e.g.Werhli & Husmeier, 2007).

As Genetical Genomics studies typically involve a segregating population with at least near one
hundred or several hundreds of individuals, there is a large expense for genome-wide expression pro-
filing of all individuals and, when not relying on in silico SFP typing, then there is a similarly large
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expense for genome-wide DNA marker typing. It is therefore important to develop analysis methods
that extract the most information from the data, as discussed above. There are also considerations re-
lated to optimal study design given limited resources. For two color microarrays, Fu and Jansen (Fu &
Jansen, 2006) proposed a ‘distant pair design’ to maximize genetic dissimilarity between individuals
on the same array to maximize power for decomposing expression variation. Because genotyping is in
general expensive, some studies used ‘selective genotyping’, i.e. all individuals are phenotyped while
only selected individuals are genotyped (e.g.Jannink, 2005; e.g.Medugorac & Soller, 2001). Selective
genotyping is well-established in the QTL literature (e.g.Lander & Botstein, 1989); by genotyping only
those individuals whose phenotypes are extreme (in the tails of the distribution of phenotypes), the same
amount of information is obtained as when genotyping a larger number of individuals randomly. This
approach works well for a single phenotype while it is difficult or not useful in the context of multiple
phenotypes. In Genetical Genomics, there are at least several thousands of expression phenotypes,
and expression profiling may be more expensive than marker typing. Therefore, selective expression
profiling approaches have been studied (Bueno Filho, Gilmour & Rosa, 2006; Jin et al., 2004; Wang
& Nettleton, 2006). There is a need for algorithms that search for optimal designs. For further review
of design issues in Genetical Genomics experiments, the reader should consult (Kendziorski & Wang,
2006; Rosa, de Leon & Rosa, 2006).

This chapter focused on GRN inference in the context of Genetical Genomics studies (Rockman,
2008). It focused on GRN inference for a single organism. An important and necessary extension is to
infer the genetic interactome of multiple organisms in host-pathogen interaction studies, where both
the host and the pathogen are expression profiled (Zhou et al., 2008). Beyond expression profiling and
GRN inference, Systems Genetics (Threadgill, 2006) will allow us to infer integrated causal networks
including other molecular phenotypes, such as proteomics data (e.g.Foss et al., 2007; Peck, 2005), me-
tabolomics data (Keurentjes et al., 2006), and organismal phenotypes (Li et al., 2006a; Nadeau et al.,
2003). This will require the sequence-based and not-sequence based causal inference algorithms using
eQTL information, as described above, to be more fully developed and combined.

GRN reverse-engineers have relied on very expensive and difficult to perform single-gene perturbation
experiments and time series experiments, and they are still eagerly awaiting the appearance of datasets
with a large number of experimental observations. Fortunately, such datasets are currently appearing
using a Genetic Genomics (or Systems Genetics) setup, in which genotyping and gene-expression pro-
filing are performed on a genetically randomized population of individuals. Like (artificial) single gene
perturbations, genetic segregation at many loci can be used to establish causal relationships between
genes (Jansen, 2003; Jansen & Nap, 2001). Several such datasets are available for yeast (Brem & Krug-
lyak, 2005; Brem, Yvert, Clinton & Kruglyak, 2002), Arabidopsis (Keurentjes et al., 2007; Vuylsteke,
van Eeuwijk, Van Hummelen, Kuiper & Zabeau, 2005; West et al., 2007), C. elegans (Li et al., 2006b),
fruit fly (Anholt et al., 2003), mouse (Bystrykh et al., 2005; Schadt et al., 2003), soybean (Zhou et al.,
2008), and human (Cheung et al., 2003; Cheung et al., 2005; Goring et al., 2007), with sample sizes
ranging from near one hundred to more than a thousand of observations. Genetical Genomics datasets
with large sample sizes are relatively cheap to produce as compared to artificial single gene perturbations.
As pointed out earlier, the multi-factorial and ‘natural’ properties of the Genetical Genomics perturba-
tions have clear advantages over the mostly single gene (Hughes et al., 2000; Mnaimneh et al., 2004)
or pairs of genes (Tong et al., 2004) artificial perturbations. We therefore expect Genetical Genomics
and Systems Genetics to be a major source of data for inferring Gene Regulatory Networks and more
general causal Bio-Molecular Networks in the near future.
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KEY TERMS AND DEFINITIONS

Bayesian Network: Bayesian networks are directed probabilistic graphical models that represent
conditional independence relationships among variables of interest.

eQTL: In Genetical Genomics, the gene expression levels are considered as phenotypic traits. There-
fore, the identified QTLs are referred to as ‘expression-QTLs’ or ‘eQTLs’.

etrait: In Genetical Genomics, the gene expression levels are considered as phenotypic traits. There-
fore, we call gene expression levels as ‘expression traits’ or in short ‘etraits’.

False Discovery Rate: False Discovery Rate (FDR) is the expected false positive rate in multiple
hypothesis testing. Among the list of rejected hypotheses, FDR controls the expected proportion of
incorrectly rejected null hypotheses.

Family-Wise-Error Rate: Family-Wise-Error Rate (FWER) (also referred to as the genome-wise error
rate in the context of QTL mapping) is the probability of making one or more false discoveries in multiple
hypothesis testing. FWER control is more conservative (and less powerful) than FDR control.

Genetical Genomics: Genetical Genomics, also referred to as “the genetics of gene expression’, uses
naturally occurring, multi-factorial perturbations in segregating or genetically randomized populations.
Genetical Genomics approaches integratively analyze gene expression data and genotype data (measur-
able DNA sequence polymorphisms) and make use of DNA sequence information when available.

Quantitative Trait Locus: Quantitative trait locus (QTL) is a chromosomal region that causally af-
fects a phenotypic trait under consideration. Statistically, a QTL is a confidence interval for the genomic
location of a DNA polymorphism that is causal for the phenotype of interest.

Structural Equation Modeling: Structural Equation Modeling is a linear statistical modeling
framework for testing and estimating causal relationships among variables. It has been widely used in
econometrics, sociology and psychology, usually as a confirmatory procedure instead of an exploratory
analysis for causal inference.
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Inferring Genetic Regulatory
Interactions with Bayesian
Logic-Based Model

Svetlana Bulashevska
German Cancer Research Centre (DKFZ), Germany

ABSTRACT

This chapter describes the model of genetic regulatory interactions. The model has a Boolean logic se-
mantics representing the cooperative influence of regulators (activators and inhibitors) on the expression
of a gene. The model is a probabilistic one, hence allowing for the statistical learning to infer the genetic
interactions from microarray gene expression data. Bayesian approach to model inference is employed
enabling flexible definitions of a priori probability distributions of the model parameters. Markov Chain
Monte Carlo (MCMC) simulation technique Gibbs sampling is used to facilitate Bayesian inference.
The problem of identifying actual regulators of a gene from a high number of potential regulators is
considered as a Bayesian variable selection task. Strategies for the definition of parameters reducing
the parameter space and efficient MCMC sampling methods are the matter of the current research.

INTRODUCTION

The advent of microarray technology facilitated monitoring of gene expression and posed the problem
of reconstructing genetic regulatory relations from data. A concept of gene regulatory network evolved,
as a graphical representation of interactions between genes. This is a simplification of the underlying
molecular biological regulatory mechanism, since the expression levels of some genes affect the expres-
sion of other genes indirectly, via the synthesis of proteins, protein complex formation, DNA binding
etc. Mathematical models of genetic regulatory networks define features of the regulation by means
of mathematical functions and propose algorithms in order to infer network models (i.e. connectivity,
parameters etc.) from experimental data.
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Figure 1. Examples of genetic regulatory functions presented as logic gates
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The attempt to model genetic regulation was pioneered long before the appearance of high-throughput
molecular genetics methods (Kauffman 1969, 1996). It was stated that the regulatory interactions between
genes can be presented as logic gates as exemplified in Figure 1, and the Boolean network model was
proposed. In the Boolean network, discrete states of genes (the active and the not active) are admitted,
and the state of each gene is functionally determined by the states of some other genes using the rules
of logics. Continuous gene expression measurements must be discretized before they can be used for
Boolean network modeling.

The fundamental idea behind the Boolean network is that the gene regulation is executed by tran-
scription factors transcribed from a number of genes, which cooperatively bind to the binding sites of a
target gene. This constitutes a so called cis-regulatory element, the working principles of which can be
described by means of logics. Some genes are activated by one of several different possible transcription
factors (“OR” logic). Other genes require that two or more transcription factors must all be bound for
the activation (“AND” logic). The activation of some genes may be inhibited by one of a few possible
repressor proteins (“NOT OR” logic, in our notation “NOR™). Further on, in case of “OR-NOR” logic,
agene is regulated by a set of possible activators and a set of possible inhibitors. The gene is transcribed
if and only if one of its possible activators is active and it is not repressed by one of its possible repres-
sors. An algorithm REVEAL was developed to reverse-engineer Boolean logic relations from expres-
sion data, based on mutual information between input and output states (Somogyi and Sniegosky, 1996;
Liang et al., 1998). The major limitation of the Boolean network model was its inherent determinism,
which contradicts with the stochastic nature of the underlying process of gene regulation and limits the
reliability of relations inferred from real data.

Later on, extensions of Boolean Networks were suggested to make them robust against noise. In
the noisy Boolean networks of Akutsu (2000), a certain probability is defined, with which a number
of input/output patterns will not be discarded by an inference algorithm, even if a Boolean function is
not satisfied. In the Probabilistic Boolean Networks (Shmulevich et al. 2002), more than one Boolean
function are defined for each gene, and the particular function for calculating the state of the gene is
selected with a certain probability.

Friedman et al. (2000) were the first to employ probabilistic graphical models, particularly Bayesian
networks, to model genetic regulatory network. Probabilistic (statistical) modeling uses probability dis-
tributions to describe the states of the modeling variables and their dependencies. Probabilistic graphical
models (Jordan, 2004) are graphs in which nodes represent random variables, and the missing edges
between the nodes represent conditional independencies among the variables. In this way, the joint prob-
ability distribution of the variables is represented in a compact form. This reduces the number of param-
eters needed to describe the whole probabilistic model and sets a basis for statistical inference. Bayesian
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network (Pearl, 1998; Jensen, 1996) is a common type of the probabilistic graphical models, where the
graph is directed and acyclic (DAG). The graph encodes conditional independencies as follows: given
the value of its parents in the graph, the variable is conditionally independent of other variables except
its descendants. Then, the joint probability distribution of the variables factorizes into the product of the
conditional probability distributions (CPD). The CPD for a variable defines its probability given every
possible combination of the values of its parents. Thus, the state of a gene is described as a probability
distribution dependent on a set of its immediate regulators. The global relations of genes in the genetic
regulatory network can be described as being composed of local interactions between each gene and
its regulatory genes. The learning of a Bayesian network from data comprises two tasks: the graphical
structure learning and the estimation of the parameters of the conditional distributions.

The drawback of the Bayesian network approach is that the combinatorial semantics of the interac-
tion of parents makes it difficult to interpret the results of network learning and to uncover the “true”
cis-regulatory relationships covered in this presentation.

In this chapter, a model for genetic regulatory interactions is presented that combines the simple
and biologically motivated Boolean logic semantics of Boolean networks and the possibility of dealing
with uncertainty offered, in particular, by Bayesian networks, and, in general, by the Bayesian statistical
modelling. The model is a special case of the Bayesian network in that the local probability distributions
are constrained to noisy logic functions. The model can be seen as an intermediate between the local
models of interactions, defined in Boolean networks, and Bayesian networks.

The chapter describes a statistical learning approach that allows for a particular gene to find a set of
its regulators (activators and inhibitors), given a particular Boolean logic function governing this regu-
lation. To robustly identify the regulators of a target gene from a large number of potential regulators
is a great challenge in view of the sparseness of experimental data. The Bayesian learning framework
and appropriate formulations of a priori distributions of network parameters presented here allow for an
efficient search over the space of possible models and penalization of complex models.

In the following, we give a brief introduction to the Boolean and the Bayesian Networks, and explain
the Bayesian logic-based model. After the introduction to the Bayesian modelling and MCMC sampling-
based approaches, the Bayesian learning of the model from data is described. The main idea is the Bayes-
ian variable selection approach. Hints for the specification of the parameters hereto are recommended.
We demonstrate the application of the model exemplary on the malaria parasite data. Further related
approaches are discussed, completed with the conclusion and the outlook for future research.

MAIN THRUST OF THE CHAPTER
Boolean Network

A Boolean network is a system of n binary-state nodes. Each node is assigned regulatory inputs from
several other nodes and a Boolean function, according to which the state of the node is computed from
the input states. Each Boolean function is specified with a truth table. For instance, Table 1 displays the
truth table for the Boolean function “OR”.

The state of a network at a time point t is given by the current states of all the n nodes. Thus the state
space of any such network is 2". Simulation is executed in discrete time steps ...,t, t + 1,..., where each
node obtains its new state according to the inputs. Since the Boolean Network has a limited number of
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Table 1. Truth table for the Boolean function “OR”” used in the Boolean Network

X, X, Y
0 0 0
1 0 1
0 1 1
1 1 1

possible states, it will reach a previously visited state, and hence, due to the deterministic dynamics,
will fall into an attractor. For a given set of inputs, the attractor reached is called logical steady state.
It gives an impression about what network state is possible under the fixed states.

Bayesian Network

The Bayesian network comprises two components: the qualitative one and the quantitative. The qualitative
component is a directed acyclic graph G, whose vertices correspond to the random variables X ,...,X .
The graph G encodes conditional independencies between the variables: given the value of its parents
in G, the variable is conditionally independent of other variables in the network except its descendants.
Due to this, the joint probability distribution is equal to the product of the conditional probability dis-

tributions (CPDs):

PX,. X )= H P(X ‘parents(Xj))_

17" n
1=1,...n

In other words, the joint distribution can be represented in a factorized form. The conditional dis-
tribution for a variable defines its probability given every possible combination of its parents’ values.
Due to the notion of conditional independence, probabilistic dependencies among the variables in the
network can be represented only by the specification of CPDs. The set of all CPDs is the quantitative
component of the Bayesian network. In fact, the CPD is the multinomial distribution with parameters
a (vector). The CPDs are specified with the so called conditional probability tables (CPTs). Figure 2
presents an example of a Bayesian Network with seven variables.

The joint probability distribution of the variables factorizes into:

-, X,) = P(X,)P(X,)P(X,|X,, X,) P(X )P(X,)P(X,|X,, X, X,) P(X, |X,)

The specification of a CPT, with four parameters a,...,a, for the variable X, having two parents X,
and X,, is displayed in Table 2.

When inferring a Bayesian network from observational data, each candidate network must be scored,
based on its ability to explain the data. Therefore, scoring metrics are used. Two different approaches
exist to derive the scoring metrics: a maximum likelihood-based and a fully Bayesian. In the former, the
best fit to data D for a given DAG G is determined by maximizing the likelihood p(D|G, a) as a function
of a, the parameters of the conditional probability distributions. A score is then given by:
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Figure 2. Example of a Bayesian network

score,,, (

G)= max p(D‘G,t).

Since this score tends to over-fitting, the BIC score (Bayesian information criterion) is often used,
penalizing the maximum likelihood of the model with respect to the number of parameters (Schwarz,

1978).
In the Bayesian approach, the posterior probability of model structure G given data D is evaluated:

p(D|G)p(G)

p(D)

Here, p(D|G) is the marginal likelihood and p(G) is a prior over model structure. The denominator
p(D) is called a normalizing constant and is the same for all models, so one does not need to compute

it for the scoring. In the marginal likelihood, the parameters o are being integrated out (and not maxi-
mized), that precludes over-fitting:

score, (G)= p(G‘D) =

Bayes

pD|G)= [ p(D]CEp( |G

Table 2. Conditional probability table specifying the conditional distribution of the variable X, given
its parents X, and X,

X3
X, X, 0 1
0 0 a, 1-a,
1 0 a, 1-a,
0 1 a, I-a,
1 1 a, 1-a,
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Figure 3. Bayesian logic-based model of gene regulatory interactions, F being a Boolean function
("AND", "OR")

This integral can be computed analytically, if the prior probability distribution of the parameters is
chosen in a special way, namely conjugate to the likelihood (see also explanations below). Using that
the Dirichlet distribution is the conjugate prior for the multinomial, the Bayesian score for the Bayes-
ian network was derived (Heckerman, 1998). The prior for the structure p(G) can help to penalize or
to give preference to models with particular features, but the simplest choice is the uniform distribu-
tion assuming that the models are equally likely. Heuristic algorithms (hill climbing, arc inversion) are
used to obtain the optimal Bayesian network structure with respect to the Bayesian score (Cooper and
Herskovits, 1992).

The Bayesian network formalism allows to model arbitrary interactions between parents X ,...,X_of
avariable Y. The complete CPD for a binary variable with n parents requires the specification of 2" inde-
pendent parameters (one parameter for each parents’ state configuration). This combinatorial semantics
of parents interaction in the Bayesian network, and hence the exponential explosion of the parameter
space make the model learning computationally costly. Moreover, in small data sets there might be an
insufficient number of cases available for learning conditional probabilities. It is more reliable to learn
distributions having fewer parameters. These considerations motivated the employment of a further
probabilistic graphical model with a constrained definition of the local probability distribution, in order
to adequately model the genetic regulatory control. The model will be presented in the next section.

The Bayesian Logic-Based Model of Gene Regulatory Interactions

Aspreviously discussed, ingraphical modelling, the joint probability distribution of variables is expressed
as a product of distributions over a smaller number of variables by exploiting conditional independence
relations encoded in a graph structure. In this way, the number of parameters to be specified or estimated
is reduced. For example, in the Bayesian network formalism compact representation of the joint distribu-
tion among variables in the network is achieved by expressing it with conditional probability distribu-
tions. One can further exploit the independencies between parents of a variable in a Bayesian network
to get more compact representations of CPDs. In the past, several models were proposed with special
types of causal interaction (see Heckerman and Breese, 1994; Meek and Heckerman, 1997; Srinivas,
1993). One is the causal independence model which assumes independence of parents of each variable
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Figure 4. Complex model of gene regulatory interactions with activators and inhibitors (““OR-NOR”
regulation)

in the model. The variables X ,...,X , the parents of the variable Y, can influence Y through independent
“mechanisms”. The effects are then combined by a rule determined by a Boolean-logic function. Such
models were introduced originally by J.Pearl (1998) and called “noisy OR-Gate” and “noisy AND-Gate”.
This kind of models is employed here for modelling the genetic regulatory interactions.

We assume that a variable X; (regulator) can execute its influence on variable Y (regulatee) inde-
pendently of other possible regulators from the set X ,...,X . The biological mechanism underlying this
modelling assumption is the binding of protein transcribed by the regulator to the DNA of the regulatee.
This process is not deterministic, rather, each gene X; can regulate Y with probability &, and can fail to
do this with probability 1-6. The model is represented by a directed graph in Figure 3. In the model,
intermediate variables 1 ,...,1 were introduced, through which the variables X,,...,X_exerttheir influence
on a given common effect variable Y.

Each intermediate variable | has only one parent, the variable X.. Its probability distribution is defined
as follows: given that X =1, |. takes the value 1 with probability 6. and the value 0 with probability 1-6,,
respectively. Given that X=0, I, takes the value O with probability 1. The combined regulatory influ-
ence on the variable Y is calculated as the Boolean function F on the input variables I ,...,1 . If X ,....X_
are activators, then the state of the variable Y is F(l,...,1 ); if X,,...,X_are inhibitors, the state of Y is

Table 3. Conditional probability table of regulatee Y that is activated by two regulators X, and X,
(““OR-activation)

Y
X, X, 0 1
0 0 1 0
1 0 1-0, 0
0 1 1-0, 0,
1 1 1-6)1-6) | 1-(1-6)(1-6,)
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1-F(l,,...,I). The Boolean “interaction function” F defines in which way the intermediate effects I, and
indirectly the variables X, interact. We consider two interaction functions: AND and OR. The semantics
of the OR-function implies that the variables X, are each assumed to be sufficient to influence Y. In the
case of the AND-function, all variables X. need to execute their own influence on the variable Y in order
Y to be active.

The introduction of the hidden state variables I, allows for the insertion of “noise” into the Boolean-
logic based models. It allows to model that the biological mechanism of the regulation of one gene
by another could be inhibited for unknown reasons. Thus, the input variables can be considered as
observables from which we make our measurements, while the hidden variables have the “true” latent
biological values.

In the present chapter, we consider simple models with activatory regulation (“OR”, “AND”) and
inhibitory regulation (“NOR”, “NAND?”), as well as complex models: “AND-NAND”, “AND-NOR”,
“OR-NAND” and “OR-NOR”. In the complex models, the regulatory influences of multiple activators
and multiple inhibitors are combined with AND-function as displayed in Figure 4.

The conditional probability distribution for the regulatee Y that is activated by two possible regulators
(“OR”-activation), is presented in Table 3. Note that the model with the Boolean logic-based interaction
of parent variables allows for the specification of the CPD for a variable with only n parameters 6,,...,6 ,
i.e. polynomial on the number of parents.

We formulate the problem of learning the model from data as follows: given the data on gene Y and
its potential regulators X ,...,X , for a given Boolean logic function F, identify the subset X_,...,X of
actual regulators of Y. The parameters 6 must also be assessed. We employ statistical learning of the
model from data, in particular, the Bayesian inference.

Bayesian Inference

In contrast to the classical frequentist approach, Bayesian inference does not deal with point estimates
of model parameters, but, rather, with probability distributions on the parameters and on all unobserved
quantities (such as latent variables, predictions etc.). This enables to assess a whole interval as having
a high probability of containing an unknown quantity of interest.

Bayesian modelling starts with setting up a full probability model — a joint probability distribution
for all observed and unobserved quantities in a problem. Then, the Bayesian methodology seeks to as-
sess the conditional probability distributions of the unobserved quantities given the observed data. Let
@ stands for unobservable quantities (parameters) and y for observable (data). Then, the joint probability
is p(#,y) and the posterior probability by Bayes’ rule is:

p(6,y)  P]o)pO)
o) = py) P

where p(y|0) is called likelihood function and p(6) is the a priori probability of the parameters.

Since p(y) does not depend on 6, the following proportionality is valid: P(H‘Z/) x P(y‘a)pw)- This *
posterior o likelihood x prior* yyle is the basis of the Bayesian inference. The p(y) is the marginal

likelihood integrated over the parameters 6: P(y) = fﬁ p(y |)p(0)do.

115



Inferring Genetic Regulatory Interactions with Bayesian Logic-Based Model

The calculation of the multi-dimensional integrals arising in the Bayesian inference is the general
computational obstacle of the Bayesian methodology. The integrals are analytically tractable only in certain
restricted examples. When the posterior distribution of the parameters belongs to the same parametric
family as the prior distribution, the integral has a closed form solution. This property is called conjugacy
(Bernardo and Smith, 1994). For example, conjugate priors are available for the general exponential
family models. Alternatively, approximation techniques, such as variational methods (Jaakkola, 1997)
or simulation Markov Chain Monte Carlo (MCMC) (Gilks 1993) can be employed. For an introduction
into the MCMC see Gamerman (2006).

One of the MCMC approaches is known as Gibbs sampling (Geman and Geman, 1984). It reduces
the problem of dealing simultaneously with a large number of unknown parameters in a joint distribution
into a much simpler problem of dealing with one variable at a time, iteratively sampling each from its
full conditional distribution given the current values of all other variables in the model. It happens that
many models have a complex joint distribution, but their conditional distributions are relatively simple.
As stated by Pearl (1987), performing Gibbs sampling is particularly appropriate for a graphical model
due to the factorization of the joint probability.

A specification of the prior distribution for parameter 6 should make all its possible values equally
probable (non-informative prior). This guarantees that the prior distribution plays a minimal role in the
posterior, and the whole parameter space will be explored. However, a “subjective” definition of the prior
is possible, when a desire is to insert a priori knowledge into the model. This possibility is an inherent
advantage of the Bayesian modelling over classical statistical approaches.

Further more, Bayesian modelling allows for a hierarchical formulation of a model: distributions
for the parameters can be formulated, in turn, with the help of hyperparameters. This provides a great
flexibility in defining complex models fitting them more adequately to real domains.

Bayesian Model Selection

Our task is to infer from data not only parameters of the model, but the structure of the model itself.
In the Bayesian framework, this task is often called Bayesian model selection. As we have seen previ-
ously on the example of the Bayesian network, the problem is addressed by calculating the posterior
probability of a model given data for a collection of candidate models and selecting the most probable
model. Suppose that the data D has been generated by a model m, one of a set M of candidate models,
m € M _|f p(m) is the prior probability of model m, then the posterior model probability by Bayes rule
is p(m | D) oc p(D | m)p(m). Let 6_be parameters of the model m. The marginal likelihood p(D|m) is
calculated as:

p(D | m)=J p(D | m,0,)p(6, | m)ao, .

where p(6_|m) is the prior distribution of model parameters ¢ for model m. When the integral has no
analytical solution, MCMC can be employed. MCMC samples from the joint posterior distribution
p(m,d |D) allowing for the estimation of the posterior model probability p(m|D) and of the posterior
parameter probability p(@_|D).
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We now proceed with the Bayesian formulation of the Boolean-logic based models. Consider the
model with “OR”-activation. Assume the variable Y is commonly influenced by the variables X.,...,X .
The probability distribution of Y given the values of its parents can be written as:

n

PY =0[0)=]]0-0)" znq

i=1

P =1]0)=1-][(1-0)",

i=1

where 6 = (0,,...,0) is the vector of parameters. Assume we have a sample of N cases corresponding
to the states of the variables X,...,X 'and Y. Denote by Y, the state of the variable Y in case j, and by X,
the state of the variable X; in case j. The likelihood function is then:

N n

o) =TT qTa-0)") "a-ITa-6)")"

j=1 =1 i=1

If we substitute % by —log(1-6,), the likelihood function transforms into:

B =T[E") "a—em),

J=1

where 1; = Zl ¢1;7-X1,- is a linear predictor. This shows that the “OR”-model cannot be expressed in the
exponential form. In fact, this is the generalized linear model (McCullagh and Nelder, 1983). Unlikely
to exponential models, a straightforward conjugate prior for parameters (regression coefficients) is not
available for this class of models. Chen and Ibrahim (2003) construct a prior based on a priori prediction
on the response Y. Bedrick et al. (1996) developed Data Augmentation Priors based on evaluation of
the prior at n locations in the predictor space. We instead turn to the MCMC.

We need to specify joint distribution for both data and parameters. The “OR” model can be written

as:

Y ~ Bernoulli(1 — H (1- HZ.)X’)

i=1

(the operator ~ stands for “is distributed as’).

Now consider the complex model “OR-NOR”. Assume the variable Y is influenced by a set of activa-
tors X*,..., X" and a set of inhibitors X;",..., X" . The variable Y takes the value 1, if the activators
executed their influence and the inhibitors failed, otherwise Y is 0. The “OR-NOR” model can then be
defined as:

=~

n

Y ~ Bernoulli((1 — H 9““ H Hm}z

i=1 i=1
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In the following we show how the models can be reformulated to solve the problem of the model
selection.

Bayesian Variable Selection

In our problem of Bayesian model selection, candidate models have different number of parameters
(i.e. different numbers of regulatory genes). Because of the variable size of the problem space, standard
Markov Chain Monte Carlo techniques cannot be directly applied. Essentially, two approaches exist.
The first is a sophisticated simulation technique using Markov chain with jumps between the different
models — reversible jump MCMC by Green (1995). Alternatively, all models under consideration are
indexed and the index is treated as another parameter, to be considered jointly with all other model
parameters. Carlin and Chib (1995) proposed this concept of a supermodel defined over a composite
parameter space and used the standard MCMC methodology - Gibbs sampling. The algorithm was
improved in the Metropolized Carlin and Chib algorithm (see Godsill (2001) and Dellaportas (2002)).
Further Gibbs sampling approaches for model selection problems were developed by George and Mc-
Culloch (1996) — Stochastic Search Variable Selection, by Kuo and Mallick (1998), and by Dellaportas
et al. (2000, 2002) — Gibbs Variable Selection (GVS).

The general idea is to substitute the model indicator m € M with avariables indicator y = (y,,....y,),
a binary vector, representing which of the Xj,j =1,...,p should be included in the desirable “true” model.
This permits to consider one joint space of the model parameters and the variables indicator while keep-
ing the dimensionality constant across all possible models. The model selection problem is then referred
to as the variable selection problem.

Once the variables indicator has been introduced, the “OR” model is written as:

Y ~ Bernoulli(1 — H 1—0)")
i=1
The Bayesian approach requires setting up a joint probability distribution over all parameters p(6,y).
Let D denote the observed data for the variables X,,j=1,...,pand Y. The joint posterior distribution given
the observed data is p(6,y | D). The Gibbs sampling procedure samples successively from univariate
conditional distributions, simulating a Markov chain

0 0 1 1 t
9O A0 g N0 g® 0

which converges in distribution to p(d,y | D). The subsequence

converges to p(y | D). This sequence can be used to identify the high probability values of y, which are
the values that appear most frequently in the sequence. And this is namely the desirable result, indicating
the true regulators of a target gene.
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Consider a partition of 4 into (0 0 ) corresponding to those components of & which are included
and not included, respectively, in the model. Then the posterior distribution of the parameters p(6,y|D)
may be partitioned into p(6 |6_,.D) and p(6.|6,,7.D) . From the model definition it is obvious that the
components of the vector Q_Vdo not affect the model likelihood. The full conditional posterior distribu-
tions required for the Gibbs sampling procedure are given by:

p(0, 10,7 D)o p(D|0,v)p(0 | v)p(_ |0 ,7),

p(6_ 16,7, D)o p(d_ |0 ,7)

where p(D|6,y) is the model likelihood, p(07|y) is the model prior and p(9_7|07,y,) is called pseudoprior.

Methods for Gibbs variable selection differ in their approaches on specifying prior distributions
for the model parameters. The most simple is the “unconditional prior” approach of Kuo and Mallick
where the prior distribution of model parameters @ is defined independent of variables indicator y. In
the Stochastic Search Variable Selection method of George and McCulloch, the priors for b, depend on
7, and are defined as mixtures of two Normal distributions for 7,=0 and 7= 1 If 7,= 0, the parameters
(pseudopriors) are kept close to 0 by defining the mean of the normal distribution equal to 0. The method
of Dellaportas et al. (2000, 2002) differs from the SSVS in that the pseudopriors may not be distributed
around 0, instead they may be chosen in a way to help increase the efficiency of the sampling procedure.
Carlin and Chib (1995) noted that the pseudoprior distributions are meaningless as a modelling device,
but must be chosen carefully as they affect the rate of convergence of the chain. Total freedom may be
given to the specification of pseudopriors, they may even include specifications using the data. It was
recommended to set the pseudoprior distribution p(6j|yj=0) as close as possible to p(ejlyjzl) (proposal
densities). Dellaportas et al. use these proposal densities which can be estimated using a pilot run of
the MCMC for the saturated model, i.e. the model where all terms =1 for all j. The present approach
adopts the method of Dellaportas et al. (2000, 2002).

Solutions and Recommendations
Discretization

When applying Boolean logic-based models, it is necessary to preprocess the continuous gene expression
values and to discretize them into two states (0 - not expressed, 1 - expressed). Discretization results in
a loss of information, however, it reduces noise, which is characteristic to the mRNA measurements,
and makes the inference of the model more robust. To perform discretization, vector quantization tech-
niques can be used such as the clustering algorithm k-means (Gersho and Gray, 1992). For example, for
each gene, its expression values can be clustered into two groups (k = 2) with two initial values: 0 and
the maximum expression value of the gene. Several statistically sound quantization approaches were
proposed (Chung, 2006; Di Camillo, 2005). In contrast to the approaches which execute discretization
before and independently of the model inference, Steck and Jaakkola (2007) discretize continuous data
while learning the structure of a graphical model. Gat-Viks (2006) is another example of such joint
inference.
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In some applications, it would be reasonable to maintain ternary expression levels: 1 (upregulated), -1
(downregulated) and O (invariant). To address this issue, extensions to the Boolean logic-based models
can be developed.

Specification of the Prior Distributions for the Model Parameters

The priors for the parameters g, are defined with Beta distribution, since in the model presented here
they need to be constrained to the [0,1]-interval. We define the priors for the parameters 0, with Beta
distribution with hyperparameters a and bj:

¢, ~ Beta(a,b))

The hyperparameters a and bj are defined equal to 1, if y, =L Beta(1,1). This makes the prior non-
informative, allowing for the exploration of the whole parameter space. Ifyj =0, the proposal distributions
for the pseudopriors can be calculated according to the method of Dellaportas. That is, the mean mean,
and the variance var, of the parameters 6, are estimated from the pilot run of the saturated model, and
the hyperparameters a and bj are calculated by the formulas (method of moments):

mean (1 —mean,)
a +b = = —1,
J J ,Ua/,rj

ajz(aj+bj)meanj,
b=(a+b,)(1-mean,)

Next, one must define the prior distribution for the variables indicator y. Since the terms y, are in-
dependent, each term can be specified with the independent Bernoulli distributions: yj~BernouIIi(7rj),
where T is the prior probability to include term j into the model. The simplest choice in variable selection
problems is the uniform prior on y, assuming that models are a priori equally probable, i.e. m=r=0.5.
This prior is non-informative in the sense that it favours all models equally, but it is not non-informative
with respect to the model size. If p is the number of potential regulators and n is the number of actual
regulators, then E(n)=0.5p and var(n)=0.25p (Kohn et al., 2001). This can be crucial for models with a
sparse number of regulators, e.g. “AND” models with few gene regulators combined with AND-function,
since the sampling procedure will not sample them at all. On the other hand, in case of models with
high numbers of variables, we would like to favour more parsimonious models. It is advisable to set
the probability 7 in a way to restrict na priori to lie in a short range. By setting E(n) and var(n) to the
desired values, 7 can be calculated from:

E(n)=z*p,var(n)==(1-7)p.
A more flexible approach is to place a hyperprior on z:

7T ~ Beta(a,p),
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then the prior for the number of actual regulators n is Beta-binomial:
n ~ Betabin(p,a.f),

The values for a and £ can be chosen by setting E(n) and var(n) to the desired values and solving the
following equations (Kohn et al. 2001):

a —
a+p

P E(n)

at+l var(n) — E(n)(1— E(n))
a+p+1 (p—1E(n)

While performing Gibbs variable selection with the complex models like “OR-NOR”, we consider
the same set of variables (genes) as potential activators and potential inhibitors. We use two indicators:
y*tand "™ representing that a particular variable is included in the model as activator or inhibitor, re-

spectively. To ensure that terms 7} and 7" cannot be 1 at the same time, we specify 7" as:

7;.”}‘ ~ Bernoulli((1 — fy“;“)w_;"h ),

where 7r]’ is the prior probability for including the term j into the set of “true” inhibitors.
Implementation

The Gibbs variable selection procedure described in this chapter is easily implemented by using BUGS
(Bayesian Updating with Gibbs Sampling) which is the general purpose software for Gibbs sampling
on graphical models (Thomas 2006, Spiegelhalter et al. 1996; Gilks 1993; Ntzoufras 1999). BUGS
provides a declarative language for specifying a graphical model, and performs MCMC sampling from
the resulting full conditional distributions. The system recognizes conditional conjugacy and uses it
to sample efficiently. Failing that, it uses rejection and adaptive rejection methods or the Metropolis-
Hastings algorithms. BUGS allows for the specification of a variety of prior distributions. There is a
Windows version of BUGS, called WinBUGS, while the OpenBUGS software can be used on Unix-like
platforms.

The BUGS output — samples of the MCMC chain — must be monitored for diagnosing slow conver-
gence or lack of convergence. This can be done by using the package CODA implemented in R language
(Plummer, 2006) or withasimilar software BOA (Smith, 2007), see http://cran.r-project.org. CODAstands
for Convergence Diagnostics and Output Analysis and BOA stands for Bayesian Output Analysis.

The BUGS code for our “OR” and “OR-NOR” models is presented in the Appendix.

The output of Markov chain simulation can be used to summarize the posterior distribution of the
variables of interest: 6 and y,. After the burn-in time, Markov chain samples are used to count the num-
ber of times Y, had the value 1 in the Markov chain. For example, if the frequency of 1s exceeds 0.7,
we assume that yj=1 and the respective regulator should be included in the “true” model. Otherwise, the
regulator j should be excluded. The number of iterations for the burn-in time and for the estimations
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Figure 5. Time-delay’ gene regulation

depends on the problem size. For moderate size problems, 10000 iterations for the burn-in and 10000
iterations for estimations will be probably sufficient.

As proposed by Gelman and Rubin (1992), a number of parallel runs of Markov chains should be
carried out from different starting points. Convergence is diagnosed when the output from different
Markov chains is indistinguishable. For parallel runs of Markov chains we use different initial values
of the parameters indicator y (when 770 for all j and when 770 for all j).

Model Checking

After the execution of the Gibbs variable selection and the estimation of the variables indicator y, the
check of goodness-of-fit of the model to data must be performed. Bayesian model checking uses the
posterior predictive distributions (Gelman, 2000). The goal is to perform posterior predictions under
the model and to assess the discrepancy between predicted and observed data. If the model is reason-
ably accurate, the predicted data should be similar to the observed data. Let y be the observed data on
Y and 6 be the vector of parameters. Denote y*° the replicated data generated under the model with the
parameters . The posterior predictive distribution is

Figure 6. Feedback regulation among two genes
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oy 1) = | oy |0)p(0 | y)idb.

The posterior predictive distribution can be computed by simulation: simulate parameters 0 from their
posterior distribution, and simulate y™ from the sampling distribution p(y™|6) conditioning on values
of the simulated parameters. An advantage of using BUGS is that the generation of the replicate data
can be easily incorporated into the model inference procedure.

Here, we wish to check the ability of the inferred regulatory model to predict the state of the gene Y
from the states of its regulators. The inferred model is defined by the previously estimated binary vector
y, S0 the model contains now only the parameters . At each iteration of the MCMC, we generate the
replicate data set {y™} under the model based on the current simulated parameters 6.

Our model checking strategy is based on examining individual observations of Yy ,,i=1,...,N (N is the
number of data samples) and comparing them to the replicate data. For the comparison we use the residual
function r=|y-E(y,)|, where the expectation E(y,) is estimated from the replicate dataset. Observations for
which the residual is not close to 0 indicate some lack-of-fit of the model and should be regarded as an
outlier. We regarded the residual as not close to O if its absolute value exceeded one estimated var(y,).
The model prediction accuracy is calculated as the percentage of non-outliers.

Modeling Gene Expression Dynamics and Regulatory Feedback

Generally, there exist two kinds of microarray experiments: (1) measurements under different biological
conditions e.g. in tumor and in normal tissues, and (2) time-series gene expression data. Bayesian network
approaches are static in the sense that they represent causal relationships between variables at one point
in time. They do not address the dynamic changes of the variables. This is particularly applicable in the
first case, while the measurements of genes at each biological condition are treated as statistical samples.
In case of time course data, two different regulatory situations can be considered. First, the state of gene
i in a sample j depends on the states of its regulators in the same sample j (‘simultaneous’ regulation).
Second, the state of the gene i in the sample j depends on the states of its regulators in the previous sample
J-1 (‘time delay’ regulation), see Figure 5. Both situations can be treated by the method presented here.
The time delay setting resembles the ‘unrolled’ Bayesian network i.e. the Dynamic Bayesian network
model (Murphy, 2002). Inferring genetic regulatory networks with the Dynamic Bayesian models was
presented e.g. by Perrin (2003), and is treated in this book. However, such approaches reconstruct only
time-invariant regulatory influences, where the parameters are independent of time. The real dynamics
of the genetic regulation can be resolved only when the parameters of the regulatory models will be
allowed to vary in time. The problem of learning such models will then represent a great challenge in
view of the lack of statistical data. Again, MCMC simulation techniques will come into play, which is
the matter of future research.

Note that the ‘unrolled’ dynamic model makes it possible to infer feedback regulations, such as pre-
sented in Figure 6. Feedback relations between genes is a common motif in gene regulatory networks,
identifying them is of great interest.
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APPLICATION

The method presented in this chapter was tested with the gene expression data of the S.cerevisiae cell
cycle (Bulashevska & Eils, 2005) and with the data on malaria parasite Plasmodium falciparum (Bula-
shevska et al., 2007). After the execution of the Bayesian model inference of the Boolean logic-based
models and after the model checking, the results are being summarized in graphs. There, the full arcs
represent activatory regulation and the dashed arcs represent inhibitory regulation. Genes pointing to
one gene represent its regulators combined with the Boolean logic function underlying the model.

One example of the inferred “OR-NOR?” regulatory interactions of Plasmodium falciparum in gly-
colysis is displayed in Figure 8. This is the result of the ‘time delay’ learning of the “OR-NOR”-model.
The bloodborne pathogen P.falciparum causes the most fatal and prevalent form of malaria. Understand-
ing the gene regulatory circuitry of this organism is of great importance. Since glycolysis is a crucial
pathway in the maintenance of the parasite, we looked closely at the group of genes involved in it. From
the public database PlasmoDB (http://plasmodb.org), twenty genes we harvested that are known to be
involved in the glycolytic pathway. Many of the genes encode enzymes. Eighteen of the twenty genes
were found in the dataset of Bozdech et al. (2003), which is the time-series gene expression data of the
intraerythrocytic development cycle of P.falciparum. So the gene expression was measured every six
hours at subsequent time points t=1,...,T, where T=53. The true biological time resolution of the gene
transcription and activation is yet unknown. In case of the ‘time delay’ learning, it is assumed that a
gene becomes active at a subsequent time point after its regulators are active.

The deduced regulatory network (Figure 8) suggested the strategic position and hence the key regu-
latory role of the genes PF11_0157, PF11 0208, PF14 0341 and PF10_0155. Interestingly, the gene
PF10_0155 was connected to both enzyme genes PF14 0341 and PF13_0141. The network revealed the
groups of closely connected genes. One group contained the genes PF11 0157, PF13 0269, PF11 0294,
PF14_0425and PFC0831w, another: PF14 0341, PF10_0155,PF14 0598, PF11105w, etc. Bidirectional
regulations e.g. between genes PF11 0157 and PF11_0294 might indicate that the genes are both active
over long period of time and the proper arc direction could not be resolved. Another possibility is that
both genes oscillate in a shifted manner. Feedback regulation through unmeasured biological mecha-
nisms could also be hypothesized. The inhibitory connections between the genes suggest that the groups
of genes work in a separated manner. The activation of the gene PF13 0269 by the gene PF11 0157
was shown previously experimentally. The metabolic pathway maps with enzymes for the P.falciparum
glycolysis pathway, available at KEGG database, supported the predicted interactions. The predicted
network provided more information than contained in the KEGG, though.

Obviously, different Boolean logic models have different semantics. For example, the “NOR”-model
can suggest more inhibitors than the “OR-NOR”-model. Learning the “NOR”-model identifies only
the inhibitors of a gene, i.e. the model “explains” the non-activity of the gene with the activity of its
inhibitors. By the “OR-NOR”-model, the non-activity of the regulatee can also be “explained” with the
failure of its activators. Generally, the “OR-NOR”-model gives valuable hypotheses on the most likely
possible activators and inhibitors of each gene in the dataset. On the other hand, the “AND”-model is
capable to reverse engineer the real synergistic relations between the genes, which is not possible by
other approaches.

Although we have tested our approach on relatively moderate subsets of genes, the method can be
readily applied to large datasets, where the advantages of the Bayesian variable selection arise.
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CONCLUSION

This chapter has presented the models of genetic regulatory interactions possessing Boolean-logic
semantics. They were formulated as probabilistic graphical models and placed into the context of the
Bayesian modelling. In fact, they resemble the local interactions of nodes in the Bayesian network,
though constrained and not combinatorial.

The modelling approach does not make an attempt to reconstruct the whole genetic regulatory net-
work in one computational run, unlikely to the Bayesian network. Rather, the method is applied for
each gene in the dataset, considering all other genes as candidate regulators, and then summarizing the
results in a graph.

Bayesian modelling has a number of advantages. It allows for flexibility in defining complex models
with many parameters. For example, by inserting into the model a new parameter, the variables indicator,
we have converted the problem of model selection into the variable selection task, which is conveniently
solved with Gibbs sampling. Generally, Markov Chain Monte Carlo simulation techniques rapidly
evolve to facilitate Bayesian statistical inference. A further advantage of the Bayesian approach is that
it enables to include subjective prior information into the model. For example, we used the subjective
prior specification to enforce the number of gene regulators to lie in the desired range. Potentially, one
could define priors aiming to incorporate into the model learning previous biological knowledge.

Inthe computational framework presented in this chapter, a particular regulatory Boolean-logic func-
tion (e.g. “AND”, “AND-NOR”, “OR-NOR” etc.) can be defined explicitly and the regulatory model can
be learned from data. Given expression data on a gene and its potential regulators, the method permits
to detect the most likely regulators of the gene. The main advantage of the present approach is that the
elucidated gene relationships do not require laborious manual analysis for their interpretation, in contrast
to the arbitrary combinatorial interactions learned by means of standard Bayesian networks models. On
the other hand, the method enables to reveal more complex multi-gene relations than those defined in
the conventional regression models.

Generally, the Bayesian variable selection under the so called n > p or ‘large p, small n’ paradigm,
when the sample size n is substantially smaller than the number of covariates in the regression, remains
an important point of statistical research. The problem of selecting significant gene regulators based on
microarray data apparently represents such a ‘large p, small n” problem. In West (2003), the number of
covariates was projected to lower dimension using principal component. Bayesian variable selection
that introduces sparseness through priors on the model size and on the role of each individual gene is a
powerful approach, well suited to the problem of reconstructing the genetic regulatory network.

RELATED APPROACHES
Probabilistic Graphical Models for Cellular Networks

Probabilistic graphical models have become an important tool for computational analysis of biological
data.

The system MinReg (Pe’er et al. 2002) was designed with the same goal as discussed here to constrain
Bayesian networks to parsimonious models, in order to make them more biologically relevant. The idea
is that biological regulatory networks have a limited number of “master regulators”, which affect the
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transcription of large numbers of genes. The authors constrain the number of regulators of each gene
and the total number of regulators in the model. A regulator is then reliable when it regulates a whole set
of target genes. The authors developed an iterative algorithm for searching for high scoring networks,
while using the Bayesian score for local models. A relationship not identifiable by the MinReg is the
cooperative activity of regulators (“AND”-model). With this respect, our approach is of advantage.

The Module Networks (Segal et al. 2003, 2005) is a further probabilistic framework. The system
assigns genes into modules. Each module is regulated by a regulation program that is a set of rules
organized as a regression tree. Expectation-Maximization algorithm (EM) was developed to iteratively
search for models with the highest Bayesian score.

Gat-Viks et al. (2006) use a probabilistic factor graph model to jointly model continuous high-
throughput experimental data and a priori known regulatory relations. A factor graph is a bipartite graph
associating variable nodes with factor nodes. The variable nodes are used both to represent continuous
experimental data and the respective discrete states of the genes. Also, two kinds of factor nodes are
used: one for discretizer distributions (mixtures of Gaussians), which specify the joint distribution of the
discrete states and the continuous observations, the other one - for the regulatory functions, which are the
Bayesian network’s distributions. Given the model, predictions are made with Loopy Belief Propagation.
The predictions are then compared to the experimental measurements; in case discrepancy is found, the
model is iteratively refined. Given a target gene and its candidate regulatory unit the refinement process
searches in the space of regulatory functions to achieve the best Bayesian score. During the refinement,
the discretization parameters are re-optimized with the Expectation-Maximization (EM) procedure. This
modelling approach is implemented in the software tool MetaReg (Ulitsky, 2008).

Recent efforts are dedicated to the integration of the gene expression data with other biological
sources, such as promoter sequences, cis-elements, ChlP-chip data etc. (Bussemaker et al., 2007; Beer
and Tavazoie, 2004; Hartemink et al., 2002; Segal et al., 2002; Bar-Joseph et al., 2003).

Further Applications of the Bayesian Variable Selection in Genomics

Bayesian variable selection, applied in this chapter for the elucidation of regulatory interactions between
genes, is also being adopted, however, in a supervised problem, where the goal is to select a subset of
genes/markers that are more influential than the others for classification of cancer phenotypes, disease
stages etc. In this context, probit or logistic regression models are applied based on the seminal paper
of Albert & Chib (1993). The authors proposed an auxiliary variable approach for binary probit regres-
sion model introducing latent variables in the model and rendering the conditional distributions of the
model parameters to normal form. Albert & Chib used the block Gibbs sampler. Holmes & Held (2006)
extended this approach using joint updating of the regression coefficients and the auxiliary variables,
thus improving the performance. Besides, they adopted the auxiliary approach to logistic regression.
With microarray data on breast tumors, Lee et al. (2003) used probit regression model relating continuous
gene expression levels to the binary response: patient is carrying mutations in BRCA1 or BRCA2 genes,
or not. The variables indicator y was introduced into the model, and the number of selected genes was
restrained by choosing probability z of inclusion of a gene into the model to be small, as already pointed

out in this chapter. The prior for the regression coefficients ﬁy was chosen as: 67 ~ N(0, c(X;,XV)”)
where c is a positive scale factor determining the degree of shrinkage of the coefficients through the
posterior distributions. Smith and Kohn (1997) recommend choosing ¢ between 10 and 100. Sha et al.
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(2004) developed a Bayesian variable selection method for the multinomial probit model to identify
molecular signatures of two disease stages of rheumatoid arthritis. They also discuss the choice of ¢
(see Brown et al., 2002).

Since the regulatory models described in this chapter aim to mimick the cooperative binding of tran-
scription factors to the promoter region of the regulated gene, they appeared to be similar to the models
being applied to relate transcription factor binding sites (TFBS) to the expression of the respective genes.
The goal of such settings is to find the TFBS with the strongest predictive power (predictive models
of gene expression). Liu et al. (2006) use the transcription factors library TRANSFAC (Matys (2003),
BIOBASE GmbH, see http://mwww.gene-regulation.com/pub/databases.html) to identify the TFBS can-
didates, and then employ linear regression model in case of continuous values of gene expression and
probit regression model with the discrete expression levels. The authors perform the Bayesian variable
selection with Gibbs sampling. Tadesse et al. (2004) use the similar setting of the Bayesian variable
selection to identify DNA-binding sites (regulatory motifs) which explain the expression of genes by
previously generating a large list of candidate motifs with MotifRegressor (Conlon, 2003).

Selection of Regressors

The framework presented in this chapter resembles the statistical problem of the selection of predictors in
aregression setting. Clyde et al. (1996) pointed out that the correlation of predictors is a serious obstacle.
Making explanatory variables orthogonal to each other can improve statistical learning, particularly
convergence and mixing of MCMC.

Chipman (1996) discussed a strategy to reduce model space by grouping the predictors and to consider
importance of the groups instead of individual variables in the regression.

Most of the works end up with the selection of main effects, ignoring the interaction effects of
the predictors. Chen (2004) proposed a Bayesian variable selection method with a goal to elucidate
interactions - BSI (Bayesian Selection of Interactions). It extends the framework of SSVS (George &
McCulloch, 1993) and introduces priors for pair-wise interactions as well as joint priors to express the
dependence of the main effects on the interactions. Bayesian model averaging by using a set of a pos-
teriori likely models (Madigan and Raftery, 1994, Clyde 1999) can also be employed with the aim of
variable selection (Brown, 2002).

FUTURE RESEARCH DIRECTIONS

Gene expression measurements represent high dimensional data with small number of sample cases.
Elucidating complex dependencies from this data raises a great statistical challenge. For regression-like
models with large numbers of candidate predictors (‘large p, small n” problems), the Bayesian variable
selection approach described in this chapter still remains a matter of current research. Slow mixing and
bad convergence of the Markov chains is a major problem. MCMC algorithms like Gibbs sampling
take more time wandering around less interesting regions of the model space, often remain stuck in
local maxima and do not provide an adequate representation of the model space with the increasingly
complex patterns of collinearity. In this context, future research will proceed in two directions. Firstly,
with respect to the model specification, the formulation of the prior for the variables indicator 7 will
further evolve. Secondly, from the computational perspective, the sophisticated MCMC algorithms
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will be designed capable to quickly and adequately explore the high-dimensional model space, and to
identify regions of high posterior probability over models. For example, the shotgun stochastic search
(SSS) approach was developed by Hans et al. (2005). It is inspired by the Metropolis-Hastings MCMC
algorithm, but can more rapidly identify probable models by evaluating many neighbourhood models
in parallel as proposals. Moreover, the parallel implementation of the method for use on a Unix-cluster
was provided.

The development of trans-dimensional Markov Chain Monte Carlo, originating from the work of
Green (1995), isan important future research direction. Jasra et al. (2007) proposed the population-based
reversible jump MCMC which combines the advantages of both population-based and reversible jump
approaches. The population-based simulation simultaneously represents many properties of the target
distribution and can provide an improved dimension-changing jumping; whereas the standard reversible
jump method does not retain information about which states have been visited and has greater capacity
to discover new states.

Despite a substantial amount of works aiming to reveal functionally important genes that regulate other
genes or are significantly predictive for classification of different biological phenotypes on macro levels,
deducing the complex dependencies between the genes still remains a challenge. The model described
in this chapter is a step in this direction. Introducing time evolution in the regulatory network models
and considering the entire gene data in the global model is a highly challenging future perspective.
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KEY TERMS AND DEFINITIONS

Bayesian Inference: A statistical inference method in which the degree of belief in a hypothesis is
expressed in terms of probability distributions a priori i.e. before evidence has been observed, and is
updated using evidence with the help of the Bayes’ theorem.

Bayesian Network: A probabilistic graphical model representing conditional independencies of ran-
dom variables via a directed acyclic graph (DAG). A Bayesian network is specified by a graph structure
and conditional probability distributions (CPDs) for each node, conditional upon its parents in the graph.
Algorithms exist that perform inference and learning in Bayesian networks.

Bayesian Variable Selection: A problem of identifying a subset of predictors from a large set of
potential predictors in the regression-like models. Bayesian approach is promising due to efficient a
priori parameter formulations.

Boolean Network: A set of Boolean variables connected in the network, where the state of each
variable is determined by the states of its neighbours by Boolean functions.

Genetic Regulatory Network: An abstract representation of the orchestrated regulation of expres-
sion of genes.

Gibbs Sampling: Is a special case of the MCMC sampling algorithms named after the physicist J.
W. Gibbs. The algorithm samples from the joint probability distribution of random variables by gener-
ating an instance from the distribution of each variable in turn, conditional on the current values of the
other variables.

Graphical Models: Graphs with nodes representing random variables, where arcs encode conditional
independencies between the variables.
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Markov Chain Monte Carlo (MCMC): A class of algorithms for sampling from probability
distributions based on constructing a Markov chain that has the desired distribution as its equilibrium
distribution.

Noisy-OR Model: A special case of the specification of the CPD in the Bayesian network, where
the number of parameters is linear on the number of parents of a node. The idea is that each parent is
capable to execute its influence on the node independently of other parents, whereby the individual ef-
fects are then summarized with the Boolean function OR.

Probabilistic Modeling: Akind of modelling where a problem space is expressed in terms of random
variables and their probability distributions. Properties of the underlying distributions are being deduced
from data in the process of probabilistic inference.
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APPENDIX

BUGS code for the “OR”-model

model OR-model {
# specification of the likelihood
for (1 in 1:N){
for (J in 1:P){
s[i,j] ~ dbern(theta[j])
I[i,3]1 <- X[i,j1*s[i,jl*gammalj]
}
sum[i] <- sum(l[i, D
constraint[i] <- step(sum[i]-1)
Y[i] ~ dbern(constraint[i])
# Y[i]=1 if sum[i]21 i.e. at least one of I[i,]j]=1
# gene Y in sample 1 is active, if one of its activators is
# active
¥
# specification of the priors
for (J in 1:P){
gamma[j] ~ dbern(pi)

pi <- 0.2

theta[j] ~ dbeta(aljl.bliD

a[j] <- 1

b[j] <- 1

# alternatively: hyperprior on pi

# gamma[jJ] ~ dbern(piljl)

# pi[j] ~ dbeta(apiljl.bpiljD)

# apild] <-

# bpi[j] <- .

# values to keep the number of regulators in the desired range

# method of Dellaportas:

# 1T gamma[j]=0 use proposal values aprop[jJ] and bprop[j]
# calculated based on mean and variance estimations of theta

# from the pilot run of the saturated model

# 1f gamma[j]=1 a[j]=1, b[J]1=1 (nhon-informative prior)

# gamma[]j]<-1.0 for sampling from saturated model
# theta[j] ~ dbeta(aljl.b[il)
# a[j] <- gamma[j] + (1-gamma[j])*aprop[il

# b[J] <- gamma[j] + (1-gammal[j]1)*bprop[i]

# aprop[j]<- (priormean[j]* (l-priormean[]j])/pow (priorvar[]j],2)-
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D*priormean[j]
# bprop[jl<- (priormean[j]* (l-priormean[j])/pow (priorvar[jl,2)-
1)*(1-priormean[j])

}
}
BUGS code for the “OR-NOR”-model

model OR-NOR-model
{
for (i in 1:N){
for (J in 1:P){
s[i,j] ~ dbern(thetal[j])
I[i.3]1 <- X[i.j1*s[i.]j]
lact[i,j] <- I[i,j]*gamma_act[j]
linh[i,j] <- 1-1[i,j] + I[i,.jJ1*(QA-gamma_inh[j])
}
sumact[1] <- sum(lact[i, ])
constraint_act[i] <- step(sumact[i]-1)
suminh[1] <- sum{linh[i, ])
constraint_inh[i] <- step(suminh[i1]-P)
constraint[i] <- constraint_act[i] * constraint_inh[i]
Y[i] ~ dbern(constraint[i])
# gene Y in sample 1 is active, if one of the activators
# is active and all inhibitors are not active
}
for (J in 1:P){
gamma_act[j] ~ dbern(pi)
pinh[jJ] <- (1-gamma_act[j])*pi
gamma_inh[j] ~ dbern(pinh[j])

# 1f gamma_act[j]=1, pinh[j]=0 (gene j is already activator)

pi <= 0.2
# alternatively: see above

theta[j] ~ dbeta(aljl.blil)
alj] <- 1

b[j] <- 1

# method of Dellaportas

# pseudopriors if gene j is neither activator nor inhibitor

a[j] <- 1 + (A-gamma_act[j])*(1-gamma_inh[j])*apropl[ijl
b[j] <- 1 + (1-gamma_act[j])*(1-gamma_inh[j])*bprop[ijl
# use proposal values aprop[j] and bprop[j]

137



Inferring Genetic Regulatory Interactions with Bayesian Logic-Based Model

# calculated based on mean and variance estimations of theta
# from the pilot run of the saturated model
# gamma act[j]<-1.0

aprop[j]l<- (priormean[j]* (l-priormean[]])/pow (priorvar[j],2)-1)*
priormean[j]
bprop[j]l<- (priormean[j]* (l-priormean[]j])/pow(priorvar[j],2)-1)*(1-
priormean[j])
¥
+
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Chapter 6

A Bayes Regularized Ordinary
Differential Equation Model
for the Inference of Gene
Regulatory Networks

Nicole Radde
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Lars Kaderali
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ABSTRACT

Differential equation models provide a detailed, quantitative description of transcription regulatory
networks. However, due to the large number of model parameters, they are usually applicable to small
networks only, with at most a few dozen genes. Moreover, they are not well suited to deal with noisy
data. In this chapter, we show how to circumvent these limitations by integrating an ordinary differen-
tial equation model into a stochastic framework. The resulting model is then embedded into a Bayesian
learning approach. We integrate the-biologically motivated-expectation of sparse connectivity in the
network into the inference process using a specifically defined prior distribution on model parameters.
The approach is evaluated on simulated data and a dataset of the transcriptional network governing
the yeast cell cycle.

INTRODUCTION

Developments in experimental technologies such as DNA microarrays and real-time PCR experiments
render quantitative measurements of expression levels of a large number of genes feasible, and make the
acquisition of time series concentration data possible. Such data can be used to reconstruct gene regulatory
networks from the data, and to derive detailed quantitative models describing the dynamics of a system
under consideration. These models can then be used to run simulations, to study the effect of particular
interventions, and to analyze the dynamic behavior of the network under various conditions.
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Several different approaches have been developed in the last decade to infer regulatory networks
from gene expression measurements. These approaches differ in the level of detail used to describe
regulatory control mechanisms, and in the methods employed to estimate model parameters. The most
frequent models used are correlation based models, models based on information theory, Boolean net-
works, Bayesian networks or, more generally, graphical models, and ordinary differential equations. Our
focus in the following will be on the latter, and we will show how to integrate them into a probabilistic
framework, which allows it to apply a Bayesian learning approach to parameter estimation.

Ordinary differential equations provide a quantitative time and state continuous description of a sys-
tem’s dynamic behavior. They are usually based on chemical reaction kinetics, and model parameters
correspond directly to reaction rates, binding affinities and degradation rates. Therefore, they provide
a very detailed and realistic description of a system under consideration. On the downside, the conse-
guence of this detailed description in view of limited data is that the number of model parameters to be
estimated usually far exceeds the number of measurements available. Parameter estimation then leads
to underdetermined optimization problems. It is for this reason that in practice, network inference with
(nonlinear) differential equation models is limited to networks of at most a few dozen components.

Another disadvantage of ordinary differential equation models is that they are not well suited to handle
noisy data. However, experimental data are often prone to considerable noise. This further complicates
the estimation of model parameters, since learning algorithms may simply tune to the noise in the data,
instead of deriving true biological mechanisms.

In the following, we will describe an inference approach for gene regulatory networks from time
series gene expression data which combines the detailed quantitative dynamics of differential equation
models with a probabilistic modeling approach, thus taking noisy measurements into account. Parameters
in this framework are estimated using Bayes’ theorem. The problem with underdetermined models can
then be addressed by integrating additional assumptions on model parameters through suitably chosen
prior distributions. We discuss one particular prior distribution, which drives the inference to sparse
networks. We then show that this enables the method to cope with datasets consisting of only few time
points and a large number of model parameters. This makes the method particularly suitable for the task
of quantitative modeling from typical real-world experimental datasets. We illustrate this claim both
on simulated and real gene expression data from the transcriptional network governing the yeast cell
cycle. Finally, we discuss relations between Bayes regularized differential equation models and other
stochastic approaches from a more general point of view.

BACKGROUND

We will now derive the system of differential equations we use to model genetic regulatory networks.
The underlying assumption is that these equations describe the true states of the biological system,
which is hence a deterministic system. We will discuss this assumption and its consequences in more
detail later.
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Differential Equation Models for Gene Regulatory Networks

Ordinary differential equations (ODE) offer a deterministic, time and state continuous description of a
system’s temporal evolution. In these models, a gene regulatory network is understood as a system S,
consisting of n interacting components. At any time t, S is assumed to be fully characterized by the state
x(t)=(x1(t),x2(t),...,xn(t))eN”, where variable x(t) corresponds to the concentration of gene product i at
time t. The state space W is usually the N, and time teN. The dynamic behavior of S is characterized
by a function ®:W'N —W, which assigns each tuple (x,t) e W'N an element in the state space W. The
function x(t)=d(x,t) is assumed to be the solution of the initial value problem

#(t) = f((t),  x(to) = o (1)

with initial state x, and a continuously differentiable function f: W—N".
Systems of differential equations have been used in recent years to model the dynamic behavior of gene
regulatory networks quantitatively. A commonly used parameterization of the function f is given by

filz(t)) = si — yiwi(t) + gi(z(t)), i=1,...,n. )

The basic synthesis rate s, > 0 describes the expression rate of gene i when no regulators of i are
present. Degradation of gene product i is assumed to be a first order decay process. Hence degradation is
proportional to the concentration of the gene product, with a degradation rate y,. Finally, the regulation
function g, accounts for influences of network components regulating the expression of gene i.

Isolating an initial amount x,(0) of gene product i at time t = 0, the molecules are degraded, and the
dynamic of x,(t) is described by

i(t) = —yix(t), 2(0) = zo. (3)
A solution of this initial value problem is an exponentially decreasing function

zi(t) = z, e ", 4)

characterized by its half-life T,.. T, denotes the time after which x(t) has dropped to half of its initial
value, x(T,,) = x,(0)/2. Degradation rate and half-life are related via T,, = In(2)/y..
The course of component i in the absence of any regulators is described by

2(t) = si — yixi(t), 2(0) = wo. (5)
Starting with an initial value x,(0), the solution of this system exponentially approaches the steady

state concentration x;. = s/y;. Thus, all genes which are not regulated by other genes in the network
eventually reach a steady state.
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The differential equations are coupled through the regulation functions g,(x(t)). Usually, for the sake
of simplicity, g, is taken to be the sum of individual regulation functions rij(xj(t)), assuming that the ef-
fects of different regulators can be described independently from one another, and the total effect of all
regulators on variable x, is the sum of these individual effects:

n

g(a(t)) =D ru(w(t)). (6)
j=1

This independence assumption neglects processes such as complex formation or cooperative binding
between different transcription factors. It can thus be crucial when these interactions play a dominant role
in gene expression regulation. On the other hand, an inclusion of all possible cooperative effects would
lead to a far more complex model, and the additivity assumption can be seen as a trade-off between
tractability and preciseness. Furthermore, we note that cooperative and competitive influences between
different transcription factor molecules of the same species are not excluded by this assumption, and
we will show how to account for such effects in the individual regulation functions in the following
subsections.

Linear models in which the individual regulation functions are each described by a single parameter,
rij(xj(t)) = aijxj(t), are widely used for network inference (see, for example, Chen & Church, 1999; Cohens
etal., 2006; Guthke et al., 2005; Kloster et al., 2005; Sabatti & James, 2006; Vallabhajosyula et al., 2006;
van Someren et al., 2006). Such linear models might be appropriate if the network under consideration
operates at a specific working point, such that the system can be interpreted as the linearization around
this point (Gustafsson et al., 2005; Sanguinetti et al., 2006). However, gene regulation is known to be
highly nonlinear, and simple linear models are often not appropriate to capture the qualitative dynamic
behavior of a system. For example, linear models have a single steady state which is either globally
stable or unstable, and they cannot show complex dynamic behavior such as multi-stationarity, hysteresis
or sustained oscillations.

In the next section, we will use chemical reaction Kinetics to derive a more realistic parameteriza-
tion of the individual regulation functions. The resulting model class is generally able to capture the
mentioned, more complex behaviors.

Chemical Reaction Kinetics and the Quasi-Steady State Approximation

Following the theory of Michaelis and Menten (Michaelis & Menten, 1913; see also Alon, 2006; Yagil
& Yagil, 1971), we describe binding of a transcription factor TF to a specific DNA binding site BS as
a reversible chemical reaction:

TF+BS = C (7)

TF and BS form a complex C with a reaction rate k , and this complex dissociates with arate k . This
reaction reaches a steady state within milliseconds (Alon, 2006). Thus, the time scale for this reaction is
much faster than that of the gene regulatory network, which is the scale of protein concentration changes
(minutes to hours). Hence it is convenient to apply a quasi-steady state approximation (QSSA). In this
setting, we consider slow and fast reactions on separate time scales At and eAt, ¢ << 1, respectively
(Strogatz, 2000). A large difference between these scales allows for the following approximations: Con-
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sidering the system on the fast time scale, changes of variables taking place on the slow time scale can
be neglected. This means in our example, that the concentration of transcription factors in reaction (7)
is treated as a constant, and the reaction approaches the chemical equilibrium, in which the number of
complex formations equals on average the number of dissociation reactions, and the net reaction is zero.
Thus, in chemical equilibrium, the ratio of reactant and product concentrations is constant. According
to the law of mass action, this ratio is determined by

k1 [C]s

K=" [TF|.[BS]: ©

Here, [X], is the equilibrium concentration of component X, and K is called equilibrium constant. It
is a measure for the affinity of a DNA binding site to a transcription factor.

On the slow time scale in turn, the fast reaction is assumed to be always in a steady state, which,
since it depends on the concentration of the transcription factors, changes slowly. It is for this reason
that this approximation is called quasi-steady state approximation.

The QSSA is generally the basis for the inference of ODE model parameters from time series con-
centration data. It is required for a functional relation between the rate of change of the system’s state
at time t and its current state at time t, which is postulated in each ODE model.

Assuming that the number of transcription factors bound to the DNA is much smaller than the number
of unbound ones allows it to write the fraction of occupied binding sites among all sites, [BS],/[BS],, as
a function of the total transcription factor concentration [TF], and the equilibrium constant K:

[BS]»  [TF] 9
BS)  [TFj+K ' ®©)

We assume this fraction to be proportional to the effect of the transcription factor on the expression
rate of the regulated gene, leading to a hyperbolic individual regulation function

Zj
i+ 0y

rif(x) = kij

(10)

Figure 1. Activating (left) and repressing (right) individual regulation functions, showing the effect of
the regulated gene versus the regulator concentration
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shown in Figure 1. The regulation strength kij is the maximal effect of regulator j on variable x,, which is
approximated for high regulator concentrations, when the fraction of binding sites bound by a transcrip-
tion factor is nearly 1. The regulation strength is positive if j activates i, it is negative if j is an inhibitor
of i, and zero if j does not have an influence on i. The parameter 6 is related to the equilibrium constant
K and serves as a threshold value. If the regulator concentration X, equals 6, the effect on the regulated
gene is half of the regulation strength k..

Interactions Between Transcription Factor Molecules

So far, we assumed independent binding of all transcription factor molecules to their respective DNA
binding sites. A more realistic description accounts for influences among different transcription factor
molecules of the same species. Many transcription factors only become active as complexes, often they
form dimers consisting of two molecules, or tetramers, which contain four molecules of the same spe-
cies (Alon, 2006; Lu et al., 2006; Savageau & Alves, 2006). The corresponding chemical reaction then
reads

mTF + BS = C, (11)

where m is the number of molecules in the complex. Applying the same transformations as above, we
arrive at sigmoid individual regulation functions

™

7" + by (12)

which differ from equation (10) by the Hill coefficients m.

The parameters kij, 0, and m, in equation (12) can sometimes be determined empirically, and the m,
may be fractional numbers. They then account for influences among transcription factor molecules in a
more general way. Binding of a single molecule can, for example, facilitate binding of a second molecule,
expressed by a Hill coefficient m, >1. It can also have the opposite effect, and 0 < m, <1 in this case.

Figure 2. Hill regulation functions according to equation (12) for different Hill coefficients. The plot
shows how the Hill coefficient determines the steepness of the sigmoid.

regulation function rii(xj]

ki2 |- e .

regulator concentration x;
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Figure 2 shows regulation functions with fixed 0 and k and different Hill coefficients. The coefficient
m;=1 corresponds to the hyperbolically increasing function in Figure 1. Increasing m, causes a sigmoid
shape. Here, the role of 6, as a threshold value becomes evident: Comparing two regulation functions
r,(x) and r,(x) with Hill coefficients m, and m, > m_, function r,(x) is below r (x) for x<6, and it exceeds
r,(x) for x>0. Moreover, in the limit m—oo, r(x) approaches a step function, which is constantly zero
for x<0, and k for x>0, leading to piecewise constant regulation functions. Such a description has been
used to model gene regulatory networks by Mestl et al. (1995) and de Jong and coworkers (de Jong et
al., 2003; de Jong et al., 2004; de Jong et al., 2000).

Properties of the Model

We consider the additive ODE model

zi(t) = si — gizi(t) + i ri(x(t)), ©=1...,n,
7=t (13)

with individual regulation functions given by equation (12), and point out two properties which distin-
guish this model from simple linear models.

First, trajectories of system (13) monotonically approach a trapping region bounded by lower and
upper values

i % (si+ Z—MER+ kj) and R %, (si+ Z}weﬂh kij). (14)

This is a very pleasant property from a biological and a mathematical point of view. All concentra-
tions are bounded for arbitrary initial conditions. This is biologically plausible. Moreover, the long term
behavior is completely determined by limit sets in the trapping region, which can simplify the analysis
considerably.

Secondly, the model is able to capture complex dynamic behavior such as the existence of multiple
stable steady states and sustained oscillations, which are known to be related to circuits in the interaction
graph (Gouze, 1998; Thieffry, 2007; Thomas, 1998; Thomas & D’Ari, 1990; Thomas et al., 1995). For
example, a positive circuit is a necessary condition for the existence of multiple steady states, which
are related to hysteresis, bi-stability and switch like behavior. Negative feedback is in turn required for
stable periodic behavior.

BAYES REGULARIZED ORDINARY DIFFERENTIAL EQUATIONS

We will now show how to embed such an ODE model into a stochastic framework. This approach allows
it to keep the quantitative accuracy of differential equation models (with underlying biochemical reac-
tion kinetic), and at the same time account for noise in the experimental data. Furthermore, using Bayes’
theorem, prior information on the biological network can be included in the inference process through a
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prior distribution on model parameters. This provides a very effective way to deal with underdetermined
optimization problems and overfitting so often encountered with any quantitative kinetic model.

Integration into a Probabilistic Framework

The key assumption we make in order to integrate the system of differential equations (13) into a proba-
bilistic context is, that the ODE system (13) describes the true state of the genes x at any given time
point, but that we can observe only a corrupted version

y(t) = a(t) + & (15)

Here, x is the vector of true concentrations of the genes, y is the vector of observations, and & is a
vector of mean-zero, normally distributed random variables capturing noise. For simplicity, we assume
the same variance o for all genes. The assumption of normally distributed noise is justified if we as-
sume the noise to stem from many independent sources, and clearly other models are feasible at this
point. We note here again that this model does not account for noise due to biological variation, since
& is not fed back into the differential equations and does not affect the true state x(t + At) of the system
at a later time point 7+4¢.

Given parameters w = (s, vy, k, m, 0) of the differential equation model, the unknown true state
X(H)=®(x,,t) is uniquely determined by the time t and the state x, at an initial time point t,. In order to
approximate this function ® for a state X(#+4¢) and x, =x(t), we have to integrate equation (13) numeri-
cally. This can be done, for example, by a simple Euler discretization with fixed step size At,

ot + At) = w(t) + At - fia(?)). (16)

The probability of observing gene i in state y,(t + At) at time t + At is then given by

1
p(yt + At) | 2(t), w,0) = ———=-exp
e

— L (hia(t), w, At) — it + At)ﬂ, 17)

with h.(x(t),w,47) = x.(1+4¢) given by equation (16).

The conditional probability distribution (17) describes a normal distribution centered at the true state
x(t + At), which we approximate by the previous state x(t) and an Euler step.

The conditional probability distribution of observing y(t + At)=(y,(t + At), ...,y (t + At)) at time t +
At, given true states x(t)=(x,(t), ..., X (1)), is then given by

ply(t + At) | o(t),w) = T p(y(t + Ab) | 2(1), w). (18)

Finally, the probability of observing a time series Y = {y(t)), y(t,), ..., y(t,)} of measurements at T
distinct time points spaced evenly at intervals At, given the model parameters w and the true model states

X ={x(t), x(t,), ..., X(t,)} is given by
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p(Y [ w, X) = ply(ts) | a(@)[ ], ply(t-) | at- - 1), w), (19)

where p(y(t)[x(t)) is a normal distribution with variance c*. As a function of the parameters w and for
fixed dataset Y, equation (19) is called likelihood, since it describes how likely it is to observe the data
Y if the system’s true states are X.

The probability distribution (19) depends on the true states X, which we approximate by the empirical
estimates Z(¢) = y(t) . Using this approximation, the resulting model is equivalent to adynamic Bayesian
network, as we will detail in the end of this chapter. A computationally more expensive approach would
compute x(t ) from x(t)) using the ODE model, and estimate x(t,) from the full set of observations for
all time points. For notational convenience, we will write the likelihood as p(Y | w) in the following,
neglecting details of the implied estimation of X from Y.

Maximum Likelihood Parameter Estimation

A maximum likelihood approach to parameter estimation would now maximize p(Y | w) with respect to
the model parameters w, that is, find the model parameters w which maximize the probability of seeing
the data. The computation is much simplified by taking the negative logarithm of the objective function
(19), thus minimizing

Ir(w) = —In(p(Y | w)) = —In(p(y(t) | z(t) )+ZZ( p(ult) | 2t -1),w,0)). (20)
T7=2 =1

Since our interest lies in minimizing I (w) with respect to w, we can neglect terms independent of
w. We furthermore fix the noise level 6 to 1 in the following. This parameter does not change the loca-
tion of the minimum wwzr = arg min Iv(w) . It will however become a relevant parameter later in the
Bayesian framework.

Substituting from (17), we can simplify the last term in (20) further, and dropping terms independent
of w, the optimization problem becomes

~ . T Z 2
W, , = argmin Z Z L [hi(fﬂ(tr —1),w, At) — yi(tf)] : (21)
T=2 i=1
Diverse algorithms can be used to carry out this optimization, for example genetic algorithms (Rech-
enberg, 1973), simulated annealing (Kirkpatrick et al., 1983) or procedures based on gradient descent.
We use the latter, as described in Press et al. (2002).

Bayesian Learning Framework

Although we have derived equation (21) from a statistical perspective, the resulting optimization problem
turns out to be equivalent to classical minimum-squared-error fitting of a model to experimental data.
This is an interesting result from a theoretical point of view, since it provides a connection between least
squares fitting and maximum likelihood estimation for normally distributed error terms &. In contrast to
least squares fitting, however, the statistical approach provides a straightforward framework to include
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additional knowledge in the network inference process, as we will show in the following. Such additional
knowledge will become of highest importance in particular in the typical setting of larger networks and
only insufficient amounts of experimental data, resulting in underdetermined optimization problems in
model fitting.

The main tool to address this point is Bayes’ theorem, which states that, given experimental measure-
ments Y, the probability distribution over model parameters w is given by

p(w | v) = 2 L0p(0),

p(Y) (22)

Here, p(Y|w) is the likelihood (19), p(w) is a prior distribution over the model parameters w, and
p(Y) = fp(Y | w)p(w)dw is a normalizing factor called evidence. P(w|Y) is called posterior distribu-

tion. It describes the probability distribution of the model parameters w, given the experimental obser-
vations Y.

The prior distribution p(w) over the model parameters w can be used to integrate additional biological
knowledge into the learning process. Imoto et al. (2003), in their pioneering work, demonstrate this by
expressing the prior knowledge over interactions between specific genes in terms of energy functions,
from which a prior distribution over network structures is obtained in the form of a Gibbs distribution.

We will assume less explicit prior knowledge in the following. Instead of considering explicit
knowledge of the form “there should be an edge between gene A and B with high probability”, we will
only define a vague prior of the form “the network should be sparse, that is, it contains only few edges
relative to the fully connected network”. This is biologically motivated in so far as it is highly unlikely
that there are direct regulatory interactions between most pairs of genes in the network.

In terms of the differential equation model (13), this sparseness assumption translates into the as-
sumption that most of the parameters kij should be equal to or almost equal to zero. We therefore use a
mean-zero normal distribution with variance o,* as prior distribution on the ki,

ki

2
204

1

plki | o) = exp|— (23)

2

27aij

This will assure that the kij do not become arbitrarily large, however, it does not yet enforce sparse-
ness in the sense that most of these parameters should be close to zero. To enforce the latter, we specify
a second level of prior distribution over the standard deviations o, We would like most of the normal
distributions to be strongly concentrated around their mean zero; hence their standard deviation should
be small. This is expressed using a gamma distribution,

a'oi” .,
gij | a, 1) = ——— ,
p(oi | ) T(r) (24)
where I'(r) = T ledt is the gamma function and 1/a and r are scale and shape parameters.

We can now gompute the prior distribution p(kijla,r) over kij by integrating out g,
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ok | a,r) = j; S ol | 0)p(o | a,r)do. (25)

Although this integral is not analytically tractable, it can be approximated very well numerically us-
ing Gauss-Laguerre quadrature. This prior distribution is shown in the two-dimensional case in Figure
3 (right). In comparison to the normal distribution (Figure 3 left), it can be clearly seen how this prior
favors sparse solutions in the sense that only few of the k; are significantly distinct from zero. We note
in passing that a very similar effect can be obtained using a prior based on the L,-norm for g<1. Also,
this prior enforces much stronger sparseness constraints than the Laplace prior traditionally used for
this purpose.

For the synthesis and degradation rates s, and y, we will use independent gamma distributions
p(s|a,r,) and p(yi|ay[, ry[) as prior. This choice is motivated from the requirement that these parameters
must be positive, and they should not become arbitrarily large. For the sake of simplicity, we assume
fixed values for the Hill coefficients m; and the threshold parameters 6,. These latter parameters can
only be estimated well from data if sufficient time points are available, and in particular estimation of
the Hill coefficients is numerically very unstable.

We are now ready to optimize the posterior p(w|Y). In the following, we will show results stemming
from simple maximization of p(w|Y) with respect to w using conjugate gradient descent, and the respec-
tive maximum a posteriori (MAP) estimator is denoted wv4r. This has the advantage that it is relatively
straightforward and easily computed, but it may suffer from problems with (multiple) local optima.
Sampling from the posterior distribution using Markov-chain Monte Carlo methods and optimization
using simulated annealing are alternatives that we are presently evaluating in our groups.

Figure 3. 2-Dimensional prior over network parameters kij. Left: Normal distribution, right: Prior ac-
cording to equation (25). While the normal distribution penalizes the overall distance of the weights k
from the origin, it does not enforce sparseness. The plot clearly demonstrates, how this prior assigns
lower probability mass to points where both k, and k, are significantly distinct from zero than to points
where only one of the two parameters deviates from zero, even if the total distance from the origin is
the same.
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RESULTS
Results on Simulated Data
Data Simulation

We used equation (15) with the differential equation model (13) to simulate time series data for a network
of seven genes. The interaction graph of the system is shown in Figure 4. Synthesis and degradation
rates were set to s=1, y=0.1 for i=1,...,7. For the parameters of the individual regulation functions we
used the values 6”:5, mij=2 fori,j=1,...,7, and kijziZ with signs according to the edge labels in Figure 4.
The discretization step width was set to At=1. Time series data with different initial states x.(0) randomly
drawn from a uniform distribution over the interval [0,5] were simulated, three time points each. We
varied the noise level ¢ and the number of time points used to learn the model parameters.

Parameter Estimation

Conjugate gradient descent was carried out to maximize the posterior distribution p(w|Y) with respect
to model parameters w. We compared the maximum likelihood estimator (MLE) W, using different
noise levels and numbers of time points for the inference process. The threshold values Hij and the Hill
coefficients m, were fixed to values 6,=5 and m,=2 for i, j=1,...,n. To test how strongly results depend
on these parameters, we compared results using several different values, and observed no significant

Figure 4. Network topology used to simulate time series data. Numbered nodes correspond to genes,
edges represent regulatory interactions. Labels (+) and (-) indicate positive or negative regulation.

C\l/i \4/>+

150



A Bayes Regularized Ordinary Differential Equation Model for the Inference of Gene Regulatory Networks

difference. Gradient descent was started with s=y=0.1. All regulation strengths k; were initially set to
0. Parameters for the gamma distributions over synthesis and degradation rates were set to r.=2,a.;=1,
ryi=1.0001, aYi=2 for i=1,...,n. Parameters for the gamma distribution over standard deviations ¢ of the
noise term & were set to r=1.2 and a=1.5.

Figure 5 shows mean squared errors on the estimated model parameters. The errors on synthesis
and degradation rates s, and v, (top) are given in percent, errors on regulation strengths kij (bottom) are
given as absolute values. Shown are results for 40 time points (left) and 70 time points (right). Both
approaches lead to comparable results in case the dataset is large (70 time points) and a small level of
noise (6=0.5).

Decreasing the number of time points or increasing the noise level, however, it can be observed that
the Bayesian approach clearly outperforms MLE. In this setting, the maximum likelihood objective
function is close to zero at wwze, but the errors for estimated model parameters are huge, indicating
that wuze overfits the data. The Bayesian approach regularized by the prior distribution is less prone
to this problem.

Figure 5. Mean squared errors on reconstructed model parameters for simulated dataset, for maximum
likelihood (MLE) and maximum a-posteriori (MAP) approaches as described in the text. The upper two
plots show errors on synthesis and degradation rates, errors on regulation strengths are shown in the
lower two plots. The evaluation was repeated for two different dataset sizes, 40 time points (left) versus
70 time points (right), and for three different levels of noise introduced in data simulation. Results show
a clear advantage of the MAP approach in case of high noise levels and a low number of time points.
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Inferred Network Structure

We performed a receiver operator characteristics (ROC) analysis to evaluate the topology of the inferred
network. Athreshold value z is used on the estimated regulation strengths kij. Component j is assumed to
regulate i if the corresponding regulation strength exceeds this threshold, |kij|>z. ROC curves are obtained
by varying z from 0 (all interaction strengths are significant, and the inferred network is fully connected)
to max {| kij| |i, j=1,...,n} (none of the strengths are significant, the set of edges of the inferred network
is empty), and calculating sensitivity and specificity of edge recognition for the resulting networks.

Figure 6 shows ROC curves for noise levels 6=2 and 3, and 40 and 70 time points. A ROC curve of
a good classifier is positioned in the upper left corner, where both specificity and sensitivity are high.
Guessing edges in the network leads on average to the diagonal, where sensitivity equals 1-specificity.
Analogously to the mean squared error analysis, also the ROC analysis shows that MLE fails given
only 40 time points. In contrast, the MAP approach infers parts of the network structure correctly. Not
surprisingly, both approaches perform better with 70 time points, but still the Bayesian approach out-
performs maximum likelihood.

Figure 6. Receiver Operator Characteristics (ROC) analysis for the structure of the inferred network, for
different noise levels used in data simulation and different numbers of time points available for network
inference. Plotted are curves of sensitivity against specificity for the presence of edges in the network.
These are computed by continuously varying the threshold on abs(k;;) used to decide whether an edge
is present or not. This analysis demonstrates the superior performance obtained using the sparseness
prior (25) over a computation carried out on the likelihood alone.
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Figure 7. Inferred networks on simulated dataset with 70 time points and noise level =2, obtained as
described in the text. The left plot shows the network inferred using the maximum likelihood approach,
the right plot shows the network computed from maximum a-posteriori. Included are in each plot the
17 edges with highest weights, marked in bold. Solid bold lines indicate true positives, dashed bold
lines false positives. Thin lines indicate edges were no edge was inferred, although an edge between the
involved nodes was present in data simulation.
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In Figure 7 we show the inferred networks for 70 time points and noise level 6=2. The 17 edges with
highest weights are marked in bold. Solid lines indicate true positives, dashed lines false positives, and
thin lines false negatives. 12 of these 17 edges are true positives in the MLE network (Figure 7 left),
and 14 true edges are found in the Bayesian approach (Figure 7 right).

The area under the curve (AUC) value is a measure for the overall performance of the classifier,
independent of the threshold value z. It is computed from ROC curves by integrating over the curve to
calculate the area under the curve. The AUC is a value between 0 and 1, it increases with increasing
performance. AUC values for both estimators wuze and wuar can be seen in Figure 8. The left plot
shows how performance behaves when the noise level is increased, for a fixed dataset size of 70 time
points. The AUC values for an increasing number of time points used for learning and a fixed noise level
o =2 are shown in the plot on the right hand side. This analysis provides information about the maximal
level of noise and the minimal number of time points required for the maximum likelihood estimator to
succeed. For most of the datasets considered here, the AUC value of the maximum likelihood estimator
is around 0.5, and thus not better than guessing. It reaches a value of approximately 0.7 only at a noise
level 6 =2 and with 70 time points. Figure 8 demonstrates that the minimal number of time points needed
to draw meaningful conclusions can be reduced by the Bayesian approach. Using 70 time points (left),
the AUC value of wuar exceeds 0.7 for the noise levels 6 =2 and 3. Increasing the noise further to 6=4,
it also drops. Using the smallest noise level (right), the MAP approach is able to infer at least parts of
the network structure correctly, even with only 20 time points.

A Regulatory Network of the Yeast Cell Cycle
We applied the approach presented to the microarray study of the Saccharomyces cerevisiae cell cycle

by Spellman et al. (1998). This dataset consists of four gene expression time series from four different
synchronization protocols and contains 69 time points in total, collected over eight cell cycles. We in-
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Figure 8. Area under the ROC curve (AUC) values for maximum likelihood and maximum a-posteriori
network structures inferred, obtained by integrating the area under the ROC curves. The figure shows
AUC values for different noise levels with fixed number of time points (=70) in the left plot, and different
dataset sizes (number of time points) used in network inference for a fixed noise level 6=2.
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Figure 9. Left: Network compiled from the literature which was used to evaluate the inferred network
topologies. Right: ROC curves for inferred network topologies, obtained using the maximum likelihood
(dotted line) and the maximum a-posteriori (solid line) approach.
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cluded eleven genes into our analysis, which are known to be involved in the yeast cell cycle (Li et al.,
2004). The reference network in Figure 9 (left) was used for evaluation. It is a reduction of the regulatory
network specified in Li et al. (2004). Details on this network are given in Radde & Kaderali (2007). The
eleven genes are combined into seven nodes in the network. Time series data of a node which contains
more than one gene is represented by means of measurements. Missing values were replaced by means
of concentrations of consecutive and subsequent time points.

The threshold values 9". and the Hill coefficients m, were fixed to values Gij=l andm_ =2 forij=1,...,n.
Gradient descent was started with s=y,=0.1. All regulation strengths k; were initially set to 0. Param-
eters for gamma distributions over synthesis and degradation rates were set to r =0.01, a;=0.1, r. =0.01,
ayi=O.1 fori=1,...,n. Parameters for the gamma distribution over standard deviations ¢ were set to r=1.7
and a=5.

Figure 9 (right) shows ROC curves for the ML and the MAP approach with AUC values 0.61 and
0.68, respectively. Some of the main regulatory interactions are revealed in both approaches, but here
as well the Bayesian approach clearly outperforms maximum likelihood. Inferred network structures
are presented in Figure 10 for wae (left) and wmar (right). The 16 edges with highest estimated inter-
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Figure 10. Inferred network structures, as derived using the maximum likelihood approach (left) and the
maximum-a-posteriori approach (right). Bold solid lines indicate true positives, dashed bold lines are
false positives. Thin lines correspond to regulatory interactions reported in the literature, which were
not learned in network inference.
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action strengths are shown in bold. True positives are drawn as continuous bold lines, and dashed bold
lines correspond to false positives. Thin lines are interactions which were described in the literature,
but were not revealed in our approach. In both networks, 12 of 16 regulations found are true positives.
The Bayesian estimator nr reveals more regulations between different genes than wvee | but it also
reports a couple of artificial self-regulations. Seven of these 12 true positives appear in both networks.
These include regulations that involve main cell cycle transcription factors, for example:

. CIn3 — CInl1/2 and CIn3 — Cl1b5/6: CIn3 is a key regulator of the transcription factor complex
SBF, which activates expression of the genes CInl and CIn2, and of MBF, which activates the
genes Clb5 and CIb6. CIn3 triggers entry of the cell cycle into the S- and the M-phase, respec-
tively, by activating these complexes.

. Swi5 — CIb5/6: Swi5 is the transcription factor of Sicl, which inhibits Clb5/6.

Most of the false negative edges are indirect edges which involve the protein Sicl, a global inhibitor
of several cell cycle regulated genes.

Relation to Other Stochastic Approaches

This subsection details the relation between Bayes regularized ODE models and other stochastic ap-
proacheswidely used for network inference from experimental data, especially dynamic Bayesian networks
(DBN) and models including intrinsic noise and measurement noise. Since DBNs are an extension of
Bayesian networks, we start by defining a Bayesian network.

A Bayesian network is a stochastic model with a set V={y,,...,y } of n random variables. The state
space Q can contain discrete and continuous y.. Bayesian networks are static models, they do not consider
time. The central assumption made in Bayesian network models is, that the joint probability distribu-
tion p(Q2) can be rewritten as the product of local conditional probability distributions p(y,|parents(y,)).
The set parents(y,)cV\{y,} is called the parent set of y.. Hence, Bayesian networks assume conditional
independence assertions between the variables V, which allow it to construct the joint probability dis-
tribution over the set of variables V from the local ones:
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T

(e yn) = [ [ oy | parents(ys)) (26)
i=1

The independence assertions state that a variable Y, which is a successor of y, cannot be a predeces-
sor of y. at the same time. This requirement is needed to assure that equation (26) is well-defined. As
a consequence, a Bayesian network contains variables with empty parent sets. The local probability
distributions of these variables are said to be unconditional.

A Bayesian network can graphically be represented by a directed acyclic graph (DAG) G(V,E), with
nodes V and edges E. Nodes in this graph correspond to variables, and the set of edges indicates parent
relations, E={eij| yjeparents(yi)}. In terms of this graph, the joint probability distribution (26) is only
well-defined for acyclic graphs.

Murphy & Mian (1999) were among the first who modeled gene interactions by Bayesian networks,
and they are still commonly used models today (see e.g. Bulashevska & Eils, 2005; Friedman et al.,
2000; Hartemink et al., 2002; Pe’er et al., 2001). Learning a Bayesian network from data corresponds
to estimating the joint probability distribution p(Y), which defines the structure of the DAG. Similar to
a correlation analysis, which does not provide directions of edges, the inference of a unique DAG is not
always possible. Networks with the same undirected graph structure but different directions of some
edges may represent the same distribution (Dojer et al., 2006). These graphs imply the same conditional
independence relations, that is, they are contained in the same equivalence class, and the data do not
allow for a distinction (Pe’er, 2005, Dojer et al., 2006).

The static nature and the requirement that the graph is acyclic are two main drawbacks of Bayesian
network models (Husmeier, 2003). Dynamic Bayesian networks (DBNs) have been suggested to overcome
both limitations (Dojer et al., 2006; Friedman et al., 1998; Husmeier, 2003; Pe’er, 2005; Zou & Conzen,
2005). In DBNs, a separate random variable y,(t) is introduced for each time point t=1,...,T, the system is
thus unrolled over time. The joint probability distribution is defined over the set y(1)uy(2) L...uy(T) of
time-dependent variables. Since such a distribution can be very complex, two simplifying assumptions
are usually made in practice (Friedman et al., 1998). First, the process is assumed to be Markovian, that
is, the probability distribution p(y(t)) depends solely on the previous state y(t-1),

p(y(8) | 9(0),...,y(t = 1)) = p(y(t) | y(t —1)). (27)

Second, the process is time-homogeneous, which means that the transition probabilities p(y(t)|y(t-1))
do not explicitly depend on t.

Inserting the empirical estimate Z(t- - 1) = y(¢- - 1) for the true state x(t_,) in equation (19), this prob-
ability distribution equals equation (27). In particular, it is completely determined by the observations
Y and thus does not depend any more on the true states X. Therefore, using these estimates for x(t), our
approach is equivalent to a DBN, which does not distinguish between true states X and observations Y.
However, we point out two important conceptual differences between those two models.

First, in our differential equation approach, we assume that the dynamic behavior of the network can
be described deterministically, and noise in the data Y is completely due to the measurement process
(compare also Golightly & Wilkinson, 2008). Hence, the noise term does not depend on the time interval
between two measurements. We therefore model the noise using a mean-zero normal distribution with
variance o, independent of this time interval. In contrast, stochasticity in a dynamic Bayesian network
is assumed to stem from intrinsic noise, that is, the system under consideration is a stochastic system.
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The noise level will depend on the length of the time interval between two measurements here. Conse-
quently, a fixed noise level o? as is assumed here would be justified only for equidistant time intervals
in a DBN approach. This aspect is also discussed in de Hoon et al. (2003).

Second, since x(t) is assumed to be determined by the time t and an initial state x, at an arbitrary time
point t, according to the differential equations, any time point could be used to estimate the true state
X(t) at time t. This need not necessarily be done using the previous time point x(z-4¢), which corresponds
to the Markovian assumption underlying Bayesian networks. A computationally more expensive ap-
proach, for example, would compute x(t) for all t as a function of x(t)) using numerical integration of
the differential equations. The initial value x(t,) can then be estimated from the data simultaneously. For
a related discussion we refer to Peifer and Timmer (2007).

Figure 11 illustrates the concepts underlying DBNs, the ODE approach introduced here, andamodeling
approach, for example a Hidden Markov model, including stochasticity due to both biological variation
and measurement errors. Shown are the respective independence assumptions (first row), the relation
of model variables via functions or probability distributions and the likelihood for given parameters and
initial conditions (second row), and the posterior distributions in a Bayesian framework when including
a prior distribution p(w) on model parameters (third row).

In DBNSs, the state y(t) of the system, which is described as a random variable depending on the previ-
ous state y(#-4¢), can directly be observed. In contrast, our ODE approach distinguishes between the state
X(t) of the system, which is deterministically determined by the systems of differential equations, and the

Figure 11. Schematic of differences between dynamic Bayesian networks (DBN), Bayes regularized
ODE models as used in this work, and a Hidden Markov model (HMM) including intrinsic noise and
measurement noise. The first column lists the different independence assumptions, which are graphi-
cally illustrated together with the likelihoods in column two. The posterior distributions in a Bayesian
framework are given in the third column.
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observation y(t), which is corrupted by measurement noise. Hence y(t) is arandom variable depending on
the true state x(t). Using numerical integration to express x(t) as a function of the previous state x(¢-4¢)
and inserting the empirical estimate z(t — At) = y(t — At), the model is equivalent to a DBN. Finally,
the figure also shows a model which captures intrinsic noise stemming from biological variation and
noise due to the measurement process. As in the DBN, the true state x(t) of the system corresponds to a
random variable with conditional distribution p(x(t)|x(¢-4¢)). Similar to our approach, observations y(t)
are also random variables with distributions depending on these true states x(t). Maximizing the prob-
ability p(Y) in this model requires averaging over the unknown states X. This p(Y) is called marginal
likelihood and usually requires sophisticated sampling methods.

There is currently an ongoing discussion whether regulation of gene expression should be described
deterministically or stochastically (Srivastava et al., 2002). Supporter of the stochastic side argue that
the regulation of gene expression via binding of a transcription factor to the DNA is a random discrete
process, and likewise the production of proteins. The difference becomes particularly evident if the
molecules involved in the reactions are present in low copy numbers, resulting in a large phenotypic
variability among different cells of the same population (Elowitz et al., 2002; Ozbudak et al., 2002;
Raser & O’Shea, 2004). A prominent example of a bistable outcome that is driven by noise is the switch
between lytic and losygenic states in bacteriophage-A (Raser & O’Shea, 2004; Ozbudak et al., 2002).
Here, a positive auto-regulation of the gene cl is assumed to amplify the effect of initially small varia-
tions. Phenomena such as the loss of synchrony of circadian clocks and a decrease in the precision of
cell signals are also ascribed to the influence of noise (Ozbudak et al., 2002).

Several probabilistic modeling approaches have been developed to account for stochasticity in gene
expression (Blake et al., 2003; Chen et al., 2005; Goutsias & Kim, 2006; Raser & O’Shea, 2004). Here,
binding of a transcription factor to a promoter is modeled as a discrete process, and the reaction rates are
related to the probabilities for complex formation and dissociation. These models describe the behavior
of single cells, and results can, for example, be used to study the heterogeneity in cell populations.

Supporters of deterministic ODE models argue that these models correspond to the average behavior
of a large number of cells, such that concentration changes can continuously be described. Furthermore,
they presume a deterministic overall behavior of a cell population. This is of course a simplification,
but many high-throughput data do not provide information about the level of noise in cells, and hence
parameters of stochastic models cannot be estimated from these data. In this sense, using continuous
and deterministic models to infer regulatory networks from microarray data can be seen as a data-driven
approach, which reflects the level of information included in the data.

Concluding, it is an interesting issue to understand the role of stochasticity in connection with
regulatory network structures. On the one hand, many biological networks are believed to be optimally
designed for a reliable and robust functioning under considerable intrinsic and extrinsic noise, which
means that they are able to suppress noise, supporting the deterministic approaches. On the other hand,
an amplification of noise in the cellular networks is sometimes desired for a rich diversity among indi-
vidual cells (Elowitz et al., 2002; Raser & O’Shea, 2004).
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CONCLUDING REMARKS
Summary

We have presented an approach for the inference of gene regulatory networks from time series data,
which is particularly tailored to handle sparse datasets.

Using chemical reaction kinetics, we derived a differential equation model for gene regulatory net-
works, which describes the influence of a gene product on the expression rate of another gene by sigmoid
functions. In order to estimate model parameters from experimental data, this model was embedded into
a stochastic framework. Observations were interpreted as

realizations of random variables whose underlying distributions are determined by the differential
equations model and a stochastic noise term. We defined a Bayesian framework by specifying prior dis-
tributions over network parameters, which reflect prior beliefs about the model parameters before having
seen the data. We analyzed the posterior distribution over model parameters; this posterior reflects the
knowledge about true parameter values after having taken the observations into account.

Our method was evaluated on simulated data first. Here, we focused on the relation between size
and quality of the dataset and the respective outcome. Several datasets with varying numbers of time
points and different levels of noise were analyzed. Results were compared with the classical maximum
likelihood approach.

While both approaches give similar results in case of optimal datasets with a large number of time
points and a low noise level, they differ considerably in the setting of sparse and noisy data. Here, the
maximum likelihood approach adapts to specific random features of the dataset which are not related
to the overall structure of the system. As a consequence, the variance of results obtained from different
datasets is large. Furthermore, in each case the value of the optimized likelihood function is rather small,
but at the same time errors of estimated model parameters are large and, correspondingly, the inferred
network structures are wrong. The results of the Bayesian approach in turn show less variance due to
the regularization of learning by the prior distributions over model parameters. Our analysis shows that
results can be improved, yielding a higher quality of the inferred network structure, by relatively general
prior distributions enforcing sparseness.

We furthermore applied our approach to a real dataset on the yeast cell cycle. We inferred some of
the main interactions reported in the literature with both the maximum likelihood and the Bayesian ap-
proach, the latter approach outperforming maximum likelihood.

Although the Bayesian approach is superior to maximum likelihood estimation for the real dataset,
results are not as good as for simulated data for several reasons. The most obvious difference between
the analysis of simulated and real data is the relation between the real system and the model class that
is used to describe underlying processes. While a specific model of this class was used to carry out
simulations and create artificial datasets, the consequences of simplifications which are included in the
model class are not always obvious for the real system. For example, the dataset of the Saccharomyces
cerevisiae cell cycle contains measurements of MRNA concentrations, which do not provide informa-
tion about post-transcriptional regulation processes. As already mentioned, a further simplification is
the assumption of additivity of influences from different transcription factors, which may not always
be justified for real world systems.

Finally, we compared our approach with related stochastic approaches currently used for network
inference. The relations are summarized in Figure 11.
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Discussion and Future Research Directions

To conclude, we point out some general aspects of the Bayesian approach presented and discuss further
research directions.

Results of a Bayesian approach depend on the prior distribution p(w), and different methods have
been suggested to determine parameters of this distribution. For a review we refer to Kass & Wassermann
(1996). Generally, the more p(w) deviates from a uninformative flat distribution, the more influence
relative to the likelihood does it have on the posterior

distribution, dominating over the information provided by the data. Using a very strong prior distribu-
tion on the one hand, a good choice of p(w) can improve results significantly, but an improperly chosen
prior will cause a large bias. On the other hand, the results of the Bayesian and the maximum likelihood
approach are similar when using a flat prior with marginal influence on the posterior. Such a distribution
might not prevent overfitting in case of small datasets, but it also causes less biased results.

Different methods have been proposed to determine prior distributions, taking different types of in-
formation into account (see for example Beal et al., 2005; Li et al., 2002; Rogers and Girolami, 2005).
Prior knowledge in terms of information provided by additional data sources has, for example, been
used by Bernard & Hartemink (2005); Imoto et al. (2003) and Werhli & Husmeier (2007). Empirical
Bayes methods (Gelman et al., 2003, Maritz and Lwin, 1989) choose hyperparameters in dependence
of the data, for example by maximizing the posterior with respect to both the model parameters and
hyperparameters. Compared to our approach, which fixes p(w) in advance, both the likelihood and the
prior terms are influenced by the data here. Acommon approach to investigate the amount of information
contained in the data is to examine the sensitivity of the posterior distribution with respect to changes
in the prior (Lavine, 1999).

A further aspect we would like to elaborate on concerns the conclusions we draw from analyzing
the posterior distribution. We searched for the maximum of this distribution, leading to a point estimate
wwmar. However, this distribution can provide far more information. Considering the entire distribution,
its variance, for example, is a measure of the reliability of the results. While a simple maximization
can be done with gradient methods, such a more comprehensive analysis would require methods to
sample from the unknown posterior distribution. An estimate of the whole distribution permits statisti-
cal statements such as “The expectation value of a certain parameter is 5 with a low variance, we can
be relatively sure about this result” or “The evidence is small, which reflects that the information of the
prior distribution and the data are contradictory.”

A critical point of our approach is the scalability to larger networks in practice. The number of puta-
tive interactions increases quadratically with the number of network components, and currently available
datasets typically only allow for the reconstruction of networks with a few dozen components at most.
This is, however, a problem in each quantitative dynamic modeling approach and can only be faced by
larger datasets or reliable prior information about the network at hand.

Finally, we point out two general future research directions in the field of gene regulatory, or, more
generally, biochemical networks. First, besides deciding whether a network component regulates another
one, i.e. learning the topology of the interaction graph, it is an important issue to explain mechanisms
causing the qualitative dynamic behavior of the system. Feedback mechanisms are especially interesting
in this light, since they are necessary for complex behavior such as oscillations and multi-stationarity.
Differential equations are particularly well suited to capture the dynamic behavior of a system, and thus
our approach seems to be promising in this setting.
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The second direction addresses the robustness of networks concerning their functionality under
considerably varying external conditions and intrinsic variability, as already mentioned above. During
evolution, most organisms seem to have built up complex mechanisms which make regulation processes
within a cell robust against perturbations (Kitano, 2002). Thus, while reaction rates of single reactions
can vary in a wide range, the overall response of a cellular network is often extremely stable. Thus, the
networks have the ability to compensate for stochastic fluctuations, a property which highly justifies
our deterministic model over a completely stochastic approach. An understanding of this robustness will
be an important step towards a more comprehensive understanding of cellular regulation mechanisms
(Kitano, 2007).
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KEY TERMS AND DEFINITIONS

Gene Regulatory Network (GRN): Here a directed graph G(V,E) with n nodes corresponding to n
genes in the network. An edge from node j to node i indicates that gene product j has an influence on the
expression rate of gene i. This influence is assumed to be either activating or inhibiting. The dynamics
of the system is described by ordinary differential equations.

Regulation Function ri: Coupling term in the differential equations for GRNs. Function that de-
scribes the influence of regulators on the expression rate of gene i. For simplicity, it is often assumed
that different regulators act independently, and their influences can be decoupled. An influence of a
single regulator j on i is then often described with simple linear functions, or Michaelis-Menten and Hill
equations are used, which can be derived from chemical reaction kinetics.

Quasi-Steady State Approximation (QSSA): A method to reduce the number of variables of a
system that includes processes on different time scales which can be separated into slow and fast. One
assumes that the fast processes are always in a steady state, which changes on the slow time scale. For
GRNSs, the fast time scale corresponds to transcription factor — DNA binding, and the relevant slow time
scale is given by the expression rates. Here, the QSSA allows for a functional relation between gene
product levels and their effect on the expression rates of regulated genes, as it is implicitly assumed in
most network inference approaches.

Stochastic Modeling Approach: In stochastic modeling approaches for GRNs, observed gene ex-
pression values are interpreted as random variables, and the network inference problem translates into
characterizing their probability distributions from measurements. Contrary to deterministic models, these
approaches can capture variability across different cells or experiments. Different stochastic approaches
have been introduced, and here we suggest a classification according to whether the system itself is
stochastic or noise stems from the measurement process.
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Bayes Regularized Differential Equation: Specific stochastic modeling approach in which the
noise is assumed to stem solely from the measurement process. The state of the system is deterministic
and uniquely determined by a differential equation. Observations that are used for network inference

are random variables due to measurement noise. This allows for a Bayesian regularization for network
inference.
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ABSTRACT

This chapter focuses on the interactions and roles between delays and intrinsic noise effects within cel-
lular pathways and regulatory networks. We address these aspects by focusing on genetic regulatory
networks that share a common network motif, namely the negative feedback loop, leading to oscillatory
gene expression and protein levels. In this context, we discuss computational simulation algorithms for
addressing the interplay of delays and noise within the signaling pathways based on biological data.
We address implementational issues associated with efficiency and robustness. In a molecular biology
setting we present two case studies of temporal models for the Hes1 gene (Monk, 2003; Hirata et al.,
2002), known to act as a molecular clock, and the Her1/Her7 regulatory system controlling the periodic
somite segmentation in vertebrate embryos (Giudicelli and Lewis, 2004; Horikawa et al., 2006).
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1. INTRODUCTION

The mathematical modeling and simulation of genetic regulatory networks can provide insights into the
complicated biological and chemical processes associated with genetic regulation. However, highly re-
solved computational models of such biochemical complexity can be very expensive and often infeasible
and, thus, it is important that the models are kept simple but nevertheless capture the key processes.

Two vital aspects in modeling genetic regulatory networks are intrinsic noise and delays. Intrinsic
noise arises in the system when there are small to moderate numbers of certain key molecules and is due
to the uncertainty of knowing when a reaction occurs and which reaction it might be. Intrinsic noise is
entirely different to extrinsic noise in which state changes are due to fluctuations in external conditions,
such as temperature. These intrinsic noise effects can be modeled through the Stochastic Simulation
Algorithm (SSA), first applied by Gillespie (1977) to simulate discrete chemical kinetics as the evolu-
tion of a discrete nonlinear Markov process.

Delays are intrinsic to slow biochemical processes that do not occur instantaneously and are often
affected by spatial inhomogeneities. For instance, they are often associated with transcription and
translation, two processes that imply other spatiotemporal processes often not explicitly modeled, such
as (in eukaryotes) diffusion and translocation into and out of the nucleus, RNA polymerase activation,
splicing, protein synthesis, and protein folding. These processes can take many minutes and so the ef-
fects are very important especially in the laying down of oscillating patterns of gene expression (Hirata
et al., 2002). Monk (2003) notes that in mouse there is an average delay of 10-20 minutes between the
action of a transcription factor on the promoter region of a gene and the appearance of the correspond-
ing MRNA in the cytosol. Similarly, there is a delay of typically 1-3 minutes for the translation of a
protein from mRNA.

By incorporating delays into the temporal model we can capture essential information on a mac-
roscopic level, the delay can itself account for the multitude of biochemical processes and events on
a microscopic time scale that render us unable to compute cell dynamics in real-time. Hence, we can
expect more accurate and reliable predictions of cellular dynamics through the use of time delay models
(Barrio et al., 2006).

One of the first people to consider feedback differential equation models for the regulation of en-
zyme synthesis was Goodwin (1965). An der Heiden (1979) then modified these ideas by including
transport delays into Goodwin’s model. The oscillatory behavior of the ensuing delay differential equa-
tions (DDEs) as a function of the size of delays was investigated by an der Heiden. However, these
DDE models act in the continuous deterministic regime and this regime is not always appropriate when
considering small numbers of molecules such as in the case of genetic regulation with small numbers
of transcription factors.

In a lovely set of experiments, Hirata et al. (2002) measured the production of hes1 mMRNA and Hes1
protein in mice. This work forms the basis of one of our case studies in Section 4.1. Serum treatments
on cultured cells result in oscillations in expression levels for hesl mRNA and Hes1 protein in a two
hour cycle with a phase lag of approximately 15 minutes between the oscillatory profiles of mMRNA and
protein. The oscillations in expression continue for 6 to 12 hours.

In order to explain the observed behaviors, Hirata et al. modified a mathematical model developed
by Elowitz and Leibler (2000) for a synthetic gene network constructed in E. coli cells by introducing
one gene from A -phage. By postulating a Hes1 interacting factor as a third molecular species Hirata
et al. obtained a system of three Ordinary Differential Equations (ODEs) that gives rise to sustained
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oscillatory behavior. However, there is no direct experimental evidence for such an interacting factor.
Rather, the introduction of a third variable is due to the fact that certain systems of two ODEs cannot
generate sustained oscillations. This observation together with the experimental results of Hirata et al.
led to a number of papers in which simple coupled delay differential equations were developed in order
to explain the sustained oscillations without recourse to the addition of a third variable (Monk, 2003;
Jensen et al., 2003; Lewis, 2003; Bernard et al., 2006).

Barrio et al. (2006) took a different approach from the above authors and tried to explain the results
of Hirata et al. by taking proper account of both time delays and intrinsic randomness. They developed
a Delay Stochastic Simulation Algorithm (DSSA) that generalizes the Stochastic Simulation Algorithm
(SSA) to the delayed setting. Independently, Bratsun et al. (2005) developed a delay SSA without con-
sidering waiting times for delayed reactions while only non-consuming reactions can be specified to
be delayed. More recently, Cai (2007) introduced a direct delay SSA method and showed that both, the
DSSA by Barrio et al. and the direct method are exact stochastic simulation algorithms for chemical
reaction systems with delays. The experimental results of Hirata et al. seemed to be better explained
through the delay stochastic simulation algorithm approach rather than through delay differential equa-
tions (Barrio et al., 2006).

When modeling biological systems with large numbers of molecules and/or rate constants, the
time steps in stochastic simulation algorithms can become very small and, hence, the simulation can
be computationally highly expensive. By consequence, this limits the feasible ‘real-time’ span of the
simulations. In order to reduce the computational load we need new algorithms that still model intrinsic
noise in a delayed setting but overcome the issues of small step sizes. Temporal coarse-graining has
been considered through the use of 7 -leap methods (Gillespie, 2001; Tian and Burrage, 2004; Peng et
al. 2007, Anderson, 2007, 2008), and similar ideas have been applied in the delay setting (Leier et al.,
2008(a)), thus rendering an efficient algorithm that yields accurate simulations in time spans that are
long enough to be of actual interest to the experimentalists.

Lastly, temporal delay models lack spatial resolution but nevertheless allow for portraying spatial
aspects of cellular processes by compartmentalization, that is, by distinguishing between identical mo-
lecular speciesaccording totheir location. Recentresearch suggests that molecular translocation processes
can be well captured and modeled by means of time delayed processes with specific delay distributions.
However, it is worth mentioning that spatial algorithms are not replaceable in all cases. Examples of
the latter are scenarios with high spatial heterogeneity, anisotropies, or when single-particle tracking
becomes strictly necessary. Spatial highly-resolved algorithms are computationally most expensive,
and coarse-graining techniques have also been developed for this case (Chatterjee and Vlachos, 2005;
Chatterjee and Vlachos, 2006).

The outline of this Chapter is as follows. In section 2 we give an overview of some of the approaches
to the temporal modeling of chemical kinetics. In section 3 we present various types of simulation algo-
rithms with and without delays and discuss how we can improve the accuracy and robustness by so-called
T leap approaches. Section 4 gives two case studies: the Hes1 molecular clock and the Her1/7 complex
which plays a role in somite formation in zebrafish. Section 5 presents some conclusions.
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2. MODELING CHEMICAL KINETICS

Modeling and simulations are valuable tools for investigating complex biochemical systems. Not only do
they allow us to determine if a proposed reaction mechanism is consistent with observed experimental
results, but they can also aid experimental design techniques by exploring reaction network interactions
with relative ease. The choice for a particular modeling approach depends on several factors, such as
molecular concentrations, distributions, the type of reactions and their time scales, whether discrete-
ness and internal noise have noticeable macroscopic effects and, lastly, if the model requires spatial
information.

Deterministic models assume a time evolution that is both continuous and predictable. However,
randomness is intrinsic to biological systems, where system behavior is typically represented by noisy
signals. Often the most important source of stochasticity stems from the fact that molecular reactions are
random events, as it is impossible to say with certainty the specific type of reaction that will happen next,
or when or where such event is to occur. Moreover, low molecular concentrations, coupled to random
diffusion, are an important source of spatial inhomogeneity and stochastic variation.

In a purely temporal setting, and when there are large numbers of molecules present, chemical reac-
tions are modeled by ordinary differential equations that are based on the laws of Mass Action and the
fact that reaction rates can be estimated on the basis of average values of the reactant density. Any set of
m chemical reactions can be characterized by two sets of quantities: the stoichiometric vectors (update
rules for each reaction) v,,...,v and the propensity functionsa (X(t)),...,a_(X(t)). The propensity
functions represent the relative probabilities of each of the m reactions occurring. Here X(t) is the vec-
tor of concentrations at time t of the N species involved in the reactions. The ODE that describes this
chemical system, under the Law of Mass Action, is given by

m

X (0) =30, (X(0) (1)

In order to make this clearer we give a simple example for Michaelis—Menten Kinetics. This system
involves a substrate (S), an enzyme (E), a complex (C) and a product (P). The kinetics can be written
as
E+S——C,

C——E+S,

C——E+P.

Let X(t) be the concentration of (E(t), S(t), C(t)) then the stoichiometric vectors (or the update rules
for each of the three reactions) are

v, =(-,-11)", v, =1L-1)", v, =(10-1)".

1 2
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The time dependent propensity functions a, (X(%)),...,a (X (t)) are the relative probabilities of each
of the three reactions occurring, respectively, and are given by

a,(X) = k ES
a,(X)=kC
a,(X)=k,C.

In this case (1) becomes

le = _lele + (kz + k:;)Xs
— kXX, + kX,
— kXX, — (k, k)X,

o}

2

>
|

3

Often in such systems there is a conservation of molecular numbers (here X '+ X, '= 0)andso one
or more equations can be removed. Additional equations can be removed by the use of the Quasi-Steady
State Assumption (QSSA). Under the QSSA it is assumed that the fast reactions go to equilibrium much
more quickly that the slow reactions. Thus a system of algebraic equations can be solved at the “fast
equilibrium” and this solution substituted back into the original system, thus reducing the dimension
and altering the propensity functions to include nonlinear Hill functions.

In the case of small numbers of molecules the appropriate modeling formulation is the Stochastic
Simulation Algorithm, as ODEs can only describe a mean behavior. The SSA is essentially an exact
procedure that describes the evolution of a discrete nonlinear Markov process. It accounts for the inherent
stochasticity (internal noise) of the m reacting channels and only assigns integer numbers of molecules
to the state vector. At each step, the SSA simulates two random numbers (representing probabilities)
from the uniform distribution U[0,1] to evaluate an exponential waiting time, 7, for the next reaction to
occur and an integer j between 1 and m that indicates which reaction occurs. The state vector is updated
at the new time point by the addition of the j" stoichiometric vector to the previous value of the state
vector, that is

Xt+7)=X(t)+v,

The main limiting feature of SSA is that the time step can become very small, especially if there are
large numbers of molecules or widely varying rate constants. In order to overcome these limitations, a
number of different approaches (so called 7 -leap methods) have been suggested in which the sampling
of likely reactions is taken from either Poisson (Gillespie, 2001) or Binomial (Tian and Burrage, 2004)
distributions. In these cases a much larger time step can be used at the loss of a small amount of accuracy.
Cao et al. (2006) have analyzed effective strategies for choosing the step size in 7 -leap methods. The
reason sampling occurs from a Poisson distribution is due to the fact that the SSA can also be viewed
as a type of t leap method based on Poisson sampling (Kurtz, 1971). On the other hand, Binomial sam-
pling is valid because as the number of molecules becomes large, Poisson random variables are well
approximated by Binomial random variables.

A very different approach is to note that the discrete nonlinear Markov process described by the
SSA has a probability density functions that is the solution of the so-called Chemical Master Equation
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(CME). The CME is a discrete parabolic partial differential equation in which there is an equation for
each configuration of the State Space. When the State Space is enumerated, the CME becomes a linear
ODE and the probability density function takes the form

p(t) = ¢"'p(0)

where A is the state-space matrix. Even for relatively small systems, the dimension of A can be in the
millions, so it would appear that this is not a computationally feasible approach. However, one should
consider that not all of the states are reachable. Furthermore, a proposed finite state projection algorithm
(Munsky and Khammash, 2006) reduces the size of the matrix A. Then one can use Krylov subspace
techniques (Burrage et al., 2006) to efficiently compute the exponential of a matrix times a vector, mak-
ing the computation of the probability density function directly a very feasible technique (MacNamara
etal., 2007).

Finally, it is important to note that there is a regime intermediate to the discrete stochastic regime
and the continuous deterministic ODE regime in which the internal noise effects are still significant but
continuity arguments can apply. This leads to the so-called Chemical Langevin Equation (CLE) that is
an It6 stochastic ordinary differential equation (SDE), driven by a set of Wiener processes that describes
the fluctuation in the concentrations of the molecular species. The CLE preserves the correct dynamics
for the first two moments of the SSA and takes the form

X = Z v a (X(1) + BX())AW(2).

Here W (t) = (W,(t),...,W,(t)) is a vector of N independent Wiener processes whose increments

AW, =W (t+h)—W(t) are N(0,h) and where

J

B(z)=+C, C=(,...v Diag(a(X),...a (X))(w,,...v ).

Here h is the time discretization step. This formulation can be derived from the Poisson formulation
of the SSA by noting that as Th — oo with h — 0,

P(Th) — N(Th,Th) = Th +~Th N(0,1)
— Th+NT AW.

Effective numerical methods designed for the numerical solution of SDEs (such as the Euler-Mar-
uyama method) can be used to simulate the chemical kinetics in this intermediate regime. Furthermore,
adaptive multiscale methods have been developed which attempt to move back and forth between these
three regimes as the numbers of molecules change (Burrage et al., 2004).

None of these frameworks explicitly incorporate delay affects but in fact the same modeling regimes
arise in a natural fashion if delay is included. These have been thoroughly explored in Barrio et al. (2006)
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Figure 1. The Stochastic Simulation Algorithm

Algorithm 1: SSA
Data: reactions defined by reactant and product vectors, stoichiometry,
reaction rates, initial state X (0), simulation time T
Result: state dynamics
begin
while f < T do

generate Uy and Uy as U(0,1) random variables
ao(X (t)) = 372, a;(X(2))
0 = —ryy In(1/Uy)
select j such that
STl a( X () < Uaao(X (1) < i, an(X (1)
X(t+8)=X(t) +v,
L t=t+48

end

and Tian et al. (2007) in terms of the same modeling regimes mentioned above. We now discuss some
of the issues when incorporating noise and delays.

3. SIMULATION ALGORITHMS

In recent years, discrete stochastic simulation techniques have been widely used to help understand
the dynamic behavior of biochemical systems such as genetic regulatory networks and intra-cellular
and inter-cellular signaling pathways when there are small to moderate numbers of molecular species
involved. In addition to the methods mentioned above, other simulation type methods have also been
proposed recently, for example, Gibson and Bruck’s next reaction method (2000), Gillespie’s continuous
model (2000) and the probability-weighted Monte-Carlo approach by Resat et al. (2001). In this section
we review some of these approaches without and with delays and then discuss extensions via tau leaping
strategies which can dramatically improve robustness and computational performance.

3.1 SSA

The SSA (Stochastic Simulation Algorithm) in Figure 1 is a numerical Monte Carlo procedure that can
be used to simulate the time evolution of a set of molecular species affected by a given set of reactions.
It was introduced by Gillespie (1977) as an exact calculation that generates simulated trajectories of the
system state. These trajectories are numerical realizations of the Chemical Master Equation (CME). It is
important to note that the SSA is based on a fundamental stochastic premise that defines the probability,
given a particular state that one reaction will occur in the next infinitesimal time internal. This assump-
tion is used without approximation by the SSA and makes it exact with respect to the CME.

More precisely, consider a well-stirred volume Q of molecules containing N molecular species
{S,....S} that interact at constant temperature through M chemical reactions {R,,...,R,}. Given the
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system state at a particular time X(t) which represents the number of molecules of each species, we can
define for each reaction R, (=1,...,M) its propensity function aj(x) in a given state X(t)=x so that

aj(X)dt = probability that one R, reaction will occur somewhere inside € in the next infinitesimal
time interval [t,t+dt).

Additionally, each reaction is characterized by its stoichiometric vector v, that defines the state change
in the number of species due to reaction R,

The procedure to generate simulated trajectories of X(t) is based on the probability function of the
two random variables: (1) the time 7 to the next occurring reaction, and (2) the index j of the next reac-
tion. Given a current state X, the probability of state change per unit of time is constant (a,(x)) and so
the waiting time to the next reaction is an exponential random variable with mean 1/a (x). The reaction
index j is an integer random variable with point probabilities

aj(x) la,(X), where a (x) = i a, (x).

These two random variables and their distributions are the basis of the SSA. One of the simplest Monte
Carlo procedures for generating time and index of the next reaction is the so-called “direct method’.
Two independent random numbers r, and r, are drawn from the uniform distribution in the unit interval
U(0,1), and then t is assigned as

T = I ln(l/rl),

ao(x)

while j is the reaction index that satisfies

—

j—

a,(r) <7 -a(z) < ijak(w)

e
I

1

Then the system is updated by x(t+1) = X(t) + v, and the procedure is repeated to evolve the system
through time. Figure 2 is an algorithmic representation of the direct method.

3.2 Delay SSA

Biological processes often involve complex reactions and mechanisms that cannot be considered
instantaneous. Reactants are processed and products are not present until a certain future time point.
This time delay should be incorporated into our computational models if we want to capture a faithful

representation of the biological process. Additionally, delays are often important parameters that affect
the dynamic evolution of the system. A system of DDES can take the general form

y' = f(tay(t)’y(t _7—))7

and in the case of chemical kinetics as described by (1), the DDE formulation is

176



Computational Approaches for Modeling Intrinsic Noise and Delays in Genetic Regulatory Networks

Figure 2.

Algorithm 2: DSSA
Data: reactions defined by reactant and product vectors, consuming
delayed reactions are marked, stoichiometry, reaction rates, initial
state X (0), simulation time T, delays
Result: state dynamics
begin
while t < T do

generate [} and Uy as U(0, 1) random variables
ao(X (1) = £ a;(X (1))
: In(1/07)

= ag{A(t))
select j such that
Z;\;ll (X (1)) < Uzap(X(t)) < Zi:l ag(X(t))
if delayed reactions are scheduled within (t,t + 8] then
let & be the delayed reaction scheduled next at time t + 7

if k& is a consuming delayed reaction then

| X(t+7)=X(t)+v] (update products only)
(‘]."3("
| X(t+7)=X(t) +u
t=t+71
('lh'(‘
if § is not a delayed reaction then
| X(t+6)=X(t) +
else
record time t 4+ # + 7; for delayed reaction j with delay ;
if § is a consuming delayed reaction then
| X(t+8)=X(t)+v; (update reactants)

L t=t4+0

end

X'(t)= ivjaj (X (t - Tj)). :

There are a number of suitable numerical methods for solving such systems, some of which are
implemented in MATLAB. However, if intrinsic noise is important then we need a generalization of the
stochastic simulation algorithm (SSA) for chemical kinetics with delayed reactions. The DSSA differs
from the SSA by making a clear distinction between the reaction waiting time and reaction delay. The
former is the time between two consecutive reactions whereas the latter is the time elapsed from the
processing of the reactants to the appearance of the products.

Simulation proceeds in the standard way (SSA) if non-delayed reactions take place. However, if the
next reaction index points to a delayed reaction then we have to distinguish between two different types:
consuming and non-consuming. In case of non-consuming reactions, the corresponding reactants and
products are not updated. Instead, the state update is scheduled for “present time + delay” which will be
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reached in a future simulation step. When that happens, the last drawn reaction is ignored and instead
the state is updated according to the delayed reaction. Simulation continues at the delayed reaction time
point. On the other hand, if the reaction is consuming, reactants and products of delayed consuming reac-
tions must be updated separately: (1) reactant consumption updates the state when the delayed reaction
is selected and (2) product generation is updated when the reaction is completed.

The trajectories simulated by SSA are numerical realizations of the state evolution X(t). Additionally,
the probability density function of X(t) is completely determined by the Chemical Master Equation.
Similarly, a CME for the DSSA, namely a DCME, has been derived from first principles and the DSSA
has a corresponding representation as a system of delay differential equations (DDES) — see Barrio et
al. (2006) and Tian et al. (2008).

Figure 2 is an algorithmic description of the DSSA dealing with both delayed and non-delayed, as
well as with consuming and non-consuming, reactions. Time steps are defined either by a next reaction
waiting time or by a delayed time update.

3.3 Spatial Methods

In many Cell Biology settings spatially resolved simulations are mandatory. Some common examples in
which spatial simulations are unavoidable are systems embedded in complex spatial structures, molecular
motion described by low diffusion rates, or systems containing significantly low numbers of molecules,
to name a few. The most straightforward spatial technique is through reaction-diffusion partial differ-
ential equations. However, this approach is only valid if dealing with large molecular concentrations
and when noise is not amplified throughout the system. If at least one of these conditions fails to hold,
one must rely on spatial stochastic simulators, which can be discrete or continuous in nature and have
different levels of spatial resolution.

It should always be kept in mind that there is a trade-off between simulation time and resolution.
That is, the more highly-resolved, the more computationally expensive these simulations become. The
highly resolved end of the discrete spatial stochastic simulators spectrum is represented by lattice and
off-lattice particle based methods. In lattice methods a two-dimensional or three-dimensional computa-
tional lattice is used to represent a membrane or the interior of some part of a cell (Turner et al., 2004;
Morton-Firth and Bray, 1998; Nicolau et al., 2006). Such a lattice is then “populated” with particles of
different molecular species that may diffuse throughout the simulation domain by jumping to empty
neighboring sites and, depending on user-specified reaction rules, interacting chemically with a certain
probability. Such lattice-based simulators are commonly referred to as Kinetic Monte Carlo Methods.

In off-lattice methods, particles have their own specific spatial coordinates and reaction bins whose
size depends on the particular diffusion rates are drawn around them. If one or more molecules happen
to be inside such a bin, appropriate chemical reactions can take place with a certain probability, and if a
reaction is readily performed, the reactant particles are flagged. It should be noted that in off-lattice meth-
ods, the domains and/or compartments are usually still discretized to efficiently localize particles.

Particle methods can provide very detailed simulations of highly complex systems at the cost of ex-
ceedingly large amounts of computational time and, possibly, restrictions on the size of the simulation
domain. Hence, such detailed simulations can often only yield short simulation time spans that may not
be of sufficient interest to experimentalists.
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3.4 Coarse Grained Methods

A major drawback of delayed and non-delayed, spatial and non-spatial stochastic simulation algorithms
are their high computational costs when dealing with large numbers of molecules or widely varying
rate constants. These factors inevitably result in exceedingly small simulation time steps, making the
overall simulation computationally expensive or even infeasible. In order to reduce the computational
load, we can coarsen the simulation, accounting for many events in one single larger time step. This is
the general idea behind the so-called z-leap methods, where the simulation advances in time leaps while
updating the system state according to a reasonably good approximation for the accumulated number of
reactions (and diffusions if a spatial simulation) within the time step.

3.4.1 1-leap Methods

Gillespie (2001) proposed the Poisson t-leap method in which the number of reactions in each z-leap
are sampled from a Poisson distribution, and the z step is controlled by a selection strategy that depends
on a pre-specified control parameter €, such that 0<e<<I.

M
The update procedure for the Poisson z-leap method can be written as (t + 7’) =z (t) + Z Ky,
where K = P (a7 (X (t)) 7') for reactions j = 1,..., M , is a sample from the Poisson distribution with

mean a, (X (t) 7 . Further improvements were made by Gillespie and Petzold (2003), Rathinam et al.
(2003), and Cao et al. (2005, 2006).

However, samples from a Poisson distribution range from zero to unbounded values. Hence, when
updating the system, negative numbers of molecules can occur if larger step sizes are used. In order
to avoid this, Tian and Burrage (2004) and later Chatterjee et al. (2006) proposed the Binomial z-leap
method where the numbers of reactions in a leap are drawn from a Binomial distribution. Thus, the

various Kj take the form K]_ = B(NJ.,P],) , Where there are 