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Section 1
Introduction

Chapter 1
What are Gene Regulatory Networks? ................................................................................................... 1

Alberto de la Fuente, CRS4 Bioinformatica, Italy

This book deals with algorithms for inferring and analyzing Gene Regulatory Networks using mainly 
gene expression data. What precisely are the Gene Regulatory Networks that are inferred by such algo-
rithms from this type of data? There is still much confusion in the current literature and it is important 
to start a book about computational methods for Gene Regulatory Networks with a definition that is as 
unambiguous as possible. In this chapter, I provide a definition and try to clearly explain what Gene 
Regulatory Networks are in terms of the underlying biochemical processes. To do the latter in a formal 
way, I will use a linear approximation to the in general non-linear kinetics underlying interactions in 
biochemical systems and show how a biochemical system can be ‘condensed’ into a more compact de-
scription, that is Gene Regulatory Networks. Important differences between the defined Gene Regulatory 
Networks and other network models for gene regulation, that is Transcriptional Regulatory Networks 
and Co-Expression Networks, will be highlighted.

Chapter 2
Introduction to GRNs ............................................................................................................................ 28

Ugo Ala, Università di Torino, Italy
Christian Damasco, Università di Torino, Italy

The post-genomic era shifted the main biological focus from ‘single-gene’ to ‘genome-wide’ approaches. 
High throughput data available from new technologies allowed to get inside main features of gene 
expression and its regulation and, at the same time, to discover a more complex level of organization. 
Analysis of this complexity demonstrated the existence of nonrandom and well-defined structures that 
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determine a network of interactions. In the first part of the chapter, we present a functional introduc-
tion to mechanisms involved in genes expression regulation, an overview of network theory, and main 
technologies developed in last years to analyze biological processes are discussed. In the second part, 
we review genes regulatory networks and their importance in system biology.

Section 2 
Network Inference

Chapter 3
Bayesian Networks for Modeling and Inferring Gene Regulatory Networks ...................................... 57

Sebastian Bauer, Charité Universitätsmedizin Berlin, Germany
Peter Robinson, Charité Universitätsmedizin Berlin, Germany

Bayesian networks have become a commonly used tool for inferring structure of gene regulatory networks 
from gene expression data. In this framework, genes are mapped to nodes of a graph, and Bayesian 
techniques are used to determine a set of edges that best explain the data, that is to infer the underlying 
structure of the network. This chapter begins with an explanation of the mathematical framework of 
Bayesian networks in the context of reverse engineering of genetic networks. The second part of this 
review discusses a number of variations upon the basic methodology, including analysis of discrete vs. 
continuous data or static vs. dynamic Bayesian networks, different methods of exploring the potentially 
huge search space of network structures, and the use of priors to improve the prediction performance. 
This review concludes with a discussion of methods for evaluating the performance of network structure 
inference algorithms.

Chapter 4
Inferring Gene Regulatory Networks from Genetical Genomics Data ................................................. 79

Bing Liu, Monsanto Co., USA
Ina Hoeschele, Virginia Polytechnic Institute and State University, USA
Alberto de la Fuente, CRS4 Bioinformatica, Italy

In this chapter, we address techniques that can be applied to establish causality between the various nodes 
in a GRN. These techniques are based on the joint analysis of DNA marker and expression as well as 
DNA sequence information. In addition to Bayesian networks, another modeling approach, statistical 
equation modeling, is discussed.

Chapter 5
Inferring Genetic Regulatory Interactions with Bayesian Logic-Based Model .................................. 108

Svetlana Bulashevska, German Cancer Research Centre (DKFZ), Germany

This chapter describes the model of genetic regulatory interactions. The model has a Boolean logic se-
mantics representing the cooperative influence of regulators (activators and inhibitors) on the expression 
of a gene. The model is a probabilistic one, hence allowing for the statistical learning to infer the genetic 
interactions from microarray gene expression data. Bayesian approach to model inference is employed 



enabling flexible definitions of a priori probability distributions of the model parameters. Markov Chain 
Monte Carlo (MCMC) simulation technique Gibbs sampling is used to facilitate Bayesian inference. 
The problem of identifying actual regulators of a gene from a high number of potential regulators is 
considered as a Bayesian variable selection task. Strategies for the definition of parameters reducing the 
parameter space and efficient MCMC sampling methods are the matter of the current research.

Chapter 6
A Bayes Regularized Ordinary Differential Equation Model for the Inference  
of Gene Regulatory Networks ............................................................................................................ 139

Nicole Radde, University of Leipzig, Germany
Lars Kaderali, University of Heidelberg, Germany

Differential equation models provide a detailed, quantitative description of transcription regulatory 
networks. However, due to the large number of model parameters, they are usually applicable to small 
networks only, with at most a few dozen genes. Moreover, they are not well suited to deal with noisy 
data. In this chapter, we show how to circumvent these limitations by integrating an ordinary differen-
tial equation model into a stochastic framework. The resulting model is then embedded into a Bayesian 
learning approach. We integrate the-biologically motivated-expectation of sparse connectivity in the 
network into the inference process using a specifically defined prior distribution on model parameters. 
The approach is evaluated on simulated data and a dataset of the transcriptional network governing the 
yeast cell cycle.

Section 3
Modeling Methods

Chapter 7
Computational Approaches for Modeling Intrinsic Noise and Delays  
in Genetic Regulatory Networks ......................................................................................................... 169

Manuel Barrio, University of Valladolid, Spain
Kevin Burrage, The University of Oxford, UK
Pamela Burrage, The University of Queensland, Australia
André Leier, ETH Zurich, Switzerland
Tatiana Márquez Lago, ETH Zurich, Switzerland

As noise and delays are intrinsic to biochemical processes, they must be accounted for when dealing 
with the most detailed differential equation models of GRNs. The issue is addressed in this chapter. A 
basic Monte Carlo simulation technique to simulate noisy biochemical reactions, as well as a general-
ization to include delays, is described in this chapter. The chapter follows this with a study into ‘coarse 
grain’ approaches, which reduce computational costs when dealing with larger biochemical systems. 
The methodology is demonstrated with a few case studies. 



Chapter 8
Modeling Gene Regulatory Networks with Delayed Stochastic Dynamics ....................................... 198

Andre S. Ribeiro, Tampere University of Technology, Finland
John J. Grefenstette, George Mason University, USA
Stuart A. Kauffman, University of Calgary, Canada

We present a recently developed modeling strategy of gene regulatory networks (GRN) that uses the 
delayed stochastic simulation algorithm to drive its dynamics. First, we present experimental evidence 
that led us to use this strategy. Next, we describe the stochastic simulation algorithm (SSA), and the 
delayed SSA, able to simulate time-delayed events. We then present a model of single gene expression. 
From this, we present the general modeling strategy of GRN. Specific applications of the approach are 
presented, beginning with the model of single gene expression which mimics a recent experimental 
measurement of gene expression at single-protein level, to validate our modeling strategy. We also 
model a toggle switch with realistic noise and delays, used in cells as differentiation pathway switches. 
We show that its dynamics differs from previous modeling strategies predictions. As a final example, 
we model the P53-Mdm2 feedback loop, whose malfunction is associated to 50% of cancers, and can 
induce cells apoptosis. In the end, we briefly discuss some issues in modeling the evolution of GRNs, 
and outline some directions for further research.

Chapter 9
Nonlinear Stochastic Differential Equations Method for Reverse Engineering  
of Gene Regulatory Network .............................................................................................................. 219

Adriana Climescu-Haulica, Université Joseph Fourier, France
Michelle Quirk, Los Alamos National Laboratory, USA

In this chapter we present a method to infer the structure of the gene regulatory network that takes in 
account both the kinetic molecular interactions and the randomness of data. The dynamics of the gene 
expression level are fitted via a nonlinear stochastic differential equation (SDE) model. The drift term 
of the equation contains the transcription rate related to the architecture of the local regulatory network. 
The statistical analysis of data combines maximum likelihood principle with Akaike Information Criteria 
(AIC) through a Forward Selection Strategy to yield a set of specific regulators and their contribution. 
Tested with expression data concerning the cell cycle for S. Cerevisiae and embryogenesis for the D. 
melanogaster, this method provides a framework for the reverse engineering of various gene regulatory 
networks.

Chapter 10
Modelling Gene Regulatory Networks Using Computational Intelligence Techniques ..................... 244

Ramesh Ram, Monash University, Australia
Madhu Chetty, Monash University, Australia

This chapter presents modelling gene regulatory networks (GRNs) using probabilistic causal model and the 
guided genetic algorithm. The problem of modelling is explained from both a biological and computational 
perspective. Further, a comprehensive methodology for developing a GRN model is presented where the 
application of computation intelligence (CI) techniques can be seen to be significantly important in each 



phase of modelling. An illustrative example of the causal model for GRN modelling is also included and 
applied to model the yeast cell cycle dataset. The results obtained are compared for providing biological 
relevance to the findings which thereby underpins the CI based modelling techniques.

Section 4
Structure and Parameter Learning

Chapter 11
A Synthesis Method of Gene Regulatory Networks based on Gene Expression  
by Network Learning .......................................................................................................................... 266

Yoshihiro Mori, Kyoto Institute of Technology, Japan
Yasuaki Kuroe, Kyoto Institute of Technology, Japan

Investigating gene regulatory networks is important to understand mechanisms of cellular functions. 
Recently, the synthesis of gene regulatory networks having desired functions has become of interest to 
many researchers because it is a complementary approach to understanding gene regulatory networks, 
and it could be the first step in controlling living cells. In this chapter, we discuss a synthesis problem 
in gene regulatory networks by network learning. The problem is to determine parameters of a gene 
regulatory network such that it possesses given gene expression pattern sequences as desired properties. 
We also discuss a controller synthesis method of gene regulatory networks. Some experiments illustrate 
the performance of this method.

Chapter 12
Structural Learning of Genetic Regulatory Networks Based on Prior Biological Knowledge  
and Microarray Gene Expression Measurements ............................................................................... 289

Yang Dai, University of Illinois at Chicago, USA
Eyad Almasri, University of Illinois at Chicago, USA
Peter Larsen, University of Illinois at Chicago, USA
Guanrao Chen, University of Illinois at Chicago, USA

The reconstruction of genetic regulatory networks from microarray gene expression measurements has 
been a challenging problem in bioinformatics. Various methods have been proposed for this problem 
including the Bayesian Network (BN) approach. In this chapter we provide a comprehensive survey of 
the current development of using structure priors derived from high-throughput experimental results 
such as protein-protein interactions, transcription factor binding location data, evolutionary relationships 
and literature database in learning regulatory networks.

Chapter 13
Problems for Structure Learning: Aggregation and Computational Complexity ............................... 310

Frank Wimberly, Carnegie Mellon University (retired), USA
David Danks, Carnegie Mellon University and Institute for Human & Machine Cognition, USA
Clark Glymour, Carnegie Mellon University and Institute for Human & Machine Cognition, USA
Tianjiao Chu, University of Pittsburgh, USA



Machine learning methods to find graphical models of genetic regulatory networks from cDNA microar-
ray data have become increasingly popular in recent years. We provide three reasons to question the 
reliability of such methods: (1) a major theoretical challenge to any method using conditional indepen-
dence relations; (2) a simulation study using realistic data that confirms the importance of the theoretical 
challenge; and (3) an analysis of the computational complexity of algorithms that avoid this theoretical 
challenge. We have no proof that one cannot possibly learn the structure of a genetic regulatory network 
from microarray data alone, nor do we think that such a proof is likely. However, the combination of (i) 
fundamental challenges from theory, (ii) practical evidence that those challenges arise in realistic data, 
and (iii) the difficulty of avoiding those challenges leads us to conclude that it is unlikely that current 
microarray technology will ever be successfully applied to this structure learning problem.

Section 5
Analysis & Complexity

Chapter 14
Complexity of the BN and the PBN Models of GRNs and Mappings  
for Complexity Reduction ................................................................................................................... 334

Ivan V. Ivanov, Texas A&M University, USA

Constructing computational models of genomic regulation faces several major challenges. While the 
advances in technology can help in obtaining more and better quality gene expression data, the com-
plexity of the models that can be inferred from data is often high. This high complexity impedes the 
practical applications of such models, especially when one is interested in developing intervention 
strategies for disease control, for example, preventing tumor cells from entering a proliferative state. 
Thus, estimating the complexity of a model and designing strategies for complexity reduction become 
crucial in problems such as model selection, construction of tractable subnetwork models, and control 
of the dynamical behavior of the model. In this chapter, we discuss these issues in the setting of Boolean 
networks and probabilistic Boolean networks–two important classes of network models for genomic 
regulatory networks.

Chapter 15
Abstraction Methods for Analysis of Gene Regulatory Networks ..................................................... 352

Hiroyuki Kuwahara, Carnegie Mellon University, USA; Microsoft Research - University of Trento 
CoSBi, Italy

Chris J. Myers, University of Utah, USA

With advances in high throughput methods of data collection for gene regulatory networks, we are now 
in a position to face the challenge of elucidating how these genes coupled with environmental stimuli 
orchestrate the regulation of cell-level behaviors. Understanding the behavior of such complex systems 
is likely impossible to achieve with wet-lab experiments alone due to the amount and complexity of the 
data being collected. Therefore, it is essential to integrate the experimental work with efficient and ac-
curate computational methods for analysis. Unfortunately, such analysis is complicated not only by the 
sheer size of the models of interest but also by the fact that gene regulatory networks often involve small 



molecular counts making discrete and stochastic analysis necessary. To address this problem, this chapter 
presents a model abstraction methodology which systematically performs various model abstractions to 
reduce the complexity of computational biochemical models resulting in substantial improvements in 
analysis time with limited loss in accuracy.

Chapter 16
Improved Model Checking Techniques for State Space Analysis  
of Gene Regulatory Networks ............................................................................................................ 386

Hélio C. Pais, Cadence Research Laboratories, USA and INESC-ID/IST, Portugal
Kenneth L. McMillan, Cadence Research Laboratories,USA
Ellen M. Sentovich, Cadence Research Laboratories,USA
Ana T. Freitas, INESC-ID/IST, Portugal
Arlindo L. Oliveira, Cadence Research Laboratories, USA and INESC-ID/IST, Portugal

A better understanding of the behavior of a cell, as a system, depends on our ability to model and under-
stand the complex regulatory mechanisms that control gene expression. High level, qualitative models, 
of gene regulatory networks can be used to analyze and characterize the behavior of complex systems, 
and to provide important insights on the behavior of these systems. In this chapter, we describe a num-
ber of additional functionalities that, when supported by a symbolic model checker, make it possible 
to answer important questions about the nature of the state spaces of gene regulatory networks, such as 
the nature and size of attractors, and the characteristics of the basins of attraction. We illustrate the type 
of analysis that can be performed by applying an improved model checker to two well studied gene 
regulatory models, the network that controls the cell cycle in the yeast S. cerevisiae, and the network 
that regulates formation of the Dorsal-Ventral boundary in D. melanogaster. The results show that the 
insights provided by the analysis can be used to understand and improve the models, and to formulate 
hypotheses that are biologically relevant and that can be confirmed experimentally. 
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The expression of genes depends on the physical structure of DNA, how the function of DNA is regu-
lated by the transcription factors expressed by other genes, RNA regulation such as that through RNA 
interference, and protein signals mediated by protein-protein interaction networks. We illustrate different 
approaches to determining information about the network of gene regulation from experimental data. 
First, we show that we can use statistical information of the mRNA expression values to determine 
the global topological properties of the gene regulatory network. Second, we show that analyzing the 
changes in expression due to mutations or different environmental conditions can give us information 
on the relative importance of the different mechanisms involved in gene regulation.
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This chapter relaxes the requirements in random Boolean network models, that genes operate in synchrony 
and that their connectivity remain fixed. These modifications, it is argued, enable Boolean networks to 
better capture some characteristics present in gene expression, such as activation sequences in genes 
and periodic attractors.
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There exist many heterogeneous data sources that are closely related to gene regulatory networks. These 
data sources provide rich information for depicting complex biological processes at different levels and 
from different aspects. Here, we introduce a linear programming framework to infer the gene regulatory 
networks. Within this framework, we extensively integrate the available information derived from mul-
tiple time-course expression datasets, ChIP-chip data, regulatory motif-binding patterns, protein-protein 
interaction data, protein-small molecule interaction data, and documented regulatory relationships in 
literature and databases. Results on synthetic and real experimental data both demonstrate that the linear 
programming framework allows us to recover gene regulations in a more robust and reliable manner.

Chapter 20
Integrating Various Data Sources for Improved Quality in Reverse Engineering  
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In this chapter we outline a methodology to reverse engineer GRNs from various data sources within 
an ODE framework. The methodology is generally applicable and is suitable to handle the broad error 



distribution present in microarrays. The main effort of this chapter is the exploration of a fully data 
driven approach to the integration problem in a “soft evidence” based way. Integration is here seen as 
the process of incorporation of uncertain a priori knowledge and is therefore only relied upon if it lowers 
the prediction error. An efficient implementation is carried out by a Linear Programming formulation. 
This LP problem is solved repeatedly with small modifications, from which we can benefit by restarting 
the primal simplex method from nearby solutions, which enables a computational efficient execution. 
We perform a case study for data from the yeast cell cycle, where all verified genes are putative regula-
tors and the a priori knowledge consists of several types of binding data, text-mining, and annotation 
knowledge.
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In this chapter, we describe the use of evolutionary methods for the in silico generation of artificial 
gene regulatory networks (GRNs). These usually serve as models for biological networks and can be 
used for enhancing analysis methods in biology. We clarify our motivation in adopting this strategy by 
showing the importance of detailed knowledge of all processes, especially the regulatory dynamics of 
interactions undertaken during gene expression. To illustrate how such a methodology works, two dif-
ferent approaches to the evolution of small-scale GRNs with specified functions, are briefly reviewed 
and discussed. Thereafter, we present an approach to evolve medium sized GRNs with the ability to 
produce stable multicellular growth. The computational method employed allows for a detailed analysis 
of the dynamics of the GRNs as well as their evolution. We have observed the emergence of negative 
feedback during the evolutionary process, and we suggest its implication to the mutational robustness 
of the regulatory network which is further supported by evidence observed in additional experiments.
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In this chapter, we propose a new model for Gene Regulatory Networks (GRN). The model incorporates 
more biological detail than other approaches, and is based on an artificial genome from which several 
products like genes, mRNA, miRNA, noncoding RNA, and proteins are extracted and connected, giving 
rise to a heterogeneous directed graph. We study the dynamics of the networks thus obtained, along with 
their topology (using degree distributions). Some considerations are made about the biological meaning 
of the outcome of the simulations.
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In this chapter, a computational formalism for modeling and reasoning about the control of biological 
processes is explored. It comprises five main sections: a survey of related work, a background on methods 
(including discussion of the Wnt5a gene regulatory network, the coefficient of determination method for 
deriving gene regulatory network models, and the partially observable Markov decision process model 
and its role in modeling intervention planning problems), a main section on the approach taken (including 
algorithms for solving the intervention planning problems and techniques for representing components 
of the problems), an empirical evaluation of the intervention planning algorithms on synthetic and the 
Wnt5a gene regulatory networks, and a conclusion and future directions section. The techniques de-
scribed present a promising avenue of future research in reasoning algorithms for improved scalability 
in planning interventions in gene regulatory networks.
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Gene regulation plays a central role in the development and functioning of living organisms. Develop-
ing a deeper qualitative and quantitative understanding of gene regulation is an important scientific 
challenge. The switch is commonly used as a paradigm of gene regulation. Verbal descriptions of the 
structure and functioning of the switch have appeared in biological textbooks. We apply fuzzy modeling 
to transform one such verbal description into a well-defined mathematical model. The resulting model is 
a piecewise-quadratic second-order differential equation. It demonstrates functional fidelity with known 
results while being simple enough to allow a rather detailed analysis. Properties such as the number, 
location, and domain of attraction of equilibrium points can be studied analytically. Furthermore, the 
model provides a rigorous explanation for the so-called stability puzzle of the switch.
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In this chapter, modeling of GRNs using Petri net theory is considered. It aims at providing a conceptual 
understanding of Petri nets to enable the reader to explore GRNs applying Petri net modeling and analysis 
techniques. Starting with an overview on modeling biochemical networks using Petri nets, the state-of-
the-art with focus on GRNs is described. Other modeling techniques, for example, hybrid Petri nets are 



discussed. Basic concepts of Petri net theory are introduced involving special analysis techniques for 
modeling biochemical systems, for example, MCT-sets, T-clusters, and Mauritius maps. To illustrate these 
Petri net concepts, a more complex case study–the gene regulation in Duchenne Muscular Dystrophy–
is explained in detail, considering the biological background and the interpretation of analysis results. 
Considering both, advantages and disadvantages, the chapter demonstrates the usefulness of Petri net 
modeling, in particular for GRNs.
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For decades, molecular geneticists have been intensively studying the individual genes of various 
organisms and how these genes influence their phenotypic behavior. Unfortunately, it is usually very 
difficult, if not impossible, to isolate specific genetic signals for any arbitrary behavioral aspect or trait.  
The problem is analogous to that of finding a grass skirt in a very large haystack.  Even if one locates a 
plausible-looking bit of grass, until its connections are laboriously traced out, one cannot know if it is 
part of the skirt or, as is much more likely, just an unrelated piece of straw.  As an example, there are over 
100 genes that are known to affect flowering time in the model plant Arabidopsis thaliana.  Together, the 
interactions of these genes comprise a complex signal processing network that integrates multiple internal 
and external cues to make one of the most critical decisions in a plant’s life cycle–when to reproduce.  
Yet, all together, these genes comprise only 0.4% of the species’ complete gene network. 

Recent advances in molecular genetic technologies are beginning to shed light on the complex in-
terplay between genes that elicit phenotypic behavior characteristic of any given organism. Even so, 
unraveling the specific details about how these genetic pathways interact to regulate development, shape 
life histories, and respond to environmental cues remains a very daunting task.

A wide variety of models depicting gene-gene interactions, which are commonly referred to as gene 
regulatory networks (GRNs), have been proposed in recent literature. While a GRN must be able to 
mimic experimentally observed behavior, reproducing complex behaviors accurately may entail com-
putationally prohibitive costs. Under these circumstances, model simplicity is an important trade-off for 
functional fidelity. Consequently, modeling approaches taken are wide and disparate. Machine learning 
based GRN models are specifically meant for simplicity and/or algorithmic tractability. They rely heavily 
on computational learning theory, and usually are used to simulate qualitatively, phenotypic behavior 
of GRNs. We refer to these as high level models. At the other end are more detailed models that take 
into account the underlying biochemical processes.  These models are capable of reproducing realistic 
gene expressions with great fidelity.

This book is a collection of articles on the various computational tools that are available to decode, 
model, and analyze GRNs.  It is conveniently organized into separate sections, beginning with an in-
troductory section. Each section contains a handful of chapters written by researchers in the field that 
focus on a specific computational approach.

Section 1: introduction

The first section contains two introductory chapters on GRNs. Chapter 1 (“What are Gene Regulatory 
Networks”) provides a conceptual framework for GRNs.  It shows how the complex nonlinear biochemi-
cal processes can be linearized and portrayed as simple graphical models. The nodes of such a network 
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are either individual genes or groups of functionally related ones.  The network can have both directed 
as well as undirected edges.  The chapter also highlights the differences between such networks and two 
other similar structures, transcriptional regulatory networks and co-expression networks. 

The next chapter in this section (Chapter 2) is entitled “Introduction to Gene Regulatory Networks” 
and has a slightly different focus.  While introducing the GRN as a graph, it also details further biologi-
cal insights into the various underlying biochemical processes within GRNs.  The chapter also surveys 
recent advances in array-based technologies that are available to study such processes. Only minimum 
background in advanced mathematics is assumed here, making the chapter very useful to biologists 
interested in this subject.

Section 2: network inference

While the previous section introduces GRNs as graphical structures, the chapters in this section focus 
on systems identification; they shed light on how GRNs can be reverse engineered from experimental 
data. While simply arranging genes into various functional units may be accomplished easily through 
simple statistical means, depicting causality between these units is more challenging. 

To varying degrees, all four chapters in this section deal with Bayesian network approach. Bayes-
ian networks, a marriage between graph theory and probability theory, are a high level abstraction of 
GRNs.  An introductory, yet thorough mathematical description of Bayesian networks in provided in 
Chapter 3 (“Bayesian Networks for Modeling and Inferring Gene Regulatory Networks”).  This chapter 
considers both discrete probabilities as well as continuous probability distributions.  Dynamic Bayesian 
networks are taken up briefly to show how cyclic graphs can be modeled.  The latter half of the chapter 
casts the tasks of discovering the structure of the Bayesian network and estimating the parameters of its 
probability distribution(s) as two aspects of learning. Lastly, it addresses issues relating to assessing the 
performance of inferred networks.

Chapter 4 (“Inferring Gene Regulatory Networks from Genetical Genomics Data”) addresses techniques 
that can be applied to establish causality between the various nodes in a GRN.  These techniques are based 
on the joint analysis of DNA marker and expression as well as DNA sequence information.  In addition 
to Bayesian networks, another modeling approach, statistical equation modeling, is discussed.

Boolean networks are a GRN modeling approach where each gene is associated with a simple logical 
function.  Chapter 5 (“Inferring Genetic Regulatory Interactions with Bayesian Logic-Based Model”) 
combines this modeling approach with Bayesian networks.  Using simple Boolean semantics to depict 
underlying interactions among gene products allows for the analysis of larger networks, while the Bayes-
ian framework helps penalize overly complex models.  As examples, results of applying this method to 
data from S. cerevisiae and to Plasmodium falciparum are provided.

Depicting the dynamic interactions of genes within a network as a set of ordinary differential equa-
tions helps preserve biochemical fidelity.  Unfortunately, this detailed approach is too complex to be 
extended beyond a few genes.  Chapter 6 (“A Bayes Regularized Ordinary Differential Equation Model 
for the Inference of Gene Regulatory Networks”), makes use of the stochastic nature of GRNs to inte-
grate the differential equation models within a probabilistic network.  Bayesian learning is applied to 
determine the parameters of the differential equation model.  The effectiveness of this overall approach 
is demonstrated by applying it to the yeast cell.
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Section 3: Modeling MethodS

As noise and delays are intrinsic to biochemical processes, they must be accounted for when dealing 
with the most detailed differential equation models of GRNs.  This issue is addressed in Chapter 7 
(“Computational Approaches for Modeling Intrinsic Noise and Delays in Genetic Regulatory Networks”) 
and in the following one, Chapter 8 (“Modeling Gene Regulatory Networks with Delayed Stochastic 
Dynamics”). 

A basic Monte Carlo simulation technique to simulate noisy biochemical reactions, as well as a 
generalization to include delays, are described in both chapters, although to different ends.  Chapter 7 
follows this with a study into ‘coarse grain’ approaches, which reduce computational costs when deal-
ing with larger biochemical systems.  The methodology is demonstrated with a few case studies.  In 
contrast, Chapter 8 discusses simulation studies with single genes as well as simple networks of genes. 
It concludes with a genetic algorithm1 based simulation to investigate how simple GRNs evolve.

Chapter 9 (“Nonlinear Stochastic Differential Equations Method for Reverse Engineering of Gene 
Regulatory Networks”) is a study on how structures of GRNs can be obtained from expression data.  It 
uses stochastic differential equation models, where noise is depicted as a Brownian process.  The authors 
show how regulators for genes are selected using heuristics based on statistical and information theoretic 
principles, and demonstrate this concept with a few case studies. 

The last chapter in this section, Chapter 10 (“Modelling Gene Regulatory Networks with Computa-
tional Intelligence Techniques”) introduces computational intelligence techniques in GRNs with a focus 
on genetic algorithms.  The authors propose the guided genetic algorithm as an optimization method 
for causal modeling of GRNs.  Case studies involving both simulated data as well as real yeast data are 
described to show how their approach works.

Section 4: Structure and ParaMeter learning

This section contains a set of chapters that are most directly related to algorithmic approaches for learning 
structures and parameters of GRNs.  It begins with Chapter 11 (“A Synthesis Method of Gene Regulatory 
Networks based on Gene Expression by Networking Learning”), which addresses how GRNs can be 
modeled to produce oscillatory behavior.  This is an important problem as oscillations such as circadian 
rhythm are routinely observed in gene expression patterns.  The chapter proposes a recurrent neural 
network modeling approach to derive networks of low complexity that can produce desired oscillatory 
sequences.

Chapter 12 (“Structural Learning of Genetic Regulatory Networks Based on Prior Biological Knowl-
edge and Microarray Gene Expression Measurements”) is a survey of current methods on Bayesian 
network models of GRNs.  It focuses on structure priors derived from experimental results such as 
protein-protein interactions, transcription factor binding locations, evolutionary relationships as well 
as existing literature.

The following chapter, Chapter 13 (“Problems for Structure Learning: Aggregation and Computational 
Complexity”) offers a critique on current approaches to inferring model structure using standard machine 
learning techniques.  The authors identify three specific factors in support of their argument: that the 
methods reported in the literature make use of synthetic as opposed to real data, that they claim success 
when the actual gene network structure is not known, and that only isolated successes are published.
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Section 5: analySiS and coMPlexity

Large, heterogeneous datasets arising from a variety of experiments, intricacies involved at various 
stages of the modeling process, as well as the intrinsically complex nature of the genetic interactions 
within the organisms themselves–shaped through millenia of evolution–all contribute to models that 
are often difficult to analyze and comprehend. A collection of articles that address this issue is included 
in this section.

Chapter 14 (“Complexity of the BN and the PBN Models of GRNs and Mappings for Complexity 
Reduction”) is intended to provide a generic framework for model complexity reduction in Boolean and 
probabilistic Boolean networks.  Statistical and information theoretic views of complexity are described.  
Approaches to map larger GRNs into smaller, more tractable ones, while preserving the overall dynami-
cal behavior, are considered within this scheme.

Chapter 15 (“Abstraction Methods for Analysis of Gene Regulatory Networks”) also addresses the 
issue of reducing the complexity in GRNs.  It details steps that can be taken to merge similar reactions 
and eliminate insignificant ones from large-scale models of biochemical reactions.  Using these simpli-
fications, models based on chemical kinetics can be abstracted into higher level ones called finite state 
systems.

Chapter 16 (“Improved Model Checking Techniques for State Space Analysis of Gene Regulatory 
Networks”) describes a software tool that applies model checking–a technique used to analyze computer 
programs–to discrete GRN models. Using this technique, steady state characteristics of the models can 
be examined. Two case studies, the gene network for cell cycle of yeast, as well as that for wing forma-
tion in D. melanogaster, illustrate the effectiveness of this technique. 

Chapter 17 (“Determining the Properties of Gene Regulatory Networks from Expression Data”) 
shows how topological properties of GRNs can be applied to the practical analysis of experimental gene 
expression data. Using examples that apply this approach, the authors argue that there is much more to 
regulation between genes than just transcription factors.

Chapter 18 (“Generalized Boolean Networks: How Spatial and Temporal Choices Influence Their 
Dynamics”) relaxes the requirements in random Boolean network models, that genes operate in synchrony 
and that their connectivity remain fixed. These modifications, it is argued, enable Boolean networks to 
better capture some characteristics present in gene expression, such as activation sequences in genes 
and periodic attractors.

Section 6: heterogeneouS data

Linear programming–a simple technique for the constrained optimization of linear functions–can be 
used to synthesize GRNs from multiple data sources, as the next two chapters show.

In Chapter 19 (“A Linear Programming Framework for Inferring Gene Regulatory Network by In-
tegrating Heterogeneous Data”), the authors use linear differential equation models of GRNs to which 
matrix decomposition methods and linear programming are applied. Data from heterogeneous sources, 
such as documented literature, protein-protein interaction data, and so forth are added as constraints. 
Using this formulation, the authors attempt to obtain robust GRN models that are consistent with mul-
tiple datasets. 

Chapter 20 (“Integrating Various Data Sources for Improved Quality in Reverse Engineering of Gene 
Regulatory Networks”) shows how to reverse engineer large-scale GRNs by integrating various data 
sources, such as information gleaned by text mining of published research. Using this prior knowledge as 
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soft evidence, a methodology is proposed to obtain GRN models that can account for large error distribu-
tions in microarrays. Simulations with yeast cell data corroborate the effectiveness of this method.

Section 7: network SiMulation StudieS

Chapter 21 (“Dynamic Links and Evolutionary History in Simulated Gene Regulatory Networks”) de-
scribes computational studies on the evolution of GRNs. Using evolutionary strategies, an algorithmic 
approach similar to genetic algorithms, the authors are able to simulate the evolution of GRNs that 
produce stable multicellular growth. They observe that the evolutionary process favors the appearance 
of negative feedback in the evolved networks. They hypothesize that this is because negative feedback 
imparts the network with robustness to potentially deleterious mutations.

A new GRN model that incorporates greater biological detail than traditional methods is outlined in 
the other simulation study in this section (Chapter 22 “A Model for a Heterogeneous Genetic Network”). 
The authors report computer experiments to generate GRNs using this biologically-motivated approach. 
They examine the topological features and dynamic behaviors of models obtained in this manner, and 
provide arguments that such models possess features that correlate well with biological observations.

Section 8: other StudieS

One of the purposes of GRNs is to model cellular dynamics, which are usually characterized by stable 
attractors. In this context, planned external interventions to redirect these networks from abnormal 
states (as in with the onset of cancer) to more regular ones is important for many applications, such as 
prescribing effective drugs. In Chapter 23 (“Planning Interventions for Gene Regulatory Networks as 
Partially Observable Markov Decision Processes”), this intervention problem is modeled as a Markov 
decision process. Two well known algorithms borrowed for artificial intelligence are proposed to solve 
the problem.

There are two modes of propagation of a bacterial virus known as the λ phage: direct replication 
and integration with the host bacterium. The decision concerning which mode to adopt is controlled 
by a simple GRN called the λ switch. Chapter 24 “Mathematical Modeling of the λ Switch: A Fuzzy 
Logic Approach” uses fuzzy logic to model the switch, making it tractable to mathematical treatment. 
Using this approach, the chapter suggests explanations for certain behavioral aspects of the λ switch, 
particularly how the bacterium switches to the direct replication mode of transmission when DNA dam-
age occurs in the host.

Chapter 25, “Petri Nets and GRN Models,” introduces Petri nets, a graphical modeling approach 
for modeling GRNs. An introduction to Petri nets as well as related techniques useful in modeling bio-
chemical processes is provided. The application of this approach for the gene regulation in Duchenne 
muscular dystrophy (DMD) is taken up. An analysis of the results sheds lights on the advantages and 
disadvantages of the method.

concluSion

This book provides a bird’s eye view of the vast range of computational methods used to model GRNs.  
It contains introductory material and surveys, as well as articles describing in-depth research in various 
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aspects of GRN modeling. The editors expect it to be useful to researchers in a variety of ways.  It can 
provide a comprehensive overview of artificial intelligence approaches for learning and optimization and 
their use in gene networks to biologists involved in genetic research.  It can assist computer science and 
artificial intelligence theorists in understanding how their methodologies can be applied to GRN model-
ing. Although not intended to be a textbook, the book can be of immense use as a reference for students 
and classroom instructors.  As the book would bridge the gap between computer science and genomic 
research communities, it will be very useful to graduate students considering research in this direction. 
Finally, this book would be useful to industrial researchers involved in gene regulatory modeling.

Sanjoy Das
Doina Caragea
Stephen M. Welch
William H. Hsu
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endnote

1 Genetic algorithms are a class of approaches borrowed from computational intelligence for sto-
chastic optimization. The usage of the word “genetic” does not imply a direct relationship with 
GRNs, but stems from the fact that these algorithms loosely mimic biological evolution. 
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Chapter 1

What are Gene Regulatory 
Networks?

Alberto de la Fuente
CRS4 Bioinformatica, Italy

introduction

Several terms have been used to indicate models of regulatory processes and functional relations between 
genes, such as Gene Regulatory Networks, Gene Networks, Gene Expression Networks, Co-Expression 
Networks, Genetic Regulatory Networks, Transcriptional Regulatory Networks and Genetic Interaction 
Networks. While often used as such in the literature, not all of the above terms are actually synonyms. 
I therefore will provide a precise definition of the ‘Gene Regulatory Network’ and point out the essen-

abStract

This book deals with algorithms for inferring and analyzing Gene Regulatory Networks using mainly 
gene expression data. What precisely are the Gene Regulatory Networks that are inferred by such algo-
rithms from this type of data? There is still much confusion in the current literature and it is important 
to start a book about computational methods for Gene Regulatory Networks with a definition that is as 
unambiguous as possible. In this chapter, I provide a definition and try to clearly explain what Gene 
Regulatory Networks are in terms of the underlying biochemical processes. To do the latter in a formal 
way, I will use a linear approximation to the in general non-linear kinetics underlying interactions in 
biochemical systems and show how a biochemical system can be ‘condensed’ into the more compact 
description of Gene Regulatory Networks. Important differences between the defined Gene Regulatory 
Networks and other network models for gene regulation, such as Transcriptional Regulatory Networks 
and Co-Expression Networks, will be highlighted.
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What are Gene Regulatory Networks?

tial differences with two other network models frequently used for gene regulation, i.e. Transcriptional 
Regulatory Networks and Co-Expression Networks.

Before a clear definition of Gene Regulatory Networks can be given, we first need to consider the 
abstract definition of a ‘network’, also formally called ‘graph’. The mathematical theory of graphs is 
called graph theory (Bollobas, 1998; Erdös & Renyi, 1959), but recent advances in Complex Network 
Science go beyond graph theory alone and incorporate ideas from physics, sociology and biology (Barabasi 
& Oltvai, 2004; Dorogovtsev & Mendes, 2003; Newman, 2003; Pieroni et al., 2008; Watts & Strogatz, 
1998). Three main types of graphs are essential in the context of Gene Regulatory Networks:

An undirected graph G is an ordered pair G: = (V, U) that is subject to the following conditions:
V is a set, whose elements are called vertices or nodes (the later will be used in the remainder of the 

chapter) and U is a set of unordered pairs of distinct vertices, called undirected edges, links or lines (‘un-
directed edges’ will be used in the remainder of the chapter). For each edge uij = {vi, vj} the nodes vi and 
vj are said to be connected, linked or adjacent to each other. Undirected graphs can be effectively used 
to represent the existence of associations or functional relationships (edges) between entities (nodes).

A directed graph or digraph G is an ordered pair G: = (V, D) with V being a set of nodes and D a 
set of ordered pairs of vertices, called directed edges, arcs, or arrows (‘directed edges’ will be used in 
the remainder of the chapter). A directed edge dij = {vi, vj} is considered to be directed from node vi 
to vj; vj is called the head or target and vi is called the tail or source; vj is said to be a direct successor, 
or child, of vi, and vi is said to be a direct predecessor, or parent, of vj. If a directed path leads from vi 
to vj, then vi is said to be an ancestor of vj. Directed graphs can be effectively used to represent causal 
influences or communication between the nodes.

A mixed graph G is a graph in which some edges may be directed and some may be undirected. It is 
written as an ordered triple G:= (V, U, D) with V, U, and D defined as above. Directed and undirected 
graphs are special cases of such mixed graphs. These graphs can thus represent associations as well as 
causal influences between the nodes. As we will see, Gene Regulatory Networks can most completely 
be represented as mixed graphs.

gene regulatory networkS

I start out by giving a possible formal definition for Gene Regulatory Networks. The remainder of the 
chapter is entirely dedicated to provide a detailed explanation of this definition.

Definition – Gene Regulatory Network (GRN): a Gene Regulatory Network is a mixed graph G:= 
(V, U, D) over a set V of nodes, corresponding to gene-activities, with unordered pairs U, the undirected 
edges, and ordered pairs D, the directed edges. A directed edge dij from vi to vj is present iff a causal 
effect runs from node vi to vj and there exist no nodes or subsets of nodes in V that are intermediating 
the causal influence (it may be mediated by hidden variables, i.e. variables not in V). An undirected edge 
uij between nodes vi and vj is present iff gene-activities vi and vj are associated by other means than a 
direct causal influence, and there exist no nodes or subsets of nodes in V that explain that association 
(it is caused by a variable hidden to V).

What do the nodes in GRNs precisely represent? The nodes in GRNs are often said to correspond to 
‘genes’. More precisely, they rather correspond to ‘gene-activities’ (‘gene expression levels’ or ‘RNA 
concentrations’) as these are the dynamical and quantitative variables that are related by the algorithms 
discussed in this book. Of course ‘gene-activity’ could be included in the definition of ‘gene’. Therefore, 
there will be no need to adapt the name ‘Gene-activity Regulatory Networks’.
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What do the edges in GRNs precisely represent? The directed edges in GRNs correspond to causal 
influences between gene-activities. These could include regulation of transcription by transcription fac-
tors, but also less intuitive causal effects between genes involving signal-transduction or metabolism 
(Figure 2). It is of uttermost importance to realize that when inferring GRNs from gene-expression data 
alone, the metabolites and proteins act as hidden variables. These variables mediate communication 
between genes, but since they are not included explicitly in the GRNs, only their effects appear as edges 
between the observed variables, i.e. the gene-activities. Only cause-effect relations between observed 
quantities can be established. No matter of how many hidden intermediate causal steps are involved 
between them, the effects appear to be direct with respect to the set of observed variables. GRNs thus 
describe communication between genes implicitly including all regulatory processes inside living cells 
and therefore give a complete description of cellular regulation projected on the gene activities. GRNs 
are phenomenological, since the mechanisms underlying the edges are generally unknown (yet) and 
could correspond to complicated paths through proteins and metabolites. However, GRNs are based 
on a dynamic view of gene regulation: the presence of communication is important, while the precise 
mechanism of communication is of secondary importance.

Figure 1. Abstract depiction of cellular physiology. Reprinted with permission from Elsevier from Bra-
zhnik, P., de la Fuente, A., & Mendes, P. (2002). Gene Networks: How to Put the Function in Genomics. 
In Trends in Biotechnology, 20(11), 6.
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Figure 1 shows a simplified depiction of the biochemistry of living cells conceptually decomposed 
in three ‘spaces’ (also referred to as ‘levels’ in this chapter). Influences between gene-activities, with-
out explicitly taking account for the proteins and metabolites, result from a projection of all regulatory 
processes on the ‘gene space’ (Brazhnik, de la Fuente & Mendes, 2002).

Figure 2 shows the GRN resulting from the projection. The influence of gene-activity 1 on gene-
activity 2 could have a straightforward interpretation: gene 1 codes for a Transcription factor that regulates 
gene 2. But an alternative explanation is also possible: protein 1 could modify the rate of gene 1’s RNA 
degradation. The GRN representation doesn’t distinguish between the mechanisms as it only accounts 
for the causal effects: inhibiting a gene’s activity could occur through inhibition of transcription or ac-
tivation of RNA degradation. The effects of gene-activities 3 and 4 are more complicated: their protein 
products form a complex and then regulate gene 2. The effect gene 2 on gene 4 involves all three levels. 
Note that the edge from gene-activity 2 to gene-activity 4 will never be present in a Transcriptional 
Regulatory Network (discussed below), because the protein product of gene 2 does not physically bind 
to the promoter region of gene 4 to establish its effect. Nevertheless, as we consider only the causal re-
lations between gene-activities, by all means, this effect is considered direct, as the underlying cascade 
of causality is hidden with respect to the observed quantities.

The undirected edges in GRNs represent ‘associations’ (for example ‘correlations’) between gene-
activities, due to effects of confounding hidden variables (such as metabolites and proteins). The undi-
rected edges should not be confused with reciprocal effects, i.e. two nodes that are connected by directed 
edges in both directions. In many studies of complex networks, for example in sociological networks (in 
which nodes are human individuals and edges represent human interactions such as ‘friendships’), the 
undirected edges are interpreted as such. When two human individuals are friends, information flows 
in both directions between them (at least it is supposed to be that way!) and in this sense such networks 
are thus actually directed networks with reciprocal directed edges between each connected pair. Then 

Figure 2. The GRN corresponding to the system depicted in figure 1. Reprinted with permission from 
Elsevier from Brazhnik, P., de la Fuente, A., & Mendes, P. (2002). Gene Networks: How to Put the 
Function in Genomics. In Trends in Biotechnology, 20(11), 6.
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simply out of convenience they are represented as undirected networks. The undirected edges in GRNs 
can not be interpreted this way: these edges represent associations between pairs of gene-activities that 
do not correspond to causal influences between the pair. In Genetic Interaction Networks as defined 
in (Tong et al., 2004) two genes are linked whenever they result in a lethal phenotype when knock-out 
together, while individual knockouts are viable. The undirected edges in these networks thus reflect a 
functional similarity between the nodes with respect to a certain phenotype, in contrast to undirected 
edges in GRNs, which reflect a dynamic association between gene-activities.

As an example, figure 3 shows a partial GRN recently inferred for the yeast S. cerevisiae (Mancosu 
et al., 2008). The network consists of 4239 nodes and 14,723 directed edges. It is partial in the sense 
that it lacks the undirected edges that form part of the GRN: only directed edges are presented. The 
layout is performed according to the networks ‘bow tie’ structure. Similar structure has been found in 
metabolic networks of many organisms (Ma & Zeng, 2003) as well as in the World Wide Web (Broder 
et al., 2000).

In the middle of the network there appears a Giant Strongly Connected Component (GSCC) of 339 
genes and 1643 edges. In this component all nodes are connected by cycles. A directed cycle is defined 
by a directed path starting at a certain node and ending at that same node. The nodes in the IN component 
(74 nodes and 78 edges) can reach the GSCC through directed paths, but not vice versa. The nodes in the 
OUT component (3268 nodes and 1559 edges) can be reached from the GSCC but not vice versa. ‘Tubes’ 
contain nodes connecting IN to OUT without going through the GSCC. Nodes which are reached from 
the IN and reach the OUT but which do not belong to any of the aforementioned components are called 
‘tendrils’ (530 nodes and 197 edges). Many edges interface the components: between IN and GSCC 113 
edges, GSCC and OUT 9630 edges and between IN and OUT 769 edges.

It is not possible to identify causality from all types of experimental data. In certain cases the algo-
rithms will only be able to produce an undirected network as a final result in which the undirected edges 

Figure 3. The bow-tie structure of the yeast GRN. The picture was obtained by combining several layout 
algorithms implemented in Pajek (Batagelj & Mrvar, 2003). Arrows indicate the direction of the flow 
of information (taken from (Mancosu et al., 2008)).
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could correspond to direct causal influences. Such networks are not GRNs, but rather Co-Expression 
Networks (CENs).

co-expression networks (cens)

Similar to GRNs, CENs are inferred from gene expression data. In CENs two genes are connected 
by an undirected edge if their activities have significant association over a series of gene expression 
measurements, usually quantified by Pearson correlation (Butte, Tamayo, Slonim, Golub & Kohane, 
2000; D’Haeseleer, Liang & Somogyi, 2000), Spearman correlation (D’Haeseleer, Liang & Somogyi, 
2000) or Mutual Information (Butte & Kohane, 2000; Steuer, Kurths, Daub, Weise & Selbig, 2002). 
Again, it is also important to emphasize the difference between GRNs and CENs, since the latter has 
also been mistakenly called GRNs in the literature by several authors. Gene activities can be correlated 
due to different causal relationships 1) direct effects 2) indirect effects (correlation is transitive) and 3) 
confounding. Several algorithms have been proposed to eliminate edges corresponding to 2 and 3 (if 
the confounding variables are measured), thus resulting in a network which is the undirected version of 
the GRN (de la Fuente, Bing, Hoeschele & Mendes, 2004; Schäfer & Strimmer, 2005a, 2005b; Veiga, 
Vicente, Grivet, de la Fuente & Vasconcelos, 2007; Wille & Buhlmann, 2006; Wille et al., 2004).

Still, a correlation does not imply causation and many of the undirected edges may be due to hidden 
confounding factors. In a later section I will explicitly demonstrate how such edges arise. Only gene 
expression data obtained through a strategy of ‘gene perturbations’, or other targeted disturbances to the 
system, allow for inferring causal relationships. While it has been shown that under certain assumptions it 
is possible to infer causality without making experimental interventions (Pearl, 2000; Spirtes, Glymour & 
Scheines, 1993), such assumptions are unfortunately not justified in this context. The strongest assumption 
is that there are no hidden variables with confounding effects on the observed variables (Spirtes, Glymour 
& Scheines, 1993). Given the fact that gene-activities are generally the only observed quantities in the 
data used to infer CENs or GRNs, and that all variables mediating the causal effects between them, i.e. 
the proteins and metabolites are hidden, such assumption can not be justified under any circumstance. 
Gene perturbations are thus necessary to infer causality and thus GRNs. Such perturbations could be 
experimentally created by knocking-out or over-expressing genes (de la Fuente, Brazhnik & Mendes, 
2001, 2002; Gardner, di Bernardo, Lorenz & Collins, 2003; Hughes et al., 2000; Mnaimneh et al., 2004; 
Wagner, 2001), or as will be discussed in other chapters in this book, also natural occurring genetic 
polymorphisms could be used to infer causal relationships between gene-activities (Bing & Hoeschele, 
2005; Liu, de la Fuente & Hoeschele, 2008; Zhu et al., 2004) (see also Liu et al. – this book).

transcriptional regulatory networks (trns)

As the name already implies, Transcriptional Regulatory Networks (Guelzim, Bottani, Bourgine & 
Kepes, 2002; Lee et al., 2002; Luscombe et al., 2004; Shen-Orr, Milo, Mangan & Alon, 2002) only 
include gene-regulation through transcription, which as we saw is only a small fraction of mechanisms 
by which the communication between gene-activities occurs. TRNs have directed edges between source 
and target genes only if it has been experimentally established that the protein product of the source gene 
physically binds to the promoter region of the target gene and thus potentially regulates transcription, 
using experimental techniques such as the ChIP-Chip (Buck & Lieb, 2004; Iyer et al., 2001; Lee et al., 
2002; Lieb, Liu, Botstein & Brown, 2001; Ren et al., 2000). All edges in TRNs are directed and the only 



7

What are Gene Regulatory Networks?

source nodes are genes coding for Transcription Factors (TFs). TRNs are a mechanistic description of 
gene regulation with a clear molecular interpretation, straightforwardly connecting to the paradigm of 
‘molecular biology’, while the concept of GRNs considered throughout this book requires one to take 
the point of view of ‘systems biology’, i.e. taking a more abstract, but integrated system-wide approach, 
rather than collecting sets of molecular relationships. Given that GRNs summarize the whole of cellular 
regulation, to gain insight into the global functional and dynamical organization of gene regulation, 
GRNs rather than TRNs should be studied.

Can we expect large overlap between experimentally identified GRNs and TRNs of a particular or-
ganism? While intuitively one would think so, I claim this is not necessarily the case for the following 
reasons:

1.  Noise: First of all, in general there may be mistakes in both networks. GRNs are predominantly 
based on gene expression data (Brazhnik, de la Fuente & Mendes, 2002; D’Haeseleer, Liang & 
Somogyi, 2000). TRNs are based on predominantly ChIP-Chip data (Harbison et al., 2004; Lee et al., 
2002). Both gene expression data and ChIP-Chip data are plagued by inaccuracies. Gene expression 
data have several sources of error and ChIP-Chip measurements suffer from a-specific binding. A 
recent paper showed that TFs bind many sites in the genome; many of which are not believed to be 
near coding sequences at all (Li et al., 2008). It was also shown that many genes whose promoters 
were bound were not transcribed in response to the binding event (Li et al., 2008). Furthermore, 
there is a Multiple Hypothesis Testing (MHT) problem (Storey & Tibshirani, 2003). While many 
algorithms for GRN inference employ (or at least try to do so) a formal procedure to deal with 
MHT, most TRNs were obtained using arbitrary p-value thresholds (c.f.Storey & Tibshirani, 2003). 
Better statistical approaches to obtain TRNs from ChIP-Chip data are in development (Margolin, 
Palomero, Ferrando, Califano & Stolovitzky, 2007).

2. Physiologically active regulatory processes: Edges in TRNs that are not present in GRNs could 
be explained as follows: to formulate TRNs, the ChIP-Chip experiments are often performed in-
vitro after cells have been subjected to many different experimental conditions (Harbison et al., 
2004). Thus, the TRN could be expected to nearly completely account for all possible transcrip-
tional regulatory events by the TFs. However, as was shown for the yeast TRN, in each particular 
physiological state only subsets of these regulatory events are dynamically active (Luscombe et 
al., 2004). Also, in a recent study, the E. coli TRN was compared to a network obtained through 
gene expression data measured in many different conditions (Faith et al., 2007). Still, only 10% of 
the ‘known’ E. coli transcription regulatory interactions were recovered (Faith et al., 2007), in ac-
cordance with the observation that only small parts of TRNs are dynamically active or too weakly 
active to detect from expression data. It was shown for the yeast TRN that only relatively small 
parts are active in specific physiological states and that the active sub-networks in those states 
show widely different topological properties (Luscombe et al., 2004), suggesting that topological 
analysis of TRNs as a whole is rather meaningless. GRNs inferred in a particular physiologically 
setting will be entirely active since it is constructed from dynamic information on gene-activities. 
Therefore, it is justified to explore the whole GRNs for topological features, rather than of sub-
graphs. It must be stressed that the structure of GRNs are context dependent as well: in different 
experimental settings (different culture media, temperatures, pH etc.) different causal influences 
between gene-activities will be physiologically active, leading to a different structure of the inferred 
GRNs. I expect that the structures of the GRNs obtained for different cell types of a multi-cellular 
organism can be quite different, both in quantitative as well as in qualitative sense.
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3.  Regulation beyond Transcription Factors: The edges in the GRNs not present in the TRN have 
a straightforward explanation: the GRN contains much regulation beyond simply transcription 
factors. Certain processes regulate gene expression independently of transcription, for example 
regulation through RNA degradation and the small interfering RNAs, which were discovered to 
play a mayor role in regulation of gene-expression levels (Shimoni et al., 2007). Other processes 
do involve transcription, but the source nodes are not TFs. For example, genes that code for kinases 
that activate/inactivate TFs upon phosphorylation will have directed edges to the targets of the TFs. 
Genes coding for enzymes producing metabolites that in turn activate/inactivate TFs by binding to 
them, will have directed edges to the targets of the TFs.

comment on cyclicity

Cyclic network patterns have been found only rarely in TRNs (Lee et al., 2002; Shen-Orr, Milo, Mangan 
& Alon, 2002). In the TRN of E. coli from RegulonDB (Gama-Castro et al., 2008; Huerta, Salgado, Thi-
effry & Collado-Vides, 1998; Salgado et al., 2004; Salgado et al., 2006a; Salgado et al., 2000; Salgado 
et al., 2001; Salgado et al., 2006b; Salgado et al., 1999) there were no cyclic dependencies at all (Shen-
Orr, Milo, Mangan & Alon, 2002). This observation was made in 2002 and since then RegulonDB was 
subjected to several updates. Still, in current updates of RegulonDB only very few cyclic dependencies 
are listed. In the TRN studied in (Luscombe et al., 2004) there is a cyclic component involving only 
25 nodes. The fact that between genes coding for TFs not much feedback seems to be present does not 
imply that GRNs are largely acyclic as well. Since GRNs result from a projection of all regulatory pro-
cesses onto gene space, many cycles can be expected. Indeed the cyclic component of the yeast GRN 
presented in figure 1 shows a large component of 339 nodes. This component will be responsible for 
most of the dynamical properties of the whole network. Cyclic dependencies are associated with many 
(if not all!) fundamental properties of living systems, such as homeostasis, robustness, excitability, multi-
stationarity and biological rhythms (e.g. cell cycle, circadian rhythm) (Kauffman, 1969; Noble, 2006; 
Thieffry & Thomas, 1998; Thomas, 1973; Tyson, Chen & Novak, 2003; von Bertalanffy, 1968; Weiner, 
1948; Westerhoff & van Dam, 1987). Again, this emphasizes that TRNs are only representing a part of 
the global regulatory system, lacking the regulation on the Proteome and Metabolome levels. GRNs, on 
the other hand, represent the entire global regulatory system, but in a more phenomenological way.

Physiological State dependent ‘rewiring’

The structures of GRNs may quantitatively as well as qualitatively depend on the physiological state of 
the cell. Each of the cell types of a multi-cellular organism can be expected to have GRNs with different 
structures. Yeast grown in presence of oxygen may have a physiologically active GRN that is different 
from the physiologically active GRN in anaerobic conditions, etc. How does this ‘rewiring’ happen? 
One explanation comes from the fact that gene-expression rates are dependent on the activator/inhibitor 
concentrations in a non-linear (usually hyperbolic or sigmoidal) fashion. Consider the ‘dose-response 
curve’ given in Figure 4. This example displays the sigmoidal dependence of one gene’s activity on 
the activity of an activating gene. There are three qualitatively distinct regions in the curve, indicated 
by the dashed lines. Only in the middle part will the activity of gene i appreciably change upon (small) 
fluctuations in gene j. In the left and right part the effects are very small, for example, increasing gene-
activity j from value 3 to 4 hardly result in any change in gene-activity i. At physiological values of 
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gene-activity below 0.5 or above 2, gene-activity i will not ‘feel’ changes in gene-activity j, effectively 
thus not receiving input from gene-activity j. In each specific physiological state gene-activity j will have 
different values determined by its inputs in turn. In each physiological state, fluctuations in gene-activity 
j will ‘sample’ different parts of this curve, resulting in different strengths of causal influences. This 
results in quantitative changes in the network structure. If very small effects are ignored (since they are 
too small of significance to the behavior of the system, or at least can not be determined experimentally) 
this would translate into qualitative changes in the GRN: edges that appear in one physiological state 
may not appear in other physiological states.

Several authors (Kauffman, 1969; Thieffry & Thomas, 1998; Thomas, 1973; Wagner, 2001; Yeung, 
Tegner & Collins, 2002) have argued that GRNs are sparsely connected. However, there are simple 
arguments that suggest the opposite for GRNs of which I will list a few here. All transcription steps 
dependent on metabolic energy. Consequently, genes that code for enzymes that have control on the 
cellular energy level may causally affect all gene-activities. The rates of transcription depend on the 
concentrations of nucleotides as these are the building blocks of nucleic acids; so all genes coding for 
enzymes involved in nucleotide synthesis may be inputs of all other genes. Any other genes that affect 
transcription or RNA degradation, in some general way, will be inputs to all genes. For instance, genes 
that code for transporters that are responsible for transport of regulating metabolites or proteins into the 
nucleus. There are many other examples of causal influences that could arise from the complex interplay 
between the unobserved Proteome and Metabolome and the observed Transcriptome. Since the rate of 
production of each of the gene-activities competes for the same energy, building blocks, polymerases and 
transcriptional machinery, an increase in the formation rate of one gene-activity may cause a decrease in 
all others, implying that GRNs are essentially ‘complete graphs’, i.e. networks with edges between all 
pairs of nodes. Whether these numerous potential interactions have a significant magnitude or not is an 

Figure 4. Sigmoidal dependence of the value of gene-activity i on the value of gene-activity j. The 
dashed lines separate regions where gene-activity i is (almost) insensitive to the value of gene-activity 
j (left and right regions) from the region where gene-activity i is sensitive to the value of gene-activity 
j (middle region).
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open question. Certainly, almost all of these interactions will have small magnitude, as for example in 
many physiological situations there are plenty of nucleotides such that transcription rates are saturated 
with them, reducing the related effects to negligible strengths. This situation corresponds to the part of 
the curve in the third region in figure 4.

‘condenSing’ biocheMiStry into grnS

directed edges

Here I will show how to ‘condense’ biochemical systems into GRNs in order to clearly demonstrate 
what the directed edges in GRNs mean in terms of the underlying biochemical processes (de la Fuente 
& Mendes, 2002). I use the word ‘condense’, because the GRN is a compact representation of the whole 
biochemical system; a condensed description of the whole. To this effort is useful to represent a bio-
chemical system as a dynamical system. For each concentration xi in a biochemical system (metabolites, 
proteins, gene-activities) a non-linear differential equation can be written to relate its rate of change to 
a set of parameters k and the set of concentrations x in the system:

dx

dt
fi
i

= ( )k x,        (1)

For simplicity, I will consider a linearization of the model, but the following reasoning should in 
principle hold for non-linear systems as well. The linearization describes deviations from a reference 
state:
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The a-coefficients are non-zero iff xj directly affects the rate of change of xi and zero otherwise. 
These coefficients are elements of a matrix A that represents the wiring structure of the biochemical 
system. Matrix A is square with dimension n×n, with n the number of variables (e.g. metabolites, proteins 
and gene-activities) in the biochemical system. An element in row i and column j, i.e. aij, provides the 
strength by which xj affects xi. If aij is positive, xj activates xi and if negative xj inhibits xi. Matrix A 
is a so-called weight matrix and corresponds to the Jacobian matrix of the linearized system with ele-

ments ¶( ) ¶dx dt x
i j , the partial derivatives of rates of changes with respect to the variables. Another 

matrix representation of networks is the adjacency matrix, which contains simply the number 1 on 
non-zero positions of A and 0 otherwise. It therefore is a qualitative version of matrix A. Dx

j
 are the 

deviations of xj out of the reference state. Du
i
 are deviations from the values in the reference state of 

a rate-parameter that specifically affects dx dt
i . These deviations can be either seen as experimentally 

created, i.e. experimental perturbations (interventions), or as spontaneously occurring fluctuations due 
to ‘biological variability’: the fact that no repeated observations on the same (or similar) system are 
identical (even when experimental noise is ignored).

While the study of dynamics in time of GRNs is certainly relevant, especially in studies of organ-
ismal development (Bolouri & Davidson, 2003), I will here consider systems in a stable steady state 
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for the relative simplicity of the following discussion. Note that the main train of thought applies to 
time-dynamics as well. In a steady state of the biochemical system all activities are constant in time 
(the time-derivatives are zero) and we can express a relationship between rate-parameter perturbations 
(fluctuations) and interactions between gene-activities:

0 = +åa x u
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D D        (3)

These relations can be written in matrix format

AX U= -        (4)

Here A (n×n) is the weight-matrix, U (n×k) is a matrix containing rate fluctuations Du
ik

, with elements 
the deviation of the rate specific to xi in observation k, and X (n×k) is a matrix containing responses 
(deviations from the reference state) resulting from the fluctuations in U. k is the number of observa-
tions made to the system.

Eq. 4 can be written explicitly in terms of the three functional levels of organization of cells, i.e. the 
Transcriptome, Proteome and Metabolome. One could argue that a ‘functional’ distinction should not 
be made, since all bio-molecules, big or small, are ‘metabolized’ through production and degradation 
reactions and thus all could be seen as one Metabolome (Cornish-Bowden, Cardenas, Letelier & Soto-
Andrade, 2007). Nevertheless, from the point of view of the experimental accessibility of the three levels, 
it is certainly a useful ‘conceptual’ distinction. Matrix A can be written in blocks corresponding to the 
interactions within (diagonal blocks) and between the levels (off-diagonal blocks). Matrices X and U 
are partitioned accordingly in three separate blocks of rows:
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The subscript T refers ‘Transcripts’ or ‘Transcriptome’(gene-activities), P to ‘Proteins’ or ‘Proteome’ 
and M to ‘Metabolites’ or ‘Metabolome’. Lets take nt as the number of transcripts in the system, np 
the number of proteins and nm the number of metabolites. The elements of ATT (dimensions nt×nt) 
represent the effects of the transcript concentrations on the rates of change of transcript concentrations. 
These effects are mainly due to the degradation rates, since each transcript increases its own degrada-
tion rate, transcripts usually do not interfere with the synthesis or degradation of other transcripts (again 
making the assumption that energy, building bocks and polymerases are not limiting) and transcription 
is an irreversible process. In the simplest case ATT is merely a lower diagonal matrix with negative 
numbers: the self-effect due to the enhancement of the degradation rate. Regulation of gene expression 
by microRNAs will lead to a more complicated form of ATT.

The elements of ATP (nt×np) represent the effects of the protein concentrations on the rates of change 
of transcript concentrations. RNA-polymerases, Transcription Factors and RNases, for example, are some 
of the proteins involved in these effects. Also the proteins that make up the spliceosome and proteins 
that transport mRNA from the nucleus to the cytoplasm will appear in this sub matrix.
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ATM (nt×nm) describes the effect of the metabolites on the rate of change of transcript concentra-
tions. Certain metabolites interfere with the transcription of genes by changing the binding affinities of 
regulating proteins, leading to a change in transcript formation rate. A famous example is tryptophan 
synthesis in E. coli, in which the trp-operon is inhibited by the concentration of L-tryptophan, the product 
metabolite of the pathway (Morse, Mosteller & Yanofsky, 1969; Santillan & Mackey, 2001).

APT (np×nt) describes the effects of the transcriptome on the proteome. Since the rate of translation 
depends on the number of available mRNA molecules each gene-activity positively influences the con-
centration of the protein it codes for. The columns referring to rRNAs will have positive values in almost 
every row, since they are part of the ribosomes and thus stimulate the formation rate of all proteins. Also 
the regulation of translation by microRNAs will give non-zero elements in this sub-matrix.

APP (np×np) contains information of many different types of interaction between proteins. The col-
umns of proteases will have many negative elements; ribosomal proteins will have positive entries in 
almost all rows. The effects of phosphatases and kinases, and other components of signaling cascades 
appear in this sub matrix, as well as any other form of protein-protein interaction.

APM (np×nm) shows the effects of metabolites on rate changes in the proteome. Some metabolites 
interfere with the synthesis or degradation of proteins. For example, protein synthesis and many post-
translation modification reactions depend on ATP, GTP and other metabolite concentrations.

AMT (nm×nt) would represent the rare cases of ribozymes catalyzing metabolic reactions, and most 
entries can be expected to be zero.

AMP (nm×np) mainly contains the effects of metabolic enzymes on the rates of change of substrates 
and products of the reactions it catalyses. Also contained are the effects of transporters that pump me-
tabolites in and out the cell.

AMM (nm×nm) describes the effects that metabolites have on the rate of change of metabolite con-
centrations. These are the effects of substrates, products and metabolic modifiers on metabolic reaction 
rates.

XT (nt×k), XP (np×k), XM (nm×k), UT (nt×k), UP (np×k) and UM (nm×k), with k the total number 
of measurements made to the system. Experimentally the elements in UT could be accessed by knocking-
out genes or over-expressing them (de la Fuente, Brazhnik & Mendes, 2002; Gardner, di Bernardo, 
Lorenz & Collins, 2003). Experimental perturbations in UP require inhibition/stimulation of for example 
translation and perturbations in UM could be created by adding inhibitors of metabolic rates.

In the following, the inverse of A is assumed to exist. This is equivalent to assume that the system is 
present in a structurally stable steady state and that none of the variables can be written as a linear com-
bination of other variables (Heinrich & Schuster, 1996). The responses of the state variables (deviations 
of the xs from the reference state) towards the perturbations can be written as follows.
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This equation clearly shows how the network of the biochemical system, represented as a weighted 
matrix, through its inverse transforms the rate-deviations into responses of the concentration of the 
system variables.
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Using the relationship for the inverse of block matrices (Gantmacher, 1960), the inverse of a matrix 
can be expressed in terms of its blocks (assuming that matrices P and S are non-singular, again related 
to the structural stability of the sub-systems):
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In the present context we are only interested in the top left block, because that is the block that trans-
forms the rate-fluctuations (perturbations) originating in each gene UT into gene-activity responses XT. 
For the sake of clarity of the following explanation it is assumed that no fluctuations arise or perturba-
tions are made in the Proteome and Metabolome, i.e. UP = 0 and UM = 0. In a later section I will show 
the implication of fluctuations in those levels separately. Applying the above rule we obtain:
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The block rule is applied again on the inverse matrix on the inside and by taking

B A A A A

B A A A A
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we can write XT as:
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Now we have an expression of AGRN, the weight matrix describing the directed part of the GRN 
structure: non-zero elements in AGRN correspond to directed edges in the GRN.
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The way this equation is presented shows clearly how the communication between genes, given by the weight-
matrix AGRN  is composed of several contributions that run through the entire system. A

GRN
 is then a ‘condensed’ 

representation of the whole system. First of all, there is a ‘local’ effect on the gene-activities, i.e. ATT . Then, 

influences mediated separately by the Proteome, A B A
TP PP PT( )-1

, and Metabolome, A B A
TM MM MT( )-1

 

as well as influences through the Proteome and Metabolome, A A A A
TM MM MP PP PT( ) ( )- -1 1

’  and 

Metabolome and Proteome, A A A B A
TP PP PM MM MT( ) ( )- -1 1

. Note that even though I mention that 

A B A
TP PP PT( )-1

 and A B A
TM MM MT( )-1

 are effects that separately run thorugh the Proteome and 
Metabolome, the presence of the B matrices in these expressions show that the strengths of the influ-
ences depend on cyclic communication between the two levels.

To clearly demonstrate the meaning of the rather abstract derivation of AGRN  above I will here consider 
an example. The example is chosen to be as simple as possible: it concerns two gene-activities commu-
nicating through a metabolite (figure 5). Note that synthesis and degradation rates are explicitly included 
in the depiction, in order to emphasize that the communication occurs through modifying rates.

The whole matrix A for this system reads:
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The diagonal elements (‘self-effects’) appear due to the fact that the degradation rates of each variable 
depend on their concentrations. Self-effects will always be negative, except if there is an auto-catalytic 
effect (e.g. a protein that stimulates its own translation) that exceeds the degradation effects in magnitude. 
When considering the effects between the gene-activities in A

TT
 we see that each gene-activity only 

affects itself: without the other system-levels there is no communication between the genes.
By using the expression for AGRN  above, the GRN structure corresponding to the system in figure 

5 can be derived. Because A 0
PM

=  (a matrix full with zeros) note that

B A
B A

PP PP

MM MM

=
= 	
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This simplification only happens for systems for which there are no direct cycles between the Proteome 
and Metabolome. The cycles could run indirectly through the Transcriptome as is the case in the current 
example. Also A 0

TP
=  and A 0

TM
= , so that the expression for AGRN  for this system simplifies to:

A A A A A A A
GRN TT TM MM MP PP PT

= + ( ) ( )- -1 1
      (11)

Explicitly written out:
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   (12)

Figure 5. A system consisting of two mRNAs, two proteins and a short metabolic pathway of two steps 
and one metabolic intermediate. There is feedback from the metabolome to the transcriptome. T, P and 
M represent transcript (mRNA), protein and metabolite, respectively. ts and td stand for rate of transcript 
synthesis and degradation, respectively; ps and pd stand for rate of protein synthesis and degradation, 
respectively; and R1 and R2 for metabolic rates. Solid lines indicate mass flow and dashed lines regula-
tory effects, with arrowheads indicating activation and blunt ends inhibition. Substrates and products 
of each reaction are not explicitly shown.
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The now appearing coefficients a* are the strength of causal influences between genes in the GRN: 
both gene-activities causally affect each other and themselves. As can be seen in Eq. 12, the weight of 
these ‘phenomenological’ coefficients are expressed as a product of a-coefficients along the interaction 
path (read from right to left), scaled by the self effects of the mediators of the path. The effects of the 

genes on themselves consist of two parts. One part through degradation (i.e. aTT1 1
) and then an effect 

through the protein and metabolite, which again is expressed as a product of coefficients along the in-
teraction path (read from right to left), scaled by the self effects of the mediators of the path.

Directed edges in GRNs arise through mechanisms such as outline here, i.e. through paths of inter-
actions through the proteome and metabolome. These causal influences are direct in the sense that they 
are mediated by variables that are not experimentally observed. Only effects mediated by the observed 
gene-activities are indirect. Consider a path T1 -> P1 -> M1 -> T2 -> P2 -> T3. This path corresponds 
to an indirect causal influence from T1 to T3, because it crosses T2, which is an observed variable. The 
GRN will thus not contain a directed edge from T1 to T3, but includes only edges from T1 to T2 and 
T2 to T3. However, if the transcript T2 is not experimentally measured (or excluded from analysis for 
some other reason), the GRN resulting from the analysis of the data would include the edge from T1 to 
T3, because then T2 has the same effect as the proteins and metabolites: it acts as a hidden mediator (de 
la Fuente, Brazhnik & Mendes, 2001, 2002, 2004).

undirected edges

Undirected edges in GRNs arise due to fluctuations in ‘confounding’ hidden variables. For example, 
fluctuations in the concentration of a protein that affects two gene-activities will cause the gene-activities 
to be correlated. Since the protein is not explicitly represented in the GRN, its effect simply remains as 
an undirected edge representing the association between the gene-activities it causes.

Undirected edges could be represented through for example ‘covariances’ (or their scaled version 
‘Pearson correlation’). Covariances can be calculated as follows (assuming that the mean coincides with 
the reference steady state of Eq. 3 and the fluctuations are random variables identically and independently 
distributed (i.i.d.) around the mean):

s
ij ik

k

n

jk
x x=

=
åD D

1
       (13)

Dx
ik  and Dx

jk  are deviations from the mean of gene-activity xi and xj, respectively, in observation k. 
n is the total number of observations.

Using the matrix equation (Eq. 4), the co-variance matrix can be expressed as

 1 1 1 1
T T

T T
X U

XX A UU A A A       (14)

The covariances depend in a complicated way on the structure of A, i.e. through its inverse. This is 
the reason that covariances and correlations are known to be transitive: if A affects B and B affects C 
there will be correlation between A and C. In addition, if B affects A and B affects C there will be cor-
relation between A and C.  U is a covariance matrix containing covariances between rate-fluctuations. 
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It is often assumed to be diagonal, i.e. all rate-fluctuations are independent and it only contains the 
rate-fluctuation variances (Bollen, 1989). For the Metabolome is not completely a justifiable assump-
tion, since metabolites are coupled by fluxes and a fluctuation in a conversion rate between substrate 
and product will directly cause a dependent fluctuation in both metabolites (Camacho, de la Fuente & 
Mendes, 2005): nevertheless the assumption is made for simplicity of the coming discussion.

The ‘inverse covariance matrix’ (Dempster, 1972; Edwards, 1995) has a simpler relationship to the 
structure of the system A.

1 1T
UX X A A       (15)

The inverse covariance matrix holds partial variances on its diagonal and partial covariances in its 
off-diagonal elements (Schäfer & Strimmer, 2005a). The interpretation of the partial covariances is 
the covariance that remains after conditioning on all other variables. If U is diagonal, there is a clear 
relationship between the inverse of the co-variance matrix and to the structure of the system: A pre-
multiplied by its transpose scaled by the variance of the fluctuations. The matrix TA A corresponds to 
the ‘moral graph’ of the network corresponding to A. The moral graph is an undirected graph and can 
straightforwardly be obtained from the original graph by ‘undirecting’ the directed edges and placing 
an undirected edge between any pair of nodes that share the same target (Cowell, Dawid, Lauritzen 
& Spiegelhalter, 1999). So, when a series of i.i.d. observations on all variables in the system is made, 
one can estimate the co-variance matrix using for example, shrinkage estimation (Schäfer & Strimmer, 
2005b), take the inverse, decide on a threshold for non-zero elements and obtain a matrix corresponding 
to an undirected version of the network with certain additional edges (between the parent-nodes of each 
child-node). These latter edges are unwanted and could in principle be removed by low-order partial 
correlation tests (de la Fuente, Bing, Hoeschele & Mendes, 2004; Pearl, 2000).

However, in general not the whole system is observed. The data considered pre-dominantly in this 
book contains observations on only the gene-activities. Again, consider the subdivision of the whole 
system into the Transcriptome, Proteome and Metabolome. The covariance matrix contains diagonal 
blocks with covariances between variables in the same level and off-diagonal blocks with covariances 
between variables across levels.

1

TT TP TM TT TP TM

X PT PP PM PT PP PM

MT MP MM MT MP MM
     (16)

Of all the sub-matrices only can be estimated from gene-expression measurements. Therefore, it is 
relevant to show what in theory is obtained by taking its inverse. Again, the block inverse relationship 
is used.
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Here

1

1
PP PP PM MM MP

MM MM MP PP PM

C

C  

Again, like for the causal representation was shown that communication between genes arose through 
paths through the Proteome and Metabolome, here it is seen that the edges between gene-activities in 
the moral graph of the GRN arise due to partial covariances of the gene-activities with proteins and 
metabolites. These covariances may arise through paths of communication between genes-activities, as 
described above, but also occur due to confounding by hidden variables of the other levels. If all vari-
ables would be measured and the complete covariance matrix is considered, these covariances would 
drop out. But not incorporating this information (simply because the data is usually not available) will 
result in undirected edges in the inferred GRNs.

Consider again the simple system in Figure 5. For the following demonstration a modification is 
considered in which the proteins do not affect the metabolic rate, i.e. A 0

MP
= . Without these effects 

there is no causal influence between the gene-activities. The metabolite still regulates both gene-activities 
and it will be shown that fluctuations in the metabolite will give rise to an undirected edge between the 
two genes. For clarity of the following demonstration U is set to the identity matrix. A diagonal U with 
different values will merely result in scaled coefficients. The general case of having a non-diagonal U  
will result in having yet additional covariances obscuring the simple relationship between the network 
structure and the inverse covariance matrix.

The A matrix of the system under consideration reads:
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The corresponding concentration matrix reads:
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Note that the partial variances are not explicitly written out, since we are only interested in the off-
diagonal elements. No edges between the Metabolome and the Proteome are present in the concentration 
matrix, but their covariance will be non-zero, as there is a causal influence from the metabolite to the 
proteins through the transcripts.  U for this example system indeed is fully nonzero (result not shown): 
all variables are correlated to some extend.

For this system the general equation reduces to:

1 11
TT TT TP PP PT TM MM MT     (20)

Written out explicitly:

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2

1

1

*

1
0

0 0 0 1
0 0 1 0

0

TT

T P P PT P P P PT TT T M

TT T M T T T M
T P P PT P P PT T T T M M

P

T

a a a a a a
a a a a

a a a a a a

a
1 1 1 2 2 2

1 1 1 2 2 2

2

*

TT T M T T T M

M

TT T M T T T M

T
M

a a a

a a a a
 (21)

Again the diagonal terms are not written out. Note that now off-diagonal elements are observed in the 
concentration matrix although there are no causal effects between the genes: both genes are dependent 
on the metabolite and the corresponding element in the inverse of the covariance matrix will be non-zero 
due to this effect. Since the metabolite is hidden in the analysis of gene-expression data the undirected 
edge will appear in the GRN: none of the observed variables, i.e. gene-activities, can explain this cor-
relation. The covariance with the Proteome only affects the partial variances of the gene-activities. The 
demonstration here confirms what already was intuitively clear: hidden variables with confounding 
effects will create associations between the observed associated.

concluSion

In this chapter I tried to convey several messages. First, I gave a formal definition of GRNs. Second, 
I pointed out the conceptual differences between GRNs, CENs and TRNs. Contrary to what is often 
believed, GRNs and TRNs are conceptually very different. Directed edges in GRNs do no necessarily 
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originate in Transcription Factors. The directed edges in GRNs correspond to causal paths of influence 
through the Proteome and Metabolome, which are usually not considered in data used to infer GRNs. 
The undirected edges in GRNs correspond to confounding influences on gene-activities by the Proteome 
and Metabolome. Again, since metabolites and proteins are hidden to the analysis methods, such edges 
can not be removed, since none of the observed gene-activities can explain these. Third, I argued that 
the directed edges in GRNs can only be inferred through perturbation data. The assumptions needed 
to be able to infer causality from non-perturbation data (also called ‘non-experimental data’ or ‘obser-
vational data’) can never be justified for biochemical systems: too many hidden variables are into play 
and could act as hidden confounding disturbances with respect to the observed part of the system, i.e. 
the gene-activities.

Perturbation data is required to establish the directed edges in GRNs. Several methods have been 
proposed for that purpose based on experimental perturbations (de la Fuente, Brazhnik & Mendes, 2001, 
2002; Gardner, di Bernardo, Lorenz & Collins, 2003; Wagner, 2001) and using naturally occurring genetic 
perturbations, i.e. polymorphisms in genes (Bing & Hoeschele, 2005; Liu, de la Fuente & Hoeschele, 
2008; Zhu et al., 2004) (see also Liu et al. – this book). Observational (i.d.d.) data allows for inferring 
CENs and the undirected edges in GRNs. Several methods have been proposed for this purpose too 
(de la Fuente, Bing, Hoeschele & Mendes, 2004; Schäfer & Strimmer, 2005a, 2005b; Veiga, Vicente, 
Grivet, de la Fuente & Vasconcelos, 2007; Wille & Buhlmann, 2006; Wille et al., 2004). A complete 
GRN is the superposition of the CEN and the collection of directed edges. Such superposition may lead 
to a GRN with many pairs with both directed and undirected edges. In that case the undirected edge 
could be dropped, assuming that the undirected edge is caused by the causal influence represented by 
the directed edge. This is not necessarily a correct assumption: there could be a causal influence between 
gene-activities and in addition a confounding effect by a hidden variable. It seems to me that this situa-
tion is impossible to recognize by analyzing gene-expression data alone, making the above assumption 
the only alternative.

As shown throughout this chapter, GRNs are rather abstract networks. In contrast to TRNs there is 
not simple way to associate a clear molecular mechanism to the edges. Nevertheless, since the GRN is a 
projection of all regulation occurring in the biochemical system it is a complete description of the system 
in terms of communication and associations between the genes. Given that GRNs summarize the whole 
of cellular regulation, to gain insight into functional dynamical organization of genetic regulation, GRNs 
rather than TRNs should be studied. Recent papers indeed show that profound biological insight can 
be obtained by studying GRNs (Bystrykh et al., 2005; Keurentjes et al., 2007; Mehrabian et al., 2005; 
Schadt et al., 2005). It is therefore an important goal to infer and analyze these networks, emphasizing 
the need for books like this one, on computational methods for Gene Regulatory Networks.
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key terMS and definitionS

Co-Expression Network: A network model in which nodes represent gene-activities and the undi-
rected edges represent significant associations.

Cyclic Network: A network with at least one directed path that starts and ends in the same node.
Directed Graph: A network with only directed edges between the nodes.
Gene Regulatory Network: A network model in which nodes represent gene-activities and the 

directed edges represent direct causal influences and undirected edges represent associations due to 
confounding.

Hidden Variables: Variables that are not explicietely represented in the network model, often because 
these have not been experimentally observed.
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Mixed Graph: A network with undirected as well as directed edges between the nodes.
Transcriptional Regulatory Network: A network model of transcription factor-target relationships. 

Directed edges run from transcription factor nodes to target nodes.
Undirected Graph: A network with only undirected edges between the nodes.
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introduction

In the last two decades, biologists have drastically changed their approach to the study of the cell. In the lit-
erature, several works describe functional and biochemical analysis focusing on a single gene (Menasche et 
al., 2003; Miles et al., 2005) or a protein family (Logan et al., 2004; Sasaki et al., 2005). This “single-gene” 
approach led to a comprehensive knowledge about how or where a single gene of interest works. Recently, 
some innovative technologies are generating a great amount of biological data and represent a fertile source of 
knowledge. The most significant of these techniques, described in the Technology Background section of this 
chapter, are DNA microarrays, serial analysis of gene expression (SAGE) and chromatin immunoprecipitation 
chips (ChIP-chip). The availability of high-throughput data on the role of biological molecules allows a more 
exhaustive analysis of biological processes, that is the main focus of system biology.

abStract

The post-genomic era shifted the main biological focus from ‘single-gene’ to ‘genome-wide’ approaches. 
High throughput data available from new technologies allowed to get inside main features of gene 
expression and its regulation and, at the same time, to discover a more complex level of organization. 
Analysis of this complexity demonstrated the existence of nonrandom and well-defined structures that 
determine a network of interactions. In the first part of the chapter, we present a functional introduc-
tion to mechanisms involved in genes expression regulation, an overview of network theory, and main 
technologies developed in recent years to analyze biological processes are discussed. In the second part, 
we review genes regulatory networks and their importance in system biology.

DOI: 10.4018/978-1-60566-685-3.ch002
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The need for a tool to integrate high-throughput biological data attracted the attention of the scientific 
community to the network paradigm as one of the most powerful and versatile theory for the study of 
complex systems (Albert et al., 2002).

In particular, the network approach offers a theoretical picture that can be used to explain and ana-
lyze the structure of biological systems and their evolution. Many theoretical studies on networks have 
demonstrated their application to model metabolic networks (Fiehn et al., 2003), neuronal networks 
(Kullander, 2005), gene regulatory networks (GRNs) (Olson, 2006), and other biological networks 
(Hollenberg, 2007).

What are networks? Networks are simply sets of items, called nodes, joined by specific types of 
relationships called links.

At the level of gene regulation, the nodes represent genes, proteins, mRNA and biological molecules 
in general, depending on which molecular products are considered. The links represent molecular in-
teractions such as protein-protein interactions (Vidal et al., 1996), protein-DNA interactions (Gao et al., 
2008), gene co-expression (Ala et al., 2008) and others.

Many different kinds of gene networks can be obtained, depending on which particular biological 
target is considered. Transcriptional regulation is a complex process that involves a great amount of 
elements and network theory helps to construct a comprehensive view about this process. However, 
a precise and commonly accepted definition of Gene Regulatory Network (GRN) does not yet exist 
(Brazma et al., 2003; Dewey et al., 2002). Under this label, it is possible to define various complemen-
tary models describing regulatory processes and functional relationships. The most common models 
are Coexpression Networks (CNs) based on similar expression profiles, Transcription Factors Networks 
(TFNs) centred on transcription factors activity, Signal Transduction Networks (STNs) that explore 
gene-activities and causal-effect relationships among genes and proteins under different environmental 
conditions (as defined in Galperin, 2004; Martelli et al., 2006; Tran et al., 2007) and Genetic Interaction 
Networks (GINs) that define logical relationships between genes, as defined in (Beyer et al., 2007; Tong 
et al., 2004), by comparing observed phenotypes of wild-type and mutant individuals of a species. In 
this chapter, we will focus on CNs and TFNs.

Biological networks can be constructed in different ways: from differential equations (Climescu-
Haulica et al., 2007) to statistical correlation integrated by other biological information, such as phyloge-
netic conservation or gene function (Stuart et al., 2003), to minimize false positives among the inferred 
interactions, from Bayesian (Mukerjee et al., 2008) to Boolean networks (Martin et al., 2007).

Although the widespread use of experimental data provides an opportunity to investigate GRNs from 
another point of view, some limitations exist: it is not possible to analyze all genes and evaluate every 
biological status, information about the variability of expression profiles is lost, and experimental noise 
decreases data quality.

Some global properties of abstract network models can be used to analyze GRNs: mapping a real 
network to an abstract model allows the application of statistical inference to detect specific network 
fetaures. GRNs often display characteristic network features such as short path lengths and high cluster 
coefficient, typical of highly connected graphs, as described in Barabasi et al. (2004). The degree dis-
tribution of a typical GRN is often scale-free and described by a power-law (Albert, 2005), but GRNs 
could also show small world networks features (Watts et al., 1998). At a smaller scale, GRNs display 
typical structures as highly connected nodes (hubs), communities and their organization into hierarchi-
cal modules (Ravasz et al., 2003).
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Applications of GRNs can be classified into two categories: the first one mainly descriptive (quali-
tative approach) and the second more pragmatic, useful to make predictions (quantitative approach). 
Qualitative analysis can give an explanation of evolution of the genome and of genetic interactions, 
thus joining network theory (with particularly regards to the preferential attachment hypothesis) with 
biological evidence like gene duplications (Bhan et al., 2002; Rzhetsky et al., 2001). On the other hand, 
quantitative analysis starts from a global point of view to focus again the attention on particular details 
such as single transcriptional units, functional annotation, relationship to genetic diseases and pathway 
investigation (Herrgård et al., 2008; Mo et al., 2008).

The starting point of the chapter is a brief exposition of the current knowledge about transcriptional 
regulation of gene expression with special attention to transcription factors and their interactions. Then, 
an introduction to network theory is offered, in order to allow the merging of biological information and 
mathematical model. New high-throughput technologies employed are described in the third section 
of the Background topic. The main thrust of the chapter is an overview of some pioneering and more 
recent works on network modelling of biological systems to show how these structures are evolutionarily 
conserved in Eukaryotes. In the conclusions we suggest possible improvements of GRN analysis and 
co-operative combination of information focusing on future perspectives in network biology.

background

biological background

Analysis of the mechanisms regulating gene expression is one of the most exciting fields of research 
involving various areas, from molecular and computational biology to molecular genetics, from physics 
and mathematics to biochemistry. Mechanisms underlying this process became increasingly complex as 
organisms evolved (Gustincich et al., 2006; Huang et al., 1999; Rockman et al., 2006).

In Prokaryotes it is possible to discovery complex and very organized regulation pathways. In the 
bacterium Escherichia Coli, gene expression is strongly regulated by the environment and the avail-
ability of source of food. This happens because Bacteria live in environments subjected to frequently 
changes; to reduce energetic waste, gene transcription in Bacteria is directly regulated by the presence 
of some metabolites (Madan Babu et al., 2003). To further on optimize regulatory processes, Bacteria 
show a typical genetic organization called operon. The operon is a group of adjacent genes expressed 
as a single RNA molecule together with their genomic control regions. The expression of an operon is 
submitted to the presence of the responsible metabolite; its presence (or absence) induces the expression 
of genes block that it regulates. One of the most studied system is the lactose operon (lac operon) and its 
activation is regulated by the repressor lac, the activator protein CAP and their interactions with RNA 
polymerase. Only in the presence of lactose and absence of glucose, maximal transcription of the lac 
operon occurs. In this situation, the lac repressor does not bind to DNA, CAP binds its control region 
on the DNA and this combination promotes the transcription (Alberts et al., 2002).

Transcriptional regulation of gene expression in Eukaryotes is a crucial step in the definition of the fate of 
cells and cellular structures (Wray, 2003). The differential expression of genes during developmental stages, 
cell-cycle phases or across tissues determines the differentiation process of a cell and their future roles. The 
extensive knowledge about genomes gained in the last years led to the discovery and analysis of the key control 
mechanisms of gene regulation (Kornberg, 1999) showing a complexity greater than in Prokaryotes.
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DNA molecules are usually ultra-condensed into structures called nucleosomes (Mellor, 2006) where 
they bound histone proteins to form a complex structure that protect cells from abundant and useless 
transcription events (a structural state known as heterochromatin). To activate transcription, cells need 
to unclench this structure (Horvath et al., 2001). This first coarse level of regulation is given by mo-
lecular modifications that unwrap the condensed structure and release the DNA portions that have to be 
transcribed (state called euchromatin). These changes are essentially due to two molecular processes: 
the acetylation of histone proteins responsible for chromatin architecture and the methylation of specific 
regions on DNA strands known as CpG islands. This mechanism is controlled by two well-defined 
classes of enzymes: histone acetyltransferases (HAT) and methyltransferases (HMT). Both acetylation 
and methylation are very important and they are subject to rigorous patterns that determine cell type-
specific gene expression profiles (Fraga et al., 2005; Robertson, 2002). Sometimes, other cellular fac-
tors in the cell can bind DNA packaged in a chromatin conformation more accessible and initiate gene 
transcription by remodelling nucleosomes.

On the unrolled DNA strand, both coding and non-coding sequences become accessible and can 
interact with factors present in the cell. This configuration allows a control mechanism of transcription 
regulation based on the binding of proteins of the transcription machinery on specific sequences acting 
as their substrate (Muller et al. 2004). DNA sequences bound by the machinery are known as cis-regu-
latory elements, genomic sequences different in length mainly located in the non-coding fraction of the 
double helix. Parallel, trans-regulatory elements are DNA binding proteins that regulate transcriptional 
events interacting with their specific sequence on the genome (Scannell et al, 2004; Wittkopp, 2005). 
The fundamental trans-regulatory element is the enzyme responsible for the effective transcription of 
DNA, the RNA-polymerase. RNA-polymerase binding sites are usually located upstream of and close 
to the transcription start site (TSS) in the region known as core promoter. The polymerase forms the 
regulatory machinery complex with other very important co-factors that influence its binding to the 
consensus sequence on the DNA strand.

Many other DNA sequences are binding-sites for eukaryotic gene activators, originally termed 
enhancers, since their presence increases dramatically the rate of transcription acting directly on the 
polymerase activity. Enhancers are bound by DNA-binding proteins that control gene transcription in 
a positive (activators) or negative (repressor) manner. A surprising discovery regarding enhancers was 
that activator proteins can be bound thousands of nucleotide pairs away from the promoter (Carter et al., 

Figure 1. Diagram of a typical gene control region



32

Introduction to GRNs

2002). Moreover, they can influence transcription of a gene when bound either upstream or downstream 
from it or in non-coding regions of a transcription unit. For this reason, today we define a gene control 
region (Figure 1) as the whole expanse of DNA involved in regulating transcription of a gene, including 
the core promoter, where the general transcription factors (GTFs) and the polymerase assembly, and all 
of the regulatory sequences to which gene regulatory proteins bind.

Specific regulatory proteins are known as Transcription Factors (TFs), proteins that bind well-defined 
sites on DNA molecules known as DNA-binding domains (specific for each TF) and co-attend to the 
transcription of genetic information from DNA to mRNA by activating or repressing the process driven 
by the RNA polymerase (Kadonaga, 2004; Muller, 2001). TFs show a modular structure containing 
some necessary domains: a DNA-binding domain (DBD) that attaches to specific short DNA sequences 
and a trans-activating domain (TAD) that contains binding sites for other proteins such as transcrip-
tional coregulators. For example, many TFs are involved in the development of the organism, turning 
on transcription of genes that regulate cells morphology and differentiation (Wray, 2003). Responses 
to intracellular signals are often mediated by TFs; cells communicate by releasing molecules produc-
ing signalling cascades associated to the upregulation or the downregulation (Brivanlou et al., 2002). 
Different responses and variations in gene expression are carefully regulated by TFs action. Binding 
sites for TFs are well-defined; for each TF, in order to determine conserved nucleotides that compose a 
binding site, we can define a position specific scoring matrix (PSSMs). In a PSSM, for every position, 
every nucleotide has a score associated to the probability to find it in that position and the global score 
of the matrix define a consensus sequence (Stormo, 2000). PSSMs are collected into public and com-
mercial databases of matrices like TRANSFAC (Matys et al., 2006) or JASPAR (Bryne et al., 2008). 
Looking for an over-representation of matrices in gene control regions is a very active research field 
in computational biology (Brown, 2008; Wasserman et al., 2004). However, evolutionary analysis of 
genomes and organisms complexity recently showed that the new horizon in studies on transcriptional 
is represented by combinatorial analysis (van Dijk et al., 2008).

Genome sequencing and analysis of many model organisms confirmed the hypothesis that organisms 
complexity not only depends on the number of transcription units, but also on the regulatory complexity 
of their expression (Markstein et al., 2002). The large size of promoter region sequences allows them 
to host many binding sites for different transcription factors. As a symbolic example, it is sufficient to 
compare the fruitfly Drosophila melanogaster and the nematode Caenorhabditis elegans: the fly has less 
than 14,000 genes, while the worm has about 20,000. However, anatomical, developmental and other 
biological observations suggest that Drosophila can be considered more complex than Caenorhabditis 
elegans. If the complexity of different species is not directly proportional to the number of genes, what is 
the element that determines these developmental differences? The answer is hidden behind an elementary 
concepts widely studied in the last few years: transcription factors act on gene expression regulation not 
independently, but following a combinatorial and coordinated control mechanism that finely adjusts gene 
expression profiles for developmental stages, tissues or cell types (Pilpel et al., 2001). Combinatorial 
and coordinated control means that gene transcription is not regulated by a single signal of activation or 
repression, but by the correct integration of all signals originating from a combination of transcription 
factors that are alternatively bound and functionally active.

Considering as an example an extensively studied gene regulation control region like promoter of 
gene even-skipped (eve) in Drosophila Melanogaster leads to a clear explanation (Janssens et al., 2006). 
This control region regulates expression of gene eve during different developmental stages and in dif-
ferent positional stripes of larvae. It is composed of 12 partially or totally overlapping binding sites for 
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4 transcription factors that synergistically modulate the transcription rate. Gene expression levels are 
precisely regulated in different stripes because of different combinations of bound and active transcription 
factors (figure 2). This illustrates why current research privileges combinatorial analysis of transcription 
factors and DNA regulatory elements (Morgan et al., 2007).

The mechanisms described so far involve mostly proteins as transcription regulators, but the com-
plexity of multicellular organisms further increases due to another class of regulators.

The RNA-polymerase product is a primary transcript that after the processing driven by cellular enzymes 
is transformed in the messenger RNA (mRNA). At the level of post-transcriptional control, entirely new 
mechanisms of gene regulations arise; they are mediated by the action of a large class of non-coding RNAs 
known as microRNAs (miRNAs), which function as repressors in almost all organisms (Ambros, 2004). 
miRNAs suppress specific transcripts by binding to complementary sequences on the RNA molecules usu-
ally located in the untranslated region (3’-UTR) of gene of interest; RNA bound by a miRNA is processed 
by a couple of enzymes, Dicer/Drosha, and degraded inside the cell. Various studies have demonstrated 
that miRNAs have important roles in animal and plant development (Kloosterman, 2006; Kosik, 2006). 
Interest in miRNAs and their role in transcriptional regulation has sensationally increased during the last 
years because only the integration of regulatory signals of both transcription factors and miRNAs can give 
a comprehensive and unified framework of gene regulation (Chen, 2007).

Post-translational control of gene regulation is the last mechanism to act. After the translation of 
mRNAs, proteins product can be subjected to modification that increase or reduce their activities or 
change proteins localization inside the cell. A great number of proteins are substrates of two class of 
enzymes, called kinases and phosphatases, that phosphorylate and dephosphorylate them respectively. 
Many metabolic pathways are regulated through the balanced action of these enzymes (Cohen, 2002).

Other proteins can be engaged with fatty acids chains that translocate them from the cytoplasm to the 
membrane of the cell. Various protein involved in signal transduction are subjected to these modifica-
tions. Two examples are the Src family of protein kinases that is myristoylated and the effector protein 
Ras that is anchored to the membrane through a farnesyl-group (Resh, 2006).

Figure 2. Promoter region of the even-skipped gene control specific transcription bands in the Droso-
phila Melanogaster embryo. Different combination of cis-regulatory modules bound determines different 
expression patterns.
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A post-translational modification that reduces protein levels in the cell is the ubiqutination. This 
modification is driven by a group of enzymes that act on the targeted protein functional groups that 
redirect it to the proteasome, the protein degradation system (Elsasser et al., 2005).

network background

Network theory is a field of applied mathematics and physics, deeply related to graph theory. It is ap-
plied in a variety of disciplines including sociology, computer science, biology and economics. Net-
work theory concerns the study of graphs as a representation of either symmetric relations (undirected 
connections) or asymmetric relations (directed connections) among discrete objects, that can represent 
human beings in social networks (Wellman, 1998), computers or links in computer science networks 
(Albert et al., 2002), genes or proteins in biological networks (Barabasi et al., 2004) and enterprises for 
economic networks (Manski, 2000).

A network is simply a set of items, called nodes or vertices, connected by lines called links or 
edges.

A network can be represented by a graph, where links may be undirected, when a line from point 
A to point B is considered to be the same thing as a line from point B to point A (symmetric relation), 
or directed, when the two directions are counted as being distinct arcs or directed edges (asymmetric 
relation).

Such a set of nodes connected by edges represents the simplest kind of network, but we can have 
different types of vertices (characterized by different information content) and different types of edges 
(Figure 3).

In a biological context, we consider a type of network called “complex network”, characterized by 
certain non-trivial topological features that do not occur in simple networks. Such non-trivial features 

Figure 3. Some examples of different kinds of networks; 1a) undirect network (edges linking nodes have 
no directions), 1b) direct network, 1c) direct network with varying node and edge weights.
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include: a long tail in the degree distribution, a high clustering coefficient, community structure at many 
scales and evidence of a hierarchical structure.

We first examine these new concepts that can help in understanding network characteristics and 
topology (Table 1), then we give a brief definition of two particular kinds of complex networks.

The two most well-known and specific examples of complex networks are small-world networks 
and scale-free networks.

A network is called a small-world network by analogy with the small-world phenomenon (known 
as “six degrees of separation”), first tested experimentally by Milgram (1967). The basic result of this 
experiment was that two arbitrary people are connected on average by approximately six degrees of 
separation, i.e. the diameter of the corresponding graph of social connections is not much larger than 
six. The first small-world network model was proposed by Watts and Strogatz (1998). In this model, the 
transformation of a regular graph, in which the diameter is proportional to the size of the network, into 
a “small world” one, in which the average number of edges between two vertices is very small (while 
the clustering coefficient stays large), is obtained and the authors demonstrate that the addition of only 
a small number of long-range links is required. Summarizing, a graph is considered small-world if:

the mean shortest distance between nodes pairs scales logarithmically or slower with network • 
size;
the average clustering coefficient is significantly higher than a random graph constructed on the • 
same vertex set.

A network is named scale-free if its degree distribution follows a particular mathematical function 
called power law where few nodes with many links (hubs) co-exist among many nodes with few links. 

Table 1. Definitions of network characteristics 

FEATURE DEFINITION

Degree The number of links connected to a node. A direct graph has both an in-degree and an out-degree for each 
node, corresponding to the number of in-coming and out-going links, respectively.

Degrees distribution The probability that a node selected at random has a certain number of links.

Clustering coefficient A measure of the interconnectivity among neighbours of a node N. Neighbours of N are nodes connected 
to N by an edge.

Average clustering coefficient The average of the clustering coefficient for each node (Watts et al., 1998). It provides a global measure 
of how well the neighbors of nodes are locally interconnected.

Community structure A natural division of the network into sets characterized by groups of nodes that share a high density of 
internal links and a lower density of links to external nodes (Newman, 2006). In biology, communities are 
also called modules, motifs or clusters.

Average path length The average number of steps along the shortest paths for all possible pairs of network nodes (Strogatz, 2001).

Distance The length in number of edges along the shortest (geodesic) path connecting two nodes.

Diameter The maximal distance between any pair of node of a graph.

Betweenness The number of shortest paths going through a certain node.

Bottlenecks Nodes with the highest betweenness. They control most of the information flow in the network, represent-
ing critical points of networks (Yu et al, 2007).

Hierarchical organization In a complex networks implies that small groups of nodes can be organized into increasingly larger groups, 
maintaining at the same time a scale-free (see below) topology (Ravasz et al., 2003).
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Networks obtained from lattice models, where every node has roughly the same degree, show a single 
well-defined scale; in contrast, the power law implies that the degree distribution of these networks has 
no characteristic scale. An example of networks with a well-defined scale is the Erdős–Rényi random 
graph (Erdős et al., 1959). In a network with a scale-free degree distribution, nodes with a degree that 
is orders of magnitude larger than the average (hubs) are present. The interest in scale-free networks 
began to flourish in the late ‘90s with the discovery of a power-law degree distribution in many real 
world networks such as the World Wide Web, protein interaction networks, and many others. Although 
many of these distributions are not unambiguously power laws, their particular topology shows that 
networks characterized by this kind of distribution are very different from what could be expected if 
edges would be generated at random (for example, by a Poisson distribution). There are many different 
ways to generate a network with a power-law degree distribution, but the most well known is based on 
the preferential attachment rule proposed by Barabási and Albert (2002).

The average path length for scale-free networks is smaller than in random graphs, indicating that 
scale-free topology, more heterogeneous than topology of random graph, deeply affects the distance 
between nodes; however a theoretical expression giving a good approximation for scale-free model has 
not been found. Also for the clustering coefficient there is no known analytic model. Observations on 
some models revealed that the clustering coefficient of scale-free networks decreases with network size 
following approximately a power law decay: a difference from small-world models, where the cluster 
coefficient is independent of the size of the network. Networks with a power-law degree distribution can 
be highly resistant to the random deletion of nodes, since only few hubs are essential for maintaining 
normal topology: the vast majority of nodes remains connected together in a giant component (i.e., a 
connected sub-graph that contains the majority of the graph’s nodes).

technology background

A number of array-based technologies has been developed over the last several years, and technological 
development in this area is likely to continue. These technologies are mainly based on DNA, proteins, 
antibodies and combinatorial chemistry arrays but every biological molecule could be probably studied 
with an array-based method. So far, DNA arrays designed to determine gene expression levels in living 
cells have received the greatest attention. Since they allow simultaneous measurements of thousands of 
mRNA target molecules and genome probes, they are rapidly producing amounts of raw data on a scale 
never approached before. We now present an overview of current DNA array technologies and briefly 
describe also a non-array-based technique to measure gene expression levels based on serial analysis 
(SAGE) and another innovative approach to study transcriptional regulation based on accessibility of 
chromatin regions (ChIP-on-Chip).

DNA arrays, also called DNA chips, simultaneously measure the level of mRNAs product in a living 
cell. A DNA array is defined as an orderly arrangement of tens to hundreds of thousands of unique DNA 
molecules (called probes) of known sequence. Every probe is individually synthesized on a rigid surface 
or pre-synthesized and then attached to the array platform, dependent on the technology employed. The 
first method developed is commonly known as cDNA microarrays (also called spotted microarrays) 
because probes are usually oligonucleotides, cDNAs or small fragments of polymerase chain reaction 
(PCR) products that correspond to mRNAs.

Successively, specialized manufacturers optimized the technique and they obtained specific oligo-
nucleotide microarray triggering a drastic decrease of cDNA microarrays use. Although oligonucleotide 
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probes are often used in “spotted” microarrays, the term “oligonucleotide microarrays” most often refers 
to a specific technique of manufacturing. The first synthesis method for manufacturing DNA arrays was 
the photolithographic method developed by Fodor et al. (1993) and today commercialized by Affymetrix. 
A set of oligonucleotide probes of 25 nucleotides in length is selected, able to hybridize complementary 
sequences in target genes of interest. For each gene of interest, all probes matching are collected to define 
a probeset. Statistical software is then used to elaborate raw expression data of probes and to obtain an 
absolute expression level of a transcript. Other companies, like Agilent, have developed array platforms 
with a standard piezoelectric (ink-jet) printing process that fix on a glass support longer sequences, up 
to 60 nucleotides.

Currently, novel approaches to microarrays are rapidly spreading. The most important are Illumina 
microarray technology and exon-specific arrays. Illumina company has presented the BeadArray® 
technology. It yields beads assembled on two substrates, fiber optic bundles or planar silica slides. Each 
bead is covered with hundreds of thousands of copies of a specific oligonucleotide that act as the capture 
sequence in an Illumina’s assays.

GeneChip® exonarray, instead, is the new technology developed by Affymetrix in which a probeset 
is associated to each potential exon in the genome. With approximately four probes per exon and roughly 
40 probes per gene, exon arrays enable two complementary levels of analysis: simple gene expression 
and alternative splicing.

When arrays are combined with other techniques and molecules, it becomes possible to obtain new 
methods to study the transcription. A powerful example is represented by ChIP-on-chip, a technique 
for the isolation and the identification of the DNA sequences occupied by DNA-binding proteins that 
combines chromatin immunoprecipitation (ChIP) with microarray technology (chip). The goal of ChIP-
on-chip is to locate protein binding sites which results in the identification of functional elements in 
the genome. The ChIP-on-chip technique was first successfully applied in yeast (Lieb et al., 2001) but 
today, with little variations in protocols, is also performed on mammalian cells.

Figure 4. Example of an oligonucleotide microarray with enlarged inset to show detail (source: Wikipedia 
http://en.wikipedia.org/wiki/File:Microarray2.gif)
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Finally, gene expression can be evaluated also with another technique called serial analysis of gene 
expression (SAGE) (Velculescu et al., 1995). SAGE analyzes all mRNA molecules in the cell, defined 
as the transcriptome; for each transcript, it is possible to define a small chunk of RNA that unambigu-
ously identifies each RNA molecule. These small pieces, called tags, are extracted through the cleavage 
of restriction enzymes and are linked together in a long chain called concatemer. Then, the concatemer 
is cloned into a vector and long chains produced are sequenced to count the number of small sequence 
tags for every RNA that compose the chain. This integer number for every transcript is converted in 
an expression value. The comparison of tags to a specific database determines which ones come from 
known, well-studied genes and which ones are new.

The diffusion of these technologies allowed the development of specific approaches like time-course 
and tissue-specific experiments. In time-course experiments cells are dynamically studied during their life 
cycle and gene expression changes are monitored step-by-step. In this way, for each gene the expression 
level can be studied as a function of the expression level of all the other genes.

Instead, tissue-specific experiments give more specific information about groups of functionally 
co-expressed genes and gene expression profiles of tissues and cell lines.

Collapsing information from the transcriptional regulation machinery, the huge amount of data avail-
able on biological molecules from the technologies we have described and network theory, it is possible 
to create models that give a revolutionary way to study genes regulation.

gene regulatory networkS oVerView

The analysis of biological network models produces results (links among genes, communities identifi-
cation, network topology, etc.) whose mode of analysis can be subdivided into two main categories. As 
reported in the introduction of the chapter, the first is characterized by qualitative approaches, while the 
second is focused on quantitative applications.

Qualitative analysis tries to establish a reference frame to explain some aspects of genomes and their 
evolution. For example, it has been shown that gene regulatory networks grow by duplication (Teichmann 
et al., 2004). When genes undergo a duplication event, regulatory interactions in networks can be either 
conserved or lost during the subsequent divergence process (Bhan et al., 2002). Another interesting re-
sult is that the development of scale-free networks implies linear preferential attachment (Eriksen et al., 
2001). Linear preferential attachment exists when the probability of attachment to a particular node is 
proportional, at least asymptotically, to the number of links already attached to that node. Combination of 
these two results, from molecular biology and network theory respectively, opens an intriguing scenario 
which describes the origin and evolution of highly connected proteins, usually known as hubs.

Analysis of network modularity gives another strong contribution to understand how biological networks 
organization evolves. One of the main contributors to the robustness and evolvability of biological networks 
is their modularity of function, with modules defined as sets of genes that are strongly interconnected but 
whose function is separable from those of other modules (Kirschner et al., 1998). Hintze (2008) states that 
modularity must be a consequence of the evolutionary process, because modularity implies the possibility 
of change with minimal disruption of function. In particular, the evolution of complex biological networks 
in silico allows to simulate real biological systems to understand their complexity.

Quantitative analysis starts from a global point of view to focus the attention on particular details. 
Key methods to extract quantitative information from biological networks are the identification of net-
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work motifs and communities (Zhang et al., 2007) and the gene clustering that is performed following 
different algorithms (D’haeseleer, 2005; Zhao et al., 2005). Their application results in the isolation of 
clusters of genes that can be combined with information stored into various biological databases. For 
example, the Gene Ontology (GO)1 project offers the necessary information to develop statistical tools 
looking at the overrepresentation of GO terms within network communities, in order to obtain putative 
gene functional annotations (Pellegrino et al., 2004). In a similar way, the combination with the Online 
Mendelian Inheritance in ManTM database (OMIMTM)2 gives the possibility to predict disease-related 
genes (Ala et al., 2008; Lage et al., 2007).

In this section, we review some examples for two of the most studied GRNs. The first part is dedi-
cated to Transcription Factor Networks (TFNs) and to highlight the conservation of network structures 
from plants to mammals. In the second part, the focus shifts to Coexpression Networks (CNs) where 
phylogenetic information combined with network theory is used to make functional predictions.

transcription factors networks (tfns)

TFNs can be inferred directly from experimental results of physical associations between transcription 
factors and their DNA binding sites defined as PSSMs (Frith et al, 2002). Networks based on transcrip-
tion factors can be divided in two types.

In the first one, the analysis concerns transcription factors and their target genes. A network built 
using these elements will show transcriptional factors and genes as nodes and regulatory interactions 
as edges. In this way, it is possible to highlight cellular signalling pathways. The second type takes into 
account a smaller version of the previous configuration: only transcription factors are considered, so 
that they represent nodes linked by a regulatory interaction. Interactions exist when two factors bind the 
same promoter region of at least one gene, regulating its expression.

In Arabidopsis thaliana (thale cress), cell identity during the three main phases of root development 
(primary root meristem establishment and maintenance, root hair differentiation, and lateral root for-
mation) is controlled by specific transcription factor networks. The analysis of the whole Arabidopsis 
genome sequence revealed that approximately 5% of the genes encode transcription factors that interact 
not only with other regulatory proteins but also with the other 95% of the genes (Riechmann et al., 2000). 
Montiel (2004) states that transcription factors give the opportunity to decrypt gene regulatory networks 
that control development programs and can be considered as major keys to better understand root tissue 
differentiation and root development in response to internal growth regulators as well as environmental 
signals. They also deduce that transcription factors must be considered at a higher level not just for their 
DNA-binding functions, but rather as crucial members of regulatory networks.

Saccharomyces cerevisiae (yeast) was the first eukaryotic model organism used to study mechanisms 
of transcriptional regulation. The complexity level of its network is neither trivial nor too high (like 
that of Mammalian regulatory networks) and the huge amount of expression data available made this 
unicellular organism the most attractive to test a global scale approach. Yeast studies led to an important 
new insight: networks of regulator-gene interactions are the background of pathways that are used to 
regulate global gene expression programs. Extensive studies identified network motifs, the simplest units 
of network architecture, and demonstrated that these motifs are the building blocks of the transcriptional 
regulatory process. (Wu et al., 2006).

Rising to a higher complexity level and moving to Caenhorabditis elegans (nematode) we can see 
that network architecture is strongly maintained and very useful to characterize gene regulation. As previ-
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ously observed in Arabidopsis, also in metazoans 5%–10% of the genes encode predicted transcription 
factors (Reece-Hoyes et al., 2005), each of which regulates the expression of one or more target genes. 
Vermeirssen (2007) evaluates protein-DNA interactions between transcription factors and their target 
genes. He shows, for example, that the core neuronal protein-DNA interactions network is organized 
into two transcription factors modules. Moreover, this study represents an important step because for 
the first time the subdivision into clusters of a metazoan protein–DNA interactions network defines 
function-specific transcription factors modules.

Studies on Drosophila melanogaster (fruitfly) confirm the effectiveness of representing transcrip-
tion factors interactions as a network (Aerts et al., 2007; Fowlkes et al., 2007; Segal et al., 2007). The 
segmentation genes network is a common example to explain the role of transcription control in pattern 
formation (Scott et al., 1987). The regulation within this network is almost entirely transcriptional, and 
cis- and trans-acting components are well characterized. The network includes maternal and zygotic fac-
tors that act in a four-tiered hierarchical fashion to generate increasingly refined and complex expression 
patterns along the anterior-posterior axis in the blastoderm embryo (Schroeder et al., 2004). In this case, 
the global analysis allows to show strongly connected modules and signalling activation or repression 
cascades that traditional single-gene approaches cannot easily unravel.

Mammals, and in particular Mus musculus (mouse) and Homo sapiens, represent the most difficult 
test-bed and at the same time the main goal of the application of network theory to transcription factor 
analysis and modelling. A large number of studies were published in the last few years (Duncan et al., 
1998; Zenke et al., 2006) and some mathematical and statistical methods were developed (Rastegar et 
al., 2000). From the biological point of view, advances in transgenic mice production made possible to 
obtain specific experimental data. Exploiting these innovations, Maroulakou (2000) demonstrates the 
need of a network of Ets transcription factors family to maintain tissue remodelling and integrity, in 
particular during embryonic developmental stages in mammals. The large family of Ets transcription 
factors control a spectrum of developmental processes and nearly 30 mammalian family members have 
been isolated (Dejana et al., 2007). Actions of Ets transcription factors expressed at different levels are 
crucial for hematopoietic and endothelial cells development. The authors conclude that to investigate 
the roles of the Ets family of transcription factors, mammalian models based on a network of Ets genes 
and their targets, rather than on a single gene in a pathway, are necessary, as we argued previously. 
These results, first shown for the Ets family were successively found in all transcription factors families 
(Kang et al., 2005; Tsantoulis et al., 2005). Moreover, more recent approaches to TFNs integrate both 
computational and molecular biology techniques. As described by Kel (2004), one suitable approach 
is to develop genetic algorithms to analyze global gene expression microarrays. Their computational 
strategy analyzes the promoters of genes regulated by aryl hydrocarbon receptor (AhR) with a genetic 
algorithm previously described by Kel-Margoulis (2002). The analysis reveals a network of transcription 
factors with several feedback loops and signalling cascades. This network of transcription factors can 
also explain the regulation of several genes that are not direct targets of AhR binding. Their regulation 
can be mediated through other transcription factors directly regulated by AhR.

coexpression networks (cns)

Coexpression Networks (CNs) can be inferred from microarrays experiments, a very powerful technol-
ogy that allows to simultaneously measure the expression level of thousands of genes as described in 
the “Technology background” section. Microarray data are stored in matrices where rows (i) are related 
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to probes, representing genes, and columns (j) are different experimental conditions; for each matrix 
element (i,j) an expression value is reported (table 2).

In a CN, the abstraction from biological data to a mathematical model is realized by mapping genes 
to nodes and putting edges representing similarity of gene expression according to a given quantitative 
notion of similarity (or dissimilarity). Given two genes in an expression matrix it is possible to use dif-
ferent quantitative measures of coexpression to construct different coexpression networks. Here, we 
present two of the most often used dissimilarity measures to evaluate coexpression. A coexpression link 
exists when the dissimilarity measure between two genes is lower than a defined cutoff. Let X and Y 
be two genes and their expression values for the N columns of the matrix: the expression data are real 
numbers for microarray data and integer counts for SAGE.

The Pearson linear dissimilarity is defined as:
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These two measures can be applied to both microarray and SAGE data; in addition, measures specifi-
cally targeted to SAGE data and based on Poisson distribution were also developed (Cai et al., 2004).

Table 2. An example of a matrix from microarray experiments containing n rows and m columns 

Exp 1 Exp 2 … Exp j … Exp m

Probe 1 Value (1,1) Value (1,2) … Value (1,j) … Value (1,m)

Probe 2 Value (2,1) Value (2,2) … Value (2,j) … Value (2,m)

Probe 3 Value (3,1) Value (3,2) … Value (3,j) … Value (3,m)

… … … … … … …

… … … … … … …

Probe i Value (i,1) Value (i,2) … Value (i,j) … Value (i,m)

… … … … … … …

… … … … … … …

Probe n Value (n,1) Value (n,2) … Value (n,j) … Value (n,m)
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Data from high-throughput gene expression measurements are affected by a relatively high level 
of noise; it is therefore necessary to adopt specific strategies to reach a good compromise between 
specificity and sensitivity of the statistical analysis. Two most common approaches to prevent these 
problems are:

the imposition of a more stringent cutoff for dissimilarity measures;• 
the use of filters to select interactions between coexpressed genes that share also other biological • 
features.

A pioneer work in the landscape of CNs was performed by Stuart (2003). In order to elucidate gene 
function on a global scale, they identified pairs of genes that are coexpressed over DNA microarrays 
from multiple species. The filter employed in this work was the phylogenetic conservation because the 
coexpression of orthologous gene pairs confers a selective advantage and therefore indicates a functional 
relationship. Four species were compared in the phylogenetic analysis: Saccharomyces Cerevisiae, 
Caenhorabditis Elegans, Drosophila Melanogaster, Homo Sapiens. The use of species not so close from 
the evolutionary point of view increased the efficiency and selectivity of the filter but allows to study 
only genes involved in core biological functions. They found that the distribution of gene expression 
links in the gene-coexpression network is highly non-random, containing significantly more nodes with 
a larger number of gene expression links than random networks obtained from the same microarray data 
after permutation. The connectivity of the network followed a power-law distribution suggesting the 
existence of a selective force in the overall design of genetic pathways to maintain a highly connected 
class of genes. Finally, the predictions referred to proliferation function for several genes implied by 
some of these links have been experimentally confirmed.

Later, Jordan (2004) reduced the number of species focusing only on human and mouse in order 
to increase the knowledge about mammalian gene regulation. In addition, instead of heterogeneous 
experiments, he took into account only data coming from tissue-specific datasets (Su et al., 2002). The 
similarity measure choosen in the study is the Pearson correlation coefficient (r). The cutoff for the 
correlation was set to r > 0.7 since for this value the distribution showed a good fit to a generalized 
Pareto distribution with a power law tail which implied asymptotically scale-free properties and, at the 
same time, retained enough data for significant statistical analysis. In this case, a small number of hubs 
emerged and characterized this kind of scale-free networks.

The approach of Lee (2004) was more selective because it extracted homo-specific relationships 
among genes from multiple human microarray datasets. The coexpression analysis was based on the 
standard Pearson correlation coefficient and performed independently on the collected datasets. Two 
genes were defined as “coexpressed” if a statistical significant coexpression was observed in more than 
one dataset. In addition, anticorrelation was examined and the comparison with correlation showed that 
the latter is much more significant. A possible explanation proposed for this result is that biological 
meaningful of negative correlations are harder to detect using microarrays.

Finally, we summarize the work of Ala (2008). The goal was the generation of human-mouse con-
served coexpression networks, in order to develop a predictor for unknown gene-disease relationships 
based on OMIM catalogue. In this case, experimental data were collected from various tissues (Roth 
et al., 2006; Su et al., 2004) and cell lines (Sherlock et al., 2001) and they were used to generate two 
human-mouse conserved coexpression networks (CCNs), based on Affymetrix and cDNA microarray 
platforms, respectively.
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Both networks contained a large connected component with some other small connected components 
containing only a few nodes. As expected from previous studies on gene coexpression networks (Stuart 
et al., 2003; van Driel et al., 2006), the two networks were topologically similar to other biological net-
works, characterized by the existence of a few hubs, but they showed a connectivity distribution more 
similar to an exponential law than to a power law.

Despite previously described works led to many important and original results, a more holistic view 
on GRNs could include “younger” transcriptional regulation factors like miRNAs (Ke et al., 2003). Actu-
ally, a “miRNAs-only” network does not exist but it is known that miRNAs activity must be considered 
as an integral part of the complex regulation network. Tsang (2007) give a demonstration of this new 
paradigm observing that miRNA-containing networks have recurrent circuit motifs (usually defined 
feedback and feedforward loops) corresponding to positive and negative transcriptional coregulation of 
a miRNA and its targets. Using gene expression data analyzed with a specific computational pipeline, 
they show the existence in mammals of two classes of circuits, corresponding to positive and negative 
transcriptional coregulation of a miRNA and its targets.

Problems

Network theory applied to biology has drastically changed biological research and has offered very pow-
erful instruments to tackle unsolved problems. However, these instruments still have important limits: 
intrinsic limits in biological techniques to detect the level and the activity of biological molecules inside 
the cell and the optimization of mathematical models.

Although great advances were made in the last years, microarrays and gene expression measure 
techniques are still affected by some problems already highlighted in theoretical work as reported by 
Chu (2003).

Figure 5. A graph of a conserved gene coexpression network from Ala et al. (2008). Links highlight 
coexpressed genes among different experimental conditions.
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A relatively novel technology as oligonucleotide microarray is influenced by systematic errors (Eads et 
al., 2006). For example, probesets fixed on the support are not always correctly mapping over target-genes 
sequences; this manufacturer error defines incorrect probesets annotations and, successively, a wrong 
association of expression values to genes. Technical mistakes in printing or preparation and labelling of 
samples can generate problems with microarray hybridizations that range from no signal detection to data 
of apparently high quality that nevertheless are artefacts. After the hybridization, scanner-software read 
microarray output images. They are based on the elaboration of pixel intensities (or colours, depending 
on technology employed) to obtain for each sample a correspondent numerical value. After that, raw data 
obtained from software are normalized with statistical analysis and at the current time, there is not a unique 
normalization algorithm. The most common are ‘Significance Analysis of Microarray’ (SAM,Tusher et 
al., 2001), ‘Microarray Affymetrix Suite’ (MAS,Hubbell et al., 2002) and ‘Robust Multichip Average’ 
(RMA,Irizarry et al., 2003; Katz et al., 2006) algorithms. As shown in Lim’s work (2007), depending on 
what we want to learn from microarray data, the choice of the algorithm is fundamental.

Gene expression is also affected by stochastic regulatory events that occur when transcriptional regu-
lators are present at very low concentrations, so that binding and release of regulators from their binding 
sites become stochastic events. In these conditions, current high-throughput technologies are not able to 
correctly quantify very low proteins levels. The suspicion that stochasticity had a significant effect on 
genes expression came from the observation that genetically identical cells diverge phenotypically.

The work of Elowitz (2002), based on a single-cell approach, enabled determination of two mecha-
nisms by which stochasticity (or noise) is generated. The first one is the extrinsic noise generated from 
fluctuations in the amount, activity or location of cellular components, such as transcription factors or 
RNA polymerase, that regulate genes transcription. These fluctuations depend on temporal or spatial 
variation that determine a probability that a gene will be activated or not.

Instead, intrinsic noise is linked to random microscopic events that govern reactions occurred in 
genes transcription. Intrinsic noise is a very subtle snag because, also in a hypothetical cell population 
where cellular components are expressed at the same concentrations, it is responsible for variation in 
the expression rate among cells.

concluSionS and PerSPectiVeS

Transcriptional regulation is a key process in the life cycle of a cell and many biological molecules that 
contribute to control it are well-known (Rockman et al., 2006). During evolution, transcriptional regu-
lation significantly changed and its complexity increased as demonstrated by the much more complex 
regulation of higher eukaryotic genes than prokaryotic ones (Adami et al. 2000).

The approaches described in this chapter showed the existence and evolutionary conservation among 
many species of GRNs, demonstrating their fundamental role for living organisms.

Recently, network theory was successfully combined with transcriptional regulation and other biologi-
cal processes allowing to handle the complexity of cellular systems, even if the technologies employed 
can be improved and mathematical modelling can be optimized. In order to obtain more precise and 
correct information from experiments, the basic feature is the optimization of experimental design, data 
acquisition and analysis. Successively, the data produced need appropriate statistical and dynamical 
model to be integrated together. The current models are promising, but do not take into account all the 
factors involved in biological processes.
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A comprehensive combination of biological data and mathematical models originating in different 
contexts opened the way for the rapid progress of system biology.

For example, the meeting of genomics and pharmacology is resulted in the origin of pharmacogenomics 
that studies what target molecules inside the cell are bound by the therapeutic molecules tested. Current 
pharmacogenomics research is focused on drug discovery, that is the scan of peptides library to search 
interactions between peptides tested and host target molecules. A new paradigm for drug target selection 
takes into account global network regulatory interactions among molecules in the genome.

Another example is the comparison between GRNs extracted from data available on gene expres-
sion in normal and cancer-affected tissues. This comparison brings to light genes that are differentially 
expressed in tumors as compared to normal tissue, determining gene-signatures for different tumours. 
These genes selections combined with the analysis of their regulatory sequences could be employed 
as diagnostic markers to predict the cancer predisposition in patients and responsible elements in the 
genome.

Looking at the amount of biological databases available, a great challenge of system biology is the 
integration of information coming from many biological fields of research (like genome sequencing, 
gene expression, protein domains, protein-protein interactions, etc.) and constantly increasing.

Now, like never before, network biology and GRNs analysis are employed in many original applica-
tions but the integration of well-defined functional biological maps (genomes, proteomes, transcriptomes, 
phenome, etc.) into an exhaustive model is necessary. Future research will go in this direction and will 
focus on the optimization of methods and new applications.
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2 OMIM™ (http://www.ncbi.nlm.nih.gov/omim/) is a catalogue of human genes and genetic disor-
ders.
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introduction

A multiplicity of mathematical tools has been developed to represent gene regulatory networks (GRNs) 
with different levels of detail. In the setting of network structure inference from microarray data, Bayes-
ian networks (BNs) represent a commonly used tool to describe the network in a comparatively high 
level manner, in contrast, say, to ordinal differential equations. The purpose of this chapter is to provide 
necessary background knowledge of BNs.

The structure of this chapter is as follows: in the first section we provide a brief introduction into 
the biology of GRNs and the mathematical concepts on which the Bayesian networks are based. In 

abStract

Bayesian networks have become a commonly used tool for inferring structure of gene regulatory networks 
from gene expression data. In this framework, genes are mapped to nodes of a graph, and Bayesian 
techniques are used to determine a set of edges that best explain the data, that is, to infer the underly-
ing structure of the network. This chapter begins with an explanation of the mathematical framework 
of Bayesian networks in the context of reverse engineering of genetic networks. The second part of this 
review discusses a number of variations upon the basic methodology, including analysis of discrete vs. 
continuous data or static vs. dynamic Bayesian networks, different methods of exploring the potentially 
huge search space of network structures, and the use of priors to improve the prediction performance. 
This review concludes with a discussion of methods for evaluating the performance of network structure 
inference algorithms.

DOI: 10.4018/978-1-60566-685-3.ch003
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the next section we present the theory of Bayesian networks and show how they can be adapted to 
model GRNs. We learn how we can use the model to infer or predict activity states of genes in terms 
of probability theory, which in general has been one of the classic uses of BNs. Yet, the probably most 
prominent application of Bayesian networks in computational biology has been for reverse engineering 
of gene regulatory networks, especially since the advent of high-throughput screening methods such as 
gene-expression microarrays. This is covered in the fourth section, in which we also discuss the issue 
of variable time lags in time-series data whereby the response time of one gene regulated by another 
varies greatly among the genes. We finish the chapter with conclusions, and provide directions which 
might be of interest for future research.

background

biology

GRNs coordinate the changes in cellular behavior associated with development or response of the cell or 
organism to extracellular stimuli. Transcription factors are the molecules that activate or repress down-
stream genes by binding to promoter and other sequences (cis-regulatory modules) of genes, thereby 
modulating the rate of transcription of genes. Combinations of transcription factor binding events in any 
one promoter are one of the important factors determining the level of the corresponding mRNA in the 
cell. The regulatory state of the cell has been described as the total set of active transcription factors. 
However, a number of other molecules influence the activation state and concentration of transcription 
factors. For instance, signaling pathways consisting of ten or hundreds of proteins can transduce an ex-
tracellular event (such as the binding of a ligand to a receptor) into an intracellular biochemical signal 
by cascading protein modification events. For instance, a receptor-ligand binding event may induce 
phosphorylation (and activation) of an intracellular signaling molecule, which in turn phosphorylates 
other molecules, thereby propagating the signal through a cascade or network of proteins, some of 
which activate transcription factors and thereby influence the transcription of target genes. Other factors, 
such as non-coding RNAs, histone modifications, and CpG methylation, can also influence the level 
of mRNA of target genes. Therefore, measurement of mRNA levels can provide only a partial view of 
the regulatory state of a cell. At present, however, there remain major technical difficulties in obtaining 
large-scale measurements of protein levels or protein modifications, so that network structural inference 
has for the most part been attempted with mRNA data.

graph theory

Graphs are abstract entities of discrete mathematics which are used to encode relationships of interest 
between objects of the same domain. Formally, a graph is a pair G=(V,E), in which V is finite set of 
vertices, representing the objects, and E a set of pairs of distinct elements of V, which is a binary relation 
over V. Elements of E are called edges (or arcs). The pairs may be ordered or not. An order implies a 
direction. If all edges of G are directed, the graph is directed. If at least one edge is directed we call the 
graph a partially directed graph. Otherwise the graph is an undirected graph.

A path with length n is a sequence of vertices (v1,...,vn) which respects the edges, i.e., ( , )v v E
i i+ Î

1
 

for all i. A cycle is a special path whose start vertex v1 equals to the end vertex vn. A directed path is a 
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path, in which the edges between the vertices are all directed. A directed graph is acyclic if it contains 
no directed cycle; such graphs are referred to as directed acyclic graphs (DAGs). A partially directed 
acyclic graph (PDAG) is a graph which contains directed and undirected edges, but which doesn’t 
contain any directed cycle.

Probability theory

A probability space is a triplet (Ω,Σ,P), in which the sample space Ω defines all possible elementary 
events of an experiment. The set Σ contains events, based upon the sigma-algebra of subsets of Ω. The 
probability measure P maps any event E Î S to a real value between 0 and 1 such that 0≤P(E)≤1. In 
addition, a probability measure must satisfy P(Ω)=1, and for any number of sequences of n disjoint 

events P E E E = P E
n

i=

n

1 2 1
1

È È¼È( ) ( )å .
A random variable is a function that maps elements from the sample space Ω to a measurable space, 

the state space (often real-valued). A probability distribution is a probability measure over the state 
space.

If the sample space of a random variable is finite or countable then the random variable is said to 
be discrete. The probability measure is then described by a probability mass function (pmf). As an 
example consider throwing a coin. The sample space is countable, it can be Heads or Tails, therefore 
Ω={Heads,Tails}. The state space could be {0,1}, mapping the outcomes to measurable entities, i.e., 
entities that we can calculate with. The pmf of such variables is a Bernoulli distribution, which, in this 
particular case, would assign to both elementary events 0.5 if the coin is fair.

Now consider a random experiment, in which every trial results in one of k possible outcomes, where 
the probability of observing an outcome i is given by pi. When repeating this random experiment m 
times, let Xi count the number of times outcome i is observed. The pmf is then described by a multino-
mial distribution which is given by

P X x X x f x x p p
x x

x x
p

k k k k

k

k

x( , , ) ( , , ; , , )
!

! !1 1 1 1

1

1
1

1= = = =
+ +( )

  





pp
k

xk

,    (1)

where x m
i

i

k

=
=
å

1
. Note that for coin example we would have k=2, and p1=p2=0.5.

The concept of random variables can be extended to uncountable sets as well. A random variable X is 
said to be continuous if its probability distribution is continuous, i.e., it is a probability density function 
f(x), which is f(x)≥0 for all x RÎ and

f x dx =( )
-¥

¥

ò 1 . 

The probability of a≤X≤b denoted as P(a≤X≤b) can be calculated by integrating the density function 
from a to b. Note that this implies that for continuous random variables P(X=a)=0, for all a RÎ .

As it is in the discrete case, there are several common classes of continuous probability distributions. 
A very popular distribution for continuous variables is the normal distribution, also referred to as the 
Gaussian distribution. The density function of the Gaussian is given by
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f x e
x

( )
( )
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-
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2
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22
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s
 

where μ is the mean and σ2 the variance. The density function is often abbreviated as N(μ,σ2). The mul-
tivariate normal distribution is a generalization of the normal distribution to more than one variable.

Another continuous distribution is the Dirichlet distribution. It is a multivariate distribution, whose 
density of order κ with parameter αi>1 for 1≤i≤κ is given by

f x x x x( , , ; , , )
1 1

1

1

1

1 11
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



k k
k

k

a
k
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a a
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( ) ( )

- -
G

G G      (2)

assuming that 0≤xi≤1 and x
ii=å =

1
1

k
. The gamma function Γ(·) is a generalization of the factorial for 

real numbersx RÎ , that is, G G( ) ( ).x x x+ =1
For any probability space, two events, say A and B, are said to be independent if and only if 

P A B P A P BÇ( ) = ( ) ( ) . The conditional probability of event A given B denoted by P(A|B) is defined 

as 

P A B

P B

Ç( )
( ) . It represents the probability of A if it is known that B has occurred. If A and B are inde-

pendent, it follows that P(A) = P(A|B). We say that A and B are conditionally independent given a third 
event C, if P A B C P A C P B CÇ( ) =| ( | ) ( | ). Two random variables X and Y are said to be independent 
if and only if any outcome of X is independent given any outcome of Y, denoted by I(X;Y). That is X and 
Y are independent in their probability distribution. X and Y are conditionally independent given another 
random variable Z, if they are independent given any outcome of Z. We denote this by I(X;Y|Z).

A joint probability distribution (jpd) is a probability distribution of two or more random variables 
together. The joint probability distribution of two variables X and Y is denoted by P(X,Y). The marginal 
probability distribution (mpd) of X is the probability distribution of X ignoring Y altogether. Depending 
whether Y is discrete or continuous, it can be determined by summarizing or integrating according to the 
probability distribution over Y’s state space. If the jpd consists of more than one other variable in addition 

to X then we summarize over all combinations of the states of the other variables, denoted by
¬ X{ }
å .

bayes’ theorem

Bayes’ theorem follows from the definition of the conditional probability and relates the conditional 
probability P(A|B) to P(B|A) for two events A and B such that

P A B =
P B A P A

P B
( | )

( | ) ( )

( ) . 

In this context, P(B|A) is referred to as the likelihood, as it is a probability of parameter B, in contrast to 
P(A|B) which called the posterior; it is derived from the knowledge of B. P(A) is referred to as the prior, 
as it represents the knowledge of A prior to the knowledge of B. P(B) is the normalization constant.
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If the posterior P(A|B) has the same algebraic form as the prior P(A) then the prior is said to be the 
conjugate prior to the likelihood. For instance, if the likelihood is a multinomial distribution (Equa-
tion 1) and the prior is a Dirichlet distribution (Equation 2) then the posterior will also have a Dirichlet 
distribution, albeit with updated hyperparameters αi. Therefore the Dirichlet distribution is a conjugate 
prior to the multinomial distribution.

bayeSian networkS

Bayesian Networks can be seen as a mixture of graph theory and probability theory. A BN is pair B = (G,Θ) 
consisting of a directed acyclic graph G=(V,E) and a set Θ of local probability distributions (LPDs).

The vertices (nodes) of the graph V={1,...,n} bidirectionally map to variables X={X1,...,Xn}. The 
directed edges in E stand for direct dependency relations of one variable to another. We say that Xi is a 
parent of Xj, if there is an edge from node i to node j. The set of indices of all parents of Xi is denoted 
by pa(i). A family is defined as the set of a variable and all of its parents. For a concrete realization (as-
signment) of a set of variables we use the term configuration.

The DAG encodes independence relations following the Markov condition, which states that a vari-
able given the parents doesn’t depend on any other non-descendants, i.e., those variables to which no 
directed path exists.

In addition to the structural properties, for everyX X
i
Î  there is a local probability distribution 

(LPD) defined which depends only on the configuration of the parents denoted as p(Xi|Xpa(i)). As a vari-
able given the configuration of the parents is independent to all other variables, the multidimensional 
joint probability of all variables can be calculated as:

p X , ,X |G = p X | X
n

i=

n

i pa i1
1

¼( ) ( )Õ ( ) .         (3)

DAGs encoding a certain conditional independence are not necessarily unique in the space of all 
DAGs. For example consider the following conditional independence relation: I(Y;Z|X). All three con-
ceivable Bayesian network structures for which this relation is true are shown in Figure 1.

In contrast, the first structure depicted in Figure 2 encodes quite a different independence relation: 
I(Y;Z). Such structures, that is, subgraphs consisting of three nodes in which the edges of two nodes 
converges into the other one are referred to as v-structures.

In general we say that two DAGs are equivalent if they encode the same set of conditional inde-
pendences. As proven in Pearl and Verma (1990) this is the case only for such graphs that have the 
same skeleton, which is constructed from a DAG by omitting the direction of the edges, and the same 
v-structures. The equivalence relation naturally imposes a set of equivalent classes onto the space of 
all DAGs. The equivalent classes can be represented uniquely by PDAGs. The second part of Figure 2 
displays the PDAG for the example (which is a simple undirected graph here).
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two coMMon lPdS

Although any LPD can be used for BN analysis, two are extensively used in practice: the multinomial 
distribution (MD) for discrete variables and the normal (Gaussian) distribution (GD) for continuous 
variables.

The MD for a variable Xi with m discrete states is a function of all members of the variable’s family 
which maps all possible configurations to a probability value between 0 and 1 such that for every parent 
configuration πi

p X = j | X =
j=

m

i pa i i
1

1å =( )( )
p . 

Usually, the MD is given as a conditional probability table (CPT).
For the GD, the distribution for each variable follows a normal distribution whose mean depends 

linearly on the configuration of the parents:

p X X N X b X
i pa i i i ij j j i

j pa i

( | ) ( , ( ), )
( )

( )

= + -
Î
åm m s2

, 

where bij defines the strength of the influence of variable Xj on Xi. Note that bij≠0, otherwise one would 
not include Xj in the parent set of Xi.

Note that while non-linear relationships can be modeled using the MD, the fact that the mean of the 
GD is a linear function of the states of the parents means that non-linear relationships cannot be modeled 
with the GD. Also note that a BN is not required to have either discrete or continuous nodes. Instead one 
can mix nodes by defining different types of LPDs for the nodes.

Figure 1. Three different DAGs that all encode I(Y;Z|X) and therefore belong to the same equivalence 
class

Figure 2. The first structure a) represents the I(Y;Z) but not I(Y;Z|X). The second b) represents the 
equivalence class of the three DAGs depicted in Figure 1.
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Modeling gene regulatory networkS

In order to model gene regulatory networks using the BN framework, the genes are mapped to corre-
sponding random variables. The transcriptional regulations, i.e., activation or deactivation, are modeled 
intuitively by the edges in the graph such that there is an edge from every regulator gene to its target 
gene. A transcriptional family consists of a single target gene and all its regulator genes. The precise 
transcriptional influence within a transcriptional family is given using the LPD for the target gene.

A variety of network motifs have been described for gene regulatory networks. The feed-forward loop 
(FFL) is typical for transcriptional networks, and indeed is one of the most frequent motifs in sensory 
transcriptional networks consisting of three genes (Alon 2007). Let us name the genes X, Y, and Z. The 
characteristic of the motif is that gene X regulates gene Y and that gene Z is regulated by both X and 
Z. The FFL motif as depicted in Figure 3a can be easily mapped to a Bayesian network. The concrete 
influence, that is, whether an edge activates or deactivates the target gene can be modeled via the GD 
or MD. A synergistic effect, however, can be modeled with the MD only.

Another important motif is the single-input module (SIM) as depicted in Figure 3b. This motif is as 
common for both sensory and developmental transcription networks as the FFL is. The main feature is 
that there is a so-called master transcription factor which exclusively regulates a set of target genes in the 
same regulatory fashion (i.e., all of them are either activated or deactivated). As the activation thresholds 
of the target genes’ transcription varies, often the SIM occurs when there is a need for kind of assembly 
line, in which the temporal order of the expression is important. The system which is responsible for 
the construction of the flagella in E.coli (Kalir et al. 2001) is a prominent example that employs such a 
motif. Although the principal relationships can be mapped easily to a BN, the characteristic time depen-
dent properties (i.e. the order of the gene transcription) can hardly be modeled by this class of Bayesian 
networks, also referred to as static Bayesian networks.

For instance, Le et. al. (2004) constructed a network for the hepatic glucose homeostasis. The net-
work contains 35 genes, some of which genes map to the insulin, glucagon, and glucocorticoid signal-
ing pathways. Every gene is modeled as a discrete variable with two states representing low and high 
activity. For the construction of the relationships they used domain knowledge gained from intensive 
literature research resulting in 52 regulatory interactions. The graphical representation of their network 
is depicted in Figure 4. The CPT for gene EBH is given as an example in Table 1.

Figure 3. Two common gene regulatory network motifs; a) feed-forward loop b) single-input module 
consisting of the master transcription factor X and n regulated genes
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A drawback of the Bayesian network approach is that it is not possible to model motifs which consist 
of a loop. In addition to the motifs described above, another common motif of gene regulatory networks 
is the feed-back loop (FBL), which often appears in developmental transcription networks. Here gene 
X and Z both regulate gene Y, but gene X and Z also regulate each other. The graphical representation 
is depicted in Figure 5a. However, as this graph is not acyclic, it is not a valid structure for a Bayesian 
network which requires the structural graph to be acyclic.

In real biological networks genes and therefore transcription factors are transcribed in a different 
amount at different rates depending on the process they are involved in. Furthermore, the threshold for 
an activity of a transcription factor depends not solely on its amount but also on the specific properties of 
the protein (e.g., its affinity to the DNA) and varies greatly. Thus, the regulation of one gene by another 
doesn’t result in instantaneous changes of the expression level of the regulated gene. In fact, the time 

Figure 5. The structure of the feed-back loop network motif. The network shown in panel a) cannot be 
represented as a BN because there is cycle. Unrolling the temporal relationships as shown panel b) 
leads to a valid dynamic BN.

Figure 4. The structure of the Bayesian network of hepatic glucose homeostasis process as constructed 
by Le et al (2004)

Table 1. Depicted is the CPT for gene EBH which is regulated by CBA (activating) and CBB (dominantly 
repressing). If both transcription factors CBA and CBB are low then the activity is modeled as 30%. 

    CBB     CBA     Low     High

    Low (0)     Low (0)     0.7     0.3

    Low (0)     High (1)     0.1     0.9

    High (1)     Low (0)     0.9     0.1

    High (1)     High (1)     0.9     0.1
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required to transcribe a gene ranges from about 1 minute in bacteria and yeast to 30 minutes (including 
mRNA processing) in mammals (Alon 2007).

The common way to incorporate such time delays is to duplicate the set of variables as many times 
as discrete time steps need to be taken into account. The first set of variables is used to represent genes 
at time point i. The other sets are assigned to subsequent time steps, i.e., i + 1, i + 2, and so forth. Edges 
existing between these sets can be seen as a directed time-delayed regulation. These kinds of Bayesian 
networks are usually referred to as dynamic Bayesian networks (DBN). By unrolling a graph contain-
ing directed loops such as the mentioned FBL one can derive a dynamic Bayesian network as depicted 
in Figure 5b.

inference

Using a fully specified BN instance, one can make predictions about an outcome given the states of a set 
of variables (the evidence). This is one of the main applications of the Bayesian networks. For example, 
consider that we know that the gene IPA is in the state high and that the gene G6P is in state low, which 
state is the most likely one for the gene LCP?

Recall that a BN is just a way to express a joint probability distribution, P(X) with X being the 
vector of all random variables of the BN. Therefore we can answer such questions by calculating the 
marginal probability distribution of the respective objective variable, whereby all the observations (evi-
dence) are incorporated during the calculations. In particular, for the question given above, we calculate
P P high G P low

¬

( ) ( | , )LCP IPA
LCP

= = =
{ }
å X 6 . At the first sight, this summary operation seems to be 

carried over a huge space because the network consists of a total of 35 genes. However, as the Bayesian 
network factorizes the joint probability distribution as a product of local distributions due to Equation 
1 the problem becomes more easily solvable, after some rearrangements such as the exploitation of the 
distribution law. The procedure is commonly termed belief propagation.

A general algorithm for the so-called marginalize product-of-functions problem (MPF) is the sum-
product algorithm which is applied on a factor graph. (Frey et al. 1998, Kschischang et al. 2001) A factor 
graph is an undirected graph which expresses how a global function is factorized using local functions, 
also referred to as the factors. It is a bipartite graph, in which the first set of vertices represents the 
variables, and the second set the factors. There is an edge between a variable vertex and a factor vertex, 
if and only if the factor depends on the variable. The derivation of a factor graph representing the same 
joint probability as a particular Bayesian network therefore can be easily achieved: Take twice as many 
nodes as there are variables in the BN; the first half represents the variables, the second represent the 
factors. Every factor corresponds to the LPD attributed to a variable. Then, for every random variable X 
draw an edge from its associated factor to those nodes that are located in the first set and represent the 
family members of X. Figure 6 illustrates the factor graph of a subnet of the hepatic glucose homeostasis 
network mentioned above.

The sum-product algorithm can be described in terms of a message passing algorithm acting on the 
factor graph. Here we consider an acyclic factor graph. The algorithm begins at the leaves of this factor 
graph, i.e. nodes that only have a single neighbor. Leaf variable nodes send a trivial identify function 
message to their neighbors, leaf factor nodes send a description of the function to their neighbors.
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Each node v waits for a message from all but one of the adjacent nodes before it sends a message 
along the remaining edge to a node w based upon a computation according to its type: a variable node 
computes the product of the received factor messages, a factor node representing function f forms the 

product of f with the received variable messages and applies the summary operator
¬{x}
å where x repre-

sents the variable of node w.
Node v then waits for a returning message from node w. Then it sends a new message back to all 

adjacent nodes except for w. The algorithm terminates as soon as for each edge one message for each 
direction has passed. Thus, by calculating the product of all incoming messages, all variable nodes xi 
then have determined their corresponding marginal function.

bayeSian network learning

In the previous section, we showed how Bayesian networks can be used to predict the outcome of an 
event, e.g., to find out the downstream result of a perturbation. Before one can apply any inference 
algorithm, of course, a meaningful model of the process in question is needed.

One possibility is to use expert knowledge to build a network for a gene regulatory process as it was 
done in the example of hepatic glucose homeostasis. This is practicable for smaller or less detailed net-
works, which are described in literature. Another possibility is to let the computer find statistical relations 
in observed data, as, for instance, obtained by microarray technology. These so-called learning procedures 
have an important role in research: they enable scientists to discover relations that have not been listed 
yet, which is the actual goal of molecular biology. One nice feature of the presented Bayesian network 
framework is that it unifies these two approaches, and as we will see, in a quite elegant fashion.

Figure 6. On the left side a subnet of the hepatic glucose homeostasis is depicted, while the corresponding 
factor graph is depicted on the right side. This graph encodes the structure of the joint probability density 
function with aid of two set of nodes: the variables (depicted as circles) and the factors representing the 
LPDs (depicted as squares). The edges between the nodes represent the variables’ dependencies.
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For Bayesian networks there are two kinds of properties which can be learned from observed data:

the parameter of the local probability distribution, and• 
the structure of the graph.• 

In the following we will concentrate on the latter method, as for a biologist this is the most interesting 
feature of GRNs, especially if only little about the studied GRN is known.

Learning the structure of a Bayesian network means that we like to find such a network that best 
explains the observed data. This can be done using a variety of approaches, e.g., by formulating the 
problem as an optimization problem.

The intuition behind optimization algorithms is that we use a scoring measure to evaluate the goodness 
of a single network with respect to the given data. By scoring every feasible network of the space of all 
networks we then take the one which scores best. However, this approach is bound to fail as the number 
of possible DAGs is super-exponential in the number of vertices as derived by Robinson (1973). Worse 
yet, Chickering (1996) showed that such a problem is NP hard with respect to the number of variables 
which essentially means that with current knowledge there is no algorithm known that is capable of 
finding an optimal solution in acceptable amount of time.

In such cases we can usually fall back to approximation algorithms, heuristics or stochastic proce-
dures, which will be the topic of this section. This is also the part in which the gene-expression data 
comes into play. Due to the probabilistic nature of Bayesian networks such learning procedures have 
the advantage that they can deal with noisy data inherent to the microarray technology fairly well. 
Moreover, they also allow prior knowledge to be easily incorporated which can improve the ability to 
infer the correct network.

One important aspect of learning in general is the issue of overfitting. Intuitively, overfitting means 
that the learned model represents the training data too well. For instance, Bayesian networks whose 
structure is determined by a fully connected directed graph can surely explain more data than a less dense 
graph could do. What we ought to look for are structures that explain the data fairly well but avoid the 
model becoming too complex. This process, i.e., the process of balancing complex models against less 
complex models which may not entirely reflect all relationships, is termed regularization.

Let (G, Θ) be a Bayesian network as defined above. Furthermore, let D be the complete data con-
sisting of c cases D= (d1,...,dc) from which we want to learn the structure. In order to find a structure 
reflecting the observed data, one seeks a model, whose graph structure G maximizes P(G | D). This 
reflects the application of a maximum a posteriori (MAP) approach, because according to the Bayes’ 
theorem we have

P G | D =
Z

P D |G P G( ) ( ) ( )1
,         (4)

where P(D|G) is marginalizedlikelihood, and P(G) in general the prior, in particular the structural prior. 
The divisor

Z = P D |G P G
G

( ) ( )å         (5)
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is referred to as the normalization constant. Because the model space is super-exponential in size cal-
culating Z is not possible if the number of variables is large. In order to find a maximum it suffices to 
consider the product P(D|G)P(G). If no prior knowledge is available then the uniform distribution is 
assigned to P(G), i.e., every model is equal likely. In this special case it suffices to maximize P(D|G). 
The marginalized likelihood P(D|G) is the result of the integration of the likelihood with respect to the 
parameter prior over the whole parameter space Θ

P D |G = P D |G, P |G d .         (6)

It can be shown that, if the data is complete, this integral becomes analytically solvable for certain 
probability distributions of the likelihood, especially for the multinomial distribution and the normal 
distribution, when a conjugate prior is used.

This averaging and weighting according to the parameter prior amounts to Occam’s razor, because 
overly complex network models with many free parameters are penalized. This is intuitively explained 
in Riggelsen (2006): consider a dense graph and sparse graph and note that the models are different in 
the number of free parameters: for the dense graph, more parameters need to be determined than for the 
sparse graph. Therefore the distribution of the parameter prior P(Θ|G) of the dense graph has a flatter 
shape than the distribution P(Θ|G) of a sparse graph. As the density of every point is smaller, complex 
structures are penalized.

Let score(D,G) be a function which assigns the graph G with respect to data D a certain real number. 
An important property of the scores that we will consider in the following is the property of decompos-
ability. That is, in order to calculate the score of a graph it suffices to calculate the score of every family. 
The score of the graph is then composed by determining the product of all these scores denoted as:

score D,G = score D ,X X
i=

n

i pa i i pa i( ) ( )Õ
1

, ( ) ( )
,  

Previously, we have already noticed that more than one DAG graph may capture the same conditional 
independence. While this doesn’t impose a problem if an expert defines the network structure as he 
defines the causal relation, we cannot distinguish DAGs from other DAGs belonging to the same score 
equivalence class from data alone. Therefore algorithms which learn from observational data alone 
can merely produce PDAGs. In order to learn causal relations we somehow have to fix a variable and 
re-initiate the experiment which generated the data. In the setting of learning GRNs this means that we 
have to perturb a gene’s expression, for instance, by doing a knockout or overexpression study, and apart 
from that repeat the experiment under the same conditions. In their study Werhli et al. (2006) showed 
that the ability to correctly detect edges increased significantly.

Note that the case is different if we consider learning from time course data as the casual relations 
are defined by the time. Yet, perturbations also help here to uncover the regulatory relationships as the 
purpose of perturbations is changing the dynamics.

Note that even though we can only distinguish score equivalent classes most algorithms operate on 
the space of DAGs although an operation on the smaller space of PDAGs seem to be more suitable. This 
however is mainly due the simplicity of the natural operations in the space of DAGs. In contrast local 
operations in the space of all PDAGs are more complicated.
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discrete Scoring Metrics

As already noted above, the conjugate prior for the multinomial is the Dirichlet distribution. For xi let 
n(xi,xpa(i)) be the number of configurations with Xi=xi and Xpa(i)=xpa(i) within the data. Furthermore, let
n x n x x

pa i pa ix( ) ( )
,( ) = ( )å  be the number of configurations for which x is marginalized out. For the 

discrete case, the likelihood can be determined using

1

n i ipa i pa i pa i

i= x x
ipa i ipa i pa i pa i

a x a x ,x + n x ,x
P D |G =

a x + n x a x ,x  

where a is the prior belief of the certain configuration following from the P(θ |G) of Equation 6. It could 
be given by an expert for a particular G, but obviously this is impracticable. Rather than specifying the 
parameter for every model we can select a single probable model, say G’, along with its parameters, 
say θ’. We then let

a x x ESS P x x G
i pa i i pa i
, , | ', '

( ) ( )( ) = × ( )q , 

where ESS is the so-called equivalent sample size. Both parameters contribute to the regulation. ESS 
represents, as the name suggests, the magnitude of the belief in the prior, i.e., to how many samples 
have been already seen on which the prior is founded. While therefore the ESS can be attributed to the 
global regulation, the factor P(x,xpa(i)|G’, θ’) amounts to the local regulation, that is, the regulation for 
every vertex. The score is then referred to as the Bayesian Dirichlet equivalent (BDe).

The specification of such a probable G’ and θ’ is often not possible. If we let G’ be the empty graph 
and assign a uniform distribution to P(xi|G’,θ’) we get what is termed Bayesian Dirichlet equivalent 
uniform in literature. This eventually leads to

a x x
ESS

x xi pa i

i j
j pa i

( , )
( ) ( )( )

( )

=
×

Î
ÕW W  

where a |Ω(xi)| gives the number of discrete states of variable xi.
The K2 score simply assigns all a(xi,xpa(i)) a value of 1. Its main drawback is that it is not score equiva-

lent in contrast to the previous scores. Therefore, it is not really suited when learning the model solely 
from data. However, the K2 score initially was derived as part of the K2 algorithm (Cooper et al., 1992) 
which assumes that the order of the nodes is known. In this setting the criterion of score equivalence is 
not relevant (Riggelsen 2006).

A disadvantage when applying a discrete score is that data has to be available in discrete form. This 
may require a discretization step beforehand, and thus an associated loss of information. But then it 
may also lead to the reduction of noise. A basic method to discretize the continuous microarray data 
was applied by Friedman and co-workers (2000). Based upon a control, they assigned three states to 
the values, depending on whether they are overexpressed, underexpressed, or equally expressed. Others 
take the mutual information of the genes’ expression values into account with the objective to preserve 
it as much as possible as done by Hartemink and co-workers (2002).
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continuous Scoring Metrics

Analogous to the multinomial case a score for the case, in which the LPD of nodes follows a normal 
distribution, a continuous scoring metric was derived by Geiger (1994). This score is referred to Bayesian 
Gaussian equivalent (BGe) score. The advantage of using this score is that the data doesn’t need to be 
discretized, bypassing a potential information loss. The disadvantage is again that non-linear dependen-
cies cannot be detected.

Strategies for finding a good Model

As noted in the first part of the section, a brute force attempt to find the optimal model can only suc-
ceed for relatively small sized networks. So far, conceiving an efficient algorithm is also not possible 
unless P=NP. Several heuristics to find good fitting models have been proposed. In the following we 
will introduce the most widely used algorithms.

One of the general approaches to find a good solution of an optimization problem is the so-called 
greedy hill-climbing algorithm. Given an instance of a model we systematically perform small local 
changes to the model in order to find that modification that increases the objective score at most. Using 
this model we repeat the procedure until no other change can produce a model which fits the optimiza-
tion criteria better. With this algorithm, only a local optimum can be found.

In the setting of Bayesian networks the rules for local changes that can be applied encompass adding 
an edge between two nodes, removing an edge, or switching an edge. Given a fixed structure G we call 
the set N(G) the neighborhood of G, which encompasses all DAGs that can be derived from G by the 
application of a single operation, as depicted in Figure 7.

Figure 7. All possible structures that can be derived by applying a rule to the graph G. Graphs which 
are placed in the same box represent the same equivalence class. The last graph of the bottom row is 
not in the neighborhood as the proposed change would make it cyclic. The neighborhood N(G) therefore 
contains six graphs that can be obtained from G by single operations.
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Technically, because of the scores’ decomposability, it is enough to recalculate the scores of the af-
fected families to weight the change. One further important result of studies of gene regulatory networks 
or biological networks in general is that the underlying graph is sparse. Applied to the Bayesian networks 
framework this means that the size of a transcriptional family is relatively small, i.e., the number of parents 
of a gene doesn’t exceed a certain constant, say k. Such gene is said to have a maximum fan-in of k.

An early adopter of this observation is the so-called Sparse Candidate Algorithm (SCA) of Friedman et 
al. (1999). SCA is a variant of the greedy algorithm. Every iteration j can be divided into two phases:

1.  In the restriction phase, we select for every variable Xi a candidate set Ci with |Ci|≤k which defines all poten-
tial parents of Xi. This induces another graph: 1,

.j
n i j j i

H = X ,X , X ,X | i, j : X C
2.  In the maximization phase we enumerate all possible acyclic subgraphs of Hj in order to find the 

graph Gj, which maximizes the optimization score.

The algorithm stops, either if score(Gj)=score(Gj-1) and if Hj = Hj-1 or if score(Gj)=score(Gj-1) for a 
certain number of iterations. A crucial aspect of the procedure is the way the candidates are selected in 
the restrict phase. One requirement is that set of candidates of parents for a variable always includes the 
current parents. Therefore for each iteration we get at least a structure which is as good as the previous 
one, ensuring the termination of the algorithm. Furthermore, a new parent variable is chosen for each 
variable Xi based upon the current parent set of Xi, whereby the candidate parent is selected whose inclu-
sion into the family leads to the highest improvement of the score. Previous candidates of Xi which are 
not present in the parent set are discarded.

From an algorithmic point of view we note that the detection of directed loops doesn’t come for free. 
When using a static algorithm this can take up to O(n + m) steps where n is the number of nodes and m 
the number of edges in the graph. The cycle detection test is necessary for every operation which pos-
sibly can construct a cycle, i.e., the adding or reversing of an edge. For the SCA this would be performed 
in the maximization phase. Thus, rather than applying a static algorithm for detecting cycles it makes 
sense to consider using a dynamic algorithm such as the one of Marchetti-Spaccamela et al.(1996) or of 
Katriel and Bodlaender (2006). The property of these algorithms is that they maintain the topological 
order of nodes while edges are inserted and removed. The problem of topological sorting is related to 
directed cycle detection.

When we want to infer the structure of a dynamic Bayesian network, however, the test for acyclicity 
can be omitted: edges may be only directed from an earlier time point to a later time point. The cardinal-
ity of the neighborhood is always the same.

McMc in the Space of dags

When inferring the network structure from microarray data, the data usually is sparse, which means that 
the number of available samples is relatively small compared to the number of variables (genes). The 
probability distribution P(G|D) is then expected to have a wide shape, so no single network has a clear 
maximum score. Rather than that there can be networks whose scores are close to each other.

This suggests the idea to sample networks according to the posterior P(G|D), which essentially means 
that good models have higher chance to be sampled than models which explain the data poorly. From this 
set of sampled networks, interesting features can be extracted as formalized in Friedman et al. (1999). 
For instance, one could construct a weighted DAG in which the edges are weighted according to the 
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number of their occurrences in sampled DAGs. This way, a kind of ranking about the confidence of the 
edges can be obtained. Also more complicated features such as counting particular network motifs are 
conceivable. However, at first glance the sampling doesn’t seem to be possible due to the normalization 
constant in (4).

A solution to this problem was brought up by Madigan and York (1995) who adapted the Metropolis-
Hastings algorithm for process of learning Bayesian networks. As for the context of finding gene regulatory 
networks it has been for instance used by Husmeier (2003). First note that in general a time-homogeneous 
Markov chain is stochastic process over the space of models Gi which is defined as

P G = T G |G P G
n+ i

k
i k n k1 ( ) ( ) ( )å , 

where T(Gi | Gk) determines the probability of going into state Gi given that we are at state Gk. Under 
fairly mild conditions this converges to a stationary distribution P∞ uniquely defined by T from which 
we can sample from just by running the chain.

For learning structural properties of Bayesian networks the model space is made up of all possible 
DAGs with a fixed number of vertices. As above a transition is a small local change that leads to a graph 
in the neighborhood N(Gk). All we have to do is to define T such that the stationary distribution of the 
Markov chain P∞ equals the posterior P(G|D), that is:

P G | D = T G |G P G | D
i

k
i k k( ) ( ) ( )å . 

But this is the case if the so-called equation of detailed balance holds:

T G |G

T G |G
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Usually T(Gk | Gi) is composed as a product of a proposal probability Q(Gk | Gi) = |N(Gi)|
-1and an ac-

ceptance probability A(Gk | Gi). The intuition behind this is that first we randomly select a new structure 
following the proposal distribution and then accept it corresponding to the acceptance probability. The 
acceptance probability is determined as
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which, after applying Bayes’ theorem, becomes
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This means that one can also plug-in an arbitrary score and incorporate prior knowledge. Note that, 
if a uniform structural prior is assumed, then these priors can be cancelled out. Also note that, in case of 
a dynamic Bayesian network, the proposal distribution can also be cancelled out, as the neighborhoods 
are all equal in size.
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Using these properties, it is now possible to formulate the algorithm to sample the networks. First, 
we start with an arbitrary initialized network (e.g., an empty graph), say G0. Then, for i=1 to N, we

randomly select a structure • Gi
p from the proposal distribution Q(Gi|Gi-1)

accept the new model, i.e., • Gi = Gi
p, with probability A(Mi | Mi-1).

Before one can consider the Gi as proper samples, i.e., before the Markov chain reaches its stationary 
distribution, the chain has to be run several steps, though. This phase is also referred to as the burn-in 
phase of the Markov chain. This value and therefore the parameter N can go into the thousands or ten of 
thousands, but this highly depends on the size of the network and on the data. Often it makes sense to 
monitor the acceptance probability: if it is subject to high fluctuations, it is very unlikely that the chain 
has reached the equilibrium. In order to determine the confidence, it is also helpful to repeat the run for 
several times using different initialization settings.

McMc in the Space of the orders

So far, when we scored networks we dealt with fully specified network structures based upon DAGs. 
Another approach is to forget the structure for a moment and concentrate in a first step on the topologi-
cal order of the n nodes as suggested by Friedman and Koller (2000). The authors showed how one can 
compute the posterior of network structures using this order. Furthermore, it is possible to apply other 
algorithms that benefit from this information in the construction of the true structure, such as the already 
mentioned K2 algorithm. But it could be also interesting per se, as the order can indicate genes upstream 
the regulation process, for example, providing feasible candidates for perturbation experiments.

Denote by O the order of the nodes. Analogous to the previous section, we want to sample from the 
posterior P(O|D). In order to do so, we construct a Markov chain which consists of all n! possible orders 
such that the Markov chain has the stationary distribution P(O|D). Denote by Q(O’|O) the probability 
of moving from O to O’. This could involve flipping the order of two randomly selected nodes, i.e., we 
change the order (i1,...,ij,...ik,...in) to (i1...ik...ij...in). We accept the proposal with probability of
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The relation of P(O) against P(O’) can be again neglected, if no prior information is available, i.e., 
all orders are equally possible. The likelihood P(D|O) can be indeed calculated in a closed form as given 
by Friedman and Koller (2000).
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where Ui,O contains the sets of all parents, which can precede Xi in the given Order O. The cardinality 
of the elements of Ui,O can be restricted to not exceed a certain size of k, meaning that the maximum 
fan-in of gene represented by Xi is k.

Structural Priors

The term P(G) allows the user to favor some models over others to the extent that graphs with certain 
edge configurations, i.e., that lack of or feature a particular edge, are assigned a higher probability. This 
way, information can be integrated which is not derivable by microarray data alone.

Sequence based properties of the involved genes can be seen as one source of a prior. That is, if a 
promoter of a gene X is predicted to have binding sites of a product of another involved gene Y it can 
be assumed that the final network consist an directed edge from Y to X. The existence of such predicted 
relationships is used to build a prior graph. A simple but rigid incorporation of such links would be to 
attribute a probability of zero to those structures which lack the links which are in the prior graph as for 
instance done in Hartemink et al. (2002). A procedure which adheres to the noisy nature of the predicted 
binding sites was used in Husmeier (2003): basically for every agreement between the prior graph and 
G on an edge the prior of G is weighted by a value of φ>1. A more involved method is due to Segal et 
al. (2002).

Other priors involve limitations on the maximum fan-in of genes or favor net conformations such that 
genes encoding interacting proteins are more likely to be regulated by a common transcription factor. 
The Bayesian framework is quite flexible in this respect, and it is possible to incorporate almost any 
kind of biological information into the prior.

time lags

In the setting of inferring the network structure from a time series, for which one can use the DBNs, 
the incorporation of knowledge about time lags can improve the quality of the network considerably. 
Hence an important issue of any inferring algorithm applied on time series is the capability to detect 
the time a transcription factor needs to influence the transcription of its target gene in order to take the 
full advantage of the data.

In the following we briefly describe a method which can be used to determine the time lags. The 
method is due to Zou and Conzen (2005). They define that a gene j may be regulated by another gene 
i if its expression values changes after the value of gene i changed. Gene i is then called a potential 
regulator of j.

The first part of the procedure involves finding all potential regulators of any gene whereby a gene’s 
expression is considered as changed when it reaches a certain threshold. The biological relevant tran-
scription time lag between a regulator i and its target gene j is defined as the difference between the 
time points of initial expression change of i and j. The second part of the algorithm determines for every 
potential regulator-target pair the time lag according to this definition. This information is then used to 
set up the dynamic Bayesian network consisting of multiple time points.
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assessing Performance

Of course, running any algorithm on any data will always produce some models. But how much reality 
is really reflected in such model?

A major difficulty in assessing the performance of algorithms for reverse engineering GRNs is the 
fact that our knowledge about such networks is far from complete. Therefore, in most cases no gold 
standard is available against which the results of network structure inference could be compared. How-
ever, it is possible to use literature-derived regulatory interactions for comparison of results (e.g., Zou 
and Conzen, 2005). For example, typically one asks how many known interactions are identified as 
edges in the inferred network structure. Caution is needed, though, simply due to the fact that if an edge 
between two genes is predicted by the reverse engineering algorithm but was not previously known in 
the scientific literature, it may not be possible to distinguish between a lead towards a new discovery 
(the actual goal of the analysis!) and a false-positive prediction.

Another approach was performed by Friedman and coworkers (2000), taking advantage of the boot-
strap method to generate multiple “perturbed” versions of the original dataset which still are reasonable 
models of the data, performing network inference, and determining the proportion of experiments in 
which a feature such as an edge between two genes is identified. In one experiment, the authors showed 
that analysis using a multinomial model on randomized data did not identify any feature in over 80% 
of the bootstrapped trials. They concluded that features identified in a greater proportion of trials using 
the original data were unlikely to represent mere artifacts.

A number of groups simulated GRNs to generate data for Bayesian network inference. In this case, 
since the structure of the “true” network is a given, it is possible to calculate the specificity and sensitiv-
ity of structural inference methods. Multiple approaches for simulating data have been proposed. One 
simple method is to construct a complete Bayesian network to reflect either known or synthetic networks 
(Husmeier 2003; Le et. al 2004; Geier et al. 2007). Then, as the structure as well as the parameters is 
known, we sample data according to this model. We then apply the inferring algorithm to this data. By 
determining the agreement of the resulting model to the original one we can assess the quality of the 
algorithm in certain respects, for instance ability to find the correct network subject to the number of 
data samples or to the amount of prior information.

Several groups used more realistic modeling procedures to generate synthetic network data. One 
approach is due to Zak and co-workers (2001). A small sized network described by chemical reactions 
consisting of a certain amount of genes, and includes transcription factor binding, transcription, transla-
tion, as well as protein-protein interaction events. Following the reaction-rate approach, these reaction 
equations can be shaped into a set of ordinary differential equations (ODEs). These can be integrated 
using an arbitrary initial value to obtain a function of the concentration against time for every involved 
species.

One then can imitate a typical microarray experiment, in which merely the abundance of the mRNA 
species can be measured, by only considering the mRNA profiles. One selects certain time points as one 
would in the real experiment. One can then feed the data obtained from the ODE model to the inference 
algorithm. As above we compare the resulting model with the original model in aspects of our choice.

In one elegant experiment, Husmeier (2003) adapted the network constructed by Zak et al. (2001) 
to include an additional 41 unconnected genes which were up- and down-regulated at random, and at-
tempted to infer the original network structure from the simulated data using a DBN approach. Although 
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it was not possible to recover all true edges without false positive edges, the results did suggest that 
Bayesian network analysis could be used to make searching for novel genetic interactions significantly 
more effective than a search from tabula rasa (Husmeier 2003).

concluSionS and future reSearch directionS

Bayesian networks provide an intuitive way to describe relationships in the settings of gene regulatory 
networks and have become a popular tool for attempts at reverse engineering GRNs. For instance, Zhu 
and co-workers (2006) predicted a link between glucose repression and the YHB1 gene, which they 
verified by subsequent experiments.

An important open question for Bayesian network analysis and also other procedures for network 
structure inference is how to be measure performance of the algorithms and thus determine which al-
gorithms are superior for application in biology. Current biological knowledge is far from complete; 
For instance, it has been estimated that only about 10% of all human protein-protein interactions are 
known (Hart et al., 2006). Therefore we think it is very important to develop modeling techniques using 
techniques such as ODEs, the stochastic Master equation, or hybrids, to develop systematic and realistic 
benchmarks. Other areas of research likely to be fruitful include the development of methods to take 
the different time courses of different biochemical reactions into account, i.e., better ways of capturing 
dependencies over multiple time points of a series of experiments. As new forms of high-throughput 
data become available (for instance, genome-wide binding data resulting from ChIP-Chip experiments), 
it will be important to incorporate this knowledge into appropriate priors.
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au/bai/book/appendix_b.pdf.



78

Bayesian Networks for Modeling and Inferring Gene Regulatory Networks

A fairly complete introduction to the theory of Bayesian networks is provided in the book “Learning 
Bayesian Networks” by Richard E. Neapolitan published by Prentice Hall in April 2003.

A nice free software package for both Bayesian network construction and inference is GeNIe, developed 
by the Decision Systems Laboratory group at the University of Pittsburgh. It is available from http://
genie.sis.pitt.edu/ and requires a Windows operating system.

The homepage of our group dealing with gene regulatory networks is located at http://compbio.charite.
de/genereg/. For instance, we provide the model of hepatic glucose homeostasis process ready to be 
fed into Genie.

With WinMine, which is a collection of tools rather than a single program, you can create models of 
Bayesian networks from discrete data. It is available from http://research.microsoft.com/~dmax/winmine/
tooldoc.htm and requires a Windows operating system.

key terMS and definitionS

Bayesian Networks: A Bayesian network is a probabilistic graphical model. It contains of a graph 
whose vertices represent variables, for instance random variables. The directed edges of the graph en-
code direct dependency relation of one variable to another. Bayesian networks can be used to predict 
the state of variables, when other variables are fixed. In addition, Bayesian networks can be learned 
from sampled data.

Bayesian Scoring Metrics: A Bayesian Scoring Metric is a function that scores how well a given 
graph explains given data.

MCMC: The MCMC (Markov chain Monte Carlo) is a procedure which allows sampling instances 
from complex probability distribution. With respect to GRNs MCMC is used to sample from the space 
of all DAGs whereby the sampling scheme follows a distribution that is based on a Bayesian scoring 
metrics. Thus more probable DAGs, that is, DAGs that may better explain the data, are sampled more 
often and therefore one can construct a likely network structure.

Priors: A prior can be specified during a learning procedure that takes advantage of Bayes’ theorem 
and may represent properties that are already known and therefore don’t need to be rediscovered. It is 
especially useful when data is sparse, which is the case in micro array analysis, as it can significantly 
reduce the space of all DAGs that is used during the search.

Sparse Candidate Algorithm: The SCA is an approximation algorithm for the problem of finding 
a structure of a Bayesian network that maximizes a given Bayesian scoring metrics. It employs the 
feature that biological networks are usually sparse and consists of two phases, the restriction and the 
maximization phase.
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In this chapter, we review the current state of Gene Regulatory Network inference based on ‘Genetical 
Genomics’ experiments (Brem & Kruglyak, 2005; Brem, Yvert, Clinton & Kruglyak, 2002; Jansen, 2003; 
Jansen & Nap, 2001; Schadt et al., 2003) as a special case of causal network inference in ‘Systems 
Genetics’ (Threadgill, 2006). In a Genetical Genomics experiment, a segregating or genetically random-
ized population is DNA marker genotyped and gene-expression profiled on a genomewide scale. The 
genotypes are regarded as natural, multifactorial perturbations resulting in different gene-expression 
‘phenotypes’, and causal relationships can therefore be established between the measured genotypes 
and the gene-expression phenotypes. In this chapter, we review different computational approaches to 
Gene Regulatory Network inference based on the joint analysis of DNA marker and expression data and 
additionally of DNA sequence information if available. This includes different methods for expression 
QTL mapping, selection of regulator-target pairs, construction of an encompassing network, which 
strongly constrains the network search space, and pairwise and multivariate methods for Gene Regulatory 
Network inference, such as Bayesian Networks and Structural Equation Modeling.
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introduction

A fruitful abstraction of biochemical systems is that of ‘networks’ (Barabasi & Oltvai, 2004; Dorogovtsev 
& Mendes, 2003; Newman, 2003; Pieroni et al., 2008; Watts & Strogatz, 1998). Such networks include 
Transcription Regulatory Networks (TRNs) (Lee et al., 2002; Luscombe et al., 2004; Shen-Orr, Milo, 
Mangan & Alon, 2002), Protein Interaction Networks (Pieroni et al., 2008; Schwikowski, Uetz & Fields, 
2000), Metabolic Networks (Jeong, Tombor, Albert, Oltvai & Barabasi, 2000; Wagner & Fell, 2001), 
Gene Regulatory Networks (GRNs) (Brazhnik, de la Fuente & Mendes, 2002; D’Haeseleer, Liang & 
Somogyi, 2000) (see also A. de la Fuente – this book}, and Phenotype Networks (Nadeau et al., 2003). 
Inferring, or ‘reverse engineering’, such biological networks is therefore currently an area of research 
receiving a lot of interest and attention. It advances our knowledge about the integrated biochemical 
machinery of living cells (systems biology) and our understanding of general features of complex traits 
(complex trait biology). Constructing phenotype networks provides information about the functionality 
of complex systems (such as cardiovascular function) at the organismal level, and constructing GRNs 
furthers our understanding of the molecular basis of complex traits and diseases (Chen et al., 2008; Lum 
et al., 2006; Schadt et al., 2005). GRNs have other applications (Brazhnik, de la Fuente & Mendes, 2002), 
including the discovery of direct drug targets (di Bernardo et al., 2005; Gardner, di Bernardo, Lorenz & 
Collins, 2003). It has been shown that classical concepts from genetics, such as dominance and epistasis, 
can be readily understood in terms of networks and their properties (Kacser & Burns, 1981; Omholt, 
Plahte, Oyehaug & Xiang, 2000).

Many different experimental and computational approaches to GRN inference have been proposed. 
Data from experiments without targeted perturbations, or data from observational studies, only allow for 
inference of undirected Co-Expression Networks that are based on a measure of association between the 
expression profiles of pairs of genes (e.g.de la Fuente, Bing, Hoeschele & Mendes, 2004; Ghazalpour 
et al., 2006; Schäfer & Strimmer, 2005a,, 2005b; Wille & Buhlmann, 2006; Wille et al., 2004; Zhang 
& Horvath, 2005). In particular, one can construct an Undirected Dependency Graph (UDG), which 
contains edges only between those genes that interact directly, and which can be estimated based on 
partial correlations (de la Fuente, Bing, Hoeschele & Mendes, 2004; Shipley, 2002). The construction 
of a UDG can be a first step in a regulatory network analysis of a Genetical Genomics or Systems Ge-
netics experiment.

A strategy of targeted perturbation is required to enable causal inference needed for the identification 
of the directed structure of GRNs. In such a strategy, targeted perturbations are created and responses 
of the gene-expression levels to the perturbations are measured. It has been shown that this approach 
can provide a reliable identification of GRNs (Brazhnik, de la Fuente & Mendes, 2002; de la Fuente, 
Brazhnik & Mendes, 2002; Gardner, di Bernardo, Lorenz & Collins, 2003; Wagner, 2001). There are 
two major types of targeted perturbation experiments. One approach uses one-at-a-time, specific per-
turbations in the expression of individual genes (e.g.Hughes et al., 2000; Mnaimneh et al., 2004). These 
experimental perturbations are relatively expensive and difficult to perform, especially in quantities 
required for comprehensive GRNs identification. Such perturbations (knock-outs, over-expressions) 
also tend to have strong biological effects, making it potentially difficult to distinguish between ‘normal’ 
functional relationships and relationships that emerge when the ‘normal’ functionality of a system is 
compromised.

The second type of targeted perturbation experiments, Genetical Genomics and Systems Genetics, uses 
naturally occurring, multi-factorial perturbations in segregating or genetically randomized populations 
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(Jansen, 2003; Jansen & Nap, 2001). Genetical Genomics is also referred to as ‘the genetics of gene-
expression’ (Brem & Kruglyak, 2005; Brem, Yvert, Clinton & Kruglyak, 2002; Emilsson et al., 2008; 
Schadt et al., 2003), while Systems Genetics is defined more generally as the integration and anchoring 
of multi-dimensional data-types to underlying genetic variation (Threadgill, 2006). Genetical Genomics 
approaches integratively analyze gene-expression data and genotype data (measurable DNA sequence 
polymorphisms) and make use of DNA sequence information when available. DNA sequence polymor-
phisms that are identical to or genetically closely linked with some of the measured polymorphisms have 
been found to be an important source of gene-expression variation (e.g.Brem & Kruglyak, 2005), and 
hence they are the main reason why we can establish cause-effect relations. Multi-factorial perturbations 
offer an important advantage: “Any conclusion … has a wider inductive basis when inferred from an 
experiment in which the quantities of other ingredients have been varied …” (Fisher, 1954).

In this chapter, we review the current literature on GRN inference based on Genetical Genomics 
experiments and we indicate directions for further research.

background

In a Genetical Genomics experiment, a population for genetic mapping (a ‘mapping population’) con-
sisting of hundreds of individuals is expression profiled for (ten) thousands of genes and genotyped for 
hundreds to thousands of genetic markers (measurable DNA polymorphisms). In yeast (Brem & Kruglyak, 
2005; Brem, Yvert, Clinton & Kruglyak, 2002), plants (Keurentjes et al., 2007; West et al., 2007) and 
animal model systems (e.g. mouse) (Bystrykh et al., 2005; Schadt et al., 2003), such populations can 
be created by crossing two or more inbred strains and include backcrosses, Recombinant Inbred Lines 
(RILs), intercrosses, double haploids, etc.. For humans (Goring et al., 2007) and some farm animals, 
creating such crosses is not feasible, but existing segregating populations can be used, including large 
pedigrees and collections of ‘unrelated’ individuals. The variation in the expression levels of genes in a 
segregating population is influenced by the variation (genotypes) in many DNA polymorphisms across 
the genome (e.g. microsatellites, single nucleotide polymorphisms (SNPs) or Single Feature Polymor-
phisms (SFPs) to be discussed later). Establishing causal links between the genotype at each marker and 
one or more phenotypes of interest is known in genetics as Quantitative Trait Locus (QTL) mapping 
(Darvasi, 1998; Lander & Schork, 1994). QTL mapping identifies chromosomal regions (QTLs) that 
causally affect a phenotypic trait under consideration. Statistically, a QTL is a confidence interval for the 
genomic location of a DNA polymorphism that is causal for the phenotype of interest. This confidence 
interval is typically 1 to 20 centi Morgans (the unit of genetic distance whose relationship to physical 
distance varies between organisms) in length and hence can contain tens to hundreds of candidate causal 
polymorphisms. Because in Genetical Genomics the gene-expression levels are considered as phenotypic 
traits, the identified QTLs are referred to as ‘expression-QTLs’ or ‘eQTLs’. Similarly, in the remainder 
of this chapter we will refer to gene-expression levels as ‘expression traits’ or ‘etraits’.

Currently, mainly two Genetical Genomics datasets have been analyzed in the literature, yeast (Brem 
& Kruglyak, 2005; Brem, Yvert, Clinton & Kruglyak, 2002) and mouse (Schadt et al., 2005), but ad-
ditional Genetical Genomics datasets have already been created for C. elegans (Li et al., 2006b), A. 
thaliana (DeCook, Lall, Nettleton & Howell, 2006; Keurentjes et al., 2007; Vuylsteke, van Eeuwijk, Van 
Hummelen, Kuiper & Zabeau, 2005; West et al., 2007), fruit fly (Anholt et al., 2003), human (Cheung 
et al., 2003; Cheung et al., 2005; Goring et al., 2007), and soybean (Zhou et al., 2008).
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The widely used yeast data were created by crossing two genetically diverse yeast strains (Brem & 
Kruglyak, 2005; Brem, Yvert, Clinton & Kruglyak, 2002; Yvert et al., 2003). For a population of 112 
haploid offspring, the gene-expression levels of 5736 genes and the genotypes of 2956 genetic markers 
were measured (Brem & Kruglyak, 2005). The yeast marker map in this study is very dense; for 90% 
of adjacent markers fewer than 10 recombinations occurred (Storey, Akey & Kruglyak, 2005). Brem et 
al. (Brem & Kruglyak, 2005) found that 3,546 gene-expression levels have a heritability of higher than 
69%, meaning that 69% or more of their variance can be explained by genotypic variation. The median 
contribution to heritable expression variability by of a single identified QTL was 27%, and only 23% of 
all etraits were affected by a single QTL that explained more than half of the genetic variance, indicating 
that most expression traits are under the control of multiple polymorphisms (Brem & Kruglyak, 2005). 
The marker genotypes thus can be seen as naturally occurring ‘genetic perturbations’ responsible for (at 
least a large part of) the variation in gene-expression levels. In Figure 1 we present a nice illustration of 
the procedure for creating and using Genetical Genomics data, which we borrowed from the review on 
eQTL mapping by (Rockman & Kruglyak, 2006).

The result of eQTL mapping (see below for different approaches) is the knowledge that certain genomic 
regions likely have causal effects on the expression levels of particular genes. Then, genes located in an 
eQTL region can be identified as candidate regulators that are potentially responsible for the observed 
causal effects of the eQTL on the affected etraits. Since eQTLs can have wide confidence intervals, there 
may be many candidate regulators in a single eQTL. For the purpose of candidate regulator selection, 
several approaches have been proposed, including partial correlations (Bing & Hoeschele, 2005), between-
strain SNPs followed by selection using Bayesian Networks (Li et al., 2005) and multiple-regression 
tests (Liu, de la Fuente & Hoeschele, 2008). The eQTL analysis and the candidate regulator identifica-
tion provide strong constraints on the space of all possible GRNs underlying the data. The final task 
in inferring GRNs from Genetical Genomics data is to search for one or more optimal GRN structures 
within the constrained search space. Bayesian Networks have been used for this purpose (Lum et al., 
2006; Zhu et al., 2004; Zhu et al., 2007). Bayesian networks use partially directed graphical models to 
represent conditional independence relationships among variables of interest and are suitable for learning 
from noisy data (e.g. microarray data) (Pearl, 2000; Spirtes, Glymour & Scheines, 1993). Unfortunately, 
Bayesian Networks are acyclic by definition and can thus not discover important feedback processes 
occurring in GRNs. Recent papers point to the need for methods that can infer cyclic networks, note the 
limitation of the Bayesian network approach (Lum et al., 2006) (see also de la Fuente – this book), and 
show better performance of a linear regression method over a Bayesian network algorithm most likely 
due to the presence of cycles (Faith et al., 2007). Therefore, Liu et al. (Liu, de la Fuente & Hoeschele, 
2008) use a network model selection approach based on Structural Equation Modeling (SEM), which 
is related to Bayesian Network analysis, but it can model cyclic networks.

The approach summarized above for GRN inference consists of three steps: 1) eQTL mapping, 2) 
candidate regulator selection, and 3) refinement of the network structure. Below we will discuss each 
of the steps in detail.

exPreSSion-Qtl (eQtl) MaPPing

eQTL mapping is a major component of GRN inference in Genetical Genomics experiments. The qual-
ity of the network inference (measured for example as the false positive and false negative rates for the 
edges in the network) thus depends critically on the eQTL mapping accuracy.
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Figure 1. The experimental design for a cross between two yeast strains; B: At a given genomic loca-
tion, the samples are separated according to the inherited marker alleles, and linkage is declared if the 
groups differ significantly in expression; C: an actual linkage from a yeast cross; D: The eQTLs can be 
detected using molecular genetics tools. (From Rockman and Kruglyak, 2006. Reprinted with permis-
sion from the Publisher.)
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Single-etrait-Single-eQtl approach

The most straightforward approach to eQTL mapping is to use existing QTL mapping methods that have 
been devised for the analysis of a single or of a small number (say 2 to 20) of correlated phenotypes. 
The simplest method is to test the effect of each genetic marker in marker analysis (or of each candidate 
QTL position in interval mapping; see (Doerge, 2002; Doerge, Zeng & Weir, 1997) for reviews of these 
mapping methods) on each etrait individually. This method has been applied by several authors (e.g.Bing 
& Hoeschele, 2005; Brem & Kruglyak, 2005; Li et al., 2005; Liu, de la Fuente & Hoeschele, 2008; 
Yvert et al., 2003; Zhu et al., 2004) usually in combination with a significance threshold obtained by 
making adjustments for multiple testing based on the false discovery rate (FDR) control (e.g.Benjamini 
& Hochberg, 1995; Storey & Tibshirani, 2003).

This approach can produce large confidence intervals (in particular due to the presence of multiple 
linked QTLs), which can be at least partially remedied by using sliding three-marker regression (Thal-
ler & Hoeschele, 2000) or composite interval mapping (CIM) (Jansen, 1993; Zeng, 1993; Zeng, 1994). 
Achieving the smallest possible confidence intervals is important to minimize the number of candidate 
gene regulators in each QTL region. Moreover, this approach has limited power, due to the large number 
of tests involved and the fact that pairwise relationships may not be strong enough and higher order 
relationships may need to be evaluated (although at the present time the evidence for the presence of 
interactions (epistasis) among eQTL is not strong). The simplest QTL (or here eQTL) mapping method, 
single marker regression, is based on the model

y b b x
in i ij jn in
= + +

0
e          (1)

where yin is the etrait value for gene i and individual n of the segregating population, xjn the genotype 
code for marker j and individual n, bi0 represents a mean expression value of gene i in the segregating 
population, bij is the (additive) effect of marker j on etrait i, and εin is a residual etrait value not explained 
by the effect of the marker. Based on this model a statistical test is performed to determine whether the 
marker effect bij is nonzero. This analysis is repeated for every marker j in a set of markers covering the 
genome. With this analysis, when there is an eQTL located on chromosome c, then the effect of every 
marker j located on chromosome c may be found to be nonzero. When using sliding three-marker regres-
sion or composite interval mapping, model (Eq. 1) is expanded to also include the effects of two markers 
whose genome positions flank the position of marker j, while only the effect of marker j is tested. Then, 
the effect of marker j is expected to be nonzero only if an eQTL is located between the two flanking 
markers, allowing for a more precise determination of the position of eQTLs in particular when there 
are multiple eQTLs on the same chromosome (when there are multiple eQTL on the same chromosome 
and only one marker is fitted in the model, then it is well-known that estimates of the eQTL position, i.e. 
determination of the marker nearest to an eQTL, can be biased). The choice of the flanking markers for 
each marker j is not a trivial task and requieres a compromise between maintaining sufficient power to 
detect a true effect of marker j and sufficient proximity of the flanking markers to marker j to minimize 
bias in the estimated eQTL position.

To determine which markers have nonzero effect bij on any etrait, one must choose a significance 
threshold by accounting for multiple testing across genes (etraits) and markers (eQTL positions). The 
False Discovery Rate (FDR) (Benjamini & Hochberg, 1995) has been a popular criterion for multiple 
testing control in standard QTL analyses and in eQTL analyses. However, the use of this criterion in 
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eQTL analysis is problematic, as described by Chen and Storey (Chen & Storey, 2006), essentially due 
to the strong correlation in signal among all marker tests on a chromosome containing at least one eQTL. 
Keurentjes et al. (Keurentjes et al., 2007), analyzing a Genetical Genomics dataset from an Arabidop-
sis RIL population, determined by simulation that achieving FDR control near the 0.05 level actually 
required using a more stringent (0.01) threshold. Alternatively, researchers have chosen to control the 
Family-Wise-Error Rate (FWER) (often referred to as the genome-wise error rate in the context of QTL 
mapping) separately for each etrait (by estimating adjusted, genome-wise p-values using data permutation 
(Churchill & Doerge, 1994)), and then to apply FDR control across the etraits (e.g.Brem & Kruglyak, 
2005; Brem, Yvert, Clinton & Kruglyak, 2002; Chesler et al., 2005; Hubner et al., 2005). We applied 
this more conservative approach recently to a Genetical Genomics experiment with 300 RILs, 28395 
etraits and 941 markers. We retained either the single top marker, or the top two, top three or top five 
markers for each etrait, and we applied FDR control to the resulting list of 1×28935, 2×28935, 3×28935 
and 5×28935, respectively, genome-wise p-values. For an FDR level of 0.05 (0.01), we identified 21361 
(21361), 31719 (30026), 35328 (23313), and 23453 (16970) eQTLs. These results show that including 
more than 2 or 3 candidate eQTL per etrait in the FDR control step actually led to a reduction in the 
total number of eQTL identified, indicating the limited power of this approach.

Multiple-etrait-Single-eQtl approach

In standard multiple trait QTL mapping, the effect of each marker or QTL position on a set of correlated 
traits is evaluated. Multi-trait mapping can be more powerful than single trait mapping for detecting 
pleiotropic QTLs (e.g.Jiang & Zeng, 1995). However, this approach is computationally more demanding 
even for small numbers of traits and it is infeasible for (ten) thousands of etraits. It has been shown that 
using a small number of ‘PC traits’ (obtained by Principal Component Analysis of the original traits) is 
very effective for QTL mapping, when the original traits are (highly) correlated (in groups of traits). The 
PC traits are uncorrelated and can therefore be analyzed individually, and essentially the same QTL are 
identified by single trait analyses of few PC traits and by multi-trait analysis of the original traits (Jiang 
& Zeng, 1995; Mahler et al., 2002; Mangin, Thoquet & Grimsley, 1998). Therefore, the correlated nature 
of the large number of etraits can be utilized by deriving a much smaller number of (approximately) 
uncorrelated composite etraits. Several groups have used Principal Component Analysis, Hierarchical 
Cluster Analysis and K-means clustering individually or in combination to define composite etraits 
used to identify eQTLs with pleiotropic effects (Boomsma, 1996; Comuzzie, Mahaney, Almasy, Dyer 
& Blangero, 1997; Lan et al., 2003; Liu, de la Fuente & Hoeschele, 2008; Zeng et al., 2000).

Another approach to utilize correlated etraits when performing eQTL mapping for a particular etrait 
was suggested by (Pérez-Enciso, Quevedo & Bahamonde, 2007), proposing to include other etraits as 
covariates in the model. They showed that this approach can increase the power of eQTL identification 
and that the presence of other etraits in the model can strongly affect the results - some eQTL positions 
may be shifted, some eQTL may disappear, and some new eQTL may appear. These authors use infor-
mation criteria for variable selection but other approaches could be used as well.

Multiple-eQtl approaches using information across etraits

The methods described above are essentially applications of standard QTL mapping methods to eQTL 
mapping. The method of Kendziorski et al. (Kendziorski, Chen, Yuan, Lan & Attie, 2006) is probably 
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the first method specifically designed for eQTL mapping, but it has the disadvantage of mapping at most 
one eQTL per etrait. The power of eQTL mapping can be increased by simultaneous mapping of two 
or more eQTL, due to a reduction in the residual variance of the multiple QTL model, and because the 
multiple QTL model can incorporate the effects of interactions among eQTL that may sometimes be more 
important than their main effects. Multiple eQTL analysis can be performed by a multi-dimensional search, 
by simultaneously fitting the effects of all markers (or eQTL positions), or by a conditional or sequential 
approach, where a single QTL is identified first for a given trait, followed by a search for a second QTL 
based on a model including the already identified QTL and any second candidate QTL. An extension of 
these methods to the large number of etraits is not trivial and must utilize information across all etraits to 
be as powerful as possible. Storey et al. (Storey, Akey & Kruglyak, 2005) proposed a sequential method 
for identifying up to two eQTL per etrait and compared it with a complete two-dimensional search. 
With this method, some eQTL were identified that were not found with the single-etrait-single-marker 
approach (Brem, Storey, Whittle & Kruglyak, 2005; Storey, Akey & Kruglyak, 2005).

Jia and Xu (Jia & Xu, 2007) proposed a Bayesian model that allows for multiple eQTLs and utilizes 
information across transcripts. Their Bayesian method uses a well-known mixture prior distribution that 
explicitly models the null (zero effect) and alternative (non-zero effect) hypotheses for the effect of each 
marker on each etrait. It is essentially an extension of a well-known Bayesian variable selection method 
called Stochastic Search Variable Selection (McCulloch, 1996), which has previously been applied to 
QTL mapping (e.g.Yi, George & Allison, 2003, 2004), to eQTL mapping with a large number of etraits. 
However, Lucas et al. (Lucas, Carvalho, Wang, Bild & West, 2006) propose a modified mixture prior 
that may better account for sparsity in the analysis of a very large number of etraits. There are also 
non-Bayesian shrinkage methods for variable selection, including the Lasso (Tibshirani, 1996) and the 
Elastic Net (Zou & Hastie, 2005).

Multiple-etrait-Multiple-eQtl approaches based on dimension reduction

Methods that model individual etrait – eQTL associations are expected and have been found to have 
relatively low power, as stated earlier, and can be improved by utilizing information across etraits and 
fitting multiple markers or eQTLs simultaneously. However, such methods are computationally de-
manding and might still miss markers or eQTLs having fairly weak but consistent effects on a group 
of etraits that are also jointly affected by several other markers. Canonical Correlation Analysis (CCA) 
is a well-known multivariate statistical method that assumes two sets of normally distributed variables 
and finds a linear combination of the original variables in the first set and another linear combination 
in the other set that have the maximum correlation among all linear combinations. This pair of linear 
combinations is the first pair of canonical variates. Additional pairs of canonical variates that are maxi-
mally correlated after the previously identified pairs are also determined such that canonical variates 
from different pairs are uncorrelated.

Application of this classical CCA to the two sets of variables representing the etraits and the markers 
(or eQTL candidate positions) is not straightforward for several reasons. First, calculation of the canoni-
cal variates requires the estimation of the covariance matrices within and between sets, but the standard 
estimator of these covariance matrices fails because sample size is usually much smaller than the number 
of variables in each set, requiring some type of regularization. Secondly, the marker variables are discrete 
rather than normally distributed. Third, classical CCA is well-known to overfit small datasets, and hence 
a good tool for selecting the number of canonical variate pairs and for avoiding spurious correlations is 
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needed. Fourth, the results of classical CCA would be difficult to interpret, as all variables contribute 
to the linear combinations (as for PC analysis applied to the entire set of etraits (Liu, de la Fuente & 
Hoeschele, 2008)). Recently, several modifications of the classical CCA to identify associations among 
a set of etraits and a set of markers have been proposed (Beyene et al., 2007; Parkhomenko, Tritchler & 
Beyene, 2007; Waaijenborg, Verselewel de Witt Hamer & Zwinderman, 2008) that overcome some of the 
stated problems by using penalized versions of CCA. Further adaptations of CCA may be obtained based 
on a probabilistic interpretation of CCA (e.g.Wang, 2007). Other dimension-reduction methods for two 
sets of variables exist, but they have not yet been applied to Genetical Genomics, to our knowledge.

eQtl Mapping using Sequence information

The availability of sequence information implies that we know the physical location of the markers and 
the expression profiled genes. This knowledge allows us to perform eQTL mapping much more effectively 
by taking into account two distinct types of genetic regulation: cis- and trans-regulation. In the case of 
cis-regulation, a cis-eQTL affects a particular etrait X and is located at the physical location of gene X 
(the gene coding for etrait X) on a chromosome. The polymorphism of this cis-eQTL likely corresponds 
to a promoter region polymorphism in gene X (Doss, Schadt, Drake & Lusis, 2005; Jansen, 2003; Jansen 
& Nap, 2001; Liu, de la Fuente & Hoeschele, 2008; Rockman & Kruglyak, 2006; Ronald, Brem, Whittle 
& Kruglyak, 2005). The eQTL that cis-affects etrait X will have an indirect effect on the expression of 
those genes that are regulated by gene X (Doss, Schadt, Drake & Lusis, 2005). Such indirect effects 
have been referred to as cistrans effects (Kulp & Jagalur, 2006; Liu, de la Fuente & Hoeschele, 2008). 
Trans-eQTLs influence the expression levels of genes, but do not need to be co-located with any of these 
genes. A trans-eQTL likely is a coding region polymorphism in a regulator gene (Jansen & Nap, 2001; 
Liu, de la Fuente & Hoeschele, 2008; Rockman & Kruglyak, 2006; Yvert et al., 2003). While a trans-
eQTL does not affect the expression level of the regulator gene, the coding region polymorphism affects 
the kinetic properties of the protein encoded by the regulator gene, which in turn affects the expression 
levels of the target genes. Since by definition the location of a cis-eQTL must physically coincide with 
the location of the gene whose etrait is affected, only the marker(s) closest to the location of an etrait’s 
gene are tested to detect cis-eQTLs (Carlborg et al., 2005; Doss, Schadt, Drake & Lusis, 2005; Ronald, 
Brem, Whittle & Kruglyak, 2005). For network inference, finding cis-linked etraits by itself is not very 
informative. However, as shown on mouse data (Doss, Schadt, Drake & Lusis, 2005), the secondary 
targets of the cis-eQTLs, or the ‘cistrans’ regulated etraits, can be obtained by testing the effects of the 
identified cis-eQTL regions on all other etraits.

Trans-regulated target etraits are affected by both the eQTL genotype and the etrait of the regulator 
gene simultaneously. Therefore, it was proposed (Kulp & Jagalur, 2006; Liu, de la Fuente & Hoeschele, 
2008) that, in order to specifically detect trans-eQTLs, in addition to the eQTL effect, the etrait of an 
associated candidate regulatory gene should be included as a covariate in the mapping model. In this 
way, eQTL mapping and regulator-target pair identification are incorporated in one step. Kulp and 
Jagalur performed interval mapping for any etrait i with a model including the effects of another etrait 
j, the effect of an eQTL at the physical location of gene j, and the etrait-by-eQTL interaction (Kulp & 
Jagalur, 2006). Liu et al. (Liu, de la Fuente & Hoeschele, 2008) performed trans-eQTL mapping by also 
including the etrait covariate of a candidate regulator gene associated with a candidate trans-eQTL, but 
they used marker regression and performed an Intersection-Union-Test (IUT) (Casella & Berger, 1990; 
Roy, 1957) to determine whether the eQTL genotype and the etrait of the candidate regulator gene both 
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significantly affect the target etrait, in whch case a trans-regulation was declared. Analyzing the yeast 
dataset of Brem and Kruglyak (Brem & Kruglyak, 2005), it was found that the etrait-by-eQTL interac-
tion was rarely significant and essentially ignorable. While Liu et al. (Liu, de la Fuente & Hoeschele, 
2008) found that this form of trans-eQTL mapping considerably increased the power of eQTL mapping, 
(Mancosu et al., 2008) further improved power by including in the trans-eQTL mapping model not only 
the etrait covariate for regulator gene j associated with the trans-eQTL, but also the effect of a cis-eQTL 
affecting target gene i.

genetic Markers for eQtl Mapping

In a Genetical Genomics experiment, a segregating population of hundreds of individuals must be both 
expression profiled and marker genotyped on a genome-wide scale. Both types of large-scale profiling 
are expensive and time consuming. It was therefore a major breakthrough when it was realized that the 
expression data obtained by using Affymetrix chips could be used for in silico genome-wide marker 
genotyping by identifying so-called Single Feature Polymorphisms (SFP). Several groups, including 
our own, have now used SFP markers for eQTL mapping and the current evidence suggests that SFPs 
are reliable, provide quite dense coverage of the genome, and integrate well with existing conventional 
marker maps (Borevitz et al., 2003; Cui et al., 2005; Luo et al., 2007; Ronald, Brem, Whittle & Krug-
lyak, 2005; Rostoks et al., 2005a; Rostoks et al., 2005b; West et al., 2007), at least when using mapping 
populations with only two genotypes per polymorphism, in particular RIL populations. The quality of 
the SFP genotype data depends on the quality of the in silico SFP discovery and genotyping algorithm, 
and several such algorithms have been suggested at the present time (see (Luo et al., 2007) for a com-
parison among several methods). At this time, SFP typing has been mostly performed in populations 
with only two possible genotypes at each locus (in particular in RIL populations). How well SFP typing 
will work in other populations with three or more genotypes (e.g. intercrosses, human populations) is not 
yet known. Further validations of this SFP genotyping methodology and applications to other mapping 
populations are expected in the near future.

Selection of regulator – target PairS

The selection of candidate regulators or regulator-target pairs for each identified eQTL described in this 
section depends on the availability of sequence information, i.e. knowledge of the genomic location of 
the expression profiled genes relative to the markers and eQTL regions. The outcome of the selections 
presented here is a strongly constrained GRN space.

The problem of identifying candidate regulatory genes from eQTL confidence regions has been ap-
proached with various methods. Some authors consider one eQTL at a time to select candidate regula-
tors (Bing & Hoeschele, 2005; Keurentjes et al., 2007), while others simultaneously consider all eQTLs 
affecting a given etrait (Li et al., 2005). Bing and Hoeschele used partial correlation tests to identify 
candidate regulator genes located in the identified eQTL regions. In this approach, correlations between 
the etraits of genes located in the eQTL and the etraits affected by the eQTL are evaluated, since the 
etrait of the candidate regulator gene containing the causal polymorphism underlying the eQTL should 
correlate with the etrait(s) of the target gene(s) of the eQTL most strongly. But correlations can be due 
to indirect rather than direct causal influences or due to confounding (de la Fuente, Bing, Hoeschele 
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& Mendes, 2004; Shipley, 2002). To identify only the direct causal influences, partial correlations are 
calculated between the etrait of any gene located in an eQTL and the etrait of any target gene affected 
by the eQTL, conditional on the etraits of one (first order partial correlation) or two (second order partial 
correlation) other genes that are also located in the eQTL.

Li et al. (Li et al., 2005) use analysis of between-strain Single Nucleotide polymorphisms (SNPs) 
to exclude many possible candidate genes. Data for around 3 million SNPs are available for the two 
progenitor strains used in their study. These dense SNP data were used to determine whether the coding 
regions of the candidate regulator genes are identical by descent in the parents. Only genes with mis-
sense and nonsense SNPs were considered as potential regulators (Li et al., 2005).

The accuracy of the candidate regulator selection for each eQTL is clearly limited when using Geneti-
cal Genomics data alone. Therefore, it is very important to incorporate additional (external) biological 
information such as the SNP data, and several other approaches have been proposed. Keurentjes et al. 
(Keurentjes et al., 2007) first ranked the candidate regulators based on correlations and then selected 
candidates using the Iterative Group Analysis approach (Breitling, Amtmann & Herzyk, 2004). Stylianou 
et al. use automated literature database and manual search to find candidate genes (Stylianou et al., 
2006). Tu et al. use a stochastic algorithm to also incorporate available protein-protein interaction, pro-
tein phosphorylation, and transcription factor–DNA binding information (Tu, Wang, Arbeitman, Chen 
& Sun, 2006).

Lee et al. proposed a probabilistic method called “Geronemo”, which extends the module network 
approach of Segal et al. (Segal et al., 2003) to incorporate both expression and marker genotype data 
(Lee, Pe’er, Dudley, Church & Koller, 2006). Their approach iterates between the following steps until 
convergence is reached: 1) Assign genes to regulatory modules with clustering. 2) Learn the network for 
each module using a Bayesian scoring approach. With this approach, they were able to detect regulatory 
relationships that are indiscernible when genes are considered in isolation (Lee, Pe’er, Dudley, Church 
& Koller, 2006).

Liu et al. (Liu, de la Fuente & Hoeschele, 2008) use local regression models separately for each eQTL 
to identify regulator-target pairs, taking into account that the candidate regulators may affect a target 
through cis, trans or cis-trans regulation. Given the results from cis, cistrans and trans eQTL mapping and 
from other non-sequence based QTL mapping methods, regulator-target pairs were selected in several 
steps: 1) For each identified cis-eQTL affecting several potential cis-regulated genes (these genes are all 
affected by the same marker or eQTL and co-locate with it), for each potentially cis-regulated gene it is 
determined whether the gene is most likely truly cis-regulated or more likely cistrans affected. 2) For any 
eQTL where gene t was identified as a target (affected by but not co-located with the eQTL) and gene r 
was identified as cis-regulated (affected by and co-located with the eQTL), it is determined whether r is 
most likely trans or cistrans regulated. 3) For each target genes t retained in step 2) in an eQTL region, 
the most likely candidate regulator gene r (located in the eQTL) is determined. The determinations in 
steps 1) and 2) can be made based on the regression model

y b y b x n ,...,N
tn rn n tn

= + + + =m e
1 2

1;                (2)

where yt is the etrait value of target gene, μ is the overall mean of etrait t, yr is the etrait value of regulator 
gene, and x is genotype indicator of the eQTL (marker). In steps 1) and 2), if the null hypothesis b2 = 0 
cannot be rejected for some gene r, then a cistrans regulation of t is indicated. For step 3), an additional 
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term (b3yr’n) for another candidate regulator r’ in the same eQTL is added to model (Eq. 2), and r is re-
tained as candidate regulator of t only if the null hypothesis b1 = 0 is rejected in the presence of any r’≠ 
r. 4) Lastly, using the results from trans-eQTL mapping, for each target gene t with at least two identified 
regulator genes, for each identified regulator r of t, another identified regulator (r’) of t and its nearest 
marker are included in model (Eq. 2) to check whether the null hypothesis b1 = 0 can be rejected in the 
presence of any other regulator r’≠ r, in which case r is retained as a candidate regulator of t..

grn inference in the conStrained network SPace

In this section we review approaches for search and evaluation of global network models within the 
strongly constrained network model space as defined by the eQTL analysis and candidate regulator 
and regulator-target pairs selection. Two main approaches have been taken. The first approach uses the 
eQTL mapping results to define constraints on the network space, and the search is conducted using 
Bayesian Network analysis (Zhu et al., 2004). The second approach first constructs an Encompassing 
Directed Network (EDN) based on the results from eQTL mapping and regulator-target pair selection by 
assembling all retained candidate regulator target pairs and then searches for an optimal network model 
embedded in this EDN using Structural Equation Modeling (Liu, de la Fuente & Hoeschele, 2008).

The first approach makes use of the fact that it is possible to derive constraints on the GRN space 
and to perform causal inference in the absence of sequence information (and other external biological 
information). This analysis will have (maybe substantially) reduced power, but it is relevant not only 
for organisms where sequence information is not yet available, but also when the quantities of interest 
are not (just) the gene-expressions, but also or instead include phenotypic traits, metabolomic profiles 
etc.. In these cases we cannot establish causality based on a regulator (gene) being located in an eQTL 
that affects a target (gene). To infer a gene regulatory (causal) network without sequence information, 
and based on the results from the eQTL analysis, Zhu et al. (Zhu et al., 2004) consider regulations only 
among any two genes whose etraits have common eQTLs. For any two genes whose etraits do not share 
at least one eQTL, it is assumed that no regulatory relationship exists. To quantify the extent of ‘QTL 
overlap’, a weighted average correlation was used. The motivation behind this constraint is that if two 
etraits are controlled by the same eQTL, then either they are independently affected by the eQTL, or 
etrait 1 is directly affected by the eQTL and in turn affects etrait 2, or etrait 2 is directly affected by the 
eQTL and in turn affects etrait 1. Schadt et al. (Schadt et al., 2005) use a Likelihood-based Causality 
Model Selection (LCMS) method to select the most likely one of these three cases based on the Akaike 
information criterion. The eQTL overlap of two etraits does not need to be complete as any gene and its 
etrait can have several inputs associated with different eQTLs. In fact (not noted by those authors), it is 
helpful for the etraits of two genes not to share all their eQTLs. For example, suppose that two genes 
(etraits) 1 and 2 share a subset of eQTLs (subset A), while another subset of eQTLs (subset B) affects 
only etrait 2. Then, the evidence for regulation of gene B by gene A, as opposed to vice versa, is stronger 
than it would be without marker(s) B. Several other papers deal with the detection of candidate genes 
by using overlap of eQTLs and complex trait QTLs, including (Chen et al., 2008; Chesler et al., 2005; 
Cheung et al., 2005; DeCook, Lall, Nettleton & Howell, 2006; Schadt et al., 2003).
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bayesian networks

The Bayesian Network (BN) approach has been applied to GRN inference from gene-expression data 
soon after the first datasets appeared (Friedman, 2004; Friedman, Linial, Nachman & Pe’er, 2000; 
Murphy & Mian, 1999). Using gene-expression data alone and without any constraints on the network 
space, causal inference for relationships among genes is very limited (see the book by Shipley (Shipley, 
2002) on how to direct some edges in an undirected network derived from observational data or without 
interventions), and BN analysis is computationally very demanding and becomes infeasible for hundreds 
(or even thousands) of genes. Zhu et al. (Zhu et al., 2004) proposed to infer GRNs with a BN approach 
and a local structure search algorithm after constraining the network (structure) space by using com-
mon eQTLs as described in the previous section and by limiting the number of regulators per gene to at 
most three. Recently, these authors showed with a simulation study that GRN inference from Genetical 
Genomics data using BNs was much more accurate than GRN inference from expression data alone 
(Zhu et al., 2007), a very expected finding. Other authors including (Li et al., 2005) also employed a 
BN approach in a constrained search space defined by the eQTL mapping results.

BNs can be graphically represented as Directed Acyclic Graphs (DAG), i.e. networks in which no 
directed cycles are present (Pearl, 2000; Spirtes, Glymour & Scheines, 1993). The graphical model rep-
resents a conditional distribution for each node given its parents. The full joint distribution is defined as 
the product of the local conditional distributions. For BNs, the global directed Markov property permits 
the joint probability distribution of the variables to be factored according to the DAG (Pearl, 2000; 
Spirtes, Glymour & Scheines, 1993). For this reason the assumption of an acyclic network is so attrac-
tive: The factorization implies that only local likelihoods need to be calculated, which is computationally 
much more efficient than evaluating joint likelihoods involving possibly many variables. Let V be the 
random variable associated with a particular node (an etrait in our context). The factorization can be 

represented as, p V ,V , ,V p V |V j ,
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V’s of the parent vertices of vertex j, and θj is the parameter vector of the local likelihood p(Vj |.) (Pearl, 
2000). Therefore, the likelihood for each target etrait can be maximized separately. This factorization is 
a major computational simplification.

Model evaluation with BNs includes fitting parameters of each conditional probability distribution 
and search for the network structure (the graph topology). Structure learning is in general an NP-hard 
problem (Chickering, 2002), and many (heuristic) search algorithms are available, including greedy 
hill-climbing, greedy search with restarts, simulated annealing, and Monte-Carlo methods. For a compre-
hensive introduction to BNs, we refer the reader to the book by Jensen and Nielsen (Jensen & Nielsen, 
2007), and specifically on ‘learning’ with BNs, to Heckerman’s book chapter (Heckerman, 1999).

Being defined as DAGs, BNs cannot represent networks with cyclic relationships. However, there is 
strong evidence for GRNs to contain directed cycles (A. de la Fuente – this book). Recently, Chen et al. 
obtained evidence for extensive feedback control in the network they studied, due to the fact that strongly 
perturbing some genes in the network induced significant expression changes in a large number of the 
genes in the network (Chen et al., 2008). GRNs are therefore better modeled as Directed Cyclic Graphs 
(DCGs) (Liu, de la Fuente & Hoeschele, 2008) (see also A. de la Fuente – this book). Based on the as-
sumption that a cyclic graph represents a dynamic system at equilibrium (Fisher, 1970), this problem can 
be theoretically resolved by including a time dimension, which produces causal graphs without cycles 
(DAGs) that can then be studied using BNs, an approach called Dynamic BNs (Hartemink, Gifford, 
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Jaakkola & Young, 2002; Murphy & Mian, 1999). However, this approach requires the collection of 
time series data, which is difficult to accomplish, as it requires synchronization of cells and close time 
intervals not allowing for feedback (Spirtes et al., 2000). Samples at wider time intervals represent near 
steady state data and hence require cyclic network reconstruction.

Structural equation Modeling and network Search

Structural Equation Modeling (SEM) is a linear statistical modeling framework that has been widely 
used in econometrics, sociology and psychology, usually as a confirmatory procedure instead of an ex-
ploratory analysis for causal inference (Bollen, 1989; Johnston, 1972; Judge, Griffiths, R.C, Ltkepohl 
& Lee, 1985). Shipley (Shipley, 2002) discusses the use of SEM in biology with an emphasis on causal 
inference. SEM has been used for association and linkage mapping of QTL (e.g.Neale, Boker, Xie & 
Maes, 2003; Stein et al., 2003). Xiong et al. (Xiong, Li & Fang, 2004) were the first to apply SEM to GRN 
reconstruction using gene-expression data (outside of the Genetical Genomics context). Their applica-
tion was limited to GRNs without cyclic relationships by using a recursive SEM, which has an acyclic 
structure and uncorrelated errors and is equivalent to a Gaussian BN. These authors reconstructed only 
small networks with less than 20 genes. Li et al. (Li et al., 2006a) analyzed both phenotypic and DNA 
marker data on a segregating population to construct networks including a small number sub-phenotypes 
and QTL related to obesity and bone geometry, by SEM analysis using standard SEM software.

In the context of Genetical Genomics experiments, Liu et al. (Liu, de la Fuente & Hoeschele, 2008) 
developed an SEM analysis for GRN inference within the constrained network search space obtained 
from the eQTL mapping results and the regulator-target pair selection, which produced three lists of 
causal regulatory relationships: (1) a list containing all identified cis-regulations (eQTL A affects gene 
A located in its confidence region), (2) a list containing all cistrans regulations (cis-regulated gene A 
regulates gene B), and (3) a list containing all trans regulations (gene A regulates gene B and eQTL 
A affects gene B (but not gene A)). All the identified and retained regulator-target relationships were 
assembled into the EDN, which consisted of directed edges from eQTLs to cis-regulated target genes, 
from cis-regulated genes to cistrans regulated target genes, from trans-regulator genes to target genes 
and from trans-eQTLs to target genes. The EDN consisted of two types of nodes: Continuous nodes for 
the genes (etraits), and discrete nodes for the eQTLs (genotypes). The EDN thus defines a constrained 
network search space as the GRN we wish to identify is embedded in the EDN. Additional constraints 
were considered: certain edges cannot be removed from the EDN, because their removal would contradict 
the results from the eQTL analysis. If an etrait was found to be influenced by an eQTL, then there must 
remain either a direct or indirect path from the eQTL to that etrait’s gene in the network. Liu et al. (Liu, 
de la Fuente & Hoeschele, 2008) then employed SEM to evaluate models within this model space. Due 
to the fact that the EDN contained many cycles, BN approaches could not be used. In contrast, SEM 
can be applied to cyclic network inference.

In general, SEM consists of a structural model describing (causal) relationships among latent vari-
ables and a measurement model describing the relationships between the observed measurements and 
the underlying latent variables. Any SEM can be represented both algebraically as well as graphically. 
Liu et al. (Liu, de la Fuente & Hoeschele, 2008) use SEM with observed variables only (there is no 
measurement model), which can be represented as



93

Inferring Gene Regulatory Networks from Genetical Genomics Data

y By Fx e ;   e 0, Ei i i i i= + + =~ ( )           1, ..., Ni        (3)

In this model, for member i of the segregating population (i = 1, . . ., N), yi = (yi1,...,yip)
T is the vector 

of expression values of all (p) genes in the network, and xi = (xi1,...,xiq)
T denotes the vector of marker 

or eQTL genotype codes. The yi and xi are deviations from means, ei is a vector of error terms, and E 
is its covariance matrix (we note that a mean structure could be incorporated in the SEM as needed). 
Matrix B contains coefficients for the direct causal effects of the etraits on each other. Matrix F contains 
coefficients for the direct causal effects of the eQTLs on the etraits. The structure of matrices B and F 
corresponds to the path diagram or directed graph representing the structural model, in which vertices or 
nodes represent genes and eQTLs, and edges correspond to the non-zero elements in B and F. Matrices 
B and F are sparse when the model represents a sparse network. When the elements in ei are uncorrelated 
and matrix B can be rearranged as a lower triangular matrix, the model is recursive, there are no cyclic 
relationships, and the corresponding graph is a Directed Acyclic Graph (DAG). If the error terms are 
correlated (E is not diagonal), or matrix B cannot be rearranged into a triangular matrix (indicating the 
presence of cycles), the model is non-recursive. The graph corresponding to a non-triangular matrix B 
is a Directed Cyclic Graph (DCG).

In Genetical Genomics experiments, the xi are random vectors because individuals are sampled from 
a segregating population. However, the joint likelihood of the yi and xi can be factored into the condi-
tional likelihood of the yi given the xi times the likelihood of the xi, and the latter does not depend on any 
of the network parameters in B, F and E and can therefore be ignored. Thus, we only need to assume 
multivariate normality for the residual vectors ei when specifying the likelihood function.

Liu et al. (Liu, de la Fuente & Hoeschele, 2008) factor the joint likelihood function of the {yi ; i=1,…
,N} into a product of local likelihoods which depend on different sets of parameters and are maximized 
individually in analogy with BN analysis. A network with cyclic components (systems of connected 
cycles, in which any gene can find a path back to itself through other genes) becomes acyclic when a 
set of genes pertaining to the same cyclic component is collapsed into a single node. The joint likeli-
hood can therefore be factored as a product of conditional likelihoods pertaining to individual genes 
which do not belong to any cyclic component, and of conditional joint likelihoods each pertaining to a 
set of genes in a cyclic component. For the genes involved in a cyclic component, their joint likelihood 
was maximized using a Genetic Algorithm (GA) based global optimization procedure. The constrained 
network space defined by the EDN will typically be still much too large to exhaustively enumerate all 
possible network structures. Therefore, a heuristic search strategy based on the principle of Occam’s Win-
dow model selection (Madigan & Raftery, 1994), which potentially selects multiple acceptable models, 
was adapted. Alternative models or network structures were compared using the Bayesian Information 
Criteron (Raftery, 1993). The selection of multiple models may be important for two reasons: First, the 
data may provide (nearly) the same support for multiple models, and this information would otherwise 
be missed. Secondly, for DCGs it can happen that two models with different edges have the same like-
lihood (they are equivalent) (Richardson, 1996; Richardson & Spirtes, 1999). In contrast, two DAG 
models can only be equivalent if they have the same edges but differ in the direction of an edge (Pearl, 
2000), and this equivalence would not occur with Genetical Genomics data where the edge directions 
are fixed by the eQTL information. Based on the factorization of the overall joint likelihood, the strongly 
constrained network topology search space defined by the EDN, and a careful choice of starting values 
for GA optimization, the algorithm proposed by Liu et al. (Liu, de la Fuente & Hoeschele, 2008) can 
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infer GRNs of hundreds of variables. In (Mancosu et al., 2008) a computationally very efficient local 
‘sparsification’ approach rather than using the global model selection approach via SEM. This simpli-
fication made it feasible to analyze a genome scale yeast dataset, thus compiling a genome-wide yeast 
GRN (see figure 1 in A. de la Fuente – this book). It is important however to evaluate the final model(s) 
selected via SEM in order to verify that the models fit the data sufficiently well.

undirected networks in the context of eQtls

Multiple studies have inferred Co-Expression Networks (see A. de la Fuente – this book) using associa-
tion measures between the etraits of pairs of genes (Butte et al. 2000; Wille et al. 2003; Magwene and 
Kim 2004), or partial correlation resulting in an approximate Undirected Dependency Graph (UDG) (de 
la Fuente, Bing, Hoeschele & Mendes, 2004; Shipley, 2002). We note that some other authors have used 
Graphical Gaussian Modeling (or covariance selection) (e.g.Schäfer & Strimmer, 2005a,, 2005b), but in 
this approach of constructing an undirected graph there is an edge between any two genes whose partial 
correlation conditional on all other genes has been found to be nonzero. As opposed to the UDG, such 
a graph would contain an edge between two genes that do not regulate each other and are not regulated 
by some common cause but jointly regulate another (‘child’) gene. In any of these graphs, an edge is 
retained if the corresponding correlation coefficient exceeds a chosen threshold or has been found to be 
significant by a statistical correlation test. Consequently, between any two genes an edge either exists 
or does not exist. As an alternative, weighted Co-Expression Networks have been proposed, where first 
a matrix of the absolute values of the simple correlations between any two genes is computed, which is 
then converted into a matrix of ‘connection strengths’ using a power function of the absolute correlation 
coefficients (Zhang & Horvath, 2005). This weighted network is seen as being robust, in contrast with 
the other (unweighted) undirected networks which depend on a chosen (significance) threshold.

Some studies have combined these undirected networks with eQTL information. An undirected 
network can be constructed in the context of Genetical Genomics by only using the expression data. 
Genotype data can help to reduce the number of false positive edges. For example, when constructing 
co-expression networks, Lum et al. required a pair of linked etrait nodes to be regulated by at least one 
common eQTL (Lum et al., 2006). Ghazalpour et al. (Ghazalpour et al., 2006) constructed weighted 
Co-Expression Networks and identified highly interconnected network modules. They then detected 
module-specific “genomic hotspots” (mQTLs) that regulate the expression of these modules, and they 
investigated the co-location of these mQTL with physiological traits of mice. With mouse data, Chen et 
al. (Chen et al., 2008) constructed Co-Expression Networks using both genotype and expression data 
as in Lum et al. (Lum et al., 2006), and detected highly interconnected modules in the constructed co-
expression networks using an iterative search algorithm. They then established directed relationships 
between the QTLs, metabolic traits and etraits using the LCMS method as described previously (Schadt 
et al., 2005). A sub-network was detected as having a causal relationship with the metabolic traits of 
interest if the sub-network was enriched for etraits that had causal associations with the metabolic traits. 
Emilsson et al. (Emilsson et al., 2008) constructed co-expression networks with similar approaches using 
human data, and identified a sub-network that was highly conserved in mice – the macrophage-enriched 
network (Chen et al., 2008). They performed cis-eQTL mapping for this network and found that the cis-
eQTLs detected showed some evidence of association to obesity related traits (Emilsson et al., 2008).

It is possible to obtain a regulatory or causal network in the absence of sequence information (when 
an organism does not yet have a sequence assembly, or when working with non-expression phenotypes 
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such as metabolic traits) by first constructing an undirected network using only the phenotypes, then 
performing QTL mapping, and subsequently orienting all edges in the network for which there is QTL 
information by using and further developing an approach such as the LCMS method, i.e. by using local 
structural equation modeling. Instead of a multi-step approach, where an undirected network and highly 
connected modules are first identified and then module-QTLs are detected, one may search directly for 
QTLs, or groups of QTLs, that jointly regulate groups of genes, e.g. by adapting CCA as mentioned 
earlier.

concluSionS and future directionS

In this chapter, we have reviewed Gene Regulatory Network inference with ‘Genetical Genomics’ data 
(Brem & Kruglyak, 2005; Brem, Yvert, Clinton & Kruglyak, 2002; Jansen, 2003; Jansen & Nap, 2001; 
Schadt et al., 2003). For a detailed biological application of similar approaches, please refer to another 
chapter in this book “Gene-expression Regulatory Regions in Yeast Amino Acid Biosynthetic Pathways 
Unveiled by Quantitative Trait Locus Mapping”. An important component of any Genetical Genomics 
analysis is the mapping of eQTL. Although eQTL mapping was initially performed by simply using 
standard QTL mapping methods and software (developed for the analysis of one or few phenotypic traits), 
it was soon recognized that such analyses are very sub-optimal and miss important information. Clearly 
the quality of GRN inference crucially depends on the quality of the eQTL mapping results. There is still 
a critical need for further development and evaluation of methodology and software for eQTL mapping, 
such as developing full Bayesian analyses modeling individual eQTL – etrait relationships or involving 
dimension reduction such as Canonical Correlation Analysis, developing and using more appropriate 
criteria and controlling methods for multiple testing, and identifying epistatic eQTL.

Likewise, further development and evaluation of methods for GRN inference in the constrained 
network search space is still warranted. We previously have proposed SEM due to its ability to fit cyclic 
network models (Liu, de la Fuente & Hoeschele, 2008). Our current implementation of SEM, which 
is capable of analyzing networks with a few hundred gene and eQTL nodes, uses a heuristic search 
strategy and maximum likelihood inference. A Markov Chain Monte Carlo Bayesian implementation 
of SEM would have multiple advantages, including an ability to incorporate prior information, an abil-
ity to select multiple models and represent uncertainty about the network model (and the values of its 
parameters) given the data, and possibly an ability to analyze a larger network space. The use of the 
Bayesian Information criterion and related criteria for network model selection and the use of sparsity 
priors in a Bayesian analysis would strongly favor sparse networks, although bio-molecular systems are 
not necessarily most parsimonious. For at least some of the edges (regulator-target pairs) in the EDN, 
there may be prior biological knowledge from various sources, for example transcription factor binding 
location data, information on pathway relationships (Franke et al., 2006), SNP presence in candidate 
regulators (Li et al., 2005), and information on protein-protein interactions (Tu, Wang, Arbeitman, Chen 
& Sun, 2006). A principled incorporation of such prior knowledge into methods for GRN reconstruction 
from microarray data has been considered by several authors via prior distributions in Bayesian analysis 
(e.g.Bernard & Hartemink, 2005; Imoto et al., 2002; e.g.Werhli & Husmeier, 2007).

As Genetical Genomics studies typically involve a segregating population with at least near one 
hundred or several hundreds of individuals, there is a large expense for genome-wide expression pro-
filing of all individuals and, when not relying on in silico SFP typing, then there is a similarly large 
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expense for genome-wide DNA marker typing. It is therefore important to develop analysis methods 
that extract the most information from the data, as discussed above. There are also considerations re-
lated to optimal study design given limited resources. For two color microarrays, Fu and Jansen (Fu & 
Jansen, 2006) proposed a ‘distant pair design’ to maximize genetic dissimilarity between individuals 
on the same array to maximize power for decomposing expression variation. Because genotyping is in 
general expensive, some studies used ‘selective genotyping’, i.e. all individuals are phenotyped while 
only selected individuals are genotyped (e.g.Jannink, 2005; e.g.Medugorac & Soller, 2001). Selective 
genotyping is well-established in the QTL literature (e.g.Lander & Botstein, 1989); by genotyping only 
those individuals whose phenotypes are extreme (in the tails of the distribution of phenotypes), the same 
amount of information is obtained as when genotyping a larger number of individuals randomly. This 
approach works well for a single phenotype while it is difficult or not useful in the context of multiple 
phenotypes. In Genetical Genomics, there are at least several thousands of expression phenotypes, 
and expression profiling may be more expensive than marker typing. Therefore, selective expression 
profiling approaches have been studied (Bueno Filho, Gilmour & Rosa, 2006; Jin et al., 2004; Wang 
& Nettleton, 2006). There is a need for algorithms that search for optimal designs. For further review 
of design issues in Genetical Genomics experiments, the reader should consult (Kendziorski & Wang, 
2006; Rosa, de Leon & Rosa, 2006).

This chapter focused on GRN inference in the context of Genetical Genomics studies (Rockman, 
2008). It focused on GRN inference for a single organism. An important and necessary extension is to 
infer the genetic interactome of multiple organisms in host-pathogen interaction studies, where both 
the host and the pathogen are expression profiled (Zhou et al., 2008). Beyond expression profiling and 
GRN inference, Systems Genetics (Threadgill, 2006) will allow us to infer integrated causal networks 
including other molecular phenotypes, such as proteomics data (e.g.Foss et al., 2007; Peck, 2005), me-
tabolomics data (Keurentjes et al., 2006), and organismal phenotypes (Li et al., 2006a; Nadeau et al., 
2003). This will require the sequence-based and not-sequence based causal inference algorithms using 
eQTL information, as described above, to be more fully developed and combined.

GRN reverse-engineers have relied on very expensive and difficult to perform single-gene perturbation 
experiments and time series experiments, and they are still eagerly awaiting the appearance of datasets 
with a large number of experimental observations. Fortunately, such datasets are currently appearing 
using a Genetic Genomics (or Systems Genetics) setup, in which genotyping and gene-expression pro-
filing are performed on a genetically randomized population of individuals. Like (artificial) single gene 
perturbations, genetic segregation at many loci can be used to establish causal relationships between 
genes (Jansen, 2003; Jansen & Nap, 2001). Several such datasets are available for yeast (Brem & Krug-
lyak, 2005; Brem, Yvert, Clinton & Kruglyak, 2002), Arabidopsis (Keurentjes et al., 2007; Vuylsteke, 
van Eeuwijk, Van Hummelen, Kuiper & Zabeau, 2005; West et al., 2007), C. elegans (Li et al., 2006b), 
fruit fly (Anholt et al., 2003), mouse (Bystrykh et al., 2005; Schadt et al., 2003), soybean (Zhou et al., 
2008), and human (Cheung et al., 2003; Cheung et al., 2005; Goring et al., 2007), with sample sizes 
ranging from near one hundred to more than a thousand of observations. Genetical Genomics datasets 
with large sample sizes are relatively cheap to produce as compared to artificial single gene perturbations. 
As pointed out earlier, the multi-factorial and ‘natural’ properties of the Genetical Genomics perturba-
tions have clear advantages over the mostly single gene (Hughes et al., 2000; Mnaimneh et al., 2004) 
or pairs of genes (Tong et al., 2004) artificial perturbations. We therefore expect Genetical Genomics 
and Systems Genetics to be a major source of data for inferring Gene Regulatory Networks and more 
general causal Bio-Molecular Networks in the near future.
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key terMS and definitionS

Bayesian Network: Bayesian networks are directed probabilistic graphical models that represent 
conditional independence relationships among variables of interest.

eQTL: In Genetical Genomics, the gene expression levels are considered as phenotypic traits. There-
fore, the identified QTLs are referred to as ‘expression-QTLs’ or ‘eQTLs’.

etrait: In Genetical Genomics, the gene expression levels are considered as phenotypic traits. There-
fore, we call gene expression levels as ‘expression traits’ or in short ‘etraits’.

False Discovery Rate: False Discovery Rate (FDR) is the expected false positive rate in multiple 
hypothesis testing. Among the list of rejected hypotheses, FDR controls the expected proportion of 
incorrectly rejected null hypotheses.

Family-Wise-Error Rate: Family-Wise-Error Rate (FWER) (also referred to as the genome-wise error 
rate in the context of QTL mapping) is the probability of making one or more false discoveries in multiple 
hypothesis testing. FWER control is more conservative (and less powerful) than FDR control.

Genetical Genomics: Genetical Genomics, also referred to as ‘the genetics of gene expression’, uses 
naturally occurring, multi-factorial perturbations in segregating or genetically randomized populations. 
Genetical Genomics approaches integratively analyze gene expression data and genotype data (measur-
able DNA sequence polymorphisms) and make use of DNA sequence information when available.

Quantitative Trait Locus: Quantitative trait locus (QTL) is a chromosomal region that causally af-
fects a phenotypic trait under consideration. Statistically, a QTL is a confidence interval for the genomic 
location of a DNA polymorphism that is causal for the phenotype of interest.

Structural Equation Modeling: Structural Equation Modeling is a linear statistical modeling 
framework for testing and estimating causal relationships among variables. It has been widely used in 
econometrics, sociology and psychology, usually as a confirmatory procedure instead of an exploratory 
analysis for causal inference.
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Chapter 5

Inferring Genetic Regulatory 
Interactions with Bayesian 

Logic-Based Model
Svetlana Bulashevska

German Cancer Research Centre (DKFZ), Germany

introduction

The advent of microarray technology facilitated monitoring of gene expression and posed the problem 
of reconstructing genetic regulatory relations from data. A concept of gene regulatory network evolved, 
as a graphical representation of interactions between genes. This is a simplification of the underlying 
molecular biological regulatory mechanism, since the expression levels of some genes affect the expres-
sion of other genes indirectly, via the synthesis of proteins, protein complex formation, DNA binding 
etc. Mathematical models of genetic regulatory networks define features of the regulation by means 
of mathematical functions and propose algorithms in order to infer network models (i.e. connectivity, 
parameters etc.) from experimental data.

abStract

This chapter describes the model of genetic regulatory interactions. The model has a Boolean logic se-
mantics representing the cooperative influence of regulators (activators and inhibitors) on the expression 
of a gene. The model is a probabilistic one, hence allowing for the statistical learning to infer the genetic 
interactions from microarray gene expression data. Bayesian approach to model inference is employed 
enabling flexible definitions of a priori probability distributions of the model parameters. Markov Chain 
Monte Carlo (MCMC) simulation technique Gibbs sampling is used to facilitate Bayesian inference. 
The problem of identifying actual regulators of a gene from a high number of potential regulators is 
considered as a Bayesian variable selection task. Strategies for the definition of parameters reducing 
the parameter space and efficient MCMC sampling methods are the matter of the current research.

DOI: 10.4018/978-1-60566-685-3.ch005
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The attempt to model genetic regulation was pioneered long before the appearance of high-throughput 
molecular genetics methods (Kauffman 1969, 1996). It was stated that the regulatory interactions between 
genes can be presented as logic gates as exemplified in Figure 1, and the Boolean network model was 
proposed. In the Boolean network, discrete states of genes (the active and the not active) are admitted, 
and the state of each gene is functionally determined by the states of some other genes using the rules 
of logics. Continuous gene expression measurements must be discretized before they can be used for 
Boolean network modeling.

The fundamental idea behind the Boolean network is that the gene regulation is executed by tran-
scription factors transcribed from a number of genes, which cooperatively bind to the binding sites of a 
target gene. This constitutes a so called cis-regulatory element, the working principles of which can be 
described by means of logics. Some genes are activated by one of several different possible transcription 
factors (“OR” logic). Other genes require that two or more transcription factors must all be bound for 
the activation (“AND” logic). The activation of some genes may be inhibited by one of a few possible 
repressor proteins (“NOT OR” logic, in our notation “NOR”). Further on, in case of “OR-NOR” logic, 
a gene is regulated by a set of possible activators and a set of possible inhibitors. The gene is transcribed 
if and only if one of its possible activators is active and it is not repressed by one of its possible repres-
sors. An algorithm REVEAL was developed to reverse-engineer Boolean logic relations from expres-
sion data, based on mutual information between input and output states (Somogyi and Sniegosky, 1996; 
Liang et al., 1998). The major limitation of the Boolean network model was its inherent determinism, 
which contradicts with the stochastic nature of the underlying process of gene regulation and limits the 
reliability of relations inferred from real data.

Later on, extensions of Boolean Networks were suggested to make them robust against noise. In 
the noisy Boolean networks of Akutsu (2000), a certain probability is defined, with which a number 
of input/output patterns will not be discarded by an inference algorithm, even if a Boolean function is 
not satisfied. In the Probabilistic Boolean Networks (Shmulevich et al. 2002), more than one Boolean 
function are defined for each gene, and the particular function for calculating the state of the gene is 
selected with a certain probability.

Friedman et al. (2000) were the first to employ probabilistic graphical models, particularly Bayesian 
networks, to model genetic regulatory network. Probabilistic (statistical) modeling uses probability dis-
tributions to describe the states of the modeling variables and their dependencies. Probabilistic graphical 
models (Jordan, 2004) are graphs in which nodes represent random variables, and the missing edges 
between the nodes represent conditional independencies among the variables. In this way, the joint prob-
ability distribution of the variables is represented in a compact form. This reduces the number of param-
eters needed to describe the whole probabilistic model and sets a basis for statistical inference. Bayesian 

Figure 1. Examples of genetic regulatory functions presented as logic gates
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network (Pearl, 1998; Jensen, 1996) is a common type of the probabilistic graphical models, where the 
graph is directed and acyclic (DAG). The graph encodes conditional independencies as follows: given 
the value of its parents in the graph, the variable is conditionally independent of other variables except 
its descendants. Then, the joint probability distribution of the variables factorizes into the product of the 
conditional probability distributions (CPD). The CPD for a variable defines its probability given every 
possible combination of the values of its parents. Thus, the state of a gene is described as a probability 
distribution dependent on a set of its immediate regulators. The global relations of genes in the genetic 
regulatory network can be described as being composed of local interactions between each gene and 
its regulatory genes. The learning of a Bayesian network from data comprises two tasks: the graphical 
structure learning and the estimation of the parameters of the conditional distributions.

The drawback of the Bayesian network approach is that the combinatorial semantics of the interac-
tion of parents makes it difficult to interpret the results of network learning and to uncover the “true” 
cis-regulatory relationships covered in this presentation.

In this chapter, a model for genetic regulatory interactions is presented that combines the simple 
and biologically motivated Boolean logic semantics of Boolean networks and the possibility of dealing 
with uncertainty offered, in particular, by Bayesian networks, and, in general, by the Bayesian statistical 
modelling. The model is a special case of the Bayesian network in that the local probability distributions 
are constrained to noisy logic functions. The model can be seen as an intermediate between the local 
models of interactions, defined in Boolean networks, and Bayesian networks.

The chapter describes a statistical learning approach that allows for a particular gene to find a set of 
its regulators (activators and inhibitors), given a particular Boolean logic function governing this regu-
lation. To robustly identify the regulators of a target gene from a large number of potential regulators 
is a great challenge in view of the sparseness of experimental data. The Bayesian learning framework 
and appropriate formulations of a priori distributions of network parameters presented here allow for an 
efficient search over the space of possible models and penalization of complex models.

In the following, we give a brief introduction to the Boolean and the Bayesian Networks, and explain 
the Bayesian logic-based model. After the introduction to the Bayesian modelling and MCMC sampling-
based approaches, the Bayesian learning of the model from data is described. The main idea is the Bayes-
ian variable selection approach. Hints for the specification of the parameters hereto are recommended. 
We demonstrate the application of the model exemplary on the malaria parasite data. Further related 
approaches are discussed, completed with the conclusion and the outlook for future research.

Main thruSt of the chaPter

boolean network

A Boolean network is a system of n binary-state nodes. Each node is assigned regulatory inputs from 
several other nodes and a Boolean function, according to which the state of the node is computed from 
the input states. Each Boolean function is specified with a truth table. For instance, Table 1 displays the 
truth table for the Boolean function “OR”.

The state of a network at a time point t is given by the current states of all the n nodes. Thus the state 
space of any such network is 2n. Simulation is executed in discrete time steps …,t, t + 1,…, where each 
node obtains its new state according to the inputs. Since the Boolean Network has a limited number of 
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possible states, it will reach a previously visited state, and hence, due to the deterministic dynamics, 
will fall into an attractor. For a given set of inputs, the attractor reached is called logical steady state. 
It gives an impression about what network state is possible under the fixed states.

bayesian network

The Bayesian network comprises two components: the qualitative one and the quantitative. The qualitative 
component is a directed acyclic graph G, whose vertices correspond to the random variables X1,…,Xn. 
The graph G encodes conditional independencies between the variables: given the value of its parents 
in G, the variable is conditionally independent of other variables in the network except its descendants. 
Due to this, the joint probability distribution is equal to the product of the conditional probability dis-
tributions (CPDs):

P X X P X parents X
n i i

i n

( , , ) ( ( ))
, ,

1
1





=
=
Õ . 

In other words, the joint distribution can be represented in a factorized form. The conditional dis-
tribution for a variable defines its probability given every possible combination of its parents’ values. 
Due to the notion of conditional independence, probabilistic dependencies among the variables in the 
network can be represented only by the specification of CPDs. The set of all CPDs is the quantitative 
component of the Bayesian network. In fact, the CPD is the multinomial distribution with parameters 
α (vector). The CPDs are specified with the so called conditional probability tables (CPTs). Figure 2 
presents an example of a Bayesian Network with seven variables.

The joint probability distribution of the variables factorizes into:

P X X P X P X P X X X P X P X P X X X X P X( , , ) ( ) ( ) ( , ) ( ) ( ) ( , , ) (
1 7 1 2 3 1 2 4 5 6 3 4 5 7
 = XX

6
) . 

The specification of a CPT, with four parameters α1,…,α4 for the variable X3 having two parents X1 
and X2, is displayed in Table 2.

When inferring a Bayesian network from observational data, each candidate network must be scored, 
based on its ability to explain the data. Therefore, scoring metrics are used. Two different approaches 
exist to derive the scoring metrics: a maximum likelihood-based and a fully Bayesian. In the former, the 
best fit to data D for a given DAG G is determined by maximizing the likelihood p(D|G, α) as a function 
of α, the parameters of the conditional probability distributions. A score is then given by:

Table 1. Truth table for the Boolean function “OR” used in the Boolean Network 

X1 X2 Y

0 0 0

1 0 1

0 1 1

1 1 1
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score G p D G
ML

( ) max ( , ).=
±

±  

Since this score tends to over-fitting, the BIC score (Bayesian information criterion) is often used, 
penalizing the maximum likelihood of the model with respect to the number of parameters (Schwarz, 
1978).

In the Bayesian approach, the posterior probability of model structure G given data D is evaluated:

score G p G D
p D G p G

p DBayes
( ) ( )

( ) ( )

( )
.= =  

Here, p(D|G) is the marginal likelihood and p(G) is a prior over model structure. The denominator 
p(D) is called a normalizing constant and is the same for all models, so one does not need to compute 
it for the scoring. In the marginal likelihood, the parameters α are being integrated out (and not maxi-
mized), that precludes over-fitting:

p D G p D G p G d( ) ( , ) ( ) .| = | |ò ± ± ±
±

 

Figure 2. Example of a Bayesian network

Table 2. Conditional probability table specifying the conditional distribution of the variable X3 given 
its parents X1 and X2

X3

X1 X2 0 1

0 0 α1 1−α1

1 0 α2 1−α2

0 1 α3 1−α3

1 1 α4 1−α4
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This integral can be computed analytically, if the prior probability distribution of the parameters is 
chosen in a special way, namely conjugate to the likelihood (see also explanations below). Using that 
the Dirichlet distribution is the conjugate prior for the multinomial, the Bayesian score for the Bayes-
ian network was derived (Heckerman, 1998). The prior for the structure p(G) can help to penalize or 
to give preference to models with particular features, but the simplest choice is the uniform distribu-
tion assuming that the models are equally likely. Heuristic algorithms (hill climbing, arc inversion) are 
used to obtain the optimal Bayesian network structure with respect to the Bayesian score (Cooper and 
Herskovits, 1992).

The Bayesian network formalism allows to model arbitrary interactions between parents X1,…,Xn of 
a variable Y. The complete CPD for a binary variable with n parents requires the specification of 2n inde-
pendent parameters (one parameter for each parents’ state configuration). This combinatorial semantics 
of parents interaction in the Bayesian network, and hence the exponential explosion of the parameter 
space make the model learning computationally costly. Moreover, in small data sets there might be an 
insufficient number of cases available for learning conditional probabilities. It is more reliable to learn 
distributions having fewer parameters. These considerations motivated the employment of a further 
probabilistic graphical model with a constrained definition of the local probability distribution, in order 
to adequately model the genetic regulatory control. The model will be presented in the next section.

the bayesian logic-based Model of gene regulatory interactions

As previously discussed, in graphical modelling, the joint probability distribution of variables is expressed 
as a product of distributions over a smaller number of variables by exploiting conditional independence 
relations encoded in a graph structure. In this way, the number of parameters to be specified or estimated 
is reduced. For example, in the Bayesian network formalism compact representation of the joint distribu-
tion among variables in the network is achieved by expressing it with conditional probability distribu-
tions. One can further exploit the independencies between parents of a variable in a Bayesian network 
to get more compact representations of CPDs. In the past, several models were proposed with special 
types of causal interaction (see Heckerman and Breese, 1994; Meek and Heckerman, 1997; Srinivas, 
1993). One is the causal independence model which assumes independence of parents of each variable 

Figure 3. Bayesian logic-based model of gene regulatory interactions, F being a Boolean function 
("AND", "OR")
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in the model. The variables X1,…,Xn, the parents of the variable Y, can influence Y through independent 
“mechanisms”. The effects are then combined by a rule determined by a Boolean-logic function. Such 
models were introduced originally by J.Pearl (1998) and called “noisy OR-Gate” and “noisy AND-Gate”. 
This kind of models is employed here for modelling the genetic regulatory interactions.

We assume that a variable Xi (regulator) can execute its influence on variable Y (regulatee) inde-
pendently of other possible regulators from the set X1,…,Xn. The biological mechanism underlying this 
modelling assumption is the binding of protein transcribed by the regulator to the DNA of the regulatee. 
This process is not deterministic, rather, each gene Xi can regulate Y with probability θi and can fail to 
do this with probability 1-θi. The model is represented by a directed graph in Figure 3. In the model, 
intermediate variables I1,…,In were introduced, through which the variables X1,…,Xn exert their influence 
on a given common effect variable Y.

Each intermediate variable Ii has only one parent, the variable Xi. Its probability distribution is defined 
as follows: given that Xi=1, Ii takes the value 1 with probability θi and the value 0 with probability 1-θi, 
respectively. Given that Xi=0, Ii takes the value 0 with probability 1. The combined regulatory influ-
ence on the variable Y is calculated as the Boolean function F on the input variables I1,…,In. If X1,…,Xn 
are activators, then the state of the variable Y is F(I1,…,In); if X1,…,Xn are inhibitors, the state of Y is 

Figure 4. Complex model of gene regulatory interactions with activators and inhibitors (“OR-NOR” 
regulation)

Table 3. Conditional probability table of regulatee Y that is activated by two regulators X1 and X2 
(“OR”-activation) 

Y

X1 X2 0 1

0 0 1 0

1 0 1-θi θi

0 1 1-θ2 θ2

1 1 (1-θ1)(1-θ2) 1-(1-θ1)(1-θ2)
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1-F(I1,…,In). The Boolean “interaction function” F defines in which way the intermediate effects Ii, and 
indirectly the variables Xi, interact. We consider two interaction functions: AND and OR. The semantics 
of the OR-function implies that the variables Xi are each assumed to be sufficient to influence Y. In the 
case of the AND-function, all variables Xi need to execute their own influence on the variable Y in order 
Y to be active.

The introduction of the hidden state variables Ii allows for the insertion of “noise” into the Boolean-
logic based models. It allows to model that the biological mechanism of the regulation of one gene 
by another could be inhibited for unknown reasons. Thus, the input variables can be considered as 
observables from which we make our measurements, while the hidden variables have the “true” latent 
biological values.

In the present chapter, we consider simple models with activatory regulation (“OR”, “AND”) and 
inhibitory regulation (“NOR”, “NAND”), as well as complex models: “AND-NAND”, “AND-NOR”, 
“OR-NAND” and “OR-NOR”. In the complex models, the regulatory influences of multiple activators 
and multiple inhibitors are combined with AND-function as displayed in Figure 4.

The conditional probability distribution for the regulatee Y that is activated by two possible regulators 
(“OR”-activation), is presented in Table 3. Note that the model with the Boolean logic-based interaction 
of parent variables allows for the specification of the CPD for a variable with only n parameters θ1,…,θn, 
i.e. polynomial on the number of parents.

We formulate the problem of learning the model from data as follows: given the data on gene Y and 
its potential regulators X1,…,Xn, for a given Boolean logic function F, identify the subset X1,…,Xn of 
actual regulators of Y. The parameters θ must also be assessed. We employ statistical learning of the 
model from data, in particular, the Bayesian inference.

bayesian inference

In contrast to the classical frequentist approach, Bayesian inference does not deal with point estimates 
of model parameters, but, rather, with probability distributions on the parameters and on all unobserved 
quantities (such as latent variables, predictions etc.). This enables to assess a whole interval as having 
a high probability of containing an unknown quantity of interest.

Bayesian modelling starts with setting up a full probability model – a joint probability distribution 
for all observed and unobserved quantities in a problem. Then, the Bayesian methodology seeks to as-
sess the conditional probability distributions of the unobserved quantities given the observed data. Let 
θ stands for unobservable quantities (parameters) and y for observable (data). Then, the joint probability 
is p(θ,y) and the posterior probability by Bayes’ rule is:

p y
p y
p y

p y p

p y
( )

( , )
( )

( ) ( )

( )
,q

q q q
= =  

where p(y|θ) is called likelihood function and p(θ) is the a priori probability of the parameters. 

Since p(y) does not depend on θ, the following proportionality is valid: p y p y p( ) ( ) ( ).q q qµ  This ‘
posterior likelihood priorµ ´ ’ rule is the basis of the Bayesian inference. The p(y) is the marginal 
likelihood integrated over the parameters θ: p y p y p d( ) ( ) ( ) .= ò q q q

q
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The calculation of the multi-dimensional integrals arising in the Bayesian inference is the general 
computational obstacle of the Bayesian methodology. The integrals are analytically tractable only in certain 
restricted examples. When the posterior distribution of the parameters belongs to the same parametric 
family as the prior distribution, the integral has a closed form solution. This property is called conjugacy 
(Bernardo and Smith, 1994). For example, conjugate priors are available for the general exponential 
family models. Alternatively, approximation techniques, such as variational methods (Jaakkola, 1997) 
or simulation Markov Chain Monte Carlo (MCMC) (Gilks 1993) can be employed. For an introduction 
into the MCMC see Gamerman (2006).

One of the MCMC approaches is known as Gibbs sampling (Geman and Geman, 1984). It reduces 
the problem of dealing simultaneously with a large number of unknown parameters in a joint distribution 
into a much simpler problem of dealing with one variable at a time, iteratively sampling each from its 
full conditional distribution given the current values of all other variables in the model. It happens that 
many models have a complex joint distribution, but their conditional distributions are relatively simple. 
As stated by Pearl (1987), performing Gibbs sampling is particularly appropriate for a graphical model 
due to the factorization of the joint probability.

A specification of the prior distribution for parameter θ should make all its possible values equally 
probable (non-informative prior). This guarantees that the prior distribution plays a minimal role in the 
posterior, and the whole parameter space will be explored. However, a “subjective” definition of the prior 
is possible, when a desire is to insert a priori knowledge into the model. This possibility is an inherent 
advantage of the Bayesian modelling over classical statistical approaches.

Further more, Bayesian modelling allows for a hierarchical formulation of a model: distributions 
for the parameters can be formulated, in turn, with the help of hyperparameters. This provides a great 
flexibility in defining complex models fitting them more adequately to real domains.

bayesian Model Selection

Our task is to infer from data not only parameters of the model, but the structure of the model itself. 
In the Bayesian framework, this task is often called Bayesian model selection. As we have seen previ-
ously on the example of the Bayesian network, the problem is addressed by calculating the posterior 
probability of a model given data for a collection of candidate models and selecting the most probable 
model. Suppose that the data D has been generated by a model m , one of a set M of candidate models, 
m MÎ . If p(m) is the prior probability of model m, then the posterior model probability by Bayes rule 
is p m D p D m p m( ) ( ) ( )| µ | .  Let θm be parameters of the model m. The marginal likelihood p(D|m) is 
calculated as:

p D m p D m p m d
m m m

( ) ( ) ( )| = | , | ,ò q q q  

where p(θm|m) is the prior distribution of model parameters θm for model m. When the integral has no 
analytical solution, MCMC can be employed. MCMC samples from the joint posterior distribution 
p(m,θm|D) allowing for the estimation of the posterior model probability p(m|D) and of the posterior 
parameter probability p(θm|D).
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We now proceed with the Bayesian formulation of the Boolean-logic based models. Consider the 
model with “OR”-activation. Assume the variable Y is commonly influenced by the variables X1,…,Xn. 
The probability distribution of Y given the values of its parents can be written as:

P Y
i

n

i

Xi( ) ( )= | = -
=
Õ0 1

1

q q  and 

P Y
i

n
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Xi( ) ( )= | = - - ,
=
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1
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where θ = (θ1,…,θn) is the vector of parameters. Assume we have a sample of N cases corresponding 
to the states of the variables X1,…,Xn and Y. Denote by Yj the state of the variable Y in case j, and by Xij 
the state of the variable Xi in case j. The likelihood function is then:
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If we substitute Ψij by –log(1-θij), the likelihood function transforms into:
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 is a linear predictor. This shows that the “OR”-model cannot be expressed in the 

exponential form. In fact, this is the generalized linear model (McCullagh and Nelder, 1983). Unlikely 
to exponential models, a straightforward conjugate prior for parameters (regression coefficients) is not 
available for this class of models. Chen and Ibrahim (2003) construct a prior based on a priori prediction 
on the response Y. Bedrick et al. (1996) developed Data Augmentation Priors based on evaluation of 
the prior at n locations in the predictor space. We instead turn to the MCMC.

We need to specify joint distribution for both data and parameters. The “OR” model can be written 
as:

Y Bernoulli
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(the operator ~ stands for ‘is distributed as’).
Now consider the complex model “OR-NOR”. Assume the variable Y is influenced by a set of activa-

tors X … Xact
n
act

1
, ,  and a set of inhibitorsX … Xinh

k
inh

1
, , . The variable Y takes the value 1, if the activators 

executed their influence and the inhibitors failed, otherwise Y is 0. The “OR-NOR” model can then be 
defined as:
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In the following we show how the models can be reformulated to solve the problem of the model 
selection.

bayesian Variable Selection

In our problem of Bayesian model selection, candidate models have different number of parameters 
(i.e. different numbers of regulatory genes). Because of the variable size of the problem space, standard 
Markov Chain Monte Carlo techniques cannot be directly applied. Essentially, two approaches exist. 
The first is a sophisticated simulation technique using Markov chain with jumps between the different 
models – reversible jump MCMC by Green (1995). Alternatively, all models under consideration are 
indexed and the index is treated as another parameter, to be considered jointly with all other model 
parameters. Carlin and Chib (1995) proposed this concept of a supermodel defined over a composite 
parameter space and used the standard MCMC methodology - Gibbs sampling. The algorithm was 
improved in the Metropolized Carlin and Chib algorithm (see Godsill (2001) and Dellaportas (2002)). 
Further Gibbs sampling approaches for model selection problems were developed by George and Mc-
Culloch (1996) – Stochastic Search Variable Selection, by Kuo and Mallick (1998), and by Dellaportas 
et al. (2000, 2002) – Gibbs Variable Selection (GVS).

The general idea is to substitute the model indicator m MÎ  with a variables indicator γ = (γ1,…,γn), 
a binary vector, representing which of the Xj,j = 1,…,p should be included in the desirable “true” model. 
This permits to consider one joint space of the model parameters and the variables indicator while keep-
ing the dimensionality constant across all possible models. The model selection problem is then referred 
to as the variable selection problem.

Once the variables indicator has been introduced, the “OR” model is written as:

Y Bernoulli
i

n

i

Xi i
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1

- -
=
Õ q g

 

The Bayesian approach requires setting up a joint probability distribution over all parameters p(θ,γ). 
Let D denote the observed data for the variables Xj,j = 1,…,p and Y. The joint posterior distribution given 
the observed data is p(θ,γ | D). The Gibbs sampling procedure samples successively from univariate 
conditional distributions, simulating a Markov chain

q g q g q g( ) ( ) ( ) ( ) ( ) ( )0 0 1 1, , , , , , ,… …t t  

which converges in distribution to p(θ,γ | D). The subsequence

g g g( ) ( ) ( )0 1, , , ,… …t  

converges to p(γ | D). This sequence can be used to identify the high probability values of γj which are 
the values that appear most frequently in the sequence. And this is namely the desirable result, indicating 
the true regulators of a target gene.
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Consider a partition of θ into (θγ ,θ-γ) corresponding to those components of θ which are included 
and not included, respectively, in the model. Then the posterior distribution of the parameters p(θ,γ|D) 
may be partitioned into p(θγ|θ-γ,γ,D) and p(θ-γ|θγ,γ,D) . From the model definition it is obvious that the 
components of the vector θ-γdo not affect the model likelihood. The full conditional posterior distribu-
tions required for the Gibbs sampling procedure are given by:

p D p D p p( ) ( ) ( ) ( )q q g q g q g q q gg g g g g| , , µ | , | | , ,- -
 

p D p( ) ( )q q g q q gg g g g- -| , , µ | , ,
 

where p(D|θ,γ) is the model likelihood, p(θγ|γ) is the model prior and p(θ-γ|θγ,γ,) is called pseudoprior.
Methods for Gibbs variable selection differ in their approaches on specifying prior distributions 

for the model parameters. The most simple is the “unconditional prior” approach of Kuo and Mallick 
where the prior distribution of model parameters θ is defined independent of variables indicator γ. In 
the Stochastic Search Variable Selection method of George and McCulloch, the priors for θj depend on 
γj and are defined as mixtures of two Normal distributions for γj = 0 and γj = 1. If γj = 0, the parameters 
(pseudopriors) are kept close to 0  by defining the mean of the normal distribution equal to 0. The method 
of Dellaportas et al. (2000, 2002) differs from the SSVS in that the pseudopriors may not be distributed 
around 0, instead they may be chosen in a way to help increase the efficiency of the sampling procedure. 
Carlin and Chib (1995) noted that the pseudoprior distributions are meaningless as a modelling device, 
but must be chosen carefully as they affect the rate of convergence of the chain. Total freedom may be 
given to the specification of pseudopriors, they may even include specifications using the data. It was 
recommended to set the pseudoprior distribution p(θj|γj=0) as close as possible to p(θj|γj=1) (proposal 
densities). Dellaportas et al. use these proposal densities which can be estimated using a pilot run of 
the MCMC for the saturated model, i.e. the model where all terms γj=1 for all j. The present approach 
adopts the method of Dellaportas et al. (2000, 2002).

Solutions and recommendations

Discretization

When applying Boolean logic-based models, it is necessary to preprocess the continuous gene expression 
values and to discretize them into two states (0 - not expressed, 1 - expressed). Discretization results in 
a loss of information, however, it reduces noise, which is characteristic to the mRNA measurements, 
and makes the inference of the model more robust. To perform discretization, vector quantization tech-
niques can be used such as the clustering algorithm k-means (Gersho and Gray, 1992). For example, for 
each gene, its expression values can be clustered into two groups (k = 2) with two initial values: 0 and 
the maximum expression value of the gene. Several statistically sound quantization approaches were 
proposed (Chung, 2006; Di Camillo, 2005). In contrast to the approaches which execute discretization 
before and independently of the model inference, Steck and Jaakkola (2007) discretize continuous data 
while learning the structure of a graphical model. Gat-Viks (2006) is another example of such joint 
inference.
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In some applications, it would be reasonable to maintain ternary expression levels: 1 (upregulated), -1 
(downregulated) and 0 (invariant). To address this issue, extensions to the Boolean logic-based models 
can be developed.

Specification of the Prior Distributions for the Model Parameters

The priors for the parameters θj are defined with Beta distribution, since in the model presented here 
they need to be constrained to the [0,1]-interval. We define the priors for the parameters θj with Beta 
distribution with hyperparameters aj and bj:

θj ~ Beta(aj,bj) 

The hyperparameters aj and bj are defined equal to 1, if γj =1: Beta(1,1). This makes the prior non-
informative, allowing for the exploration of the whole parameter space. If γj =0, the proposal distributions 
for the pseudopriors can be calculated according to the method of Dellaportas. That is, the mean meanj 
and the variance varj of the parameters θj are estimated from the pilot run of the saturated model, and 
the hyperparameters aj and bj are calculated by the formulas (method of moments):

a b
mean mean
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j j
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+ =
-
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1  

aj=(aj+bj)meanj, 

bj=(aj+bj)(1-meanj) 

Next, one must define the prior distribution for the variables indicator γ. Since the terms γj are in-
dependent, each term can be specified with the independent Bernoulli distributions: γj~Bernoulli(πj), 
where πj is the prior probability to include term j into the model. The simplest choice in variable selection 
problems is the uniform prior on γ, assuming that models are a priori equally probable, i.e. πj=π=0.5. 
This prior is non-informative in the sense that it favours all models equally, but it is not non-informative 
with respect to the model size. If p is the number of potential regulators and n is the number of actual 
regulators, then E(n)=0.5p and var(n)=0.25p (Kohn et al., 2001). This can be crucial for models with a 
sparse number of regulators, e.g. “AND” models with few gene regulators combined with AND-function, 
since the sampling procedure will not sample them at all. On the other hand, in case of models with 
high numbers of variables, we would like to favour more parsimonious models. It is advisable to set 
the probability π in a way to restrict na priori to lie in a short range. By setting E(n) and var(n) to the 
desired values, π can be calculated from:

E(n)=π*p,var(n)=π(1-π)p. 

A more flexible approach is to place a hyperprior on π:

π ~ Beta(α,β), 
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then the prior for the number of actual regulators n is Beta-binomial:

n ~ Betabin(p,α,β), 

The values for α and β can be chosen by setting E(n) and var(n) to the desired values and solving the 
following equations (Kohn et al. 2001):
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While performing Gibbs variable selection with the complex models like “OR-NOR”, we consider 
the same set of variables (genes) as potential activators and potential inhibitors. We use two indicators: 
γact and γinh, representing that a particular variable is included in the model as activator or inhibitor, re-
spectively. To ensure that terms g j

act  and g j
inh  cannot be 1 at the same time, we specify g j

inh  as:

g g p
j
inh

j
act

j
inhBernoulli (( ) )1- ,  

where p
j
inh  is the prior probability for including the term j into the set of “true” inhibitors.

Implementation

The Gibbs variable selection procedure described in this chapter is easily implemented by using BUGS 
(Bayesian Updating with Gibbs Sampling) which is the general purpose software for Gibbs sampling 
on graphical models (Thomas 2006, Spiegelhalter et al. 1996; Gilks 1993; Ntzoufras 1999). BUGS 
provides a declarative language for specifying a graphical model, and performs MCMC sampling from 
the resulting full conditional distributions. The system recognizes conditional conjugacy and uses it 
to sample efficiently. Failing that, it uses rejection and adaptive rejection methods or the Metropolis-
Hastings algorithms. BUGS allows for the specification of a variety of prior distributions. There is a 
Windows version of BUGS, called WinBUGS, while the OpenBUGS software can be used on Unix-like 
platforms.

The BUGS output – samples of the MCMC chain – must be monitored for diagnosing slow conver-
gence or lack of convergence. This can be done by using the package CODA implemented in R language 
(Plummer, 2006) or with a similar software BOA (Smith, 2007), see http://cran.r-project.org. CODA stands 
for Convergence Diagnostics and Output Analysis and BOA stands for Bayesian Output Analysis.

The BUGS code for our “OR” and “OR-NOR” models is presented in the Appendix.
The output of Markov chain simulation can be used to summarize the posterior distribution of the 

variables of interest: θj and γj. After the burn-in time, Markov chain samples are used to count the num-
ber of times γj had the value 1 in the Markov chain. For example, if the frequency of 1s exceeds 0.7, 
we assume that γj=1 and the respective regulator should be included in the “true” model. Otherwise, the 
regulator j should be excluded. The number of iterations for the burn-in time and for the estimations 
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depends on the problem size. For moderate size problems, 10000 iterations for the burn-in and 10000 
iterations for estimations will be probably sufficient.

As proposed by Gelman and Rubin (1992), a number of parallel runs of Markov chains should be 
carried out from different starting points. Convergence is diagnosed when the output from different 
Markov chains is indistinguishable. For parallel runs of Markov chains we use different initial values 
of the parameters indicator γ (when γj=0 for all j and when γj=0 for all j).

Model Checking

After the execution of the Gibbs variable selection and the estimation of the variables indicator γ, the 
check of goodness-of-fit of the model to data must be performed. Bayesian model checking uses the 
posterior predictive distributions (Gelman, 2000). The goal is to perform posterior predictions under 
the model and to assess the discrepancy between predicted and observed data. If the model is reason-
ably accurate, the predicted data should be similar to the observed data. Let γ be the observed data on 
Y and θ be the vector of parameters. Denote yrep the replicated data generated under the model with the 
parameters θ. The posterior predictive distribution is

Figure 5. Time-delay’ gene regulation

Figure 6. Feedback regulation among two genes
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p y y p y p y drep rep( ) ( ) ( )| = | | .ò q q q  

The posterior predictive distribution can be computed by simulation: simulate parameters θ from their 
posterior distribution, and simulate yrep from the sampling distribution p(yrep|θ) conditioning on values 
of the simulated parameters. An advantage of using BUGS is that the generation of the replicate data 
can be easily incorporated into the model inference procedure.

Here, we wish to check the ability of the inferred regulatory model to predict the state of the gene Y 
from the states of its regulators. The inferred model is defined by the previously estimated binary vector 
γ, so the model contains now only the parameters θ. At each iteration of the MCMC, we generate the 
replicate data set {yrep} under the model based on the current simulated parameters θ.

Our model checking strategy is based on examining individual observations of Y yi,i=1,…,N (N is the 
number of data samples) and comparing them to the replicate data. For the comparison we use the residual 
function ri=|yi-E(yi)|, where the expectation E(yi) is estimated from the replicate dataset. Observations for 
which the residual is not close to 0 indicate some lack-of-fit of the model and should be regarded as an 
outlier. We regarded the residual as not close to 0 if its absolute value exceeded one estimated var(yi). 
The model prediction accuracy is calculated as the percentage of non-outliers.

Modeling Gene Expression Dynamics and Regulatory Feedback

Generally, there exist two kinds of microarray experiments: (1) measurements under different biological 
conditions e.g. in tumor and in normal tissues, and (2) time-series gene expression data. Bayesian network 
approaches are static in the sense that they represent causal relationships between variables at one point 
in time. They do not address the dynamic changes of the variables. This is particularly applicable in the 
first case, while the measurements of genes at each biological condition are treated as statistical samples. 
In case of time course data, two different regulatory situations can be considered. First, the state of gene 
i in a sample j depends on the states of its regulators in the same sample j (‘simultaneous’ regulation). 
Second, the state of the gene i in the sample j depends on the states of its regulators in the previous sample 
j-1 (‘time delay’ regulation), see Figure 5. Both situations can be treated by the method presented here. 
The time delay setting resembles the ‘unrolled’ Bayesian network i.e. the Dynamic Bayesian network 
model (Murphy, 2002). Inferring genetic regulatory networks with the Dynamic Bayesian models was 
presented e.g. by Perrin (2003), and is treated in this book. However, such approaches reconstruct only 
time-invariant regulatory influences, where the parameters are independent of time. The real dynamics 
of the genetic regulation can be resolved only when the parameters of the regulatory models will be 
allowed to vary in time. The problem of learning such models will then represent a great challenge in 
view of the lack of statistical data. Again, MCMC simulation techniques will come into play, which is 
the matter of future research.

Note that the ‘unrolled’ dynamic model makes it possible to infer feedback regulations, such as pre-
sented in Figure 6. Feedback relations between genes is a common motif in gene regulatory networks, 
identifying them is of great interest.
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aPPlication

The method presented in this chapter was tested with the gene expression data of the S.cerevisiae cell 
cycle (Bulashevska & Eils, 2005) and with the data on malaria parasite Plasmodium falciparum (Bula-
shevska et al., 2007). After the execution of the Bayesian model inference of the Boolean logic-based 
models and after the model checking, the results are being summarized in graphs. There, the full arcs 
represent activatory regulation and the dashed arcs represent inhibitory regulation. Genes pointing to 
one gene represent its regulators combined with the Boolean logic function underlying the model.

One example of the inferred “OR-NOR” regulatory interactions of Plasmodium falciparum in gly-
colysis is displayed in Figure 8. This is the result of the ‘time delay’ learning of the “OR-NOR”-model. 
The bloodborne pathogen P.falciparum causes the most fatal and prevalent form of malaria. Understand-
ing the gene regulatory circuitry of this organism is of great importance. Since glycolysis is a crucial 
pathway in the maintenance of the parasite, we looked closely at the group of genes involved in it. From 
the public database PlasmoDB (http://plasmodb.org), twenty genes we harvested that are known to be 
involved in the glycolytic pathway. Many of the genes encode enzymes. Eighteen of the twenty genes 
were found in the dataset of Bozdech et al. (2003), which is the time-series gene expression data of the 
intraerythrocytic development cycle of P.falciparum. So the gene expression was measured every six 
hours at subsequent time points t=1,…,T, where T=53. The true biological time resolution of the gene 
transcription and activation is yet unknown. In case of the ‘time delay’ learning, it is assumed that a 
gene becomes active at a subsequent time point after its regulators are active.

The deduced regulatory network (Figure 8) suggested the strategic position and hence the key regu-
latory role of the genes PF11_0157, PF11_0208, PF14_0341 and PF10_0155. Interestingly, the gene 
PF10_0155 was connected to both enzyme genes PF14_0341 and PF13_0141. The network revealed the 
groups of closely connected genes. One group contained the genes PF11_0157, PF13_0269, PF11_0294, 
PF14_0425 and PFC0831w, another: PF14_0341, PF10_0155, PF14_0598, PF11105w, etc. Bidirectional 
regulations e.g. between genes PF11_0157 and PF11_0294 might indicate that the genes are both active 
over long period of time and the proper arc direction could not be resolved. Another possibility is that 
both genes oscillate in a shifted manner. Feedback regulation through unmeasured biological mecha-
nisms could also be hypothesized. The inhibitory connections between the genes suggest that the groups 
of genes work in a separated manner. The activation of the gene PF13_0269 by the gene PF11_0157 
was shown previously experimentally. The metabolic pathway maps with enzymes for the P.falciparum 
glycolysis pathway, available at KEGG database, supported the predicted interactions. The predicted 
network provided more information than contained in the KEGG, though.

Obviously, different Boolean logic models have different semantics. For example, the “NOR”-model 
can suggest more inhibitors than the “OR-NOR”-model. Learning the “NOR”-model identifies only 
the inhibitors of a gene, i.e. the model “explains” the non-activity of the gene with the activity of its 
inhibitors. By the “OR-NOR”-model, the non-activity of the regulatee can also be “explained” with the 
failure of its activators. Generally, the “OR-NOR”-model gives valuable hypotheses on the most likely 
possible activators and inhibitors of each gene in the dataset. On the other hand, the “AND”-model is 
capable to reverse engineer the real synergistic relations between the genes, which is not possible by 
other approaches.

Although we have tested our approach on relatively moderate subsets of genes, the method can be 
readily applied to large datasets, where the advantages of the Bayesian variable selection arise.
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concluSion

This chapter has presented the models of genetic regulatory interactions possessing Boolean-logic 
semantics. They were formulated as probabilistic graphical models and placed into the context of the 
Bayesian modelling. In fact, they resemble the local interactions of nodes in the Bayesian network, 
though constrained and not combinatorial.

The modelling approach does not make an attempt to reconstruct the whole genetic regulatory net-
work in one computational run, unlikely to the Bayesian network. Rather, the method is applied for 
each gene in the dataset, considering all other genes as candidate regulators, and then summarizing the 
results in a graph.

Bayesian modelling has a number of advantages. It allows for flexibility in defining complex models 
with many parameters. For example, by inserting into the model a new parameter, the variables indicator, 
we have converted the problem of model selection into the variable selection task, which is conveniently 
solved with Gibbs sampling. Generally, Markov Chain Monte Carlo simulation techniques rapidly 
evolve to facilitate Bayesian statistical inference. A further advantage of the Bayesian approach is that 
it enables to include subjective prior information into the model. For example, we used the subjective 
prior specification to enforce the number of gene regulators to lie in the desired range. Potentially, one 
could define priors aiming to incorporate into the model learning previous biological knowledge.

In the computational framework presented in this chapter, a particular regulatory Boolean-logic func-
tion (e.g. “AND”, “AND-NOR”, “OR-NOR” etc.) can be defined explicitly and the regulatory model can 
be learned from data. Given expression data on a gene and its potential regulators, the method permits 
to detect the most likely regulators of the gene. The main advantage of the present approach is that the 
elucidated gene relationships do not require laborious manual analysis for their interpretation, in contrast 
to the arbitrary combinatorial interactions learned by means of standard Bayesian networks models. On 
the other hand, the method enables to reveal more complex multi-gene relations than those defined in 
the conventional regression models.

Generally, the Bayesian variable selection under the so called n > p or ‘large p, small n’ paradigm, 
when the sample size n is substantially smaller than the number of covariates in the regression, remains 
an important point of statistical research. The problem of selecting significant gene regulators based on 
microarray data apparently represents such a ‘large p, small n’ problem. In West (2003), the number of 
covariates was projected to lower dimension using principal component. Bayesian variable selection 
that introduces sparseness through priors on the model size and on the role of each individual gene is a 
powerful approach, well suited to the problem of reconstructing the genetic regulatory network.

related aPProacheS

Probabilistic graphical Models for cellular networks

Probabilistic graphical models have become an important tool for computational analysis of biological 
data.

The system MinReg (Pe’er et al. 2002) was designed with the same goal as discussed here to constrain 
Bayesian networks to parsimonious models, in order to make them more biologically relevant. The idea 
is that biological regulatory networks have a limited number of “master regulators”, which affect the 
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transcription of large numbers of genes. The authors constrain the number of regulators of each gene 
and the total number of regulators in the model. A regulator is then reliable when it regulates a whole set 
of target genes. The authors developed an iterative algorithm for searching for high scoring networks, 
while using the Bayesian score for local models. A relationship not identifiable by the MinReg is the 
cooperative activity of regulators (“AND”-model). With this respect, our approach is of advantage.

The Module Networks (Segal et al. 2003, 2005) is a further probabilistic framework. The system 
assigns genes into modules. Each module is regulated by a regulation program that is a set of rules 
organized as a regression tree. Expectation-Maximization algorithm (EM) was developed to iteratively 
search for models with the highest Bayesian score.

Gat-Viks et al. (2006) use a probabilistic factor graph model to jointly model continuous high-
throughput experimental data and a priori known regulatory relations. A factor graph is a bipartite graph 
associating variable nodes with factor nodes. The variable nodes are used both to represent continuous 
experimental data and the respective discrete states of the genes. Also, two kinds of factor nodes are 
used: one for discretizer distributions (mixtures of Gaussians), which specify the joint distribution of the 
discrete states and the continuous observations, the other one - for the regulatory functions, which are the 
Bayesian network’s distributions. Given the model, predictions are made with Loopy Belief Propagation. 
The predictions are then compared to the experimental measurements; in case discrepancy is found, the 
model is iteratively refined. Given a target gene and its candidate regulatory unit the refinement process 
searches in the space of regulatory functions to achieve the best Bayesian score. During the refinement, 
the discretization parameters are re-optimized with the Expectation-Maximization (EM) procedure. This 
modelling approach is implemented in the software tool MetaReg (Ulitsky, 2008).

Recent efforts are dedicated to the integration of the gene expression data with other biological 
sources, such as promoter sequences, cis-elements, ChIP-chip data etc. (Bussemaker et al., 2007; Beer 
and Tavazoie, 2004; Hartemink et al., 2002; Segal et al., 2002; Bar-Joseph et al., 2003).

further applications of the bayesian Variable Selection in genomics

Bayesian variable selection, applied in this chapter for the elucidation of regulatory interactions between 
genes, is also being adopted, however, in a supervised problem, where the goal is to select a subset of 
genes/markers that are more influential than the others for classification of cancer phenotypes, disease 
stages etc. In this context, probit or logistic regression models are applied based on the seminal paper 
of Albert & Chib (1993). The authors proposed an auxiliary variable approach for binary probit regres-
sion model introducing latent variables in the model and rendering the conditional distributions of the 
model parameters to normal form. Albert & Chib used the block Gibbs sampler. Holmes & Held (2006) 
extended this approach using joint updating of the regression coefficients and the auxiliary variables, 
thus improving the performance. Besides, they adopted the auxiliary approach to logistic regression. 
With microarray data on breast tumors, Lee et al. (2003) used probit regression model relating continuous 
gene expression levels to the binary response: patient is carrying mutations in BRCA1 or BRCA2 genes, 
or not. The variables indicator γ was introduced into the model, and the number of selected genes was 
restrained by choosing probability π of inclusion of a gene into the model to be small, as already pointed 
out in this chapter. The prior for the regression coefficients βγ was chosen as: bg g g N c X X( , ( ) )'0 1-  
where c is a positive scale factor determining the degree of shrinkage of the coefficients through the 
posterior distributions. Smith and Kohn (1997) recommend choosing c between 10 and 100. Sha et al. 
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(2004) developed a Bayesian variable selection method for the multinomial probit model to identify 
molecular signatures of two disease stages of rheumatoid arthritis. They also discuss the choice of c 
(see Brown et al., 2002).

Since the regulatory models described in this chapter aim to mimick the cooperative binding of tran-
scription factors to the promoter region of the regulated gene, they appeared to be similar to the models 
being applied to relate transcription factor binding sites (TFBS) to the expression of the respective genes. 
The goal of such settings is to find the TFBS with the strongest predictive power (predictive models 
of gene expression). Liu et al. (2006) use the transcription factors library TRANSFAC (Matys (2003), 
BIOBASE GmbH, see http://www.gene-regulation.com/pub/databases.html) to identify the TFBS can-
didates, and then employ linear regression model in case of continuous values of gene expression and 
probit regression model with the discrete expression levels. The authors perform the Bayesian variable 
selection with Gibbs sampling. Tadesse et al. (2004) use the similar setting of the Bayesian variable 
selection to identify DNA-binding sites (regulatory motifs) which explain the expression of genes by 
previously generating a large list of candidate motifs with MotifRegressor (Conlon, 2003).

Selection of regressors

The framework presented in this chapter resembles the statistical problem of the selection of predictors in 
a regression setting. Clyde et al. (1996) pointed out that the correlation of predictors is a serious obstacle. 
Making explanatory variables orthogonal to each other can improve statistical learning, particularly 
convergence and mixing of MCMC.

Chipman (1996) discussed a strategy to reduce model space by grouping the predictors and to consider 
importance of the groups instead of individual variables in the regression.

Most of the works end up with the selection of main effects, ignoring the interaction effects of 
the predictors. Chen (2004) proposed a Bayesian variable selection method with a goal to elucidate 
interactions - BSI (Bayesian Selection of Interactions). It extends the framework of SSVS (George & 
McCulloch, 1993) and introduces priors for pair-wise interactions as well as joint priors to express the 
dependence of the main effects on the interactions. Bayesian model averaging by using a set of a pos-
teriori likely models (Madigan and Raftery, 1994, Clyde 1999) can also be employed with the aim of 
variable selection (Brown, 2002).

future reSearch directionS

Gene expression measurements represent high dimensional data with small number of sample cases. 
Elucidating complex dependencies from this data raises a great statistical challenge. For regression-like 
models with large numbers of candidate predictors (‘large p, small n’ problems), the Bayesian variable 
selection approach described in this chapter still remains a matter of current research. Slow mixing and 
bad convergence of the Markov chains is a major problem. MCMC algorithms like Gibbs sampling 
take more time wandering around less interesting regions of the model space, often remain stuck in 
local maxima and do not provide an adequate representation of the model space with the increasingly 
complex patterns of collinearity. In this context, future research will proceed in two directions. Firstly, 
with respect to the model specification, the formulation of the prior for the variables indicator g  will 
further evolve. Secondly, from the computational perspective, the sophisticated MCMC algorithms 
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will be designed capable to quickly and adequately explore the high-dimensional model space, and to 
identify regions of high posterior probability over models. For example, the shotgun stochastic search 
(SSS) approach was developed by Hans et al. (2005). It is inspired by the Metropolis-Hastings MCMC 
algorithm, but can more rapidly identify probable models by evaluating many neighbourhood models 
in parallel as proposals. Moreover, the parallel implementation of the method for use on a Unix-cluster 
was provided.

The development of trans-dimensional Markov Chain Monte Carlo, originating from the work of 
Green (1995), is an important future research direction. Jasra et al. (2007) proposed the population-based 
reversible jump MCMC which combines the advantages of both population-based and reversible jump 
approaches. The population-based simulation simultaneously represents many properties of the target 
distribution and can provide an improved dimension-changing jumping; whereas the standard reversible 
jump method does not retain information about which states have been visited and has greater capacity 
to discover new states.

Despite a substantial amount of works aiming to reveal functionally important genes that regulate other 
genes or are significantly predictive for classification of different biological phenotypes on macro levels, 
deducing the complex dependencies between the genes still remains a challenge. The model described 
in this chapter is a step in this direction. Introducing time evolution in the regulatory network models 
and considering the entire gene data in the global model is a highly challenging future perspective.
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key terMS and definitionS

Bayesian Inference: A statistical inference method in which the degree of belief in a hypothesis is 
expressed in terms of probability distributions a priori i.e. before evidence has been observed, and is 
updated using evidence with the help of the Bayes’ theorem.

Bayesian Network: A probabilistic graphical model representing conditional independencies of ran-
dom variables via a directed acyclic graph (DAG). A Bayesian network is specified by a graph structure 
and conditional probability distributions (CPDs) for each node, conditional upon its parents in the graph. 
Algorithms exist that perform inference and learning in Bayesian networks.

Bayesian Variable Selection: A problem of identifying a subset of predictors from a large set of 
potential predictors in the regression-like models. Bayesian approach is promising due to efficient a 
priori parameter formulations.

Boolean Network: A set of Boolean variables connected in the network, where the state of each 
variable is determined by the states of its neighbours by Boolean functions.

Genetic Regulatory Network: An abstract representation of the orchestrated regulation of expres-
sion of genes.

Gibbs Sampling: Is a special case of the MCMC sampling algorithms named after the physicist J. 
W. Gibbs. The algorithm samples from the joint probability distribution of random variables by gener-
ating an instance from the distribution of each variable in turn, conditional on the current values of the 
other variables.

Graphical Models: Graphs with nodes representing random variables, where arcs encode conditional 
independencies between the variables.
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Markov Chain Monte Carlo (MCMC): A class of algorithms for sampling from probability 
distributions based on constructing a Markov chain that has the desired distribution as its equilibrium 
distribution.

Noisy-OR Model: A special case of the specification of the CPD in the Bayesian network, where 
the number of parameters is linear on the number of parents of a node. The idea is that each parent is 
capable to execute its influence on the node independently of other parents, whereby the individual ef-
fects are then summarized with the Boolean function OR.

Probabilistic Modeling: A kind of modelling where a problem space is expressed in terms of random 
variables and their probability distributions. Properties of the underlying distributions are being deduced 
from data in the process of probabilistic inference.
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aPPendix

bugS code for the “or”-model

 
model OR-model {  
 # specification of the likelihood 
 for (i in 1:N){ 
  for (j in 1:P){ 
   s[i,j] ~ dbern(theta[j]) 
   I[i,j] <- X[i,j]*s[i,j]*gamma[j] 
  }   
  sum[i] <- sum(I[i, ]) 
  constraint[i] <- step(sum[i]-1) 
  Y[i] ~ dbern(constraint[i]) 
	 	 #	Y[i]=1	if	sum[i]≥1	i.e.	at	least	one	of	I[i,j]=1 
# gene Y in sample i is active, if one of its activators is 
# active      
 } 
 # specification of the priors  
 for (j in 1:P){ 
  gamma[j] ~ dbern(pi) 
	 	 pi	<-	0.2 
  theta[j] ~ dbeta(a[j],b[j]) 
  a[j] <- 1  
  b[j] <- 1   
  # alternatively: hyperprior on pi 
  # gamma[j] ~ dbern(pi[j]) 
  # pi[j] ~ dbeta(api[j],bpi[j]) 
  # api[j] <- … 
  # bpi[j] <- … 
  # values to keep the number of regulators in the desired range  
   
  # method of Dellaportas: 
  # if gamma[j]=0 use proposal values aprop[j] and bprop[j] 
# calculated based on mean and variance estimations of theta  
  # from the pilot run of the saturated model  
  # if gamma[j]=1 a[j]=1, b[j]=1 (non-informative prior)   
 
	 	 #	gamma[j]<-1.0	for	sampling	from	saturated	model								 
  # theta[j] ~ dbeta(a[j],b[j])    
  # a[j] <- gamma[j] + (1-gamma[j])*aprop[j]   
         # b[j] <- gamma[j] + (1-gamma[j])*bprop[j]    
#	aprop[j]<-	(priormean[j]*(1-priormean[j])/pow(priorvar[j],2)-
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1)*priormean[j]  
#	bprop[j]<-	(priormean[j]*(1-priormean[j])/pow(priorvar[j],2)-
1)*(1-priormean[j])      
        }  
 }  

bugS code for the “or-nor”-model

 
model OR-NOR-model 
{  
 for (i in 1:N){ 
  for (j in 1:P){ 
   s[i,j] ~ dbern(theta[j]) 
   I[i,j] <- X[i,j]*s[i,j] 
   Iact[i,j] <- I[i,j]*gamma_act[j]  
   Iinh[i,j] <- 1-I[i,j] + I[i,j]*(1-gamma_inh[j]) 
  }   
  sumact[i] <- sum(Iact[i, ]) 
  constraint_act[i] <- step(sumact[i]-1) 
  suminh[i] <- sum(Iinh[i, ]) 
  constraint_inh[i] <- step(suminh[i]-P) 
  constraint[i] <- constraint_act[i] * constraint_inh[i]   
  Y[i] ~ dbern(constraint[i]) 
  # gene Y in sample i is active, if one of the activators  
  # is active and all inhibitors are not active     
 }  
 for (j in 1:P){ 
  gamma_act[j] ~ dbern(pi)  
  pinh[j] <- (1-gamma_act[j])*pi 
  gamma_inh[j] ~ dbern(pinh[j]) 
  # if gamma_act[j]=1, pinh[j]=0 (gene j is already activator)    
	 	 pi	<-	0.2 
  # alternatively: see above 
      
  theta[j] ~ dbeta(a[j],b[j])  
  a[j] <- 1  
  b[j] <- 1   
  # method of Dellaportas 
  # pseudopriors if gene j is neither activator nor inhibitor 
  a[j] <- 1 + (1-gamma_act[j])*(1-gamma_inh[j])*aprop[j] 
  b[j] <-  1 + (1-gamma_act[j])*(1-gamma_inh[j])*bprop[j]  
  # use proposal values aprop[j] and bprop[j] 
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 # calculated based on mean and variance estimations of theta  
  # from the pilot run of the saturated model    
	 	 #	gamma_act[j]<-1.0	 	  
aprop[j]<-	(priormean[j]*(1-priormean[j])/pow(priorvar[j],2)-1)*			
priormean[j]  
bprop[j]<-	(priormean[j]*(1-priormean[j])/pow(priorvar[j],2)-1)*(1-
priormean[j])       
        }  
 } 
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introduction

Developments in experimental technologies such as DNA microarrays and real-time PCR experiments 
render quantitative measurements of expression levels of a large number of genes feasible, and make the 
acquisition of time series concentration data possible. Such data can be used to reconstruct gene regulatory 
networks from the data, and to derive detailed quantitative models describing the dynamics of a system 
under consideration. These models can then be used to run simulations, to study the effect of particular 
interventions, and to analyze the dynamic behavior of the network under various conditions.

abStract

Differential equation models provide a detailed, quantitative description of transcription regulatory 
networks. However, due to the large number of model parameters, they are usually applicable to small 
networks only, with at most a few dozen genes. Moreover, they are not well suited to deal with noisy 
data. In this chapter, we show how to circumvent these limitations by integrating an ordinary differen-
tial equation model into a stochastic framework. The resulting model is then embedded into a Bayesian 
learning approach. We integrate the-biologically motivated-expectation of sparse connectivity in the 
network into the inference process using a specifically defined prior distribution on model parameters. 
The approach is evaluated on simulated data and a dataset of the transcriptional network governing 
the yeast cell cycle.

DOI: 10.4018/978-1-60566-685-3.ch006
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Several different approaches have been developed in the last decade to infer regulatory networks 
from gene expression measurements. These approaches differ in the level of detail used to describe 
regulatory control mechanisms, and in the methods employed to estimate model parameters. The most 
frequent models used are correlation based models, models based on information theory, Boolean net-
works, Bayesian networks or, more generally, graphical models, and ordinary differential equations. Our 
focus in the following will be on the latter, and we will show how to integrate them into a probabilistic 
framework, which allows it to apply a Bayesian learning approach to parameter estimation.

Ordinary differential equations provide a quantitative time and state continuous description of a sys-
tem’s dynamic behavior. They are usually based on chemical reaction kinetics, and model parameters 
correspond directly to reaction rates, binding affinities and degradation rates. Therefore, they provide 
a very detailed and realistic description of a system under consideration. On the downside, the conse-
quence of this detailed description in view of limited data is that the number of model parameters to be 
estimated usually far exceeds the number of measurements available. Parameter estimation then leads 
to underdetermined optimization problems. It is for this reason that in practice, network inference with 
(nonlinear) differential equation models is limited to networks of at most a few dozen components.

Another disadvantage of ordinary differential equation models is that they are not well suited to handle 
noisy data. However, experimental data are often prone to considerable noise. This further complicates 
the estimation of model parameters, since learning algorithms may simply tune to the noise in the data, 
instead of deriving true biological mechanisms.

In the following, we will describe an inference approach for gene regulatory networks from time 
series gene expression data which combines the detailed quantitative dynamics of differential equation 
models with a probabilistic modeling approach, thus taking noisy measurements into account. Parameters 
in this framework are estimated using Bayes’ theorem. The problem with underdetermined models can 
then be addressed by integrating additional assumptions on model parameters through suitably chosen 
prior distributions. We discuss one particular prior distribution, which drives the inference to sparse 
networks. We then show that this enables the method to cope with datasets consisting of only few time 
points and a large number of model parameters. This makes the method particularly suitable for the task 
of quantitative modeling from typical real-world experimental datasets. We illustrate this claim both 
on simulated and real gene expression data from the transcriptional network governing the yeast cell 
cycle. Finally, we discuss relations between Bayes regularized differential equation models and other 
stochastic approaches from a more general point of view.

background

We will now derive the system of differential equations we use to model genetic regulatory networks. 
The underlying assumption is that these equations describe the true states of the biological system, 
which is hence a deterministic system. We will discuss this assumption and its consequences in more 
detail later.
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differential equation Models for gene regulatory networks

Ordinary differential equations (ODE) offer a deterministic, time and state continuous description of a 
system’s temporal evolution. In these models, a gene regulatory network is understood as a system S, 
consisting of n interacting components. At any time t, S is assumed to be fully characterized by the state 
x(t)=(x1(t),x2(t),...,xn(t))∈Ñn, where variable xi(t) corresponds to the concentration of gene product i at 
time t. The state space W is usually the Ñn, and time t∈Ñ. The dynamic behavior of S is characterized 
by a function Φ:W´Ñ →W, which assigns each tuple (x,t)∈W´Ñ an element in the state space W. The 
function x(t)=Φ(x0,t) is assumed to be the solution of the initial value problem

x t f x t x t x( ) ( ( )), ( )= =0 0       (1)

with initial state x0 and a continuously differentiable function f: W→Ñn.
Systems of differential equations have been used in recent years to model the dynamic behavior of gene 

regulatory networks quantitatively. A commonly used parameterization of the function f is given by

f x t s x t g x t i ni i i i i( ( )) ( ) ( ( )), ,..., .= - + =g 1       (2)

The basic synthesis rate si ≥ 0 describes the expression rate of gene i when no regulators of i are 
present. Degradation of gene product i is assumed to be a first order decay process. Hence degradation is 
proportional to the concentration of the gene product, with a degradation rate γi. Finally, the regulation 
function gi accounts for influences of network components regulating the expression of gene i.

Isolating an initial amount xi(0) of gene product i at time t = 0, the molecules are degraded, and the 
dynamic of xi(t) is described by

x t x t x xi i( ) ( ), ( ) .= - =g 0 0       (3)

A solution of this initial value problem is an exponentially decreasing function

x t x ei i
ti( ) ,,= -

0
g       (4)

characterized by its half-life T½. T½ denotes the time after which xi(t) has dropped to half of its initial 
value, xi(T½) = xi(0)/2. Degradation rate and half-life are related via T½ = ln(2)/γi.

The course of component i in the absence of any regulators is described by

x t s x t x xi i i( ) ( ), ( ) .= - =g 0 0       (5)

Starting with an initial value xi(0), the solution of this system exponentially approaches the steady 
state concentration xi,s = si/γi. Thus, all genes which are not regulated by other genes in the network 
eventually reach a steady state.
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The differential equations are coupled through the regulation functions gi(x(t)). Usually, for the sake 
of simplicity, gi is taken to be the sum of individual regulation functions rij(xj(t)), assuming that the ef-
fects of different regulators can be described independently from one another, and the total effect of all 
regulators on variable xi is the sum of these individual effects:

g x t r x ti ij j

j

n

( ( )) ( ( )).=
=
å

1
      (6)

This independence assumption neglects processes such as complex formation or cooperative binding 
between different transcription factors. It can thus be crucial when these interactions play a dominant role 
in gene expression regulation. On the other hand, an inclusion of all possible cooperative effects would 
lead to a far more complex model, and the additivity assumption can be seen as a trade-off between 
tractability and preciseness. Furthermore, we note that cooperative and competitive influences between 
different transcription factor molecules of the same species are not excluded by this assumption, and 
we will show how to account for such effects in the individual regulation functions in the following 
subsections.

Linear models in which the individual regulation functions are each described by a single parameter, 
rij(xj(t)) = aijxj(t), are widely used for network inference (see, for example, Chen & Church, 1999; Cohens 
et al., 2006; Guthke et al., 2005; Kloster et al., 2005; Sabatti & James, 2006; Vallabhajosyula et al., 2006; 
van Someren et al., 2006). Such linear models might be appropriate if the network under consideration 
operates at a specific working point, such that the system can be interpreted as the linearization around 
this point (Gustafsson et al., 2005; Sanguinetti et al., 2006). However, gene regulation is known to be 
highly nonlinear, and simple linear models are often not appropriate to capture the qualitative dynamic 
behavior of a system. For example, linear models have a single steady state which is either globally 
stable or unstable, and they cannot show complex dynamic behavior such as multi-stationarity, hysteresis 
or sustained oscillations.

In the next section, we will use chemical reaction kinetics to derive a more realistic parameteriza-
tion of the individual regulation functions. The resulting model class is generally able to capture the 
mentioned, more complex behaviors.

chemical reaction kinetics and the Quasi-Steady State approximation

Following the theory of Michaelis and Menten (Michaelis & Menten, 1913; see also Alon, 2006; Yagil 
& Yagil, 1971), we describe binding of a transcription factor TF to a specific DNA binding site BS as 
a reversible chemical reaction:

TF BS C+       (7)

TF and BS form a complex C with a reaction rate k1, and this complex dissociates with a rate k-1. This 
reaction reaches a steady state within milliseconds (Alon, 2006). Thus, the time scale for this reaction is 
much faster than that of the gene regulatory network, which is the scale of protein concentration changes 
(minutes to hours). Hence it is convenient to apply a quasi-steady state approximation (QSSA). In this 
setting, we consider slow and fast reactions on separate time scales ∆t and ε∆t, ε << 1, respectively 
(Strogatz, 2000). A large difference between these scales allows for the following approximations: Con-



143

A Bayes Regularized Ordinary Differential Equation Model for the Inference of Gene Regulatory Networks

sidering the system on the fast time scale, changes of variables taking place on the slow time scale can 
be neglected. This means in our example, that the concentration of transcription factors in reaction (7) 
is treated as a constant, and the reaction approaches the chemical equilibrium, in which the number of 
complex formations equals on average the number of dissociation reactions, and the net reaction is zero. 
Thus, in chemical equilibrium, the ratio of reactant and product concentrations is constant. According 
to the law of mass action, this ratio is determined by

K
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s s
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1
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.       (8)

Here, [X]s is the equilibrium concentration of component X, and K is called equilibrium constant. It 
is a measure for the affinity of a DNA binding site to a transcription factor.

On the slow time scale in turn, the fast reaction is assumed to be always in a steady state, which, 
since it depends on the concentration of the transcription factors, changes slowly. It is for this reason 
that this approximation is called quasi-steady state approximation.

The QSSA is generally the basis for the inference of ODE model parameters from time series con-
centration data. It is required for a functional relation between the rate of change of the system’s state 
at time t and its current state at time t, which is postulated in each ODE model.

Assuming that the number of transcription factors bound to the DNA is much smaller than the number 
of unbound ones allows it to write the fraction of occupied binding sites among all sites, [BS]b/[BS]t, as 
a function of the total transcription factor concentration [TF]t and the equilibrium constant K:
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We assume this fraction to be proportional to the effect of the transcription factor on the expression 
rate of the regulated gene, leading to a hyperbolic individual regulation function

r x k
x

x
ij j ij

j

j ij
( ) =

+ q
      (10)

Figure 1. Activating (left) and repressing (right) individual regulation functions, showing the effect of 
the regulated gene versus the regulator concentration
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shown in Figure 1. The regulation strength kij is the maximal effect of regulator j on variable xi, which is 
approximated for high regulator concentrations, when the fraction of binding sites bound by a transcrip-
tion factor is nearly 1. The regulation strength is positive if j activates i, it is negative if j is an inhibitor 
of i, and zero if j does not have an influence on i. The parameter θij is related to the equilibrium constant 
K and serves as a threshold value. If the regulator concentration xj equals θij, the effect on the regulated 
gene is half of the regulation strength kij.

interactions between transcription factor Molecules

So far, we assumed independent binding of all transcription factor molecules to their respective DNA 
binding sites. A more realistic description accounts for influences among different transcription factor 
molecules of the same species. Many transcription factors only become active as complexes, often they 
form dimers consisting of two molecules, or tetramers, which contain four molecules of the same spe-
cies (Alon, 2006; Lu et al., 2006; Savageau & Alves, 2006). The corresponding chemical reaction then 
reads

mTF BS C,+ 

      (11)

where m is the number of molecules in the complex. Applying the same transformations as above, we 
arrive at sigmoid individual regulation functions

r x k
x

x
ij j ij

j
m

j
m

ij
m

ij

ij ij
( ) ,=

+ q       (12)

which differ from equation (10) by the Hill coefficients mij.
The parameters kij, θij, and mij in equation (12) can sometimes be determined empirically, and the mij 

may be fractional numbers. They then account for influences among transcription factor molecules in a 
more general way. Binding of a single molecule can, for example, facilitate binding of a second molecule, 
expressed by a Hill coefficient mij >1. It can also have the opposite effect, and 0 < mij < 1 in this case.

Figure 2. Hill regulation functions according to equation (12) for different Hill coefficients. The plot 
shows how the Hill coefficient determines the steepness of the sigmoid.
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Figure 2 shows regulation functions with fixed θ and k and different Hill coefficients. The coefficient 
mij=1 corresponds to the hyperbolically increasing function in Figure 1. Increasing mij causes a sigmoid 
shape. Here, the role of θij as a threshold value becomes evident: Comparing two regulation functions 
r1(x) and r2(x) with Hill coefficients m1 and m2 > m1, function r2(x) is below r1(x) for x<θ, and it exceeds 
r1(x) for x>θ. Moreover, in the limit m→∞, r(x) approaches a step function, which is constantly zero 
for x<θ, and k for x>θ, leading to piecewise constant regulation functions. Such a description has been 
used to model gene regulatory networks by Mestl et al. (1995) and de Jong and coworkers (de Jong et 
al., 2003; de Jong et al., 2004; de Jong et al., 2000).

Properties of the Model

We consider the additive ODE model

x t s g x t r x t i ni i i i ij j

j

n
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=
å

1

1
       (13)

with individual regulation functions given by equation (12), and point out two properties which distin-
guish this model from simple linear models.

First, trajectories of system (13) monotonically approach a trapping region bounded by lower and 
upper values

x s k x s ki i ij
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    (14)

This is a very pleasant property from a biological and a mathematical point of view. All concentra-
tions are bounded for arbitrary initial conditions. This is biologically plausible. Moreover, the long term 
behavior is completely determined by limit sets in the trapping region, which can simplify the analysis 
considerably.

Secondly, the model is able to capture complex dynamic behavior such as the existence of multiple 
stable steady states and sustained oscillations, which are known to be related to circuits in the interaction 
graph (Gouze, 1998; Thieffry, 2007; Thomas, 1998; Thomas & D’Ari, 1990; Thomas et al., 1995). For 
example, a positive circuit is a necessary condition for the existence of multiple steady states, which 
are related to hysteresis, bi-stability and switch like behavior. Negative feedback is in turn required for 
stable periodic behavior.

bayeS regulariZed ordinary differential eQuationS

We will now show how to embed such an ODE model into a stochastic framework. This approach allows 
it to keep the quantitative accuracy of differential equation models (with underlying biochemical reac-
tion kinetic), and at the same time account for noise in the experimental data. Furthermore, using Bayes’ 
theorem, prior information on the biological network can be included in the inference process through a 
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prior distribution on model parameters. This provides a very effective way to deal with underdetermined 
optimization problems and overfitting so often encountered with any quantitative kinetic model.

integration into a Probabilistic framework

The key assumption we make in order to integrate the system of differential equations (13) into a proba-
bilistic context is, that the ODE system (13) describes the true state of the genes x at any given time 
point, but that we can observe only a corrupted version

y t x t( ) ( ) .= + x        (15)

Here, x is the vector of true concentrations of the genes, y is the vector of observations, and ξ is a 
vector of mean-zero, normally distributed random variables capturing noise. For simplicity, we assume 
the same variance σ2 for all genes. The assumption of normally distributed noise is justified if we as-
sume the noise to stem from many independent sources, and clearly other models are feasible at this 
point. We note here again that this model does not account for noise due to biological variation, since 
ξ is not fed back into the differential equations and does not affect the true state x(t + Δt) of the system 
at a later time point t+Δt.

Given parameters w = (s, γ, k, m, θ) of the differential equation model, the unknown true state 
x(t)=Φ(x0,t) is uniquely determined by the time t and the state x0 at an initial time point t0. In order to 
approximate this function Φ for a state x(t+Δt) and x0 =x(t), we have to integrate equation (13) numeri-
cally. This can be done, for example, by a simple Euler discretization with fixed step size Δt,

x t t x t t f x ti i i( ) ( ) ( ( )).+ = + ×D D        (16)

The probability of observing gene i in state yi(t + Δt) at time t + Δt is then given by
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with hi(x(t),w,Δt) = xi(t+Δt) given by equation (16).
The conditional probability distribution (17) describes a normal distribution centered at the true state 

x(t + Δt), which we approximate by the previous state x(t) and an Euler step.
The conditional probability distribution of observing y(t + Δt)=(y1(t + Δt), …, yn(t + Δt)) at time t + 

Δt, given true states x(t)=(x1(t), …, xn(t)), is then given by

p y t t x t w p y t t x t wi
i

n
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=ÕD D
1

     (18)

Finally, the probability of observing a time series Y = {y(t1), y(t2), …, y(tT)} of measurements at T 
distinct time points spaced evenly at intervals Δt, given the model parameters w and the true model states 
X = {x(t1), x(t2), …, x(tT)} is given by
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where p(y(tτ)|x(tτ)) is a normal distribution with variance σ2. As a function of the parameters w and for 
fixed dataset Y, equation (19) is called likelihood, since it describes how likely it is to observe the data 
Y if the system’s true states are X.

The probability distribution (19) depends on the true states X, which we approximate by the empirical 
estimates (̂ ) ( )x t y t= . Using this approximation, the resulting model is equivalent to a dynamic Bayesian 
network, as we will detail in the end of this chapter. A computationally more expensive approach would 
compute x(tτ) from x(t0) using the ODE model, and estimate x(t0) from the full set of observations for 
all time points. For notational convenience, we will write the likelihood as p(Y | w) in the following, 
neglecting details of the implied estimation of X from Y.

Maximum likelihood Parameter estimation

A maximum likelihood approach to parameter estimation would now maximize p(Y | w) with respect to 
the model parameters w, that is, find the model parameters w which maximize the probability of seeing 
the data. The computation is much simplified by taking the negative logarithm of the objective function 
(19), thus minimizing
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Since our interest lies in minimizing lY(w) with respect to w, we can neglect terms independent of 
w. We furthermore fix the noise level σ to 1 in the following. This parameter does not change the loca-
tion of the minimum ˆ arg min ( )w l wMLE

w
Y= . It will however become a relevant parameter later in the 

Bayesian framework.
Substituting from (17), we can simplify the last term in (20) further, and dropping terms independent 

of w, the optimization problem becomes
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Diverse algorithms can be used to carry out this optimization, for example genetic algorithms (Rech-
enberg, 1973), simulated annealing (Kirkpatrick et al., 1983) or procedures based on gradient descent. 
We use the latter, as described in Press et al. (2002).

bayesian learning framework

Although we have derived equation (21) from a statistical perspective, the resulting optimization problem 
turns out to be equivalent to classical minimum-squared-error fitting of a model to experimental data. 
This is an interesting result from a theoretical point of view, since it provides a connection between least 
squares fitting and maximum likelihood estimation for normally distributed error terms ξ. In contrast to 
least squares fitting, however, the statistical approach provides a straightforward framework to include 
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additional knowledge in the network inference process, as we will show in the following. Such additional 
knowledge will become of highest importance in particular in the typical setting of larger networks and 
only insufficient amounts of experimental data, resulting in underdetermined optimization problems in 
model fitting.

The main tool to address this point is Bayes’ theorem, which states that, given experimental measure-
ments Y, the probability distribution over model parameters w is given by

p w Y
p Y w p w

p Y
( | )

( | ) ( )
( )

.=        (22)

Here, p(Y|w) is the likelihood (19), p(w) is a prior distribution over the model parameters w, and 
p Y p Y w p w dw( ) ( | ) ( )= ò

W

is a normalizing factor called evidence. P(w|Y) is called posterior distribu-
tion. It describes the probability distribution of the model parameters w, given the experimental obser-
vations Y.

The prior distribution p(w) over the model parameters w can be used to integrate additional biological 
knowledge into the learning process. Imoto et al. (2003), in their pioneering work, demonstrate this by 
expressing the prior knowledge over interactions between specific genes in terms of energy functions, 
from which a prior distribution over network structures is obtained in the form of a Gibbs distribution.

We will assume less explicit prior knowledge in the following. Instead of considering explicit 
knowledge of the form “there should be an edge between gene A and B with high probability”, we will 
only define a vague prior of the form “the network should be sparse, that is, it contains only few edges 
relative to the fully connected network”. This is biologically motivated in so far as it is highly unlikely 
that there are direct regulatory interactions between most pairs of genes in the network.

In terms of the differential equation model (13), this sparseness assumption translates into the as-
sumption that most of the parameters kij should be equal to or almost equal to zero. We therefore use a 
mean-zero normal distribution with variance σij

2 as prior distribution on the kij,
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This will assure that the kij do not become arbitrarily large, however, it does not yet enforce sparse-
ness in the sense that most of these parameters should be close to zero. To enforce the latter, we specify 
a second level of prior distribution over the standard deviations σij. We would like most of the normal 
distributions to be strongly concentrated around their mean zero; hence their standard deviation should 
be small. This is expressed using a gamma distribution,
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where G( )r t e dtr t= - -
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0
 is the gamma function and 1/a and r are scale and shape parameters.

We can now compute the prior distribution p(kij|a,r) over kij by integrating out σ,
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Although this integral is not analytically tractable, it can be approximated very well numerically us-
ing Gauss-Laguerre quadrature. This prior distribution is shown in the two-dimensional case in Figure 
3 (right). In comparison to the normal distribution (Figure 3 left), it can be clearly seen how this prior 
favors sparse solutions in the sense that only few of the kij are significantly distinct from zero. We note 
in passing that a very similar effect can be obtained using a prior based on the Lq-norm for q<1. Also, 
this prior enforces much stronger sparseness constraints than the Laplace prior traditionally used for 
this purpose.

For the synthesis and degradation rates si and γi, we will use independent gamma distributions 
p(si|asi,rsi) and p(γi|aγi,rγi) as prior. This choice is motivated from the requirement that these parameters 
must be positive, and they should not become arbitrarily large. For the sake of simplicity, we assume 
fixed values for the Hill coefficients mij and the threshold parameters θij. These latter parameters can 
only be estimated well from data if sufficient time points are available, and in particular estimation of 
the Hill coefficients is numerically very unstable.

We are now ready to optimize the posterior p(w|Y). In the following, we will show results stemming 
from simple maximization of p(w|Y) with respect to w using conjugate gradient descent, and the respec-
tive maximum a posteriori (MAP) estimator is denoted ˆ .wMAP  This has the advantage that it is relatively 
straightforward and easily computed, but it may suffer from problems with (multiple) local optima. 
Sampling from the posterior distribution using Markov-chain Monte Carlo methods and optimization 
using simulated annealing are alternatives that we are presently evaluating in our groups.

Figure 3. 2-Dimensional prior over network parameters kij. Left: Normal distribution, right: Prior ac-
cording to equation (25). While the normal distribution penalizes the overall distance of the weights k 
from the origin, it does not enforce sparseness. The plot clearly demonstrates, how this prior assigns 
lower probability mass to points where both k1 and k2 are significantly distinct from zero than to points 
where only one of the two parameters deviates from zero, even if the total distance from the origin is 
the same.
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reSultS

results on Simulated data

Data Simulation

We used equation (15) with the differential equation model (13) to simulate time series data for a network 
of seven genes. The interaction graph of the system is shown in Figure 4. Synthesis and degradation 
rates were set to si=1, γi=0.1 for i=1,...,7. For the parameters of the individual regulation functions we 
used the values θij=5, mij=2 for i,j=1,...,7, and kij=±2 with signs according to the edge labels in Figure 4. 
The discretization step width was set to ∆t=1. Time series data with different initial states xi(0) randomly 
drawn from a uniform distribution over the interval [0,5] were simulated, three time points each. We 
varied the noise level σ and the number of time points used to learn the model parameters.

Parameter Estimation

Conjugate gradient descent was carried out to maximize the posterior distribution p(w|Y) with respect 
to model parameters w. We compared the maximum likelihood estimator (MLE) ˆ ,wMLE  using different 
noise levels and numbers of time points for the inference process. The threshold values θij and the Hill 
coefficients mij were fixed to values θij=5 and mij=2 for i, j=1,...,n. To test how strongly results depend 
on these parameters, we compared results using several different values, and observed no significant 

Figure 4. Network topology used to simulate time series data. Numbered nodes correspond to genes, 
edges represent regulatory interactions. Labels (+) and (-) indicate positive or negative regulation.
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difference. Gradient descent was started with si=γi=0.1. All regulation strengths kij were initially set to 
0. Parameters for the gamma distributions over synthesis and degradation rates were set to rsi=2, asi=1, 
rγi=1.0001, aγi=2 for i=1,...,n. Parameters for the gamma distribution over standard deviations σ of the 
noise term ξ were set to r=1.2 and a=1.5.

Figure 5 shows mean squared errors on the estimated model parameters. The errors on synthesis 
and degradation rates si and γi (top) are given in percent, errors on regulation strengths kij (bottom) are 
given as absolute values. Shown are results for 40 time points (left) and 70 time points (right). Both 
approaches lead to comparable results in case the dataset is large (70 time points) and a small level of 
noise (σ=0.5).

Decreasing the number of time points or increasing the noise level, however, it can be observed that 
the Bayesian approach clearly outperforms MLE. In this setting, the maximum likelihood objective 
function is close to zero at ˆ ,wMLE  but the errors for estimated model parameters are huge, indicating 
that ŵMLE  overfits the data. The Bayesian approach regularized by the prior distribution is less prone 
to this problem.

Figure 5. Mean squared errors on reconstructed model parameters for simulated dataset, for maximum 
likelihood (MLE) and maximum a-posteriori (MAP) approaches as described in the text. The upper two 
plots show errors on synthesis and degradation rates, errors on regulation strengths are shown in the 
lower two plots. The evaluation was repeated for two different dataset sizes, 40 time points (left) versus 
70 time points (right), and for three different levels of noise introduced in data simulation. Results show 
a clear advantage of the MAP approach in case of high noise levels and a low number of time points.



152

A Bayes Regularized Ordinary Differential Equation Model for the Inference of Gene Regulatory Networks

Inferred Network Structure

We performed a receiver operator characteristics (ROC) analysis to evaluate the topology of the inferred 
network. A threshold value z is used on the estimated regulation strengths kij. Component j is assumed to 
regulate i if the corresponding regulation strength exceeds this threshold, |kij|>z. ROC curves are obtained 
by varying z from 0 (all interaction strengths are significant, and the inferred network is fully connected) 
to max {| kij| | i, j=1,...,n} (none of the strengths are significant, the set of edges of the inferred network 
is empty), and calculating sensitivity and specificity of edge recognition for the resulting networks.

Figure 6 shows ROC curves for noise levels σ=2 and 3, and 40 and 70 time points. A ROC curve of 
a good classifier is positioned in the upper left corner, where both specificity and sensitivity are high. 
Guessing edges in the network leads on average to the diagonal, where sensitivity equals 1-specificity. 
Analogously to the mean squared error analysis, also the ROC analysis shows that MLE fails given 
only 40 time points. In contrast, the MAP approach infers parts of the network structure correctly. Not 
surprisingly, both approaches perform better with 70 time points, but still the Bayesian approach out-
performs maximum likelihood.

Figure 6. Receiver Operator Characteristics (ROC) analysis for the structure of the inferred network, for 
different noise levels used in data simulation and different numbers of time points available for network 
inference. Plotted are curves of sensitivity against specificity for the presence of edges in the network. 
These are computed by continuously varying the threshold on abs(ki,j) used to decide whether an edge 
is present or not. This analysis demonstrates the superior performance obtained using the sparseness 
prior (25) over a computation carried out on the likelihood alone.
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In Figure 7 we show the inferred networks for 70 time points and noise level σ=2. The 17 edges with 
highest weights are marked in bold. Solid lines indicate true positives, dashed lines false positives, and 
thin lines false negatives. 12 of these 17 edges are true positives in the MLE network (Figure 7 left), 
and 14 true edges are found in the Bayesian approach (Figure 7 right).

The area under the curve (AUC) value is a measure for the overall performance of the classifier, 
independent of the threshold value z. It is computed from ROC curves by integrating over the curve to 
calculate the area under the curve. The AUC is a value between 0 and 1, it increases with increasing 
performance. AUC values for both estimators ŵMLE  and ŵMAP  can be seen in Figure 8. The left plot 
shows how performance behaves when the noise level is increased, for a fixed dataset size of 70 time 
points. The AUC values for an increasing number of time points used for learning and a fixed noise level 
σ =2 are shown in the plot on the right hand side. This analysis provides information about the maximal 
level of noise and the minimal number of time points required for the maximum likelihood estimator to 
succeed. For most of the datasets considered here, the AUC value of the maximum likelihood estimator 
is around 0.5, and thus not better than guessing. It reaches a value of approximately 0.7 only at a noise 
level σ =2 and with 70 time points. Figure 8 demonstrates that the minimal number of time points needed 
to draw meaningful conclusions can be reduced by the Bayesian approach. Using 70 time points (left), 
the AUC value of ŵMAP  exceeds 0.7 for the noise levels σ =2 and 3. Increasing the noise further to σ=4, 
it also drops. Using the smallest noise level (right), the MAP approach is able to infer at least parts of 
the network structure correctly, even with only 20 time points.

a regulatory network of the yeast cell cycle

We applied the approach presented to the microarray study of the Saccharomyces cerevisiae cell cycle 
by Spellman et al. (1998). This dataset consists of four gene expression time series from four different 
synchronization protocols and contains 69 time points in total, collected over eight cell cycles. We in-

Figure 7. Inferred networks on simulated dataset with 70 time points and noise level σ=2, obtained as 
described in the text. The left plot shows the network inferred using the maximum likelihood approach, 
the right plot shows the network computed from maximum a-posteriori. Included are in each plot the 
17 edges with highest weights, marked in bold. Solid bold lines indicate true positives, dashed bold 
lines false positives. Thin lines indicate edges were no edge was inferred, although an edge between the 
involved nodes was present in data simulation.
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cluded eleven genes into our analysis, which are known to be involved in the yeast cell cycle (Li et al., 
2004). The reference network in Figure 9 (left) was used for evaluation. It is a reduction of the regulatory 
network specified in Li et al. (2004). Details on this network are given in Radde & Kaderali (2007). The 
eleven genes are combined into seven nodes in the network. Time series data of a node which contains 
more than one gene is represented by means of measurements. Missing values were replaced by means 
of concentrations of consecutive and subsequent time points.

The threshold values θij and the Hill coefficients mij were fixed to values θij=1 and mij=2 for i,j=1,...,n. 
Gradient descent was started with si=γi=0.1. All regulation strengths kij were initially set to 0. Param-
eters for gamma distributions over synthesis and degradation rates were set to rsi=0.01, asi=0.1, rγi=0.01, 
aγi=0.1 for i=1,...,n. Parameters for the gamma distribution over standard deviations σ were set to r=1.7 
and a=5.

Figure 9 (right) shows ROC curves for the ML and the MAP approach with AUC values 0.61 and 
0.68, respectively. Some of the main regulatory interactions are revealed in both approaches, but here 
as well the Bayesian approach clearly outperforms maximum likelihood. Inferred network structures 
are presented in Figure 10 for ŵMLE  (left) and ŵMAP  (right). The 16 edges with highest estimated inter-

Figure 8. Area under the ROC curve (AUC) values for maximum likelihood and maximum a-posteriori 
network structures inferred, obtained by integrating the area under the ROC curves. The figure shows 
AUC values for different noise levels with fixed number of time points (=70) in the left plot, and different 
dataset sizes (number of time points) used in network inference for a fixed noise level σ=2.

Figure 9. Left: Network compiled from the literature which was used to evaluate the inferred network 
topologies. Right: ROC curves for inferred network topologies, obtained using the maximum likelihood 
(dotted line) and the maximum a-posteriori (solid line) approach.
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action strengths are shown in bold. True positives are drawn as continuous bold lines, and dashed bold 
lines correspond to false positives. Thin lines are interactions which were described in the literature, 
but were not revealed in our approach. In both networks, 12 of 16 regulations found are true positives. 
The Bayesian estimator ŵMAP  reveals more regulations between different genes than ŵMLE , but it also 
reports a couple of artificial self-regulations. Seven of these 12 true positives appear in both networks. 
These include regulations that involve main cell cycle transcription factors, for example:

•  Cln3 → Cln1/2 and Cln3 → Clb5/6: Cln3 is a key regulator of the transcription factor complex 
SBF, which activates expression of the genes Cln1 and Cln2, and of MBF, which activates the 
genes Clb5 and Clb6. Cln3 triggers entry of the cell cycle into the S- and the M-phase, respec-
tively, by activating these complexes.

•  Swi5 → Clb5/6: Swi5 is the transcription factor of Sic1, which inhibits Clb5/6.

Most of the false negative edges are indirect edges which involve the protein Sic1, a global inhibitor 
of several cell cycle regulated genes.

relation to other Stochastic approaches

This subsection details the relation between Bayes regularized ODE models and other stochastic ap-
proaches widely used for network inference from experimental data, especially dynamic Bayesian networks 
(DBN) and models including intrinsic noise and measurement noise. Since DBNs are an extension of 
Bayesian networks, we start by defining a Bayesian network.

A Bayesian network is a stochastic model with a set V={y1,...,yn} of n random variables. The state 
space Ω can contain discrete and continuous yi. Bayesian networks are static models, they do not consider 
time. The central assumption made in Bayesian network models is, that the joint probability distribu-
tion p(Ω) can be rewritten as the product of local conditional probability distributions p(yi|parents(yi)). 
The set parents(yi)⊆V\{yi} is called the parent set of yi. Hence, Bayesian networks assume conditional 
independence assertions between the variables V, which allow it to construct the joint probability dis-
tribution over the set of variables V from the local ones:

Figure 10. Inferred network structures, as derived using the maximum likelihood approach (left) and the 
maximum-a-posteriori approach (right). Bold solid lines indicate true positives, dashed bold lines are 
false positives. Thin lines correspond to regulatory interactions reported in the literature, which were 
not learned in network inference.
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The independence assertions state that a variable yj which is a successor of yi cannot be a predeces-
sor of yi at the same time. This requirement is needed to assure that equation (26) is well-defined. As 
a consequence, a Bayesian network contains variables with empty parent sets. The local probability 
distributions of these variables are said to be unconditional.

A Bayesian network can graphically be represented by a directed acyclic graph (DAG) G(V,E), with 
nodes V and edges E. Nodes in this graph correspond to variables, and the set of edges indicates parent 
relations, E={eij| yj∈parents(yi)}. In terms of this graph, the joint probability distribution (26) is only 
well-defined for acyclic graphs.

Murphy & Mian (1999) were among the first who modeled gene interactions by Bayesian networks, 
and they are still commonly used models today (see e.g. Bulashevska & Eils, 2005; Friedman et al., 
2000; Hartemink et al., 2002; Pe’er et al., 2001). Learning a Bayesian network from data corresponds 
to estimating the joint probability distribution p(Y), which defines the structure of the DAG. Similar to 
a correlation analysis, which does not provide directions of edges, the inference of a unique DAG is not 
always possible. Networks with the same undirected graph structure but different directions of some 
edges may represent the same distribution (Dojer et al., 2006). These graphs imply the same conditional 
independence relations, that is, they are contained in the same equivalence class, and the data do not 
allow for a distinction (Pe’er, 2005, Dojer et al., 2006).

The static nature and the requirement that the graph is acyclic are two main drawbacks of Bayesian 
network models (Husmeier, 2003). Dynamic Bayesian networks (DBNs) have been suggested to overcome 
both limitations (Dojer et al., 2006; Friedman et al., 1998; Husmeier, 2003; Pe’er, 2005; Zou & Conzen, 
2005). In DBNs, a separate random variable yi(t) is introduced for each time point t=1,...,T, the system is 
thus unrolled over time. The joint probability distribution is defined over the set y(1)∪y(2) ∪...∪y(T) of 
time-dependent variables. Since such a distribution can be very complex, two simplifying assumptions 
are usually made in practice (Friedman et al., 1998). First, the process is assumed to be Markovian, that 
is, the probability distribution p(y(t)) depends solely on the previous state y(t-1),

p y t y y t p y t y t( ( ) | ( ),..., ( )) ( ( ) | ( )).0 1 1- = -       (27)

Second, the process is time-homogeneous, which means that the transition probabilities p(y(t)|y(t-1)) 
do not explicitly depend on t.

Inserting the empirical estimate (̂ ) ( )x t y tt t- -=1 1  for the true state x(tτ-1) in equation (19), this prob-
ability distribution equals equation (27). In particular, it is completely determined by the observations 
Y and thus does not depend any more on the true states X. Therefore, using these estimates for x(t), our 
approach is equivalent to a DBN, which does not distinguish between true states X and observations Y. 
However, we point out two important conceptual differences between those two models.

First, in our differential equation approach, we assume that the dynamic behavior of the network can 
be described deterministically, and noise in the data Y is completely due to the measurement process 
(compare also Golightly & Wilkinson, 2008). Hence, the noise term does not depend on the time interval 
between two measurements. We therefore model the noise using a mean-zero normal distribution with 
variance σ2, independent of this time interval. In contrast, stochasticity in a dynamic Bayesian network 
is assumed to stem from intrinsic noise, that is, the system under consideration is a stochastic system. 
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The noise level will depend on the length of the time interval between two measurements here. Conse-
quently, a fixed noise level σ2 as is assumed here would be justified only for equidistant time intervals 
in a DBN approach. This aspect is also discussed in de Hoon et al. (2003).

Second, since x(t) is assumed to be determined by the time t and an initial state x0 at an arbitrary time 
point t0, according to the differential equations, any time point could be used to estimate the true state 
x(t) at time t. This need not necessarily be done using the previous time point x(t-Δt), which corresponds 
to the Markovian assumption underlying Bayesian networks. A computationally more expensive ap-
proach, for example, would compute x(t) for all t as a function of x(t0) using numerical integration of 
the differential equations. The initial value x(t0) can then be estimated from the data simultaneously. For 
a related discussion we refer to Peifer and Timmer (2007).

Figure 11 illustrates the concepts underlying DBNs, the ODE approach introduced here, and a modeling 
approach, for example a Hidden Markov model, including stochasticity due to both biological variation 
and measurement errors. Shown are the respective independence assumptions (first row), the relation 
of model variables via functions or probability distributions and the likelihood for given parameters and 
initial conditions (second row), and the posterior distributions in a Bayesian framework when including 
a prior distribution p(w) on model parameters (third row).

In DBNs, the state y(t) of the system, which is described as a random variable depending on the previ-
ous state y(t-Δt), can directly be observed. In contrast, our ODE approach distinguishes between the state 
x(t) of the system, which is deterministically determined by the systems of differential equations, and the 

Figure 11. Schematic of differences between dynamic Bayesian networks (DBN), Bayes regularized 
ODE models as used in this work, and a Hidden Markov model (HMM) including intrinsic noise and 
measurement noise. The first column lists the different independence assumptions, which are graphi-
cally illustrated together with the likelihoods in column two. The posterior distributions in a Bayesian 
framework are given in the third column.
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observation y(t), which is corrupted by measurement noise. Hence y(t) is a random variable depending on 
the true state x(t). Using numerical integration to express x(t) as a function of the previous state x(t-Δt) 
and inserting the empirical estimate (̂ ) ( )x t t y t t- = -D D , the model is equivalent to a DBN. Finally, 
the figure also shows a model which captures intrinsic noise stemming from biological variation and 
noise due to the measurement process. As in the DBN, the true state x(t) of the system corresponds to a 
random variable with conditional distribution p(x(t)|x(t-Δt)). Similar to our approach, observations y(t) 
are also random variables with distributions depending on these true states x(t). Maximizing the prob-
ability p(Y) in this model requires averaging over the unknown states X. This p(Y) is called marginal 
likelihood and usually requires sophisticated sampling methods.

There is currently an ongoing discussion whether regulation of gene expression should be described 
deterministically or stochastically (Srivastava et al., 2002). Supporter of the stochastic side argue that 
the regulation of gene expression via binding of a transcription factor to the DNA is a random discrete 
process, and likewise the production of proteins. The difference becomes particularly evident if the 
molecules involved in the reactions are present in low copy numbers, resulting in a large phenotypic 
variability among different cells of the same population (Elowitz et al., 2002; Ozbudak et al., 2002; 
Raser & O’Shea, 2004). A prominent example of a bistable outcome that is driven by noise is the switch 
between lytic and losygenic states in bacteriophage-λ (Raser & O’Shea, 2004; Ozbudak et al., 2002). 
Here, a positive auto-regulation of the gene cI is assumed to amplify the effect of initially small varia-
tions. Phenomena such as the loss of synchrony of circadian clocks and a decrease in the precision of 
cell signals are also ascribed to the influence of noise (Ozbudak et al., 2002).

Several probabilistic modeling approaches have been developed to account for stochasticity in gene 
expression (Blake et al., 2003; Chen et al., 2005; Goutsias & Kim, 2006; Raser & O’Shea, 2004). Here, 
binding of a transcription factor to a promoter is modeled as a discrete process, and the reaction rates are 
related to the probabilities for complex formation and dissociation. These models describe the behavior 
of single cells, and results can, for example, be used to study the heterogeneity in cell populations.

Supporters of deterministic ODE models argue that these models correspond to the average behavior 
of a large number of cells, such that concentration changes can continuously be described. Furthermore, 
they presume a deterministic overall behavior of a cell population. This is of course a simplification, 
but many high-throughput data do not provide information about the level of noise in cells, and hence 
parameters of stochastic models cannot be estimated from these data. In this sense, using continuous 
and deterministic models to infer regulatory networks from microarray data can be seen as a data-driven 
approach, which reflects the level of information included in the data.

Concluding, it is an interesting issue to understand the role of stochasticity in connection with 
regulatory network structures. On the one hand, many biological networks are believed to be optimally 
designed for a reliable and robust functioning under considerable intrinsic and extrinsic noise, which 
means that they are able to suppress noise, supporting the deterministic approaches. On the other hand, 
an amplification of noise in the cellular networks is sometimes desired for a rich diversity among indi-
vidual cells (Elowitz et al., 2002; Raser & O’Shea, 2004).
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concluding reMarkS

Summary

We have presented an approach for the inference of gene regulatory networks from time series data, 
which is particularly tailored to handle sparse datasets.

Using chemical reaction kinetics, we derived a differential equation model for gene regulatory net-
works, which describes the influence of a gene product on the expression rate of another gene by sigmoid 
functions. In order to estimate model parameters from experimental data, this model was embedded into 
a stochastic framework. Observations were interpreted as

realizations of random variables whose underlying distributions are determined by the differential 
equations model and a stochastic noise term. We defined a Bayesian framework by specifying prior dis-
tributions over network parameters, which reflect prior beliefs about the model parameters before having 
seen the data. We analyzed the posterior distribution over model parameters; this posterior reflects the 
knowledge about true parameter values after having taken the observations into account.

Our method was evaluated on simulated data first. Here, we focused on the relation between size 
and quality of the dataset and the respective outcome. Several datasets with varying numbers of time 
points and different levels of noise were analyzed. Results were compared with the classical maximum 
likelihood approach.

While both approaches give similar results in case of optimal datasets with a large number of time 
points and a low noise level, they differ considerably in the setting of sparse and noisy data. Here, the 
maximum likelihood approach adapts to specific random features of the dataset which are not related 
to the overall structure of the system. As a consequence, the variance of results obtained from different 
datasets is large. Furthermore, in each case the value of the optimized likelihood function is rather small, 
but at the same time errors of estimated model parameters are large and, correspondingly, the inferred 
network structures are wrong. The results of the Bayesian approach in turn show less variance due to 
the regularization of learning by the prior distributions over model parameters. Our analysis shows that 
results can be improved, yielding a higher quality of the inferred network structure, by relatively general 
prior distributions enforcing sparseness.

We furthermore applied our approach to a real dataset on the yeast cell cycle. We inferred some of 
the main interactions reported in the literature with both the maximum likelihood and the Bayesian ap-
proach, the latter approach outperforming maximum likelihood.

Although the Bayesian approach is superior to maximum likelihood estimation for the real dataset, 
results are not as good as for simulated data for several reasons. The most obvious difference between 
the analysis of simulated and real data is the relation between the real system and the model class that 
is used to describe underlying processes. While a specific model of this class was used to carry out 
simulations and create artificial datasets, the consequences of simplifications which are included in the 
model class are not always obvious for the real system. For example, the dataset of the Saccharomyces 
cerevisiae cell cycle contains measurements of mRNA concentrations, which do not provide informa-
tion about post-transcriptional regulation processes. As already mentioned, a further simplification is 
the assumption of additivity of influences from different transcription factors, which may not always 
be justified for real world systems.

Finally, we compared our approach with related stochastic approaches currently used for network 
inference. The relations are summarized in Figure 11.
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discussion and future research directions

To conclude, we point out some general aspects of the Bayesian approach presented and discuss further 
research directions.

Results of a Bayesian approach depend on the prior distribution p(w), and different methods have 
been suggested to determine parameters of this distribution. For a review we refer to Kass & Wassermann 
(1996). Generally, the more p(w) deviates from a uninformative flat distribution, the more influence 
relative to the likelihood does it have on the posterior

distribution, dominating over the information provided by the data. Using a very strong prior distribu-
tion on the one hand, a good choice of p(w) can improve results significantly, but an improperly chosen 
prior will cause a large bias. On the other hand, the results of the Bayesian and the maximum likelihood 
approach are similar when using a flat prior with marginal influence on the posterior. Such a distribution 
might not prevent overfitting in case of small datasets, but it also causes less biased results.

Different methods have been proposed to determine prior distributions, taking different types of in-
formation into account (see for example Beal et al., 2005; Li et al., 2002; Rogers and Girolami, 2005). 
Prior knowledge in terms of information provided by additional data sources has, for example, been 
used by Bernard & Hartemink (2005); Imoto et al. (2003) and Werhli & Husmeier (2007). Empirical 
Bayes methods (Gelman et al., 2003, Maritz and Lwin, 1989) choose hyperparameters in dependence 
of the data, for example by maximizing the posterior with respect to both the model parameters and 
hyperparameters. Compared to our approach, which fixes p(w) in advance, both the likelihood and the 
prior terms are influenced by the data here. A common approach to investigate the amount of information 
contained in the data is to examine the sensitivity of the posterior distribution with respect to changes 
in the prior (Lavine, 1999).

A further aspect we would like to elaborate on concerns the conclusions we draw from analyzing 
the posterior distribution. We searched for the maximum of this distribution, leading to a point estimate 
ˆ .wMAP  However, this distribution can provide far more information. Considering the entire distribution, 

its variance, for example, is a measure of the reliability of the results. While a simple maximization 
can be done with gradient methods, such a more comprehensive analysis would require methods to 
sample from the unknown posterior distribution. An estimate of the whole distribution permits statisti-
cal statements such as “The expectation value of a certain parameter is 5 with a low variance, we can 
be relatively sure about this result” or “The evidence is small, which reflects that the information of the 
prior distribution and the data are contradictory.”

A critical point of our approach is the scalability to larger networks in practice. The number of puta-
tive interactions increases quadratically with the number of network components, and currently available 
datasets typically only allow for the reconstruction of networks with a few dozen components at most. 
This is, however, a problem in each quantitative dynamic modeling approach and can only be faced by 
larger datasets or reliable prior information about the network at hand.

Finally, we point out two general future research directions in the field of gene regulatory, or, more 
generally, biochemical networks. First, besides deciding whether a network component regulates another 
one, i.e. learning the topology of the interaction graph, it is an important issue to explain mechanisms 
causing the qualitative dynamic behavior of the system. Feedback mechanisms are especially interesting 
in this light, since they are necessary for complex behavior such as oscillations and multi-stationarity. 
Differential equations are particularly well suited to capture the dynamic behavior of a system, and thus 
our approach seems to be promising in this setting.
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The second direction addresses the robustness of networks concerning their functionality under 
considerably varying external conditions and intrinsic variability, as already mentioned above. During 
evolution, most organisms seem to have built up complex mechanisms which make regulation processes 
within a cell robust against perturbations (Kitano, 2002). Thus, while reaction rates of single reactions 
can vary in a wide range, the overall response of a cellular network is often extremely stable. Thus, the 
networks have the ability to compensate for stochastic fluctuations, a property which highly justifies 
our deterministic model over a completely stochastic approach. An understanding of this robustness will 
be an important step towards a more comprehensive understanding of cellular regulation mechanisms 
(Kitano, 2007).
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key terMS and definitionS

Gene Regulatory Network (GRN): Here a directed graph G(V,E) with n nodes corresponding to n 
genes in the network. An edge from node j to node i indicates that gene product j has an influence on the 
expression rate of gene i. This influence is assumed to be either activating or inhibiting. The dynamics 
of the system is described by ordinary differential equations.

Regulation Function ri: Coupling term in the differential equations for GRNs. Function that de-
scribes the influence of regulators on the expression rate of gene i. For simplicity, it is often assumed 
that different regulators act independently, and their influences can be decoupled. An influence of a 
single regulator j on i is then often described with simple linear functions, or Michaelis-Menten and Hill 
equations are used, which can be derived from chemical reaction kinetics.

Quasi-Steady State Approximation (QSSA): A method to reduce the number of variables of a 
system that includes processes on different time scales which can be separated into slow and fast. One 
assumes that the fast processes are always in a steady state, which changes on the slow time scale. For 
GRNs, the fast time scale corresponds to transcription factor – DNA binding, and the relevant slow time 
scale is given by the expression rates. Here, the QSSA allows for a functional relation between gene 
product levels and their effect on the expression rates of regulated genes, as it is implicitly assumed in 
most network inference approaches.

Stochastic Modeling Approach: In stochastic modeling approaches for GRNs, observed gene ex-
pression values are interpreted as random variables, and the network inference problem translates into 
characterizing their probability distributions from measurements. Contrary to deterministic models, these 
approaches can capture variability across different cells or experiments. Different stochastic approaches 
have been introduced, and here we suggest a classification according to whether the system itself is 
stochastic or noise stems from the measurement process.
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Bayes Regularized Differential Equation: Specific stochastic modeling approach in which the 
noise is assumed to stem solely from the measurement process. The state of the system is deterministic 
and uniquely determined by a differential equation. Observations that are used for network inference 
are random variables due to measurement noise. This allows for a Bayesian regularization for network 
inference.



Section 3
Modeling Methods



169

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

Computational Approaches 
for Modeling Intrinsic Noise 

and Delays in Genetic 
Regulatory Networks

Manuel Barrio
University of Valladolid, Spain

Kevin Burrage
The University of Oxford, UK

Pamela Burrage
The University of Queensland, Australia

André Leier
ETH Zurich, Switzerland

Tatiana Márquez Lago
ETH Zurich, Switzerland

abStract

This chapter focuses on the interactions and roles between delays and intrinsic noise effects within cel-
lular pathways and regulatory networks. We address these aspects by focusing on genetic regulatory 
networks that share a common network motif, namely the negative feedback loop, leading to oscillatory 
gene expression and protein levels. In this context, we discuss computational simulation algorithms for 
addressing the interplay of delays and noise within the signaling pathways based on biological data. 
We address implementational issues associated with efficiency and robustness. In a molecular biology 
setting we present two case studies of temporal models for the Hes1 gene (Monk, 2003; Hirata et al., 
2002), known to act as a molecular clock, and the Her1/Her7 regulatory system controlling the periodic 
somite segmentation in vertebrate embryos (Giudicelli and Lewis, 2004; Horikawa et al., 2006).

DOI: 10.4018/978-1-60566-685-3.ch007



170

Computational Approaches for Modeling Intrinsic Noise and Delays in Genetic Regulatory Networks

1. introduction

The mathematical modeling and simulation of genetic regulatory networks can provide insights into the 
complicated biological and chemical processes associated with genetic regulation. However, highly re-
solved computational models of such biochemical complexity can be very expensive and often infeasible 
and, thus, it is important that the models are kept simple but nevertheless capture the key processes.

Two vital aspects in modeling genetic regulatory networks are intrinsic noise and delays. Intrinsic 
noise arises in the system when there are small to moderate numbers of certain key molecules and is due 
to the uncertainty of knowing when a reaction occurs and which reaction it might be. Intrinsic noise is 
entirely different to extrinsic noise in which state changes are due to fluctuations in external conditions, 
such as temperature. These intrinsic noise effects can be modeled through the Stochastic Simulation 
Algorithm (SSA), first applied by Gillespie (1977) to simulate discrete chemical kinetics as the evolu-
tion of a discrete nonlinear Markov process.

Delays are intrinsic to slow biochemical processes that do not occur instantaneously and are often 
affected by spatial inhomogeneities. For instance, they are often associated with transcription and 
translation, two processes that imply other spatiotemporal processes often not explicitly modeled, such 
as (in eukaryotes) diffusion and translocation into and out of the nucleus, RNA polymerase activation, 
splicing, protein synthesis, and protein folding. These processes can take many minutes and so the ef-
fects are very important especially in the laying down of oscillating patterns of gene expression (Hirata 
et al., 2002). Monk (2003) notes that in mouse there is an average delay of 10–20 minutes between the 
action of a transcription factor on the promoter region of a gene and the appearance of the correspond-
ing mRNA in the cytosol. Similarly, there is a delay of typically 1–3 minutes for the translation of a 
protein from mRNA.

By incorporating delays into the temporal model we can capture essential information on a mac-
roscopic level, the delay can itself account for the multitude of biochemical processes and events on 
a microscopic time scale that render us unable to compute cell dynamics in real-time. Hence, we can 
expect more accurate and reliable predictions of cellular dynamics through the use of time delay models 
(Barrio et al., 2006).

One of the first people to consider feedback differential equation models for the regulation of en-
zyme synthesis was Goodwin (1965). An der Heiden (1979) then modified these ideas by including 
transport delays into Goodwin’s model. The oscillatory behavior of the ensuing delay differential equa-
tions (DDEs) as a function of the size of delays was investigated by an der Heiden. However, these 
DDE models act in the continuous deterministic regime and this regime is not always appropriate when 
considering small numbers of molecules such as in the case of genetic regulation with small numbers 
of transcription factors.

In a lovely set of experiments, Hirata et al. (2002) measured the production of hes1 mRNA and Hes1 
protein in mice. This work forms the basis of one of our case studies in Section 4.1. Serum treatments 
on cultured cells result in oscillations in expression levels for hes1 mRNA and Hes1 protein in a two 
hour cycle with a phase lag of approximately 15 minutes between the oscillatory profiles of mRNA and 
protein. The oscillations in expression continue for 6 to 12 hours.

In order to explain the observed behaviors, Hirata et al. modified a mathematical model developed 
by Elowitz and Leibler (2000) for a synthetic gene network constructed in E. coli cells by introducing 
one gene from l -phage. By postulating a Hes1 interacting factor as a third molecular species Hirata 
et al. obtained a system of three Ordinary Differential Equations (ODEs) that gives rise to sustained 
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oscillatory behavior. However, there is no direct experimental evidence for such an interacting factor. 
Rather, the introduction of a third variable is due to the fact that certain systems of two ODEs cannot 
generate sustained oscillations. This observation together with the experimental results of Hirata et al. 
led to a number of papers in which simple coupled delay differential equations were developed in order 
to explain the sustained oscillations without recourse to the addition of a third variable (Monk, 2003; 
Jensen et al., 2003; Lewis, 2003; Bernard et al., 2006).

Barrio et al. (2006) took a different approach from the above authors and tried to explain the results 
of Hirata et al. by taking proper account of both time delays and intrinsic randomness. They developed 
a Delay Stochastic Simulation Algorithm (DSSA) that generalizes the Stochastic Simulation Algorithm 
(SSA) to the delayed setting. Independently, Bratsun et al. (2005) developed a delay SSA without con-
sidering waiting times for delayed reactions while only non-consuming reactions can be specified to 
be delayed. More recently, Cai (2007) introduced a direct delay SSA method and showed that both, the 
DSSA by Barrio et al. and the direct method are exact stochastic simulation algorithms for chemical 
reaction systems with delays. The experimental results of Hirata et al. seemed to be better explained 
through the delay stochastic simulation algorithm approach rather than through delay differential equa-
tions (Barrio et al., 2006).

When modeling biological systems with large numbers of molecules and/or rate constants, the 
time steps in stochastic simulation algorithms can become very small and, hence, the simulation can 
be computationally highly expensive. By consequence, this limits the feasible ‘real-time’ span of the 
simulations. In order to reduce the computational load we need new algorithms that still model intrinsic 
noise in a delayed setting but overcome the issues of small step sizes. Temporal coarse-graining has 
been considered through the use of τ -leap methods (Gillespie, 2001; Tian and Burrage, 2004; Peng et 
al. 2007, Anderson, 2007, 2008), and similar ideas have been applied in the delay setting (Leier et al., 
2008(a)), thus rendering an efficient algorithm that yields accurate simulations in time spans that are 
long enough to be of actual interest to the experimentalists.

Lastly, temporal delay models lack spatial resolution but nevertheless allow for portraying spatial 
aspects of cellular processes by compartmentalization, that is, by distinguishing between identical mo-
lecular species according to their location. Recent research suggests that molecular translocation processes 
can be well captured and modeled by means of time delayed processes with specific delay distributions. 
However, it is worth mentioning that spatial algorithms are not replaceable in all cases. Examples of 
the latter are scenarios with high spatial heterogeneity, anisotropies, or when single-particle tracking 
becomes strictly necessary. Spatial highly-resolved algorithms are computationally most expensive, 
and coarse-graining techniques have also been developed for this case (Chatterjee and Vlachos, 2005; 
Chatterjee and Vlachos, 2006).

The outline of this Chapter is as follows. In section 2 we give an overview of some of the approaches 
to the temporal modeling of chemical kinetics. In section 3 we present various types of simulation algo-
rithms with and without delays and discuss how we can improve the accuracy and robustness by so-called 
τ leap approaches. Section 4 gives two case studies: the Hes1 molecular clock and the Her1/7 complex 
which plays a role in somite formation in zebrafish. Section 5 presents some conclusions.
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2. Modeling cheMical kineticS

Modeling and simulations are valuable tools for investigating complex biochemical systems. Not only do 
they allow us to determine if a proposed reaction mechanism is consistent with observed experimental 
results, but they can also aid experimental design techniques by exploring reaction network interactions 
with relative ease. The choice for a particular modeling approach depends on several factors, such as 
molecular concentrations, distributions, the type of reactions and their time scales, whether discrete-
ness and internal noise have noticeable macroscopic effects and, lastly, if the model requires spatial 
information.

Deterministic models assume a time evolution that is both continuous and predictable. However, 
randomness is intrinsic to biological systems, where system behavior is typically represented by noisy 
signals. Often the most important source of stochasticity stems from the fact that molecular reactions are 
random events, as it is impossible to say with certainty the specific type of reaction that will happen next, 
or when or where such event is to occur. Moreover, low molecular concentrations, coupled to random 
diffusion, are an important source of spatial inhomogeneity and stochastic variation.

In a purely temporal setting, and when there are large numbers of molecules present, chemical reac-
tions are modeled by ordinary differential equations that are based on the laws of Mass Action and the 
fact that reaction rates can be estimated on the basis of average values of the reactant density. Any set of 
m chemical reactions can be characterized by two sets of quantities: the stoichiometric vectors (update 
rules for each reaction) n n

1
, ...,

m
 and the propensity functionsa X t a X t

m1
( ( )),..., ( ( )) . The propensity 

functions represent the relative probabilities of each of the m reactions occurring. Here X(t) is the vec-
tor of concentrations at time t of the N species involved in the reactions. The ODE that describes this 
chemical system, under the Law of Mass Action, is given by

X t a X t
j j

j

m
'( ) ( ( )).=

=
å n

1
      (1)

In order to make this clearer we give a simple example for Michaelis–Menten kinetics. This system 
involves a substrate (S), an enzyme (E), a complex (C) and a product (P). The kinetics can be written 
as

E S C+ ¾ ®¾ , 

C E S¾ ®¾ + , 

C E P¾ ®¾ + . 

Let X(t) be the concentration of (E(t), S(t), C(t)) then the stoichiometric vectors (or the update rules 
for each of the three reactions) are

n u n
1 2 3

1 1 1 1 1 1 1 0 1= - - = - = -( , , ) , ( , , ) , ( , , ) .T T T  
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The time dependent propensity functions a X t a X t
m1

( ( )),..., ( ( ))  are the relative probabilities of each 
of the three reactions occurring, respectively, and are given by

a X k ES

a X k C

a X k C

1 1

2 2

3 3

( )

( )

( ) .

=
=
=  

In this case (1) becomes

X k X X k k X

X k X X k X

X k X X k k X

1 1 1 2 2 3 3

2 1 1 2 2 3

3 1 1 2 2 3 3

'

'

'

( )

( ) .

= - + +

= - +

= - +  

Often in such systems there is a conservation of molecular numbers (here X X
1 3

0' '+ = ) and so one 
or more equations can be removed. Additional equations can be removed by the use of the Quasi-Steady 
State Assumption (QSSA). Under the QSSA it is assumed that the fast reactions go to equilibrium much 
more quickly that the slow reactions. Thus a system of algebraic equations can be solved at the “fast 
equilibrium” and this solution substituted back into the original system, thus reducing the dimension 
and altering the propensity functions to include nonlinear Hill functions.

In the case of small numbers of molecules the appropriate modeling formulation is the Stochastic 
Simulation Algorithm, as ODEs can only describe a mean behavior. The SSA is essentially an exact 
procedure that describes the evolution of a discrete nonlinear Markov process. It accounts for the inherent 
stochasticity (internal noise) of the m reacting channels and only assigns integer numbers of molecules 
to the state vector. At each step, the SSA simulates two random numbers (representing probabilities) 
from the uniform distribution U[0,1] to evaluate an exponential waiting time, t , for the next reaction to 
occur and an integer j between 1 and m that indicates which reaction occurs. The state vector is updated 
at the new time point by the addition of the jth stoichiometric vector to the previous value of the state 
vector, that is

X t X t
j

( ) ( ) .+ = +t n  

The main limiting feature of SSA is that the time step can become very small, especially if there are 
large numbers of molecules or widely varying rate constants. In order to overcome these limitations, a 
number of different approaches (so called t -leap methods) have been suggested in which the sampling 
of likely reactions is taken from either Poisson (Gillespie, 2001) or Binomial (Tian and Burrage, 2004) 
distributions. In these cases a much larger time step can be used at the loss of a small amount of accuracy. 
Cao et al. (2006) have analyzed effective strategies for choosing the step size in t -leap methods. The 
reason sampling occurs from a Poisson distribution is due to the fact that the SSA can also be viewed 
as a type of τ leap method based on Poisson sampling (Kurtz, 1971). On the other hand, Binomial sam-
pling is valid because as the number of molecules becomes large, Poisson random variables are well 
approximated by Binomial random variables.

A very different approach is to note that the discrete nonlinear Markov process described by the 
SSA has a probability density functions that is the solution of the so-called Chemical Master Equation 
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(CME). The CME is a discrete parabolic partial differential equation in which there is an equation for 
each configuration of the State Space. When the State Space is enumerated, the CME becomes a linear 
ODE and the probability density function takes the form

p t e pAt( ) ( )= 0  

where A is the state-space matrix. Even for relatively small systems, the dimension of A can be in the 
millions, so it would appear that this is not a computationally feasible approach. However, one should 
consider that not all of the states are reachable. Furthermore, a proposed finite state projection algorithm 
(Munsky and Khammash, 2006) reduces the size of the matrix A. Then one can use Krylov subspace 
techniques (Burrage et al., 2006) to efficiently compute the exponential of a matrix times a vector, mak-
ing the computation of the probability density function directly a very feasible technique (MacNamara 
et al., 2007).

Finally, it is important to note that there is a regime intermediate to the discrete stochastic regime 
and the continuous deterministic ODE regime in which the internal noise effects are still significant but 
continuity arguments can apply. This leads to the so-called Chemical Langevin Equation (CLE) that is 
an Itô stochastic ordinary differential equation (SDE), driven by a set of Wiener processes that describes 
the fluctuation in the concentrations of the molecular species. The CLE preserves the correct dynamics 
for the first two moments of the SSA and takes the form

dX a X t B X t dW t
j j

j

m

= +
=
å n ( ( )) ( ( )) ( ).

1
 

Here W t W t W t
N

( ) ( ( ),..., ( ))=
1

 is a vector of N independent Wiener processes whose increments 
DW W t h W t

j j j
= + -( ) ( )  are N h( , )0  and where

B x C C Diag a X a X
m m m

T( ) , ( ,..., ) ( ( ),..., ( ))( ,..., ) .= = n n n n
1 1 1  

Here h is the time discretization step. This formulation can be derived from the Poisson formulation 
of the SSA by noting that as Th ® ¥  with h ® 0 ,

P Th N Th Th Th Th N

Th T W

( ) ( , ) ( , )

.

® = +

= +

0 1

D  

Effective numerical methods designed for the numerical solution of SDEs (such as the Euler-Mar-
uyama method) can be used to simulate the chemical kinetics in this intermediate regime. Furthermore, 
adaptive multiscale methods have been developed which attempt to move back and forth between these 
three regimes as the numbers of molecules change (Burrage et al., 2004).

None of these frameworks explicitly incorporate delay affects but in fact the same modeling regimes 
arise in a natural fashion if delay is included. These have been thoroughly explored in Barrio et al. (2006) 
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and Tian et al. (2007) in terms of the same modeling regimes mentioned above. We now discuss some 
of the issues when incorporating noise and delays.

3. SiMulation algorithMS

In recent years, discrete stochastic simulation techniques have been widely used to help understand 
the dynamic behavior of biochemical systems such as genetic regulatory networks and intra-cellular 
and inter-cellular signaling pathways when there are small to moderate numbers of molecular species 
involved. In addition to the methods mentioned above, other simulation type methods have also been 
proposed recently, for example, Gibson and Bruck’s next reaction method (2000), Gillespie’s continuous 
model (2000) and the probability-weighted Monte-Carlo approach by Resat et al. (2001). In this section 
we review some of these approaches without and with delays and then discuss extensions via tau leaping 
strategies which can dramatically improve robustness and computational performance.

3.1 SSa

The SSA (Stochastic Simulation Algorithm) in Figure 1 is a numerical Monte Carlo procedure that can 
be used to simulate the time evolution of a set of molecular species affected by a given set of reactions. 
It was introduced by Gillespie (1977) as an exact calculation that generates simulated trajectories of the 
system state. These trajectories are numerical realizations of the Chemical Master Equation (CME). It is 
important to note that the SSA is based on a fundamental stochastic premise that defines the probability, 
given a particular state that one reaction will occur in the next infinitesimal time internal. This assump-
tion is used without approximation by the SSA and makes it exact with respect to the CME.

More precisely, consider a well-stirred volume Ω of molecules containing N molecular species 
{S1,...,SN} that interact at constant temperature through M chemical reactions {R1,...,RM}. Given the 

Figure 1. The Stochastic Simulation Algorithm
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system state at a particular time X(t) which represents the number of molecules of each species, we can 
define for each reaction Rj (j=1,...,M) its propensity function aj(x) in a given state X(t)=x so that

aj(x)dt = probability that one Rj reaction will occur somewhere inside Ω in the next infinitesimal 
time interval [t,t+dt).

Additionally, each reaction is characterized by its stoichiometric vector νj that defines the state change 
in the number of species due to reaction Rj.

The procedure to generate simulated trajectories of X(t) is based on the probability function of the 
two random variables: (1) the time τ to the next occurring reaction, and (2) the index j of the next reac-
tion. Given a current state x, the probability of state change per unit of time is constant (a0(x)) and so 
the waiting time to the next reaction is an exponential random variable with mean 1/a0(x). The reaction 
index j is an integer random variable with point probabilities

aj(x) /a0(x), where a0(x) = a
k

k

M

=
å

1

(x). 

These two random variables and their distributions are the basis of the SSA. One of the simplest Monte 
Carlo procedures for generating time and index of the next reaction is the so-called ‘direct method’. 
Two independent random numbers r1 and r2 are drawn from the uniform distribution in the unit interval 
U(0,1), and then τ is assigned as

t = ( )1
1

0
1a x
r

( )
ln , 

while j is the reaction index that satisfies

a x r a x a x
k

k

j

k
k j

j
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=

-

=
å å< × £

1

1

2 0 . 

Then the system is updated by x(t+τ) = x(t) + νj, and the procedure is repeated to evolve the system 
through time. Figure 2 is an algorithmic representation of the direct method.

3.2 delay SSa

Biological processes often involve complex reactions and mechanisms that cannot be considered 
instantaneous. Reactants are processed and products are not present until a certain future time point. 
This time delay should be incorporated into our computational models if we want to capture a faithful 
representation of the biological process. Additionally, delays are often important parameters that affect 
the dynamic evolution of the system. A system of DDEs can take the general form

y f t y t y t' ( , ( ), ( )),= - t  

and in the case of chemical kinetics as described by (1), the DDE formulation is
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X t a X t
j j j

j

m

'( ) .= -( )( )
=
å u t

1

. 

There are a number of suitable numerical methods for solving such systems, some of which are 
implemented in MATLAB. However, if intrinsic noise is important then we need a generalization of the 
stochastic simulation algorithm (SSA) for chemical kinetics with delayed reactions. The DSSA differs 
from the SSA by making a clear distinction between the reaction waiting time and reaction delay. The 
former is the time between two consecutive reactions whereas the latter is the time elapsed from the 
processing of the reactants to the appearance of the products.

Simulation proceeds in the standard way (SSA) if non-delayed reactions take place. However, if the 
next reaction index points to a delayed reaction then we have to distinguish between two different types: 
consuming and non-consuming. In case of non-consuming reactions, the corresponding reactants and 
products are not updated. Instead, the state update is scheduled for ‘present time + delay’ which will be 

Figure 2.
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reached in a future simulation step. When that happens, the last drawn reaction is ignored and instead 
the state is updated according to the delayed reaction. Simulation continues at the delayed reaction time 
point. On the other hand, if the reaction is consuming, reactants and products of delayed consuming reac-
tions must be updated separately: (1) reactant consumption updates the state when the delayed reaction 
is selected and (2) product generation is updated when the reaction is completed.

The trajectories simulated by SSA are numerical realizations of the state evolution X(t). Additionally, 
the probability density function of X(t) is completely determined by the Chemical Master Equation. 
Similarly, a CME for the DSSA, namely a DCME, has been derived from first principles and the DSSA 
has a corresponding representation as a system of delay differential equations (DDEs) – see Barrio et 
al. (2006) and Tian et al. (2008).

Figure 2 is an algorithmic description of the DSSA dealing with both delayed and non-delayed, as 
well as with consuming and non-consuming, reactions. Time steps are defined either by a next reaction 
waiting time or by a delayed time update.

3.3 Spatial Methods

In many Cell Biology settings spatially resolved simulations are mandatory. Some common examples in 
which spatial simulations are unavoidable are systems embedded in complex spatial structures, molecular 
motion described by low diffusion rates, or systems containing significantly low numbers of molecules, 
to name a few. The most straightforward spatial technique is through reaction-diffusion partial differ-
ential equations. However, this approach is only valid if dealing with large molecular concentrations 
and when noise is not amplified throughout the system. If at least one of these conditions fails to hold, 
one must rely on spatial stochastic simulators, which can be discrete or continuous in nature and have 
different levels of spatial resolution.

It should always be kept in mind that there is a trade-off between simulation time and resolution. 
That is, the more highly-resolved, the more computationally expensive these simulations become. The 
highly resolved end of the discrete spatial stochastic simulators spectrum is represented by lattice and 
off-lattice particle based methods. In lattice methods a two-dimensional or three-dimensional computa-
tional lattice is used to represent a membrane or the interior of some part of a cell (Turner et al., 2004; 
Morton-Firth and Bray, 1998; Nicolau et al., 2006). Such a lattice is then “populated” with particles of 
different molecular species that may diffuse throughout the simulation domain by jumping to empty 
neighboring sites and, depending on user-specified reaction rules, interacting chemically with a certain 
probability. Such lattice-based simulators are commonly referred to as Kinetic Monte Carlo Methods.

In off-lattice methods, particles have their own specific spatial coordinates and reaction bins whose 
size depends on the particular diffusion rates are drawn around them. If one or more molecules happen 
to be inside such a bin, appropriate chemical reactions can take place with a certain probability, and if a 
reaction is readily performed, the reactant particles are flagged. It should be noted that in off-lattice meth-
ods, the domains and/or compartments are usually still discretized to efficiently localize particles.

Particle methods can provide very detailed simulations of highly complex systems at the cost of ex-
ceedingly large amounts of computational time and, possibly, restrictions on the size of the simulation 
domain. Hence, such detailed simulations can often only yield short simulation time spans that may not 
be of sufficient interest to experimentalists.
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3.4 coarse grained Methods

A major drawback of delayed and non-delayed, spatial and non-spatial stochastic simulation algorithms 
are their high computational costs when dealing with large numbers of molecules or widely varying 
rate constants. These factors inevitably result in exceedingly small simulation time steps, making the 
overall simulation computationally expensive or even infeasible. In order to reduce the computational 
load, we can coarsen the simulation, accounting for many events in one single larger time step. This is 
the general idea behind the so-called τ-leap methods, where the simulation advances in time leaps while 
updating the system state according to a reasonably good approximation for the accumulated number of 
reactions (and diffusions if a spatial simulation) within the time step.

3.4.1 τ-leap Methods

Gillespie (2001) proposed the Poisson τ-leap method in which the number of reactions in each τ-leap 
are sampled from a Poisson distribution, and the τ step is controlled by a selection strategy that depends 
on a pre-specified control parameter ε, such that 0<ε<<1.

The update procedure for the Poisson τ-leap method can be written as x t x t K
j j

j

M

+( ) = ( )+
=
åt n

1

, 
where K P a X t

j j
= ( )( )( )t , for reactions j M= 1, , , is a sample from the Poisson distribution with 

mean a X t
j ( )( )t . Further improvements were made by Gillespie and Petzold (2003), Rathinam et al. 

(2003), and Cao et al. (2005, 2006).
However, samples from a Poisson distribution range from zero to unbounded values. Hence, when 

updating the system, negative numbers of molecules can occur if larger step sizes are used. In order 
to avoid this, Tian and Burrage (2004) and later Chatterjee et al. (2006) proposed the Binomial τ-leap 
method where the numbers of reactions in a leap are drawn from a Binomial distribution. Thus, the 
various K

j
 take the form K B N P

j j j
= ( ), , where there are some subtleties in the form of the N

j
 and 

P
j , and such variables Nj  and P

j
 represent the sample size and probability of occurrence of reaction 

type j, respectively. Auger et al. (2006) presented a modification to the original Binomial τ-leap method 
which is a more robust implementation than the original formulation. Furthermore, Anderson (2007, 
2008) has shown interesting connections between sampling from the Poisson and Binomial distributions 
in the context of τ-leap methods in both a non-delayed and delayed setting.

Recently, Peng et al (2007) developed a modified Binomial τ-leap method that estimates the number 
of reaction products within a τ-leap step allowing them to participate in additional reactions in the same 
leap. However, Leier et al. (2008) show that such an approach may not accurately describe complex 
dynamics including time delays, and they propose a generalized τ-leap method, that is described in more 
detail in Section 3.4.2. Lastly, τ-leap methods can also be extended to the spatially resolved spectrum, 
where the simulation advances in time leaps that account for several molecular diffusion and reaction 
events, as shown by Marquez-Lago and Burrage (2007) and described in Section 3.4.3.

3.4.2 Bτ-DSSA

Initial Binomial τ-leap algorithms (Tian and Burrage, 2004; Peng et al., 2007) were not able to capture 
accurately the dynamics of certain chemical kinetics compared to the exact SSA/DSSA approach, due to 
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insufficient numbers of reactions drawn in τ-leap steps. In Leier et al. (2008) a new generalized Binomial 
τ-leap method (Bτ-DSSA) is presented that addresses the difficulties associated with complex chemical 
kinetics and introduces delays into the Binomial τ-leap framework. A description of the Bτ-DSSA is 
given in Algorithm 3.

Estimating a proper maximum number N
j
 of potential reaction events of type R

j
 for the Binomial 

random variables B N P
j j
,( )  is crucial for an accurate reproduction of system dynamics. For specific 

reactions, Table I shows how to calculate Nj  assuming R
j
 is an isolated reaction that does not share 

reactants with any other reactions. While this estimation is straightforward for isolated, elementary 
reaction, it is less obvious for chemical kinetics involving large, interacting reaction networks where 
multiple reactions share the same reactants.

The Bτ-DSSA samples reaction numbers from Binomial distributions B N P
j j
¢¢( ),  (Step 5 in Al-

gorithm 3). Here, ¢¢= ( )N N x
j j

, x , with x x xº ( )1
, ,

M
 and xi i

N x£ ( ) , is the maximal number of 
potential reaction events of type R

j
 when x x

1
, ,

M
 reactions of R R

M1
, ,  occur in the τ-step. For 

N x
j

, x( )  it is assumed that x x
j M
, , = 0  since only the already sampled reaction numbers x x

1 1
, ,

j-  
are considered. However, unlike the original Binomial τ-leap method by Tian and Burrage (2004), the 

Table 1. Some simple reactions R
j
 and their corresponding propensities a

j
, stoichiometric coefficients 

n
j,×  and maximum number of potential reaction events Nj . Hill functions are often used to describe 

the regulatory effect of one or more transcription factors on the chemical kinetics. For a Hill function 
depending on a single transcription factor X

k
 this results in the propensity a c f X

j j k
= × ( ) . Calculating 

the N x
j ( )  for Hill-type reactions involves some subtlety. For Hill type reactions, Leier et al. (2008) 

define N x C
j ( ) =  where C  is some constant. Simulations show that, unless C  is too small (< 10), it 

has no noticeable effect on the simulation outcome. 
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N
j  are calculated considering only those reactions R

i
 (and hence xi ) that share reactant species with 

R
j . Figure 1 illustrates the difference.
As a consequence, in the Bτ-DSSA the maximal number of potential reaction events is usually larger 

than in the original Binomial τ-leap method. Numbers of delayed reactions are sampled in the same 
way as numbers of non-delayed reactions. The update of the system state (Step 6 in Figure 4) has to 
distinguish between delayed consuming and non-consuming reactions scheduled within the τ-leap, but 
also has to sample the update times of all delayed reactions drawn for the τ-leap.

Numerical simulations reveal that, unlike previous Binomial τ-leap methods, the Bτ-DSSA is bet-
ter able to accurately capture the dynamics of oscillating patterns of gene expression. In such systems 
delayed reactions play a crucial role in maintaining the cyclic behavior and sampling too many or an 
insufficient number of delayed reactions will inevitably lead to a different cycle frequency. For the ap-
plications in Section 4.2, the Bτ-DSSA was able to reproduce the oscillatory dynamics both accurately 
and significantly faster than the DSSA. In case of the Her1/7-model for 5 coupled cells, Bτ-DSSA was 
70 to 100 times faster than the DSSA implementation of Barrio et al. (2006).

R
1 : R1

A B¾ ®¾ : A B¾ ®¾ , 

R
2
: R

2
A B C+ ¾ ®¾ : A B C+ ¾ ®¾ , 

R
3 : R3

C A B¾ ®¾ + : C A B¾ ®¾ + , 

R
4
: R

4
B C D+ ¾ ®¾ : B C D+ ¾ ®¾ , 

Figure 3. Artificial chemical kinetics system. The set of reactions R
1
 to R6  constitutes a network where 

two reactions, i.e. two vertices, are connected by an edge if and only if they have one or more common 
reactant species. The network has two connected subnetworks, {R

5
} and {R

1
,R

2
,R

3
,R

4
,R

6
}. In the 

original Binomial τ-leap formulation, the maximum number of potential reaction events of type R
6
 was 

calculated as the minimum N
i
 (see Table I) over the subnetwork {R

1
,R

2
,R

3
,R

4
,R

6
} (the subnetwork 

thatR
1
 belongs to). The Bτ-DSSA calculates N x

6
, x( )  considering only R

6  and its direct (shaded) 
neighbors: N x x x

6 2 4 2 2 4 5
0, , , , , , min ,- - -( ) = - -{ }x x x x  with x B

2
= é

ëê
ù
ûú  and x E

5
= é

ëê
ù
ûú .
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R
5
: R

5
D B C¾ ®¾ + : D B C¾ ®¾ + , 

R
6
: R

6
B E F+ ¾ ®¾ : B E F+ ¾ ®¾ , 

3.4.3 Bτ-SSSA

As mentioned before, particle methods can provide very detailed simulations at the cost of exceedingly 
large amounts of computational time and, possibly, restrictions on the size of the simulation domain. In 
other words, we may need to coarsen the simulation in order to provide a spatially resolved method that 

Figure 4.
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yields accurate chemical kinetics in meaningful simulation times that are of actual biological interest 
to experimentalists.

The idea behind τ-leaping in space is to account for several diffusion and reaction events in one larger 
time step, without compromising spatial nor temporal accuracy. Marquez-Lago and Burrage (2007) 
presented the Binomial τ-leap Spatial Simulation Algorithm, Bτ-SSSA, a coarse-grained version of an 
existing spatial stochastic simulation algorithm known as the next subvolume method (Elf and Ehrenberg, 
2004; Elf et al., 2003; Hattne et al. 2005).

The next subvolume method is a generalization of the SSA, where the volume is divided into separate 
subvolumes that are small enough to be considered homogeneous by diffusion over the time scale of 
the reaction. At each step, the state of the system is updated by performing an appropriate reaction or 
by allowing a molecule to jump at random to a neighboring subvolume, where diffusion is modeled as 
a unary reaction with rate proportional to the two dimensional molecular diffusion coefficient divided 
by the length of a side of the subvolume. In this way, diffusion inside the algorithm becomes another 
possible event with a propensity function and follows the same update procedure as chemical reaction. 
Then, the expected time for the next event in a subvolume is calculated similarly to the SSA, including 
the reaction and diffusion propensities of all molecules contained in that particular subvolume at that 
particular time. However, time for next events will only be recalculated for those SVs that were involved 
in the current time step, and they are re-ordered in an event queue.

A natural extension of the next subvolume method is to perform τ-leaps that account for one or more 
diffusion and reaction events, the idea behind Bτ-SSSA (Marquez-Lago and Burrage, 2007). At each 
iteration, the subvolume with shortest reaction-diffusion τ-leap is selected, which is to be found at the 
top of the time event queue. Then, all randomly chosen but possible events inside such subvolume are 
executed, a new τ-leap for all subvolumes that were involved in the current τ-leap is calculated, the time 
event queue in increasing time is reordered, and the subvolume indicated by the top of the time event queue 
is chosen. The algorithm is complicated and the reader can refer to the description in the article.

4. caSe StudieS

In this section we present results from two studies involving Notch signaling molecules. The first model is 
a model of hes1 auto-inhibition by Hes1 proteins in mouse (Monk, 2003; Barrio et al. 2006). The second 
model (Figure 5) describes the Delta-Notch dependent synchronization of Her1 and Her7 protein levels 
in a 1-dimensional array of cells in zebrafish (Lewis, 2003; Horikawa et al., 2006). In this model, the 
two linked genes her1 and her7 are autorepressed by their own gene products and positively regulated 
by Delta-Notch cell-cell signaling that leads to oscillatory gene expression in the cells of the presomitic 
mesoderm (PSM), a region at the tail end of the vertebrate embryo, thus generating regular patterns 
of somites (embryonic organs that develop into vertebrae and other mammalian repetitive structures 
(Gonzales and Kageyema, 2007)).

In mammals there are four known Notch genes that encode transmembrane receptors for mediating 
short-range signaling events. The five known ligands of Notch (Jagged-1,-2 and Delta like-1, -3, and -4) 
are also transmembrane proteins. At the cell surface, a Notch receptor can interact with one of its ligands 
in a neighboring cell leading to the release of the Notch intracellular domain (NICD). The subsequent 
nuclear translocation of NICD results in transcriptional activation of specific genes (Hes and Her/Hesr 
families) whose corresponding proteins in turn act as transcriptional repressors. There is evidence that 
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endogeneous NICD acts at very low concentration (Fiúza and Arias, 2007), strongly suggesting a sto-
chastic simulations approach for modeling Delta-Notch signaling. In both models, the transcriptional 
and translational delays are responsible for the oscillatory behavior. The involved genetic regulation is 
modeled by delayed Hill type reactions.

4.1 delta-notch Signaling: hes1 and her1/7

4.1.1 Hes1

The hes1 gene is one of the best characterized genes in the segmentation clocks. Hirata et al. (2004) mea-
sured the production of hes1 mRNA (M) and Hes1 protein (P) in mouse. Serum treatments on cultured 
cells, that have already been shown to induce circadian oscillation by Balsalobre et al. (1998), result 
in oscillations in expression levels for hes1 mRNA and Hes1 protein in a two hour cycle. Between the 
oscillatory profiles of mRNA and protein is a phase lag of approximately 15 min. The oscillations in 
expression continue for 6–12 h and are not dependent on the stimulus but can be induced by exposure 
to cells expressing Delta. It has been argued that the lag between protein and mRNA oscillation levels 
of 15 min reflects the time needed for protein degradation. Specifically, the data presented in the paper 
by Hirata et al. (Figure 1 in Hirata et al., 2004) indicates sustained oscillation of hes1 mRNA over six 
periods and that oscillation of Hes1 protein that dies away after 6–8 h.

Hirata et al. examined the underlying mechanisms for the observed oscillations and showed that 
in the presence of the proteasome inhibitor MG132, hes1 mRNA is initially induced but after 3 h it is 
suppressed because of constant repression of transcription by persistently high protein levels (negative 
autoregulation). Treatment with cycloheximide leads to sustained increase of hes1 mRNA and blocks its 
oscillation. A similar effect occurs with overexpression of dnHes1, a dominant-negative form of Hes1 
that is known to suppress Hes1 protein activity (Ström et al., 1997). These results reveal that both Hes1 
protein synthesis and degradation are needed for oscillations in the expression levels of hes1 mRNA. 
Other experiments showed that the same mechanisms hold for hes1 mRNA expression levels in the 
PSM in mouse. Hirata et al. also estimate the half-lives of hes1 mRNA and Hes1 protein to be 24.1 +/- 
1.7 min, 22.3 +/- 3.1 min, respectively. Experiments with various protease inhibitors suggest that Hes1 
protein is specifically degraded by the ubiquitin–proteasome pathway.

Figure 5. Delta-Notch signaling pathway and the autoinhibition of Notch target genes her1 and her7. 
Delta proteins in the neighboring cells activate the Notch signal within the cell.
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Since the simple negative feedback loop of hes1 mRNA and Hes1 was unable to generate sustained 
oscillations when modeled as a system of two ODEs, Hirata et al. postulated a Hes1 interacting factor 
as a third molecular species. Subsequently, they obtained a system of three ODEs that was then able to 
generate sustained oscillatory behavior. However, there is no direct experimental evidence for such an 
interacting factor.

Later, it was shown that simple coupled delay differential equations (DDEs), representing the time 
delays due to transcription and translation, are able to explain the sustained oscillations without recourse 
to the addition of a third variable (Monk, 2003; Jensen et al., 2003; Lewis, 2000; Bernard et al., 2006). 
Monk and Jensen et al. proposed the DDE

dM
dt

f P t M

dP
dt

M t P

M M

P P

= -( )( )-
= ( )-

a t m

a m
 

for the two species, hes1 mRNA (M) and Hes1 (P) and a regulatory Hill function

f P t
P t P

( ( ))
( )

=
+ -

 
1

1 ( / )ht
0

 

representing the repression of mRNA production by the binding of Hes1 dimers to the promoter region, 
with combined transcriptional and translational delay τ, Hill coefficient h  and DNA dissociation constant 
P

0
. The reaction rates mM  and mP  are the degradation rates of hes1 mRNA and Hes1, respectively, aM  

is the maximal mRNA transcription rate in the absence of protein repression, and a
P

 is the translation 
rate. See Table II for parameters.

Jensen et al. showed via simulations that for the case h = 2 , oscillations are only sustained for t > 80  
and there are no oscillations for t < 10 . For t Î ( , )10 80 , the period of the damped oscillations is ap-
proximately 170 min, which is much greater than the observed period of 120 min. Bernard et al. had 
shown previously for a modification of the DDE model by Monk that for the experimentally observed 
period of T=120 min, sustained oscillations can only be obtained for h ³ 4 1. , t ³ 19 7. . On the other 
hand, it was argued that since the transcription factor is a Hes1 dimer and there are at least three separate 
binding sites for Hes1 dimers in the regulatory region of the hes1 gene, an appropriate value of h  is at 
least 2. However, whether h  should be as large as 4.1 is debatable.

Barrio et al. (2006) studied the Hes1 negative feedback loop as a discrete, stochastic delay model based 
on the DDE model by Monk (2003). The chemical kinetics is described by the following reactions:

R
1
: R

1 M Mm¾ ®¾¾ /0 : M Mm¾ ®¾¾ /0 , 

R
2 : R2 P Pm¾ ®¾¾ /0 : P Pm¾ ®¾¾ /0 , 

R
3
: R

3 M M PPa¾ ®¾¾ + : M M PPa¾ ®¾¾ + , 

R
4 : R4 P M PM fa t, ,¾ ®¾¾¾ + : P M PM fa t, ,¾ ®¾¾¾ + . 
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Reactions R
1
 and R2  are the degradations of M and P, respectively. R

3
 represents the translation of 

M and R4  is the regulated transcription with Hill function f .
By performing discrete stochastic simulations of the model with varying values for h , t , and P0  

using the DSSA algorithm, Barrio et al. showed that h  need not be as large as 4.1 to obtain sustained 
oscillations when discrete models are used. The results indicate that in the presence of intrinsic noise 
the critical value of the Hill coefficient, under which the system dynamics does not show sustained 
oscillations, decreases to just less than 3. Reasonably well-defined sustained regular oscillations could 
be observed for values of t = 15  with h = 4 , and t = 10  with h = 3  (Figure 6). Values for t  lower 
than 10 result in noisy and irregular delay. By knowing more accurate values for the transcriptional and 
translational delays an even more accurate prediction of h  might be possible and vice-versa.

Barrio et al. (2006) computed the arithmetic mean over 1,000 independent stochastic simulation runs 
for constant and variable delay. In spite of the differences between individual simulations due to inherent 
stochasticity, the arithmetic mean showed damped oscillation. This matched the biological experiments 
where Western-blots of Hes1 from the whole cell population showed damped oscillations that are arrested 
after eight hours. However, the difference between individual stochastic simulations and the mean sug-
gests that the damping, observed at the whole population level, arises from desynchronization of Hes1 
oscillation in individual cells. This was supported by real-time imaging experiments showing that the 
oscillations in individual cells continue for longer than 8 hours (Masamizu et al., 2006).

The study of the Hes1 negative feedback loop demonstrated the usefulness of the DSSA for chemical 
kinetics involving delays. Because this approach is very general, it is able to provide deep insights into 
the relationship between delayed processes, intrinsic noise, and small numbers of molecules in many 
biological systems.

Table 2. Parameters used in the Hes1-model. 

parameter description value Reference

m
M

Hes1 mRNA degradation rate 0.029 [min−1] Hirata et al. (2002)

m
P

Hes1 degradation rate 0.031 [min−1] Hirata et al. (2002)

a
P

translation rate 1 [min−1] Monk (2003)

a
M

max. transcription rate 1 [min−1] Normalized; Monk (2003)

P
0

critical no. of Hes1 protein (Hill function parameter) 10-100 Lewis (2003), Monk (2003)

h Hill cooperativity factor (Hill function parameter) 2-4 Lewis (2003), Monk (2003)

t total delay (transcription, translation, translocation) 10-40 [min] Monk (2003)
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4.1.2 Her1/7

The Notch signaling pathway, which includes several signaling molecules (such as Hes1 and Her1/
Her7) in mouse and zebrafish, respectively, plays a key role in the segmentation clock of vertebrates. In 
(wildlife) zebrafish, about 30–32 somites are formed at a rate of one every 30 min (at 28±C). Although 
it is suggested that some anterior somites (12) are derived due to some form of dorsal convergence, most 
somites emerge sequentially from the PSM. It is distinguished between the posterior and anterior parts of 
the PSM. In zebrafish embryos at a developmental stage of 10 somites, the posterior PSM extends over 
25 cells in anterior to posterior axis, which are the precursors for approximately five somites, each about 
five cells in length. The anterior PSM contains the cells that lead to the next two to three somites.

In zebrafish, the genes her1 and her7 are autorepressed by their own gene products (Her1 and Her7) 
and positively regulated by Notch signaling (Lewis 2003; Giudicelli and Lewis, 2004) - Figure 5. In both 

Figure 6. Single DSSA trajectories for values of (a) t = 15 min with h = 4 , and (b) t = 10 min with 
h = 3  (P

0
100= ).
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cases, transcriptional and translational delays are responsible for the oscillatory behavior and determine 
its period. Additional information on the somite segmentation clock in zebrafish is in Holley (2007) and 
Lewis and Ozbudak (2007).

Horikawa et al. (2006) performed experiments in which they investigated the system level properties 
of the segmentation clock in zebrafish. Their main conclusion is that the segmentation clock behaves 
as a coupled oscillator. The key element is the Notch-dependent intercellular communication, which 
is regulated by the internal hairy oscillator and whose coupling of neighboring cells synchronizes the 
oscillations. In one particular experiment, they replaced coupled cells by cells that were out of phase 
with the remaining cells and showed that at a later stage they still became fully synchronized. Clearly, 
the intercellular coupling plays a crucial role in minimizing the effects of noise to maintain coherent 
oscillations.

The stochastic model is based on the chemical reaction models by both Lewis (2003) and Horikawa 
et al. (2006). Lewis models a single cell and two coupled cells. His work is generalized by Horikawa et 
al. to a one-dimensional array of n cells. For each cell we simulate the dynamics of 6 different species 
controlled by 12 reactions. Denote by Mh i1

, Mh i7 , Mdi
, Ph i1

, Ph i7 , and Pdi
 the species Her1 mRNA, 

Her7 mRNA, DeltaC mRNA, Her1 protein, Her7 protein and DeltaC protein in a particular cell i. For 
each of the species S M M M P P P

h h d h h di i i i i i
=

1 7 1 7
, , , , , , the model contains a degradation reaction

S c¾ ®¾ /0  

with associated rate constant c c c c b b b
h h d h h d

=
1 7 1 7
, , , , , . The three different proteins Ph i1

, Ph i7 , Pdi
 are syn-

thesized with translational delays th p1 , th p7 , and tdp , respectively. The corresponding reactions are

S S Sc
1 1 2
¾ ®¾ +  

with S S M P M P M P
h h h h d di i i i i i1 2 1 1 7 7

, , , ,( ) = ( ) ( ) ( ) or  or  and associated reaction rate constants 
c a a a

h h d
=

1 7
, , . The transcription of M

h i1
, Mh i7  and M

di
 are regulated reactions with transcriptional 

delays th m1 , th m7 , and tdm , respectively. The reactions are

S S Scf
1 1 2
¾ ®¾¾ +  

with S S P M
h hi i1 2 1 1

, ,( ) = ( )  or P M
h hi i7 7

,( )  and associated reaction rate constants c k k
h h

=
1 7
,

S S Scg
1 1 2
¾ ®¾¾ +  

with S S P M
d di i1 2

, ,( ) = ( )  and c k
d

= . As described in detail in Horikawa et al. (2006), the individual 
negative and positive regulations are modeled using specific Hill functions f  and g . For cells i with 
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1 < <i n  (all except for the first and last in the one-dimensional cell array) the Hill function f is de-
fined by

f P P P P r
P P P

r
P P Ph h d d h

h h

hd

h h
i i i i

i i i i

1 7

1 7 0
2

1 7 0
1 1

1

1

1

1
, , ,

- +
( ) =

+
+

+ 22
0

1 1

1 1
2

P P

D P P
d d

d d

i i

i i

- +

- +

+

+ + , 

and for cell 1 and n it is given by

f P P P
P P P

P D

P Dh h d

h h

d

d
i i

1 7

1 7 0
2

0

0
1 1 1

1

1

1

1 1
, ,( ) =

+ +
 

f P P
P P P Dh h

h h
n n

n n

1 7

1 7 0
2

0

1

1

1
1 500

,( ) =
+ + , 

respectively. The parameters rh and r
hd

 are weight parameters that determine the balance of internal 
and external contribution of oscillating molecules. Here, we assume 100% coupling, i.e. r

hd
= 1 . For 

all cells, the Hill function g  that describes the inhibition of DeltaC mRNA synthesis by Her1 and Her7 
is given by

Table 3. Parameters for the multicellular Her1-Her7 model. Parameter values are taken from Horikawa 
et al. (2006)

parameter description value

b b b
h h d1 7
, ,

Her1/Her7/DeltaC protein degradation rate 0.23 [min−1]

c c c
h h d1 7
, ,

Her1/Her7/DeltaC mRNA degradation rate 0.23 [min−1]

a a a
h h d1 7
, ,

Her1/Her7/DeltaC protein synthesis rate (max.) 4.5 [min−1]

k k k
h h d1 7
, ,

Her1/Her7/DeltaC mRNA synthesis rate (max.) 33 [min−1]

P
0

critical no. of Her1+Her7 protein/cell 40

D
0

critical no. of Delta protein/cell 1000

t t t
h m h m dm1 7

, ,
time to produce a single Her1/Her7/DeltaC mRNA molecule 12.0, 7.1, 16.0 [min]

t t t
h p h p dp1 7

, ,
time to produce a single Her1/Her7/ DeltaC protein 2.8, 1.7, 20.5 [min]
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g P P
P P Ph h

h h
i i

i i

1 7

1 7 0
2

1

1
,( ) =

+ . 

The single cell, single-gene model consists only of 2 species (her1 mRNA and Her1 protein) and 
4 reactions. The two degradation and the single translation reactions correspond to those in the n-cell 
model. For the inhibitory regulation of transcription a Hill function with Hill coefficient 2 is assumed (
P

h1  acts as a dimer). The Hill function takes the form

f P
P Ph

h

1

1 0
2

1

1
( ) =

+ . 

See Table 3 for the full list of model parameters.
A comparison of the DDE solutions with stochastic simulation results of the DSSA and Bτ-DSSA in 

Leier et al. (2007) and Burrage et al. (2007) revealed differences in the system dynamics. For a single 
cell, after an initial overshoot, the DDE solution shows completely regular amplitudes and an oscillatory 
period of approximately 40 minutes (Figure 7). In the intrinsic noise case there are still sustained oscil-
lations but there is some irregularity in the profiles and the oscillatory period is closer to 50 minutes. 
The time lag (5-7 min) between protein and mRNA is about the same in both cases (Figure 8).

Figure 7. DDE solution for the Her1/Her7 single cell model

Figure 8. DSSA run for the Her1/Her7 single cell model
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DSSA simulations of a one-dimensional array of 5 cells exhibit a period of oscillation that is closer 
to 45 minutes (Figure 9-10). The lag between protein and mRNA is about 25 minutes for DeltaC and 
about 7 minutes for Her1. Obviously, the cell coupling has some effect on the period of oscillation.

Leier et al. mimic an experiment by Horikawa et al. In both the DDE and the DSSA setting cell 3 (out 
of 5) is disturbed after a certain time period: after 500 minutes in the DSSA case and 260 minutes in the 
DDE case, at times when the delta mRNA levels are near their maximum. This is done by resetting all 
the values for cell 3 to zero at this point. This is meant to represent the experiment of Horikawa et al. in 
which some of the cells are replaced by oscillating cells that are out of phase. Horikawa et al. observed 
that nearly all the cells become resynchronized after three oscillations (90 min).

In the DDE setting it takes about 60 minutes for the onset of resynchronization while in the DSSA 
setting it takes about 180 minutes (Figure 11). The difference can be partly due to the larger number 
of cells that are experimentally transplanted as well as differences in the cell arrangement between the 
three-dimensional in vivo experiments and the simulated one-dimensional cell array.

This study, although in an early stage, is another example indicating the relevance of both intrinsic 
noise delay models and continuous deterministic delay models for genetic regulatory systems. Despite 
some similarities between the dynamics of both the deterministic and stochastic models, the intrinsic 

Figure 9. DSSA simulation of five Delta-Notch coupled cells, showing the dynamics of deltaC mRNA 
and protein in cell three

Figure 10. DSSA simulation of five Delta-Notch coupled cells, showing the dynamics of Her1 mRNA 
and protein in cell three
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noise simulations do make some predictions that are different from the deterministic model and that 
could be verified experimentally.

The reason for limiting the stochastic model to 5 cells is due to the long runtime of individual simula-
tions when using the DSSA. To overcome the issue of small step-sizes, Leier et al. (2008(a)) introduced 
the Bτ-DSSA (see Section 3.4.2). The significant speed-up (while performing equally accurate as normal 
DSSA) allows the role of intrinsic noise and delay to be studied for large cellular systems and long time 
frames. There are many other issues that must be addressed when modeling both delays and intrinsic 
noise, one of which is how we represent delays. Clearly if delays are to represent complex processes such 
as transcription and translation, the delays should not be fixed but distributed. Appropriate distributions 
from which to sample the delays include uniform or truncated normal over some appropriate interval 
that represents lower and upper bounds for the delays. Other issues include whether it is appropriate to 
lump delays together into a single delay and how spatial effects associated with, for example, diffusion 
can be captured in purely temporal models by the use of delays.

Figure 11. DSSA simulation result and DDE solution for the 5-cell array in the non-disturbed and dis-
turbed setting. The graphs show the dynamics of deltaC and her1 mRNA in cell three. (a,c) DSSA and 
DDE results in the non-disturbed setting, respectively. (b,d) DSSA and DDE results in the disturbed 
setting. Initial conditions for cell 3 are set to zero. All other initial molecular numbers stem from the 
non-disturbed DSSA and DDE results in (a,c) after 500 and 260 minutes, respectively

 
(a) 
 

(b) 

 
(c) 
 

(d) 
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5. concluSionS and future directionS

In cell biology, cell signaling pathway problems are often tackled with a mix of deterministic temporal 
models, well mixed stochastic simulators, and/or hybrid methods. But, in fact, three dimensional stochastic 
spatial modeling of reactions happening inside the cell is sometimes needed in order to fully understand 
these cell signaling pathways. This is because noise effects, low molecular concentrations, and spatial 
heterogeneity can all affect the cellular dynamics. However, there are ways in which important effects 
can be accounted without going to the extent of using these highly resolved spatial simulators. This 
reduces the overall computation time significantly, while at the same time still being able to capture the 
essential dynamics.

In this Chapter we have focused on how we can model both intrinsic noise and delayed reactions in 
a genetic regulatory setting via generalizations of the Stochastic Simulation Algorithm (the DSSA). We 
have also shown how we can coarsen in both time and space and demonstrated that this can improve 
the computational performance by several orders of magnitude over the DSSA. We have also shown, 
through two important applications, why we need algorithms that mimic both noise and delay effects 
as these approaches can capture the individual cell variability. We have also discussed what form the 
delays should take: fixed, variable, distributed, etc.

In the delay setting at least, codes based on the algorithms described here are still in their infancy 
and there is a need to standardize implementations and make these codes available to researchers. Future 
research must surely focus on multi-scale simulations and there is a great need to develop efficient algo-
rithms that link different temporal and spatial scales – such as genetic regulatory models with those for 
cellular and organ function. This scientific field is wide open and can promise the dedicated researcher 
fascinating and rewarding endeavors.
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introduction

After sequencing the genomes of various organisms, understanding the integrated behavior of gene 
regulatory networks (GRN), taken in the large sense to comprise genes, RNA, proteins, microRNA and 
other molecules that mutually interact to control the dynamical behavior of the GRN within and between 

abStract

We present a recently developed modeling strategy of gene regulatory networks (GRN) that uses the 
delayed stochastic simulation algorithm to drive its dynamics. First, we present experimental evidence 
that led us to use this strategy. Next, we describe the stochastic simulation algorithm (SSA), and the 
delayed SSA, able to simulate time-delayed events. We then present a model of single gene expression. 
From this, we present the general modeling strategy of GRN. Specific applications of the approach are 
presented, beginning with the model of single gene expression which mimics a recent experimental mea-
surement of gene expression at single-protein level, to validate our modeling strategy. We also model a 
toggle switch with realistic noise and delays, used in cells as differentiation pathway switches. We show 
that its dynamics differs from previous modeling strategies predictions. As a final example, we model 
the P53-Mdm2 feedback loop, whose malfunction is associated to 50% of cancers, and can induce cells 
apoptosis. In the end, we briefly discuss some issues in modeling the evolution of GRNs, and outline 
some directions for further research.

DOI: 10.4018/978-1-60566-685-3.ch008
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cells, has emerged as a fundamental problem in Systems Biology. So far there is only partial knowledge 
of the regulatory network structure and “logic” driving GRNs’ dynamical behavior. Nevertheless, one 
can begin to address questions using the known features of these networks, by constructing the family, 
or ensemble, of all networks consistent with those observations.

This “ensemble” approach (Kauffman, 2004) studies the expected properties of members of the 
ensemble and predicts new observables to test against the dynamical behavior of cells and tissues. It 
is a further profound issue whether real networks are generic to any ensemble, given 3 billion years of 
evolution and natural selection.

There are three frameworks to analyze GRNs. At the most detailed level, one considers the chemical 
master equation of the detailed behavior of all components in members of some ensemble of networks. 
This can be done (McAdams et al, 1997) using the stochastic simulation algorithm (SSA) (Gillespie, 
1977). Such models are inherently stochastic. Understanding the consequences of such noise is itself a 
critical problem and is focused in this chapter.

At a second level of abstraction, one considers systems of deterministic nonlinear ODEs (Mestl et 
al, 1995) capturing, in some sense, the mean field behavior of the real noisy stochastic networks. Since 
the number of copies of regulatory molecules in real system can be very small (from one to a few), such 
deterministic equations are, at best, an approximation, and several recent works have shown limitations 
of this method (Lipshtat et al, 2006). The addition of noise in Langevin equations (Toulouse et al, 2005), 
e.g., remains to be shown to capture the true nature of cellular dynamical noise.

At a still higher level of abstraction, one can consider models where gene states, time and other com-
ponents are all discrete. While furthest from the detailed description, such models have the advantages of 
allowing the study of very large networks, with thousands of model genes. In particular, random Boolean 
networks (RBN) have been the subject of considerable analysis (Kauffman, 1969).

Here, we present the latest modeling strategy of GRNs (Ribeiro et al, 2006a), which aims to capture 
the relevant features of GRN to achieve simulations as realistic as possible. The dynamics is driven by 
the delayed SSA (Roussel & Zhu, 2006), which allows modeling multiple time-delayed reactions while 
maintaining a realistic account of molecular noise. We show evidence of its validity and accuracy at a 
detailed level.

The chapter is organized as follows. First, we describe recent experimental measurements that reveal 
key features that should be reflected in models of gene expression and gene-gene interactions. After that, 
we describe the SSA and the delayed SSA.

Next, a model for single gene expression is presented. It is shown that this model accurately repro-
duces recent measurements of gene expression at the single molecule level. Based on this model, a model 
of GRNs is proposed (Ribeiro et al, 2006a). Importantly, this modeling strategy allows applying the 
ensemble approach (Kauffman, 2004), which consists in simulating the dynamics of many GRNs with 
similar features, and extracting general properties of the dynamics from the resulting time series.

Subsequently, examples of applications of the modeling strategy are presented. A model of a toggle 
switch shows the relevance of including time delays in gene expression. To show the ability of modeling 
complex chemical pathways, we present a model of the P53-Mdm2 chemical feedback-loop, associated 
with important biochemical pathways in cells, responsible for responding to external stresses and apop-
tosis. The final section includes some preliminary studies on the evolution of these models of GRNs.
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gene exPreSSion at a detailed leVel

Two key features in gene expression should be considered in dynamical models of GRNs. First, experi-
mental measurements of gene expression show that the underlying dynamics has non-negligible stochas-
tic fluctuations. This critical feature cannot be ignored since genes exist in small copy numbers in the 
genome (from one to a few), and some express at very low rates. Second, transcription and translation 
are multiple-step processes involving a large number of reactions, and thus take a non-negligible time 
to be complete once initiated. We describe recent experiments that establish the stochasticity in gene 
expression and measurements of time durations involved in gene expression.

Stochastic nature of gene expression

Stochastic fluctuations of gene expression were proven to have a significant role at the single-cell level 
(Elowitz et al, 2002), e.g., controlling probabilistic cellular differentiation pathway choice (Arkin et al, 
1998).

A study (Arkin et al, 1998) proved the relation between differentiation pathway selection (that is, if 
a cell type A differentiates to either a cell type B or a cell type C), and the stochastic nature of genes’ 
expression. Fluctuations in gene expression produce erratic time patterns of protein production in indi-
vidual cells and wide diversity in protein concentrations across cell populations, explaining the observed 
probabilistic differentiation pathway choice. It has been experimentally observed that cell populations, 
initially homogeneous, separate into distinct phenotypic sub-populations, due to stochastic fluctuations. 
Importantly, it was also shown that the regulatory proteins exist in very low cellular concentrations and 
compete in the control of the pathway switch points of possible differentiation pathways.

A model of gene expression (without time delays), driven by the SSA, was able to match experi-
mentally observed ratios of cells choosing each of the differentiation pathways and also the dynamics 
at the single cell level (Arkin et al, 1998). The same model also mimicked correctly the production of 
proteins from an activated promoter, in short bursts of variable numbers of proteins whose occurrence 
is separated by time intervals of random duration (McAdams & Arkin, 1997).

The fact that only a small number of molecules are involved in these processes, that genes’ promoter 
regions exist in very low copy numbers in the cell (Becskei & Serrano, 2000), and that gene expression 
is stochastic leads to the conclusion that conventional deterministic kinetics, even with noise terms, 
cannot predict the statistics of regulatory systems that produce probabilistic outcomes.

Recent experimental measurements confirmed that noise cannot be neglected in GRNs dynamics. 
Quantitative fluorescence measurements of gene expression products (Süel et al, 2006)(Süel et al, 2007) 
showed that genes’ expression and cells’ differentiation are highly noisy, and established that certain 
types of cellular differentiation are probabilistic and transient. They reported cases of cells’ going back 
and forth from one cell type to another, without external perturbations.

These and other experiments showed how populations of cells, genetically identical and in the 
same environmental conditions, have individual cells with distinct phenotypes, implying the intrinsic 
stochasticity of GRNs.
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time delays in transcription and translation

Among the many steps involved in gene expression, some are time consuming, such as transcripts cre-
ation and modification, mature mRNA transport to the cytoplasm (in Eukaryotes), mRNA translation 
(Ota et al, 2003), and post-translation protein modifications and folding. The time intervals between 
these sub-processes play important roles in biochemical dynamics and must be incorporated in models 
with a genetic regulatory component (Ribeiro et al, 2006a).

Transcription elongation is the process by which the RNA polymerase (RNAp) slides along the tem-
plate strand and adds bases to the transcript, according to the DNA sequence. Its duration depends on the 
gene length and the RNAp transcription speed. Also, the duration varies between different events even 
for the same gene, because it depends on the rate by which the reactions occur, and these are stochastic 
events. Measurements of elongation times showed that the velocities of different transcription events 
followed a normal distribution (Davenport et al, 2000).

Although stochastic models of GRNs, using only non-delayed reactions can explain experimental 
data regarding gene expression fluctuations (Raser & O’Shea, 2004), these studies focused on steady 
state dynamics, where delayed and non-delayed models have the same results after an initial transient. 
Models of more complex GRN (e.g., involving feedback mechanisms), require modeling transcription 
and translation as time-delayed reactions. Thus, in the model here presented, the time duration of tran-
scription, translation, etc, is included to capture the features of transients.

Multi-delayed StochaStic SiMulation algorithM

Stochastic Simulation algorithm

The Stochastic Simulation Algorithm (SSA) (Gillespie, 1977), a Monte Carlo simulation of the chemical 
master equation, is an exact procedure for numerically simulating the time evolution of a well-stirred 
reacting system.

Each chemical species quantity is treated as an independent variable and each reaction is executed 
explicitly. Time evolves in discrete steps, with each step being the execution of a specific reaction at a 
specific time. After a reaction is executed, the number of molecules of each of the affected species is 
updated according to the reaction formula, and the algorithm advances to the next event. Because each 
reaction and the time for the next reaction to occur are independent of the preceding ones, the temporal 
evolution of the system is a Markov process.

The algorithm is exact in the sense that each simulation of a system of chemical reactions, in the 
conditions required by the SSA, provides an exact temporal trajectory, matching one of the system’s 
possible trajectories in its state space. The necessary condition for the SSA to be valid for any chemi-
cal system is that such system is kept “well-stirred” during the simulation, either by direct stirring or 
by requiring that non-reactive molecular collisions occur far more frequently than reactive molecular 
collisions (Gillespie, 1977). For the collision probability of two molecules to be spatially homogenous, 
one must assume that, each time a reaction occurs due to a collision between two potentially reacting 
molecules, this event will be followed by many non-reactive collisions, which cause the molecules to 
be once again uniformly distributed in space before the next reactive event occurs.
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Each reaction rate constant, cμ, is dependent on the reactive radii of the molecules involved in the 
reaction and their average relative velocities. The velocities depend on the temperature of the system 
and the individual molecular masses. After setting the initial species populations Xi and reactions rate 
constants cμ, the SSA calculates the propensity aμ = cμ.hμ, for all possible reactions. The variable hμ is 
the number of distinct molecular reactants combinations available at a given moment in time.

The SSA then generates two random numbers, r1 and r2, which are used to compute τ, the time in-
terval until the next reaction occurs, and μ, which determines which reaction occurs.

Finally, the system time t is increased by τ and the Xi quantities are adjusted to account for the oc-
currence of reaction μ, assuming that it occurred instantaneously. This process is repeated until no more 
reactions can occur, or during a user defined time interval.

As seen in the formulation of the algorithm, the probabilities for events to occur are converted into 
the expected time it takes until they actually occur. That allows computing the system state temporal 
evolution. The SSA goes as follows (Gillespie, 1977):

Step 0 (Initialization). Input the desired values for the M reaction rate constants c1,. . ., cM and the N 
initial molecular population numbers X1,. . ., XN. Set the time variable t and the reaction counter n 
both to zero. Initialize the unit-interval uniform random number generator (URN).

Step 1. Calculate and store the M quantities, a1 = c1.h1,..., aM = cM.hM for the current molecular popula-
tion numbers, where hμ, is the number of distinct molecular reactant combinations available, given 
the system current state (X1,..., XN)(μ = 1,. . .,M). Calculate and store as a0 the sum of the M ai, 
values.

Step 2. Generate two random numbers r1 and r2 from a unitary uniform distribution, and calculate τ and 

μ according to: τ = (1/a0).ln(1/r1), and μ is an integer such that: a r a au
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Step 3. Using the τ and μ values obtained in step 2, increase t by τ, and adjust the molecular population 
levels to reflect the occurrence of the reaction chosen to occur. Then increase the reaction counter 
n by 1 and return to step 1.

delayed Stochastic Simulation algorithm

The delayed SSA captures two important features of GRN dynamics: stochastic dynamics and the ex-
istence of events whose time duration for completion, once initiated, cannot be ignored. The delayed 
SSA (Roussel and Zhu, 2006), which is a generalization of the algorithm proposed in (Bratsun et al, 
2005), proceeds as follows:

Step 1. Set t = 0, stop time = tstop, read initial number of molecules and reactions, create empty wait list 
L.

Step 2. Do an SSA step for input events to get the next reaction event R1 and its occurrence time t1.
Step 3. If t1 + t < tmin (the least time in L), set t ← t + t1. Update number of molecules by performing R1, 

adding delayed products into L as necessary.
Step 4. If t1 + t ≥ tmin, set t ← tmin. Update number of molecules by releasing the first element in L.
Step 5. If t < tstop, go to step 2.
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To simulate time-delayed reactions one needs a “waiting list”. Each reaction product that takes time 
τ* to be created after the reaction occurrence, is, when the reaction occurs, placed in a waiting list, until 
that time τ* elapses. At that moment, the product is released into the system and becomes available for 
possible reactions.

Take as an example, the following chemical reaction: A B A Ck+ ¾ ®¾ + ( )t* . When this reaction 
is selected to occur, the number of molecules A is kept constant, a single molecule B is immediately 
removed from the system, and a molecule C is placed on a waitlist, and will be released into the system 
τ* seconds after the reaction occurred.

Model of gene exPreSSion aS a Multi-delayed reaction

To model transcription and translation in prokaryote cells, accounting for delays, the following reactions 
(1) and (2) are used (Zhu et al, 2007):

Pro  Pro  ( ) ( ) ( ) ( ) ( )t RNAp t t RBS t RNAp tktransc+ ¾ ®¾¾ + + + + + +t t t
1 1 2

RR t( )+ t
2

  (1)

Ribosome  Ribosome  ( ) ( ) ( ) ( ) (t RBS t t RBS t Pktransl+ ¾ ®¾¾ + + + +t t
3 3

tt + t
4
)  (2)

Reaction 1 models transcription. An RNAp binds to a gene’s promoter and transcribes the gene. The 
promoter remains unavailable for further reactions for τ1 seconds after the reaction takes place, and the 
part of the RNA (the ribosome binding site, RBS), to which ribosomes can bind to and translate, is also 
produced in τ1 seconds. When transcription is complete, at τ2, the RNAp and a complete RNA molecule, 
R, are released for further reactions in the system. Reaction 2 models translation and is also a multiple 
time delayed reaction, similar to the one for transcription.

In eukaryotes, instead of RBS, complete RNA molecules are the substrate for translation, since the 
RNA has to leave the nucleus before it can be translated.

In some cases this model can be simplified, modeling transcription and translation in a single step, 
e.g., if all control mechanisms of gene expression act upon the protein level rather than at the RNA level. 
In this case (Ribeiro et al, 2006a), when an RNAp binds to a gene promoter, if reacting, the output is, 
besides the gene promoter region and the RNAp, an active protein (reaction 3):

Pro  Pro  ( ) ( ) ( ) ( )&t RNAp t t RNAp t n
ktransc transl+ ¾ ®¾¾¾¾ + + + +t t

1 2
.. ( )P t + t

3
 (3)

The protein Pi in (3) is created by RNA translation. The ni variable is an integer, associated to the rate 
of translation. This variable can be drawn from a distribution of integers, each time the reaction occurs, 
and can differ for each gene.

gene regulatory network Model

In real cells, the GRN is involved in most cellular processes. Some of its products are transcription 
factors and co-factors that regulate the activity of downstream genes. Other products regulate cellular 
chemistry, which by feedback chemical pathways can regulate several genes’ expression.



204

Modeling Gene Regulatory Networks with Delayed Stochastic Dynamics

In our model, regulation of a gene’s expression by another gene expression product is assumed to 
occur via the proteins’ expressed by the genes. A protein can act as either as a transcription factor that 
binds to the operator site of another gene (changing its expression propensity) or it can act as a repressor 
by, for example, degrading another gene’s proteins. Proteins can form homodimers, heterodimers, or 
higher order polymers that can feedback into the GRN. The set of interactions among genes, via their 
products of expression, defines the network topology.

Genes are represented by their promoter regions. The promoter region includes the initiation sequence, 
to which the RNAp can bind and begin transcription, and the operator sites region, to which transcription 
factors can bind and change the genes’ transcription reaction propensity.

Transcription factors can act as activators or inhibitors of gene transcription. Genes can have multiple 
operator sites, and the effect of multiple transcription factors can be, in general, combinatorial. E.g., a 
certain protein can act as inhibitor if it is the only transcription factor bound to the gene, but can act as 
an activator if another specific transcription factor is also bound to the gene in another operator site.

Since genes can have multiple operator sites, the following notation is used: Proi,(op), such that, i is 
the gene identification index, and (op), is an array of all operator sites, and its values represent the state 
of each of the gene’s operator sites. Such state consists of having or not transcription factors bound to 
the operator site and what transcription factor is bound to the site, if any.

For each combination of inputs states (promoter state), a regulating function is assigned that deter-
mines the gene’s expression rate in such state. E.g., imagine gene 7 has 2 operator sites. Assume that 
p1 and p2 can bind to operator site 1, while p3 can bind to operator site 2, of gene 7. If, at any given 
moment in the simulation, p1 is bound to site 1, and no protein is bound to site 2, the operator is in the 
state Proi,(p1, 0). Another possible state would be Proi,(p2, p3). Depending on its promoter occupancy state, 
the gene is either repressed or activated at a certain rate. A fraction of genes can be assigned to have 
basic level of expression (a promoter with no transcription factors bound to it can be transcribed by an 
RNAp), while others do not have that ability.

This procedure to design GRNs can be seen as a generalization of the procedure used to create RBNs 
(Kauffman, 1969). In RBNs one assigns random Boolean functions to each gene, creating a combinatorial 
logic. This can be attained in our model in three ways: [i] allowing reactions between genes’ expression 
products, and then assign such resulting complexes as activator or repressor of another gene; [ii] allow-
ing a gene to have more than one operator site and randomly assigning the effects of all the possible 
binding combinations as activations or inhibitions; [iii] allowing different genes expression products to 
bind competitively to a single binding site, each with a different effect on the gene transcription rate.

These features allow all Boolean functions and topologies of interactions to have representations in 
this model. However, a single RBN could be mapped to an infinite number of different GRNs using our 
model, since many parameters, such as rate constants and delays, are not defined in RBNs.

This model of GRNs (Ribeiro et al, 2006a) has been implemented by a software package called 
SGNSim (Ribeiro & Lloyd-Price, 2007). In SGNSim, GRNs are generated from the following reactions 
(4 to 11).

For gene i = 1,…,N there is basal transcription reaction of promoter Proi by one RNAp (reaction 
4). The model includes transcription reactions for promoters with specific sets of transcription factors 
bound to it (reaction 5) and translation of RNA by ribosomes (Rib) into proteins (reaction 6). These are 
all time-delayed reactions. The delays are represented by a τ variable and differ between products of 
each reaction, and between similar reactions for different genes (since these have different lengths).
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The binding/unbinding of a transcription factor from operator site j of a gene i, are represented in 
reactions 7. If the complex is unable to transcribe, these two reactions represent repression/unrepres-
sion else, are activation/inactivation reactions. Note that reaction 7 is bidirectional, corresponding to 
the binding of the repressor, and its spontaneous unbinding.

Reaction 9 represents the loss of repression due to an external “re-activator” protein that removes 
the repressor from the operator site.

Decay of RNA, represented by its ribosome binding site RBS, and proteins, occur via the reactions 
10. Decay of a protein while bound to a promoter occurs via reaction 8. Finally, proteins polymerization 
(here, limited to dimers for simplicity) and the inverse reaction, occur via the bidirectional reactions 
11. Unless time delays are explicitly represented in the products of the reactions (here represented us-
ing the notation X(τ)), all events, including depletion of reactants and appearance of products, occur 
instantaneously at the time the reaction takes place, t:

Pro  Pro   
i i i i
+ ¾ ®¾¾ + + +RNAp RBS RNAp Rktransc ( ) ( ) ( ) ( )t t t t

1 1 2 2  (4)
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For simplicity, proteins and RBS are assumed to degrade at a constant rate, modeled as uni-molecular 
reactions (reactions 10).

Ensembles of GRNs (Kauffman, 2004) can be generated by choosing random integers for all indexes 
in the reactions modeling interactions between genes (i, j, z and w).The choice of which dimers can 
form can also be random. Each different set of choices corresponds to a unique GRN topology. Since the 
effect of transcription factors in genes’ expression level can be randomly chosen, the stochastic version 
of any Boolean or more complex transfer function can be implemented.
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aPPlicationS

Modeling Single gene expression

Recently, the real-time production of single protein molecules under the control of a repressed lac promoter 
in individual E. coli cells was monitored by epifluorescence microscopy (Yu et al, 2006). A model of this 
experiment is presented (Zhu et al, 2007), and can be used to validate our gene expression model.

In a constructed E. coli strain (SX4), a single copy of the chimeric gene tsr-venus was incorporated 
into the chromosome, replacing the native lacZ gene, while leaving intact the endogenous tsr gene. The 
introduced promoter is kept highly repressed, and thus is unable to express most of the time. Since the 
endogenous tsr gene expresses in high quantities, the addition of the extra gene (repressed most of time) 
doesn’t affect the cell’s normal behavior.

When the infrequent spontaneous dissociation of the repressor from the operator occurs, transcrip-
tion begins. Usually this event generates a single mRNA, due to its short duration. When the mRNA is 
produced, a few ribosomes bind to it and proteins are produced. These can be detected after completion 
of their assembly process, which includes protein folding, incorporation onto the inner cell membrane, 
and maturation of the Venus fluorophore (Yu et al, 2006). Observing the radiation emission events, 
it was found that the proteins are produced in bursts, with the distribution of the bursts per cell cycle 
fitting a Poisson distribution, and that the number of proteins produced per burst follows a geometric 
distribution (Yu et al, 2006).

This example is used to validate our model of gene expression at the single-molecule level. The set 
of chemical reactions are the following:

Pro(t) + RNAp(t) Pro(t + ) + RBS(t + ) + Rktransc¾ ®¾¾¾ t t
1 1

NNAp(t + ) + R(t + )t t
2 2  (12)

Ribosome(t) + RBS(t)  RBS(t + ) + Ribosome(t ktransl¾ ®¾¾ t
3

++ ) + P(t + )t t
4 5  (13)

RBS RBSdecay ¾ ®¾¾¾ Æ  (14)

Pro(t) + Rep(t) ProRep (t)
krep¾ ®¾¾  (15)

ProRep (t) Pro(t) + Rep(t)
kunrep¾ ®¾¾  (16)

Reactions 12 and 13 model, respectively, prokaryotic transcription and translation. R represents a 
complete RNA molecule and doesn’t intervene in other reactions (it is included to allow an exact counting 
of the number of transcription events since no decay reaction is defined for R, thus, its quantity equals 
the total number of transcription events that occurred).

The RBS (ribosome binding site of the RNA) is the part of the RNA to which the ribosomes bind to 
and initiate the RNA translation. In prokaryotes, which is the case here, this can occur as soon as the RBS 
is produced (τ1 seconds after the transcription event occurs). The RBS is subject to decay via reaction 
14, avoiding the possibility of creating an infinite number of proteins, out of a single RNA.

Reaction 15 models the promoter repression by a repressor (Rep). Reaction 16 models the unbinding 
of the repressor from the promoter. Only when the promoter is free can transcription occur and, since 
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this reaction rate constant is very small, this occurs at very sparse intervals. The expected fraction of 
time that the promoter is going to be available for reactions is given by (17):
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The rate constants are set for reactions 12-16 are: ktransc = 0,01s-1, ktransl = 0,00042 s-1, RBSdecay = 0.01 
s-1, krep = 1 s-1, and kunrep = 0,1 s-1 Initially, initially it is set that RNAP = 40, Pro = 1, R = 0, Ribosome 
= 100, RBS = 0, P = 0, ProRep = 0, and Rep = 100. Time delays are set at: τ1 = 40 s, τ2 = 90 s, τ3 = 2 s, 
τ4 = 58 s, and τ5 = 420 ± 140 s, randomly generated from a normal distribution of mean value 420 and 
standard deviation of 140 (with cutoff at 0).

In Fig. 1 is plotted the number of produced proteins. The proteins are produced in bursts, as reported 
(Yu et al, 2006). Each time the repressor unbinds the promoter, an RNAp can bind to the promoter, pro-
ducing one RNA, which is translated into several proteins before decaying. The bursts in this simulation 
occurred at ~400, 6000 and 9000 seconds.

Running several simulations one observes that the moments the bursts occur and the number of result-
ing proteins from each event varies significantly, due to the stochastic nature of the dynamics. In Fig. 
2A the number of transcription initiations distribution is plotted, over 1000 simulations. The resulting 
distribution of bursts size per cell cycle fits well a Poisson distribution.

In Fig. 2B, from the same 1000 simulations, it’s shown that the number of translation reactions fits an 
exponential distribution, as reported in (Yu et al, 2006). Notice that an ODE model would not be able to 
reproduce the production by bursts, since it is not appropriate to model systems with very few molecules 
and where single events, sparse in time, are the relevant ones. Time delays also play an important role, 
limiting the number of RNAp molecules that can bind to the gene when unrepressed.

Figure 1. Time series of proteins production during 4 cell cycles of a single simulation
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bi-Stability of a toggle Switch due to delays in transcription

The genetic toggle switch (TS) is among the most widely studied GRNs, due to its simplicity and important 
role as decision circuits in cell differentiation and as cellular memory units (Gardner et al, 2000). A TS 
is a 2-gene GRN in which each gene’s proteins can bind to the other gene’s promoter region, inhibiting 
its transcription.

The model of TS presented here (reactions 18-23) does not require protein dimerization or self-acti-
vation (Ribeiro, 2007). This model can reproduce the experimentally observed behavior of engineered 
TS’s in real cells. Introducing realistic delays in the promoter release, at each transcription reaction, is 
sufficient to induce toggling. The model is used to show how relevant time delays are in the dynamics 
of even the simplest GRNs.

Pro  Pro   
1 1 1
+ ¾ ®¾¾ + +RNAp RNAp pkt ( ) ( ) ( )t t t

1 2 3
 (18)
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2 2 2
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Reactions 18 and 19 represent the transcription-translation of the genes in a single step, accounting 
for the time it takes on average for these two complex chemical processes to be finished once initi-
ated. Reactions 20 and 21 control the coupling strength between genes of the two TS’s, by setting the 
propensity for repressors to bind and unbind to the promoters. Reactions 22 and 23 are responsible for 

Figure 2. (A) Number of transcription events during 4 cell cycles, in 1000 simulations. (B) Number of 
translation events for each RNA transcribed in 1000 simulations. The small figures show the experi-
mental data for direct comparison.
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proteins decay. Reactions 22 allow the protein to decay when bound to the promoter at the same rate as 
when not bound. If absent, binding to the promoter would act as a protection against protein decay and 
affect the dynamics dramatically.

Given this set of reactions, we examine four cases: (A) no time delays, all τ’s are set to null (Fig 
3A); (B) a time delay only on the protein production, namely, τ3 = 100 s, while τ1 = τ2 = 0s (Fig 3B); (C) 
multiple delays, τ1 = 2s, τ2 = 20s and τ3 = 100s (Fig 3C); (D) same settings as (B) but with a transcription 
rate constant, (kt = 0.005 s-1), 100 times smaller (Fig 3D).

In case A (no time delays), the TS does not toggle (Fig. 3A) since there is no cooperative binding 
(i.e., protein dimers as inputs to the promoters) and because there are no self-activation reactions (unlike 
in (Lipshtat, 2006)). After a transient, the TS settles into one of the two stable states (one gene on and 
the other off), each equally probable. The choice is driven by stochastic fluctuations. Once the choice is 
made, the system does not toggle anymore. The average transient is ~14000s with a standard deviation 
of ~7000s. Decay and production equilibrate at ~50000 proteins.

In case B, time delays for proteins’ production are introduced, causing protein levels to fluctuate 
more but they still reach a single steady state, rather than toggling. The average transient time to attain 
the stable state increases to ~19000 s with a standard deviation of ~12500 s. After the transient, one of 
the genes becomes on at the level of 50.000 proteins, and the other off. The delays introduced only affect 
the initial transient and after that, the steady state solution is the same as if no delays existed.

Figure 3. Time series of TS: (A) without delays or cooperative binding. (B) 100 s delays on the proteins 
release and no cooperative binding. (C) multiple delayed transcription/translation and no cooperative 
binding. Delays: τ1 = 2 s (promoter), τ2 = 20 s (RNAp), τ3 = 100 s (proteins). (D) delays on the p’s release 
only, and kt = 0:005 s-1.
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In case C, all delays are non-null. As seen in Fig. 3C, the system dynamics changes drastically in 
comparison with the previous two cases. First, the maximum level that proteins reach is 500 (in com-
parison with 50 000), due to the delay on the promoter that limits the number of RNAp molecules that 
can be transcribing the gene at the same time. Since τ1 = 2 s, there can be at most 1 transcription every 
2 seconds.

The delay on the RNAp release also diminishes the transcription reaction propensity (approximately 
by 20%) since a fraction of the RNAp molecules is not available while occupied transcribing a gene. 
The system now toggles (from p1 being in larger quantity to p2 and vice-versa), after an average tran-
sient for the first toggling to occur of 4900 s with a standard deviation of 4050 s. The average number 
of toggles observed during the entire simulation is 18.5 with a standard deviation of 3.75. Thus, the 
average toggling period is 50 000 s.

The toggling observed in Fig. 3C either is due to the delay on the promoter or a consequence of hav-
ing a far smaller number of proteins of each gene and thus stochastic fluctuations causes toggling (also 
indirectly caused by the delay on the promoter).

In case D, the toggling is caused by the delay on the promoter and not by having a small maximum 
number of proteins of the gene on. In this model, transcription/translation delays occur only on protein 
production, as in B, but with transcription rates 100 times smaller, so that the maximum level for the 
protein is the same as in C. For that we set kt = 0:01 s-1. Such a decrease, as seen in Fig. 3D, sets the maxi-
mum number of proteins at ~500 as in C, but no toggling was ever observed. Thus, given no cooperative 
binding or self-activation, toggling is possible, and is caused by the delay on the promoter release.

Model of the P53-Mdm2 network

The tumor suppressor protein P53 has a fundamental role in cellular response to a variety of environ-
mental stresses that can affect DNA structure and replication. Depending on the causes of stress, P53 
can activate several genes that regulate processes such as cell cycle arrest, DNA repair, and apoptosis 
(Volgstein et al, 2000). Mutations in the gene that transcribes p53 RNA have been found in about 50% 
of human tumors (Bennet, 1999).

We simulate a stochastic version of the P53-Mdm2 feedback loop that accurately matches recent 
experimental observations, namely that oscillations end abruptly at the single cells level (Ma et al, 
2005), while when observing multiple cells, the oscillations resemble a damped oscillator. In addition, 
a time series of cells of a lineage at the single cell level (Geva-Zatorsky et al, 2006) can be accounted 
for by this model.

Under normal conditions, P53 concentrations are kept low by Mdm2 protein (Haupt et al, 2005). 
These two proteins form a negative feedback loop responsible for the oscillatory dynamics in their con-
centrations in cells exposed to radiation that induces DNA damage (Ma et al, 2005). When under stress, 
P53 concentration can rapidly increase by several folds.

Observations show that the number of DNA double strand breaks (DSBs) in the cells follows a 
Poisson distribution whose average is proportional to the radiation dose (Ma et al, 2005). DSBs are 
thus treated as a chemical species and inserted in the system at defined times, in a quantity randomly 
generated from a Poisson distribution.

The single cell model of the P53-Mdm2 consists of the following set of reactions (24-37) (refer to 
(Ribeiro et al, 2007a) for a complete description of reactions system):
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DSB
DSBdecay¾ ®¾¾¾ Æ  (24)

ProP53 ProP53( )+pr53( )
Pro53 pr53

Sp53 5/¾ ®¾¾¾ t t  (25)

ProP53+*DSB ProP53( )+pr53( )
Pro53 pr53

4 53.Sp¾ ®¾¾¾ t t  (26)

pr53 Gp53¾ ®¾¾ Æ  (27)

pr53 pr53( )+P53( )
Pro53 P53

rp RBS53¾ ®¾¾ t t  (28)

P53 up53¾ ®¾¾ Æ  (29)

P53+*MDM2 up53¾ ®¾¾ Æ  (30)

ProMdm2 ProMdm2( )+mdm2( )
ProMdm2 mdm2

Smdm2 10 1/¾ ®¾¾¾¾ t t  (31)

ProMdm2+*P53 ProMdm2( )+mdm2( )
ProMdm2 mdm2

Smdm2 2¾ ®¾¾¾ t t  (32)

ProMdm2+*DSB ProMdm2( )+mdm2( )
ProMdm2 mdm2

2 2 3.Smdm¾ ®¾¾¾ t t  (33)

mdm2 Gmdm2¾ ®¾¾¾ Æ  (34)

mdm2 mdm2( )+MDM2( )
mdm2 MDM2

rmdm RBS2¾ ®¾¾¾ t t  (35)

MDM2 umdm2¾ ®¾¾¾ Æ  (36)

*P53+MDM2 vp532¾ ®¾¾ Æ  (37)

The rate constants are set at: DSBdecay = 0.003 s-1, Sp53 = 0.02 s-1, Gp53 = 0.02 s-1, Smdm2 = 0.045 
s-1, Gmdm2 = 0.02 s-1, rp53 = 0.6 s-1, up53 = 0.02 s-1, vp53 = 9.2 s-1, rmdm2 = 0.04 s-1, and umdm2 = 
0.14 s-1. We set the time delays as: τmdm2 = 100s, τMDM2 = 10s, τpr53 = 100s, τP53 = 10s, τProP53 = 1s, τ1

ProMdm2 
= 1s, τ2

ProMdm2 = 0.01s, τ3
ProMdm2 = 0.05s, τRBS

mdm2 = 1s, and τRBS
p53 = 0.1s. We also set the following initial 

quantities: P53 = 0, mdm2 = 0 (mdm2 RNA), MDM2 = 0, pr53 = 0 (p53 RNA), ProP53 = 1 (promoter 
region of the gene from which the p53 RNA is transcribed), and ProMdm2 = 1 (promoter region of the 
gene from which the mdm2 RNA is transcribed).

Reaction 33 models the activation of Mdm2 transcription due to the presence of DSB in the system, 
since it is known that when DSB exist, signaling molecules detect them and will then begin a cascade 
of events that will eventually lead to a higher expression of P53 and Mdm2 (Ma et al, 2005).

It was observed experimentally that the P53 and Mdm2 oscillations have an approximately constant 
frequency before stopping. The number of oscillations varies from cell to cell and, although a damped 
oscillation of P53 and Mdm2 is observed in the cell population average, in single cell measurements 
these oscillations are only slightly damped and appear to cease abruptly (Ma et al, 2005).
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In Fig. 4A is shown the results of a single simulation. The results agree with the experiments (Ma et 
al, 2005) in the number of oscillations as a response to a single addition of DSB, in the P53 and Mdm2 
relative peak intensity, and in the time interval between the peaks of the two substances. When DSB are 
introduced, P53 and Mdm2 can oscillate between 1 and 4 times. Also, the oscillations are damped and 
their ending is abrupt. Once the oscillations stop, only adding more DSBs can restart the oscillations.

The system responds diversely to each addition of DSBs, in amplitude and number of oscillations. 
Only the oscillations’ period is almost invariable, in agreement with observations. Adding more DSBs 
originates a stronger response on average.

Next, 10 independent cells were simulated, all with the same initial conditions, except for the initial 
number of DSB, randomly drawn from a Poisson distribution. The average quantity of P53 in all 10 
cells is shown in Fig. 4B. The average result is a damped oscillation although they differ significantly 
between individual cells.

Next, we modeled a cell line with 3 generations, created from an initial mother cell. Mother and 
daughter cells have the same set of possible chemical reactions (24-37). Only the mother cell is subject 
to an initial addition of DSB at t = 0 s.

The time series of the P53 protein of cells of the lineage are shown in Fig. 5, where one observes 
that the oscillations in mother cells continue in their daughter cells as the reported (Ma et al, 2006). 
Additionally, and also matching the measurements, as the cells are more distanced in the lineage, their 
dynamics differs more, both in phase and in amplitude. In some lines the oscillations have ceased while 
persisting in other lines.

Also observable is that as the two daughter cells of the same mother cell evolve in time, although 
their oscillations are perfectly correlated in the beginning, they lose correlation in both frequency and 
amplitude of oscillations (observe the time series of the second generation) (Ma et al, 2006).

eVolution of gene regulatory networkS

GRNs are generally complex, often consisting of highly interrelated connections that respond well to a 
wide range of environmental signals and conditions. The previous sections showed that models based 
on the SSA can successfully reproduce the dynamics of experimental systems. It is also important to ad-

Figure 4. (A) Time series of P53, Mdm2 and DSB’s in a single cell. Sampling period is 10 s. DSB’s are 
introduced at t=0 s. (B) Time series of P53 averaged over 10 independent cells.
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dress the evolvability of the control structure observed in biological systems. That is, a complete model 
of gene regulation should include an account of how observed regulatory structure may have evolved. 
A first step would be to examine how easy or difficult it would be to evolve various classes of genetic 
regulation. Toward this goal, we provide a brief discussion of how a genetic toggle switch might evolve 
assuming the SSA model described previously. While this work is admittedly speculative, it illustrates 
some possible important directions for further research in GRN simulation and modeling.

To explore the evolution of GRNs, we consider an abstract model of the biochemical mechanisms 
underlying regulatory relationships between genes, similar to the model presented in (Grefenstette et al, 
2006). In the current model, a gene i is represented by two integers: Proi and pi where Proi represents 
the gene’s promoter site and pi represents the gene’s protein product. We use these numbers to model 
the affinity between regulatory proteins and promoter sites. In particular, we say that gene j binds to the 
promoter region of gene i promoter if | pj - Proi | < bthresh (where bthresh is the binding threshold) where the 
latter value is a parameter of the model. Assuming binding occurs, gene j activates gene i if (pj - Proi) 
≥ 0, and gene j represses gene i otherwise.

We investigated the evolvability of toggle switches from a set of random networks, using a genetic 
algorithm (Grefenstette, 1986). We generated an initial population of 100 networks, each with 20 genes 
whose Pro and p values were generated at random in the range [0,5000]. In this study, bthresh = 100. Given 
these parameters, the probability that any two genes would form a mutually binding pair is approxi-
mately 0.0016, but the probability of forming a successful toggle switch is far smaller. Each network 
was translated into a set of reaction rules as described above, and simulated three times for 500.000 s. 
We measure the “fitness” of a network by its ability to toggle between any pair of proteins. In particular, 
fitness was determined by:

Figure 5. Time series of P53 in each cell of the cell line (except cell (3,2)) since its time series is very 
similar to cell (3,1)). At each 1000 s, cells divide and two daughter cells are created from each existing 
cell. Note that cells (3,3) and (3,4) have similar dynamics (almost synchronized in phase and amplitude) 
since they are daughters from the same mother cell (cell (2,2)), but are almost uncorrelated to cell (3,1) 
generated from a different mother cell (cell (2,1)). Sampling period is 10 s.
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a)  the fraction of time when exactly one of the toggling proteins has quantity ≥ 100
b)  the number of times the TS switches state within the simulation time period

Successive generations of GRNs were derived using a genetic algorithm: each GRN was replicated a 
number of times proportional to its fitness. After replication, each GRN was mutated by adding a small 
drift to the values of Proi and pi, resulting in a perturbation of the probability of each protein binding to 
each promoter region. The question of interest is how often the TS evolve.

Fig. 6 shows a typical run of the evolutionary system, showing the average fitness of the entire 
population of networks as well as the fitness of the best TS in each generation. From these artificial 
evolutionary studies, it may be inferred that if the environment provides some selective advantage for 
toggling between two states of the GRN, it may be expected that TS will readily evolve.

Further studies are needed to explore the range of parameters under which TSs will evolve. It is also 
important to explore the evolution of TSs that respond to appropriate environmental signals (e.g., the 
presence or absence of nutrients). More generally, the evolution of complex GRNs remains an area for 
much future work.

concluSion

The set of examples of GRNs in this chapter show the flexibility of this modeling strategy and the 
richness of the resulting dynamics. The simulations are computationally feasible, and the results match 
experimental observations at the highest level of detail. In addition, other aspects of GRNs dynamics, 
such as protein networks or microRNA, can be easily be incorporated in the model.

Figure 6. First 10 generations of a genetic algorithm. A population of 100 GRNs is evaluated for tog-
gling behavior. Each GRN consists of 20 genes. Fitness is measured by the ability to toggle between 
states in which one of two proteins has high concentration. The lower curve shows the average fitness 
of the population; the upper curve shows the fitness of the best TS in each generation.



215

Modeling Gene Regulatory Networks with Delayed Stochastic Dynamics

reSearch directionS

Among many applications possible using this framework, one can test and refine inference algorithms 
of structure and logic of GRNs. Also, specific GRNs and chemical pathways can be modeled and effects 
of external perturbations measured. Many of these applications have direct medical implications and 
could prove valuable in the near future.

With respect to GRNs inference, some studies have been conducted to assert the ability of existing 
algorithms (originally designed for RBNs (Ribeiro et al, 2006b)) to infer models built with the modeling 
strategy here describe (Charlebois et al, 2008). The results yield some concern as to the ability of any 
existing inference algorithm, due to the noise of GRN dynamics and current level of noise of gene array 
technology or similar high-throughput data.

Since data on single cells is now coming available, examination of different cells of the same cell 
type across the entire genome for stochastic differences in expression may ultimately allow actual fitting 
of chemical master equations. We stress that no known experimental techniques allow high-throughput 
inference of genes’ “transfer function”. Even with respect to inputs, ChIP-chip is noisy, specific to cell 
types, and binding of a transcription factor does not assure its functionality in regulating transcription. 
The vastly more complex problem of understanding the “logic” of gene expression, given one to several 
inputs per gene, requires modulating the combinations of concentrations of these inputs and observ-
ing the output. For 25,000 genes in the human genome this is a huge task. Thus, inference may be an 
important tool in high-throughput analysis of gene transfer functions and a handmaiden to network 
topology as well.

In general, GRNs more complex than the TS are expected to have many “noisy attractors”. Future work 
is needed to define more precisely in what sense localization of a system’s dynamics in a small region 
of its state space constitutes a noisy attractor (Ribeiro et al, 2007c). More broadly, if cell types are noisy 
attractors, as hinted by metaplasia, then differentiation is either noise-induced or signal-induced transi-
tion between attractors, or bifurcations in which old attractors may disappear and new ones appear.

A fundamental problem is the directionality of ontogeny, i.e., starting with the zygote, differentiation 
is roughly a branching tree, or acyclic graph, with occasional cross connections. It is not at all clear why 
this should be so, for there is no known potential function for GRNs that would guide flow “downhill” 
from the zygote to terminal cell types. It remains a deep issue why ontogeny in differentiation is so largely 
unidirectional. Using delayed stochastic models of GRNs, and modeling cell types as noisy attractors, 
with noise induced differentiation among attractors, it appears to be a critical topic for future research 
to ask what classes of networks exhibit this “one way” property, and attempt to relate any success on 
this front to insight into the actual structure and logic of GRNs in multi-cellular organisms with one 
way ontogenies. One hopes that using inference methods and improved high-throughput gene expres-
sion static and time series data on single cells from distinct positions in branching cell differentiation 
lineages will aid in understanding these fundamental biological facts.
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key terMS and definitionS

Gene Regulatory Network: also called a GRN or genetic regulatory network) is a collection of DNA 
segments in a cell which interact with each other (indirectly through their RNA and protein expression 
products) and with other substances in the cell, thereby governing the rates at which genes in the network 
are transcribed into mRNA.

Dynamical Behavior: Also called dynamic temporal behavior, is the trajectory of states, in a state 
space, followed by a system during a certain time interval.

Stochastic: Means “random”. In the present chapter, the term stochastic describes the system’s be-
havior, as “non-deterministic”, because of the effects of noise in the system’s dynamical behavior, that 
cannot be pre-determined.

Differentiation: Also known as “cellular differentiation”, the process by which a cell type becomes 
another cell type, usually more specialized.

Time Delay: Time interval between the occurrence of a chemical reaction, and the appearance of 
the products of that reaction in the system.

Transcription: The process of copying DNA to RNA by an enzyme called RNA polymerase 
(RNAp).

Translation: Translation is the first stage of protein biosynthesis (part of the overall process of gene 
expression). Translation is the production of proteins by decoding mRNA produced in transcription.

Evolution: Evolution is change in the inherited traits of a population of organisms from one generation 
to the next. These changes are caused by a combination of three main processes: variation, reproduction, 
and selection. Genes that are passed on to an organism’s offspring produce the inherited traits that are 
the basis of evolution. These traits vary within populations, with organisms showing heritable differ-
ences in their traits. When organisms reproduce, their offspring may have new or altered traits. These 
new traits arise in two main ways: either from mutations in genes, or from the transfer of genes between 
populations and between species. In species that reproduce sexually, new combinations of genes are also 
produced by genetic recombination, which can increase variation between organisms. Evolution occurs 
when these heritable differences become more common or rare in a population.
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introduction

A foreground question towards the understanding of the cell regulatory mechanism is that on how to 
infer the structure of the transcriptional regulatory network from experimental data.

To answer this question equates to decipher the learning machinery which enables the transcriptional 
program to adapt in time as the cell progresses through development or undergoes environmental changes. 
A current trend to trace dynamic features on the relationship between genes and their regulators is to 
analyze time-dependent microarray gene expression data obtained in pertinent conditions. The quantitative 

abStract

In this chapter, we present a method to infer the structure of the gene regulatory network that takes in 
account both the kinetic molecular interactions and the randomness of data. The dynamics of the gene 
expression level are fitted via a nonlinear stochastic differential equation (SDE) model. The drift term of 
the equation contains the transcription rate related to the architecture of the local regulatory network. 
The statistical analysis of data combines maximum likelihood principle with Akaike Information Criteria 
(AIC) through a forward selection Strategy to yield a set of specific regulators and their contribution. 
Tested with expression data concerning the cell cycle for S. Cerevisiae and embryogenesis for the D. 
melanogaster, this method provides a framework for the reverse engineering of various gene regulatory 
networks.

DOI: 10.4018/978-1-60566-685-3.ch009
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analysis of the variation of mRNA levels is expected to reverse-engineer the transcriptional regulatory 
network architecture, once this quantitative analysis is corroborated by qualitative tools to recognize 
specific promoter sequences, binding sites and transcription factors. Novel computational strategies arise 
from this perspective and a first major impact is expected in disease control.

The modeling methodology for regulatory networks has to demonstrate awareness of the quickly mov-
ing perspective in molecular biology. Recent research - only four years after the completion of the Human 
Genome Project - reveals that the human protein coding of genes resumes to a smaller set accounting for 
only 20500 (Clamp et al., 2007).

This conclusion emerges from the fully acquired - by now - observation that the majority of the 
transcriptional output of the genomes of higher organisms is noncoding RNAs (Claverie, 2005). It is 
assumed that noncoding RNAs are the key to the genetic control architecture as a very complex system 
for cis- and trans-acting RNA based regulatory network and gene-gene communication via RNA-DNA/
chromatin, RNA-RNA and RNA-protein interactions. Hence, the understanding of the regulatory network 
invokes the study of epigenomic phenomena. The protein coding gene lies in a very plastic environment 
able to learn and adapt to different conditions by means of a large panel of mechanisms. The experiment 
traceability of these mechanisms is still a work in progress; however an integrative system biology ap-
proach is sought to combine different layers of information available from

1.  the production of various types of experimental data (microarray, combined microarray (He et al., 
2006), DNA microarray (Tavazoie et al., 1999), ChIP-chip(Ren et al., 2000) ;

2.  the results obtained from processing the data with different computational approaches ;
3.  the genetic, molecular and biochemical studies.

Accordingly, the computational methods for regulatory network inference have to be built in a robust 
evolutive manner, to allow the assimilation of novel discoveries.

The method proposed in this chapter renders a framework which may adapt to different types of gene 
expression data. An automated procedure is given; it takes as input a gene expression data set and an 
ensemble of candidate regulatory genes, considered from up to date discoveries. The output provides 
the structure of the gene regulatory network, expressed as a list of potential activators and repressors 
for each gene of the input data set.

The following section shows the principal characteristics of this method in light of the actual research 
in the area of gene regulatory network inference from expression data. The first part of the main thrust of 
the paper describes the construction of the nonlinear SDE used to model the dynamics of a target gene 
expression level together with the statistical analysis and the corresponding algorithm. The second part 
shows that, applied to the expression measurements of the mRNA levels of Saccharomyces cerevisiae 
(Spellman et al., 1998), this model improves the fitting results from previous studies. We provide also the 
analysis of time dependent gene expression measurements on Drosophila melanogaster embryogenesis 
(Tomancak et.al, 2002).

Our goal is to provide tools for large scale investigation of transcriptomic data – thus we describe 
an improved method able to extract information on the cell regulatory mechanism, and potentially to 
contribute to the reverse engineering of the transcriptional regulatory network.
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background

Several quantitative methods have been proposed to describe the causal relationships between the mRNA 
expression levels of a target gene and its potential regulators. The correlation level between genes ex-
pression intensities is not, however, a criteria to identify correctly the regulators (Li et al., 2004). Based 
on promoter regions analysis, an insightful study (Lee et al, 2002) reveals the relationship between the 
target gene and regulators via a set of network motifs. These motifs suggest a regulatory mechanism 
in terms of autoregulation, multicomponent loops, feedforward loops, single-input, multi-input, and a 
regulator chain.

Inspired from electrical networks architecture, these models are meritorious – yet they do not imply 
the flexibility characterizing the transcriptional regulatory networks. The transcriptional regulatory 
network function depends on both qualitative and quantitative aspects; for example Guet at al. in 2002 
show how differences in quantitative reaction rates have drastic effects on the function of the circuits 
with identical qualitative organizational properties as connectivity and logic.

Alternative methods develop strategies aimed to fit a mathematical model, using qualitative and 
quantitative elements, with a set of putative regulators to estimate the transcription pattern of a specific 
target gene. Several types of differential equations (Vu et al. 2007; Novikov et al., 2008) and stochastic 
differential equations (Chen et al., 2005; Climescu-Haulica and Quirk, 2007) are examples of math-
ematical models with good results toward identifying the regulators and predicting their function as 
activators or repressors. The variety of such models reinforces the idea that there is no unique pattern 
of regulation: each gene or category of genes may have its own quantitative/qualitative design. Thus, it 
is noteworthy to investigate new models able to infer unknown regulatory patterns.

Three attributes characterize the mathematical model we propose in this study for the processing of time de-
pendent gene expression data to detect transcriptional regulators and to estimate their level of contribution:

1.  It is built on a probabilistic framework to embed random variations of the microarray data; a Brownian 
Motion process models the noise term, taking into account the superposition of small random factors 
that arise dynamically in time.

2.  For each target gene there is a choice for the prototype of the regulatory function between the beta 
sigmoid function - designed to keep track of the local temporal patterns of the target gene regulators 
- and the sigmoid function which is shaped around statistical parameters; this feature accommodates 
partially the variability of the regulatory pattern from one gene to another.

3.  It considers a kinetic interaction model for the decay rate accounting for the mRNA degradation; 
this leads to a nonlinear representation of the stochastic differential equation which models the 
target gene mRNA.

In this setting the stochasticity is modeled at two levels: the measurement random error of data and the 
randomness of the biological phenomena.

Although the Bayesian methods that infer regulatory networks take in account the randomness of the 
biological system, the SDE method has the advantage that it can retrieve the network feedback loops.

By comparison with the module network method (Segal et al., 2003) the stochastic method proposed 
in this chapter shares the same logic in the choice of the input candidate set of regulators yet it delivers 
a list of regulators corresponding to a single gene rather than to an entire module. This reflects better the 
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observed phenomena since the regulatory relationships are mostly specific to a regulator and its target and 
cannot be spread to an entire module.

The nonlinear SDE method may evolve quickly in order to accommodate data for different organisms 
and various experiments. It offers a scheme of work to be developed in conjunction with new insights and 
discoveries.

Sde tranScriPtional regulation Model

The idea of using SDE as a model of the temporally dynamic gene-transcription process arises naturally 
as there are at least two indications of stochasticity in the measured mRNA expression level. At the first 
sight we note already that the variation with time of the mRNA expression levels seems „chaotic“ from 
one measured gene to another. Secondly, it is acknowledged that genetically identical cells exposed to the 
same environmental conditions can show significant variation in molecular content (Kaern et al., 2005). 
This variability is linked to stochasticity in gene expression and necessitates an appropriate model.

The framework of the SDE theory is technically adapted to describe the stochastic dynamics of the 
target mRNA expression level because it accommodates stochastic processes on both, drift and noise 
terms. In our model the drift term of the SDE depends on the regulation rate of the target gene. This is 
the main part of the equation where the regulatory network relationships are represented. Precisely, the 
regulation rate is modeled as a linear combination of the regulatory functions of network elements to 
be identified. We present the results obtained using two prototypes of regulatory functions: the sigmoid 
function as given by Chen et al. in 2005 and a beta sigmoid function we proposed previously designed 
to keep track of the local temporal patterns of the target gene regulators. The noise term is modeled 
by a Brownian Motion process which accounts for the superposition of small random factors that arise 
dynamically. In our model the noise is seen as the part which is „non structurable“ in the network ar-
chitecture to be explored.

Sde rationale

Let T denote a discrete set that corresponds to the time instants of the gene expression measurements. 
Consider two stochastic processes defined for a given target gene, (Nt)tÎT and (Xt)tÎT that model, 
respectively, the variation in time of the target gene amount of mRNA and the variation in time of the 
expression level of mRNA. Let be the set of potential regulators for the target gene. Denote by gt the 
function that models the transcription rate of the target gene at time t

gt: P(R) → R + 

where P(R) is the set of all possible subsets of R and R + is the set of real positive numbers. Denote the 
real, positive mRNA degradation rate by a function of time λ(t). We assume that the mRNA degradation 
effect is modeled by the kinetic equation of a first order chemical reaction

λ(t) = λ Nt 
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The model we proposed assumes that from time t to t+Δt the transcription and degradation process 
are given by

N N

N
g N t Wt t t

t
t t t

+ -
= - +D D D( )l s  

where (Wt)t ÎT is a Brownian Motion stochastic process restricted to the discrete index set T. This pro-
cess models the random error and σ is a positive scaling parameter. At the infinitesimal time intervals, 
when Δt → 0 the above equation becomes a stochastic differential equation

dN

N
g N dt dWt

t
t t t

= - +( )l s  

The stochastic differential equations are very different from the ordinary differential equations. 
Firstly, because the Brownian Motion process which drives a SDE is not differentiable in the usual 
sense. It requires its own rules of calculus which forms the object of the theory of stochastic calculus 
(see for example the book of Karatzas et Shreve, 1991.) In a second place, the solution of a SDE is a 
stochastic process. This fact happens to be appropriate to many real applications where time varying 
data show random variations. In particular, a Brownian Motion stochastic process (Wt)t is a good model 
of the random noise as it can be seen from its characterizing properties:

1.  W0=0;
2.  Almost all the paths of the stochastic process (Wt)t are continuous;
3.  For each 0 ≤ s < t < u < v, the increments Wt-Ws and Wv-Wu are independent;

each increment Wt-Ws is distributed as N(0,t-s).

Since Nt is proportional with the signal intensity St, and Xt = log(St - B) – where B is the background 
intensity – assume without loss of generality that

Xt = log(Nt) . 

Thus, the Itô chain rule of the stochastic calculus applies (Karatzas et Shreve, 1991) and the SDE 
obtained for Xt yields

dX g X dt dW
t t t t
= - - +( exp )l

s
s

2

2
        (1)

This is a nonlinear SDE for which the drift terms takes in account the temporal contribution of the 
kinetic interactions on the mRNA degradation.

local regulatory network

In the above equation the informative part about the network structure is contained in the drift term, 
given by gt, the function modeling the transcription rate. Consider an increasing sequence of temporal 
values
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T = {t0 <t1 <...<tn} 

Let m be the cardinality of the set R and let Xt
i be the mRNA expression level of the i-th regulator 

from the set R, measured at time t from T. Denote

X X X X
i

t
i

t
i

t
i

n
= ( , ,..., )
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In the neighborhood of the target gene the regulatory network is represented locally as a superposi-
tion of regulatory elements. The causal relationship between the target gene and its regulators, depicted 
in figure 1, is modeled as an indirect learning relationship. This local network relationship is expressed 
by the transcription rate function, built from the observable information, i.e. the regulators mRNA ex-
pression levels, as:

g c c F X t
t i i

i

i

m

= +
=
å0

1

( , )         (2)

where Fi denotes the regulatory functions of the potential regulators from R. The constants c0, c1,...,cm 
are the learning parameters of the network. They modulate the network behavior and carry informa-
tion in both their magnitude and sign about the local regulatory process: positive values correspond to 
regulators with activation, and negative values correspond to repression.

The learning in the local network is driven by the nonlinear SDE

dX c c F X X dt dW
t i i t
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t

i

n

t
= + -

é

ë
ê
ê

ù

û
ú
ú +

=
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1
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where c c
0 0

2 2= -s / .

Figure 1. The picture of the regulatory network architecture in the neighborhood of the target gene
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Sigmoid and beta Sigmoid Patterns of regulation

The regulatory function is central to the model and fits the quantitative pattern with a specific regulator 
that acts on the mRNA expression of the target gene.

Our work investigates two prototypes of the regulatory function. We analyze on the nonlinear SDE 
framework the prototype of regulatory function introduced by Chen et al. in 2005, defined by

h
m s

( , )
( )/

X t
e

i

Xt
i

i i

=
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1

1
        (4)

where μi and σi are the mean and deviation of Xi as well as the prototype of the regulatory function we 
proposed previously, based on the beta sigmoid function expressed by
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In this expression x i
max  represents the maximal value corresponding to mRNA expression levels of 

the potential regulator i

x X t Ti
t
i
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max |= Î{ }  

t
m
i  is the first time when the maximum is attaint 
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m
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t
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and ts
i  corresponds to the time for which the increase of the mRNA expression levels become maxi-

male
The sigmoid and the betasigmoid functions are very different in shape and meaning. The sigmoid 

function uses only statistical parameters, taking in account the average behavior of the regulator gene. 
The beta sigmoid function keeps track of the temporal characteristics of the regulator gene. The param-
eter ts

i  corresponds to the point where the regulator expression level begins to increase. The maximal 
contribution of the regulator i is induced in the target gene at time tm

i , when the mRNA expression level 
of the regulator attends its maximum, corresponding to the biological hypotheses.

Figure 2 shows an example of beta sigmoid function shape. The beta sigmoid function degenerates 
after time 2t

m
i -ts

i  and becomes non-informative. For this the effective expression of the regulatory 
function is given by

F X t I X t X t I X t X t
i
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X t
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where IA is the indicator function of the set A (IA(x) = 1 if x ÎA and IA(x) = 0 if xÏA).
In was shown previously (Climescu-Haulica and Quirk, 2007) that this model of the regulatory func-

tion improves the fitting results obtained with the sigmoid function for almost 30% of the considered 
gene set. Therefore, the idea that there is no unique regulatory pattern of regulation directs us to consider 
both models.

StatiStical analySiS

For a given target gene, the aim of the statistical analysis is to extract from the time course mRNA 
levels

1.  the set of m regulators (model selection);
2.  their corresponding parameters σ and the set {λ, c0, c1,...,cm,} of parameters estimation;

where the best fit with respect to the nonlinear SDE is expressed in equation 3. The sigmoid and beta 
sigmoid as regulatory functions add supplementary parameters (μi , σi,ts

i , t
m
i  and x i

max ) to the model. 
These parameters are estimated from the corresponding time course mRNA levels according to their 
definitions and employed in the computation of the estimators of σ, λ and c:

The statistical procedure followed in this study is derived from the maximum likelihood principle 
(Casella and Berger, 2001) in combination with the Akaike Information Criterion (Akaike, 1974).

The regulators are considered as predictors in statistical sense, and the target gene is regarded as a 
response variable. The statistical approach is to fit the nonlinear model using a set of regulatory functions 
of regulators as the inputs to estimate the dynamic transcription rate of a target gene as the output. It also 
estimates the contribution and regulatory abilities of selected regulators. Equation (3) is considered in 
discrete form for each time interval [tj, tj+1], j = {1, 2,...,n} that corresponds to time measurements:

Figure 2. Example of shape for the beta sigmoid function
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where the basic properties of Brownian Motion are considered in the expression of Z W t
t t
= D D/

:the increments DW
t
 are pairwise independent and each increment is normally distributed, with zero 

mean and standard deviation given by N t( , ).0 D  Hence, (Z
tj

)j form a family of i.i.d. random variables 
N(0,1) distributed.

Thereafter, for a specific target gene regulated by n regulators, m samples are collected at time t = 
t1, t2,...,tm, we have
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for j = 1, 2,...,m – 1. Let

Y
X X

t t
j

t t

j j

j j=
-( )
-

+

+

1

1
        (8)

U t t t t f X t t f X X
j j j j j t j j n nt tj j j
= - - -ê

ëê
ú
û+ + +1 1 1 1 1

, ( ),..., ( ), exp úú  

C c c c
n

T
= -é

ëê
ù
ûú0 1

, , ..., , l  

then

Y

Y

Y

U

U

U
m m

1

2

1

1

2

1

... ...

- -

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

=

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
úú

+

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

-

C

Z

Z

Y

t

t

tm

s

1

2

1

...
 

For simplicity, the above model is written in the matrix notation as  Y UC Z= + s where Y, Z are 
(m – 1) x 1 vectors and U is a (m – 1) x (n+2) matrix. Moreover, U is the observed input, and Y is the 
observed output; C and σ are the parameters to be estimated.
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Maximum likelihood Principle as Statistical estimation Method

We employ the Maximum Likelihood principle as method to estimate these parameters. Our sample is 
given by y=(y1,y2,…ym-1).The likelihood function L associated with this sample is defined as the probability 
that the random vector Y takes the value (y1,y2,…ym-1), i.e L P Y y Y y Y y

m m
= = = =- -( , ,..., ).

1 1 2 2 1 1

Because Y depends on the parameters C and σ, the likelihood L is a function on the set of all possible 
values these parameters may take. The Maximum Likelihood principles states that the “most likely” 
values for the parameters C and σ are the values which maximize the likelihood function. Therefore the 
Maximum Likelihood estimators for C and σ are defined as

( ˆ, ˆ) arg max ( , ).
,

C L C
C

s s
s

=  

In many practical situations the log-likelihood function is preferred because it preserves the maximum 
and its computation is less complex. In our case, since (Ztj

)j are i.i.d. random variables with standard 
normal distribution, the log-likelihood function of Y comes from the formula
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and is obtained from a standard computation for normal random variables as

log log( )L
m

y UC y UC
T

= -
-

- -( ) -( )1
2

2
1

2
2

2
ps

s
 

Since the second-order partial derivative is negative,
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the MLE estimators for the parameters C and σ are obtained from the system formed by the two equa-
tions ( / ) log | ˆ, ˆ
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By the functional invariance property of ML estimators ŝ and Ĉ , the estimated log-likelihood func-
tion is given by the formula
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log ˆ log ( ,̂ ˆ),L L C= s  

and becomes, by replacing the expressions from the relation (9) and (10)
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Note that the ML statistical procedure estimates the degradation parameter λ contained in the last 
term of the vector C.

a Model Selection Procedure from akaike information criterion

For the computation of the ML estimators we assumed the presence in our model of a number of m 
regulators which contribute to the m-1 dimensional random vector Y. How to decide how many regula-
tors to take in consideration for each target gene and which ones is not a trivial problem. This type of 
question is addressed by mathematical techniques of model selection. We consider a procedure of the 
model selection based on Akaike Information Criterion (AIC). This criterion states that between 
any two combinations of regulators, the best combination is such that the AIC of the regulators has the 
smallest value. The formula proposed in 1974 by Akaike for this criterion is expressed as

AIC L m= - + +2 2 1log ˆ ( )        (12)

where log L̂  is the estimator of logL computed previously and m+1 is the number of independent pa-
rameters used for the computation of the ML estimators ŝ and Ĉ  (the number of regulators and the 
time). The considerations which leaded to the AIC is related with the fact that the ML estimators are 
asymptotically efficient. For a not too large sample the reflex is to minimize the Kullback-Leibler distance 
between the probability density function of the sample and the parametric family of density functions 
considered for the computation of the ML estimators. Using statistical arguments and simplifications 
on the computation of this distance, Akaike proposed formula (12) to minimization criterion.

This tool provides a good fit of the dataset and is largely used as it offers quality results for a com-
putation not costly in complexity.

computational algorithm

The objective of the computational work is to select a set of possible regulators to estimate the dynamic 
expression level of a target gene. Let H denote the set formed by a candidate pool of regulators of the 
target gene; denote by |H| the cardinality of H. Ideally, ML and AIC procedures shall be performed on 
each combination of regulators from H. Since the number of all possible combinations of regulators is2

H , 
an enumeration algorithm for those sets will explode quickly. The heuristic procedure used is the forward 
selection strategy (Weisberg, 1985, chapter 8). At first the regulator with the biggest log-likelihood with 
respect to the target gene is selected. A new regulator is added if it will increase the AIC more than any 
other single regulator outside the current combination. The actual implementation stops for a combina-
tion of maximum 10 regulators. A preprocessing step is needed in order to fulfill the eventual missing 
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data. Our estimation of missing value uses the interpolation of the adjacent time-point observations. If 
the missing value is at the first or the last time point, an extrapolated estimate is applied.

A as a validation step, we applied a least square approach to post-process the results. The winning 
combination of regulators renders large log likelihood, small AIC and small square errors between the 
expression value of the target gene and its estimated value. The main steps of the complete algorithm are 
the following

•  Step 1. If the dataset is incomplete apply a missing data method (interpolation/extrapolation).
•  Step 2. Estimate the statistical and temporal parameters corresponding to the sigmoid and beta sig-

moid functions for all genes in the candidate pool and calculate the regulatory functions according 
to equations (4) and (6).

For a given gene in the data set perform the following:

•  Step 3. Calculate the response Y by equation (8)
•  Step 4. For each gene in the candidate pool of regulators estimate the vector of parameters C and 

sigma corresponding to the model given by equation (7), using relations (10) and (11).
•  Step 5. Initiate the forward selection procedure: choose a single predictor (regulator) that has the 

biggest log-likelihood with the response (target gene).
• Step 6. Add an additional predictor from the candidate pool of regulators if it meets the following 

criteria:
it decreases the  ◦ AIC more than any other single regulator or has the largest log-likelihood of 
any of the regulators that are not already in the model.
the number of regulators in model is smaller than a certain predetermined number, set to 10 in  ◦
our implementation.

•  Step 7. Compute the quadratic error with respect to the expression level of the target gene of its es-
timated value from the parameters computed in AIC forward selection procedure (steps 5 and 6).

Figure 3. Comparative plot between the observed and the predicted values of mRNA expression levels 
of gene YALO31C, YBR047W, YBR137W. Examples of good estimation of the expression profile with 
the sigmoid pattern of regulation.
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The performance of this algorithm is expressed by an order of magnitude equal to O(nm2) for the case 
of the beta sigmoid function and O(n2m2) for the case of the sigmoid as regulatory function. Since for 
actual experimental data the number of time courses n is quite small the difference in the performance 
of the two algorithms comes from the fact that the search of the maximum is less costly than the com-
putation of the statistical parameters for a data set.

Therefore, overall the algorithm is not very expensive; yet as with most optimization procedures, 
stepwise variable selection is a locally optimal procedure, and it may get stuck in a local maximum/
minimum solution (Li and Nyholt, 2001).

reSultS 

yeast cell cycle Microarray data

We evaluated our method on a well studied data set containing gene expression measurements of the 
mRNA levels of 6178 S. cerevisiae ORFs at 18 time points under the α factor synchronization method 
from Spelmann et al., 1998. We used a candidate pool of regulators containing 216 potential regulator 
from http://www.csie.ntu.edu.tw/~b89x035/yeast, constructed by joining transcription factors, cell-cycle 
control factors and DNA-binding transcriptional regulators described in the literature (Spellman et al., 
1998; Harbison et al., 2004; Chen et al., 2004). This set has been created with respect to the regulation of 
the cell cycle process. We analyzed the entire data set even if only about 800 genes have been identified 
to be involved in the cell cycle of the budding yeast (Spellman et al., 1998). There is no methodological 
artifact since the target genes are processed independently. The benefit is that good prediction results 
may lead to new hypotheses on the regulators of a particular gene. The output of our analysis is bipartite. 
For each gene we provide

1.  the parameters of the goodness of fit: log likelihood (log L), AIC and quadratic error (QE) of the 
predicted mRNA levels with respect to the observed values;

Figure 4. Comparative plot between the observed and the predicted values of mRNA expression levels 
of gene YDRO84C, YPL143W, YPR204W. Examples of good estimation of the expression profile using 
beta sigmoid pattern of regulation.
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2.  the corresponding regulators with their regulatory effect expressed by the local network weights; 
positive weights correspond to activator genes and negative weights correspond to repressor 
genes.

Table 1 shows an example of well fitted genes and their parameters. A linear SDE model has been 
analyzed for this data set by Chen et al. (2005) for a sigmoid regulatory function and by Climescu-
Haulica and Quirk (2007) for a beta sigmoid function. When applied with a sigmoid regulatory function 
the nonlinear SDE provides better results for 43% of genes compared with the results from Chen et al., 
2005. The nonlinear SDE with beta sigmoid function provides an improvement for 32% of genes com-
pared with the results obtained from the linear model. Overall, we note that the number of well fitted 
genes (QE < 0.5) increased to 2365.

Figure 3 shows several examples of dynamical transcriptional patterns fitted with the nonlinear SDE 
method and Table 1 shows the corresponding parameters of fit.

d. Melanogaster embryogenesis data

The second data set analyzed has been collected from Berkeley Drosophila Genome Project (BDGP) 
gene expression database (Tamancak et al., 2002) providing gene expression measurements of the mRNA 
levels of 3418 D. melanogaster ORFs at 12 time points using Affymetrix Gene Chip technology.

In order to choose the list of potential regulators we conduct the analysis in three groups as selected 
by Hooper et al., 2007:

1)  maternal: genes encoding transcripts that start with a high relative transcript level, which subse-
quently decreases,

2)  transient: genes whose transcripts levels first increase and later decrease, and
3)  activated: genes encoding transcripts in expression increase only.

For each gene we provide the parameters of the goodness of fit: log likelihood (log L), AIC and 
quadratic error of the predicted mRNA levels with respect to the observed values (QE) the correspond-
ing regulators with their regulatory effect expressed by the local network weights; positive weights 
correspond to activator genes and negative weights correspond to repressor genes.

Table 1. Fitting parameters for the gene expression levels represented in the figures 3 and 4

  Gene name L AIC QE   Fitting

  YAL031C(FUN21) 
  FKH2 + 
  YBR047W(FMP23) 
  HAL9 
  YBR137W(NA) 
  YDR084C(TVP23) 
  GAL4 + 
  YPL143W(RPL33A) 
  FKH1 + 
  YPR204W(NA)

17.85 
22.76 
23.11 
18.66 
26.89 
23.09

-21.71 
-33.52 
-38.21 
-25.32 
-43.78 
-32.19

0.08 
0.04 
0.07 
0.09 
0.04 
0.03

YAL031C = -0.50836 + 0.50288 GAL4 + 0.33767 ASK10 + 0.46422 
-0.20479 CRZ1 + 0.17505 DAL80 + 0.10282 HAP5 
YBR047W = -0.05932 + -0.25765 HAC1 + 0.09219 HSF1 + 0.10295 + 
0.1377 GAL80 + 0.0687 FZF1 
YBR137W = 0.06551 + 0.04099 IFH1 + -0.18184 GAT3 + -0.23632 CBF1 
YDR084C = 0.01794 + -0.06102 FAP7 + 0.22194 KSS1 + -0.15343 -0.14782 
GCR2 + 0.09741 HIR3 
YPL143W = 0.01552 + -0.04946 FAP7 + 0.18784 ABF1 + -0.08233 -0.08542 
DAT1 
YPR204W = -0.09977 + 0.12587 IFH1 + 0.31689 CHA4 + -0.22244 DAT1 + 
0.22862 HAP2 + -0.08835 DAL82 + -0.14318 IXR1
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In particular, the D. melanogaster dataset contains a large subset of genes with almost flat expression 
profile. This fact makes the prediction of regulators more difficult, as the forward selection strategy 
could easily produce non optimal results. We tried to overcome this effect by comparing the prediction 
output for the sigmoid and betasigmoid models, and counting as good results the genes for which the 
expression level were well fitted by one and poorly fitted by the other.

For this data set we obtain a good fit (QE < 0.5) for 1534 genes from which 992 from a betasigmoid 
regulatory function setting. Among these genes 21 have a perfect fit (QE=0). They are listed in Table 2 
which provides the fitting parameters and the regulators with their contribution.

This result is not surprising: because the expression level for the D. melanogaster do not vary too 
much in time the difficulty is not to obtain a very good fit but to insure that the pool of genes chosen as 
regulators is appropriate. This kind of validation could be done only by promoter analysis tools, binding 
sites, transcription factor analysis.

Figure 5. Examples of good estimation of the expression profile with the nonlinear SDE method for 
Berkeley Drosophila Genome Project gene expression database. The shape of the expression profile 
almost flat makes the decision about the right regulators more difficult.
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diScuSSion

Gene-expression profile data is a pioneering work in network interactions and employs a variety of 
clustering methods in an attempt to group genes with similar patterns (Eisen at al., 1998; Tavazoie et 
al., 1999). Another widely-used application organized co-expressed genes by promoter sequence motif 
(Bussermaker et al., 2001). In recent years a variety of quantitative methods in processing expressed 
cell cycle yeast data have been explored: fuzzy logic approach (Woolf and Wang, 2001), the smooth 
surface response (SRS) algorithm (Xu et al., 2002), Bayesian inference (Li et al, 2007)), the module 
networks (Segal et al., 2003), etc. The fuzzy logic approach and SRS algorithm proposed the creation 
of a connected network and the building of a model to find triplets of activators, repressors and target 
genes. Such algorithms construct quite well parts of gene regulatory machinery in yeast cell cycle. The 
method presented here addresses this question from a stochastic and dynamic system point of view. It 
provides a novel study in characterizing the time series expression level based on SDE theory and kinetic 
interactions, as well as identifying possible regulators by proper statistical approach. This framework 
not only provides the regulatory relationship between regulators and target genes, but also quantifies the 
regulatory abilities to the specific target genes. It concerns a method of multi-regulators, but not a triplet 
model of activator, repressor and target gene. The model takes in account each individual gene which 

Table 2. Examples of D. melanogaster genes with perfect mean square estimation of the expression 
profile from the nonlinear SDE model 

    Gene name    L     AIC    QE        Fitting

  CG10031(NA) 
  CG10185(NA) 
  CG10396(NA) 
  CG10505(NA) 
  CG11018(NA) 
  CG11037(NA) 
  CG11286(NA) 
  CG11459(NA) 
  CG11821(NA) 
  CG11928(NA) 
  CG12069(NA) 
  CG12309(NA) 
  CG12334(NA) 
  CG12347(NA) 
  CG12490(NA) 
  CG12520(NA) 
  CG12612(NA) 
  CG10031(NA) 
  CG10031(NA) 
  CG10185(NA) 
  CG10031(NA)

24.69 
28.73 
28.63 
29.36 
24.47 
28.98 
23.83 
24.33 
26.88 
31.83 
26.98 
26.9 
24.59 
29.04 
24.97 
23.03 
24.74 
24.69 
24.69 
28.73 
24.69

  -43.39 
  -49.46 
  -51.27 
  -54.71 
-42.94 
  -51.96 
  -39.66 
  -40.65 
  -47.76 
  -55.67 
  -47.96 
  -45.81 
  -43.17 
  -50.08 
  -43.95 
  -38.07 
  -41.49 
  -43.39 
  -43.39 
  -49.46 
  -43.39

   0 
   0 
   0 
   0 
   0 
   0 
   0 
   0 
   0 
   0 
   0 
   0 
   0 
   0 
   0 
   0 
   0 
   0 
   0 
   0 
   0

   CG10031 = 0.01071 + -0.05138 CG11315 + 0.03121 CG10760 
   CG10185 = 0.00734 + -0.03509 CG11315 + 0.02993 CG10206 + -0.01421 
CG10089 
   CG10396 = -0.01438 + 0.04899 CG10419 + -0.02089 CG11574 
   CG10505 = 0.01056 + -0.02189 CG10625 
   CG11018 = -0.05324 + 0.06787 CG12175 + 0.03717 CG11317 
   CG11037 = 0.02815 + -0.03372 CG11091 + -0.02139 CG12591 
   CG11286 = 0.07998 + -0.07137 CG1176 + -0.06674 CG10194 + -0.03149 
CG11569 
   CG11459 = 0.05677 + -0.06126 CG10426 + -0.03718 CG10205 + -0.02012 
CG10431 
   CG11821 = 0.00204 + -0.03304 CG10202 + 0.02679 CG11570 
   CG11928 = -0.02328 + 0.03445 CG10431 + 0.03601 CG10006 + -0.01967 
CG10627 
   CG12069 = 0.01385 + -0.05704 CG10202 + 0.02819 CG10759 
   CG12309 = 0.00734 + 0.05874 CG1158 + -0.0549 CG10623 + -0.01861 
CG10425 
   CG12334 = 0.04106 + -0.04679 CG12593 + -0.03751 CG12173 
   CG12347 = -0.02877 + 0.03129 CG11091 + 0.03795 CG10761 + -0.01388 
CG11099 
   CG12490 = -0.01137 + 0.08886 CG12593 + -0.068 CG10205 
   CG12520 = -0.01036 + 0.0398 CG10011 + -0.043 CG12589 + 0.02219 
CG11320 
   CG12612 = 0.05958 + -0.02909 CG10426 + -0.05538 CG1176 + -0.0365 
CG10428 
   CG10031 = 0.01071 + -0.05138 CG11315 + 0.03121 CG10760 
   CG10031 = 0.01071 + -0.05138 CG11315 + 0.03121 CG10760 
   CG10185 = 0.00734 + -0.03509 CG11315 + 0.02993 CG10206 + -0.01421 
CG10089 
   CG10031 = 0.01071 + -0.05138 CG11315 + 0.03121 CG10760
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better reflects the reality when compared with module network method (Segal et al., 2002) for which 
the same regulators are inferred for a bunch of genes. Moreover, the SDE model may find the eventual 
loops of the network, fact which is unaffordable for Bayesian methods, for example.

The regulation of gene expression in eukaryotes is a complex phenomenon and various particulari-
ties from one type of gene to another may occur. Hence the regulatory pattern can vary from gene to 
gene (Pilpel et al., 2001). This fact is revealed in our result which shows that there are genes for which 
we can choose the best model between the beta sigmoid and the sigmoid pattern while for other genes 
neither of them fits the data. Before reaching this conclusion one has to be aware about the limitation 
induced from the selection of the set of potential regulators since incomplete information at this level 
may deteriorate the results.

Computationally, the nonlinear SDE method has several advantages over other implementations. The 
fitted curves adequately depict differently shaped expression patterns while keeping the model parameters 
as few as possible. Applying more advanced results of SDEs theory, the algorithm can be implemented 
in more complex dynamic biological systems.

This method may be improved with respect to several aspects. First, here we were not concerned 
about interactions between regulators in the model of combinational regulatory functions; the real-world 
regulatory mechanism is more complicated than as assumed in the model. Second, the AIC forward 
selection might not be good enough for model selection. A better optimization procedure as the Cross 
Entropy method (Rubinstein et. al, 2004) could be applied later. In particular, the model selection is 
critical for a dataset which contains a large subset of gene expression with a flat profile. Third, if there 
are true regulators that have not been identified in literature, they are not included in the candidate pool. 
As a result, they would never be identified as regulators by the algorithm. The method may benefit from 
further discoveries related with the search for the transcription factor binding sites - pieces of DNA that 
serve as molecular switches to turn genes on and off – which lately made considerable progress (Shult-
zaberger et al., 2007 ; Segal et al., 2008).

On the other hand, our model could be used to extend methods on the identification of transcription 
factor cooperativity (Chang et al., 2006). These methods focus on finding transcription factor pairs 
while the nonlinear SDE model may reveal combination of transcription factors. The literature show 
that several methods on the transcription factor analysis applied on the Spellman data for the yeast cell 

Table 3. Examples of S. cerevisiae regulatory network obtained from transcription factor analysis ex-
tracted from literature. The nonlinear SDE method could improve this type of results by determining the 
nature (activator/repressor) of the transcription factors. 

Target gene Regulators via transcription factor mechanism Literature evidences

Swi4 Swi6, Fkh2, Ndd1, Stb1, Ste12 Tsai et al. (2005); Chang et al. (2006)

Swi6 Mbp1, Fkh2, Fkh1, Swi4, Stb1 Tsai et al. (2005); Chang et al. (2006); Ho et al. (1999)

Yap5 Msn4, Hap4, Rap1, Dat1, Hap1, Rgm1, Swi5, 
Gat3

Tsai et al. (2005); Chang et al. (2006); Manke et al. (2003)

Gat3 Yap5, Pdr1, Hap4, Rap1, Rgm1 Manke et al. (2003); Tsai et al. (2005); Chang et al. (2006);

Msn4 Yap5, Pdr1, Hap1, Dat1 Tsai et al. (2005); Chang et al. (2006)

Fkh1 Fkh2, Swi6, Mbp1, Mcm1 Tsai et al. (2005); Chang et al. (2006); Kumar et al. (2000)

Pdr1 Rgm1, Gat3, Msn4, Hap4, Snp1 Manke et al. (2003); Tsai et al. (2005); Chang et al. (2006)
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cycle revealed a structure for the regulatory network of S. cerevisiae. We present in Table 3 an example 
of transcription factor cooperativity for a representative set of genes.

Overall, the results indicate that the nonlinear SDE model can capture the profile of the transcriptional 
regulatory throughput quite accurately. It constitutes a tool to generate hypotheses about the regulatory 
network structure and to be used in conjunction with qualitative bioinformatics tools.

concluSion

The mathematical methodologies applied to computational biology evolve from discrete combinatorial 
approaches to continuous dynamical tools. This type of models follows the production of temporal gene 
expression data available and allows the integration of a larger number and categories of parameters. 
Simultaneously, more realistic models are obtained by considering the stochasticity of the molecular 
phenomena (Chen et al., 2005; Climescu-Haulica and Quirk, 2007).

The method described here keeps track of the temporal variation of the mRNA degradation rate from 
kinetic interactions and uses a nonlinear stochastic differential equation model to reverse engineer gene 
regulatory networks from time series data. We show that this model improves the prediction of target 
gene expression profiles of S. cerevisiae in comparison with the linear stochastic differential equation 
model with a sigmoid (Chen et al., 2005) and a betasigmoid regulatory pattern (Climescu-Haulica and 
Quirk, 2007). Applied on D. Melanogaster data base (Tomancak et al., 2002) the method generates 
hypotheses about regulatory relationships between genes during embryogenesis. This study shows that 
the nonlinear SDE framework constitutes a reliable tool for the analysis of the transcriptional regulatory 
networks, when completed with a validation of the identified regulators by a promoter analysis. The 
SDE framework has the advantage of plasticity: it may adapt to different types of data or experimental 
conditions when corresponding transcription rate, regulatory functions or noise models are found. Used 
in the form presented here or extended to more complex settings, this method may have a drastic impact 
for the consolidation of the knowledge about the gene regulatory networks.

future reSearch directionS

The method described here is included in the „divide and impera“ logic which is the usual way of address-
ing the transcriptional regulatory network structure: the local connections - i.e., the strict neighborhood 
of one target gene - are inferred and the network is re-composed from fixing together all of the pieces. 
The information obtained in this way if still useful although not sufficient. This type of approach may 
lead to the loss of more subtle transcription/ regulation connections and communication patterns. For 
this reason future research directions may consider both, local and ``global’’ transcriptional regulatory 
networks model settings. The local approach cannot be ignored as being a premise for the development 
of a ``global’’ networking view. Some local directions of research emerging from the stochastic differ-
ential equation method as well as a global model are suggested in the following.
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local level Study: Stochastic differential equation Method to Model 
transcriptional regulatory network from Space-time gene expression data

Modern technologies allow obtaining images as gene expressions input data. For example, the detailed 
spatio-temporal pattern of expression of the gene are obtained by staining the mRNA of a gene via in 
situ hybridization (ISH) during the development of a D. melanogaster embryo (Tomancak et al., 2002). 
Automated computational approaches have been developed for the analysis of this type of data (Peng et 
all, 2007). Based on clustering methods these algorithms infer transcription factor binding site motifs 
for genes that appear to be co-regulated and automatically identify the anatomical regions that express 
a gene given a training set of annotations.

The SDE framework could be generalized to process this type of information and to infer transcrip-
tional regulatory network from image input data. In the SDE equation a spatial Brownian Motion may 
be used as noise model and consequently a wavelets spectral representation technique allows the reuse 
of the temporal algorithms presented here.

local level Study: Stochastic differential equation framework 
to investigate the transcriptional regulatory network 
behavior under different environmental conditions

A big question of the epigenomics is how to infer information about the gene-environment interactions. 
This type of investigation brings an event driven dynamic perspective on modeling transcriptional regula-
tory networks with big impact in clinical research. The SDE model has the flexibility to switch between 
different types of regulatory functions in order to accommodate the fitting of gene expression obtained 
in different experimental conditions. For the case of S. cerevisiae some examples of experimental condi-
tions allowing an event driven dynamic investigation are: sporulation, diauxic shift, heat and cold shock, 
treatment with DTT, Pheromone, and DNA-damaging agents. The objective is to analyze the dynamical 
changes of the network when the organism is exposed to environmental conditions, both internal and 
external. For the SDE method this request translates into finding the prototype of regulatory function 
which model best the temporal expression data for each particular condition.

From there the estimation of the level and the nature (activator/repressor) of contribution for each 
transcriptional regulator corresponding to a given environmental condition will follow.

global level Study: transcription clusters gene - gene interactions

The big picture of the transcriptional regulatory network cannot ignore the existence of epigenetic 
events which seems to be directed by trans-acting factors and cis-regulatory sequences in the vicin-
ity of the genes (Costa, 2003). The concept of “gene” seen as a “transcription cluster” in eukaryotes 
(Mattick, 2002) accommodates conceptually a global level network model based on “gene” - “gene” 
relationships mediated by intronic and exonic ncRNAs. In particular, this model might interrelate with 
genes signaling at the epigenetic level. It is this type of networking concept that constitutes an expected 
place for a system biology view, integrating results from various type of studies: genetic, molecular, 
biochemical, bioinformatics, etc. An interesting tool to model such type of realistic problems including 
heterogeneous time varying data is given by the fuzzy differential equations (Masoud et al., 2004). The 
nonlinear SDE method could be adapted towards a fuzzy stochastic differential equation to keep track 
of the system randomness.
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key terMS and definitionS

Stochastic Calculus: The framework which permits to define rigorous theory of integration for 
stochastic processes.

Transcription Rate: The variation in time of the mRNA production for a given gene.
Regulation Function: The quantitative time dependent form on which the regulators interfere on 

the mRNA target gene production.
Local Regulatory Network: The set of regulators corresponding to a single target gene.
Model Selection: The procedure from which a statistical model is selected from a set of potential 

models, given the data; usually that corresponds to the choice of a set of parameters.
Learning Relationship: Plastically link between two entities (in our case genes); it adapts during 

the time with respect to various stimulus.
Goodness of Fit: The measure for how well a statistical model fits a set of observations.
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introduction

Biological processes and systems can be abstracted as multi-layered networks interacting with each 
other to create a complete biological system. Understanding the interactions of genes plays a vital role 
in the analysis of complex biological systems. The system level view of gene functions provided by 
gene regulatory networks (GRNs) is of tremendous importance in uncovering the underlying biological 
process of living organisms, providing new ideas for treating complex diseases, and for designing of 
new drugs. This chapter presents computational intelligence applications generally to bioinformatics 
problems and specifically to model networks of genetic regulation or gene regulatory networks (de Jong, 
2002) (Someren et al, 2002) (Brazhnik et al, 2002) using gene expression data.

abStract

This chapter presents modelling gene regulatory networks (GRNs) using probabilistic causal model 
and the guided genetic algorithm. The problem of modelling is explained from both a biological and 
computational perspective. Further, a comprehensive methodology for developing a GRN model is pre-
sented where the application of computation intelligence (CI) techniques can be seen to be significantly 
important in each phase of modelling. An illustrative example of the causal model for GRN modelling 
is also included and applied to model the yeast cell cycle dataset. The results obtained are compared 
for providing biological relevance to the findings which thereby underpins the CI based modelling 
techniques.
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Living beings are endowed with highly complex information storage and processing systems that are 
regulated in many different ways. The control of the body is carried out by large networks of regulatory 
genes, otherwise known as Gene Regulatory Networks (GRN). GRNs are collections of gene-gene regu-
latory relations in a genome that display relationships between gene activities. Increases in complexity 
of organisms do not bring an increase in the number of genes in the genome. For example, humans are 
believed to have about 20,000-25,000 genes (considerably lower than the original estimate), which is 
not dissimilar to the gene content for less complex organisms, such as the worm Caenorhabditis elegans, 
while a simple organism such as Drosophila melanogaster, also known as the fruit fly has about 14,000 
genes. Therefore, the complexity may be due to a phenomena such as regulation of expression of genes 
in both temporal and spatial manners. A prerequisite for cellular behaviour is that the correct genes are 
expressed in the correct cell over correct time intervals and at correct expression levels. Regulatory net-
works specify how this gene expression or cellular behaviour is controlled. Over the past two decades, 
advances in molecular biology, DNA sequencing, and other high-throughput methods have resulted in a 
vast amount of bioinformatics data as shown in Fig1, including pathway information such as metabolic 
and regulatory pathways for various organisms. The rapid increase of this data for various organisms 
offers the possibility to perform analyses for single organisms (intra-species) as well as across different 
organisms (inter-species). However, the sheer quantity of data generated has exceeded the capacity of 
a researcher to extract useful information using traditional data analysis techniques. Since the high-
throughput data acquisition technology for gene expression measurement known as biological Microarray 
technology emerged in the late 1990s, application of data mining, machine learning, and computational 
intelligence techniques to microarray data analysis has drawn attention of the bioinformatics community. 
Along with this, a significant amount of attention has been focused on modelling genetic regulatory 
networks from gene expression data. Microarrays allow the monitoring of expression levels of thousands 
of genes simultaneously and the data provide the basis to discover gene regulation networks, life evolu-
tion, and other important bio-problems. However, gene expression microarray data is characterized as 
massive, heterogeneous (with high dimensions), net character in nature, irregular sampling rate, having 
measurement errors (leading to noisy data) Hence, its analysis is beyond the ability of traditional analysis 
methods and decision supporting technologies. Due to the nature of data, previous deterministic models 
are not able to capture the time-varying dependencies between the different genes in the gene regulatory 
network. Researchers dealing with gene microarray data are faced with daunting quantities of data in 
which lies important hidden information, including transcription factor activity profiles.

There are two main objectives for modelling genetic regulatory networks (GRNs). The first is to be 
able to infer the regulatory network from data, in order to be able to understand the mechanisms behind 
them. The second is to be able to use the inferred networks in order to be able to predict the behaviour 
of actual networks for the purpose of diagnosing diseases and the development of drug targets and 
treatments. Needless to say, the system level view provided by gene networks of gene functions is of 
tremendous importance in uncovering the underlying biological process of living organisms, providing 
new ideas for treating complex diseases, and the design of new drugs. Inevitably, its research has become 
important in the recent times and the extensive research on this topic is timely.

Computational Intelligence (CI) is an area of computer science and engineering that deals with mim-
icking the intelligence observed from the natural behaviour in, for example, biology, insect societies 
(ants), neural sciences, immune systems. System Biology (Kitano, 2001), a sub group of computational 
biology, is a new and developing field of research in bioinformatics which deals with analysing large 
scale biological systems. It is an interdisciplinary research area combining the fields of (cell) biology and 
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systems theory. In the field of systems biology, there has been considerable discussion of algorithm-based 
versus literature-based modelling approaches. The algorithm-based approaches utilize data generated 
solely by novel high-throughput techniques at the gene, protein, or metabolite level, while excluding 
the data generated using more traditional approaches. Alternatively, literature-based approaches at-
tempt to incorporate data from numerous sources and at various levels of organization, but they may 
miss important novel discoveries obtained from the integration of the broad gene or protein expression 
technologies. Both these approaches can be used to model gene regulatory networks. However, due to 
the heterogenous data sources, the literature based modelling leads to an integration nightmare. On the 
other hand, algorithm based approaches are successful where the resulting inferred network of regulatory 
processes helps researchers form new hypotheses about the behaviour of biological systems and assist 
with the design of further experiments (de Jong, 2002) (Friedman, 2000) (Friedman, 2004). This not 
only cut costs on biological experiments performed but also expedites the discovery process.

It is anticipated that modelling technologies will find clinical applications and provide great opportu-
nities to deal with human diseases such as cancer. Computational methods for estimating gene networks 
can be applied to searching for drug target genes. Analysis of gene networks has different applications, 
e.g. in the process of target identification, drug design, and in the search for causes of genetic diseases. 
In basic research, these networks can be used for comparison of metabolic processes of different organ-
isms. For example, the information on the metabolism of one organism can be used to understand the 
newly sequenced genome of another organism (Sirava et al, 2002).

The rest of the chapter is structured as follows: Section 2, the problem of gene regulatory network 
modelling is explained along with discussion on the related works. Section 3 elaborates on the different 
stages involved in computational modelling of gene regulatory networks and their scope for computa-
tional intelligence application at every stage. Since the details about various modelling techniques such 
as Boolean, Bayesian models, etc. have already been extensively reviewed in the literature, these are not 
covered in this chapter. Section 4 describes an illustrative experiment performed on a yeast cell cycle 

Figure 1. High throughput technologies
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gene regulatory network. Finally, section 5 provides concluding remarks on the nature of the problem 
and the solutions presented.

grn Modelling ProbleM

In cells of living organisms, there are thousands of genes that are interacting with each other at any 
given time to accomplish complicated biological tasks. Genes code for proteins that are essential for 
development and functioning of organisms. The central dogma of molecular biology (Fig.1) outlines the 
flow of information contained within the DNA (gene) into messenger RNA (mRNA) molecules which, 
in turn, are translated into proteins. The amount of protein produced from a gene is called its expres-
sion level. The protein produced either perform functions of cells or control and regulate the flow of 
information of other genes in what is known as transcription factors (TFs). Since TFs are proteins, they 
are products of genes themselves. This implies that genes regulate the expressions of other genes. As a 
matter of fact, much of the complex behaviour of a cell can be explained through this concerted activity 
of genes. This activity is typically represented as a network of interacting genes which is called gene 
regulatory network (GRN).

A GRN consists of genes as its nodes and the arcs in the network contributing to transcription regu-
lations. Inferring and modelling of this network is significant for finding answers to three important 
questions: (1) how the cell knows which genes to transcribe into RNA and translate into protein, (2) why 
cells have different properties, i.e., blood cells, skin cells, liver cells, etc., when all cells in an organism 
contain the same DNA and (3) how a gene expression programs, or a cell-cell signal,is controlled by 
regulators across the genome. These regulatory networks may also contain feedback loops, non-linear 
interactions which can be very complex. The regulators often act in a concerted manner with regula-
tory agents such as transcription factors taking part in various combinations, each of which may have a 
specific effect, and may be present at specific developmental stages in specific cells or tissues. In order 
to successfully model a GRN, it is essential to have a clear and an in-depth understanding of the GRN 
modelling.

For a better understanding the problem of modelling a gene regulatory network, the gene regulation 
process is explained here with a key and lock metaphor. Fundamentally, a key is a device which is used 
to open/close a lock. It usually consists of a specially-shaped piece of flat metal, with teeth and/or milled 
grooves which fit the shape of the lock and can open the lock correctly by (usually) being rotated in 
the lock housing. In reference to gene regulation (Fig. 2), a particular gene of interest can be thought of 
as a lock. The promoter of a gene is the element (key) to unlock gene expression or the lock housing. 
The transcription factors (TFs) are the teeth found in the key. There can be one transcription factor (a 
tooth) or a combination of transcription factors (teeth) involved in forming a key. The key to unlock 
gene expression is thus a protein complex. When the complete shape of the key binds the lock housing 
(gene) correctly, the transcriptase binds to the promoter region of the gene, hence causing the gene to 
produce its protein, or in other words, opening the lock. When the key is removed from the lock housing, 
the gene goes inactive, or in other words the lock is closed. Essentially, the state of a man-made lock, 
which can be opened only by a correct key, can have only two discrete values: either open or close. But 
in contrast, the amount of protein produced when a gene is opened is determined by the expression level 
of the gene which is continuous rather than discrete. The expression level of the gene is dependent not 
only on the expression level of the genes, which are responsible for producing the proteins that combine 



248

Modelling Gene Regulatory Networks Using Computational Intelligence Techniques

to form the key (TF protein complex), but also on the environmental factors like temperature and pres-
sure. If the influence of environmental factors is ignored, the task of network to be modelled is reduced 
to basically determine a set of locks and keys with continuous states. At first, this might look like a 
simple problem. However, the whole picture is not yet complete. There can be several different keys 
that can unlock the same promoter. Furthermore, genes can themselves have alternative promoters (lock 
housings) at various instances. In fact, a gene can have alternative promoters and alternative transcripts. 
This leads to modelling a complex combinatorial regulation involving multiple transcripts and multiple 
promoters and several combinations of the two. The man-made keys and locks are static as they do not 
vary with time while the gene regulation processes are time varying and work differently at different 
times. . The key that was used to unlock a gene during childhood may not be the key that will be used 
during adult hood. For example, a boy who does not have any beard during childhood finds it growing 
during adulthood. Another aspect of GRNs is the transient gene interaction, i.e., the genes interact with 
each other only for a short period of time. Transcriptional regulation is the first step in the regulation of 
gene expression. There is still one more important information which remained unexplained and which 
would be very helpful to interpret and to understand the function of GRNs that is not present in the lock 
and key metaphor. It is related to the strength of regulatory interactions between gene and its transcrip-
tion factor complex. The basic idea of modelling a regulatory strength value is to find a relation on how 
strongly a regulation is up- or down- regulated compared to the completely non-inhibited or a non-
activated state. This clearly indicates that activators and inhibitors can either act independently during 
a regulation or there can be a combined influence of activators and inhibitors. For example, for a gene 
with two regulators, when the regulation happens, they both can be activators or both can be inhibitors, 
or the first can be an activator and other can be an inhibitor. Further, both can be non-inhibited, both can 
be non-activated, and so on. Many complex interactions such as these on the molecular scale have been 
described (McAdams, 1997) (Spellman, 1998). They rely on presence of specific factors that can either 
enhance or inhibit the expression of certain genes. McAdams and Arkin (McAdams, 1997) point out 
that the time interval between switching on of the first promoter and its effect on the next promoter can 
vary widely across otherwise identical cells, as a result of various stochastic processes occurring within 
the cell. The reasons put forward for assuming the stochastic nature of processes are, e.g. degradation of 
gene products, spatial collision necessary before a reagent can exert its influence, and reversible reaction 
equations. For a cell to result in a less noisy output, it is necessary to produce more frequent transcripts 
with fewer proteins per transcript, which is related to a higher energy cost.

The dynamic time varying gene network incorporates feedback loops (Thomas, 1995) (Tyson and 
Othmer, 1978). Feedback plays an important role in the control of biological systems. The feedback 
loops may be denoted as ̀ `positive’’ or ̀ `negative’’, indicating the ultimate influence of one of the nodes 
in the loop on itself. Oscillators (genes with positive feedback) are important components of biological 
systems. Biochemical networks that exhibit oscillatory behaviour are used at the molecular level for 
essential time-keeping in the cell. In many cases, these networks involve transcriptional circuits that are 
intrinsically noisy. Researchers (Thieffry and Thomas, 1995) have examined how the nature of possible 
feedback loops (or equilibria) present in genetic networks depends on the properties of these networks. 
It is also shown (Wolf and Eeckman, 1998) that dynamic system behaviour, stability of equilibria and 
their bifurcation potential are largely determined from regulatory feedback loops. Molecular mechanisms 
underlying programs are now under intensive investigation. Recent studies strongly suggest that trig-
gering of cell proliferation, differentiation and apoptosis (cell death) depend on the cell cycle feedback 
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control. For example, the tumour suppressor protein p53 plays a major role in modulating cellular func-
tions such as DNA repair, cell cycle arrest, and apoptosis.

The underlying network of keys and locks (GRN) can be thought of as a highly secure network 
protected against viruses. Any disruption to the network can lead to serious medical conditions such 
as cancer. The security is maintained by opening and closing of correct genes (locks) over correct time 
intervals to correct expression levels using the correct keys (TFs). Beyond this, a cancerous cell, when 
it expresses within a complex secure network, acts like a intruder which results in either opening/clos-
ing of wrong genes (locks), gene loss, additional gene, wrong timing, over expression levels and so on. 
During an abnormal interaction due to intrusion, genes produce keys that disrupt the functioning of the 
normal gene (protein). Since the network is highly connected and acts in a concerted manner having a 
cause and effect interactions, disrupting one gene can trigger a disturbance to a cluster of related genes 
which then can spread out. Fortunately, since the gene regulatory networks are sparse (Savageau, 1998), 
the network responsible for an activity, say the functioning of lungs, may only be weakly (or not at all) 
be connected with another network, say a network that supports the kidney function. So the cancer can 
restricted only to the affected area and does not spread to other parts of the body (although it is the same 
DNA). Modelling such a complex time varying sparse cyclic network is both daunting and exciting.

Early studies on gene regulation have focused primarily on the group properties of clustered genes or 
in making use of data mining methods for understanding this dynamic process. Subsequently, researchers 
began to realize that integrative approaches, e.g. computational intelligence based approaches, are needed 
to model different modes of the complex combinatorial dynamics of gene networks. In a typical microarray 
dataset, the number of observations n (with an order of tens) is substantially smaller than the number of 
variables p (with an order of hundreds or even thousands). Moreover, the data is characterized as massive, 
heterogeneous, high-dimensional and net character in nature. The small number of samples leads to a tem-
poral aggregation bias (Bay et al, 2004) while the measurement errors lead to noisy data and these limit the 
ability of traditional analysis methods. Discretized data has been frequently used for the sake of simplicity 
(Friedman, 2000). Although multiple regression method (D’haseleer, 2000) identified correlation between 
gene expression levels, it was unable to determine if genes are linked directly or indirectly through other 
genes thus preventing direct application for structure learning from graphical models.

Many important methods presented for inference of gene networks have focused on statistical meth-
ods, such as, Bayesian networks (Friedman, 2000), dynamic Bayesian networks (Murphy et al, 1999), 
relevance networks (Butte and Kohane, 2000) and graphical models (de la Fuente et al, 2004). Graphical 
models have emerged as powerful tools for learning, description and manipulation of conditional indepen-
dencies among the genes. Representations by directed acyclic graph (DAG) include influence diagrams 
and Bayesian networks which allow circumventing the problems associated with inferring networks 

Figure 2. Gene regulation
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with feedbacks. Any model of the regulatory systems cannot simply be limited to describing assembly 
of genes and proteins and their interconnections but it should also be able to provide explanation of the 
underlying interactions. Furthermore, the large amount of data should not pose adverse effects on the 
stability of the model. Techniques for evaluating GRN models are explained in section 3.2. However, 
before these are discussed,, we explain the computational modelling of GRN in the next section.

3. coMPutational Modelling of grn

Computational modelling and simulation techniques handle the complexity of modelling GRN explained 
in Section 2 and help understand different relationships in the network. Biochemists often conduct 
experiments in-vitro (in the test tube) and in-vivo (in living organisms) in order to explore observable 
behaviours and understand the dynamics of many gene regulation processes. However, an understanding 
of their dynamics is hard to obtain because most pathways of interest involve components acting simul-
taneously in a concerted manner. On the other hand, in-silico (in the computer) modelling techniques 
enable researchers to study networks in a very flexible, cheap and fast way compared to the in vitro and 
in vivo experiments. Computational modelling can be defined as a mathematical description of a process 
that has generated the observed data. In the context of gene regulatory network modelling, the pattern of 
interactions is described using a network structure and the observed data is mainly the microarray gene 
expression data. In terms of the network structure, if there are N genes that are involved in the network, 
there are potentially O(NxN) pairs of regulatory relations to be explored before we can derive a valid 
network model. In a microarray, expression levels on thousands of genes are simultaneously gathered 
under several different conditions. These microarray data provide abundant information on molecular 
interactions genome wide and thus are good for uncovering gene networks. The gene expression data is 
basically classified as time-series and steady-state data. In steady-state experiments, only one snapshot of 
gene expression under different experimental conditions (e.g. temperature) is taken, while in time series 
experiments, a series of snapshots are taken at fixed time intervals keeping the experimental conditions 
constant. Even though the microarray technology provides valuable data for the construction of gene 
networks, many difficulties and challenges arise at the same time.

Based on the technology used, there are two types of microarrays. The complementary DNA (cDNA) 
microarrays allow the measurement of gene expression levels usually based on the colour strength ra-
tios of the two dyes (red and green). The second method uses DNA chips, also called Affymetrix Gene 
Chips. In this method, an array of oligonucleotide or peptide nucleic acid (PNA) probes is synthesized 
either on-chip or by conventional synthesis followed by on-chip immobilization. The array is exposed 
to labelled sample DNA, hybridized, and the identity/abundance of complementary sequences is de-
termined. Unlike the cDNA microarray, Affymetrix use only one sample during hybridization and the 
colour strength of the dye reflects the relative level of mRNA accumulation. Even though the design 
and manufacture of Affymetrix chips is more complex than cDNA microarray, Affymetrix continues to 
be the market leader.

Limitations of microarray technology include:

1.  Number of measurements (arrays) is very limited compared to the large number of objects (genes) 
known as dimensionality problem

2.  Data may be under sampled
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3.  Fast changing information may not be captured
4.  Gene expression measurements are noisy, due to variations among different individuals, low quan-

tities of some RNAs and measurement errors
5.  Measured expression values have a highly asymmetric distribution. Large variations in expression 

values can lead to inferring spurious causal relationships. Log transformation is one major pre-
processing step to gene expression data as the distribution of data is approximated as symmetric 
and normal

The model construction implies abstraction and simplification of the real life system. The model can 
be characterised using representation and learning ability. Representation specifies all that which we 
can model i.e. how abstract/detailed our model of the underlying system is or can we make predictions 
that explain the data. Learning ability specifies what we can learn from the model. It provides answers 
to questions such as: Which aspects of the system can we identify? How effectively can we search the 
model space? An in silico modelling of gene regulatory network first involves construction of the network 
structure phase (Representation) followed by validation of the network structure using the data (Learn-
ing). In addition, there is also the optional phase of searching the space of models. Clearly, each of these 
three stages involves unique applications of appropriate computational intelligence techniques.

3.1. network Structure construction

A gene network structure can be defined using network measures. There are two network measures: 
Degree (or Connectivity) of a node, k, is the number of links (edges) this node has and the Degree 
Distribution, P(k), is the probability that a selected node has exactly k links. As shown in Fig. 3 below, 
there are three broad types of networks based on their connectivity. These are: i) Random Network ii) 
Scale-Free Network and iii) Hierarchical Network. These are briefly discussed.

3.1.1. Random Networks

The classic model of random networks (Fig. 3) is based on a given number of vertices or links. The 
model was introduced by (Gilbert, 1959). Each pair of nodes is connected by N vertices with probability 
p, creating a graph with approximately p N*(N-1)/2 randomly placed links. The connectivity degree fol-
lows a Poisson distribution, i.e., nodes that deviate from the average are rare and decrease exponentially. 
In random networks, the clustering coefficient is independent of a node’s degree of connectivity. The 
mean shortest path is given as l ~ log(N) indicating that most nodes are connected by a short path (Small 
World model) (Cancho and Sole, 2001). A network with large Clustering Coefficient and small Average 
Path Length is called a Small World Network model. While random graphs have been studied for a long 
time, these standard models appear to be inappropriate because they do not share the characteristics 
observed in complex systems like GRNs. A plethora of new models have therefore been proposed, but 
many of them are variations of the small-world model or the preferential attachment model (Wang and 
Chen, 2004). Preferential attachment means new nodes tend to connect to nodes with large degree of 
connectivity. For evaluation of network models and algorithms (learning phase), it is important to be 
able to quickly generate graphs according to the requirement. Software network generators such as 
BRITE, GT-ITM, JUNG, or LEDA (Batagelj and Brandes, 2005) perform reasonably well for analysis 
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of tens of thousands of nodes.. Hybrid evolutionary computation and many other algorithms are also 
being proposed attempting to solve the problem.

3.1.2. Scale-Free Networks

The degree distributions of complex gene regulatory networks do not always follow a Poisson distribution 
like random graphs, but might follow a power law distribution (Barabási and Albert, 2002). According 
to the power law distribution, the behaviour of a network system is controlled by a few important nodes, 
that is a majority of nodes have only a few connections, while some special nodes connect to many other 
nodes forming a hub, i.e., most nodes are poorly connected, while a few are highly connected (hub). This 
type of network is called a scale-free network (Fig.3). With the same size and the same average degree, a 
scale-free network has a small average path length and large clustering coefficient. The degree distribu-
tion approximates a power law: P(k) ~ k –γ, where γ is the degree exponent (straight line in a Log-Log 
plot). The smaller the γ, the more important the role of the hubs is. Most biological networks have 2 
< γ < 3. For γ > 3, hubs become irrelevant and the network behaves like a random network. The mean 
shortest path length is proportional to log(log(N)) (i.e. much shorter than the Small World model). One 
feasible approach (Barabási and Albert, 2002) shows a way to construct the scale-free network. There 
are two key features: growth and preferential attachment. Growth of the network scale indicates that 
the networks is not fixed at the original scale, but grows up dynamically and develops constantly from 
small to middle scale, and then to large scale. The nodes in these networks preferentially attach to each 
other during the growth process. A newly-added node tends to preferentially link these clustering nodes 
with the degree of distribution following the Power Law. There is uncertainty in the use of parameters 
such as degree of distribution, clustering coefficient, path length, etc. and artificial intelligence based 
approaches are now being proposed to construct scale free networks.

3.1.3. Hierarchical Network

Small-world and scale-free models are basic characters of many gene network in real world. However, 
many complex organisms have inherent modular structure. To accommodate modularity, clusters com-
bine in an iterative manner, generating a hierarchical network. The hierarchical network model (Fig. 3) 
integrates a scale-free topology with an inherent modular structure by generating a network that has a 
power-law degree of distribution with the degree exponent γ = 1 + ln4/ln3 = 2.26. The most important 

Figure 3. Network types
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signature of hierarchical modularity is the scaling of the clustering coefficient, which follows C(k) ~ k 
–1 a straight line of slope –1 on a log–log plot. In literature, AI techniques such as neural networks have 
been used in construction of hierarchical network models (Rahmel, 1996).

3.2. Model evaluation

Computational model evaluation refers to finding out how closely the model constructed in phase 1 fits 
the data. Model evaluation methods can be very simple or highly complex. Figure 4 briefly shows vari-
ous types of models with varying degree of abstraction of modelling and also the amount of information 
needed... The Fig. 4 is a result of conceptual comparison and hence is not empirical. Ordinary differential 
equations (ODEs) (de Hoon, 2003) models are used for small scale network that require least amount of 
information. Although gene regulations modelled via ODEs are successful to represent some reactions 
like linear production and degradation, they cannot describe the small system variability of the actual 
reactions. The system variability can be modelled using Markov chain models (Zhou et al, 2004) where 
there are sets of states and sets of state transitions along with their associated probabilities. Next level 
of abstraction for inferring genetic regulatory interaction is the well accepted boolean network model 
(Liang, 1998). Each gene is modelled as being either “ON” or “OFF” and the state of each gene at the 
next time step is determined by a boolean function of its inputs at the current time step. In a real cell, 
however, gene expression is a continuous variable. So, fuzzy models (Ram et al, 2006) have been pro-
posed as alternative where membership functions for the expression levels are classified as, for example, 
high, medium and low. The fuzzy and boolean models are capable of modelling influences (activation/
repression) and their corresponding direction of information flow, but require significant amount of data 
in order to deliver valid models.

Bayesian networks attempt to give a more accurate model of network behaviour, based on Bayesian 
probabilities for the variables (Heckerman, 1995). In the graphical representation of a Bayesian network, 
variables (genes) are represented as nodes and edges between nodes represent conditional dependence 
and causal relations. Bayesian networks include most of the previously proposed models as special cases 
and are inherently capable of incorporating existing knowledge. The Bayesian model is by far the most 
complicated and probably most efficient way of gene network modelling (Friedman, 2000) (Chicker-
ing et al, 1994) in the presence of noise. However, the accuracy of the results relies on quantity of data. 
Well established statistical data mining techniques can deliver the highest level of abstraction in mod-
elling, however they are not tolerant to noise in the data. The domain expert’s acceptance of Bayesian 
network models is a good choice as it provides a graphical representation of a GRN and is facilitated by 
the stochastic and white-box nature of Bayesian networks (BNs). Furthermore, biologists find it easy 
to interpret. Recently, a comprehensive explanation and comparisons between the models’ evaluation 
strategies has been made available (Wessels et al, 2001).

3.3. Searching the Model Space

Most of the GRN modelling techniques involve searching for, from a large search space, the structure 
of the network given the data. This search problem is NP-hard (Chickering et al, 1994). For a dataset of 
n genes, there can be n × n arcs and the number of possible network structures amounts to 2n×n. For 
example, with n=10, the number of network reaches 1030. As n is typically of the order of thousands 
in a gene expression data, the number of possible structures explodes. Since exhaustive search in the 
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structure space can be impractical and exact inference is NP-hard, approximation algorithms from 
computational intelligence domain are often necessary to obtain results. These stochastic optimisation 
techniques involve a large number of simulations with parametric variations resulting in a small subset 
of likely models. Some of the well known techniques for stochastic optimization are: 1) Genetic algo-
rithm (GA) 2) Monte Carlo approach using metropolis sampling 3) GA, using bootstrap and 4) GA and 
Markov Chain Monte Carlo approach. Each of the resulting model represents the data with a reasonably 
good fit. The most difficult part of model fitting is discriminating between different model variants. If 
a particular model fits better then it is deemed, using appropriate statistical tests, that the model is the 
best model. The question is “How do we discriminate between several models, each of which fits the 
data reasonably well?” If the proposed model were in fact a genuine candidate, then we would expect 
the parameter space to coincide. This is based on the assumption that rate constants do not change as a 
result of external or internal perturbations.

4. an illuStratiVe exaMPle Model

The search issues presented in previous section is further illustrated with the aid of a case study for 
GRN modelling. In this illustrative example, the network structure has a random topology, the network 
modeling is carried out by a causal modelling technique (Ram and Chetty, 2006) and the search is per-
formed using a guided GA (GGA) (Ram and Chetty, 2006). It is suggested that the interested reader 
should refer to our earlier related publications for complete details. However in brief, the modelling 
steps are as follows:

4.1. network construction

The creation of GRN represented by the ‘random network’ is facilitated by an n×n connectivity matrix 
M. Each element in M, mij where i, j ∈ {1, 2,…, n}, represents the edge between two genes, such that

Figure 4. Abstraction of GRN modelling
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mij =

®

®
{1, i j regulation is positive

0, otherwise

-1, i j regullation is negative  

It can be noted that values of mij for i=j can be ignored during the search process because it presents 
an edge between a node and itself. The network constructed is a static network and complexities of 
dynamicity, oscillations, and feedback loops are omitted for the sake of simplicity of the model evalua-
tion process. A Poisson distribution is used and the constraint is imposed on the number of transcription 
factors per gene to be between 1 and 15.

4.2. Simulation

The candidate network model is automatically converted into the set of regulatory interactions required 
to perform the simulation of its static behaviour (it can be easily extended to include dynamics). This 
mathematical model can then be simulated by using continuous deterministic methods. Techniques for 
carrying out hybrid stochastic-deterministic simulations need investigations.

4.3. network Validation

Given a candidate gene network, the fitness of the data is expressed as a set of scoring functions (Ram 
and Chetty, 2007). This includes fitness of the structure, direction of causality and sign (positive/negative) 
of regulation. While evaluating the fitness, the putative network is actually decomposed into Markov 
Blankets (MB) (Ram and Chetty, 2007) (comprising of the parents, the children, and the parents of the 
children of the node of interest) and conditional independence tests are applied in order to detect whether 
or not connections are direct or indirect. A direct regulation takes place where a TF regulates a target 
gene through its binding site. e.g., TF1 → regulated gene while the indirect regulation takes place when 
a TF regulates a target gene indirectly by regulating another TF, which regulates the target gene. For 
example, TF1 → TF2→ regulated gene. The direction and sign of regulation are recovered by estimating 
the time delay and time correlation between expression profiles of pairs of genes. The summation of the 
fitness of MBs is the fitness of the network. The candidate network which scores the highest total fitness 
best fits the data. The scoring functions can further be optimized using neural networks or fuzzy logic.

4.4. evolution (Searching the Space of Models)

A guided genetic algorithm (GGA) (Ram and Chetty, 2007) is applied to create and evolve different 
networks to eventually obtain a network that best fits the microarray data.

The model selection is essentially a search procedure for finding the most plausible model fitting 
the observations. Given a network, the search algorithm qualitatively scores the structures derived by 
applying the local refinement operators (such as adding and deleting arcs), based on a proposed mea-
sure. The search keeps only the best structural modification (refinements) for the next iteration. The 
greedy approaches are not suitable for search as they do not guarantee global optima. Further, in BNs, a 
look-ahead approach (a greedy search is a 0-step look-ahead) is equivalent to multiple changes at once 
to the parent set of a node. Moreover, look-ahead approach has a very high computational cost that is 
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intractable for our problem size. In our prior work (Ram and Chetty, 2007), a guided genetic algorithm 
(GGA) technique provided the necessary benefits of look-ahead with multiple changes to a node’s 
Markov blanket graph (MBG) with a reduced computational cost.

This technique is applied in the present work as it relies on the observation that relationships which 
are conditionally independent (CI) under a specific MBG may not be CI under another MBG enabling 
decisions to be taken during the search to maximize the activity of each node. The working of the algo-
rithm is illustrated in Fig. 5. When used with noisy synthetic datasets, it is experimentally observed that 
the technique is able to accurately learn functions that were best CI under uniform distribution even if 
data had only limited samples. Further, since the computational cost for the GGA has a linear relation-
ship with the number of variables, it is better compared with the standard greedy learning algorithms 
which has computational cost complexity of the order n x n. In the present work, we extend the GGA 
structure learning algorithm by including the frequent MBG finding technique where the aim is to find 
local maxima for MB of each node in the network. For a given GA simulation, all MBs of a given node 
from different networks form a set of MBGs called as graph transactions. Such a set of graph transactions 
for a node can typically be of the order of 200,000. The frequency of occurrence of a particular subgraph 
is determined by the number of graph transactions in which a subgraph occurs. Finding frequently oc-
curring subgraphs over the entire set results in more quicker and better optimization of the GA and thus 
plays a critical role in the search process.

The steps involved in GGA are:

1.  The initial phase (i.e. first 20 generations) of the main loop involves only low level heuristic opera-
tors, namely random crossover and mutation for generating population. To implement crossover, 
gene links from two members of the population are randomly selected and swapped between the 
pair of networks. Mutation is applied on individual networks by random deletion of an arc or ran-
dom addition ensuring that a directed cycle is not created.

2.  After the initial phase, a diversity switch selects between a low level and a high level GA heu-
ristic operation. Diversity is a measure of variation between two individuals in a population. To 
calculate diversity, a mean skeleton network which is the basis for all networks for a population 

Figure 5. Novel guided strategy
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is obtained. The difference in the number of edges calculated between an individual network in 
the GA population and the skeleton gives the diversity value. Briefly, an ongoing knowledge ac-
quisition process keeps track of each node’s Markov blanket that passes through the GA. These 
MBs are ranked according to their dominance (by means of individual fitness score) to appear in 
the final network. While adding or deleting an arc during a guided crossover and mutation, an arc 
score and path score are calculated from the individuals in the population. A Gaussian function is 
applied for producing partial randomness effect on the addition or deletion of an arc. The iteration 
repeats through the diversity switch and operators until the stopping criterion is reached.

3.  Since the GA is stochastic in nature, the algorithm is repeated number of times (ten) and the result-
ing network structures are combined to reconstruct the final gene network.

The search is guided by exploiting certain characteristics of diversity and high level heuristics in order 
to generate good networks as quickly as possible. There are applications for ant colony optimization, 
swarm optimization, simulated annealing and other CI techniques that can also be investigated for their 
suitability in the search process.

4.5. analysis and Post Processing

Methods for reducing the complexity of networks, and ensuring minimal connectivity are performed in 
this framework (Ram and Chetty, 2007). Issues like spurious arcs and time delay were not dealt with 
previously due to construction of random networks. We formulated a framework for path analysis as 
a post processing step after learning gene regulatory network where graph-theoretical measure of d-
separation is applied on the final network and outliers are removed from the network. Similarly, delay 
paths are checked for their consistency. Computational intelligence techniques can be further investigated 
to speed up this process.

4.5.1 Synthetic Dataset

To establish the proposed methodology for successfully retrieving the structure of the underlying network, 
we evaluate its performance with the help of artificial and real-life yeast cell cycle data set. Using artificial 
data set generated by a novel synthetic data generator (Ram and Chetty, 2008), we investigate the accuracy 
and sample size requirements. In investigations involving real-life data set, we show that our approach is 
effective in inferring biologically significant interactions.

The expression data for the 40 gene synthetic network is generated by assuming that 6 genes have 3 
regulatory inputs, 10 genes have 2 regulatory inputs, while the remaining genes have a single regulatory 
input. 33 interactions are designed to have a time delay of zero, 21 interactions have a time delay of one 
and 9 interactions have a time delay of two time points. Given this topology of the regulatory network, 
gene expression values are computed for each one of the 40 genes at 10 time points. The assumed network 
constituted 63 interactions with known regulatory weights and time delays associated with these interac-
tions.

The algorithm was implemented in MATLAB and tested for the 40 gene artificial problem. To evalu-
ate the proposed algorithm, we also executed the original genetic algorithm which incorporates low level 
heuristic operators alone. Table-1 shows the parameter setting of the GA. Figure 6 shows the plot of the 
best fitness value for the whole evolution process of 100 generations for guided GA and ordinary GA. 
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From Fig.6, it can be seen that GA with guided strategy performs better than ordinary random GA after 
the initial 0- 20 generations. For the first 20 generations, the genetic algorithms in both the cases work in 
the same manner because adaptation can only be performed in later stages of the evolution. It can be noted 
that between generations 40 and 50, although the best value of fitness of the guided GA was lower than the 
ordinary GA, it later increased compared to random GA. This increase is attributed to the diversity switch. 
Fig. 7 shows the diversity measures throughout the evolution from generations 20 to 100, and a diversity 
measure of 0.98 was recorded during generations 40 and 50. As seen in nature, many genes of an organism 
stay inactive through its lifetime and are passed to further generations for later mutations or crossovers to 
activate, which is very well performed by the diversity switch and so this is seen as safeguarding diversity 
of the population. Both algorithms were restricted to runs of 100 generations. The guided GA converged at 
the top score at the 81st generation where all arcs were recovered while the simple GA stopped prematurely 
at the 55th generation.

From Fig.7, it can be noted that diversity switch has alternated from low level heuristics to high level 
heuristics a total of 9 instances falling above 0.7 (threshold) during the entire evolution of 100 genera-
tions.

Table 1. GA parameter setting 

Parameter Value

Crossover probability 0.4

Elite Rate 0.1

Mutation probability 0.8 (evenly distributed over 4 types of mutation)

Population Size 150 – 200

Iterations 100

Diversity 0.7 (70%) (not applicable for ordinary GA)

Figure 6. Plot of best fitness values
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Fig. 8 shows the histogram of the normalized fitness values for the individual Markov blanket structures 
at the end of 100 generations. Normalization is done within the range from 0 to 1 based on the maximum 
and minimum value of fitness calculated during the evolution. The fitness in the range of 0.8 to 1 are 
alone taken into consideration as they constitute the best scores and it can be seen that most of the Markov 
Blankets inferred lie in the range of 0.99 and 0.96. This shows most of the sub-networks have achieved 
their maximum fitness values

Our results show that guided GA discovers causal GRN structures with a greater accuracy than existing 
standard genetic algorithms. This accuracy improvement does not come with an increase of search space. 
In all our experiments, 150 to 200 individuals are used in each of the 100 generations. Thus, a total of 
approximately 15,000 to 20,000 networks are searched in all to learn the causal structure. Considering 
the exhaustive search space is of 2

2n  networks, only a small percentage of the entire search space is 
needed by our algorithm to learn the causal structure.

Figure 7. Diversity measures from generations 20 to 100

Figure 8. Histogram of fitness values in the final generation
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4.5.2 Real Dataset

We further applied our approach to cell cycle expression data (Spellman et al., 1997), containing 76 
gene arrays of 6177 S. cerevisiae ORFs. Gene expression levels are taken as continuous values. We are 
making use of all 76 samples from cdc15, alpha-factor and cdc28 datasets to determine the gene network 
structure. Since regulatory and signal relationships are currently not sufficiently known and because of 
the size limitation imposed by the relatively small number of time points, the analysis was restricted 
to 600 genes involved in the major cell cycle pathways given (Spellman et al., 1997). This modelling 
methodology for inferring gene regulatory network was applied to a subset of the genes from time series 
Saccharomyces cerevisiae (yeast) microarray dataset.

In Fig. 9, the reconstruction of the arcs (based on our causal modelling approach) for the genes involve 
the yeast cell cycle pathways such as spindle formation and cell cycle start. In this study, we consider 

Table 2. Analysis details 

No. of genes selected for analysis 600 genes

Limit on the TF’s per gene 1 to 15 Tf’s per gene

No. of interaction recovered 6300 interaction with highest confidence > 0.89

~3 TF’s per gene 150-200

(4-9 TF’s per gene) Remaining

No. of GA generations 100

Figure 9. Reconstruction of GRN (subset of the 600 gene network)
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the group of important genes which includes CLB 1-6, CLN1-3, FUS3, KSU1, SIC1, SWI4, SWI6, 
TUP1 in cell-cycle regulation of S.cerevisiae. The validation is performed using a mathematical model 
of the cell-cycle events (Chen et al., 2002). Highly accurate regulatory interactions are found for the 
genes CLN1, CLN2, CLB1, CLB2, CLB5, SWI5 and SWI4. Some of the regulatory models have poor 
confirmation. The reason for this might be that some genes have much stronger signals during the cdc15 
experiment than during the other two. The genes CLN1 and CLN2 transcribing the G1 cyclins and the 
genes CLB5 and CLB6 transcribing the B-cyclins Clb5 and Clb6 are expressed in the G1-phase. Note 
the activator connections amongst the genes CLN1, CLN2, CLB5 and CLB6. The ‘time delay’ learning 
revealed the activator influences CLN1→CLN2, CLB6→CLB5, CLN1→CLB6 and CLN3→CLB6 
(CLN3 is also the G1-specific cyclin).

The genes CLB1 and CLB2 are G2-specific cyclins, the gene SWI5 is the transcription factor also 
known to be expressed in G2-phase. Note the activator connections between the genes CLB1, CLB2 
and SWI5. The ‘time delay’ problem inferred the activator regulation CLB1→SWI5 and CLB1→CLB2 
(the ‘time delay’ ‘AND’ model suggested SWI5→CLB1, SWI5→CLB2). The inhibitory influences were 
inferred between the G1- and G2-specific genes confirming that the expression of these genes is separated 
in phases. The ‘time delay’ learning also revealed the inhibitory connections: CLB1, CLB2 → CLB5, 
CLB2→ CLN2, CLB6→CLB1, CLB6→CLB2, CLN3→SWI5, CLN3→CLB1 and CLN3→CLB2. 
The gene regulatory interactions described above and in the Fig.5 find support in the literature (Toyn 
et al, 1997).

5. concluSion

In this chapter, modelling of gene regulatory network and the associated computational intelligence 
methodology required in its modelling is presented. .Various network configurations, namely random, 
scale free and hierarchical network are discussed. As a case study, we have presented important and 
relevant aspects of our work of causal modelling of GRN using guided genetic algorithm. The experi-
ments are done on both synthetic data set as well as the real world yeast cell cycle data to demonstrate 
the performance of this novel approach. The modelling is validated using known results and the inves-
tigations reveal a number of interesting features. In future, work we will be focused on the effect of non 
coding RNA on regulation.
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key terMS and definitionS

Bayesian Network (BN): Probabilistic network structure in which nodes represent variables (genes) 
and edges between nodes represent their interactions.

Causal Model: Bayesian model specifying direct and indirect cause and effect relationships amongst 
the variables.

Directed Acyclic Graph (DAG): Directed graph showing the structure of causal relationships without 
having any feedback loops.

Gene Regulatory Network (GRN): Network of gene-gene interactions with regulatory relation-
ships.

Genetic Algorithm (GA): Evolutionary algorithm based on stochastic parallel search technique.
Markov Blanket (MB): For any node of a BN under consideration, MB consists of the parents, the 

children and the other parents of the children.
Synthetic datasetMicroarray: A technique for performing DNA experiments in parallel to measure 

mRNA abundance of genes in a genome of an organism.
NP Hard: A property of computational search problems in which these problems can be solved in 

polynomial time.
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Chapter 11

A Synthesis Method of 
Gene Regulatory Networks 
based on Gene Expression 

by Network Learning
Yoshihiro Mori

Kyoto Institute of Technology, Japan

Yasuaki Kuroe
Kyoto Institute of Technology, Japan

introduction

Investigating gene regulatory networks is important to understand mechanisms and functions of organ-
isms and many researchers have been studied them from various view points. Recently there have been 
increasing research interests in synthesizing gene regulatory networks and several studies have been 
done. Those studies are motivated by two ways. One is that the synthesis of gene regulatory networks 
could be the first step in controlling and monitoring biochemical processes in living cells. The other is 
that it is a complementary approach to investigating and understanding mechanisms of real gene regu-
latory networks, that is to say, by synthesizing simple artificial networks and analyzing their behavior 

abStract

Investigating gene regulatory networks is important to understand mechanisms of cellular functions. 
Recently, the synthesis of gene regulatory networks having desired functions has become of interest to 
many researchers because it is a complementary approach to understanding gene regulatory networks, 
and it could be the first step in controlling living cells. In this chapter, we discuss a synthesis problem 
in gene regulatory networks by network learning. The problem is to determine parameters of a gene 
regulatory network such that it possesses given gene expression pattern sequences as desired properties. 
We also discuss a controller synthesis method of gene regulatory networks. Some experiments illustrate 
the performance of this method.

DOI: 10.4018/978-1-60566-685-3.ch011
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and functions, one can get some insights into functions of real gene regulatory networks. For example, 
Elowitz and Leibler (2000); Fung et al. (2005); Tuttle, Salis, Tomshine and Kaznessis (2005) synthesize 
artificial gene networks having oscillatory behaviors. Analyzing the synthesized networks could give 
some insights into investigating and understanding oscillatory behavior of organisms, e. g. circadian 
rhythm. Another example is the study on synthesizing artificial networks having a toggle switch like 
function (Atkinson, Savageau, Myers and Ninfa (2003); Deans, Cantor and Collins (2007); Gardner, 
Cantor and Collins (2000)).

Recently, Ichinose and Aihara (2002); Nakayama, Tanaka and Ushio (2006) discuss a synthesis 
problem in gene regulatory networks having desired properties. In those studies the desired proper-
ties are given by expression pattern sequences which describe changes of expression levels of genes. 
Furthermore, Nakayama et al. (2006) discuss a controller synthesis problem, in which controller gene 
regulatory networks are synthesized so that an objective gene regulatory network has desired expression 
pattern sequences.

In this chapter, we discuss the same synthesis problem and the controller synthesis problem of gene 
regulatory networks, in which the desired properties are given by expression pattern sequences. We 
present a novel synthesis method by network learning (Mori, Kuroe and Mori 2006). Gene regulatory 
network models are generally described by nonlinear differential equations and it is difficult to derive 
a synthesis method directly from nonlinear differential equation models. In order to overcome this 
difficulty we derive discrete-time networks possessing the equivalent time evolutions of expression 
pattern sequences to those of the differential equation models. We formulate the synthesis problem as a 
learning problem of the discrete-time networks and an efficient algorithm to solve the learning problem 
is derived. If the differential equation models are given by the piecewise linear network model (Glass 
1975) with some class of interaction functions, the derived discrete-time networks are equivalent to a 
class of recurrent high-order neural network(RHONN)s and the synthesis problem is reduced to a learn-
ing problem of RHONNs.

The presented synthesis method can be applied to more general models of gene regulatory networks 
than the model used in Ichinose and Aihara (2002); Nakayama, at el, (2006) and it can be also applied 
to various synthesis problems. For example, the synthesis method can be extended and applied to the 
synthesis of gene regulatory networks possessing multiple desired expression pattern sequences, cyclic 
expression pattern sequences and stable cyclic expression pattern sequences.

background

There are several other studies on analysis and synthesis of gene regulatory networks. For examples, 
Hasty and Isaacs (2001) consider the gene regulatory network models described by nonlinear differential 
equations based on chemical reactions and investigate parameter regions such that they possess oscilla-
tory behavior. Rodrigo et al. (2007) propose a synthesis method of gene regulatory network models such 
that they possess desired behavior, e. g. logical functions. Guido et al., 2006, Weiss et al., 2003 discuss 
a method for synthesizing rather complex gene regulatory networks by using simple gene regulatory 
networks as parts of them.

It is expected that the presented synthesis method makes some contributions toward understanding 
and synthesizing gene regulatory networks. In gene regulatory networks, several models, from simpler 
ones to detailed ones, have been proposed (Jong 2002). A simplest model is the Boolean network model 
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or the Bayesian network model. Nonlinear differential equation model based on chemical reaction is a 
detailed model. It is much more difficult to analyze and synthesize gene regulatory networks by using 
such nonlinear differential equation models. In this chapter we use a differential equation model whose 
complexity is in the middle of that of the Boolean network model and the nonlinear differential equation 
models. It is, therefore, relatively easy to analyze it and derive a synthesis method. There have been 
done many theoretical studies for the Boolean network model because of its simplicity (e.g. Akutsu, 
Kuhara, Maruyama and Miyano 2003). It is expected that those theoretical results give a good insight 
into analysis and synthesis of the differential equation model.

Synthesis Problem

Problem Statement

There are several models of gene regulatory networks (Jong, 2002). In this chapter, we consider a 
continuous-time network model of gene regulatory networks, which is given by the following differ-
ential equations:

i i i i i i im nx t g x t f w w w y t y t y t x
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( ) ( ( )) ( ( ) ( ) ( ))= - + , , , , , , , ,
1 2 1 2

& &
ii i

x( )0
0

= 		  (1)

y t H x t i n
i i
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n is the number of genes, xi(t) is a normalized expression quantity of the ith gene, yi(t)Î{0,1} is a binary 
variable describing the on/off information of expression of the ith gene, that is, yi(t)=1 if the ith gene 
is expressed, yi(t)=0 if the ith gene is not expressed, fi:{0,1}n→R is a nonlinear function describing an 
interaction among genes, wij, j=1,2,…,mi are parameters of fi, mi is the number of them and gi: R→R is 
a nonlinear function representing the degradation of the ith gene. In what follows, this model is repre-
sented in the vector form:

x t g x t f w y t x x( ) ( ( )) ( ( )) ( )= - + , , =0
0 							       (4)

y t H x t( ) ( ( ))= , 							       (5)

where x=(x1, x2,…, xn)
T, y=(y1, y2,…, yn)

T, g=(g1, g2,…, gn)
T, f=(f1, f2,…, fn)

T, H(x)=(H(x1), H(x2),…, H(xn))
T, 

w=(w1, w2,…, wn)
T and wi=(wi1, wi2,…, w

imi
)T. We suppose that any gi has the inverse function gi

-1. The 
interactions among genes depend on on/off information y(t) of the expression of genes and therefore the 
interactions among genes change if one of the expression levels of xi(t), i=1,2,…,n crosses zero.

We call y an expression pattern and we say that a gene regulatory network (1), (2) has an expression 
pattern sequence:
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y y y p( ) ( ) ( )0 1® ® ® ,

       (6)

where p is the length of the sequence, if there exist tr, r=0,1,…,p satisfying 0<t0<t1<…<tr<…<tp and an 
initial state x0 of x(t) such that the expression pattern y(t) of the gene regulatory network (1), (2) changes 
at tr and y(t)= y(r), r=0,1,…,p during tr ≤t<tr+1 for the trajectory x(t) starting from x0.

The synthesis problem of the gene regulatory networks (1), (2) discussed in this chapter is as fol-
lows.

Synthesis problem For the given expression pattern sequence:

y y y p* * *® ® ® ,( ) ( ) ( )0 1


       (7)

determine parameters w of the interaction functions f such that the gene regulatory network (1), (2) has 
the desired expression pattern sequence (7).

Because it rarely happens that signs of multiple normalized expression quantities change at the same 
time in real gene regulatory networks, we assume that

 y y r pr r* + *- = , = , , , - ,( ) ( )1 2 1 0 1 1&        (8)

where  x x
i

n

i
=

=å 1

2  for xÎRn. 

For an expression pattern ŷ , define a region W
ŷ

 in the space of x(t) by:

W
ˆ

ˆ ( )
y

nx R y H x:= Î | ={ }        (9)

and a point e y( )̂  by:

e y g f w y i n
i i i i
( )̂ ( ( )̂):= , , = , , ,-1 1 2 &        (10)

or in the vector form:

e y g f w y( )̂ ( ( )̂):= , ,-1        (11)

where g-1:=(g1
-1,g2

-1,…,gn
-1)T. The expression pattern y(t) is equal to ŷ  if the expression quantity x(t) is 

in Wŷ . The point e y( )̂  is called a “virtual” equilibrium point. The reason that the term “virtual” is put 
comes from the following facts. The right hand side of the equation (1) becomes equal to zero if y(t)= ŷ  
and x(t)=e y( )̂ , but y(t) becomes ŷ  only if x(t)Î W

ŷ
, that is, x t( )=0 at e y( )̂  if e y( )̂ Î W

ŷ  and, in general, 
x t( ) ¹ 0 at e y( )̂  if e y( )̂ Ï W

ŷ .
Now, we make the following assumption for the gene regulatory network (1), (2).
Assumption The following statement holds for any expression pattern ŷ . Let x(t) be a trajectory 

starting from x0 where x0Î W
ŷ
. If e( ŷ )Î W

y  where y satisfies || ŷ -y ||=1 and ŷ j ≠y
j for some j, then 

there exists t1>0 such that xj(t1)=0 and for 0 ≤t≤t1, xi(t) ≠0, " i ≠j.
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This assumption means that if the “virtual” equilibrium point e y( )̂  is in the region Wy  adjacent to 
the region Wŷ , then any trajectory x(t) in the region Wŷ  evolves to the region W

y
.

Note that there are several models satisfying the condition of this assumption. One of them is 
piecewise-linear network model (Glass, 1975). We show that this model satisfies the condition of the 
assumption in later section.

A simplest model is the Boolean network model or the Bayesian network model. Nonlinear differential 
equation model based on chemical reaction is a detailed model. The gene regulatory network model (1), 
(2) is described by nonlinear differential equations. The time evolution of the expression quantities are 
described by differential equations. The interactions among genes of the model (1), (2) can be described 
by logical functions because the interaction functions depend on the expression pattern y(t), that is, on/
off information of the gene expressions. This means that the complexity of the gene regulatory network 
model (1), (2) is in the middle of that of the Boolean network model and nonlinear differential equation 
model. Hence, it is relatively easy to analyze the gene regulatory network model (1), (2). Furthermore, 
we can get information in time domain and information of expression levels of genes, while Boolean 
network model lacks such information, that is to say, it is expected to get more detailed information by 
using this model, e. g. periods and amplitudes of oscillations. Hence, before wet experiments, predictive 
information about interactions in a gene regulatory network having desired properties could be obtained 
by using the synthesis method.

Synthesis Method

Problem Formulation as Optimization Problem

To solve the synthesis problem, we derive constraint conditions such that the gene regulatory networks 
(1), (2) possess the expression pattern sequence (7). Consider two expression patterns ŷ  and y  which 
satisfy e( ŷ )Î W

y
, || ŷ -y ||=1 and ŷ j ≠y j. If x(t) Î W

ŷ
 for some t, there exists t1>0 such that xj(t1)=0 due 

to Assumption for the gene regulatory network (1), (2) and y(t) changes from ŷ  to y  at t1. The above 
discussion implies that the expression pattern y(t) of gene regulatory network (1), (2) changes from ŷ  
to y  if the parameters w satisfy the constraint e( ŷ )Î W

y  (that is, y =H(e( ŷ ))). Hence, if the parameters 
w of a gene regulatory network satisfy constraints:

y H e y r pr r* + *= , = , , , - ,( ) ( )( ( ))1 0 1 1

       (12)

then the gene regulatory network (1), (2) has the expression pattern sequence (7). Such parameters w 
are not unique. We formulate the synthesis problem as an optimization problem in parameters w, whose 
constraints are the equations (12):

min ( ( ))( ) ( )

w

r rJ y H e y r ps t. . = , = , , , - ,* + *1 0 1 1      (13)

where J is a cost function depending on w, which represents a measure of the complexity of the gene 
regulatory network (1), (2). In this chapter, we choose
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.        (14)

It is known that the choice of l1 norm (14) could make an optimal solution w* much more sparse 
(Ishikawa, 1996), that is, the number of nonzero elements of w becomes much larger than that of the 

Euclid norm ||w||2= w
ij

ji

2åå . The number of nonzero elements of w corresponds to the number of 
interactions among the genes, therefore a simpler gene regulatory network with smaller number of in-
teractions could be obtained by the choice of (14).

Learning Method for Synthesis

To solve the optimization problem (13), we introduce a discrete-time network described by:

x k g f w y k
i i i i
[ ] ( ( [ ]))+ = , ,-1 1        (15)

y k H x k i n
i i
[ ] ( [ ])= , = , , ,1 2 &        (16)

or in the vector form:

x k g f w y k[ ] ( ( [ ]))+ = , ,-1 1        (17)

y k H x k[ ] ( [ ])= .        (18)

Note that if the output y[k] of the discrete-time network (15), (16) are equal to y*(k) (i.e. y[k]=y*(k), 
k=0,1,…,p), we can see that the conditions (12) are satisfied. This implies that the optimization problem 
(13) can be formulated as a network learning problem as follows.

Let y[k,x0] be the outputs of the discrete-time network (15), (16) starting from x[0]=x0. Then we 
consider a network learning problem:

min ˆ
w

J J J= + ,
1

b        (19)

where

J y k x y
k

p
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1
1

0
21
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=
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where x0Î W
y*( )0

 and β is a weighting coefficient. If Ĵ = 0  for w*, then y[k,x0] becomes equal to y*(k). 
This implies that the following equations hold,

y H x k x
i

k
i

* = ,( ) ( [ ])
0        (21)

x k x g f w y k p
i i i i i

k[ ] ( ( )) ,( ), = , , = , , ,- *
0

1 1 2 &        (22)
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where xi[k,x0] is the state of the discrete-time network (15), (16) at time k starting from the initial state 
x[0]=x0. Hence the constraint conditions (12) are satisfied if a solution w* achieves Ĵ =0 in the learning 
problem (19).

The learning problem (19) can be solved by the gradient based methods such as the steepest decent 
method, the conjugate gradient method, the quasi-Newton method and so on. To calculate the gradient of 
the function Ĵ , we replace the threshold function H in the discrete-time network (15), (16) by a smooth 
function S which can closely approximate to H. The discrete-time network (15), (16) becomes

x k g f w y k[ ] ( ( [ ]))+ = , ,-1 1        (23)

y k S x k[ ] ( [ ]),=        (24)

where S(x)=(S(x1), S(x2),…, S(xn))
T. A learning algorithm is given as follows:

1.  Choose initial values w(0) of w, and initial states of x so that x0Î W
y*( )0 . Solve the discrete-time 

network (23), (24) and obtain y[k,x0], k=1,2,…,p. Calculate 
( )ˆ 0

J  by using them. Set α=0.
2.  Compute the gradient ∂Ĵ /∂wij. Increment α; α=α+1.
3.  Update w: w(α) by using a gradient based method. Solve the discrete-time network (23), (24) and 

obtain y[k,x0], k=1,2,…,p. Update Ĵ : (̂ )J a  by using them.
4.  If | (̂ )J a - (̂ )J a-1 | is small enough, stop, else go to Step 2.

Note that algorithms to compute the gradient ∂J/∂wij can be obtained based on the sensitivity analysis 
method by using adjoint equations or sensitivity equations.

The above discussion is summarized as follows. In order for a gene regulatory network (1), (2) to pos-
sess the desired expression pattern sequence (7), it is necessary for a trajectory x(t) to traverse the regions 
W

y r*( ) , r=0,1,…,p. Due to Assumption for the gene regulatory network model (1), (2), the trajectory of 
the model (1), (2) depends on the allocation of the “virtual” equilibrium points e(y)’s, that is, where the 
virtual equilibrium points e(y)’s are in the state space. Using this property of the model, the synthesis 
problem is formulated as a problem of finding parameters satisfying the conditions (12). Note that the 
parameters satisfying the conditions (12) are not unique and therefore this problem is formulated as the 
optimization problem (13). The optimization problem is reduced to the discrete-time network learning 
problem (19) by introducing a discrete-time network (15), (16) which describes the allocation of the 
“virtual” equilibrium points e(y)’s.

application to Piecewise linear network Model

Problem Formulation as a Learning Problem of 
Recurrent High-Order Neural Networks

In this section, we apply the synthesis method to the piecewise linear network model of gene regulatory 
network (Glass, 1975) which is one of the representatives of gene regulatory network models:
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i i i i ix t d x t f w y t


( ) ( ) ( ( ))= - + , ,        (25)

y t H x t i n
i i
( ) ( ( ))= , = , , ,1 2 &        (26)

where di>0 is related to the degradation rate of the ith gene. In what follows, this model is represented 
in the vector form:

x t Ax t f w y t( ) ( ) ( ( ))= - + , ,        (27)

y t H x t( ) ( ( ))= ,        (28)

where A is a diagonal matrix: A=diag(d1,d2,…,dn). The interaction function fi is usually defined as:
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This model is obtained if we choose dixi’s as gi(xi(t)) in the equation (1). Therefore, the piecewise 
linear network model (25), (26) is a subclass of the model (1), (2). This model satisfies Assumption. 
Consider two expression patterns ŷ  and y  satisfying the following conditions: || ŷ -y ||2=1, ŷ j ≠y j for 
some j and e( ŷ )Î W

y
. Let the initial state x0 of x(t) be x0Î W

ŷ
. The conditions imply that sign(x0i)=sign(ei(

ŷ )) for i≠j and sign(x0j) ≠sign(ej( ŷ )) where sign(•) is the sign function. In the region W
ŷ

, a trajectory 
from x0 is described as:

x t e y d t x d t
i i i i i
( ) ( )̂( exp( )) exp( )= - - + - .1

0
       (30)

Therefore, xi(t) ≠0, i≠j for any t>0 because of sign(x0i)=sign(ei( ŷ )) for i≠j and there exists t1>0 such 
that xj(t1)=0 owing to sign(x0j) ≠sign(ej( ŷ )). Thus, Assumption is satisfied.

Now, the synthesis problem of gene regulatory network (25), (26) with the interaction functions 
(29) can be reduced to a learning problem of a class of RHONNs as follows. The synthesis problem is 
formulated as:

min ( ( ))( ) ( )

w

r rJ y H e y r ps t. . = , = , , , - ,* + *1 0 1 1      (31)

where e(y*(r))=A-1f(w,y*(r)). The discrete-time network corresponding to (23), (24) is:

x k d f w y k
i i i i
[ ] ( [ ])+ = , ,-1 1        (32)

y k S x k i n
i i
[ ] ( [ ])= , = , , ,1 2 &        (33)

or in the vector form:

x k A f w y k[ ] ( [ ])+ = , ,-1 1        (34)
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y k S x k[ ] ( [ ])= .        (35)

Let Wh=(w1
T,w2

T,…,wn
T)T, wi=(wi1,wi2,…,wim), wi1=a(i)/di, wi2=a i

1
( ) /di,…, wim=a

n
i

12
( ) /di where m=2n. 

Then, the discrete-time network (32), (33) with the interaction functions (29) becomes equivalent to a 
class of RHONNs:

x k W z k
h

[ ] [ ]+ = ,1        (36)

y k S x k[ ] ( [ ])= ,        (37)

z k z y k z y k z y k
m

T[ ] ( ( [ ]) ( [ ]) ( [ ]))= , , , ,
1 2

        (38)

z z y y z y y z y y z y y y y
n n m n1 2 1 3 2 1 1 2

1= , = , = , , = , , = ,+( ) ( ) ( ) ( )    

in which y, z and Wh are outputs of neurons, outputs of high-order elements of y and weights for inputs z, 
respectively. In the next section, an efficient learning method by using adjoint networks is introduced.

An Efficient Learning Method by Using Adjoint Networks

Kuroe, Ikeda and Mori (1997) proposed a method for calculating the gradient of J1 and derived an efficient 
learning algorithm by introducing adjoint networks for RHONNs. Therefore the synthesis problem can 
be solved by using the learning algorithm. Equations (36), (37), (38) can be formulated as:
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The adjoint network for this network is defined by

i

x x k

i

i j

m

ji ix
S x

x
s y

i i

ˆ [ ]
( )

ˆ [ ] ˆ [ ]
[ ]

t t t=
¶

¶
+

æ

è
çççç

ö

ø
÷÷÷÷

= =
å

1
,        (43)

i iu xˆ [ ] ˆ [ ]t t+ =1 ,        (44)

i
j

n

ji jz w uˆ[ ] ˆ [ ]t t=
=
å

1
,        (45)



275

A Synthesis Method of Gene Regulatory Networks Based on Gene Expression by Network Learning

ij

y y k

i j

j

is
z y

y
z

j j

ˆ [ ]
( )

ˆ [ ]
[ ]

t t=
¶

¶
=

,        (46)

where [̂ ]y t  is the external inputs and τ=p-k. If the initial state û [0] of the adjoint network is given by 
û [0]=0 and the external inputs are given by

[̂ ] [ ] ( )y y x yt t t= , - *
0

       (47)

the gradient of the function J1 for the parameter wij can be calculated by 
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where zj[k,x0]’s are the signals of RHONNs (36), (37), (38) at k with initial state x[0]=x0 and iû [τ,0]’s are 
the signals of the adjoint network (43), (44), (45), (46) at τ with initial state û [0]=0. The differentiation 
of function J at wij=0 is discontinuous. Hence, we define the gradient of function J for wij as:
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A learning algorithm is given as follows.

1.  Choose initial values w(0) of w, and an initial state of x[k] so that x0Î W
y*( )0 . Solve the discrete-time 

network (36), (37), (38) and obtain y[k,x0], x[k,x0] and z[k,x0], k=1,2,…, p. Then calculate ( )ˆ 0
J  by 

using them. Set α=0.
2.  Set the initial value û [0]=0, and the external inputs as (47). Solve the adjoint network (43), (44), 

(45), (46). Calculate the gradient ∂J1/∂wij by the equation (48). Increment α; α=α+1.
3.  Update w: w(α) by using a gradient based method. Solve the discrete-time network (36), (37), (38) 

and obtain y[k,x0], x[k,x0] and z[k,x0], k=1,2,…,p. Then update Ĵ : (̂ )J a  by using them.
4.  If | (̂ )J a - (̂ )J a-1 | is small enough, stop, else go to Step 2.

realization of Various expression Pattern Sequences

The synthesis method can realize various expression pattern sequences in the gene regulatory network 
(1), (2). For realization of various expression pattern sequences, we show an extension of the synthesis 
method to realization of multiple desired expression pattern sequences. Let desired expression pattern 
sequences be given as:

y y y l ql l p ll* , * , * ,® ® ® , = , , ,( ) ( ) ( )0 1 1 2 &        (50)
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where q is the number of sequences and pl is the length of the lth sequence. Constraint conditions for 
gene regulatory networks possessing the desired expression pattern sequences (50) are given by

y H e y r p l qr l r l
l

* + , * ,= , = , , , - , = , , , .( ) ( )( ( ))1 0 1 1 1 2 &     (51)

This synthesis problem can be formulated as a network learning problem:

min ˆ
w

J J J= + ,
1

b        (52)

where 

J y k x y
l

q

k

p
l k l

l

1
1 1

0
21

2
= || , - ||

= =

* ,åå [ ] ,( ) ( )
       (53)

and x0
(l)’s are initial values of x[k] of the discrete-time network (15), (16) so that x0

(l)Î W
y l*( , )0

, l=1,2,…,q. 
This network learning problem is an extension of the network learning problem (19) and can be solved 
by a gradient based method.

Now we consider various synthesis problems in gene regulatory networks. For example, a syn-
thesized gene regulatory network has a cyclic expression pattern sequence if y*(0)=y*(p) in the desired 
expression pattern sequence (7). A gene regulatory network having two or more cyclic expression pat-
tern sequences can be also synthesized by using the synthesis method with specifying cyclic expression 
pattern sequences in (50). Moreover, the synthesis method can realize stable cyclic expression pattern 
sequences. In this chapter, a “stable” expression pattern sequence is defined analogously as a stable limit 
cycle of continuous-time networks. Let a cyclic expression pattern sequence (7) be given and W  be the 
complementary set of the region È =r

p

y r0
W *( ) . The cyclic expression pattern sequence (7) is stable if for 

any x0Î W , there exists t̂ >0 such that a trajectory x(t) of the gene regulatory network starting from x0 
enters È =r

p

y r0
W *( )  at t̂  and the changes of expression pattern y(t) equate with the cyclic expression pat-

tern sequence (7) after t̂ . A stable expression pattern sequence can be realized by specifying behavior 
of the gene regulatory network (1), (2) in W . Hence, in addition to the constraints (12), the restrictions 
for the behavior of the gene regulatory networks in W  must be considered. For example, to synthesize 
a gene regulatory network having a stable expression pattern sequence:

( ) ( ) ( ) ( )1 0 1 0 1 1 0 0 1 1 0 1, , ® , , ® , , ® , , ,T T T T        (54)

it is sufficient to apply the synthesis method so that the gene regulatory network has the expression pat-
tern sequence (54) and additional two following expression pattern sequences:

( ) ( ) ( ) ( )0 1 0 1 1 0 1 1 1 0 1 1, , ® , , ® , , ® , , ,T T T T        (55)

( ) ( ) ( )1 0 0 0 0 0 0 0 1, , ® , , ® , , .T T T        (56)
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Thus, the synthesis of gene regulatory networks having stable cyclic expression pattern sequences can 
be done by using the synthesis method.

controller Synthesis Problem

In this section, we discuss the following controller synthesis problem. Let a gene regulatory network (1), 
(2) be a controlled object. The controller synthesis problem is synthesizing a controller gene regulatory 
network so that the controlled objective gene regulatory network (1), (2) has the desired expression 
pattern sequence (7). Let the controller gene regulatory network be described by

ci ci ci ci ci ci cim c cx t g x t f w w w y t y t
i



( ) ( ( )) ( ( ) ( )= - + , , , , , ,
1 2 1 2

& & ,, ,y t
cnc

( ))    (57)

y t H x t i n
ci ci c
( ) ( ( ))= , = , , ,1 2 &        (58)

or in the vector form:

c c c c c cx t g x t f w y t


( ) ( ( )) ( ( ))= - + , ,        (59)

y t H x t
c c
( ) ( ( ))= ,        (60)

where the symbols with subscript c correspond to those without subscript c in (1), (2). We suppose that 
gci has the inverse function gci

-1. There are interactions among the genes of the objective gene regulatory 
network (1), (2) and those of the controller gene regulatory network (57), (58).

Fig. 1 is a schematic of the whole gene regulatory network. The whole gene regulatory network 
consisting of the objective gene regulatory network (1), (2) and the controller gene regulatory network 
(57), (58) is described by the following equations:

Figure 1. A gene regulatory network consisting of a controller and an objective gene regulatory net-
work
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where f̂  and f̂
c
 are the interaction functions, ŵ =( ŵ

1
, ŵ

2
,…, ŵ

n
)T, ŵ

i
=( ŵ

i1
, ŵ

i2
,…, ˆ

ˆ
w

imi
)T, ŵ

c
=(ŵ

c1
,

ŵ
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,…,ŵ
cn

)T,ŵ
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=(ŵ
ci1

,ŵ
ci2

,…, ˆ
ˆ

w
cimi

)T, ŵ
ij

 j=1,2,…, im̂  and ŵ
cij

, j=1,2,…, cim̂  are parameters of f̂i  and 
f̂
ci , respectively.

Let the desired expression pattern sequence for the objective gene regulatory network (1), (2) be 
given as (7). The controller synthesis problem is:

Controller synthesis problem For the given expression pattern sequence (7) and the objective gene 
regulatory network (1), (2), determine the interactions f̂ , fc and f̂

c
 of the whole gene regulatory network 

(61), (62), that is, determine ŵ , wc and ŵc  such that the objective gene regulatory network (1), (2) in 
the whole gene regulatory network (61), (62) has the desired expression pattern sequence (7).

For an expression pattern eŷ , let define a region W
eŷ  and ê ( eŷ ) as follows:

W
e

c

y e
T

c
T T n n

c c
x x x R y H x y H x

ˆ
( ) ˆ ( ) ˆ ( ):= = , Î | = , = ,+{ } 				    (63)
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where eŷ =( T
ŷ , cy

T
ˆ )T. The region W

eŷ
 describes the region of state space in which the expression pattern 

ey (t) of the whole gene regulatory network (61), (62) is equal to eŷ .
Now, we make the assumption for the gene regulatory networks (61), (62).
Assumption The following statement holds for any expression pattern ŷe . Let xe(t) be any trajectory 

of the network (61), (62) starting from xe0 where xe0Î W
eŷ
. If there exists ey  such that ê ( eŷ )Î W

ey
, || eŷ

- ey ||=1 and ejŷ ≠ ejy  for some j, then there exists t1>0 such that xej(t1)=0 and xei(t) ≠0 for any t, 0 ≤t≤t1, 
xi(t) ≠0, " i ≠j.

The synthesis method can be applied to the controller synthesis problem with slight modifications. 
Constraint conditions corresponding to (12) become

y H e y yr r
c
r* + *= , ,( ) ( ) ( )( ( ))1 							       (65)

y H e y y r p
c
r

c
r

c
r( ) ( ) ( )( ( )) ,+ *= , , = , , -1 0 1 1& . 							       (66)

Hence, the controller synthesis problem is formulated as an optimization problem to find parameters 
ŵ , wc and ŵc  satisfying the constraints (65), (66):

min
ˆ ˆw w w

c
c c

J
, ,

. .s t 							       (67)
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y H e y y r p
c
r

c
r

c
r( ) ( ) ( )( ( ))+ *= , , = , , , - ,1 0 1 1        (68)

where Jc is a cost function depending on ŵ , wc and ŵc . In this chapter we choose

J w w wc
i
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ij
i
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j

m

cij
i

n

j

m

cij

i c ci c ci

= + + .
= = = = = =
åå åå åå

1 1 1 1 1 1

ˆ ˆ

ˆ ˆ
      (69)

Therefore, the controller synthesis problem can be formulated as a learning problem of discrete-time 
networks as follows. A discrete-time network:

x k g f w y k f w y k y k
c

[ ] ( ( [ ]) (̂ ˆ [ ] [ ]))+ = , + , , ,-1 1
       (70)

x k g f w y k y k f w y k y k
c c c c c c c c
[ ] ( ( [ ] [ ]) ˆ ( ˆ [ ] [ ]))+ = , , + , , ,-1 1

     (71)

y k H x k[ ] ( [ ])= ,        (72)

y k H x k
c c
[ ] ( [ ])=        (73)

is introduced to solve the optimization problem (67), (68). Let y[k,x0,xc0] and yc[k,x0,xc0] be the outputs of 
the discrete-time network (70), (71), (72), (73) where x0 and xc0 are initial states of x and xc, respectively. 
Now, we consider a network learning problem:

min ˆ
ˆ ˆw w w

c c c
c c

J J J
, ,

= + ,
1

b        (74)

where

J y k x x y
c

k

p

c
k

1
1

0 0
21

2
= || , , - ||

=

*å [ ] ( )
,        (75)

x0Î W
y*( )0

 and β is a weighting coefficient. This learning problem is the same as (19) except searching 
parameters and initial conditions. Searching parameters w are replaced with ŵ , wc and ŵc . To solve the 
learning problem (74) by using gradient based methods, we obtain a discrete-time network by replacing 
the threshold function H with a smooth function S in the discrete-time network (70), (71), (72), (73):

x k g f w y k f w y k y k
c

[ ] ( ( [ ]) (̂ ˆ [ ] [ ]))+ = , + , , ,-1 1        (76)

x k g f w y k y k f w y k y k
c c c c c c c c
[ ] ( ( [ ] [ ]) ˆ ( ˆ [ ] [ ]))+ = , , + , , ,-1 1

     (77)

y k S x k[ ] ( [ ])= ,        (78)

y k S x k
c c
[ ] ( [ ])=        (79)
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and the learning algorithm is modified as:

1.  Choose initial values ˆ( )w 0 , wc
(0) and ˆ( )w

c
0  of ŵ , wc and ŵ

c
, respectively. Set initial values x0 of 

x[k] so that x0Î W
y*( )0  and initial values xc0 of xc[k] randomly. Solve the discrete-time network (76), 

(77), (78), (79) and obtain y[k,x0,xc0] and yc[k,x0,xc0], k=1,2,…,p. Calculate ( )ˆ 0
J

c
 by using them. Set 

α=0.
2.  Compute the gradient ∂ cĴ /∂wcij. Increment α; α=α+1.
3.  Update ŵ , wc and ŵ

c
: ˆ( )w a , wc

(α) and ˆ ( )w
c
a  by using a gradient based method. Solve the discrete-

time network (76), (77), (78), (79) and obtain y[k,x0,xc0], k=1,2,…,p. Update cĴ : cJ
( )ˆ a

 by using 
them.

4.  If | cJ
( )ˆ a

- cJ
( )ˆ a-1

| is small enough, stop, else go to Step 2.

We choose the initial states xc0 of xc[k] randomly because no expression pattern sequence is given 
for the controller gene regulatory network. But the expressions of genes of the objective gene regula-
tory network are affected by those of the controller gene regulatory network, whose expression levels 
are positive. Hence, we set at least one element of xc0 as positive. If learning results are not sufficient to 
satisfy the restrictions (65), (66), then we change the initial states xc0 and repeat the learning process.

nuMerical exPeriMent

We show numerical experiments to illustrate the performance of the synthesis method. We use the 
piecewise linear networks (25), (26) with the interaction functions (29) for numerical experiments. For 
a smooth function S, which approximates the threshold function H, we use a sigmoidal function:

S x
x

( )
exp( )

=
+ -

1
1 5        (80)

in these numerical experiments. We assume that the parameters di’s of genes are given as di =1 for 
i=1,2,…,n. The weighting coefficient β in the cost functions Ĵ  or Ĵc  is determined by trial and error. 
Initially, we set β as β=0.01/(nm/2) and modify it. The reason of choice of the value 0.01/(nm/2) is as 
follows. If only an element of y[k] is different from a corresponding element of y*(k), that is, for some k1 
and j, y[k1]¹ y k*( )1  where yj[k1]¹ y

j

k*( )1 , yi[k1]=y
i

k*( )1 , i¹ j, and y[k]=y k*( ) , k¹ k1, then J1=0.5. In addition, 
if half elements of w are equal to zero and the remaining elements of w are equal to 1, then J is equal 
to nm/2. If we use these values as a criterion, we can expect that J1 is small enough when Ĵ  becomes 
less than 0.5 with β=0.01/(nm/2).

realization of a cyclic Pattern Sequence

Let a desired cyclic expression pattern sequence be given as:
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( ) ( ) ( ) ( ) (1 1 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1, , , , ® , , , , ® , , , , ® , , , , ® , ,T T T T ,, ,

® , , , , ® , , , , ® , , , , ® , , , ,

1 0

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

)

( ) ( ) ( ) ( )

T

T T T TT

T T® , , , , ® , , , , .( ) ( )1 1 0 0 0 1 1 0 0 1   (81)

A gene regulatory network consisting of 5 genes is synthesized because expression patterns have 5 
elements. We set the weighting coefficient β in the cost function Ĵ  as β=0.001 and initial states x0 of 
x[k] as x0=(1.0,1.0,-1.0,-1.0,1.0)T so that x0Î W

( )1 1 0 0 1, , , , T
. Applying the synthesis method, parameters of 

a gene regulatory network having the expression pattern sequence (81) are obtained. Figure 2 shows 
a plot of the cost function Ĵ  as a function of learning step. The cost function Ĵ  converges to zero in 
smaller number of learning steps.

It is confirmed that a gene regulatory network (25), (26), (29) using the obtained parameters has the 
desired cyclic pattern sequence (81). An example of simulation results of the synthesized gene regula-
tory network is shown in Figure 3,where initial state is the same as in the above learning process. The 
numbers placed at the bottom of Figure 3 represent the expression patterns of this gene regulatory net-
work. Vertical dashed lines show boundaries where the expression pattern y(t) of the gene regulatory 
network changes. It can be seen that the obtained gene regulatory network has the desired expression 
pattern sequence (81).

realization of a Stable cyclic Pattern Sequence

In this section, we show a realization experiment of a stable cyclic expression pattern sequence. Let a 
cyclic expression pattern sequence be given as:

( ) ( ) ( ) ( ) (0 1 1 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0, , , , ® , , , , ® , , , , ® , , , , ® , ,T T T T ,, ,

® , , , , ® , , , , ® , , , , ® , , , ,

1 1

1 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1

)

( ) ( ) ( ) ( )

T

T T T TT

T T® , , , , ® , , , , .( ) ( )0 1 1 0 1 0 1 1 0 0   (82)

We consider eleven additional expression pattern sequences:

Figure 2. The cost function
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in order to stabilize the cyclic pattern sequence (82). A gene regulatory network consisting of 5 genes 
is synthesized. The number of expression pattern sequences is 12. The lengths of the expression pat-
tern sequences are p1=11, pk=2,k=2,3,…,10, p11=3, p12=2. We set the weighting coefficient β in the cost 
function Ĵ  as β=0.001 and 12 initial states x0

(l) of x[k] so that x0
(l)Î W

y l*( , )0 , l=1,2,…,12. Applying the 
synthesis method, parameters of gene regulatory network having the expression pattern sequences (82), 
(83) are obtained. It is confirmed that the gene regulatory network (25), (26), (29) using the obtained 
parameters has the stable desired expression pattern sequence (82). We can see that for any ŷ , there ex-
ists some t̂  such that the changes of expression pattern y(t) of this gene regulatory network equate with 
the cyclic expression pattern sequence (82) after t̂ . An example of simulation results of the obtained 
gene regulatory network is shown in Figure 4,where initial state x0 is chosen as x0=(1.0, -1.0,1.0,-1.0,-
1.0)T so that x0Î W .

controller Synthesis experiments

We show three numerical experiments to evaluate the performance of the synthesis method. In these experi-
ments, the objective gene regulatory networks are the same one and the desired expression patterns are the 

Figure 3. Simulation result of the obtained gene regulatory network: a cyclic pattern sequence
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same cyclic one. In experiment 1, a controller network consisting of one gene is synthesized. In experiment 2, 
the stability of the desired cyclic expression pattern sequence is considered as the desired property. In experi-
ment 3, a controller network consisting of two genes is synthesized to stabilize the desired expression pattern 
sequence. We assume that the parameters dci’s of controller genes are given as dci=1 for i=1,2,…,nc.

Controller Synthesis Experiment 1

In this numerical experiment, a controller gene regulatory network consisting of one gene is synthesized 
so that the objective gene regulatory network has the desired cyclic expression pattern sequence. The 
whole gene regulatory network consists of five genes. The desired expression pattern sequence is a 
cyclic sequence:

( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1, , , ® , , , ® , , , ® , , , ® , , ,T T T T T  

® , , , ® , , , ® , , , ® , , , .( ) ( ) ( ) ( )1 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0T T T T

    (84)

An objective gene regulatory network consists of four genes is given and the objective gene regulatory 
network doesn’t have the desired expression pattern sequence (84). We set the weighting coefficient β 
in the cost function cĴ  as β=0.0001.

An example of simulation results of the whole gene regulatory network obtained by using the synthe-
sis method is shown in Figure 5,in which the initial value of xe is chosen as xe0=(-1.0,-1.0,-1.0,-1.0,1.0T. 
The binary numbers placed at the bottom of Figure 5 represent expression patterns of the whole gene 
regulatory network. It can be seen that the objective gene regulatory network has the desired expression 
pattern sequence (84).

Figure 4. Simulation result of the obtained gene regulatory network: a stable cyclic pattern sequence
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Controller Synthesis Experiment 2

In this numerical experiment, the objective of control is stabilizing a cyclic expression pattern sequence 
of the objective gene regulatory network. The objective gene regulatory network in experiment 1 and 
the desired expression pattern sequence (84) are given. Let a controller gene regulatory network consist 
of one gene. The whole gene regulatory network consists of five genes. In this experiment, one of the 
desired properties is the stability of the cyclic expression pattern sequence (84). We synthesize a con-
troller gene regulatory network so that the objective gene regulatory network has the expression pattern 
sequence (84) and

( ) ( ) ( ) ( ) ( )0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 1, , , ® , , , ® , , , ® , , , ® , , ,T T T T
		

® , , , ® , , , ® , , , ® , , ,( ) ( ) ( ) ( )1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1T T T T

					     (85)

in order for the stability of the cyclic expression pattern sequence (84). Note that the two sequences (84) 
and (85) consist of all 16(=24) different patterns of the 4 bit binary vector y(t) and the last pattern of the 
sequence (85) is the fourth pattern of the sequence (84). Hence, if the objective gene regulatory network 
has these sequences, the controller gene regulatory network can bring the stability of the cyclic expres-
sion pattern sequence (84). We set the weighting coefficient β in the cost function Ĵc  as β=0.00001.

An example of simulation results of the whole gene regulatory network obtained by the controller syn-
thesis method is shown in Figure 6,in which the initial value of xe is chosen as xe0=(-1.0,1.0,-1.0,1.0,1.0)T. 
It can be seen that the objective gene regulatory network has the desired expression pattern sequences 
(84) and (85). Hence we can conclude that the objective gene regulatory network has the stable cyclic 
expression pattern sequence (84).

Controller Synthesis Experiment 3

In the above numerical experiments, controller gene regulatory networks consist of one gene. In this 
numerical experiment, we synthesize a controller gene regulatory network consisting of two genes. The 

Figure 5. Simulation result of the obtained gene regulatory network: controller synthesis experiment 1
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objective is to stabilize the desired cyclic expression pattern sequence (84). Let the same objective gene 
regulatory network consisting of four genes in experiment 1 be given. We choose two expression pattern 
sequences in order for the stability of the cyclic expression pattern sequence (84):

( ) ( ) ( ) ( ) ( ) (0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 1 1, , , ® , , , ® , , , ® , , , ® , , , ® ,T T T T T 11 1 1, , ,)T   (86)

( ) ( ) ( ) ( )1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1, , , ® , , , ® , , , ® , , , .T T T T      (87)

We set the weighting coefficient β in the cost function Ĵ
c

 as β=0.00001.
An example of simulation results of the whole gene regulatory network obtained by the synthesis 

method is shown in Figure 7,in which the initial value of xe is chosen as xe0=(1.0,-1.0,1.0,-1.0,1.0,-1.0)T. 
It can be seen that the objective gene regulatory network has the desired expression pattern sequence (84) 
and the expression pattern sequence (87). We also observed that the objective gene regulatory network 
has the expression pattern sequence (86). Hence, we can conclude that the objective gene regulatory 
network has a stable cyclic expression pattern sequence (84).

future reSearch directionS

The main objective of this chapter is to present a theoretically well-defined synthesis method of gene 
regulatory networks and to show how well the theory works by performing basic numerical experiments. 
The presented method could be applied to more realistic models of gene regulatory networks. In order 
to do that, it is necessary to explore the following problem. The presented method is applicable to the 
model (1), (2) of gene regulatory networks with any g(x) and f(x) satisfying the condition of Assumption. 
Therefore it is necessary to explore what kinds of functions are appropriate for g(x) and f(x) by using 
real data. This problem is a subject for the future work.

Figure 6. Simulation result of the obtained gene regulatory network: controller synthesis experiment 2
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concluSion

Synthesis of gene regulatory networks having desired functions is an important research area. In this 
chapter, we discussed the synthesis of gene regulatory network models possessing desired expression 
pattern sequences. We derived constraint conditions for parameters of a gene regulatory network so that 
the gene regulatory network possesses given expression pattern sequences. We showed that the synthesis 
problem can be formulated as a parameter optimization problem so that the constraints are satisfied with 
a solution of this optimization problem. We introduced a method for solving this parameter optimiza-
tion problem by discrete-time network learning. For the piecewise linear network model with a class 
of interaction functions, the synthesis problem is reduced to a learning problem of a class of recurrent 
high-order neural networks.

It was shown that the synthesis method is successfully applied and can solve synthesis problems of 
various expression pattern sequences; e. g. a synthesized gene regulatory network possesses a cyclic 
expression pattern sequence, two or more cyclic expression pattern sequences or stable cyclic expression 
pattern sequences. We showed that the synthesis method of gene regulatory networks by network learn-
ing can be applied to the controller synthesis problem with slight modifications. We derived constraint 
conditions with respect to the parameters of the whole gene regulatory network consisting of an objective 
gene regulatory network and a controller gene regulatory network, and with respect to initial values of 
controller genes so that the controlled gene regulatory network possesses given desired expression pattern 
sequences. The controller synthesis problem was formulated as a parameter optimization problem.

Ichinose and Aihara (2002) proposed a synthesis method of gene regulatory network models (25), (26), 
(29) having desired expression pattern sequences. Nakayama et al. (2006) studied the controller synthesis 
problem and proposed a synthesis method of controller gene regulatory networks by introducing additional 
logical variables to the synthesis method proposed by Ichinose and Aihara (2002). Compared with these 
methods, the synthesis method in this chapter can be applied to both the synthesis problem and the con-
troller synthesis problem with slight modifications. Furthermore the gene regulatory network model (25), 
(26), (29) is a subclass of the gene regulatory network model (1), (2) and the presented synthesis method 
can be applied to the synthesis problem of gene regulatory network model (25), (26), (29).

Figure 7. Simulation result of the obtained gene regulatory network: controller synthesis experiment 3
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Gene Regulatory Network: Network describing interactions among genes.
Network Learning: Method solving optimization problem.
Synthesis Method: Method of synthesizing gene regulatory networks possessing desired behavior.
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introduction

The Bayesian Network (BN) has been proven to be a useful and important tool in biomedical applications 
such as clinical decision support systems (Beinlich, Suermondt, Chavez & Cooper, 1989), information 
retrieval (Baeza-Yates & Ribeiro, 1999), and discovery of gene regulatory networks (Friedman, Linial, 
Nachman & Pe’er, 2000). Automatic learning of BNs from observational data has been an area of intense 
research for more than a decade, yielding practical algorithms and tools (Spirtes, Glymour & Scheines, 
1993). The ability of the BN approach to reconstruct genetic networks from microarray gene expression 
data has been extensively evaluated.

Consider a set of microarray experiments that measures the expression of a set of N genes over M 
different conditions. We denote the gene expression values by an M × N matrix D = (d1,…,dn). The BN 
method discovers a directed acyclic graph (DAG) S such that the posterior probability P(S | X = D) is 
maximized. Here X = (X1,…,XN) denotes a set of random variables representing gene expression for 
genes i = 1,…,N. Let πi be the set of parents of node i in an acyclic network S. Then, the probability P( X 
= D | S) can be decomposed into the product of local probabilities of nodes specified by the network 
structure S:

P X D S P X d X D
i i

i

N

i i
( | ) ( | ),= = = =

=
Õ

1
p p         (1)

where X
ip
denotes the subset of variables corresponding to πi and D

ip
 the corresponding observations. 

For ease of notation, we will omit the symbol X but use D indicating that X takes an observation D. The 
nodes in the learned network correspond to genes or their products and the edges correspond to direct 
probabilistic dependencies, such as causality, mediation, activation, or inhibition between the genes. 
The posterior probability P(S | D) is proportional to the product of the likelihood P(D | S) and the prior 
probability P(S) of network structure S based on prior knowledge, i.e.,

P(S | D) ∝ P(S)P(D | S)           (2)

The main approach to learning BNs from data is based on the strategy of search-and-score, which 
attempts to identify the most probable network S given the data D. This network has the highest posterior 
probability. Depending on assumptions, maximizing this probability corresponds to maximizing a score 
function. There are several ways to define the score. A straightforward definition is the likelihood P(D | S). 
For discrete data and multinomial distribution, the K2 score (Cooper & Herskovits, 1992) is often used 
to evaluate the networks generated. For a given network S, this score is defined as the likelihood:
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where Nijk is the number of cases in D in which variable Xi has the kth value and the parent of i has the 
jth instantiation; qi is the number of parents for i, and ri the number of possible values of variable Xi. 
Thus,
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When the prior probability of S is considered, the K2 score for a network S can be modified by 
multiplying P(S) to P(D | S) in (3).

If a full Bayesian approach is preferred over the maximum likelihood, the score is the posterior 
probability in formula (2). In this case the computation of the marginal likelihood P(D | S) requires a 
marginalization over the parameters θ :

P D S P D S P S d
S S S

( | ) ( | , ) ( | )= ò q q q ,        (5)

Where P(θS | S) is the prior distribution of the parameter θS over structure S. In a discrete BN structure S, 
the parameter θS defines a multinomial distribution for each variable Xi and each assignment of values to 
the parent of Xi. In a Gaussian BN structure S over continuous domains, then for each node, θS contains 
the coefficients for a linear combination of values of parent nodes and a variance parameter.

In general, the computation of the marginal posterior P(D | S) is intractable in a full Bayesian ap-
proach. However, if certain regulatory conditions are satisfied and the data are complete, the integral over 
the parameter in (5) is analytically tractable. Two function families that satisfy these conditions are the 
multinomial distribution with a Dirichlet prior and the linear Gaussian distribution with a normal Wishart 
prior. For other general distributions, a Markov chain Monte Carlo (MCMC) scheme is often adopted to 
avoid the intractability of direct sampling from the posterior distribution (Friedman & Koller, 2003).

The general framework for search-and-score consists of two major steps:

Step1: search for a graph structure S;
Step2: evaluate the posterior probability P(D | S).

For searching graph structures, different strategies can be considered. For example, the K2 algorithm 
(Cooper & Herskovits, 1992) requires the specification of an order of nodes from which the graph 
structures complying with the order are generated following a greedy strategy. Therefore, a procedure 
of producing candidate orders for the nodes is crucial to identify the optimal structure. Approaches to 
searching good orders include genetic algorithms (Larraaga, Poza, Yurramendi & Murga, 1996) and a 
MCMC method (Friedman & Koller, 2003). Since the order space is smaller than the structure space, it 
is more efficient to search the orders. On the other hand, a number of studies have demonstrated that the 
greedy search methods over a search space of DAGs works well (Heckerman, Meek & Cooper, 2006). 
The reader is referred to Chapter ‘Bayesian Networks for Modelling and Inferring Gene Regulatory 
Networks’ in this book for details on scoring metrics and search strategies. The major drawback of the 
search-and-score framework is the excessive computational cost, which can be partially alleviated by 
limiting the number of parents for each node (Friedman & Koller, 2003; Heckerman, Meek & Cooper, 
2006). It may also get stuck in a local minimum.

Another category of BN learning algorithms are constraint-based methods (Chickering, 2002; Coo-
per, 1997; Singh & Valtorta, 1993). The constraint-based methods determine all dependence and inde-
pendence relationships among variables through conditional independence test and construct networks 
that characterize these relationships. This is in contrast to the search-and-score methods which identify 
networks that fit data well. The constraint-based methods are computationally efficient, however, they 
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depend on a significance level for independency decision. They can be also unstable such that an early 
error in the search can result in different structures. Due to the high order conditional independence test, 
the constraint-based methods also require large sample size, which makes it unsuitable for the analysis 
of microarray data. A Hybrid learning method combining the constraint-based and the score-and-search 
methods has been proposed (Wang, Chen & Cloutier, 2007).

Methods of using Prior knowledge in non-biological applications

Since the number of graph structures is super-exponential to the number of variables (Neapolitan, 2003), 
multiple structures may achieve very similar high scores. It is, therefore, important to assemble prior 
knowledge to bias the search for a BN toward a model that contains the preference expressed in this prior. 
Prior knowledge in the form of a constraint or prior probability can reduce the search space, potentially 
improving the learning efficiency. In the BN research community, the prior over structures is usually 
considered the less important of the two components in BN learning: structure S and the parameters θS 
associated with the local probability distributions (Friedman & Koller, 2003). The simplest approach is 
to assume that each structure is equally likely and impose a uniform prior over all structures (Cooper 
& Herskovits, 1992; Heckerman, Meek & Cooper, 2006). The other alternative approach is to define a 
probability γ that each edge is present and subsequently assign networks with m edges a prior probability 

proportional to g gm
N m

( )1
2

-
æ

è
çççç

ö

ø
÷÷÷÷- (Wray, 1991).

Relatively little attention has been given to the use of additional expert knowledge that is not presented 
in the data. The expert knowledge ranges from logical constraints on the model structure (Campos & 
Castellano, 2007; Cheng, Bell & Liu, 1997; Cooper & Herskovits, 1992) or qualitative monotonicity 
relations between the variables (Heckerman, Geiger & Chickering, 1995) to prior distributions for 
network structures and parameterization of local dependencies (Campos & Castellano, 2007; Castelo 
& Siebes, 2000; Cooper & Herskovits, 1992; Iliopoulos, Enright & Ouzounis, 2001; Wray, 1991). Spe-
cially, Campos and Castellano (2007) investigated the effect of imposing restrictions on structures on 
BN learning. Three types of restrictions are considered: (1) existence of edges, (2) absence of edges, 
and (3) order restrictions. These types of restrictions are considered “hard” restrictions, as opposed to 
“soft’ restrictions (Heckerman, Geiger & Chickering, 1995), in the sense that they are assumed to be 
true in all the candidate BNs.

Progress in reconstruction of transcription 
regulatory network using Prior knowledge

The early work in the reconstruction of gene networks used microarray data alone, largely ignoring exist-
ing prior biological knowledge (Akutsu, Miyano & Kuhara, 1999; Friedman, Linial, Nachman & Pe’er, 
2000; Hartemink, Gifford, Jaakkola & Young, 2001; Imoto, Goto & Miyano, 2002; Imoto, Sunyong, 
Goto, & Aburatani, 2002; Pe’er, Regev, Elidan & Friedman, 2001). However, the difficulty with gene 
expression data is that complex interactions involving many genes have to be inferred from noisy data, 
which usually include small number of observations for each individual gene. In addition, since gene 
expression data only represent partial information from the transcription regulation mechanisms within 
a cell, the reconstructed networks often have poor accuracy (Husmeier, 2003). This suggests that the 
inclusion of complementary information in the BN learning is important (Van den Bulcke, Lemmens, 
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Van de Peer & Marchal, 2006). The general framework of using biological prior knowledge (Figure 1) 
consists of three steps:

(1)  assemble biological knowledge into a structure prior probability or a set of constraints on 
networks;

(2)  design a BN learning procedure on microarray data and the structure prior; and
(3)  evaluate the confidence of the inferred interactions. Several representative approaches are sum-

marized here.

 Hartemink et al. (2002) used the information of transcription factor binding data gathered from a 
chromatin immuno-precipitation assay as constraints specifying which edges are required to be present 
and which are required to be absent in the network structure. This type of constraints on network struc-
tures is equivalent to a non-uniform prior over structures that give zero weight to models that include 
edges required to be absent. A slightly different version was also proposed to assign probability 1 to a 
directed edge from a regulatory to a target gene; probability 0 to the edge opposite to the above directed 
edge; and a constant probability to all the other edges (Gevaert, Van Vooren & De Moor, 2007).

Imoto et al. (2003) established a general framework that allows the systematic integration of gene 
expression data with other types of biological knowledge through a prior distribution over network 
structures. Using this framework, a consensus motif for a set of genes with a potential regulatory gene 
can be considered as prior knowledge. In a closely related work (Nariai, Kim, Imoto & Miyano, 2004), 
a list of protein-protein interactions was mined and used to construct a structure prior probability. Since 
this prior knowledge is of a very specific type, the biological implications of protein-protein interac-
tions were exploited in the learning scheme by adding nodes representing protein complexes when the 
resulting structure better fits or explains the data. Similarly, evolutionary relationships between proteins 
(Tamada, Bannai, Imoto & Katayama, 2005) and pathway information from the Kyoto Encyclopedia 

Figure 1. The framework of Bayesian network learning using prior knowledge
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of Genes and Genomes (KEGG) database have been integrated using this framework (Imoto, Higuchi, 
Goto & Miyano, 2006). This framework has also been extended to allow the incorporation of multiple 
types of prior biological knowledge in network learning (Werhli & Husmeier, 2007).

High-throughput data, such as protein-protein binding interactions and transcription factor (Whit-
field, George, Grant & Perou, 2006) binding locations in DNA sequence, inevitably include both false 
positives and false negatives. Usually, a p-value is provided determined for an identified interaction as 
a confidence measure. The integration of this type of knowledge requires considering the confidence 
of relationships. A probabilistic model that uses p-values to construct a structure prior was proposed 
(Bernard & Hartemink, 2005). In that model, the prior incorporates the p-values of transcription factor 
- DNA interactions given by ChIP experiments to weigh against evidence from expression data.

Scientific literature is also a source of prior knowledge. This type of knowledge can be collected by 
manual curation or automated procedures based on natural language processing algorithms and stored 
in databases. However, errors are inevitably introduced during the process due to either automated 
procedure or erroneous observations in the original publications. It would be desirable for the structure 
prior to reflect this aspect. A probabilistic framework of a joint learning model for repairing database 
errors and for estimating a gene network in the context of dynamic Bayesian network was provided 
(Imoto, Higuchi, Goto & Miyano, 2006). Another way to explore knowledge in literature is through 
text-mining methods (Gevaert, Van Vooren & De Moor, 2007). In that work, a gene can be represented 
by a normalized vector in which each entry shows the evidence in PubMed abstracts of this gene to a 
vocabulary based on the publicly available National Cancer Institute Thesaurus (http://nciterms.nci.nih.
gov/NCIBrowser/). The cosine measure is used to obtain gene-to-gene distances, which is further used 
for the construction of structure priors.

Recently, Almasri et al. (2008) proposed another structure prior that incorporates novel knowledge 
mined from literature. In that work, prior knowledge of gene interactions was derived based on the statisti-
cal analysis of published interactions between gene/gene product pairs. The knowledge was represented 
by a likelihood score of interaction (LOI) for a pair of possible interacting genes and the corresponding 
p-value. This information was then explored (1) as a structure prior and (2) as constraints to reduce the 
search space in the BN algorithm.

Prior biological knowledge

We present a summary of high-throughput experiments based on which the structure priors were con-
sidered. In general, each method described here detects a set of interactions with only moderate overlap 
with the results of the other methods. This is not a failure of any single method, but indicates that the 
methods are complimentary and multiple approaches are required to identify the complete set of pos-
sible interactions in a system.

experiments for identifying Protein-Protein interactions

Protein interactions can be analyzed by different genetic, biochemical, and physical methods. Some 
techniques screen a large number of proteins in a cell. The representatives are yeast two-hybrid (Y2H), 
tandem affinity purification (TAP), Mass Spectrometry (MS), DNA and protein microarrays, synthetic 
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lethality, and phage display. Other methods monitor and characterize specific biochemical and physico–
chemical properties of a protein complex. The details on each method and databases for protein interac-
tions can be found in a recent review paper (Shoemaker & Panchenko, 2007). Two methods, Y2H and 
MS, are selected here to give simple descriptions since the experimental data from these methods have 
been used in BN learning as prior knowledge.

The Y2H screen is used to identify pair-wise interactions between a ‘bait’ protein and a ‘prey’ protein 
(Chien, Bartel, Sternglanz & Fields, 1991). The Y2H method is highly sensitive, and does not require 
large amounts of fusion proteins to be expressed. Y2H can only detect pair-wise interactions between 
proteins. Interactions that require three or more proteins are not detected. In addition, interactions between 
membrane-localized proteins, which are unable to enter the nucleus and interact with DNA, cannot be 
detected. Protein interactions that require post-translational modification of one or both proteins cannot 
be detected either by this technology. The Y2H screen is prone to false positives. There are two major 
genome-wide data sets using yeast Y2H assays for the interrogation of genome-wide protein interactions 
(Ito, Ota, Kubota & Yamaguchi, 2002; Uetz, Giot, Cagney & Mansfield, 2000). Another technology, 
MS, can be used to identify proteins that bind together to form complexes (Gavin, Bosche, Krause & 
Grandi, 2002; Ho, Gruhler, Heilbut & Bader, 2002). MS requires proteins that have been broken into 
numerous smaller, more easily identifiable, polypeptides by proteolysis. These small protein fragments 
are identified in MS by their mass and charge. The identified protein fragments are reassembled into 
complete proteins by searching the identified pool of protein fragments against large-scale databases 
of proteins. MS can identify protein complexes rather than just binary protein-protein interactions. MS 
is, however, biased towards stable complexes and it requires that proteins are present at relatively high 
abundance (Ito, Ota, Kubota & Yamaguchi, 2002). Two protein interaction datasets resulted from the 
large scale MS studies are available (Gavin, Bosche, Krause & Grandi, 2002; Ho, Gruhler, Heilbut & 
Bader, 2002).

chromatin immunoprecipitated dna on Microarray chip (chiP-chip)

Chromatin immunoprecipitation of DNA bound to proteins used for hybridization to oligonucleotide 
microarrays (ChIP-chip) can be used to identify DNA sequences that bind to specific proteins. Protein-
DNA interactions such as transcription-regulator and DNA binding site or histone and chromatin can 
be found by this method (Lee, Rinaldi, Robert & Odom, 2002). Because ChIP-chip assays take place en 
vivo, this analysis method can detect DNA binding activity of a protein in its native state, including any 
condition-specific chromatin structure or post-translational modification necessary for the protein’s func-
tion. The ChIP–chip assays allow the identification of the genomic region to which a particular protein 
is bound. However, because of limitations of the assays, it is difficult to identify the exact site within 
the region to which the protein is bound. Various computational methods have been proposed to allow 
flexible query and output options in databases that store experimental results. One can filter data sets 
to meet user-specified threshold on p-values for ChIP–chip data. The details on computational methods 
can be found (Elnitski, Jin, Farnham & Jones, 2006). The ChIP–chip data set (Lee, Rinaldi, Robert & 
Odom, 2002) has been used in various computational studies as the prior knowledge.
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knowledge from literature

The automatic extraction of biological knowledge using natural language processing methods is becoming 
a useful tool for the survey of published work because of the sheer size of the body literature. However, 
the extracted information often includes errors. Furthermore, the extracted knowledge only represents 
the discoveries so far and does not provide new knowledge gained from the literature. To assess the 
possibility of interaction between a pair of genes/proteins, Larsen et al. (2007) utilizes the likelihood of 
interaction (LOI) scores derived from the systematic analysis of published interactions and their mo-
lecular functions based on Gene Ontology (GO) annotations (Ashburner, Ball, Blake & Botstein, 2000). 
The LOI-score is a measure of the likelihood that a gene or a gene product with a particular molecular 
function interacts with another gene or a gene product of a particular molecular function. More specifi-
cally, if two genes closely resemble by their molecular functions from previously observed interaction 
pairs, then they will be considered likely to interact. In their work, gene interactions for a set of yeast 
genes are first derived from an automated literature mining software. Then, each gene is annotated by 
the 23 GO Molecular Function (MF) annotations specified by the Saccharomyces Genome Database 
(SGD) GO Slim Mapper (Battle, Segal & Koller, 2005). Using a statistical procedure, each pair of GO 
MF annotations is assigned a LOI-score. Then the calculated LOI-scores for GO MF annotation pairs 
are used to generate LOI-scores for all possible gene interaction pairs in a set of query genes (Larsen, 
Almasri, Chen & Dai, 2007).

The framework for computing LOI-scores is general. LOI-scores need not to be limited to either the 
type of previously published interactions or GO MF for annotation of gene products. Any current large 
database of gene interactions could be used as the basis for LOI-score calculations and any appropriate 
gene product annotations could be used.

Structure PriorS froM biological knowledge

In this section, we introduce several frameworks for constructing structure prior probabilities from vari-
ous types of prior biological knowledge.

Structure Prior through the framework of energy functions

As mentioned previously, a general framework for the construction of structure prior from biological 
knowledge has been proposed using the form of a Gibbs distribution (Imoto, Goto & Miyano, 2002; 
Imoto, Higuchi, Goto & Tashiro, 2003; Tamada, Kim, Bannai & Imoto, 2003). The prior biological 
knowledge is encoded through an energy function and an inverse temperature hyperparameter. More 
specifically, the network energy for a structure S  is defined as follows:

E S E
ij

ij S
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=
Î
å        (6)

where Eij is the energy of an edge (ij) from gene i gene j in structure S. Within the BN framework, this 
total energy can be decomposed into the sum of the local energies:
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where πj is the index set of parents of gene j in structure S, and E E
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by gene j. The probability of structure S is defined using the Gibbs distribution:
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 is a partition function that takes sum over all structures S and β a positive 

hyperparameter associated with energy function. This parameter can be considered an indicator of the 
strength of the influence of the biological prior knowledge relative to the data. The prior distribution 
defined above becomes flat and uninformative about the network structure when β → 0. Conversely, it 
becomes sharply peaked at the network structure with the lowest energy when β → ∞. In this case, the 
highest prior probability is obtained.

In this framework the prior biological knowledge is summarized in the energy matrix {Eij}. The 
entry Eij takes value h1 if there is an evidence for the presence of the edge from gene i to gene j from the 
biological knowledge or h2 otherwise. Here, 0 < h1 < h2. This type of definition is suitable for biological 
knowledge such as protein-DNA interactions in which gene j is regulated by gene i. However, for the 
protein-protein interaction, both Eij and Eji should take the same value h1 if there is evidence of interac-
tion. This definition can also represent prior knowledge from DNA or protein sequences. Genes that are 
regulated by a transcription regulator might have a consensus motif in their promoter DNA sequences. 
If genes j1,…,jn have a consensus motif for gene i, then one can set E h

ijk
=

1
 and E h

j ik
=

2
 for all k = 

1,…, n. The prior probability of structure S can be rewritten as:
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In this approach, the values of ζ1 = βh1 and ζ2 = βh2 are determined through the minimization of a 
scoring function. It was also noted that this general framework can take biological knowledge extracted 
from large body of literature (Imoto, Higuchi, Goto & Tashiro, 2003).

Structure Prior dealing with chiP-chip data

Transcription factor binding data (ChiP-chip data) provides evidence of the existence of a regulatory 
relationship between a transcription factor and target genes in a genome. This evidence is often reported 
as p-values. Therefore, the probability of an edge being present in the true network is inversely related 
to this p-value. The smaller the p-value, the more likely the edge is to exist in the true network. To ef-
fectively integrate this type of high-throughput data into BN learning, Bernard et al. (2005) proposed 
the following model.

A p-value pij corresponding to an edge (ij) obtained from ChIP-chip data can be considered as an 
observation for random variable Pij defined on the interval [0,1]. Pij is assumed to be exponentially 
distributed if the edge (ij) is present in structure S and uniformly distributed if the edge (ij) is absent 
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from S. That is,

P P p ij S
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eij ij

pij
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       (10)

where λ is the parameter which controls the scale of the truncated exponential distribution, and P(Pij = 
pij | (ij) ∉ S) = 1. Further, let β denote the probability of the edge being present before observing the 
corresponding p-value. Then, by the Bayes rule, the probability that edge (ij) is present after observing 
the corresponding p-value is:
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The mass of this distribution becomes more concentrated at smaller values of Pij as the parameter λ 
increases. Conversely, the distribution spreads out and flattens as λ decreases. The p-value threshold can 
be determined by solving the equation Pλ((ij) ∈ S | Pij = p*) = Pλ((ij) ∉ S | Pij = p*), that is,

p
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ij
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       (12)

The relationship between λ and p* can be explained as follows:
For any fixed value λ, an edge (ij) is more likely to be present than absent if the corresponding p-

value is below this critical value p*. As the value of λ increases, the value of p* decreases. In this case 
we become more stringent about how low a p-value must be before we consider it as a prior evidence 
for an edge. Conversely, as λ decreases, the value of p* increases. In this case, we become less stringent. 
As λ→0, it can be shown that Pλ((ij) ∈ S | Pij = p) → β, which is independent of p. This implies that if 
we have no confidence in the location data, the probability that edge (ij) is present is the same value β 
both before and after seeing the corresponding p-value. In other words, λ acts as a tuneable parameter 
indicating the degree of confidence in the evidence provided by the location data. This allows for mod-
elling the noise level inherent in the location data.

The precise selection of λ could be difficult. To avoid the specification of a single value, the Bayesian 
approach can be adopted to compute a marginalized probability over λ. For convenience, it is assumed 
that λ is uniformly distributed over the interval [λΗ − λL]. Then let
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The integral cannot be solved analytically, however, it can be solved numerically for a fixed pij. Since 
there are only finite many p-values for a set of location data, the integrals can be pre-computed.

The prior probability of a structure S usually uses the edge-wise decomposition:

P S P ij S P p P ij S P p
ij ij

ij S
ij ij

ij S

( ) (( ) | ) (( ) | ).
( ) ( )

= Î = Ï =
Î Ï
Õ Õ     (14)

In this formula, the term corresponding to the normalizing constant has been dropped.
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Structure Prior from Multiple Sources of biological knowledge

Following the framework of Imoto et al. (2003) for the construction of structure prior, Werhi and Husmerier 
(2007) designed a scenario in which the energy takes on a particular form such that the computation 
of the marginal posterior distribution over the hyperparameter becomes analytically tractable. Further-
more, they extended the framework of Imoto et al. (2003) to include more than one energy function. 
This extended model allows for simultaneous inclusion of different sources of prior knowledge, such 
as promoter motifs and KEGG pathways. In their approach, all hyperparameters are sampled from the 
posterior distribution with Markov chain Monte Carlo (MCMC). The sampled hyperparameters ensure 
that the relative weights related to the different sources of prior knowledge are consistently inferred within 
the Bayesian context, while automatically trading off their relative influences in light of the data.

In that model, a matrix B that denotes the biological prior knowledge in which knowledge about 
interactions between nodes is represented by the entries Bij ∈ [0,1]. More specifically,

B
ij
=

0 5. no prior knowledge about the presense or absence of  

an edge from  node to node 

have prior evidenc

i j;

[ , . )0 0 5 ee that there is no directed edge  

between node and node i jj;

( . , ]0 5 1 have prior evidence that there is a direct edge 

ffrom node  to node i j.

ì

í

ïïïïïïïïïï

î

ïïïïïïïïïï
  (15)

From the definitions of B and E(S), the energy of a structure S can be further defined as:
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where sij is 1 if the edge (ij) is present in structure S, 0 otherwise. The energy is 0 for a perfect match 
between the prior knowledge B and the actual network structure S, while increasing with mismatches 
between B and S. Similar to those used in Imoto et al. (2003), the prior probability over network struc-
tures S is defined by taking the form of a Gibbs distribution:
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The energy function E(S) can be further written as:
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Here, the summation is taken over all parent configurations πj of node j in all network structures.
The above framework was further extended to multiple sources of prior knowledge (Werhli & Hus-

meier, 2007). Biological knowledge from each independent source is represented by a separate matrix 
Bk, k = 1,…, K. Each matrix satisfies the requirements for B in formula (15). Therefore, K energy func-
tions can be given as follows:
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where each energy function is associated with its own hyperparameter βk. The prior probability of a 
network structure S given the hyperparameter βk can be defined as:
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where the partition function is given by
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Similarly,
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The MCMC scheme can be used to sample both network structures and hyperparameters from the 
posterior distributions. The details on the general MCMC procedure can be found in Chapter ‘Bayesian 
Networks for Modelling and Inferring Gene Regulatory Networks’. In their simulations, they chose the 
prior distribution of the hyperparameters P(β) to be the uniform distribution over the interval [0, MAX]. 
The proposal probability for the hyperparameters R(βnew | βold) was chosen to be a uniform distribution 
over a moving interval of length l  ≤≤ MAX, centered on the current value of the hyperparameter.

Structure Prior dealing with literature

Almasri et al. (2008) proposed a structure prior for gene interactions using LOI-scores obtained through 
the statistical analysis of interactions in literature (Larsen, Almasri, Chen & Dai, 2007). The confidence 
in a possible interaction between a pair of genes is measured by the p-value of the LOI-score with the 
assumption that the LOI-score for the gene pair follows a normal distribution. If the p-value of an LOI-
score is significant, then the corresponding interaction is believed to be more likely. Conversely, if the 
p-value of an LOI-score is insignificant, then belief that the corresponding gene pairs interact should be 
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lower. The detailed assignment of prior probability for gene pairs is described as below.
The structure prior for the edge from gene i to gene j is then assigned as:

πij = p(i → j) = 1- pij, p(i ••• j) = 1 - πij = pij,        (25)

where and i ••• j means that there is an edge or there is no edge from gene i to gene j, respectively. Let 
eij denote the random variable that takes value 1 if there is an edge from gene i to gene j and takes value 
0 otherwise. Then, from the Bernoulli distribution the probability for random variable eij is:

p e
ij ij

e

ij

eij ij( ) ( ) .= - -p p1
1        (26)

The structure prior constructed in this way is only an informal prior. A formal prior for the BN struc-
ture S can be written as follows:
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where c is a normalizing constant. The normalizing constant c can be fixed at 1, as the actual magnitude 
of c does not affect structure searching (Castelo & Siebes, 1998).

Structure Prior dealing with errors in literature knowledge

Imoto et al. (2006) proposed a model that can handle errors in literature or errors accumulated during 
the process of data collection. Given that the prior knowledge about the regulative interactions among 
some genes is stored in biological databases, this information is recorded in a matrix B0 with entries 
defined as Bij

0 1=  if it is known that gene i regulates gene j; B
ij
0 2=  if it is known that gene i does 

not regulate gene j. B
ij
0 0=  if nothing is known about gene i and gene j. As commented in Imoto et 

al. (2006), the negative information such as gene i does not regulate gene j, i.e., Bij
0 2= , usually is not 

included in the database. However, using additional information such as subcellular localization can 
create the negative set.

Their model is to find the optimal network Ŝ  and the optimal updated database information B̂  that 
maximizes the conditional joint probability:

P(S, B | D, B0),        (28)

where each entry in matrix B is the updated information from B0 and D is the gene expression data. The 
conditional joint probability is then rewritten as

P S B D B
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is the normalizing constant and does not relate to the selection of S and B. Therefore, given D, the maximi-
zation of the conditional joint probability P(S, B | D, B0) is equivalent to the maximization of P(D,S, B | B0). 
When the database information B0 is given, the conditional joint probability can be decomposed as

P(D, S,  B | B0) = P(D | S)P(S | B)P(B | B0).        (31)

Since Bij can take one of the values 0, 1, or 2, we let β0, β1, β2 be the parameters associated with each 
value respectively. Further, set β0 = 0 < β1 < β2. Similar to the model described in the previous section, 
the prior probability of the graph S can be expressed as

P S B
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e Bij

ij S

( | )
( )

=
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Î
å1 b

       (32)

The parameters β1, β2 need to be optimized. The computation of normalizing constant is intractable 
even for moderately sized gene networks. However, it is possible to obtain the exact value of Z for the 
dynamic Bayesian network models. The details can be found in Imoto et al. (2006).

The conditional probability represents the transition probability when we update the database infor-
mation from B0 to B. The statistical model for P(B | B0) is essential to realize a self-repairing system for 
biological database.

First, define a function d(a) to categorize edges into two groups:
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Then transition probability P d B d B
ij ij

( ( ) | ( ))0  is then constructed by using the Bernoulli distribution 
of the form
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Then P(B | B0) can be modeled by the product of the Bernoulli distributions
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They set a high probability for P d B
ij

( ( ) ),0 1=  because the information on edges with corresponding 
to B

ij
0 1 2= or  is rather reliable. One the other hand, since there is no information about edges with 

B
ij
0 0= , it is reasonable to set the probability P d B

ij
( ( ) ),0 1= B

ij
0 1 2= or B

ij
0 0= P d B

ij
( ( ) ) . .0 0 0 5= =  

because the information on edges with corresponding to B
ij
0 1 2= or  is rather reliable. One the other 

hand, since there is no information about edges with B
ij
0 0= , it is reasonable to set the probability 

P d B
ij

( ( ) ) . .0 0 0 5= =  In addition, if the edge from gene i to gene j is stored as a known relationship in 
the database, but the edge is not observed from the gene expression data, then the edge is removed from 
the database by setting Bij = 0 if it leads to an increase in the conditional joint probability P(D, S,  B | B0) 
= P(D | S)P(S | B)P(B | B0). Conversely, if the edge from gene i to gene j is clearly observed from the gene 
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expression data, but the edge is not included in the database, this edge is added to the database by setting 
Bij = 1 if the conditional joint probability increases. 

coMPutational exPeriMentS

The networks used in computational experiments with previously described structure priors are of 
relatively small scale, ranging from 25 to 125 genes (Almasri, Larsen, Chen & Dai, 2008; Le, Bahl & 
Unga, 2004; Werhli & Husmeier, 2007). The accurate quantification of the improvement when prior 
biological knowledge is incorporated into a BN framework is difficult due to lack of knowledge of the 
true biological network structure. We highlight several experimental studies here.

A genetic network involved in hepatic glucose homeostasis was used to generate a synthetic microar-
ray data (Le, Bahl & Unga, 2004). Then the ability of the BN approach to reconstruct networks and 
reduce the amount of data required was analyzed when different types of prior biological knowledge 
were incorporated. The considered network has 35 nodes and 53 interactions. Prior knowledge was used 
in a constraint-based approach in the following two ways: (1) add edges that are known to regulate a 
target gene, and (2) remove edges that are known not to regulate a target gene. It was reported that the 
number of expression profiles required to learn a network with fixed level of sensitive is less when type 
(1) edges were added. It was also shown there is a general increase in sensitivity when more of type (2) 
edges were removed.

The genetic network used in Almasri et al. (2008) has 102 genes and 171 interactions that are in-
volved in transcription regulation related to the yeast cell cycle. The microarray data are a time series 
gene expression that covers more than two complete cycles of the cell division (Spellman, Sherlock, 
Zhang & Iyer, 1998). It is highly enriched for known interacting genes involved in the Saccharomyces 
cell cycle. In their study two ways of incorporating prior knowledge were investigated: (a) use a prior 
structure prior defined from formulas (27), and (b) use prior knowledge to restrict the search. In (b) 
an interaction is considered a possible candidate if its LOI score is greater than certain threshold and 
otherwise is considered impossible and removed. Both approaches were able to generate networks with 
improved quality in terms of sensitivity, precision and biological relevance. In addition, the second ap-
proach seems to have slightly better performance.

In their work (Werhli & Husmeier, 2007), the computational study revealed that prior knowledge 
that is more consistent with the data is given a stronger weight by the Bayesian inference scheme. The 
study also provided the evidence that the proposed Bayesian inference method can discriminate between 
different sources of prior knowledge and automatically assess their relative merits through learning the 
hyperparameters associated with the prior knowledge. The influence of an irrelevant prior will be auto-
matically suppressed; however, the prior will not be completely switched off. They also quantified the 
qualities of learned networks using and without using the prior knowledge with several criteria: (1) the 
number of learned true undirected edges, (2) the number of learned true edges, and (3) the area under 
the receiver operator characteristics (ROC) curve, where the relative number of true positive edges is 
plotted against the relative number of the false positive edges. It was clear that the method using prior 
knowledge outperformed the ones that do not use all evaluation criteria. There are also some controver-
sial results. It was shown in (Geier, Timmer & Fleck, 2007) that the benefit of using prior knowledge 
is limited to conditions of small time series gene expression data. Their prior knowledge is given by 
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the probability distributions for true and false interactions respectively. Another issue is that the prior 
interaction probabilities are drawn from two truncated normal distributions. The accuracy of the prior 
knowledge is controlled by a parameter that is used to separate the means of both distributions. It is not 
clear if this assumption can be satisfied by prior biological knowledge.

Gevaert et al. (2007) investigated two complementary sources of information: PubMed abstracts 
combined with publicly available taxonomies or ontologies, and known protein–DNA interactions. 
These priors, either separately or combined, have the potential to reduce the complexity of learning 
reverse-engineering regulatory networks while creating more robust and reliable models. Moreover, 
this approach can easily be extended with other data sources.

concluSion

Incorporation of prior biological knowledge into the BN learning framework is crucial for successful 
inference of gene networks from microarray gene expression data. Bayesian networks provide a powerful 
framework for data integration and regulatory network modeling. We have presented several methods 
for constructing structure priors from various types of knowledge, including curated databases, high-
throughput experimental data, literature, and computational analysis results from sequences information 
other than experiments. However, lack of a systematic evaluation of the performance presents a serious 
problem in the current research.

future reSearch directionS

It is important to understand the relative merits and shortcomings for various proposed structure priors. 
The comparison is not a simple task. Stolovitzky et al. (2007) pointed out that the needs and challenges 
for the establishment of a set of protocols that can achieve a fair comparison of the strengths and weak-
nesses of the inference methods and a clear sense of the reliability of the network models produced. The 
Dialogue for Reverse Engineering Assessments and Methods (DREAM) (http://wiki.c2b2.columbia.
edu/dream/index.php/The_DREAM_Project) is set up for such a need. The second DREAM meeting 
has posted challenging problems. The study of effectively incorporating prior structures could benefit 
by using the appropriate challenging problems. Some networks used in recent studies of network algo-
rithm comparison could also be used for evaluating structure prior in BN method (Soranzo, Bianconi & 
Altafini, 2007; Werhli, Grzegorczyk & Husmeier, 2006).
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key terMS and definitionS

Gene Ontology: The Gene Ontology (GO) project has developed three structured controlled vocabu-
laries (ontologies) that describe gene products in terms of their associated biological processes, cellular 
components and molecular functions in a species-independent manner.

K2 Algorithm: K2 algorithm is a score-based algorithm in Bayesian network. It recovers the under-
lying graphic structure based on a predetermined order of nodes in a greedy fashion.

KEGG Pathways: Kyoto Encyclopedia of Genes and Genomes (KEGG) includes a collection of 
manually drawn pathway maps representing our knowledge on the molecular interaction and reaction 
networks for metabolism, genetic information processing, environmental information processing, cel-
lular processes, human diseases and drug development.
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LOI-Score: The likelihood of interaction (LOI) score is a measure of the likelihood that a gene or 
a gene product with a particular molecular function interacts with another gene or a gene product of a 
particular molecular function. These scores can be derived from databases of interactions and the Gene 
Ontology molecular function annotations.

Prior Biological Knowledge: Databases that include biological interactions between proteins, pro-
teins and DNAs. These interactions are collected from high throughput experiments or curated from 
literature.

Structural Prior: Structure prior is a prior distribution over directed acyclic graphs.
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introduction

An important goal of cell biology is to understand the network of dependencies through which genes 
in a tissue type regulate the synthesis and concentrations of protein species. A mediating step in such 
synthesis is the production of messenger RNA (mRNA). Protein products of one gene may help to 
regulate the rate of transcription into mRNA of the DNA reading frame of certain other genes. These 
dependencies among gene activities and their mRNA proxies have long been represented by directed 
graphs. Early in the 1990s, machine learning algorithms were developed for learning directed graphs 
representing causal relations from appropriate data samples. At about the same time, developments in 
microarray techniques made possible the simultaneous measurement of messenger RNA (mRNA) counts 
for thousands of distinct genes. This juxtaposition naturally led to a flood of studies in the computer sci-
ence and biological literatures applying various search algorithms to gene expression data, with the aim 
of producing directed graphs that describe, for a tissue type, which genes regulate transcription rates of 
which other genes. Some of that work continues. We now know that the machine learning techniques 
are inappropriate and unsound in these applications, although they are potentially applicable to more 
recent measurements of RNA transcript concentrations in single cells. This chapter explains the statisti-
cal reasons why, as well as some of the relevant issues of computational complexity.

The short story is this: The goal of inference is the regulatory network within individual cells, but 
current microarray measurements are of mRNA counts extracted from large samples of cells. The 
machine learning algorithms exploit assumed symmetries between the network structure and a class 
of statistical properties of measurements. Assuming those symmetries hold for mRNA concentrations 
in individual cells and the regulatory network in the individual cellular level, and assuming all cells in 
the measured sample have the same regulatory network, it follows that the symmetry fails for measure-
ments of concentrations aggregated from multiple cells. Experimental studies with real and simulated 
data confirm this failure.

theory: learning froM aggregationS

Microarrays are small chips a few square inches in size on which spots of DNA have been imbedded. A 
typical chip may contain thousands of spots, each spot composed of multiple copies of a small sequence 
of DNA. In the living cell nucleus, sections of DNA are copied (“transcribed”) into a dual complementary 
molecule, RNA, which is the scaffolding for the synthesis, outside the cell nucleus, of cellular proteins. 
RNA can be extracted from tissue, and tiny luminescent beads can be chemically attached to RNA 
molecules obtained from tissue cells (e.g., from breast cancer cells). Each RNA molecule contains a 
sequence of bases that binds to a specific DNA sequence. When a suspension consisting of many RNA 
molecules from a tissue sample is applied to a microarray, the RNA molecules bind to the complementary 
DNA sites. By measuring the luminosity of each DNA spot, the relative concentration of each kind of 
RNA in the tissue sample can be estimated. From these concentrations, one can infer relative activity of 
genes—how much RNA is produced by various parts of the cell DNA in the tissues sampled.

Two fundamentally different strategies have been proposed to determine networks of regulatory 
relationships from microarray measurements. One strategy (Davidson, et al., 2002; Ideker, et al., 2001; 
Yuh, Bolouri, & Davidson, 1998) experimentally suppresses (or enhances) the expression of one or 
more genes, and measures the resulting increased or decreased expression of other genes. The method, 
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while laborious, has proved fruitful in unraveling small pieces of the regulatory networks of several 
species. Its chief disadvantage is that each experiment provides information only about the effects of the 
manipulated gene or genes. A single knockout of gene A resulting in changed expression of genes B and 
C, for example, does not of itself provide information as to whether A regulates both B and C directly, 
or whether A regulates B which in turn regulates C, or whether A regulates C which in turn regulates 
B. And if manipulation of A yields no association with B, then B may still influence A (or not). This 
implies that at least N–1 experiments that intervene on a single gene would be required to identify the 
dependency structure of N genes, assuming those genes have no additional, unmeasured common causes, 
and this laborious procedure still cannot distinguish between direct and indirect regulation. Statistically, 
one uses only the estimation of the expression level of each gene considered in each experiment, and the 
uncertainties of those estimates. Experiments with multiple simultaneous interventions on gene expres-
sion complicate matters in ways we will discuss later.

A second strategy relies on the natural variation of expression levels of the same gene in different 
cells. The proposal is to measure—typically with microarrays—the expression levels in repeated samples 
from the same tissue source, or similar sources, and to infer the regulatory structure from the statistical 
dependencies and independencies among the measured expression levels (Akutsu, Miyano, & Kuhara, 
1998; D’haeseleer, 2000; D’haeseleer, Liang, & Somogyi, 2000; Friedman, Nachman, & Pe’er, 2000; 
Hartemink, 2001; Hashimoto et al., 2004; Liang, Fuhrman, & Somogyi, 1998; Shmulevich, Dougherty, 
Kim, & Zhang, 2002; Shrager, Langley, & Pohorille, 2002; Yoo, Thorsson, & Cooper, 2002). The appar-
ent advantage of the strategy is that it offers the possibility of determining multiple relationships without 
separate experimental interventions. If, for example, gene A regulates gene C only by regulating gene B 
which in turn regulates C, the expression level of A should be independent, or nearly independent, of the 
expression level of gene C conditional on the expression level of gene B. In principle, if adequate sample 
sizes were available, the methods could also be used as a supplement to gain additional information from 
experiments in which the expression of particular genes are experimentally suppressed or enhanced (but 
see the Computational Complexity section below). The requisite statistical procedures for this strategy 
are more elaborate, and require direct or indirect (e.g. implicit in the posterior probabilities) estimates 
of conditional independence relationships among expression levels.

There are many statistical obstacles to the second strategy including: the joint influence of unmeasured 
factors (e.g. unmeasured gene expressions or extra-cellular factors), a variety of sources of measurement 
error, an unknown family of probability distributions governing the errors, and functional dependencies 
for the expression of any gene that may be Boolean for some regulating genes and continuous for other 
regulators. Some of these difficulties—in particular the presence of unrecorded common causes—can, 
in principle, be overcome (Spirtes, Glymour, & Scheines, 2001). We describe in this section a more 
elementary statistical difficulty with the second strategy that calls its value into question and raises a 
set of important research problems.

directed acyclic graphs and Markov factorization

Qualitative regulatory relationships among genes are often represented by directed graphs. Each vertex 
is a random variable whose values represent levels of expression of a particular gene. Each directed edge 
from a variable X to a variable Y in such a graph indicates that X produces a protein that regulates Y. In 
principle, the graph may be cyclic or acyclic, and may even have self-loops (a directed edge from a vari-
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able to itself). In the simplest case, one assumes an acyclic graph with noises and random measurement 
errors for each measurement of each gene that are independent of those for any other gene.

We consider this simplest case: the true, but unknown regulatory structure can be represented by a 
directed acyclic graph, with independent errors. Consider, for example, four genes X, Y, Z, W whose 
regulatory connections can be represented by Figure 1.

Suppose the measured values of X, Y, Z, W satisfy the following three equations:

Z = f(Y,W) + εZ 

Y = g(X) + εY 

W = h(X) + εW 

f, g, h are any functions and εZ, εY, εW are independently distributed noises. It follows that the joint prob-
ability density of X, Y, Z, W admits a Markov factorization: d(X, Y, Z, W) = d(Z | Y, W) d(Y | X) d(W | X) 
d(X). The Markov factorization implies that Y and W are independent conditional on X, and that X and Z 
are independent conditional on {Y, W}; it is in fact equivalent to specifying that these two relationships 
hold. More generally, assuming each random variable has an independent noise source but is otherwise a 
deterministic function of its parents in the graph, the system described by any directed acyclic graph has 
a density that admits a Markov factorization that can be written as the product, over all variables, of the 
density of each variable conditional on its graphical parents. Graphs with the same Markov factorization 
imply the same independencies and conditional independencies, and so form an equivalence class. The 
Markov equivalence class for Figure 1 consists of that graph and the graphs obtained by reorienting ex-
actly one of: X → Y or X → W. The Markov equivalence class represents the most information that could 
be obtained from second moments of the joint distribution of the variables. Non-Normal distributions 
have higher moments that are not uniquely determined by the second moment, and for linear systems 
it has been shown that higher moments can resolve structure more finely than the Markov equivalence 
class. We focus here on the dominant type of search algorithm for gene regulation networks: namely, 
those that assume either linearity or rely exclusively on second moments, even though some indepen-
dently established expression dependencies are known to be non-linear. For time series data, regulatory 
relationships can still be represented by a directed acyclic graph and probabilities admitting a Markov 
factorization, but with vertices appropriately labeled by gene and time.

Figure 1. Example directed acyclic graph
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the challenge of aggregation

In structure learning, the aim is to discover the regulatory structure in individual cells, but measurements 
are typically of relative concentrations of mRNA transcripts obtained from thousands, or even millions, 
of cells. Such measurements are not of variables such as X in Figure 1, but are instead, ideally, of the 
sum of the X values over many cells. We will denote such measured sums over n cells by ΣXi.

In general, the conditional dependencies/independencies among the gene expression levels of a single 
cell are not the same as those among the sums of gene expression levels over a number of cells. This 
statistical fact poses a serious difficulty for the second strategy for regulatory structure inference, which 
relies on the statistical dependencies among the gene expression levels. For example, if the variables 
in Figure 1 are binary, and each measurement is of the aggregate of transcript concentrations from two 
or more cells, ΣXi and ΣZi are not independent conditional on {ΣYi, ΣWi}, and the associations obtained 
from repeated samples will not therefore satisfy the Markov factorization (Danks & Glymour, 2002).

There are some special cases where the conditional independencies are invariant under aggregation. 
For example, if binary regulatory relations among genes X, Y, and Z are described by a singly connected 
graph such as X → Y → Z, X ← Y ← Z, or X ← Y → Z, then the implied conditional independence of X 
and Z given Y holds as well for sums of independent measurements of X, Y, and Z respectively (Danks 
& Glymour, 2002).

Linear, Normal distributions have special virtues for invariance. Whatever the directed acyclic graph 
of cellular regulation may be, if each variable is a linear function of its parents and an independent 
Gaussian noise, then the Markov factorization holds for the summed variables. In that case, conditional 
independence is equivalent to vanishing partial correlation, and the partial correlation of the two variables 
(although not the sampling distribution), each respectively composed of the sum of n like variables, will 
be the same as the partial correlation of the unsummed variables.

Two less restrictive sufficient conditions for conditional independence of variables to be the same 
as the conditional independence of their sums, are given in two theorems proved in Chu, Glymour, 
Scheines, & Spirtes (2003):

Theorem 1 (Local Markov theorem): Given a directed acyclic graph G representing the causal rela-
tions among a set V of random variables, let Y, X1, …, Xk ∈ V, and X = {X1, …, Xk} be the parents of Y 
in G. If Y = cTX + ε, where cT = (c1, …, ck), and ε is a noise term independent of all non-descendents of 
Y, then Y is independent of all its non-parents, non-descendents conditional on its parents X, and this 
relation holds under aggregation.

Theorem 2 (Markov wall theorem): Given a directed acyclic graph G representing the causal relations 
among a set V of random variables. Let X = {X1, …, Xh}, Y = {Y1, …, Yk}, W = {W1, …,Wm}, and X ∪ 
Y ∪ W = V. Suppose that the following three conditions hold:

1.  The joint distribution of X1, …, Xh, Y1, …, Yk is multivariate normal with non-singular covariance 
matrix;

2.  For i = 1, …, k, Yi is neither a parent nor a child of any variable Wj ∈ W (i.e., there is no direct 
edge between a variable in Y and a variable in W); and

3.  For i = 1, …, h, Xi is not a child of any variable Wj ∈ W (i.e., any edge between a variable in X 
and a variable in W must be from the X-variable to the W-variable).
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Then Y is independent of W conditional on X, and this relation holds under aggregation.
Although there are established regulatory mechanisms in which some regulators of a gene act linearly 

in the presence of a suitable combination of other regulators of the same gene (Yuh, et al., 1998), there 
does not appear to be any known regulatory system that is simply linear.

One of the best-established regulatory functional relations seems to be the expression of the Endo16 
gene of the sea urchin (Yuh, et al., 1998). The expression level of the gene is controlled by a Boolean 
regulatory switch between two functions, each of which is a product of a Boolean function of regulator 
inputs multiplied by a linear function of other regulator inputs. Even much simplified versions of such 
transmission functions do not preserve conditional independence over sums of variables.

Consider an example: suppose in each of n cells genes X, Y, Z, and W have the regulatory structure 
X → Y → Z ← W with Y = X2; Z = YW; and W a binary variable with P(W = 1) = p. Assume X takes 
values in {0, 1, 2, 3, 4} with uniform probability. Let ΣXi, ΣYi, ΣZi, and ΣWi denote the sums of values 
of X, Y, Z and W respectively over n = 4 cells. Z is independent of X given Y in each cell. However, we 
will show that ΣZi is not independent of ΣXi given ΣYi.

For each cell i, Zi = Yi if the value of Wi is 1, and zero otherwise. Hence the probability that Zi = yi 
given that Yi = yi is p+(1-p)/5. Let ΣYi = Σ((Xi)

2 = 16. There are just five possible vector values for X = 
<X1, X2, X3, X4> consistent with Σ((Xi)

2 = 16: <4, 0, 0, 0>; <0, 4, 0, 0>; <0, 0, 4, 0>; <0, 0, 0, 4> and <2, 
2, 2, 2>. The first four vectors in the list have ΣXi = 4 and the last has ΣXi = 8. We will now show that 
P(ΣZi = 16 | ΣYi = 16 & ΣXi = 4) is not in general equal to P(ΣZi = 16 | ΣYi = 16 & ΣXi = 8). For example, 
if X = <4, 0, 0, 0>, then ΣZi = 16 if and only if W1 = 1, where P(W1 = 1) = p. Similarly for the vectors 
<0, 4, 0, 0>, <0, 0, 4, 0> and <0, 0, 0, 4>. Given that ΣXi = 4 and ΣYi = Σ((Xi)

2 = 16, the set of the first 
four vectors has probability 1, and each individual vector of the first four has probability 0.25. Therefore 
P(ΣZi = 16 | ΣYi = 16 & ΣXi = 4) = p. On the other hand, the probability that X = <2, 2, 2, 2> is 1 given 
that ΣXi = 8 and ΣYi = Σ((Xi)

2 = 16. Therefore P(ΣZi = 16 | ΣYi = 16 & ΣXi = 8) is just the probability that 
Wi = 1 for i = 1, 2, 3, 4, which is p4.

Much about the preceding example—e.g., that n = 4, that X is uniformly distributed, that X has 5 
distinct values, that Y = X2—is obviously inessential; Y = X2 was used only because it is the simplest 
non-linear, non-Boolean function proposed for a regulator (Schilstra, 2002). Similar arguments would 
apply to a variety of non-linear dependencies of Y on X.

The considerations we have advanced in this section argue that, other than by chance, genetic regulatory 
network inference from associations among measured expression levels is possible only if conditional 
independence relations in the individual cells are (approximately) preserved in sums of those i.i.d. units. 
Although the particular example we gave was not biologically relevant, there are biologically relevant 
cases in which those conditional independence relations are not preserved. Chu (2004) has provided 
general sufficient conditions for conditional independence relations not to be invariant.

There are conditions under which the conditional independence relations among the summed expres-
sion levels of the genes from large number of cells will eventually be determined by the covariance matrix 
of the expression levels of the genes within a single cell. Recall that unlike conditional independence 
relations, the covariance matrix, with appropriate normalization, is invariant under aggregation. Those 
conditions are given in Theorem 3.

Theorem 3: Let {(Xn, Yn, Zn)} be a sequence of i.i.d. k+2 dimensional random vectors with mean 0 and 
nonsingular covariance matrix Σ. Suppose (Xn, Yn, Zn) and Zn both have bounded densities (with respect 
to the Lebesgue measure). Let Xn* = ΣX / n , Yn* = ΣY / n , and Zn* = ΣZ / n , and (U, V, W) be a 
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multivariate normal random vector with mean 0 and covariance matrix Σ. Then the total variation distance 
between (i) the conditional distribution of (Xn*, Yn*) given Zn*, and (ii) the product of the conditional 
distributions of Xn* given Zn* and Yn* given Zn* converges to: the total variation distance between (i) 
the conditional distribution of (U, V) given W, and (ii) the product of the conditional distributions of U 
given W and V given W almost surely with respect to the measure induced by W.

The implication of Theorem 3 is that, assuming we can model the gene expression levels as con-
tinuous random variables satisfying some regularity conditions, the conditional independence relations 
among the summed expression levels of a large number of cells are determined by the covariance matrix 
of the summed expression levels, regardless of the conditional independence relations among the gene 
expression levels in a single cell. For example, if in a single cell, gene X and gene Y are independent 
given gene Z, but the partial correlation between X and Y given Z is non-zero—this is usually the case 
when (X, Y, Z) do not follow a multivariate normal distribution—then given n such cells, ΣX and ΣY are 
dependent given ΣZ. (Note that the correlation matrix of the gene expression levels is preserved under 
aggregation.)

While the conditions for Theorem 3 seem to be quite general, they do not cover the class of discrete 
distributions. After all, the expression level of any gene in a cell—the number of mRNA transcripts for 
that gene at a moment—is an integer-valued random variable. Continuous distributions can approximate 
a discrete distribution arbitrarily well, though only in terms of the distribution function. Theorem 3 can, 
however, be extended to an important class of discrete distributions—the regular lattice distributions—
which covers the possible distributions of the numbers of mRNA transcripts of any set of genes in a 
cell.

A lattice distribution for a random vector X is a discrete distribution that only assigns non-zero prob-
abilities to points x = (x1, …, xk) such that xi = mhi + bi, where m is an integer, hi a positive real value, 
and bi a constant. If hi is the largest positive real number such that Xi can only take values of the form 
mhi + bi, hi is called the span of Xi. A regular lattice distribution is defined as: Suppose a random vector 
X = (X1, …, Xk) has a lattice distribution, and hi is the span of Xi. X has a regular lattice distribution if, 
for each i, there are at least two vectors xi = (x1, …, xi-1, xi, xi+1, …, xk) and yi = (x1, …, xi-1, yi, xi+1, …, 
xk), such that |yi - xi| = hi, P(X = xi) > 0, and P(X = yi) > 0.

Chu (2004) extended Theorem 3 to cases in which Zn has a regular lattice distribution, not a bounded 
density. These results provide a sufficient condition for the conditional independence relation between 
genes X and Y given genes Z in a single cell not to be invariant under aggregation: namely, when the 
partial correlation of X and Y given Z is non-zero. Notice, however, that the partial correlation is in-
variant under aggregation.

These theoretical results appear to conflict with many reports of successful machine learning searches 
for regulatory structure. In many cases, however, the successes are with simulated data in which the 
simulated values for individual cell representatives are not summed in forming the simulated measured 
values, and are therefore unfaithful to the actual measurement processes. In several other cases, results 
with real data are not independently confirmed, but merely judged plausible. Rarely, results are ob-
tained that agree with independent biological knowledge; in these cases the actual regulatory structure 
among the genes considered may approximately satisfy invariance of conditional independence for 
summed variables, or the procedures may simply have been lucky. Feasible, economical techniques 
for measuring concentrations of transcripts in single cells could make machine learning techniques 
based on associations of expressions valuable in identifying regulatory structure. Techniques for the 
measurement of concentrations of mRNA species have recently become available (Elowitz, Levine, 



317

Problems for Structure Learning: Aggregation and Computational Complexity

Siggia, & Swain, 2002; Ginsberg, et al., 2004; Levsky, Shenoy, Pezo, & Singer, 2002; Rosenfeld, 
Young, Alon, Swain, & Elowitz, 2005), and seem the more appropriate venue for the application of 
machine learning methods

Experimental techniques that take advantage of immunoprecipitation, tagging of binding sites and 
regulatory proteins, binding site sequence homologies, and evolutionary preservation of regulatory 
mechanisms, are proving more fruitful. We may hope that machine learning techniques that are biased 
by such extra information may prove useful, and two recent examples in the literature suggest that this 
hope may bear fruit.

Pe’er, Tanay, & Regev (2006) focus on learning the structure of what they term regulation graphs: 
those in which (i) a small subset of vertices are regulators; (ii) a non-regulator is not the parent of any 
other vertex; and (iii) the number of parents of any vertex is bounded by some small number. These 
graphical structures correspond to those in which there are a few regulators that control the activity of all 
other genes, and perhaps influence each other. The restriction to this relatively small set of possible graphs 
results in provable performance guarantees for their MinReg algorithm, but it is computationally intractable 
unless the set of possible regulators is small. Microarray data alone do not suffice to determine a small 
set of possible regulators, and so Pe’er, et al. (2006) use additional sources of information—functional 
annotations from other experiments, and sequence homologies—to restrict the possible regulator set. 
When these additional pieces of information are used for real-world data, the MinReg algorithm recov-
ers more information than other algorithms; insufficient information is provided to accurately judge its 
absolute performance. The simulation tests of the MinReg algorithm cannot be evaluated since they do 
not use aggregated data (see next section).

Hartemink (2006) similarly uses auxiliary data both to constrain the set of possible graphs and to 
provide a prior bias. Hartemink’s algorithm is a standard Bayesian learning algorithm in which prior 
knowledge is incorporated through a bias in the prior probability over possible graphs. He focuses on 
two different settings: one is a (relatively) static system that can be modeled using an acyclic graph; 
the other is a dynamic system that is modeled using a dynamic Bayesian network (essentially, a graph 
in which the variables are time-indexed). Auxiliary information is used to restrict the possible graphs 
through both (i) variable selection, as the two systems have only 32 and 25 variables picked out by 
biological function; and (ii) graphical restrictions on the dynamic network, as the current time step is 
assumed to be directly influenced only by the previous time step. Given these sets of possible graphs, 
transcription factor binding location data are used to provide a significant bias on the prior probabilities 
over the graphs. In the actual applications to real-world data (judged by comparison to a gold-standard 
network), the location data play a major role: the algorithm performs quite poorly when expression data 
alone are used. In fact, close consideration of the real-world results suggests that the location data is 
doing almost all of the work. The algorithm’s performance using both types of data is only marginally 
superior to using location data alone.

exPeriMental reSultS

As elaborated in the previous section, microarray measurements are from aggregates of thousands of 
cells, and conditional independence relations that hold for biologically realistic probability distribu-
tions in individual units are typically not the same as those that hold in the probability distribution for 
cell aggregates. There are at least seven other challenges facing algorithms for automated learning of 
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regulatory network structure: (1) the number of measurements of each gene is typically much smaller 
than the number of genes under study, and the number of genes—or genes at time points in time se-
ries representations—effectively defines the number of variables; (2) microarray measurements have 
a small signal to noise ratio; (3) many algorithms are based on acyclic graph representations which 
cannot faithfully represent both the probability distributions for equilibrium distributions of feedback 
systems and the mechanisms that lead to an equilibrium, and the only provably correct algorithm for 
learning arbitrary cyclic graphs from equilibrium data that is currently available (Richardson, 1996) 
has never been tested on gene expression data; (4) statistical associations among measured expression 
levels for different genes may depend on variations in unrecorded “common cause” regulator genes, or 
on extra-genetic factors not in the database; (5) summing variable values over many cell units reduces 
their variance, resulting in low correlations due to regulatory interaction, which implies the need for 
either very large samples or very large expression differences to reliably distinguish zero from non-zero 
correlations; (6) discretization of continuous variables can alter the original conditional independence 
relations among variables; and (7) when there are unrecorded sources of covariation, linear regression 
techniques overfit in the linear case, positing false connections even without correlated errors (Spirtes, 
et al., 2001), and feedback can produce statistical dependencies among measured variables similar to 
the effects of omitted common causes.

There are reports of successes at network inference with machine learning methods applied to both 
real-world and simulated expression data, but to our knowledge, no published simulation studies gen-
erate their data from experimentally established networks and treat measured values as aggregates of 
many individual cell values. In this section, we use realistic, aggregated, simulated data to examine 
the performance of nine structure learning algorithms: Reveal (Liang, et al., 1998), Bool2 (Akutsu, et 
al., 2000), MRBN (Friedman, Nachman, & Pe’er, 1999), PC (Spirtes, et al., 2001), CCD (Richardson, 
1996), and algorithms described in Spirtes & Meek (1995), Arkin, Shen, & Ross (1997), D’Haeseleer, 
Wen, Fuhrman, & Somogyi (1999), Weaver, Workman, & Stormo (1999), and van Someren, Wesseksm 
& Reinders (2000). The version of MRBN we use was implemented by Aaron Darling (see http://mrbn.
dyndns.org/), as other downloadable versions did not run, reimplementation was not possible from 
published accounts, and the authors did not respond to requests for clarification. PC and CCD were 
obtained from http:/www.phil.cmu.edu/projects/tetrad. The Meek/Spirtes algorithm was provided by 
Peter Spirtes from an old implementation not currently publicly available. We implemented the Reveal 
and Bool2 algorithms from published descriptions. The remaining algorithms were obtained from http://
genlab.tudelft.nl/info.

These algorithms include procedures that discretize variables to binary or ternary values (Reveal, 
Bool2, MBRN), procedures that treat variables as continuous, procedures that use optimization routines 
(Bool2), regression procedures of various kinds (Weaver, van Someren, Arkin, D’Haeseleer), constraint 
based searches (PC, CCD), Bayesian scoring searches (MBRN) and hybrid constraint/Bayesian searches 
(Spirtes/Meek). Clearly these are not all of the algorithms that have been or could be proposed for study-
ing gene regulation. For example, we have not applied the FCI algorithm (Spirtes, et al., 2001), nor have 
we included simulated annealing algorithms (Hartemink, 2001) or heuristic scoring procedures for Bayes 
nets with time indexed variables. We attempted to include a recent algorithm proposed and applied by 
Pe’er, Regev, & Tanay (2002), but they declined to provide their implementation.

This study used four datasets—three with simulated data, and one with experimental data:
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1.  Data generated in ten steps from a time series network modeling regulation in a fragment of the 
sea urchin genome (see Figure 2);

2.  Data similar to (1) but projected to binary values;
3.  Data similar to (1) but projected to three values;
4.  Data from microarray measurements of variations of expression levels over the cell cycle in yeast 

(Spellman, et al., 1998) compared with a recent experimental determination of a substantial frac-
tion of the regulatory network in the same species (Lee, et al., 2002).

The first three datasets are based on the multi-year effort by Davidson and his collaborators (David-
son, et al., 2002) to elucidate the genetic network of the sea urchin embryo, resulting in experimental 
data for a network of some forty genes. We developed a Java implementation of the “maternal and early 
interactions” portion of the sea urchin network, at least as it was understood at the time, using realistic 
transfer functions relating gene inputs to their outputs (see Figure 2; note that there are six genes: Wnt8, 
Krl, SoxB1, Krox, Otx, and Eve). This network has several feedback loops, including three genes that 
directly auto-regulate. We note in passing that the “truth” of the simulated network is irrelevant to the 
point at hand; all that matters is that this network involves realistic connectivity and realistic transfer 
functions. To simulate measurement noise, we multiplied the output value for each gene by the value of 
a random Gaussian variable with mean 1 and variance 0.01. We did not include additive error.

Our Java implementation realized a detailed reconstruction of the transfer functions and other features 
of the network as implemented in a NetBuilder model of the maternal and early interactions portion of 
the organism. NetBuilder is well documented (Schilstra, 2002), as is its model of this organism. It allows 
a user to “build” a gene network and to specify complex, non-linear and Boolean transfer functions. We 
built a NetBuilder version of the network under study and carried out a comparison of our code’s calcu-
lations with NetBuilder’s output over a number of steps; the results agreed closely. Christophe Battail 
has published a web page comparing NetBuilder’s simulation of the Endo16 gene with experimental 
results (http://strc.herts.ac.uk/bio/maria/NetBuilder/Examples/Endo16/Endo16sim02.htm).

To create a non-aggregated dataset, we recorded the simulated expression level for each of the six 
genes (Wnt8, Krl, etc.) at each of up to 10 time steps; we call the values recorded for one such run a 
non-aggregated sample. The data matrix thus has simulations in rows, and each gene-time step as a col-
umn (variable). In the description of results below, S denotes the number of non-aggregated samples in 
a particular non-aggregated dataset. To construct an aggregated sample, we compute the mean for each 
column of a non-aggregated dataset; each aggregated sample thus corresponds to a full, non-aggregated 

Figure 2. The “maternal and early interactions” portion of the regulatory network of the sea urchin 
embryo as described in Davidson, et al. (2002)
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dataset. An aggregated dataset is a collection of such aggregated samples. In the results below, R de-
notes the number of non-aggregated datasets used to construct each aggregated sample in an aggregated 
dataset. In all of our experiments the sample sizes are comparatively small—reflecting the reality of 
microarray studies—and in most cases, the distributions are non-Gaussian, and the dependencies are 
non-linear. We approximated mean-zero normality by taking logs of all values in the data matrices (for 
both non-aggregated and aggregated datasets) and then subtracting the median of each column from all 
the values in that column.

By projecting based on the median value of each variable, we binarized the same data for tests of the 
Reveal and Bool2 algorithms. The MRBN algorithm implementation automatically projects real values to 
one of three values. The PC and CCD algorithms require multiple samples, each consisting of an entire 
time series. The binary algorithms require as input a dataset consisting of binary values for each of a set 
of genes at each of a number of time steps, and so the same time series can be used for comparisons. All 
datasets are publicly available at http://www.phil.cmu.edu/projects/genegroup.

The fourth dataset comes from four experiments (Spellman, et al., 1998) in which mRNA expression 
levels were measured in the course of the cell cycle with cells synchronized in different ways (see http://
staffa.wi.mit.edu/cgi-bin/young_public/navframe.cgi?s=17&f=downloaddata). Friedman, et al. (2000) 
applied the MRBN algorithm to this data to obtain conjectured regulatory relations among the genes. 
Comparison experimental data are from Lee, et al. (2002), who applied immunoprecipitation techniques 
to experimentally estimate genes directly regulated by each of more than 100 known yeast regulators. 
The different Spellman experiments used samples in different metabolic conditions, so it is not sensible 
to use them as repeated samples of the same time series. We therefore simply concatenated the data so 
they appeared to be from one experiment; this introduces 3 false breaks in time series.

PC, CCD and Spirtes/Meek take a significance level as input; we give results for .05, but results 
for other significance levels up to 0.3 are similar, with lower significance levels slightly better in most 
experiments. Results for the van Someren and D’Haeseleer algorithms were essentially identical and 
we show only the latter.

To assess the performance of the algorithms, we ignored edge direction and focused on only the 
(simpler) problem of determining adjacency relations. An adjacency is judged present between two genes 
in an algorithm output if and only if it is present between those genes for any two times. Many other 
counting procedures are possible within each experiment (e.g., majority rule; restriction to sequential 
time steps) that would reduce false positives and increase false negatives. There are twenty-one possible 
pairs of adjacent variables (since a gene can auto-regulate), and twelve of those pairs are actually adja-
cent in the true graph for the maternal and early interactions portion of the sea urchin embryo network. 
Random assignment of edges for pairs of genes would result in 10.5 expected errors and an error rate 
of 0.5. Simply saying “yes” to each possible adjacency would result in an error rate of 0.43. Tables 1-5 
report mean performance (and variance in parentheses) over 10 replications of the simulation settings; 
note that the variance for false positives determines the variance of correct negatives (and similarly for 
false negatives and correct positives).

The results for the Spellman, et al. (1998) data are reported in Table 6. These data were restricted 
to the 11 cell cycle genes that appear in the diagram published by Lee, et al. (2002). We applied the 
PC and CCD algorithms to the data as though it were equilibrium data, using the 11 genes as variables, 
implicitly violating i.i.d. sampling assumptions of these algorithms. There are 66 possible regulatory 
relationships, ignoring direction of regulation, including autoregulation. Random assignment would thus 
imply 33 errors (and an error rate of 0.5).
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These simulations clearly demonstrate that no confirmation of an algorithm for obtaining regulatory 
structure from expression data can be rationally justified by results with simulated data unless the data 
generating model is non-linear, with feedback, and the variable values are aggregated over simulated 
individual cells. Selective comparisons with independent wet-laboratory results do not suffice either. 
Among the tests reported here, Tables 2 and 3 describe the most realistic simulations, and the best tests, of 
the algorithms considered. Even so, in several respects the inference problems posed for those simulated 
datasets are easier than with real data: the correct time sampling frequency is known; all replications are 
with the same simulated metabolism and the same time sampling; there are no missing values; and the 
variables are aggregated over only 20 units (the larger the number of units of aggregation, the smaller 
the correlation among the aggregated variables).

The implementations of Reveal and Bool2 limited them to three regulators per gene. For those yeast 
genes actually with three or fewer regulators in the Lee, et al. (2002) model, the results for these algo-
rithms were almost always at chance, indicating the restriction to three regulators was inessential to their 
performance. One run of Bool2 that allowed for up to four regulators was attempted for the yeast data; the 
program ran for about 8 hours (over 200 times as long as the three regulator case) and returned the null 
model (no estimated regulatory relationships). On the simulation data, the Reveal, Bool2, Weaver, and 
D’Haeseleer algorithms proved useless; the remaining algorithms proved to be of some slight utility.

Table 2. Aggregated samples; S = 20 and R = 30 (i.e., 30 aggregated samples) 

False Pos Correct Pos False Neg Correct Neg Total Errors Error Rate

PC05 5.4 (1.8) 8.9 3.1 (2.1) 3.6 8.5 (2.5) 0.40

CCD05 4.9 (0.54) 8.5 3.5 (2.5) 4.1 8.4 (3.2) 0.40

Meek 5.7 (0.9) 9.1 2.9 (0.8) 3.3 8.6 (1.2) 0.41

Reveal 6.1 (0.0) 8.1 3.9 (0.07) 2.9 10 (0.17) 0.48

Bool2 6.3 (0.06) 7.8 4.2 (0.0) 2.7 10.5 (0.1) 0.50

MRBN 1.9 (1.0) 4.0 8.0 (0.4) 7.1 9.9 (2.1) 0.47

Arkin 1.4 (0.1) 2.7 9.3 (0.05) 7.6 10.7 (0.26) 0.51

Weaver 9.0 (0.0) 11.9 0.1 (0.0) 0.0 9.1 (0.0) 0.43

D’Haeseleer 5.3 (0.07) 7.0 5.0 (0.14 3.7 10.3 (.34) 0.49

Table 1. Non-aggregated datasets; S = 20 (i.e., 20 non-aggregated samples in each dataset) 

False Pos Correct Pos False Neg Correct Neg Total Errors Error rate

PC05 5.2 (1.3) 9.2 2.8 (0.6) 3.8 8.0 (2.2) 0.38

CCD05 4.4 (2.7) 7.6 4.4 (2.3) 4.6 8.8 (5.5) 0.42

Meek 4.2 (2.2) 10.4 1.6 (0.5) 4.8 5.8 (4.2) 0.28

Reveal 6.0 (0.1) 8.2 3.8 (0.2) 3.0 9.8 (0.4) 0.47

Bool2 6.1 (0.6) 7.9 4.1 (0.1) 2.9 10.2 (0.3) 0.49

MRBN 3.2 (1.0) 3.2 8.8 (2.6) 5.8 12 (3.7) 0.57

Arkin 1.4 (0.02) 2.7 9.3 (0.02) 7.6 10.7 (0.01) 0.51

Weaver 8.9 (0.01) 11.9 0.1 (0.0) 0.1 9.0 (0.01) 0.43

D’Haeseleer 5.4 (0.09) 7.3 4.7 (0.14) 3.6 10.1 (0.11) 0.48



322

Problems for Structure Learning: Aggregation and Computational Complexity

Considering both positive and negative errors, the Reveal, Bool2, MRBN and Arkin algorithms 
performed essentially at chance in all experiments: they are equivalent to flipping a coin to decide 
adjacencies. For non-linear simulated data, Weaver’s algorithm is equivalent to saying “yes” to every 
adjacency; for linear data one would do better to use an inverted Weaver algorithm: say “yes” when it 
says “no.” The D’Haeseleer algorithm is better than chance only for linear data, where it approximates 
saying “yes” in almost all cases. The PC and CCD are a little better than chance in all experiments and 
considerably better than chance with linear data. The Meek/Spirtes hybrid algorithm nearly dominates 
for total error rates on simulated data, and shows the theoretically expected increase in false positives 
with aggregated non-linear data. None of the algorithms improved with sample size increases up to 
100. If we consider only the ratio of correctly predicted positives to predicted positives, and the most 
realistic simulations (Tables 2 and 3), the PC, CCD, Meek/Spirtes, MRBN and Arkin algorithms all do 
slightly better than merely saying “yes” in all cases, varying in Table 4 from .62 to .64 as against the 
constant “yes” ratio of .57. The MRBN and Arkin algorithms purchase the slight improvement at the 
cost of missing most of the true positives.

These results tend to confirm the theoretical arguments against the reliability of machine learning 
algorithms for estimating gene regulation networks from microarray measurements of expression lev-

Table 3. Aggregated samples; S = 20 and R = 100 

False Pos Correct Pos False Neg Correct Neg Total Errors Error Rate

PC05 5.7 (1.8) 9.3 2.7 (1.8) 3.3 8.4 (3.6) 0.40

CCD05 5.4 (0.7) 8.8 3.2 (2.2) 3.6 8.6 (4.0) 0.41

Meek 5.6 (0.9) 9.1 2.9 (1.9) 3.4 8.5 (4.5) 0.40

Reveal 6.1 (0.0) 8.2 3.8 (0.0) 2.9 9.9 (0.0) 0.47

Bool2 6.2 (0.0) 7.8 4.2 (0.0) 2.8 10.4 (0.0) 0.50

MRBN 2.2 (1.3) 3.7 8.3 (1.1) 6.8 10.5 (1.4) 0.50

Arkin 1.5 (0.04) 2.7 9.3 (0.09) 7.5 10.8 (0.2) 0.51

Weaver 9.0 (0.0) 12.0 0.0 (0.0) 0.0 9.0 (0.0) 0.43

D’Haeseleer 5.5 (0.18) 7.3 4.7 (.17) 3.5 10.2 (0.16) 0.49

Table 4. Non-aggregated samples; S = 100 and linear transfer functions were used 

False Pos Correct Pos False Neg Correct Neg Total errors Error rate

PC05 1.2 (1.1) 6.9 5.1 (1.4) 7.8 6.3 (2.7) 0.30

CCD05 1.4 (0.7) 7.3 4.7 (0.7) 7.6 6.1 (2.3) 0.29

Meek 1.8 (1.5) 7.5 4.5 (0.95) 7.2 6.3 (3.1) 0.30

Reveal 5.2 (0.0) 6.8 5.2 (0.0) 3.8 10.4 (0.0) 0.50

Bool2 5.3 (0.0) 7.6 4.4 (0.0) 2.7 9.7 (0.0) 0.46

MRBN 1.9 (0.5) 3.4 8.6 (1.4) 7.1 10.5 (1.2) 0.50

Arkin 1.2 (0.0) 3.2 8.8 (0.03) 7.8 10.0 (0.07) 0.48

Weaver 4.5 (0.17) 3.8 8.2 (0.1) 4.5 12.7 (0.02) 0.60

D’Haeseleer 8.0 (0.03) 11.3 0.7 (0.02) 1.0 8.7 (0.03) 0.41
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els. The Meek/Spirtes algorithm, which does notably better than chance or constant “yes” responses 
on non-linear, non-aggregated data in Table 1, falls to the constant “yes” error rate when the variables 
are aggregated. The linear regression procedures overfit with data from a linear feedback system. It 
is conceivable that other counting principles would decrease false positives for PC, CCD and Spirtes/
Meek and perhaps other algorithms in Tables 2 and 3, rendering them more useful, but we have not 
explored the possibilities. It would be preferable to have each algorithm run by its authors on common, 
well-specified, realistic simulation data from structures kept secret from those executing the algorithms 
and with explicit, pre-specified principles for counting errors, but such cooperative tests seem unlikely 
while relevant authors make neither their algorithms nor implementations publicly available.

coMPlexity without conditional indePendence

The previous sections considered learning regulatory network structure from conditional independence 
information in microarray measurements. Network structure learning can instead be based on comparisons 
between the expression levels of various genes in (i) “wild type” cells that are not experimentally manipu-
lated; and (ii) strains in which the expression levels of various genes have been suppressed or enhanced. 

Table 6. S. Cerevisiae data from Spellman et al. (2002) 

False Pos Correct Pos False Neg Correct Neg Total errors Error rate

PC05 5 3 26 32 31 0.47

CCD05 5 3 26 32 31 0.47

Reveal 16 13 16 21 32 0.48

Bool2 2 1 28 35 30 0.45

MRBN 18 6 23 19 41 0.62

Arkin 3 2 27 34 30 0.45

Weaver 12 18 11 25 23 0.35

D’Haeseler 2 1 28 35 30 0.45

Table 5. Aggregated samples; S = 20 and R = 100; linear transfer functions were used 

False Pos Correct Pos False Neg Correct Neg Total errors Error rate

PC05 1.2 (0.84) 7.4 4.6 (0.84) 7.8 5.8 (3.7) 0.28

CCD05 1.7 (0.9) 7.5 4.5 (1.6) 7.3 6.2 (3.0) 0.30

Meek 2.0 (0.9) 7.5 4.5 (0.7) 7.0 6.5 (1.6) 0.31

Reveal 5.3 (0.0) 6.9 5.1 (0.0) 3.7 10.4 (0.0) 0.50

Bool2 5.3 (0.0) 7.6 4.0 (0.0) 3.7 9.7 (0.0) 0.46

MRBN 2.1 (0.77) 3.0 9.0 (1.6) 6.9 11.1 (1.9) 0.53

Arkin 1.2 (0.07) 3.2 8.8 (0.03) 7.8 10.0 (0.07) 0.48

Weaver 5.6 (0.03) 4.7 7.3 (0.02) 3.4 12.9 (0.01) 0.61

D’Haeseleer 7.8 (0.03) 11.2 0.8 (0.03) 1.2 8.6 (0.08) 0.41
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This strategy essentially follows the logic of standard causal inference from experimental interventions 
and controls, though supplemented with algorithms that attempt to extract maximal information from 
the data. If we manipulate gene G1 and the expression level of G2 changes, then G1 must a cause—direct 
or indirect—of G2. Moreover, this strategy does not use conditional independence information, and so 
the theoretical and experimental results about aggregation are irrelevant.

In principle, N experiments, each manipulating one of N genes, would suffice to identify the entire 
network if it is acyclic (without feedback), all effects are transitive, and no gene is both a direct and 
indirect regulator of any other gene. If G(i) is the set of genes whose expression levels are altered when 
the expression level of gene i is experimentally randomized, then Gk → Gj if and only if G(j) ⊂ G(k) 
and there is no r such that G(j) ⊂ G(r) ⊂ G(k). If we can manipulate multiple genes at a time and trust 
conditional independence information, then the number of experiments can be reduced to around log2(N) 
(Eberhardt, 2007), but for reasons noted above these methods are not applicable to real-world gene 
regulation data with, e.g., feedback (Frenster & Hovsepian, 2002).

This section considers the number of experiments required when cyclic network graphs are possible, 
and we set aside the statistical difficulties in determining differential expression (though we return to 
those issues at the end of this section). We also consider here the practical question of which experi-
ment should be performed next, given the current state of one’s knowledge. In contrast to suggestions 
in some of the literature (e.g., Ideker, Thorsson, & Karp, 2000; Onami, Kyoda, Morohashi, & Kitano, 
2001), we argue that experimental manipulations do not permit efficient search for the true regulatory 
network; the computational complexity is too great. We continue to use graphical model representa-
tions of regulatory networks, but now allow cyclic graphs. We understand edges in terms of idealized 
experimental manipulations: X → Y in a network of genes V if and only if there are experimentally 
producible values of X, x1 ≠ x2, such that the expression level of Y differs for x1 and x2 when all other 
genes are held fixed. We cannot in practice hold most gene expression levels fixed at some value, even 
the “wild type” level; we have only techniques to suppress or overexpress a gene. We therefore focus 
on experiments in which a subset of the genes are experimentally suppressed or overexpressed while 
one measures the expression levels of the other genes. These experimental limitations may prevent us 
from learning the precise structure of certain networks (e.g., if an indirect influence is only detectable 
by (impossibly) holding the mediating gene fixed at its wild type level).

This edge semantics implies an obvious inference principle: Infer G → H if and only if there are 
experiments E and E* such that (i) G is manipulated to different values in E and E*; (ii) H is not ma-
nipulated in E and E*; (iii) H’s expression level differs between E and E*; and (iv) E and E* do not 
differ in their treatment of any other variable. This inference principle is a precise statement of an obvi-
ous idea: gene i regulates gene j just when a change in the experimental manipulation of gene i (while 
not changing anything else in the system) leads to a change in the expression level of gene j. Crucially, 
this inference principle depends only on (significant) differences in expression levels, rather than on 
conditional independencies; as such, it is not subject to problems due to aggregation.

The worst-case complexity for number of experiments arises when none of the genes in the network 
regulate any others. An inference that G definitely does not regulate H requires finding that H has the 
same expression level for the three different experimental manipulations of G—wild type, suppressed, 
and overexpressed—for every combination of the three possible treatments for each of the other vari-
ables. Manipulation of other genes is required because of the possibility that G is a redundant regulator 
of H: some other gene L also regulates H, and so the influence of G is noticeable only for particular 
settings of L. G and L might alternately have a complex interaction in regulating H. Because of these 
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possibilities, we cannot simply manipulate G and look for a change in H. Exclusion of G → H from 
the network thus requires 3 × 3n-2 distinct experiments. If no genes regulate any others, then one must 
conduct all of these experiments for every ordered pair of genes, and so n × (n – 1) × 3 × 3n-2 distinct 
experiments will be required in all.

Any reliable network inference algorithm must thus use information from exponentially many differ-
ent experiments in the worst case, and so any reliable inference algorithm must itself have exponential 
complexity in the worst case. For n = 9 (as in the empirical data we consider below), reliable inference 
requires 472,392 experiments in the worst case. The worst-case number of experiments is required only 
if G does not regulate H; if G actually does regulate H, then that can be reliably discovered in as few 
as two experiments. The expected and real-world computational complexity of algorithms based on 
this inference principle will almost certainly be much less than the worst-case bound. In general, the 
algorithmic complexity decreases as the regulatory network density increases (i.e., as the number of 
edges goes up).

A different complexity analysis focuses on the number of networks that are consistent with some 
set of experiments, as well as the number of consistent, minimal networks. Suppose we have m distinct 
experimental conditions, each repeated l times, in which we measure the expression levels of n genes. 
Experimental conditions may differ in the genes that are suppressed or overexpressed, in various envi-
ronmental conditions such as nutrient levels, or both. Let mij denote the mean expression level of gene 
i in experimental condition j, typically after normalizing distributions across conditions. We are most 
interested in a gene’s expression level being different between two different experimental conditions, 
and so we assume that (using some simultaneous hypothesis test) we obtain a statistical decision about 
whether mij = mik for each gene i and all pairs of experimental conditions j and k in which gene i is not 
directly manipulated. The j, k pairs for which mij ≠ mik are the findings that must be explained; the search 
problem is to find graphs that explain all of the observed expression level changes, and in the case of 
minimal networks, only the observed changes.

Formally, we construct a three-dimensional matrix A of size [gene & exogenous condition] × experi-
mental condition × experimental condition. For each gene i:

• aijk = M, if either gene i is the target of an experimental manipulation in only one of j and k, or if 
it is manipulated in different ways in j and k;

• aijk = 1, if gene i is not manipulated in j and k, and the statistical decision is that mij ≠ mik (i.e., gene 
i has significantly different expression in the two conditions); and

• aijk = 0, otherwise (i.e., either gene i is experimentally manipulated in the same way in both condi-
tions, or there is no significant difference in mean expression level).

For each exogenously controlled experimental condition h (e.g., temperature, nutrient level):

• ahjk = 1, if h’s value differs between conditions j and k; and
• ahjk = 0, otherwise.

Define a graph G to be consistent with a set of experimental results A if and only if: (i) G does not 
contain any edges incompatible with A (in a sense defined below); and (ii) for all aijk = 1, there exists a 
gene q such that there is a directed path in G from q to i, and aqjk = either 1 or M. The second condition 
ensures that G can explain every significant difference in expression levels. The first condition ensures 
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that G contains no impossible (relative to the data) edges. More precisely, we define a G → H edge to be 
incompatible with A if and only if: for all possible combinations of experimental manipulations (including 
no manipulation) of all genes except G and H, the expression level of H does not change regardless of 
the state of G. Note that an edge is only definitely incompatible with A if we perform every experiment 
in which H is unmanipulated (i.e., 3n-1 experiments); it is quite difficult to definitively rule out regulatory 
dependencies when we allow redundant pathways, cycles, and nonlinearities.

We are often most interested in the minimally consistent graphs for A: those that are consistent with 
A, but not consistent if any edge is removed. The IG (Initial Graphs) algorithm finds such graphs:

1)  For each gene i and all j, k such that aijk =1, let Lijk be the set of genes and exogenous factors l such 
that aljk = either 1 or M.

2)  For each gene i, determine Ci: the set of minimal covering sets for all non-empty Lijk.
3)  Construct the collection of directed graphs, G, consisting of every possible graph that can be formed 

by choosing, for each i, some ci ∈ Ci and then making all factors in ci into parents of i.
4)  For each pair of experimental conditions j, k, let I be the set of factors such that aijk = M (or 1, in 

the case of exogenous factors). For each gene r such that arjk = 1, and for all G ∈ G, if there is 
no directed path in G from a member of I to r, then replace G with all extensions of G that add a 
directed edge from a member of I to r.

5)  Return G (henceforth, called InitialGraphs).

In plain language, steps 1 and 2 determine the “minimal” explanations for all differences in expres-
sion level. Step 3 then constructs the graphs corresponding to all possible combinations of minimal 
explanations. Finally, step 4 ensures that all of the explanations ultimately ground out in an experimental 
manipulation. Note that this algorithm can output cyclic graphs.

As an example, suppose Table 7 gives example expression data, where ‘wti’ indicates the wild type 
expression level of gene i. Suppose further that neither ε nor δ is itself a significant change (from wt3), 
but ε + δ is a significant change in expression level. In that case, the corresponding A matrix is given 
in Table 8.

The expression levels of both genes 1 and 2 change significantly only between experimental condi-
tions with different manipulations of that gene. Therefore, for those two genes, there are no sets to be 

Table 7. Example expression data in three experiments 

Gene 1 Gene 2 Gene 3

Experiment 1 wt1 wt2 wt3

Experiment 2 suppressed wt2 wt3 + ε

Experiment 3 wt1 suppressed wt3 – δ

Table 8. Significant difference matrix for example experiments 

a112 = M a212 = 0 a312 = 0

a113 = 0 a213 = M a313 = 0

a123 = M a223 = M a323 = 1
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covered; C1 and C2 are both the empty set. For gene 3, there is only a significant change in expression 
level between experiments 2 and 3. L323 = {gene 1, gene 2} since both change, and so the minimal cov-
ering sets for gene 3 are {gene 1} and {gene 2}. The IG algorithm thus outputs two different graphs: 1 
→ 3 2; and 1 3 ← 2.

We can prove the following theorem about the contents of IG algorithm’s output:
Theorem 4 (IG consistency): Every graph in InitialGraphs is consistent with A, and InitialGraphs 

contains all graphs that are minimally consistent with A.
InitialGraphs typically does not include all of the consistent graphs. Provably, if G is consistent with 

A and i → j is not incompatible with A, then the graph formed by adding i → j to G is consistent with 
A. If our primary interest is in the number of consistent regulatory networks, then we can add together 
the number of supergraphs of each G ∈ InitialGraphs, and then subtract out the graphs that are doubly-
counted. This procedure scales up poorly, however, as it requires, for m initial graphs, calculating the size 
of 2m–1 sets (i.e., supergraphs of all initial graphs, and all of the different overlaps). We can, however, 
use this strategy to compute a lower bound on the number of consistent graphs, since the number of su-
pergraphs of a subset of InitialGraphs is necessarily less than or equal to the number of supergraphs of 
all of InitialGraphs. We can also determine the number of supergraphs of one graph in InitialGraphs, 
then the number of supergraphs of two graphs, then… until we include all of InitialGraphs. We can 
optimize the calculation by starting with the sparsest graph(s), since they will contribute the largest 
terms. Finally, since the computed lower bound increases (weakly) monotonically at each stage, we can 
run the procedure and stop at any time to get a lower bound.

The IG algorithm can also be used as the basis for a procedure to select which experiment to perform 
next. An algorithm to find the globally optimal next experiment would need to consider all possible 
sequences of unperformed experiments, the possible outcomes in each experiment in each sequence, and 
the number of consistent graphs for each possible outcome after each experiment in a possible sequence. 
This computation is hopelessly intractable; if we have conducted L experiments, then we must compute 
the exact number of consistent graphs at every branch-point and leaf in an exponentially branching tree 
of depth (3n – L) corresponding to a sequence of experiments, where there are (3n – L)! many sequences/
trees. Alternatively, we could use the IG algorithm in a heuristic procedure to select the best next experi-
ment. For some set E of possible experiments, compute for each experiment E the expected number of 
consistent graphs over all possible outcomes of E, and then perform the experiment E* that minimizes 
this number. One can clearly add a probability distribution over outcome likelihood for an experiment, 
if that prior knowledge is available. This procedure appears more promising, but still faces significant 
challenges. It is a greedy search procedure, and so can lead to sub-optimal sequences of experiments. 
It is also still quite computationally complex: there will typically be exponentially many unperformed 
experiments, and we must compute the exact number of consistent networks (i.e., conduct an exponential 
calculation) for every possible outcome of every E ∈ E.

We have given theoretical reasons to question whether the basic inference principle underlying 
manipulation experiments can be generalized to a reliable search procedure. These concerns might fail 
to be an issue for realistic networks, however, and so we now consider a real-world case. Ideker, et al. 
(2001) conducted a series of experiments on the galactose metabolism cycle in yeast (Saccharomyces 
cerevisiae). They used microarrays to measure expression levels of 5000 different genes, but focused 
on nine genes that had previously been identified as important in this cycle. They performed ten experi-
ments (wild type measurements, plus single knockouts of each gene) in two environments (presence 
and absence of galactose). We focus here on the galactose present case.
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Ideker, et al. (2001) performed four replications of each experimental condition, with appropriate 
instrumental counter-balancing across replications, in order to improve the power of statistical tests. 
There were nonetheless many statistical challenges to constructing the A matrix that encodes significant 
differences in expression level between experimental conditions. The most significant issues were cor-
related errors in the measurements, and the large number of simultaneous statistical tests required for 
this 9-gene/10-experiment setup. For reasons of space, we do not go into details here; a full statement 
of the statistical procedures that we used can be found in Danks, Glymour, & Spirtes (2003).

Despite these challenges, the Ideker, et al. (2001) data are close-to-ideal for the IG algorithm. We have 
expression levels for all genes in all ten experiments, and so can carry out all of the required pairwise 
comparisons. Automated search is also clearly required for these data, since there are 272 ≈ 4×1021 possible 
regulatory networks over these nine genes. The output of the first three steps of the IG algorithm (i.e., 
the minimal covering sets for each gene) are shown in Table 9. Each column gives the minimal covering 
sets for that particular gene, where each row within a column is a different minimal covering set.

This table describes 3,110,400 different cyclic and acyclic graphs corresponding to all possible ways 
of choosing parents (i.e., minimal covers) for each gene. After step (4) of the IG algorithm—checking 
whether every expression level change is explained in every graph—the IG procedure returns a set of 
3,480,675 graphs.

The output of the IG algorithm includes all networks that are minimally consistent with A, but not 
necessarily all consistent graphs. The sparsest graph in InitialGraphs contains fourteen edges, and no 
edges are inconsistent with the data. A lower bound (on the total number of consistent graphs) calculated 
using only this sparsest graph is approximately 2 × 1017 networks. The actual number of consistent graphs 
is almost certainly larger. These ten experiments have thus reduced the possibility space by (at most) 
four orders of magnitude, and probably much less.

This section began with the hope that differences in expression levels between experimental condi-
tions could provide the basis for reliable search procedures. The theoretical and empirical results argue, 
however, that such data actually provide relatively little information: there are typically many different 
potential regulators for some expression level difference, and too many experiments are required to rule 
out a regulatory connection. At the same time, gene manipulation experiments can be expected to remain 
an important confirmatory method for testing a specific hypothesis. They are ineffective for search, but 
quite powerful for targeted hypothesis testing.

Table 9. Minimal covering sets for galactose genes in Ideker, et al. (2001) data 

gal1 gal2 gal3 gal4 gal5 gal6 gal7 gal10 gal80

10 
2,6,7 
2,7,80

7 
10

7 
10 
1,2 
1,6 
1,80 
4,6 
2,5,6 
5,6,80

1 
3 
5 
7 
10

1,3 
1,4 
3,6 
2,4,6 
4,6,7 
4,6,10

1,2 
2,7 
2,10 
5,7 
5,10 
1,3,5 
1,5,80 
2,3,5 
2,5,80

10 
1,3 
1,2 
1,6 
1,80

1,6 
1,2,80 
1,2,5 
2,3,6 
2,7,80 
2,6,7 
4,6,7 
2,3,5,80

4,5 
4,6 
4,10 
5,7 
6,7 
7,10
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concluSion

Machine learning methods offered the promise of a shortcut to discovering genetic regulatory networks. 
The promise has so far proved false, for reasons we have described. Machine learning methods—in par-
ticular, automated search for graphical causal models—are applicable to many other genomics problems, 
and potentially even to gene regulation problems when data are available at the individual cellular level. 
When our data come from aggregations of cells, however, then sophisticated machine learning methods 
are actually penalized, since the conditional independence relations on which they depend do not hold at 
the aggregate level. Simpler methods that do not exploit conditional independence relations (such as the 
IG algorithm in the previous section) are computationally intractable for realistic scenarios. There are 
of course multiple cases that purport to show successful machine learning from microarray data; these 
instances almost all (i) use unrealistic single-cell (simulated) data; (ii) focus on cases in which the ground 
truth is not known and so performance cannot be evaluated; or (iii) report only isolated successfully 
discovered regulatory connections, rather than statistics about overall algorithm performance. We thus 
conclude on a pessimistic note: despite the hopes of many (including us at a prior time), standard structure 
learning algorithms cannot be fruitfully applied to microarray data; rather, successful machine learning 
for genetic regulatory networks will depend on statistical, algorithmic, and experimental advances that 
are highly tuned to the challenges of this particular domain, and that largely remain to be done.

referenceS

Akutsu, T., Miyano, S., & Kuhara, S. (2000). Algorithms for inferring qualitative models of biological 
networks. Pacific Symposium on Biocomputing, 5, 290-301.

Arkin, A., Shen, P., & Ross, J. (1997). A test case of correlation metric construction of a reaction pathway 
from measurements. Science, 277, 1275–1279. doi:10.1126/science.277.5330.1275

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful 
approach to multiple testing. Journal of the Royal Statistical Society. Series B. Methodological, 57, 
289–300.

Brown, C. T., Rust, A. G., Clarke, P. J. C., Pan, Z., Schilstra, M. J., & Buysscher, T. D. (2002). New 
computational approaches for analysis of cis-regulatory networks. Developmental Biology, 246, 86–102. 
doi:10.1006/dbio.2002.0619

Chu, T. (2003). Learning from SAGE data. Unpublished doctoral dissertation, Carnegie Mellon Uni-
versity.

Chu, T. (2004). Limitations of statistical learning from gene expression data. Interface 2004: Compu-
tational Biology and Bioinformatics.

Chu, T., Glymour, C., Scheines, R., & Spirtes, P. (2003). A statistical problem for inference to regulatory 
structure from associations of gene expression measurements with microarrays. Bioinformatics (Oxford, 
England), 19, 1147–1152. doi:10.1093/bioinformatics/btg011



330

Problems for Structure Learning: Aggregation and Computational Complexity

D’haeseleer. P., Wen, X., Fuhrman, S., & Somogyi, R. (1999). Linear modeling of mRNA expression 
levels during CNS development and injury. Pacific Symposium on Biocomputing, 4, 41-52.

D’haeseleer. P. (2000) Reconstructing gene networks from large scale gene expression data. Unpublished 
doctoral dissertation, University of New Mexico.

D’haeseleer, P., Liang, S., & Somogyi, R. (2000). Genetic network inference: From co-expression 
clustering to reverse engineering. Bioinformatics (Oxford, England), 16, 707–726. doi:10.1093/bioin-
formatics/16.8.707

Danks, D., & Glymour, C. (2002). Linearity properties of Bayes nets with binary variables. In J. Breese 
& D. Koller (Eds.), Uncertainty in artificial intelligence: Proceedings of the 17th conference (UAI-2001) 
(pp. 98-104). San Francisco: Morgan Kaufmann.

Danks, D., Glymour, C., & Spirtes, P. (2003). The computational and experimental complexity of gene 
perturbations for regulatory network search. In W. H. Hsu, R. Joehanes & C. D. Page (Eds.), Proceedings 
of IJCAI-2003 workshop on learning graphical models for computational genomics (pp. 22-31).

Davidson, E., Rast, J., Oliveri, P., Ransick, A., Calestani, C., & Yuh, C. (2002). A genomic regulatory 
network for development. Science, 295, 1669–1678. doi:10.1126/science.1069883

Eberhardt, F. (2007). Causation and intervention. Unpublished doctoral dissertation, Carnegie Mellon 
University.

Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic gene expression in a single 
cell. Science, 297, 1183–1186. doi:10.1126/science.1070919

Frenster, J. H., & Hovsepian, J. A. (2002). RNA feedback mechanisms during eukaryotic gene regula-
tion. In Northwest symposium on systems biology (p. 15).

Friedman, N., Nachman, I., & Pe’er, D. (1999). Learning Bayesian network structure from massive 
datasets: The ‘sparse candidate’ algorithm. In K. Laskey & H. Prade (Eds.), Proceedings of the 15th 
international conference on uncertainty in artificial intelligence (pp. 206-215). San Francisco, CA: 
Morgan Kaufmann.

Friedman, N., Nachman, I., & Pe’er, D. (2000). Using Bayesian networks to analyze expression data. 
Recomb 2000, Tokyo.

Genovese, C., & Wasserman, L. (2001). False discovery rates (Tech. Rep. 762). Carnegie Mellon Uni-
versity: Department of Statistics.

Ginsberg, S. D., Elarova, I., Ruben, M., Tan, F., Counts, S. E., & Eberwine, J. H. (2004). Single-cell gene 
expression analysis: Implications for neurodegenerative and neuropsychiatric disorders. Neurochemical 
Research, 29, 1053–1064. doi:10.1023/B:NERE.0000023593.77052.f7

Hartemink, A. (2001). Principled search for gene regulation. Unpublished doctoral dissertation, Harvard 
University.



331

Problems for Structure Learning: Aggregation and Computational Complexity

Hartemink, A. (2006). Bayesian networks and informative priors: Transcriptional regulatory network 
models. In K.-A. Do, P. Müller & M. Vannucci (Eds.), Bayesian inference for gene expression and pro-
teomics (pp. 401-424). Cambridge: Cambridge University Press.

Hashimoto, R. F., Kim, S., Shmulevich, I., Zhang, W., Bittner, M. L., & Dougherty, E. R. (2004). Grow-
ing genetic regulatory networks from seed genes. Bioinformatics (Oxford, England), 20, 1241–1247. 
doi:10.1093/bioinformatics/bth074

Ideker, T., Thorsson, V., Ranish, J., Christmas, R., Buhler, J., & Eng, J. (2001). Integrated genomic and 
proteomic analyses of a systematically perturbed metabolic network. Science, 292, 929–934. doi:10.1126/
science.292.5518.929

Ideker, T. E., Thorsson, V., & Karp, R. M. (2000). Discovery of regulatory interactions through perturba-
tion: Inference and experimental design. Pacific Symposium on Biocomputing.

Lee, T., Rinaldi, N., Robert, F., Odom, D., Bar-Joseph, Z., & Gerber, G. (2002). Transcriptional regula-
tory networks in Saccharomyces cerevisiae. Science, 298, 799–804. doi:10.1126/science.1075090

Levsky, J. M., Shenoy, S. M., Pezo, R. C., & Singer, R. H. (2002). Single-cell gene expression profiling. 
Science, 297, 836–840. doi:10.1126/science.1072241

Liang, S., Fuhrman, S., & Somogyi, R. (1998). Reveal: A general reverse engineering algorithm for 
inference of genetic network architectures. Pacific Symposium on Biocomputing, 3, 18-29.

Onami, S., Kyoda, K. M., Morohashi, M., & Kitano, H. (2001). The DBRF method for inferring a gene 
network from large-scale steady-state gene expression data. In H. Kitano (Ed.), Foundations of systems 
biology (pp. 59-75). Cambridge, MA.: The MIT Press.

Pe’er, D., & Hartemink, A. (2004). Single-cell gene expression analysis: Implications for neurode-
generative and neuropsychiatric disorders. Neurochemical Research, 29, 1053–1064. doi:10.1023/
B:NERE.0000023593.77052.f7

Pe’er, D., Regev, A., & Tanay, A. (2002). MinReg: Inferring an active regulator set. In Proceedings of 
the tenth international conference on intelligent systems for molecular biology (ISMB).

Pe’er, D., Tanay, A., & Regev, A. (2006). MinReg: A scalable algorithm for learning parsimonious regu-
latory networks in yeast and mammals. Journal of Machine Learning Research, 7, 167–189.

Richardson, T. (1996). A discovery algorithm for directed cyclic graphs. In Proceedings of the 12th in-
ternational conference on uncertainty in artificial intelligence (pp. 454-461).

Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S., & Elowitz, M. B. (2005). Gene regulation at the 
single-cell level. Science, 307, 1962–1965. doi:10.1126/science.1106914

Schilstra, M. (2002). NetBuilder software. Retrieved from http://strc.herts.ac.uk/bio/maria/

Shmulevich, I., Dougherty, E. R., Kim, S., & Zhang, W. (2002). Probabilistic Boolean networks: A rule-
based uncertainty model for gene regulatory networks. Bioinformatics (Oxford, England), 18, 261–274. 
doi:10.1093/bioinformatics/18.2.261



332

Problems for Structure Learning: Aggregation and Computational Complexity

Shrager, J., Langley, P., & Pohorille, A. (2002). Guiding revision of regulatory models with expression 
data. Pacific Symposium on Biocomputing, 7, 486–497.

Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., & Eisen, M. (1998). Comprehensive identifi-
cation of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. 
Molecular Biology of the Cell, 9, 3273–3297.

Spirtes, P., Glymour, C., & Scheines, R. (2001). Causation, Prediction and Search. 2nd edition, Cam-
bridge, MA: The MIT Press.

Spirtes, P., & Meek, C. (1995). Learning Bayesian networks with discrete variables from data. In U. 
M. Fayyad & R. Uthurusamy (Eds.), Proceedings of the first international conference on knowledge 
discovery and data mining (pp. 294-299). San Jose, CA: AAAI Press.

van Someren, E. P., Wessels, L. F. A., & Reinders, M. J. T. (2000). Linear modeling of genetic networks 
from experimental data. In Proceedings of the eighth international conference on intelligent systems for 
molecular biology (pp. 355-366).

Weaver, D. C., Workman, C. T., & Stormo, G. D. (1999). Modeling regulatory networks with weight 
matrices. Pacific Symposium on Biocomputing, 4, 112-123.

Yoo, C., Thorsson, V., & Cooper, G. F. (2002). Discovery of causal relationships in a gene-regulation 
pathway from a mixture of experimental and observational DNA microarray data. Pacific Symposium 
on Biocomputing, 7, 498–509.

Yuh, C., Bolouri, H., & Davidson, E. (1998). Genomic cis-regulatory logic: Experimental and compu-
tational analysis of a sea urchin gene. Science, 279, 1896–1902. doi:10.1126/science.279.5358.1896



Section 5
Analysis & Complexity



334

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 14
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and the PBN Models of 
GRNs and Mappings for 
Complexity Reduction

Ivan V. Ivanov
Texas A&M University, USA

introduction

One can think of a Gene Regulatory Network (GRN) as a network of relations among strands of DNA 
(genes) and the regulatory activities associated with those genes (Dougherty and Braga-Neto, 2006). This 
general definition allows for many mathematical (usually dynamical) systems to be called GRNs. The 
goodness of each such model is evaluated using several important criteria: the level of description of the 
biochemical reactions involved, complexity of the model, model parameter estimation, and the predic-
tive power of the model. There have been many attempts to model the structure and dynamical behavior 
of GRNs, ranging from deterministic with discrete time space to fully stochastic with continuous time 

abStract

Constructing computational models of genomic regulation faces several major challenges. While the 
advances in technology can help in obtaining more and better quality gene expression data, the com-
plexity of the models that can be inferred from data is often high. This high complexity impedes the 
practical applications of such models, especially when one is interested in developing intervention 
strategies for disease control, for example, preventing tumor cells from entering a proliferative state. 
Thus, estimating the complexity of a model and designing strategies for complexity reduction become 
crucial in problems such as model selection, construction of tractable sub-network models, and control 
of the dynamical behavior of the model. In this chapter we discuss these issues in the setting of Boolean 
networks and probabilistic Boolean networks – two important classes of network models for genomic 
regulatory networks.
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space. One can find a good review of such attempts in (de Jong, 2002). The so called central ‘dogma’ 
of molecular biology (Crick, 1970) implies that genes communicate via the proteins they encode. Both 
stages of protein production, transcription and translation, are controlled by a multitude of biochemical 
reactions, and are influenced by both internal and external to the cell factors. This perspective suggests 
that the expression of a given gene i, i.e. the quantity of either protein or messenger RNA, should be 
considered as a random function Xi(t) of the cell’s internal and external environments. Thus, if one wants 
to study the dynamical behavior of a GRN, one must design a mathematical model for the gene-expression 
vector X(t) = (X1(t), X2(t), …, Xn(t)) for the n genes that form the network. The stochastic differential 
equation model appears to provide the most detailed description of the dynamics of X(t). In principle, 
it could include all of the information about the biochemical processes involved in gene regulation. At 
the same time, the estimation of its parameters cannot be done without large amount of reliable time-
series data. Thus, one is forced to take a more pragmatic approach and look for simpler models for the 
dynamics of the gene-expression vector. One of the most extreme simplifications is the Boolean network 
(BN) model, originally proposed by Kauffman (1969a). The BN model is based on the observation that 
during the regulation of its functional states the cell often exhibits switch-like behavior. Recent work 
using the NCI 60 Anti-Cancer Drug Screen has demonstrated that Boolean logic type interactions can be 
detected in gene expression data (Pal at al., 2005). While there are instances in gene regulation where the 
Boolean logic is the appropriate level of description of the interactions – for instance, when transcription 
factors have to form a complex that binds to the cis-regulatory DNA to activate transcription, one should 
keep in mind that discrete models cannot capture the details of the biochemical reactions involved in 
those processes. It is not the binary nature of the BN model that is its greatest weakness, one even more 
important deficiency is its determinism. Deterministic models, such as the BN, cannot represent the 
consequential perturbations due to external latent variables. In addition, the BN model cannot be used 
to represent biologically meaningful events, such as gene mutations. The stochastic extension of the 
BN model - probabilistic Boolean network (PBN), was introduced by Shmulevich at al. (2002b) in an 
attempt to account for those latent variables and gene perturbations while keeping the Boolean logic as 
the model for the gene-gene interactions. As a collection of BNs with a probability structure, the PBN 
model could be viewed as a minimal extension of the BN which allows for modeling of the stochastic 
nature of complex systems with lots of latent variables and random experimental effects. However, even 
such a minimal extension of the deterministic model exhibits high complexity which impedes its practical 
applications to model GRN of more than 20 genes. Hence, there is a need for constructing size reducing 
mappings that produce new and more tractable models that share some of the biologically meaningful 
properties of the larger-scale models. In addition, one needs to develop methods for complexity estima-
tion of both the model and the mapping used to reduce its size.

In this chapter we use the BN and PBN models to illustrate how one can approach both problems: 
the complexity estimation of a model and the construction of size-reducing mappings for it. The term 
complexity is overloaded with many different meanings depending on the field of study. GRNs are 
composed of many parts that interact with each other and those interactions involve feedback loops and 
are stochastic from the observer’s point of view. Thus, GRN satisfy the definition of a complex system, 
and one of the aspects of complexity-reduction strategies in this setting is to find subsystems with less 
number of interacting genes and with simpler rules of interactions between them which preserve, to a 
degree, important properties of the whole system. This kind of complexity is the main focus of the dis-
cussion in the chapter. A different approach to the complexity problem is based on the observation that 
every GRN can be viewed as an information processing machine which opens the door for applications 
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of the algorithmic information theory to study the complexity of a model for the GRN, and to compare 
the complexity of different models of the same underlying GRN. To our knowledge, there have been 
very few developments in this important direction of research. While the problem of estimating the al-
gorithmic complexity of a given complexity-reduction mapping is important, we do not discuss it here 
because of space limitations, and refer the reader to the works listed as references. The discussion in the 
chapter will focus primarily on the design of reduction strategies producing more tractable models that 
preserve some of the important and biologically meaningful properties of the larger and more complex 
models. It is important to emphasize that the BN and the PBN models are used to set up and describe the 
so called reduction problem which can be similarly formulated in the case of different models of GRN. 
Our goal is not to compare different models of genomic regulation, nor to study the reduction problem 
in all possible different settings. We focus on presenting a framework that can be used to study mappings 
for complexity reduction and to point out some of the reasons why reducing the complexity of a GRN 
model is a hard problem, e.g. an ill-posed inverse one. There are several reasons for selecting BN and 
PBN models as examples of how complexity issues could be addressed. First, they are important discrete 
models that have been widely used in situations where groups of genes exhibit a switch-like behavior 
(Dougherty at al., 2005). Second, they are closely related to each other and to other models of GRNs, 
i.e. dynamic Bayesian networks (Lähdesmäki at al., 2006). Third, it has been suggested that some of 
the structural and dynamical properties of BNs and PBNs correspond closely to important biological 
characteristics of the living cells (Huang, 1999), (Kauffman, 1969a, 1993). Finally, these models are 
simple enough and yet exhibit rich dynamical behavior which is in concordance with Occam’s razor 
principle given the paucity of data one usually deals with. The second major issue in this chapter is the 
complexity estimation of the model and the cost of applying size-reducing mappings to it. We discuss 
these problems using the notions of stochastic complexity and Minimum Description Length (MDL) 
principle (Rissanen, 2007).

background

The BN model was originally proposed by Kauffman (1969a, 1969b) as a framework for studying 
GRNs. It had been successfully used in physics before attracting the attention of the biology community. 
The initial application of the model was to study the evolution of ensembles of networks which were 
restricted to a specific type of fitness landscape. One can read more details about the BN model and 
its early applications in (Kauffman, 1973, 1993), (Huang, 1999), (Somogyi & Sniegoski, 1996), and 
(Glass & Kauffman, 1973). Here we provide the definition of a Boolean network and briefly discuss 
the ensemble approach.

Definition 1: A BN B = (V, f) on n genes is defined by a set of nodes/genes V = {x1,..., xn} and a 
vector of Boolean functions f = [ f1,..., fn].

The variable xi ∈{0, 1} represents the expression level of gene i, with 1 representing high and 0 
representing low expression. The vector f represents the regulatory rules between genes. At every time 
step t +1, the value of xi is predicted by the values of a set Wi of genes at the previous time step t, based 

on the regulatory function fi, i.e. x t f x t x t
i i i iki
( ) ( ),..., ( )+ = ( )1

1

. The set of genesW x x
i i ik

i

= { ,..., }
1

 is 
called the predictor set of xi, and the function fi is called the predictor function of xi. The pairs (xi,Wi), i 
= 1, ..., n induce a digraph G with edges x x

i ij
®  representing the structural dependencies among the 
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genes. A state of B is a vector s = [x1,..., xn] ∈{0,1}n. All of the possible states of the Boolean network 
comprise its state space S which combined with the functions in f produces a digraph Γ called the state 
transition diagram of B. Γ represents the dynamics of the Boolean network and can be identified with 
a 2n×2n matrix Pn with rows and columns indexed by the states in B and entries pij = 1 or 0 if there is a 
transition from the state s s

i j
® in S. Given an initial state, the network will eventually enter a set of 

states in G through which it will repeatedly cycle forever. Each such set is called an attractor cycle, and 
a singleton attractor is an attractor cycle of length 1. The network attractors induce a partition of state 
space S where the subsets of states that belong to the same equivalence class is called the basin of the 
corresponding attractor cycle. The attractors of a Boolean network represent a type of memory of the 
dynamical system (Shmulevich at al., 2002b). In addition, one can interpret their dynamics as an abstract 
model of computation, which generalizes the processing of information done by cellular automata – a 
special case of Boolean networks (Codd, 1968), (Mitchell at al., 1994).

Originally, the BN model was used in biology and physics to study ensembles of randomly generated 
Boolean nets (Kauffman, 1993). Analytical results and numerical simulations focused on the relation-
ships between the structural gene interdependencies and dynamical behavior of such ensembles have 
provided insights into the general characteristics of large GRNs and the related evolutionary principles. 
‘Tuning up’ of ensemble parameters such as the average connectivity K and the predictor functions’ 
bias p can be used to study the operating regimes of the networks. The average connectivity is defined 

as the average size of the predictor sets Wi, K n
k

i
i

n

=
=
å1

1

 and the bias p is defined as the probability 

of a given predictor function to assume a value of 1. Depending on the values of K and p there are 
two main modes of operation of a BN: ordered and chaotic. In the ordered regime most of the system 
components/nodes are frozen at either 1 or 0 value, and the transfer of information is impeded by those 
large frozen islands of genes. In the chaotic regime, the system is very sensitive to small perturbations 
where a change of the value of one node can propagate to many others in an avalanche-like manner. The 
phase transition boundary between the ordered and the chaotic regimes is called the complex regime or 
critical phase. It has been shown that BNs in that regime are the most evolvable and Kauffman (1993) 
argues that life must exist on that edge between order and chaos: “a living system must first strike an 
internal compromise between malleability and stability. To survive in a variable environment, it must be 
stable to be sure, but not so stable that it remains forever static”. Structural stability is one of the central 
concepts in the theory of dynamical systems. It describes persistent behavior that cannot be destroyed 
by small changes to the system. As real GRNs are capable of maintaining metabolic homeostasis and 
stable developmental program in the face of a changing environment, they certainly possess structural 
stability. The BN model naturally captures this phenomenon because the network ‘flows’ back to one 
of its attractors after a small gene perturbation. Following this line of reasoning, Kauffman (1993) sug-
gests that the attractors in a BN correspond to cellular types. Another interpretation of the attractors 
of a BN (Huang, 1999, 2001) is that they represent cellular states, such as proliferation (cell cycle), 
apoptosis (programmed cell death), and differentiation (execution of cell-specific tasks). For example, 
if a structural perturbation (mutation) happens which moves the network from the basin of the apoptotic 
attractor, the cells could exhibit uncontrolled growth or hyper proliferation, typical of tumorigenisis. 
The two interpretations of the attractors in the BN model are complimentary to each other: for a given 
cell type, different functional states exist and are determined by the collective gene activity. Thus, a 
particular cell type can encompass several attractor cycles each one corresponding to different cellular 
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functional states. We refer the reader to (Kauffman, 1993), (Shmulevich at al., 2002b) and (Shmulevich 
at al., 2003b) for a detailed treatment and additional references to results about the interplay between the 
average connectivity and the bias of the predictor functions in a BN and how that impacts the dynamical 
behavior of the network. An important implication from the body of work on the effects of these local 
parameters on the network is that if one wants to model GRNs with BNs or their generalizations one 
should constraint the network connectivity in order to keep the model on the edge of chaos and closer 
to the ordered regime. For example, in the case of unbiased, p = 0.5, predictor functions the networks 
with K > 2 operate mostly in the chaotic regime which renders such models incompatible with the real 
GRNs which are clearly non-chaotic systems.

Although the ensemble studies can provide important insights into some general properties of the 
BN models, a single Boolean network itself is not capable of capturing the effects of latent variables 
or random gene perturbations. Moreover, the ensemble approach does not provide a way of explicitly 
inferring the specific BN structure from data, e.g. cDNA microarray gene expression. Inferring the BN 
structure from data has the potential to reveal how to design therapeutic intervention for GRNs which 
show a specific disease phenotype. The data used for network inference exhibits uncertainty on various 
levels. First, due to biological variability, gene expression is inherently stochastic. Second, the complex 
measurement process, the microarray preparation, image acquisition and processing create experimental 
noise that has to be taken into account during the inference of the network. All of this combined with the 
presence of latent or unobservable variables such as proteins or environmental conditions present us with 
the problem to infer deterministic predictor functions under uncertainty. To solve such a problem one 
needs to reliably estimate the uncertainty. Without such estimation one cannot be sure how the designed 
predictor function will perform when presented with new data. A possible approach is to follow the Oc-
cam’s razor principle and to penalize the predictors that are too complex. Tabus at al. (2001, 2002) took 
such an approach using the well-known MDL principle and the normalized maximum likelihood (NML). 
A different approach was proposed by Shmulevich at al. (2002a). Keeping in mind that the predictor 
functions cannot be reliably estimated from the limited amount of data relative to the number of genes 
on a microarray slide, one can infer a number of simple predictor functions, each of which performs 
relatively well in predicting the target gene. Here, simpler is understood as having predictor sets Wi of 
smaller size. After producing such predictor functions, one has to combine them together accounting for 
the uncertainty at the same time. This ‘probabilistic’ approach to synthesize ‘good’ predictor functions 
leads to the PBN model of GRNs.

Definition 2: A context-sensitive PBN A = Aq,p(V,F, C) is defined by a set of nodes/genes V = {x1,..., 

xn}, a set of vector-valued Boolean functions F = {f1,…, fr}, f
j

n n
: , ,0 1 0 1{ } ® { } , j = 1,…, r called 

realizations or network functions, a list of selection probabilities C = {c1,…, cr} for the corresponding 
realizations, the gene mutation/flipping probability p, and the realization switching probability q.

Updating the values of all genes in the network at time t is done synchronously according to the 
components of the currently used network function, and then the process is repeated. The choice of 
which network function fj to apply is governed by a selection procedure. Specifically, at each time point 
t a random decision is made as to whether to switch the network function for the next transition, with 
a probability q of a switch being a system parameter. If a decision is made to switch the network func-
tion, then a new realization is chosen from among all of the possible realizations fj ∈ F of A, according 
to their individual selection probabilities cj ∈ C. In other words, each network function fj represents a 
deterministic BN Bj and the PBN behaves as a fixed BN until a random decision (with probability of q) 
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is made to change the network function according to the probabilities {c1,…, cr} from among {f1,…, fr}. 
In addition to the network switching and selection in the PBN model, there is mechanism which models 
random gene mutations, i.e. at each time point t there is a probability p of any gene changing its value 
uniformly randomly. Thus, the PBN model can account for the uncertainties in both data and model 
selection. The PBN A shares the same state space S with its realizations, and the state transition diagrams 
Γj of the individual Bj’s combine naturally into a stochastic state transition diagram Γ representing the 
dynamics of A. As in the case of deterministic BNs Γ can be identified with a stochastic 2n×2n matrix 

Pn, also known as transition matrix, with non-negative entries pij and having the property p
ij

j

n

=
=
å 1

1

, 
i = 1,…, n. Using this matrix, the dynamics of A can be described using the well-developed theory of 
Markov chains. One should notice that if the probability of gene flipping p is positive then the Markov 
chain representing the dynamics of the network is ergodic which implies that it possesses a steady-state 
probability distribution π.

The synchronicity requirement for the state transitions in a PBN is an oversimplification of the real 
interactions that take place during genomic regulation. While it is not difficult to extend the PBN model 
into an asynchronous one, we do not discuss such extensions here. There are two reasons for focusing our 
attention to the synchronous case of PBN only. First, the model estimation from data is a much harder 
problem in the asynchronous case. Second, the synchronous PBN framework facilitates a simpler and 
clearer treatment of the problems about complexity-reducing mappings.

Originally, the PBN model was introduced by Shmulevich at al. (2002a). However the original 
definition concerned the instantaneously random PBN model only, i.e. the model where p = 0 and q = 
1. The definition of context-sensitive PBN not only includes instantaneous PBNs as a special case but 
also allows for the interpretation of data obtained from distinct sources, each representing a specific cell 
context. Thus, one interprets data as obtained from a family of deterministic BN, and the PBN is viewed 
as a collection of BNs in which one constituent network governs the gene activity for a random period 
of time before another randomly selected deterministic BN takes over which might be in response to 
external stimulate or activity of latent variables.

The BN and the PBN model of GRN can easily be extended to the case where each gene is allowed 
more than two values depending on the quantization procedure applied to data. The ternary quantization, 
where the gene expression is grouped into up-regulated (+1), down-regulated (-1) and invariant (0), has 
been often used in the case of cDNA microarray expression data. Even such seemingly simple exten-
sion of the model presents us with a problem about the network complexity: the size of its state space 
S increases from 2n to 3n and the dimensions of transition matrix Pn change accordingly. The situation 
is even worse when more genes are included in the network because the size of the state space grows 
exponentially with the number of genes. Thus, the network compression or reduction becomes impor-
tant task in the practical applications of both the BN and the PBN models. Shmulevich and Dougherty 
(2003a) were the first to consider various types of mappings between instantaneously random PBNs. 
The projection mapping proposed there aims at reducing the size of the model by deleting one gene 
from the set of network nodes. The mapping is designed in such a way that it preserves the probably 
structure of the original PBN. Here, following (Ivanov at al., 2007), we provide the definition of the 
basic projection mapping for the general case of context-sensitive PBNs. The basic projection Πi is a 
mapping that transforms a given PBN A into a new one with the same parameters q and p, and such that 
the number of genes is reduced by one, i.e. the gene xi in the original network is ‘deleted’. Without loss 
of generality, we may assume that the deleted gene is xn. Thus, for A
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Thus, every network function for A determines 2n-1 new network functions for Â
n  by combining the 

first n-1components of f̂
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’s and f̂
1j ’s in all of the possible ways for every fixed j. The new network 

functions have their corresponding selection probabilities given by the formula
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where l is the number of the components of the new network function that are coming from f̂
1j

, and 
Pr{xn=k}, k ∈ {0,1} is the marginal probability for the gene xn to have values 0 or 1, computed using 
the steady/stationary state probability distribution of the original PBN A. For example, the new net-
work function ˆ , ˆ ,..., ˆ( ) ( ) ( )f f f
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ûú , where the upper indexes indicate the corresponding component of 

the vector, has its selection probability equal to c x x
n

l
n

n
1

11 0(Pr{ }) (Pr{ }) .= = -  One can see that in 
the process of ‘deleting’ a gene every predictor function that had that gene as an essential variable is 
replaced by two predictor functions in the new network. These two predictors capture the differences 
in the state transitions corresponding to the two different possible values for the gene that becomes a 
latent variable after the projection. When two or more of the network functions for Â

n
 happen to be 

identical their selection probabilities combine in a natural way. The basic projection mapping Πi can be 
repeatedly applied to achieve the desired reduction in the number of genes. At the same time, it has an 
obvious draw-back: the number of genes in a PBN is reduced at the expense of an exponential increase 
of the number of constituent BNs for the new PBN. Thus the projection mapping serves as an important 
example of the phenomenon that ‘deleting’ a gene from the network model can lead to a new model of 
higher complexity compared to the original one. Moreover, the projection mapping suggests that size-
reduction mappings for models of GRNs should be defined as one-to-many mappings. It also provides 
us with an example of a compression approach for reduction of the complexity of a PBN that has already 
been inferred from data. A different approach is to penalize the network complexity during the process 
of inferring it from data. An example of such an approach, motivated by the MDL principle can be found 
in (Tabus at al., 2003) where the inferred network cannot be too complex because it is designed to have 
minimal stochastic complexity. The MDL principle states that, given a set of data and a class of models, 
one should choose the model that provides the shortest encoding of the data (Rissanen, 2007). From 
the perspective of inference, the MDL principle represents a form of complexity regularization, and in 
essence balances the deviation from data and the model complexity.

In the next section, we focus on the definition of the reduction problem for BN and PBN models of 
GRN, and then provide the reader with a detailed overview of different size-reduction mappings. Then, 
the MDL principle is used to address the question of estimating the cost of applying such mappings.
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coMPlexity-reducing MaPPingS

1. constraints and reduction

To better understand the role of constraints in the process of designing reduction mappings for PBN 
we focus on the Boolean networks which are the building blocks of a PBN. Consider the space M

n
 of 

all BNs on n genes. Then, having as an example the multi-valued basic projection mapping Πi, a size-
reducing mapping can be defined as any set valued mappingp : M M

n
n® -2 1 , where2 1Mn- denotes the 

set of all subsets of the space of Boolean networks on n-1 genes. Such a general definition takes into 
account only the ‘deletion’ of one of the genes from the networks in M

n
, and is of little practical use. 

On the other hand side, it helps in formulating the following
Reduction Problem: Given a set of constraints Λ and a BN B M

n
Î  find a reduction mapping

p : M M
n

n® -2 1 , such that every B BÎ p( )  satisfies Λ.
Here we adopt a very general definition of a constraint for Λ, namely: a condition that should be 

satisfied by every solution of the stated problem. Thus, Λ partitions the space 2 1Mn- and allows for op-
timization procedures to be applied in finding the reduction mapping p .

Keeping in mind that the deterministic Boolean networks are the building blocks of the stochastic 
PBN model, it is straightforward to state the reduction problem for the case of a PBN. One should keep 
in mind that the constraints Λ could be internal with respect to the model, i.e. related to the dynamical 
or static structure of B  (the graphs Gor G ) or B (the graphs Gor G), or could be external with respect 
to the model. For example, Λ could be related to qualitative knowledge/description of the biological 
phenomena being modeled.

Several observations are worth mentioning.

Given a set of constraints Λ and a • BN B M
n

Î the problem of designing p  can be interpreted as 

a constrained search problem where the search space is the direct product 
=́

-

i

n

i
T

1

1

 of truth tables Ti 
for the Boolean functions on n-1 variables. The set of constraints Λ helps to determine some of the 
entries in those truth tables which could significantly reduce the size of the search space. This in-
terpretation of the reduction problem allows for algorithms that are used to design BNs from data, 
e.g. (Pal at al., 2005), to be used in determining the setp( )B . Conversely, complexity-reducing 
mappings can be used in designing models of GRNs, e.g. (Ivanov at al., 2006).
Given a set of constraints Λ and a • reduction mapping p  there exists a maximal, with respect to the 
partial order induced by set inclusion, subset WL,p Í M

n
, such that the same reduction mapping 

p solves the reduction problem for every B Î WL,p
i.e. " ÎB WL,p all B BÎ p( )  satisfy Λ.

One should notice that there is a partial order induced by set inclusion for the sets of constraints. If • 
p  is a solution to the reduction problem for a given Λ1 and B M

n
Î then ifL L

1 2
Ì p  might not 

be anymore a solution to the reduction problem for Λ2 and B. Thus, one can look for the maximal, 
with respect to this partial order, set of constraints Λ withL L

1
Ì , so that p  solves the reduction 

problem for Λ and B.
Given that one of the main reasons for constructing reduction mappings is to reduce the • complex-
ity of a network model, one can see that the choice of constraints Λ has a significant impact on 
achieving this goal. The cardinality of the set p( )B  could be so big that the mapping p  leads 
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to an increase of the model complexity, as the example of the basic projection mapping shows. 
Moreover, the verification if a network from p( )B  satisfies Λ can be computationally intensive 
for some sets of constraints. For example, if Λ = {BN with singleton attractors only} then such a 
verification might require finding all of the attractor cycles for a BN Î p( )B - a problem known 
to be NP-complete. 

The basic projection mapping Πn is a solution of the reduction problem for the set of constraints 
or( ) ( ) ( )

0 1
ˆ ˆ{ , 1,..., 1}i i i i nf f f , where f is the network function for the BN to be reduced. As 

mentioned earlier, the cardinality of the set Πn(B) can be very large which leads to a significant complexity 
increase. The complexity increase is even worse when the basic projection mapping is applied to ‘delete’ 
a gene from a PBN, Eqs. (1), (2). On the other hand side, the projection mapping has some advantages. 
First, because Λ prescribes all of the entries in the truth table of each B  in terms of the predictor func-
tions for B,WL P, n

M
n

º  i.e. the projection can be applied to every BN on n genes. Second, for the same 
reason, there is no need to verify that every BNÎ P

n
B( )  satisfies the constraint.

To remedy the basic projection mapping’s problem of possible exponential increase of the constituent 
networks after a ‘deletion’ of one gene from the PBN, Ivanov and Dougherty (2004) proposed a new 
class of complexity-reducing mappings for PBNs. The mappings from that class come as solutions of 
a specific optimization problem, and do not increase the number of the contexts of the original PBN. 
However, these mappings might fail to preserve the probability structure of that PBN. Originally, the 
reduction mappings were defined for the case of instantaneously random PBNs. The following discussion 
which treats the general case of context-sensitive PBNs is borrowed from (Ivanov at al., 2007).

To better understand the motivation and the definition of the reduction mapping, we consider a PBN A 
= Aq,p(V,F, C) and the following portion of its transition matrix Pn containing the transition probabilities 
for the states s

1 1 1
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If one ‘deletes’ the gene xn these four transitions collapse to one transition s s
p

ss ¢
*

¾ ®¾¾ ¢where
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p x p p x p p
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*
¢ ¢ ¢ ¢= = + + = +Pr{ }( ) Pr{ }( )1 0

1 1 1 0 0 1 0 0     (3)

Here, just as in the case of the basic projection mapping, Pr{xn=k}, k ∈ {0,1} is the marginal prob-
ability for the gene xn to have values 0 or 1, computed using the steady/stationary state probability 
distribution of the original PBN A. Now, if one considers the reduction problem for the constraint Λ1 = 
{keep the number of contexts/constituent BNs and the list of the selection probabilities C unchanged} 
and the network A, one can notice that in order to optimally preserve the probability structure of 
the network, e.g. the basic projection mapping, an additional constraint has to be imposed, namely, 

states{ : , }p p p ij ij ij i j  where 0 1£ £e and pij denotes the corresponding transition 
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probability in the reduced network A . Thus, the reduction problem should be considered with respect 
to the constraintL L

1
È e . The introduction of the constraint Le is natural, given that the basic projec-

tion mapping preserves the probability structure of a PBN perfectly and could be considered as a bench 
mark for evaluating the performance of other complexity-reducing mappings when the preservation of 
the probability structure of the model is one of the main objectives of the reduction. It is clear that the 
choice of e is important if one wants to have a solution to this reduction problem. Moreover, e  might 
depend on the PBN A and this could potentially complicate the procedure of finding the correct e for 
a given PBN. Ivanov and Dougherty (2004) avoided these complications by re-casting the constraint 
Le as an optimization problem over a compact set. Therefore, for any given PBN one is ensured to 
have a solution to the reduction problem with the smallest possible e . The optimization is based on a 
procedure that combines f̂

0 j  and f̂
1j , j =1,…, r to form the new network function f

j
. One should note 

an important difference between the basic projection mapping and the reduction mapping. While the 
projection is based on the marginal probability distribution of a single gene, the reduction mapping is 
defined using the probability distribution of the entire collection of states of A (Ivanov, 2004). In both 
cases though, there is no control over the changes in the dynamics/state transition diagrams of the BNs 
comprising the original PBN. In addition, both mappings rely on knowledge about the steady/stationary 
state distribution of the original PBN.

Finding a minimal set of constraints presents us with yet another problem because there is only a 
partial order within the collection of all sets of constraints. Seemingly natural constraints could lead to 
significant changes in either the structure or the dynamics of the reduced PBN as the following discus-
sion shows.

One such a constraint arises if we consider the local properties of the predictor functions, and is 
based on the following.

Definition 3: Given a state s Î Γ , the predictor function f i is called ( , )s j independent if it has 

partial derivative 
¶
¶

=
f
x

s
i

j

( ) 0 .
The ( , )s j  independence is a local property of a predictor function and suggests that if a toggle of xj in 

state s does not affect the prediction of gene xi then the new predictor function f i  in any of the reduced 
networks B  should have the same value as f i( )s  at the state s  that is obtained from s by ‘deleting’ the 
j-th gene. Thus, we arrive at the local constraint L2

= "{ ( , )s j independent f i , s Î Γ, I, j = 1,…, n-1 
define  f fi i( ) ( )}s s= .

Another constraint L3  is also related to a local property but this time it is about the digraph of gene 
dependencies G. If one interprets a ‘deleted’ gene xj as a latent variable, then any two edges x x

k j
®  

and x x
j i
®  in G should produce an edge x x

k i
®  in G  for any of the reduced networks B . Thus, 

if the j-th gene is ‘deleted’ L
3
= " ® ®{ ( , )x x x x

k j j i
 define the new predictor set for the gene xi  

by first removing x
j
from its original predictor set and then adding the gene x

k
 as one of its predictor 

genes, i.e. W W x x
i i j k
= È{ \ { }} { }}.

One can combine L
2

 andL
3
 into a new constraint L L

2 3
È  and then look for a solution to the re-

duction problem with respect to this constraint. The following example shows that although L L
2 3
È  

is biologically meaningful, it has little to do with the global dynamical properties of the state transition 
diagram Γ  of the Boolean network.
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Example 1: Consider the reduction problem for the constraint L L
2 3
È  and the Boolean network 

B MÎ
3

 given by the truth table, Table 1:
One can easily check that there are 10 networks in the set p( )B  and all of those networks satisfy the 

constraintL L
2 3
È . At the same time, while the state transition diagram for B has two singleton attrac-

tors, only one of those 10 networks has such a property.
This example points out to the importance of constraints related to the global dynamical properties 

of the networks. In a recent attempt to address this problem Ivanov at al. (2007) used the state transition 
diagram itself as a constraint for designing complexity-reducing mappings. The idea behind the Dynamics 
Induced Reduction (DIRE) algorithm developed in that paper is based on two important interpretations 
of the process of removing/’deleting’ a gene from a PBN.

1.  First, it is desirable that deleting a gene from a given regulatory network does not increase the 
number of constituent BNs.

2.  Second, it is important that the dynamics of a real genetic regulatory system do not strongly depend 
on how many of the genes participating in the regulation are observable or not. Thus, preserving 
properties of a PBN, such as its attractor structure, the relative sizes of the basins of attraction, as 
well as the level structure of the state transition diagrams of the BNs comprising the PBN, should 
be a major goal when designing complexity-reducing mappings.

DIRE collapses the state transition diagram of each one of the BNs that form the PBN in a manner 
similar to the example given by Figure 1. To illustrate the importance of the state transition diagram as 
a constraint we consider the BN from Example 1. Suppose that the gene corresponding to the right-most 
digit in the binary representation of the states is to be deleted. If we try to collapse the state transition 
diagram, we notice that, with respect to the attractor structure of the original BN, merging the node 
(001) and the attractor node (000) can be done in two very different ways: either the merging happens 
towards the attractor state or it happens towards the transient state. In the first case, the attractor state 
is preserved in the reduced BN as (00), and the basin of attraction of the attractor (111) in the original 
network looses one state. In the second case, the attractor structure of the reduced network differs sig-
nificantly to that of the original BN, the only remaining attractor being the reduced state (11). Thus, if 
we consider the attractor structure of a BN as a representation of important biological characteristics 

Table 1. Truth table for B

x1x2x3 f 1 f 2 f 3

0 0 0 0 0 0

0 0 1 1 1 0

0 1 0 1 1 0

0 1 1 1 0 1

1 0 0 0 1 0

1 0 1 1 1 1

1 1 0 1 0 1

1 1 1 1 1 1
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of the real GRN, then merging of the states (000) and (001) should be done towards the attractor state. 
At the same time, we point out that those two states are the only states in the original state transition 
diagram that create a possibility of essentially altering the attractor structure of the original BN. The rest 
of the states will merge within the basin of attraction of the attractor state (111). This simple example 
illustrates the importance of the concept of an inconsistency point.

Definition 4: A state s is called an inconsistency point with respect to gene xi if and only if the state 
¢s in the state transition diagram that differs from s only in the value xi of belongs to a different basin 

of attraction compared to the basin of attraction that contains s. The states s and ¢s are called dual with 
respect to the gene xi.

In essence, DIRE attempts to preserve the flow of information between states lying on the same path 
of the state transition diagram, and it handles the exceptions created by the inconsistencies arising from 
deletion of a gene by considering it to be a latent variable. The inconsistency points are treated in a 
way that controls the damage to the state transition diagram in terms of attractors and their basins. The 
probabilistic parameters p, q and C of the original PBN are preserved, and the number of the network 
contexts is essentially unchanged (Ivanov at al., 2007).

DIRE uses the state transition diagrams of the PBN contexts as a constraint and thus preserves in 
an optimal sense the dynamical structure of the network. At the same time, the structural dependencies 
among the genes are not taken into a consideration. Applying the algorithm to the BN from Example 1 
produces a network that does not possess the dependency x x

2 2
®  that is present in the digraph G of 

B. Such a dependency could represent important feedback which is part of the real GRN and it might 
be desirable to keep it in the reduced network. Thus, in some cases, the entire state transition diagram 
could be too strong of a constraint in solving the corresponding reduction problem.

2. criteria for evaluating complexity-reducing Mappings

There are several criteria that could be used when comparing different complexity-reducing mappings. 
These criteria relate to properties of either the model or the real GRN, and can be used to produce con-
straints for the reduction problem. The five major comparison criteria are:

i.  Structural inter-gene relationships, e.g. the digraphs G for the different contexts of a PBN or the 
number of those contexts.

ii.  Dynamical properties of the model, e.g. the state transition diagrams Γ for those contexts or the 
steady/stationary state distribution of the model.

iii.  Biology related, e.g. types of attractors (singleton or cyclic) and their lengths.
iv.  The complexity of the reduction mapping itself, both computational and stochastic.
v.  The performance of control and intervention strategies when combined with complexity-reducing 

mappings.

As the main objective of the modeling is to predict the dynamical behavior of the system and ultimately 
provide the effective intervention strategies for prevention and control of disease that is associated with 
altered genomic regulation, the most often used criteria for comparison of complexity-reduction mappings 
are the steady-state probability distribution of the network, its attractor structure, and the performance 
of control policies designed for network intervention.
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The three different kinds of reduction mappings considered so far, illustrate that, in the case of the 
PBN model, it is very difficult to find a complexity-reducing mapping that is optimal with respect of 
all of these criteria. The basic projection mapping preserves the probability structure of the PBN but is 
definitely the worst with respect to the criterion. On the other hand side, the basic reduction mapping 
is not computationally expensive. DIRE minimizes the damage, induced by a gene ‘deletion’, to the 
state-transition diagram of the network and performs very well with respect to the first criterion but 
as our example shows might not preserve structural inter-gene dependencies. In addition, it could be 
computationally prohibitive as it requires traversing the state-transition diagram. The reduction map-
ping also performs well with respect to the criterion i. and is similar to DIRE, although DIRE performs 
slightly better, when one uses the steady-state distribution as a measure of the mapping’s performance. 
This holds not only for synthetic data but also when one reduces PBN models of real data as the example 
borrowed from (Ivanov at al., 2007) shows. For brevity sake we do not discuss the method that was 
used to infer the network used in this example. Interested readers should check out the details given in 
(Zhou at al., 2004). The main objective here is to provide an example of how the above stated criteria 
can be used to compare and evaluate the performance of mappings that solve the reduction problem for 
different sets of constraints.

Example 2 (Melanoma application): The binarized gene-expression profiles used in the study 
result from data from 31 malignant melanoma samples (Bitner at al., 2000). The seven genes WNT5A, 
pirin, S100P, RET1, MART1, HADHB, and STC2 used here for the model were chosen from a set 
of 587 genes from the melanoma data set that were subjected to an analysis of their ability to cross 
predict each other’s state in a multivariate setting (Kim at al., 2002). A PBN comprised of four BNs 
was constructed from the binarized gene-expression profiles following the method from (Zhou at al., 
2004). The parameters for the PBN A were set as p = 0.01 and q = 0.01. Figure 1 shows the steady-state 
distributions of the PBNs A  and 



A  produced by deleting WNT5A using the reduction mapping and 
DIRE, respectively, together with the probability distribution p* defined on the same state space and 
resulting from the collapsing procedure given in Eq. (1.3). The Mean Square Error (MSE) between p* 
and the steady-state distribution of 



A is 0.01369498, whereas the MSE between p* and the steady-state 
distribution of A  is 0.0242964.

Estimating the computational complexity of reduction mappings could be considered a routine 
procedure as long as one can describe an algorithm that produces the corresponding reduced networks. 
Such estimates are usually related to the size of the sets p( )B for every context B of the given PBN 
and the mappingp . However, the question about how the cost of applying such mappings could be 
measured has been largely ignored. Dougherty and Ivanov (2008) were the first to propose to use the 
notion of the stochastic complexity to measure the cost of reduction for a special case of PBNs, BNs 
with perturbation. Approaching the problem of estimating the cost of reduction from such a perspective 
is natural because every PBN can be viewed as data generating machinery. This view is also consistent 
with information-theoretic considerations based on the MDL principle and the NML model. The cost 
of reduction is given by the relative change in the stochastic complexity of the network after applying 
a reduction mapping. The simulations show that there is a clear correlation between the relative change 

in the stochastic complexity and the  1 distance between the steady-state distributions of the original 
and the reduced networks. In addition, there is a large variance in the relative change in the stochastic 
complexity for some of the studied networks which is due to ’deleting’ different genes from it. Thus, 
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the proposed method for measuring the cost of reduction has the potential to rank genes in the network 
with respect to their impact on the steady-state distribution.

The effects of complexity-reducing mappings on the performance of various control policies, e.g. 
v., are largely unknown. Ghaffari at al. (2008) were the first to study how the Mean First Passage Time 
(MFPT) (Vahedi, Faryabi at al., 2008) control policy designed on the reduced network could be extended 
to the original network in the special case of BNs with perturbation. To address the issue of changing the 
long-run behavior, stochastic control has been employed to find stationary control policies that affect the 
steady-state distribution of a PBN. The algorithms used to find these solutions have complexity which 
increases exponentially with the number of the genes in the network. Hence, there is a need to study 
how size-reducing mappings could be used to produce new and more tractable models whose stationary 
control policies induce sub-optimal stationary control policies on the larger PBN. The results suggest 
that in the case of BN with perturbation one can use the control policy designed on the reduced network 
to approximate the control policy for the original model. The approximation fails only for intervention 
policies where the cost of applying control is small.

concluSion

The inherent high complexity of the network models of genomic regulation creates the need for map-
pings that reduce the size of the model while preserving its biologically meaningful properties. There 
are many different definitions of complexity, and we elect to focus mainly on the one that is commonly 
accepted in systems theory where complex systems are characterized by the presence of many interact-
ing parts and the interactions are generally non-linear and stochastic. We also describe the initial steps 
in applying methods from the theory of algorithmic complexity to measure the Kolmogorov complexity 
of both the network model and the reduction mapping. The research in this direction is still in its infancy 
but the MDL principle seems to provide the necessary framework for advances in the future. Using the 
Boolean network model and its stochastic generalization, the probabilistic Boolean network model, as 
examples we formulate the general reduction problem. The examples of complexity-reduction mappings 
demonstrate that there is no ’ultimate’ solution to that problem. Rather, depending on the set of design 

Figure 1. Steady-state distributions
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constraints there could be many or none candidate networks that could be considered as reductions of 
the original one, a situation which is common for ill-posed inverse problems. The number of possible 
solutions of the reduction problem depends on the constraints used to narrow down the size of the search 
space. We show the importance of the local and global properties of the inter-gene dependencies digraph 
and the state-transition diagram of a PBN in building up a set of constraints that not only reduces the 
size of the search space but also has proper biological interpretation. The interpretation of the reduction 
problem as a search problem provides a new perspective when considering the problem about network 
inference from data. Specifically, understanding how different sets of constraints affect the reduction helps 
to impose proper constraints when inferring the model from data. We propose several important criteria 
(i. - v.) for evaluation of complexity-reducing mappings, and give examples of their applications.

future reSearch directionS

Mathematical modeling of genomic regulation has the potential to unravel the mechanisms of cell func-
tioning from a systemic perspective. There are several important goals of the modeling process:

To infer optimal models from data.• 
To characterize the dynamical behavior of the real • GRN in terms of steady-state probability dis-
tributions of the model and the structure of its attractors and their basins.
To investigate how structure determines dynamics and the restrictions imposed by a specific dy-• 
namical behavior on the structure of the GRN.
To characterize possible intervention strategies for control of the dynamical behavior of the • 
system.

Complexity-reducing mappings for network models of genomic regulation can serve not only as a 
tool to produce smaller and more tractable models. The careful study of this ill-posed inverse problem 
can provide insights to model inference, constraints on the structure and dynamics of the network, and 
most importantly on the possibility for designing effective intervention strategies which control the 
dynamical behavior of the real GRN. As the genomic regulatory system is highly complex one has to 
deal with highly complex models as well and reduction mappings could be of great help. However, if 
the reduction mapping itself is highly complex, either in terms of algorithmic or stochastic complexity, 
such mapping is of little practical use. Thus, one has to address satisfactory the following questions:

Develop a sound methodology for • complexity estimation of both the model and the mappings 
used to reduce its complexity.
Study how intervention strategies designed for the reduced networks perform on the larger ones. • 
This in its turn requires investigation of the relationship between the concepts of controllability 
and reducibility of the models.
Establishing various minimal sets of constraints that are optimal for solving the • reduction problem 
depending on the practical application of the model.

These important future research directions represent some of the emerging trends in the field of 
mathematical and computational modeling of GRNs.
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key terMS and definitionS

Gene Regulatory Network: A network of relations among strands of DNA (genes) and the regula-
tory activities associated with those genes.

Complexity: Understood in the context of either complex system or algorithmic information 
theory.

Boolean Network (BN): A mathematical model that describes genomic regulation as a deterministic 
discrete dynamical system.

Probabilistic Boolean network (PBN): A mathematical model that describes genomic regulation 
as a stochastic discrete dynamical system.

Reduction Problem: The ill-posed inverse problem for reducing the size and the complexity of a 
given computational model of genomic regulation under a given set of constraints.

Projection Mapping: A mapping that solves the reduction problem for the PBN model of genomic 
regulation under a specific set of constraints.

Reduction Mapping: A mapping that solves the reduction problem for the PBN model of genomic 
regulation without increasing the number of the constituent BNs.

DIRE Algorithm: An algorithm that construct a mapping that solves the reduction problem using 
the state transition diagram of a given PBN as a constraint.

Cost of Reduction: A measure for evaluating the complexity of a given reduction mapping.
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introduction

Thanks to advances in technologies, in genetic regulatory networks—where, for instance, high-throughput 
gene expression analysis methods are available and a vast amount of quantitative data has been collected—
the information required for building quantitative models of gene regulatory networks can be obtained. 
The most exact way to simulate a quantitative model of a molecular system is molecular dynamics where 
movements of every molecule in the system are tracked (Gillespie, 2005, 2007). The system state of 
molecular dynamics is the positions and velocities of every molecule in the system where the dynamics 

abStract

With advances in high throughput methods of data collection for gene regulatory networks, we are now 
in a position to face the challenge of elucidating how these genes coupled with environmental stimuli 
orchestrate the regulation of cell-level behaviors. Understanding the behavior of such complex systems 
is likely impossible to achieve with wet-lab experiments alone due to the amount and complexity of the 
data being collected. Therefore, it is essential to integrate the experimental work with efficient and ac-
curate computational methods for analysis. Unfortunately, such analysis is complicated not only by the 
sheer size of the models of interest but also by the fact that gene regulatory networks often involve small 
molecular counts making discrete and stochastic analysis necessary. To address this problem, this chapter 
presents a model abstraction methodology which systematically performs various model abstractions 
to reduce the complexity of computational biochemical models resulting in substantial improvements in 
analysis time with limited loss in accuracy.

DOI: 10.4018/978-1-60566-685-3.ch015
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of the system state are described by capturing every movement and every collision of molecules in the 
system. While this approach can show the time evolution of species’ populations as well as the spatial 
distribution of each species, acquiring such detailed knowledge and performing such computationally 
expensive simulations is typically infeasible. By making the well-stirred assumption, the spatial property 
of a system can be abstracted away, overriding the system state to be simply the populations of species 
in the system. While this assumption greatly simplifies the complexity of models, it adds uncertainty 
in the time evolution of the system owing to the insufficient knowledge of the system descriptions that 
the very assumption precludes.

Traditionally, gene regulatory networks are modeled and analyzed within the continuous-deterministic, 
classical chemical kinetics (CCK) framework based on the law of mass action where the dynamics of 
a well-stirred system are described by a set of ordinary differential equations (ODEs). Although such 
treatment can be justified when the molecular populations are very large—and hence a CCK analysis 
may provide one of the most efficient approaches to estimate the time evolution of a system—the limi-
tations of the CCK analysis have been broadly accepted (Arkin et al., 1998; Gillespie, 1992a, 2000; 
Elowitz et al., 2002; Rao et al., 2002; Samoilov et al., 2005; Samoilov and Arkin, 2006). In particular, 
given the same initial condition, the CCK analysis of biochemical systems always produces the same 
results as it neglects uncertainty in system dynamics. Furthermore, many regulatory components (e.g., 
DNA, RNA, proteins) in biological systems can be present in amounts too small to simply neglect the 
effects of inherent fluctuations (McAdams and Arkin, 1997; Golding et al., 2005; Raser and O’Shea, 
2005; Pedraza and van Oudenaarden, 2005; Cai et al., 2006; Newman et al., 2006).

In order to more accurately predict the temporal behavior of gene regulatory networks, the stochastic 
chemical kinetics (SCK) framework can be used (Gillespie, 2005, 2007). Assuming that the system is 
spatially homogeneous, this SCK approach describes the time evolution of a biochemical system at the 
individual reaction level by exactly tracking the quantities of each molecular species and by treating 
each reaction as a separate random event. One consequence of SCK is a stochastic process description 
of the system that is analytically governed by the chemical master equation (CME) (McQuarrie, 1967; 
Gillespie, 1992b). However, directly obtaining the solution of the CME of any realistic system, either 
analytically or numerically, is not feasible due to its intrinsic complexity.

Instead of attempting to solve the CME, exact numerical realizations of a SCK model via Gillespie’s 
stochastic simulation algorithm (SSA) (Gillespie, 1976, 1977), which is derived from the same premise 
as the CME, are often used to infer the temporal system behavior with a much smaller memory footprint. 
Unfortunately, the computational requirements of the SSA can be substantial due largely to the fact 
that it not only requires a potentially large number of simulation runs in order to estimate the system 
behavior at a reasonable degree of statistical confidence, but it also requires every single reaction event 
to be simulated one at a time.

Ultimately, given the substantial computational requirements of stochastic simulations, abstraction is 
absolutely essential for efficient computational analysis of complex gene regulatory networks. For such 
networks, any applications of the all-inclusive, low-level, quantitative models are largely impractical 
because of high computational demands, while the use of entirely high-level qualitative representations 
is typically inadequate owing to the substantial dynamical and functional complexity they can mani-
fest. Therefore, a search for some intermediate level of abstraction becomes necessary. This, however, 
frequently presents a problem: while most abstractions used in modeling of biochemical networks have 
traditionally been implemented manually on a mechanism-by-mechanism basis, doing so accurately in 
general settings is a tedious and time-consuming process, which is highly susceptible to errors during 
model translation and transformation.
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To address the issues surrounding in silico analysis of biochemical systems, this chapter presents 
an automated model abstraction methodology of biochemical system descriptions based on chemical 
reaction kinetics (Kuwahara et al., 2006a; Kuwahara, 2007). This approach systematically reduces the 
small-scale complexity found in biochemical systems represented by reaction-based (REB) models 
(i.e., models composed of a set of chemical reactions) while broadly preserving the large-scale system 
behavior. Thus, this approach alleviates the abstraction problems by systematically testing network pat-
terns and characteristics to determine which abstraction methods are applicable (Kuwahara et al., 2005, 
2006a). Furthermore, this approach allows one to scan through the effective levels of abstraction and to 
optimize model transformation for efficiency-versus-accuracy by adjusting the various precision criteria 
for each abstraction method before its application.

Our methodology shown in Figure 1 begins with a REB model which could be simulated via the SSA 
or one of its variants though at a substantial computational cost. To reduce the cost of computational 
analysis, the original REB model is simplified by applying abstraction methods that mainly attempt 
to reduce the number of reactions and species based on the structure of the model and the abstraction 
criteria. The result is an abstracted REB model with fewer reactions and species, substantially lower-
ing the cost of stochastic simulation. To further reduce the complexity of the system as well as analysis 
time, this abstracted REB model can be automatically translated into a finite state system (FSS) model 
by representing the dynamics of the system states (i.e., molecular population levels in the system) by 
a finite state graph. This model can then be efficiently analyzed, for example, using a Markov chain 
analysis method.

This chapter is organized as follows. Section 2 presents an overview of SCK to model and analyze 
gene regulatory networks. Section 3 presents REB abstraction methods. Section 4 defines the FSS 
model and a method to transform a REB model into a FSS model. Section 5 presents a case study of the 
automated model abstraction methodology. Finally, Sections 6 and 7 present a summary of the chapter 
and discussion for future directions.

background

Section 2.1 first presents a brief overview of gene regulatory networks. Section 2.2 presents an overview 
of SCK to computationally model and analyze such biochemical networks. The following subsections 
present various abstraction approaches to alleviate the computational costs of SCK analysis. Section 2.3 

Figure 1. Automated model abstraction tool flow
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describes examples of abstraction in the simulation phase, while Section 2.4 describes examples of 
abstraction in the modeling phase.

gene regulatory networks

Although gene expression can be regulated at each step of transcription and translation, the heart of 
gene regulation comes from the transcription initiation where transcription factors and cis-regulatory 
DNA elements control when and how genes are transcribed and in turn proteins are synthesized (DeRisi 
et al., 1997; Lodish et al., 1999; Causton et al., 2001; Davidson et al., 2002; Hermsen et al., 2006). Tran-
scription factors are largely regulatory proteins that can control the rate of transcription by occupying 
cis-regulatory elements on DNA. Negative transcription factors called repressors prevent transcription 
of genes upon binding to the corresponding cis-regulatory elements, while positive transcription factors 
called activators enhance transcription of genes. Cis-regulatory elements on DNA include promoters 
and operators. Operators are segments of DNA that are usually located near the corresponding promot-
ers of genes to which transcription factors can bind to repress or activate transcription. These critical 
transcription regulatory components can be present in very low counts in a cell (Guptasarma, 1995), 
contributing to the nondeterministic effects in gene expression (McAdams and Arkin, 1997; Elowitz 
et al., 2002; Samoilov and Arkin, 2006).

Figure 2 shows a relatively simple two-gene system to illustrate the mechanism of transcriptional 
regulatory networks. In this network, a piece of DNA contains two genes: a and b. Suppose proteins A 
and B, the products from genes a and b, are not present in the system, and the promoter for gene a has 
a higher affinity to RNAP binding than the promoter for gene b at the basal rate. Transcription of gene 
a is then initiated much more frequently than that of gene b, causing gene a to be expressed and protein 
A to be synthesized more often in this configuration. Protein A is an activator of transcription of gene 
b and it can occupy the operator site of gene b to increase the expression rate of gene b. Thus, protein 

Figure 2. Two-gene system to illustrate the structure and the mechanism of transcriptional regulation. 
Protein A activates expression of gene b, while protein B represses expression of gene a.
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B can be synthesized at a higher level. Two copies of protein B can dimerize and form a molecule, and 
this Bdimer can act as a repressor of transcription of gene a by occupying the operator site of gene a. 
Consequently, at high levels of protein B, protein A is rarely produced, and with degradation, the level 
of protien A becomes so low that protein A can no longer effectively occupy the operator site of gene b 
to activate the expression of gene b. Thus, with limited production at its basal rate, protein B degrades, 
allowing gene a to be expressed once again.

Stochastic chemical kinetics

In well-stirred chemical and biological molecular systems, including gene regulatory networks, REB rep-
resentations typically provide the most detailed level of specification for the underlying system structure 
and dynamics (Berry et al., 2000). An REB model is composed of N chemical species S º { ,..., }s s

N1
 

which interact through Mirreversible, reactions R º { ,..., }r r
M1

 inside a well-stirred, chemically reacting 
system with a constant volume Ω in thermal equilibrium at some constant temperature. A REB model 
can be encoded in an emerging standard, the Systems Biology Markup Language (SBML) (Finney and 
Hucka, 2003). Thus, REB models can be conveniently constructed using SBML-compliant modeling 
tools. The use of this standardized format has the advantage of allowing for easy exchange of computa-
tional models by researchers as well as the ability to analyze models by a variety of SBML-compliant 
analysis tools.

An REB model can describe the time evolution of the system within the discrete-stochastic framework 
in continuous time. Thus, by denoting X( ) ( ( ),..., ( ))t X t X t

N
º

1  the system state vector that represents 
the number of molecules of each si, the evolution of X(t), given that X x0( )t

0
=  (for t t³

0 ) can be 
defined rigorously by the SCK framework. In the SCK framework, each reaction, rj, is viewed as a dis-
crete random event that changes the system state by vj º ( ,..., )v v

j Nj1 , called the state change vector, 
whose i-th element, vij, specifies the change in Xi. Thus, given the system is in state x º ( ,..., )x x

N1 , the 
system jumps to state x + vjas a consequence of a single rj reaction event. A species si that is consumed 
by a reaction rj (i.e., v

ij
< 0 ) is known as a reactant for the reaction. A species si that is produced by a 

reaction rj (i.e., v
ij
> 0 ) is known as a product for the reaction.

The time that the next reaction event rj occurs is governed by the propensity function, aj(x), which 
is defined as follows:

a dt (t) r
j j
( )x X xº =the probabilitythat,given , reaction  occurrs

inside  in the next infinitesimal time interval W [ ,t t d+ tt)   (1)

where the infinitesimal time dt is taken to be so small that at most one reaction event occurs within the 
interval. Note that a species that is neither a reactant or product, but it affects the value of the propen-
sity function, aj, is known as a modifier for reaction rj. Since the state change vector and the propensity 
function are the basis of the discrete-stochastic description of the SCK framework, they may be said to 
be the fundamental premise of stochastic chemical kinetics (Gillespie, 2005). The propensity function 
of each reaction rj is quantified by first defining a specific probability rate constant cj such that:



357

Abstraction Methods for Analysis of Gene Regulatory Networks

 

the probability that a randomly chosen combination oc dt
j

º ff

reactant molecules of  inside  at time  will transfor t
j

W rrm

via  within the next infinitesimal time r dt
j

.
  (2)

The strict requirement of SCK—as with CCK—is that each reaction rj is a distinct instantaneous 
event, which is essentially viewed as an elementary reaction. This means that, strictly speaking, each 
reaction in a SCK model must be either a unimolecular reaction or a bimolecular reaction. Suppose 

reaction rj is a unimolecular reaction and in the form s
cj

1
¾ ®¾¾  . Then, from Definition 2, this pro-

pensity function is defined as a c x
j j
( )x =

1 . The value of cj for a unimolecular reaction rj turns out to 
be the same as the reaction rate constant from CCK. In contrast, suppose reaction rj is a bimolecular 

reaction of the form s s
cj

1 2
+ ¾ ®¾¾ . Then, the propensity function takes the form of cjx1x2. In this 

case, c
j
W  is numerically the same as the corresponding rate constant kj in CCK. If, however, bimolecular 

reaction rj is a homogeneous dimerization reaction of the form 2 1
s

cj¾ ®¾¾  , the propensity function 

becomes a
c

x x
j

j( )
!

( )x = -
2

1
1 1  and the relationship between the specific probability rate constant and 

the classical reaction rate constant becomes c k
j j
= 2 /W . Also, if reaction rj is a trimerization reaction 

3
1

s
cj¾ ®¾¾   and if it is assumed to be an elementary reaction, then the propensity function of reaction 

rj becomes a
c

x x x
j

j( )
!

( )( )x = - -
3

1 2
1 1 1

 where c k
j j
= 3 2! /W . In general, the propensity function for 

an n-merization reaction: ns
cj

1
¾ ®¾¾   becomes a

c x

x nj

j( )
!

!

( )!
x =

-3
1

1

, and the relationship between 
and becomes c n k

j j
n= -! /W 1 . Thus, in homogeneous n-merization reactions, while the reaction rates 

via CCK are not equal to the corresponding propensity functions, they can approximate the propensity 
functions very well. This is especially true when the molecular counts are relatively high. This type of 
approximation is commonly applied to propensity functions, allowing biochemical system models to 
be numerically analyzed via both CCK and SCK approaches conveniently.

The time evolution of X(t) for an SCK model can be described by a temporally homogeneous jump 
Markov process that is described by the forward chemical master equation (CME):

¶

¶
= - - -

P t t

t
P t t a P t t a

j j

( , | , )
[ ( , | , ) ( ) ( , | , ) ( )

x x
x v x x v x x x0

j 0 j 0
0

0 0
]].

j

M

=
å

1
  (3)

Although the integral of the CME gives the probability P t t( , | , )x x0 0  that captures the evolution 
of a biochemical system, directly obtaining the solution of the CME of most realistic systems, either 
analytically or numerically, is not feasible (Gillespie, 1977; van Kampen, 1992; Gardiner, 2004). This 
is because Equation 3 is actually a set of coupled, ordinary differential equations for each system state, 
and the system-state-space is usually very large, if not infinite, for realistic systems. Thus, owing to its 
intrinsic complexity, the CME itself is not particularly useful for analyzing the temporal behavior of 
biochemical systems.

In order to analyze an SCK model, Gillespie developed a Monte Carlo simulation algorithm called the 
stochastic simulation algorithm (SSA) (Gillespie, 1976, 1977). SSA is derived by defining a probability 
density function p(τ,j|x,t) such that p(τ,j|x,t)dτ is the probability that, given X(t)=x, the next reaction in 
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Ω occurs in the infinitesimal time interval [t+τ,t+τ+dτ), and it is rj. Then, it can be shown that:

p j t a a
a

a
j( , | , ) ( )exp( ( ) )
( )

( )
t tx x x

x

x
= - ´

0 0
0

 

where:

a a
j

j

M

0
1

( ) ( ).x xº
=
å  

Hence, the time to the next reaction, τ, is an exponential random variable with mean 1 0
/ ( )a x  and 

the index of the next reaction, j, is a random variable with probability a a
j
( ) / ( )x x

0 . Figure 3 outlines 
an implementation of the SSA known as the direct method (Gillespie, 1976).

algorithM 2.1The DirecT MeThoD

Even though several streamlined implementations of the SSA have been introduced to alleviate the 
runtime of the stochastic simulation (e.g., Gibson and Bruck (2000); Cao et al. (2004)), the temporal 
behavior analyses of biochemical systems via the SSA may be very expensive. This is because the SSA 
can only solve the time evolution of the Markov state density function P t t( , | , )x x0 0  statistically, and 
it may require a potentially large number of simulation runs in order to estimate the system behavior to 
a reasonable degree of statistical confidence. Furthermore, the SSA requires every single reaction event 
to be simulated one at a time, which may demand a significant amount of time, especially for realistic 
biochemical systems.

Simulation abstraction

Simulation abstraction approximates the exact SSA to accelerate the simulation process while the com-
plexity of a model is left unchanged. This approach typically involves runtime identification of reaction 
events that can be skipped without significant effects on the system behavior, and the usage of an ap-
proximated simulation procedure that accelerates the simulation process by sacrificing exactness.

Figure 3. Algorithm for Gillespie’s direct method
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One simulation abstraction method is Gillespie’s explicit τ-leaping method (Gillespie, 2001). The 
basic idea of the τ-leaping method is to approximate the number of firings of each reaction in a prese-
lected time interval τ rather than individually executing each reaction event. Thus, if τ is selected to be 
large enough to leap many reaction events, then the simulation process accelerates drastically. However, 
in order for the τ-leaping method to approximate the SSA well, the leaping time τ must be chosen so 
that changes in the values of the propensity functions of each reaction in the interval [t,t+τ] are kept 
minimal. With this condition being satisfied, the system advancement from time t to time t+τ can be 
well-approximated using a Poisson-distributed random variable which gives the number of rj reaction 
events that fire in the time interval [t,t+τ).

The core of the τ-leaping method is the selection of τ. Hence, there have been a number of techniques 
introduced to improve the original τ-selection to improve the leaping method itself (e.g., Gillespie and 
Petzold (2003); Cao et al. (2006)). There are many variants of the τ-leaping method. Several τ-leaping 
methods are introduced to avoid having a molecular population go negative, which may happen in the 
original τ-leaping method (Tian and Burrage, 2004; Chatterjee et al., 2005; Cao et al., 2005a). The 
implicit τ-leaping method is introduced to better accommodate systems with stiff conditions where re-
actions with widely different time scales are present (Rathinam et al., 2003). The trapezoidal τ-leaping 
method (Cao and Petzold, 2005) is proposed to have a better accuracy and stiff stability properties than 
the explicit and the implicit τ-leaping methods by adapting the trapezoidal rule (Ascher and Petzold, 
1998) for solving ODEs.

While the τ-leaping methods are very promising for some systems, they may not perform well for sys-
tems with fast reactions driven by species present in very small counts. This is because, in such systems, 
the leaping time τ which satisfies the Leaping Condition is so small that leaping many reaction events is 
not feasible. In such cases, the exact SSA usually performs better than the τ-leaping methods.

Another example of simulation abstraction is the slow-scale SSA (ssSSA) (Cao et al., 2005b). This 
method addresses biochemical systems with very large time scale differences (i.e., some reactions take 
place much less frequently than other reactions). The main idea of the ssSSA is to skip over the expensive 
fast reactions and simulate only the slow reactions. This is accomplished by first partitioning a system 
into a fast subsystem and a slow subsystem, and then by assuming that the fast subsystem rapidly reaches 
a well-defined stationary probability distribution with respect to the time scale of the slow subsystem. 
Therefore, the slow-scale propensity functions with a stationary fast subsystem can be used to predict 
when and which slow reaction event fires next. Although the ssSSA can efficiently approximate the 
stochastic simulation of some systems with large time scale differences, it has several limitations. First, 
it is not feasible to compute the stationary distribution of the fast subsystem for most systems, and thus 
it usually has to be computed approximately. Second, since the propensity functions of some reactions 
can change substantially during each simulation, computationally expensive partitioning of reactions 
and species may need to be performed frequently in such situations.

Model abstraction

Although simulation abstraction is promising for many applications, the strict SCK model requirements 
may not be suitable for a large, systems-level model as the underlying system complexity does not 
change with this approach. Instead, model abstraction can be employed to transform a low-level model 
to a higher-level model, making computational analysis more efficient and the complexity of the system 
lower. While the detailed reaction-level representations of biochemical networks allow for very compre-
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hensive descriptions of biological systems, such low-level models may lead to substantial computational 
costs and may obscure the understanding of the overall system structure and interdependency of the 
components. Thus, going to a higher-level representation and abstracting away dynamically insignificant 
reactions or species in order to reduce the complexity of the system can help make the overall systems 
biology analysis more efficient, as well as make crucial components and interactions of a system more 
intuitive. This could be accomplished through a variety of techniques depending on the structure of the 
system and the assumptions utilized.

An example of model abstraction is the Michaelis and Menten (MM) approximation that can reduce 
the dimensionality of the following enzymatic reaction scheme:

E S C E P
k

k

k+
¾ ®¾¾
¬ ¾¾¾

¾ ®¾¾ +
-

1

1

2        (4)

where E, S, C, and P represent an enzyme, a substrate, an enzyme-substrate complex, and a product, 
respectively. In the context of continuous-deterministic analysis, the theoretical basis of the MM approxi-
mation can be shown by assuming that the changes in | C | (i.e., the state of C) over time is minimal on 
the time scales of interest (Briggs and Haldane, 1925). This approximation is known as the quasi-steady-
state approximation (QSSA), and it approximates the enzymatic reactions by the following reaction:

S P

k E S

K S
tot

M

2 | |

| | ,+¾ ®¾¾¾        (5)

where K k k k
M

º +-( ) /
1 2 1  which is known as the MM constant. The application of the QSSA can be 

justified with singular perturbation theory which states that the error from the QSSA estimate is small 
when the condition

E

S K
tot

M
| |

0

1
+

<<        (6)

is satisfied (Segel, Lee A. and Slemrod, Marshall, 1989; Keener and Sneyd, 1998). Note that | |S
0  

represents the initial state of S.
Due to the substantial computational demands of the SSA, this type of approximation has recently 

been applied to the SCK framework. Aside from the advantage of reducing dimensionality of the system, 
one major advantage of the stochastic version of the MM approximation is that it can substantially reduce 
the simulation time by removing the fast reactions. Thus, to facilitate more efficient temporal behavior 
analysis, MM-type approximations have been applied to several biochemical systems (Ackers et al., 
1982; Arkin et al., 1998; Wolf and Arkin, 2002). Also, the mathematical justification for the application 
of the quasi-steady-state approximation (QSSA) within the SCK framework has been investigated to 
establish a theoretical basis to illustrate how the QSSA can be applied to the SSA (Rao and Arkin, 2003; 
Samoilov, 2003).

Another example of model abstraction is a finite system state transformation of SCK models. In 
SCK analysis via the SSA, the temporal behavior is estimated by generating n sample trajectories 
of the system as outcomes of n simulation runs. Intuitively, as n ® ¥ , this approach gives the best 
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estimate of the temporal behavior. Indeed, at this limit, if the system has a finite variance, the central 
limit theorem guarantees that the distribution of the n-sample average is asymptotically normal, and the 
standard error, SE, which measures the difference between the estimated mean temporal behavior from 
the n Monte Carlo simulation runs and the true mean temporal behavior of the system is formulated as 
S n

E
= ˆ /s  where ŝ  is the estimated standard deviation. This implies that, as n ® ¥ , the numeri-

cal estimation reflects the true mean behavior. This also shows that, in order to decrease the uncertainty 
involved in the numerical estimation of temporal behavior N times, the number of simulation runs must 
be increased times. Instead of taking this potentially very expensive approach, the SCK model can be 
approximated by a finite state model and the corresponding CME can be directly solved to estimate the 
time evolution of the probability distribution (Kuwahara et al., 2006b; Peleš et al., 2006; Munsky and 
Khammash, 2006).

Although many model abstractions have long been in wide use individually, their traditionally 
manual transformation becomes increasingly more tedious and demanding as multiple methods are 
collectively applied to a particular biological system. The problem becomes even more acute as the size 
of the network increases, eventually rendering it intractable and potentially leading to significant errors 
in large model transformations. To address these issues, the remainder of this chapter describes various 
automated model abstraction methods.

autoMated reaction-baSed Model abStraction

Reaction-based abstraction methods are used to reduce a REB model’s size by merging reactions, 
removing irrelevant reactions, etc. We have implemented several such techniques, each traversing the 
graph structure of the REB model and applying transformations to it when the respective conditions 
are satisfied. The result is a new REB model with fewer reactions and/or species. This section presents 
a few such methods.

operator-Site reduction

REB models of gene networks generally include multiple operator sites which transcription factors may 
occupy. It is often the case that the rates at which transcription factors bind and unbind to these opera-
tor sites are rapid with respect to the rate of open complex formation (i.e., initiation of transcription). 
It is also typically the case that the number of operator sites is much smaller than the number of RNA 
polymerase (RNAP) and transcription factor molecules. Therefore, a method similar to the QSSA and 
the rapid equilibrium approximation called operator site reduction can be used to systematically merge 
reactions and remove operator sites and their complexes from REB models. Note that this method may 
also be applicable to other molecular scaffolding systems such as those found in signal transduction 
networks.

The first step in this transformation is to identify operators within the REB model. This is done by 
assuming that an operator is a species small in number that is neither produced nor degraded. Suppose our 
algorithm has identified an operator O, and there are N+1 configurations in which transcription factors 
and RNAP can bind to it. Let Oi, Ki, and Xi with i∈[1,N], be the i-th bound complex of the operator O, 
the equilibrium constant for forming this configuration—which is the ratio of the forward rate constant 
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and the backward rate constant—and the product of the states of the substrates for each component of 
the complex in this configuration, respectively. Let O0 be the operator in free form (i.e., not bound to 
anything). Let Ci with i∈[0,N] be each of the operator configurations. Then, assuming rapid equilibrium, 
the probability of this operator being in each configuration is:
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.This probability is the same as the equilibrium statistical thermodynamic 
model when K G RT

i i
= exp( / )D  where DG

i  is the relative free energies for the i-th configuration, R is 
the gas constant, and T is the absolute temperature (Ackers et al., 1982). Assuming that O O

tot o
=| |

0
, then 

| | Pr( )O C O
i i tot
=  is the fraction of operators in the i-th configuration.

This section gives a high-level description of operator site reduction while detailed algorithms can 
be found in (Kuwahara et al., 2006a; Kuwahara, 2007). Operator site reduction first traverses a REB 
model to search for species whose initial molecule counts are small enough to be considered as potential 
operator sites. Each potential operator site, O, is checked to see if the total molecule count is conserved 
and if each binding reaction of O with transcription factors and/or RNAP, r, is an elementary reaction 
to form a complex, Oi. If these criteria are not met, then s is not considered further. Furthermore, if O 
or Oi is an interesting species (i.e., a species identified by the user as one that is being analyzed and 
should never be abstracted), then O is not considered further. The species Oi may appear as a modifier 
in any number of reactions that lead to synthesis of proteins. Each of these reactions, r2, is checked that 
it is an elementary reaction with no reactants, only one modifier, and only one product. For each O, 
the information required to express the probabilities Pr(Ci) is stored to build the equilibrium statistical 
thermodynamic model. Operator site reduction then loops through the set of configurations Ci of each 
O to form an expression that is used in the denominator in each new rate law as well as forming lists of 
all the transcriptional regulatory proteins. Next, it considers each Ci. For each reaction r2 in which Oi 
appears as a modifier, it adds all the transcription factors as modifiers and creates a new rate law for r2. 
Finally, the reduction removes all the binding/unbinding reactions of O, all the complex species Oi, and 
the operator site O from the model.

As an example, Figure 4(a) shows the graphical representation of a detailed REB model which de-
scribes transcriptional gene regulation to produce protein P based on the configurations of operator site 
O bindings. In this graphical representation, a reaction that is connected to a species with a double arrow 
is a shorthand to show a reversible reaction (i.e., a pair of two reactions with reactants and products 
swapped). Species connected to a reaction with letters, r, p, and m are a reactant, a product, and a modifier 
for that reaction, respectively. The math expression inside a reaction node is the kinetic rate function of 
that reaction. In Figure 4(a), the top three reversible reactions involve the binding of RNAP, an activator 
A, and repressor R to O while the bottom two irreversible reactions result in the production of n molecules 
of the protein P. In this example, there are 4 configurations of the operator, namely, O, Ca, Cb, and Cr. 
This network has eight species and eight irreversible reactions. Assuming that the operator-binding and 
unbinding rates are much faster than those of open complex formation, our method can apply operator 
site reduction. Figure 4(b) is the result of applying this abstraction method to Figure 4(a). The result 
has only three species and two reactions. The transformed model represents the probability of O being 
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in a configuration that results in production of P instead of modeling every binding and unbinding of 
transcription factors and RNAP to the promoter precisely.

Modifier constant Propagation

In order to increase the understandability of a REB model as well as the efficiency of its temporal be-
havior analysis, it is essential to remove all unimportant species that do not contribute to the dynamics 
of a system. In particular, it is useful to systematically inspect and remove species whose states are 
statically known to stay unchanged in simulation which is accomplished using an abstraction method 

Figure 4. Operator site reduction: (a) original model and (b) abstracted model

Figure 5. A REB model after applying modifier constant propagation to a REB model shown in Fig-
ure 4(b)
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called modifier constant propagation. Modifier constant propagation traverses a REB model, and finds 
a species s which is only used as a modifier. It then substitutes a constant |S|0 for |S| in the kinetic law 
expressions of the reactions that use s as a modifier. Therefore, since |S| is no longer used to influence 
any kinetic laws, species s is safely removed from a REB model by this method.

For example, as illustrated in the REB model in Figure 4(b), after applying operator site reduction, 
it is often the case that RNAP is only used as a modifier. Thus, by applying modifier constant propaga-
tion, can be replaced with a constant RNAP

tot  whereRNAP RNAP
tot

=| |
0 . Therefore, as shown in 

Figure 5, the REB model in Figure 4(b) can be reduced to three species and two reactions as a result of 
modifier constant propagation.

Similar reaction combination

A REB model may contain multiple reactions whose structures are very similar. Thus, combining 
such reactions using another abstraction method called similar reaction combination can improve the 
complexity of a REB model by reducing the number of reactions in a REB model. It can also result in 
a reduction of the computational costs for evaluating kinetic laws by reducing redundant kinetic law 
expressions. In the context of gene regulatory networks, an abstracted REB model of transcriptional 
gene regulation often has protein synthesis mechanisms at a basal rate and enhanced or reduced rates due 
to transcription factors binding to operator sites. These mechanisms can be represented in structurally 
similar reactions whose kinetic laws typically contain redundant expressions. Thus, with this method, 
such protein synthesis mechanisms can be combined into one reaction with a computationally much less 
expensive kinetic law expression.

Similar reaction combination transforms a REB model by first searching for structurally similar reac-
tions and replaces them with one reaction. Here, reactions r1 and r2 are defined to be structurally similar 
if reactions r1 and r2 have the same reactants, products, and modifiers with the same stoichiometries. An 
implication of this condition is that firings of both reactions r1 and reaction r2 are guaranteed to result 
in the same state transition of a REB model. Thus, these reactions can be combined to introduce a new 
reaction rc such that:

K K K( ) ( ) ( )r r r
c

= +
1 2        (7)

where K(r) represents the kinetic law for reaction r. The ODE model of the combined reactions is identi-
cal to the original one. Hence, the similar reaction combination method can be used without making any 
approximation in the continuous-deterministic analysis case. In the case of SCK analysis via the SSA, 
suppose reactions r1 and r2 are structurally similar. Then, from Condition 7, the probability that either 
reaction r1 or reaction r2 is chosen to be the next reaction to fire becomes:
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Thus, the probability of firing an event of the newly introduced reaction rc is identical to the prob-
ability of firing an event of either reaction r1 or r2. Similarly, from Condition 7, the computation of 
the next reaction time τ in the direct method of the SSA does not change before and after the reaction 
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combination as the sum of the propensity functions does not change. Furthermore, the state transitions 
via the combined reaction are the same as that of reactions r1 and r2. Therefore, this method itself does 
not make any approximation for the SCK analysis as well.

To illustrate an application of similar reaction combination, Figure 6 shows the REB model that is 
abstracted from the REB model in Figure 5 by using similar reaction combination. In this reduced REB 
model, the two reactions to produce n molecules of protein P are combined into one reaction. Since the 
kinetic laws of the two reactions have the same denominator, the combined reaction is able to simplify 
its kinetic law, making its evaluation faster than that of the two original kinetic laws.

other reaction-based Model abstractions

Besides the three REB abstraction methods described in this chapter, we have implemented several ad-
ditional ones listed below (Kuwahara et al., 2006a; Kuwahara and Myers, 2007; Kuwahara, 2007):

• Irrelevant node elimination removes species and reactions that do not significantly influence the 
species of interest.

• Production-passage-time approximation approximates the production time in an enzymatic re-
action scheme to remove the expensive complex-dissociation reaction (Kuwahara and Myers, 
2007).

• Quasi-steady-state approximation merges reactions and removes intermediate species in an enzy-
matic reaction scheme when the quasi-steady-state assumption holds.

• Rapid equilibrium approximation also merges reactions and removes intermediate species in an 
enzymatic reaction scheme when it has large time scale difference characteristics.

• Dimerization reaction reduction removes dimerization reactions and expresses the number of 
monomers and dimers in terms of its total number of molecules.

• Stoichiometry amplification amplifies stoichiometries and reduces the values of propensity func-
tions making the system and time advancement per reaction larger.

• Reaction splitizations split reactions so that each reaction changes the state of only one species.

Figure 6. A REB model after applying similar reaction combination to a REB model shown in Fig-
ure 5
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autoMated State-baSed Model abStraction

The state-based model abstractions convert the REB model into a FSS model. The FSS model is a state-
based, continuous-time discrete-event system where the stochastic state transition of each species is 
restricted to a finite state space unlike most state transitions in a REB model. By making each species’ 
state space finite, the overall system space of the FSS model becomes also finite. Thus, the state space 
of a FSS model can be explicitly specified. The FSS model compactly represents a time-homogeneous, 
discrete-state, Markov process in a finite state space whereby state transitions are decided based on the 
information on the current state. Therefore, while a system described using the FSS model can be ana-
lyzed via stochastic simulation methods such as the SSA, it can also be analyzed using a Markov chain 
analysis method (Stewart, 1994)—albeit possibly requiring a substantial amount of memory to generate 
all the underlying system states—to directly obtain the solution of an abstracted CME. The FSS model 
is formally defined as follows.

Definition 4.1 (FSS model) A FSS model is specified with Z z z C0 max, , ,  where Z º ( ,..., )Z Z
n1  

is a vector of non-negative integer random variables, z0 is the vector containing the values of Z at time 
0, zmax  is the vector whose i-th element, z i

max
, specifies the maximum value that random variable Zi 

can take, and C º { }c c
m1

, ...,  is the set of guarded commands that change the values of the random 
variables. The system state space of Z, Z, is specified as

max
| . [ 0, ] .i

i
i z zZ z  

Z(t) specifies the system state at time t. Thus, for each Zi, the probability that Z t z
i

i( )
max

> or Z t
i
( ) < 0  

is zero for any t≥0. When the system is in state z, each guarded command, cj, has a form:

G
j

qj( )z Z z uj¾ ®¾¾ = +  

where the function G z
j

i
n

( ) : ,..., ,
max

z 0 0 1{ } { }  is the guard for cj when the system state is z, qj is the 
transition rate for cj, and uj is an n-dimensional vector whose i-th element has the value added to Zi as 
a result of cj.

Let [[bool−exp]] be an operator that takes a Boolean expression, bool−exp, and evaluates to 1 if 
bool−exp is true and 0 otherwise. Then, the guard, G

j
( )z , of each guarded command, cj, has the form:

G z v
j i j

i

i

( ) [[ ]]z
Nj

= =
Î


       (9)

where the expression [[ ]]z v
i j

i=  results in 1 if the current state of Zi is equal to the value specified by the 
constant vj

i , otherwise results in 0, and Nj is a subset of [1,n]. Each guarded command, cj, is required to 
change the state of Z. Thus, each Nj must satisfy the condition N Nj j> Ù £0 n . If the system state is 
z at time t (i.e., Z(t) = z), can be executed if its guard is satisfied (i.e., G

j
( )z = 1 ). The result of executing 

the guarded command in time step τ is that a new state is reached in which Z z ui j( )t + = +t . Note that 
G

j
( )z  can be efficiently encoded in the state graph of a FSS model by using the connection from state 

z to state z u j+  as an indicator so that Gj
( )z  is evaluated to 1 if there is a transition edge from state z 

to state z u j+ , otherwise to 0.
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From the definition of the FSS model, the probability that, given the system is in state z, cj is executed 
and Z moves to state z u j+  within the next infinitesimal time step dt is: P c dt G q dt

j j j
( , | ) ( )z z= . By 

taking the limit: dt ® 0 , the following abstracted CME represented by a FSS model can be obtained:

¶

¶
= - - -

=
å

P t

t
G q P t G q P t

j j
j

m

j j

( , | )
[ ( ) ( , | ) ( ) ( , | )

z z
z u z u z z z z0

j j 0 0
1

]].    (10)

4.1 finite State System Model transformation

In order to describe the transformation from a REB model, MR, to a FSS model, MF, let us suppose that MR 
has S º { }s s

n1
, ...,  where the state of each species si can be changed by some reaction, R º { }r r

m1
, ..., '  

where each reaction rj can change the state of some species. Then, MF has Z º { }Z Z
n1

, ...,  where each 
Zi specifies s

i , and each z i
0  in z0 is s

i 0
. Each z i

max  in zmax  is set by the user to specify the upper limit 
molecular count of si.

For the generation of the guarded commands, C º { }c c
m1

, ..., , each reaction rj first constructs a set 
of indices, Ij, that contains all the indices of the species that participate in reaction rj. Here, let Ẑj  be the 
set of random variables { | ' }

'
Z i

i
Î Ij , and ˆ

jZ  be a subset of 
Z
 which has every state z in which, using 

the value of each zi for s
i , a reaction rj event can fire with a non-zero transition rate to move to a state 

where the new value of each Zi is at most z i
max  and at least 0, provided that the states of species that do 

not participate in reaction rj are fixed to be 0 (i.e., zi
= 0  if i Î Ij ). Then, each reaction rj generates 

guarded commands using the information on each state in ˆ
jZ , resulting in as many as ˆ

jZ   guarded 
commands. Each guarded command, cm , from state ˆ

jZ
z  is used for the transition event of reaction 

rj in states where only the value of Z
j
Î Ẑj  is constrained by the i’-th element of z , z i

m
' . The guard, 

Gm( )z , checks if the condition to enable the transition event, cm
, is satisfied in state z. This condition 

can only be satisfied when

" Î =i z z
i

i' .
'

'Ij  m       (11)

is true. To generate the form of Equation 9, thus, N¼ is set so that N¼ is equal to Ij, and each vi
m  is the 

constant whose value is specified by z i
m . The transition rate of cm , qm , is computed by evaluating K( )r

j  
using the value of z . The increment vector, u , specifies the increment of the system state as a result 
of the firing of one event. Thus is generated so that the i-th element of u  is specified as net amount of 
produced by reaction rj.

4.2 n-ary transformation

While the FSS model transformation method described in the previous section provides a means to 
analyze the time evolution of biochemical systems by directly solving the CMEs, this method is proven 
to be inefficient for systems with very large system state space. Even for a system of 10 species where 
each has an upper limit molecular count of 99, the FSS model transformation can generate up to 1020 



368

Abstraction Methods for Analysis of Gene Regulatory Networks

states. Constructing such a state graph for temporal behavior analysis is infeasible for most computers. 
Thus, the FSS model transformation method should not be used in such cases. To more aggressively 
reduce the state space of a FSS model, this section develops another transformation method called n-
ary transformation. The n-ary transformation transforms a REB model to a reduced FSS model called 
the stochastic asynchronous circuit (SAC) model. A SAC model describes the state of each species by 
n-ary or Boolean levels instead of molecular counts, resulting in further reduction of states per species. 
Thus, it can further improve the analysis time. For example, suppose a system has 10 species, each of 
whose states can be qualitatively described as low, medium, and high. Then, with the n-ary transforma-
tion, a SAC model with at most 103 states can be generated. Therefore, this model can be efficiently 
analyzed, for example, using Markov chain analysis methods within the asynchronous circuit analysis 
tool ATACS (Myers et al., 2001).

Aside from the conditions required for the FSS model transformation, the n-ary transformation requires 
the REB model to satisfy the property that all reactions should have either one reactant or one product, 
but not both. Thus, each guarded command in a SAC model, cj, comes with the following restriction on 
the increment vector, uj:

$ > Ù " ¹ =i u k i u
j
i

j
k. ( ) ( . ).  0 0        (12)

Thus, the SAC model is a subset of the FSS model whereby each guarded command changes the 
value of exactly one random variable as a result of its execution. This is often the case after applying 
the REB abstractions described earlier. If this condition does not hold, however, it can be made to hold 
using reaction splitizations.

The n-ary transformation begins by identifying the states of each species. Let Ai º { }A A A
i i i

Ni0 1, , ...,  
be a set with Ni elements that partitions the states of species si such that " = +j A

i
j

i
j

i
j. [ , ) q q 1  where 

q
i
0 0= , and qi

Ni + = ¥1 . We call A A
i i

Ni0, ..., critical intervals and q q
i i

Ni0, ..., critical levels of species 
si. Depending on the nature of the application, the critical levels can be either specified by the user and 
taken to be model inputs—such as might be the case when our system is utilized by an expert already 
familiar with the in situ behavior of the underlying regulatory network—or estimated automatically 
from the kinetic rate laws. The SAC model treats each A

i
j  as one state. Thus, Ni describes the highest 

state for species si in a SAC model, and thus, in the FSS model notation, Ni is in fact z i
max

 in that, for 
all t≥0, Z t Z t N

i i i
( ) ( )³ Ù £0 . The initial state of Zi, z

i
0 , is determined by examining each critical in-

terval, A
i
j  for the condition: s A

i i
j

0
Î . Then, z i

0
 is set to the index of the critical interval that satisfies 

this condition.
In Ai , if q q

i
j

i
j+ - >>1 1  for some j in 1,N

i
é
ëê

ù
ûú , then our method can collapse many states in Ai

j  
into one state for species s

i
, resulting in significant improvement in analysis time. On the other hand, 

if " Î é
ëê

ù
ûú - =+j N

i i i
j1 1, . j 1q q  for all i, then each state of the SAC model describes a molecular count, 

resulting in the same precision in the state space of species si as the FSS model.
In order to identify the critical levels of species si, our method first automatically finds all reactions 

with kinetic rate laws that include a denominator term of the form K s
i

n
. For each such reaction, one 

critical level of si is generated with the form a K aKn / ( )-  where a is an amplifier in the range [0.5,1.0) 
selected by the user. Figure 7(a) shows two reactions that have kinetic rate laws containing s

1
 terms. 
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Assuming that amplifier a equals 0.5, these two reactions imply the following four critical levels:

0 4

4

2

2

3

3

, , ,
k

k

k

k RNAP

k

k
tot

- - -

×
 and        (13)

These levels come from the fact that q0  is by definition 0, the denominator of the left reaction rate 
law in Figure 7(a) has the term k k s

4 4 1
/ - , and the denominator of the right reaction rate law has two 

terms of this form, k k s RNAP
tot2 2 1

/ -  and k k s
3 3 1
/ - .

After the critical levels of each species are identified and in turn z0 and zmax  are all determined, the 
guard, Gm( )z , for cm  is generated for each reaction in a similar way as the FSS model transformation. 
Suppose species s1 is an activator in reaction r1 for the production of s2 as shown in Figure 7(b) where its 
kinetic law, f s( )

1 , is always greater than 0 if s
1

0³ . Also, suppose that three critical levels are used for 
both species s1 and s2, that is, the critical levels of s1 and s2 are ( , , )0

1
1

1
2q q , and ( , , )0

2
1

2
2q q , respectively.

In the n-ary transformation, definition of ˆjz  is slightly different from the FSS model transformation. 
Since r1 is a production reaction for species s2 where ˆjz   is obtained as:

 
ˆ 1 2 1 2

( , ,..., ) | [0,2] and [ 0,1] ,
n

z z z z z
jz

     (14)

the legal transitions that Z2 can take are only two: 0 1®  and 1 2®  for each possible state of Z1. There-
fore, the guarded commands for r1 are below:

Figure 7. (a) Critical level identification. (b) Production of s2 with activator s1. f s s( ) .
1 1

0 0> ³ if 
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where u º ( ,..., )u u
n1  has u2

1=  and " ¹ =i u
i

2 0. .
The final step to generate a SAC model is to assign a transition rate, qi, to each guarded command. 

For simplicity, Ni Boolean variables B B
i i

Ni1, ...,  are introduced for the generation of the rate to change 
the state of Zi. The relationship between Zi and B B

i i

Ni1, ...,  is:

Z t z B (t) ( j z ,N B (t)
i i

j
i i

j( ) ) [ ]. ).= " Î = Ù " Î + = iff ( j [1,z].  1 1 0    (15)

Thus, the time evolution of s
i  can be approximated using B B

i i

Ni1, ...,  as

s t B t B t B
i i

N

i

N

i

N

i i i i i i
i i i( ) ( ) ( ) ( ) ( ) ( ) (» - + + - + --q q q q q q1 2 1 2 1 0 1

 tt).    (16)

Taking the derivative of the mean of s t
i
( )  with respect to the mean of B t

i
j ( )  results in:
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Using this approximation, the time derivative of B t
i
j ( )  is:
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Notice B t
i
j ( )  is a continuous variable in the range [0,1]. By letting B t

i
j ( )  be the probability that 

B
i
j = 1  at t, our method finds the transition rate functions for B

i
j  to move from 0 to 1 and from 1 to 0 

from the rate laws of reactions that change the value of s
i . The transition rate function of a guarded 

command changing the value of Bi
j , which is generated from reaction r, is:

f
E r

i
j

i
j

=
×
- -

K( )

q q 1        (19)

where E is the stoichiometry of species i in reaction r.
Finally, our method must evaluate the transition rate functions with appropriate values to generate 

the transition rates. Suppose reaction rj uses s
i  in its kinetic law. Then, to generate the transition rate 

for the guarded command when Z z
i
= , our method uses qi

z  as the value of si  to evaluate K( )r
j . For 
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example, the transition rates of the guarded commands in Figure 7(b) are derived from K( )r
1 . Since the 

derived transition rate function is f s( ) / ( )
1 2 2

1q qm m- -  for μ∈[1,2], the transition rates for the guarded 
commands for reaction r1 are:
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caSe Study: Phage λ

Both the REB and FSS abstraction methods coupled with temporal behavior analysis methods are imple-
mented in our automated modeling and analysis tool called REB2SAC (Kuwahara et al., 2005, 2006a) 
which is integrated within our iBioSim tool (available from http://www.async.ece.utah.edu/iBioSim) 
that provides a user-friendly graphical user interface. This section presents the application of our tool 
to the analysis of the phage λ-infected E. coli lysis/lysogeny decision switch, examining the changes in 
the probability of the pathway taken based on various environmental conditions. Phage λ is a virus that 
infects E. coli cells. It has two strategies to replicate itself as shown in Figure 8. One is called lysis where 
the phage creates copies of itself inside the cell and bursts the cell to escape and infect other cells. The 
other one is a more passive approach called lysogeny where the phage integrates its DNA into the host 
chromosome and replicates its DNA through cell division.

The genetic circuit controlling the phage λ lysis/lysogeny decision is shown in Figure 9. The key 
proteins involved in the phage λ lysis/lysogeny developmental decision are CI, Cro, N, CII, and CIII. 
The lysis/lysogeny decision is a race condition between CI and Cro. A high concentration of CI leads 
to the lysogenic pathway, while a high concentration of Cro leads to the lytic pathway. The core com-
ponent of the genetic circuit is the three operator sites called the λ switch to which CI and Cro dimers 
can competitively bind to influence the activities of the promoters PRM and PR (Ptashne, 1992). Binding 
of the CI dimer to the λ switch in a wild type setting represses the transcription of the cro gene by pre-
venting RNAP from binding to PR. When the concentration of CI dimer is low, the operator sites in the 
λ switch tend to be empty, and the expression of gene cI from PRM only occurs at a low basal rate. When 
the concentration of CI dimer is medium, it tends to occupy two operator sites in the λ switch, leading 
to an increased activated expression of cI from PRM. However, when the concentration of CI dimer is 
very high, it tends to occupy all three operator sites in the λ switch, which represses the expression of 
cI from PRM by preventing RNAP from binding to PRM. Binding of Cro dimer to the λ switch in the wild 
type represses the transcription of cI by preventing RNAP from binding to PRM. When the concentration 
of Cro dimer is low, the operator sites in the λ switch tend to be empty, but since cro expression from 
PR does not need to be activated, its production proceeds at a high rate. As the concentration of Cro 
dimer increases, it tends to occupy the operator sites closest to PRM shutting off CI production. Very high 
concentration of Cro though turns off production of both CI and Cro.
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Immediately after infection, there are no CI and Cro molecules in the cell (Arkin et al., 1998). In this 
condition, while CI can be synthesized from two promoters, PRM, and PRE, the synthesis of Cro is higher 
than that of CI since the basal transcription rate of cro is higher. Thus, the favored outcome of the lysis/
lysogeny decision is lysis at the early stage of the decision. In order for the phage to take the lysogenic 
pathway, the enhanced transcription of cI from the PRE promoter which is activated by the presence of 
CII is required. For this to happen, the antiterminator, N, needs to be synthesized at the early stage of 
the decision so that it can help RNAP go through the termination sites, TL1 and TR1 to facilitate synthesis 
of CII and CIII at the early stage of the decision. Since CIII can prevent CII from degrading, a high 
concentration of CIII can lead to a high concentration of CII.

We have constructed a REB model for the phage λ decision circuit system which is described in 
Kuwahara et al. (2006a). Our initial REB model includes 55 species and 69 reactions, and the set of 
interesting species, Si, includes CI and Cro. This model is then automatically abstracted using REB-
2SAC. The abstraction engine in REB2SAC is configured for the phage λ decision circuit model so that 
it collectively applies REB abstraction methods as shown in Figure 10.

Figure 8. Phage λ lysis/lysogeny developmental pathway. Phage λ has two pathways to multiply itself 
called the lytic pathway and the lysogenic pathway. In the lytic pathway, the phage first creates proteins 
needed for formation of new viruses. It then replicates its DNA to create new viruses inside the cell. These 
viruses burst the cell to escape to infect other cells. In the lysogenic pathway, the phage integrates its 
DNA into the host chromosome. It then replicates its DNA passively via cell division.
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algorithM 5.1MoDel AbsTrAcTionengine(MoDel M)

The seven abstraction methods are applied iteratively until there is no change in the model. Irrelevant node 
elimination and modifier constant propagation are applied first to reduce the complexity of the model 
without compromising accuracy. The rapid equilibrium approximation is applied before the standard 
quasi-steady-state approximation so that, whenever the model contains patterns that match the condi-
tions for both methods, the former has precedence in order to reduce the complexity of the reaction rate 
laws. The similar reaction combination is applied right after the operator site reduction to immediately 
combine the structurally similar reactions that are often generated by operator site reduction. The di-
merization reduction is placed after operator site reduction since an operator site with a dimer molecule 
as a transcription factor cannot be reduced otherwise. After collectively applying the REB abstraction 
methods, the REB model is reduced to only 5 species and 11 irreversible reactions as shown graphically 
in Figure 11. This figure shows the biological gene-regulatory network of the phage λ lysis/lysogeny 

Figure 9. Phage λ decision circuit. The key proteins involved in the phage λ lysis/lysogeny developmental 
decision are CI, Cro, N, CII, and CIII. The lysis/lysogeny decision is a race condition between the states 
of CI and Cro. A high concentration of CI leads to the lysogenic pathway, while a high concentration 
of Cro leads to the lytic pathway. In order for the phage to take the lysogenic pathway, antitermina-
tor, N, needs to be synthesized at the early stage of the cell cycle. This antiterminator can help RNAP 
go through the termination sites, TL1 and TR1, facilitating transcriptions of genes cII and cIII. CIII can 
prevent CII from degrading by binding to proteases P1 and P2 (Arkin et al., 1998), and CII activates 
the transcription of cI from the PRE promoter. Further description of the genetic circuit can be found 
in Arkin et al. (1998) (image courtesy of U.S. Department of Energy Genomics: GTL Program http://
genomicsgtl.energy.gov).
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decision circuit, and it is quite similar to the high-level hand-generated diagram in Figure 9. The structure 
of this graph, however, is automatically generated using abstractions from the low level model.

The goal of our analysis using this computational model is to determine the probability that the 
lysogenic pathway is chosen under various conditions. For example, it has been shown experimentally 
that the probability of lysogeny increases as the multiplicity of infection (MOI)—the number of phages 
simultaneously infecting the same cell—increases (Kourilsky, 1973). Thus, our analysis first predicts 
the effects of MOI on the probability of lysogeny. For this analysis, both the original model and the 
abstracted one are simulated for 10,000 runs using the same simulator, an optimized implementation 
of SSA within REB2SAC, on a 3GHz Pentium4 with 1GB of memory to have a reasonable statistical 
confidence as well as to measure the speedup gained via abstractions. Each simulation is run for up to 
one cell cycle while tracking the number of molecules of CI and Cro. If the number of CI molecules 
exceeds 328 (i.e., 145 CI dimers) before the number of Cro molecules exceeds 133 (i.e., 55 Cro dim-
ers), then the simulation run is said to result in lysogeny (Arkin et al., 1998). The simulations are run 
for MOIs ranging from 1 to 50. While the simulation of the original REB model takes 56.5 hours, the 
abstracted model takes only 9.8 hours, which is a speedup of more than 5.7 times. Figure 12(a) shows 
the probability of lysogeny for MOIs from 0 to 10 for both the original REB model and the abstracted 
one. The results are nearly the same, yet with a substantial acceleration in runtime.

The n-ary transformation is able to automatically convert our reduced REB model for the phage λ 

Figure 10. Top level abstraction algorithm of the phage λ decision circuit model

Figure 11. Structure of the abstracted model of the phage λ developmental decision gene-regulatory 
pathway
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decision circuit into a reduced FSS (SAC) model. However, since the species CI and Cro influence many 
reactions, our automated analysis finds that 10 critical levels are needed for species CI, and 10 are needed 
for species Cro. This is too many critical levels for the Markov chain analyzer within ATACS (Myers 
et al., 2001). Fortunately, many of these critical levels are very close together and can be combined with 
little loss in accuracy. Therefore, while we decided to use nine levels for species CI and four levels for 
CII, we used only two levels for each of the species Cro, N, and CIII.

We analyzed the SAC model using Markov chain analysis. The probability of lysogeny is calculated 
by summing the probability of states that reach the highest level of CI. We compare our results with 
both experimental data and previous simulations performed by Arkin et al. on a complete master equa-
tion model. The experimental results are from Kourilsky (Kourilsky, 1973). Since it was not practical to 
measure the number of phages that infect any given cell, Kourilsky measured the fraction of cells that 
commit to lysogeny versus average phage input (API) (i.e., the proportion of phages to E. coli within 
the population). Kourilsky performed experiments for both “starved” E. coli and those in a “well-fed” 
environment. He found that the fraction that commits to lysogeny increases with increasing API, and 
that this fraction increases by more than an order of magnitude in a starved environment over a well-fed 
environment.

To map simulated MOI data onto API data, Arkin et al. used a Poisson distribution of the phage 
infections over the populations:
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where M is the MOI, A is the API, and F(M) is the probability of lysogeny determined by Markov 
analysis. We also used this method to map our MOI data. The results are shown in Figure 12(b). The 
individual points represent experimental measurements while the lines represent simulation results. Both 
the Arkin et al. simulation and our SAC model results track the starved data points reasonably well. Our 
SAC model results, however, are found in less than 7 minutes of computation time on a 3GHz Pentium4 
with 1GB of memory. While modern computer technology and algorithmic improvements would greatly 
improve the simulation time of the Arkin et al. model, these results would still take several hours to 
generate on a similar computer to ours. Another notable benefit of our SAC method is that it can also 
produce simulation results for the well-fed case in about 7 minutes. These results could likely not be 
generated even today using the Arkin et al. master equation simulation method, since the number of 
simulation runs necessary is inversely proportional to the probability of lysogeny (i.e., about two orders 
of magnitude greater in the well-fed case than in the starved one).

concluSion

This chapter presents a general methodology for systematically and automatically abstracting the com-
plexities of large-scale biochemical reaction-based networks. The REB model abstractions significantly 
facilitate efficient temporal behavior analysis of such systems by substantially reducing the problem 
dimensionality in both species and reactions, thus potentially allowing for both simulation time ac-
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celeration and computability gains while facilitating a high-level view of the network. To improve the 
numerical analysis time, a REB model can be further abstracted to a FSS model to allow for state space 
exploration based temporal behavior analysis approach on the underlying Markov chain. The system 
state space can be more aggressively reduced by transforming a REB model to a SAC model, enabling 
further improvement in the computational analysis time. Furthermore, since our approach allows for 
multiple levels of abstraction, it is broadly applicable to a wide range of biological systems and their 
representations—from CCK models to SCK models—including the gene regulatory networks upon 
which we have chosen to focus in this chapter.

Figure 12. Results from the phage λ decision circuit model. (a) Comparison of simulation results for 
the probability of lysogeny over MOI from the original model and its abstracted model where each 
data point has a margin of error of less than 0.01 with a 95 percent confidence. (b) Comparison of SAC 
results to experimental data.



377

Abstraction Methods for Analysis of Gene Regulatory Networks

The abstraction methods presented in this chapter coupled with a number of temporal behavior analysis 
methods are implemented in our modeling and analysis tool REB2SAC (Kuwahara et al., 2005, 2006a). 
By performing these transformations systematically and automatically and allowing an easily-configurable 
reduction control using REB2SAC, accuracy and efficiency of modeling biochemical systems at various 
levels of resolution can be significantly improved. Furthermore, to achieve better user experience of the 
tool, REB2SAC is integrated into a graphical-user-interface-based modeling and analysis tool called 
iBioSim, which can be downloaded from: (http://www.async.ece.utah.edu/iBioSim).

As a case study, we have illustrated an application of our model abstraction methodology to to systems-
level analysis of a gene regulatory network. The preliminary results are promising. In this chapter, we 
have demonstrated that the probabilities of lysogeny for various MOI points obtained from the original 
phage λ circuit model can be approximated well by the results from the abstracted model with substantial 
computational gain. Furthermore, using the reduced FSS (SAC) model of the phage λ decision circuit, 
we are able to estimate the experimental results of the fraction of lysogens over API under various 
conditions (Kourilsky, 1973). The SAC model results are generated in a matter of minutes while the 
simulation results of REB models with a reasonable statistical confidence would have taken many hours 
to generate. Therefore, from this case study and others (Kuwahara et al., 2006b; Nguyen et al., 2007), we 
are able to: (1) ascertain the internal self-consistency of our approach by successfully cross-validating 
each abstraction level output against the results of the full underlying SCK model simulations; and (2) 
accurately estimate the biologically relevant properties, which typically require substantial numbers of 
hours of computation time via the original REB representation, yet could be computed in only minutes 
using our abstraction approach.

future reSearch directionS

Advances in technologies such as DNA sequencing and gene expression profiling methods (Maxam and 
Gilbert, 1977; Schena et al., 1995) contribute to a increase in throughput for generation of data required 
for systematic approaches to understand gene regulatory networks. However, elucidating gene regula-
tory networks only via wet-lab experiments can be a daunting task, and complexity of this task increases 
proportional to the complexity of the network being analyzed. As more and more critical biological data 
become available and as the biological questions being addressed become more complex and challeng-
ing, the complexity of the systems of interests becomes so high that tackling such a problem only with 
wet-lab experiments eventually becomes infeasible. Thus, integration of computational methods with 
the process of biological research becomes more imminent.

Computational modeling and analysis can be applied to generate and screen hypotheses, which can 
stimulate the development of new experiments and effectively reduce the number of experiments to test 
hypotheses (Kitano, 2002; Collins et al., 2003). The first step of such a computational systems biol-
ogy approach to the understanding of gene regulatory networks is to construct computational models 
encapsulating hypotheses and explaining experimental facts such as gene expression data. This can be 
done using various machine learning and data mining techniques (Barker et al., 2006; Friedman et al., 
2000; Yu et al., 2004). Once quantitative computational models are constructed, they can be utilized to 
analyze the temporal behavior via simulation, allowing the hypothesis and assumptions encapsulated 
in each model to be analyzed and screened. Furthermore, a computational modeling and analysis ap-
proach comes with potentially unlimited controlling capabilities and abilities to capture virtually any 
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dynamical properties of the system, making possible a number of qualitative and quantitative analyses 
which cannot be done in wet-lab experiments. Since the quantitative data required to support systematic 
construction of such computational models are now becoming available via high-throughput molecular 
biology methods, this computational approach is now becoming possible and is able to provide useful 
biological insights (e.g., Borisuk and Tyson (1998); Edwards et al. (2001); Arkin et al. (1998); Wolf 
and Arkin (2002)). Furthermore, it can be used, for example, to apply an engineering approach to more 
efficiently and effectively analyze how a gene regulatory network can be controlled and designed to 
achieve specific functions (Brent, 2004; Arkin and Fletcher, 2006). In order to alleviate the complexity 
of such in silico analysis, further investigation on systematic and automatic model abstraction methodol-
ogy coupled with a modeling language that accommodates multi-level representations of biochemical 
systems is crucial.
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key terMS and definitionS

Finite State System Model Transformation: Model abstraction to transform an REB model to a 
FSS model by introducing upper limit molecule count for each species.

FSS Model: A model whose state space is finite.
Gene Regulatory Network: A network that regulates expression of certain genes.
Model Abstraction: Transformation of a model to ease analysis of model properties of interest.
N-ary Transformation: Model abstraction to transform an REB model to a FSS model by capturing 

the state of each species with nary-level.
Reaction-Based Abstraction: Model abstraction to transform an REB model to another REB 

model.
REB Model: A model based on the reaction connectivity of species.
SCK: Stochastic-discrete formalism to model temporal behavior of chemically reacting systems.
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abStract

A better understanding of the behavior of a cell, as a system, depends on our ability to model and under-
stand the complex regulatory mechanisms that control gene expression. High level, qualitative models 
of gene regulatory networks can be used to analyze and characterize the behavior of complex systems, 
and to provide important insights on the behavior of these systems. In this chapter, we describe a num-
ber of additional functionalities that, when supported by a symbolic model checker, make it possible to 
answer important questions about the nature of the state spaces of gene regulatory networks, such as 
the nature and size of attractors, and the characteristics of the basins of attraction. We illustrate the 
type of analysis that can be performed by applying an improved model checker to two well studied gene 
regulatory models, the network that controls the cell cycle in the yeast S. cerevisiae, and the network 
that regulates formation of the dorsal-ventral boundary in D. melanogaster. The results show that the 
insights provided by the analysis can be used to understand and improve the models, and to formulate 
hypotheses that are biologically relevant and that can be confirmed experimentally.
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introduction

The next advances in the field of systems biology are critically dependent on a better understanding of 
gene regulatory networks, and abstract models are essential in order to improve our understanding of 
the complex mechanisms underlying gene regulation.

Indeed, the highly complex transcriptional regulation of gene expression in eukaryotes occurs through 
the coordinated action of multiple transcription factors, and can be understood in detail only if one views 
the system as a network.

Regrettably, the complex physical and biochemical mechanisms involved in gene regulation make it 
difficult to identify regulatory mechanisms directly from first principles, and even sophisticated experi-
mental methods are difficult to apply directly to the identification of the parameters of gene regulatory 
networks. For these reasons, computational approaches that help researchers identify and analyze genetic 
regulatory networks are essential, and represent a fundamental tool in our quest for the understanding 
of organisms as biological systems.

Gene regulatory networks, as well as other biological networks, have been modeled and studied us-
ing a variety of levels of abstraction. At the more detailed levels, ordinary differential equations (ODE) 
that relate different concentration levels within the cells have been used to model the dynamics of some 
small, well understood systems. Less detailed qualitative models have been extensively used to perform 
analysis of more complex systems [de Jong et al., 2003, Chabrier and Fages, 2003, Li et al., 2004, Garg 
et al., 2007], and have the advantage that they require less knowledge of the exact parameters governing 
the dynamics of the system. In qualitative models each of the components of the system (gene, protein, 
metabolite, etc.) is represented as a variable with a finite domain, and each variable is updated in ac-
cordance with a discrete transition function, that specifies its value as a function of the present value of 
the variables of the system.

Qualitative models have a number of significant advantages over quantitative ones. They can be used 
to analyze larger systems and, perhaps more importantly, existing tools, such as model checkers, can 
be used to analyze not only a particular trajectory of the system in state space, but also to characterize 
the state space as a whole. Understanding the characteristics of the state space can lead to important 
insights on how these networks have evolved and are wired. One of the problems of using qualitative 
models is the large number of behaviors that are possible, when one is dealing with complex systems 
whose dynamics cannot be sufficiently constrained. Model checking techniques have been proposed to 
deal with this problem.

Verification of biological network properties based on model checking provides a powerful method 
to analyze models of molecular interaction networks [Shults and Kuipers, 1997]. Using this methodol-
ogy coerces the user to formulate interesting questions, and to interpret the answers, something that is 
especially difficult when dealing with very large models. The problem of posing relevant questions is 
critical in model assessment, in general, but even more so when using model checking. For instance, 
a property like once the concentration of protein P1 reaches some threshold, the concentration of 
protein P2 will start to increase only after some reaction R has stopped, corresponds to the CTL 
formula AG(P1 → ((EFP2) ∧ ¬E [RUP2 ])).

The next sections describe how a model checker that includes some extra functionality can be used to 
analyze the characteristics of the state space of a gene regulatory network, and obtain additional insight 
about the behavior of the biological system.
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related work

gene regulatory networks

One very general way to construct abstractions of biological systems is to model them as networks, 
or graphs [Hasty et al., 2001]. In the case of gene regulatory networks, a gene (and the corresponding 
protein) can be viewed as a node in this network. Edges between nodes correspond to interactions. An 
example of a common interaction is transcription regulation, where the abundance of a given transcription 
factor (a protein) affects directly the level of expression of the target gene. Associated with each node 
is a function of its inputs. In quantitative models, the value of the variable that corresponds to a given 
node obeys a specific equation, typically an ordinary differential equation, that specifies its derivative 
as a function of the values of the other variables that are inputs to this function. In the case of qualitative 
models, that are the subject of this work, the function at a node is a discrete function of its inputs.

In both cases, these functions can be viewed as performing information processing in the cell, deter-
mining cellular behavior. Graph models of gene regulation networks have been developed and extensively 
used to make predictions of the behavior of the cell.

An interesting parallel can be established with logic circuits, that are at the heart of modern computers 
and other digital devices. Logic circuits are also modeled and analyzed as networks [de Micheli, 1994]. 
Each node in a logic network represents either a logic gate or a register, and this network defines the 
dynamics, and, ultimately, the functionality of the system.

It is therefore not surprising that tools that have been developed mostly to analyze the behavior of 
digital electrical networks can be applied to the analysis of gene regulatory networks. Among these tools 
are simulators and model checkers.

Model checking

Model checking is a method originally developed for the analysis of concurrent programs, although it 
can in principle be applied to any discrete dynamical system. The method makes it possible to determine 
whether the system exhibits a given temporal property, that is, a property that specifies some desired 
structure in the transition sequences of the system. Properties are specified using a specialized logical 
notation called temporal logic. This notation makes it possible to state formally assertions such as “if 
x occurs then inevitably y will occur in the future”, or “it is always possible that z will occur in the 
future”.

Kripke Structures

Mathematically, a discrete dynamical system is modeled as a directed graph. This is a pair (S,R), consist-
ing of a set of states S and a set of transitions R. We will consider only the case where the set of states S 
is finite. Pictorially, we represent the states as circles and the transitions as arrows connecting the circles, 
as shown in Figure 5. More precisely, a transition is a pair (s,t) where s and t are states. A transition 
from state s to state t indicates that the system may evolve directly from state s to state t. Note that this 
is a qualitative model of the system’s behavior. There is no quantitative probability or rate associated 
with a transition. There may be transitions from state s to multiple states. In this case, the behavior of 
the model is non-deterministic.
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A path in a graph (S,R) is a sequence s0,s1, of states from S, such that each consecutive pair of states 
(si,si+1) is a transition in R. Informally, a path is obtained by starting at some state and following the arrows. 
A path can be either finite or infinite, and represents a possible temporal evolution of the system.

In order to make meaningful statements about paths, we must be able to make distinctions between 
states. To do this, we introduce labels on the states. A label is just a symbol whose presence represents 
some fact about the system state. For example, the letter P might represent the presence of some chemical 
species, or the binding of a protein to a given receptor site. Note again that this is qualitative informa-
tion, and cannot tell us, for example, the concentration of a given species, except perhaps to say that it 
is above or below a given threshold. In logical terms, these labels are referred to as atomic propositions, 
since they are logical propositions that cannot be decomposed into more primitive propositions.

A system model thus becomes a labeled directed graph (S,R,L), where S and R form a graph, and 
L is a labeling function that associates some set of labels or atomic propositions with every state of 
S. This structure is referred to as a Kripke structure, after philosopher and logician Saul Kripke, who 
first gave a mathematical interpretation to the class of logics we are concerned with using this kind of 
structure. More precisely, the Kripke structure is obtained by unwinding the labeled directed graph into 
an infinite tree.

Specifying Properties in CTL

The logic CTL (Computation Tree Logic) provides a way to make statements about the structure of 
paths in the Kripke model [Clarke and Emerson, 1981]. It provides a simple set of operators for making 
statements about paths and states. Suppose, for example, that p is a fact that is true of some subset of 
the system states. The formula Fp is true of those paths that contain some state in which p is true. We 
read this as “eventually p”, since it indicates that if one follows the path far enough, a state satisfying 
p will be reached. The formula Gp is true of those paths in which p is true in every state. We read this 
as “always p”. Two additional operators called path quantifiers allow us to make statements about the 
set of all paths emanating from a given state. Suppose that q is a fact about paths. Then Aq is true in a 
state when all paths starting from that state satisfy q. The formula Eq is true in a state when some path 
starting from that state satisfies q.

In CTL every path operator, such as F or G must be preceded by a path quantifier A or E, indicating 
whether the formula applies to all paths or some path from a given state. Thus, all CTL formulas are 
facts about states, not paths. As an example AFp means “along all paths, eventually p”, or “inevitably 
p.” We can put the operators together to make more complex statements. As an example, the formula 
AG EFp means “always, along all paths, a state satisfying p may be reached”, or alternatively “p is 
never ruled out.” We can also combine facts about states with the standard connectives of propositional 
(or Boolean) logic. For example, the formula p q®  is read as “if p then q”, or “p implies q”. Thus 
AG p AFq( )®  means “whenever p happens, q inevitably occurs”. We can also apply ∨ (logical or), 
∧ (logical and) and ¬ (logical not). Figure 1 shows some examples of states (shown in black) satisfying 
various CTL formulas.

In addition to the above described forms, we have Xp, which is true of a path when p holds in the 
second state (at the “next time”) and pUq which is true of a path when q holds in some state, and p holds 
in all the preceding states (“p until q”).

The syntax of CTL is given by the following grammar, where S represents the state formulas and A 
the atomic propositions:
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S::= false|A|¬S|S∨S|EXS|AXS|E(S U S)|A(S U S)        (1)

The forms not shown above can be expressed as abbreviations. For example, p∧q abbreviates ¬(p∨¬q) 
and EFp abbreviates E(true U p).

Checking Formulas

Given a fact about states expressed as a CTL formula ϕ, a natural question to ask is “is φ true in state s0

? ” or more generally “in what states is φ true? ” This is called the model checking problem. The model 
checking problem can be solved by a very simple graph algorithm that moves from inner to outer sub-
formulas. Suppose, for example, that we are given the formula EFφ, where φ is an arbitrary formula. 
We first compute the set of states in which ϕ is true, which we will also denote φ. We then compute the 
following sequence of sets:

R
0
= f        (2)

R R pre R
1 0 0
= È ( )        (3)

R R pre R
2 1 1
= È ( )        (4)

…        (5)

where, for a given set of states Q, pre(Q) is the set of states having a transition to any state in Q. Intui-
tively, Ri is the set of states that can reach a state satisfying φ in i steps or fewer. The set of states satis-
fying EFφ, that is to say those that can reach φ in any number of steps, is given by the union of the Ri. 
Since the number of states is finite, this union is the stable limit of the sequence, which we obtain when 

Figure 1. Examples of states satisfying various CTL formulas



391

Improved Model Checking Techniques

Ri+1=Ri. A similar characterization of the states satisfying EGφ is obtained by replacing ∪ with ∩ in the 
above recurrence, and the other CTL operators have similarly simple characterizations (for example, 
the set satisfying p∨q is just p∪q and ¬p is the set complement S|p). This allows us to make a sort of 
calculator that computes the set of states satisfying a given CTL formula much in the way one would 
evaluate a simple algebraic formula.

This approach, described in a seminal paper by Clarke and Emerson [Clarke and Emerson, 1981] 
gives an algorithm for determining the set of states of a finite Kripke model satisfying any given CTL 
formula. The running time is proportional to the size of the formula and the square of the size of the 
model. Although a linear time algorithm is possible, this simple approach is often used in practice be-
cause it lends itself to the use of highly efficient representations of sets.

SMV

A large number of model checkers has been proposed and made available. When the model checker 
uses an implicit representation of sets (see following section), the process is known as symbolic model 
checking [McMillan, 1993]. SMV is a well known symbolic model checking program. In SMV, the 
network is described in the SMV language [McMillan, 1999], which can be divided roughly into three 
parts: declarations, structure, and expressions.

The definitional part of the language declares signals and their relationship to each other. It in-• 
cludes type declarations and assignments.
The structural part of the language combines definitional components. It provides language con-• 
structs for defining modules and structured data types to instantiate them. It also provides con-
structor loops, for describing regularly structured systems, and a collection of conditional struc-
tures that make describing complicated state transition tables easier.
The language of expressions in SMV is very similar to expressions in other languages, and is used • 
to combine primitive variables corresponding to signals.

Examples of the SMV language will be given in the later sections. This tool was originally developed 
at Carnegie Mellon University, but newer variants of the system, using the same language, are also avail-
able, such as nuSMV or CadenceSMV.

binary decision diagrams

The need for efficient representations of sets becomes clear when we consider that the number of states 
of even relatively small systems can be astronomically large. For example, suppose the state of a system 
is described by N binary variables (for example, the presence or absence of bound proteins at N receptor 
sites). Then the number of states of the system is potentially 2N. If N is even moderately large (say 30 
or 40) then the set of states becomes too large to represent in computer memory. This has been referred 
to as the state explosion problem.

One approach to this problem is to use an implicit representation of sets that is capable of character-
izing a very large set with a relatively small structure by exploiting some regularity or redundancy in 
the set. If the operations pre, ∪ and set complement can be efficiently computed on the representation, 
then it is suitable for the application.
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Although many representations are used in symbolic model checking, the most common one for 
finite-state systems is the Reduced Ordered Binary Decision Diagram (ROBBD), which is often referred 
to as simply a BDD [Bryant, 1986]. We assume that the state of the system is characterized by N binary 
variables x1…xN. A set of states can thus be characterized by a decision tree. This tree consists of deci-
sion nodes, each of which is labeled with a variable xi and has two outgoing branches. The left branch is 
taken in case the variable xi is false, and the right branch in case it is true. In addition, the tree contains 
leaf nodes labeled 0 or 1. To evaluate the decision tree, one begins at the unique root node, and follows 
the branches according to the truth values of the variables labeling them. If, for a given state, one arrives 
at a leaf labeled 1, then that state is in the set, otherwise not. Figure 2 shows an example of a decision 
tree for the set of states satisfying the simple Boolean formula ab∨cd, with variables a,b,c,d. In this tree, 
subtrees at nodes marked * are identical, while node marked + is redundant.

A decision tree is said to be ordered, if along any path from the root to a leaf, each variable occurs 
once, in a fixed order. Notice that the tree of Figure 2 is ordered a,b,c,d. Notice also that this tree contains 
a certain amount of redundancy. For example, the tree contains several subtrees that are identical. More-
over, there are decision nodes that are redundant, in the sense that the two branches arrive at identical 
subtrees. We can eliminate this redundancy by combining identical subtrees into a single subtree and 
removing the redundant decision nodes. The result of this transformation is shown in Figure 3. Notice 
that the structure is smaller, and that it is no longer a tree because of the convergent paths (technically it 
is a directed acyclic graph, or DAG)). This structure is referred to as a Reduced Ordered Binary Deci-
sion Diagram (ROBDD).

Because an ROBDD eliminates a certain kind of redundancy in the representation of a set, it can 
sometimes compactly represent a very large set of states. Moreover, there are efficient ROBDD algo-
rithms to compute the set operations needed for model checking: union, complement and pre [Bryant, 
1986, McMillan, 1993]. The last is based on representing the set of model transitions R implicitly as 
a BDD. Thus, we can build our CTL calculator entirely with operations on ROBDD’s, avoiding any 
explicit enumeration of sets of states. This method sometimes allows us to handle astronomically large 
state sets, typically on the order of 1015 to 1020 states.

Figure 2. Ordered decision tree
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There are other approaches to handling large state spaces in model checking, for example, methods 
based on Boolean satisfiability solvers [Biere et al., 1999, McMillan, 2003]. However, the advantage 
of the BDD-based symbolic model checking method for our purposes is that it allows us to compute 
compact representations of biologically interesting sets of states. This allows us to extract information 
from these sets, such as the number of states, and the dependence of the set on certain variables. We 
will also observe that BDD-based methods can be used to construct sets of states not expressible in CTL 
such as those representing “steady states” of the system (technically, the terminal strongly connected 
components of the graph).

tools for Qualitative analysis of biological networks

A number of tools have been developed specifically for the analysis of qualitative models. Among these 
tools, Biocham [Fages et al., 2004], GenYsis [Garg et al., 2007], GinSim [Gonzalez et al., 2006b], and 
GNA [de Jong et al., 2003] are relevant for the type of analysis described in this chapter.

Biocham is targeted mainly at biochemical models, and is limited in the types of descriptions that 
it accepts. GenYsis can accept, in principle, any discrete models and performs implicit computation of 
steady states using BDDs to represent the transition function of the system. However, it does not use 
the most efficient algorithm for steady state computation, and does not make available any interface 
with a general model checker.

Both GinSim and GNA accept arbitrary discrete models, but perform explicit traversal of the state 
transition graph, and cannot, therefore, be used to analyze the state spaces of larger systems. BioCham 
and GNA have the ability to interface with a model checker, by exporting SMV files.

Our improved model checking tool is based on NuSMV, a tool that, as referred, uses implicit tra-
versal of the state space using BDDs. This makes it able to manipulate networks that are many orders 
of magnitude larger than those that can be handled using explicit enumeration methods.

Figure 3. Reduced ordered decision diagram
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checking State SPace ProPertieS of gene regulatory networkS

Standard model checking tools can be used to analyze qualitative models of biological phenomena. 
Indeed, GNA and Biocham can be used in conjunction with a model checker. It is then possible to write 
properties of the system in a temporal logic language and use the model checker to verify if the model 
satisfies the properties.

However, the functionality commonly available in standard model checkers is not sufficient to per-
form some of the analyzes that are, in many cases, required, when this approach is being used to study 
state space properties of biological networks.

One reason is that temporal logics most commonly available in model checkers, like CTL, lack the 
expressive power to formulate questions related to the steady state behavior of the system. The knowledge 
of the steady states of the model is fundamental to understand if the model is reproducing the behavior 
of the biological system. Tools like GNA and GinSim compute the steady states, but do it by explicitly 
traversing the state transition graph. Therefore, they can only be applied to relatively small systems.

Another reason is that standard model checkers can only tell if a property is or not verified over all 
reachable states. This is usually enough if one is verifying human-designed hardware systems. However, 
in the study of biological systems, it may be useful to have more information, namely what fraction 
of states verify the given property. This number can serve as a rough measure of the robustness of the 
model.

network Model

The tool we developed, BioNuSMV, which integrates the ideas described in this chapter, accepts a speci-
fication described in a high level language, and is, therefore, very flexible. The next sections describe 
the specification language and the type of analyzes supported by this tool. BioNuSMV is based on the 
NuSMV software [Cimatti et al., 2002], an open source tool for symbolic model checking.

BioNuSMV uses a simple formalism to represent gene regulatory networks. A set of n variables xi, that 
can take values in Di, keep the state of the system, and correspond to the nodes in the network graph.

The state of a node i at time t is represented by the variable xi(t). The value of xi at time t+1 is given 
by an arbitrary function of the values of all variables in time t.

xi(t+1) = fi(x1,..,xi,,...,xn)       (6)

The transition between states of the system can be either synchronous or asynchronous, depending 
on whether the updates are performed all in the same module, or in separate modules. Intermediate cases 
(e.g., partially synchronous models) can also be specified.

For example, consider the network presented in Figure 4, with D1 = D2 = {false,true}. In this network, 
gene x1 regulates gene x2, while gene x2 auto-regulates itself and also regulates gene x1.

The state of gene x1 follows the state of gene x2 (with a time delay) and gene x2 becomes active if 
either x1 or x2 are active in the previous instant of time. The values of the two variables are therefore 
updated according to following equations:

x1(t+1) = x2(t)       (7)
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x2(t+1) = x1(t) ∨ x2(t)       (8)

The synchronous and asynchronous update schemes will generate the transition graphs presented, 
respectively, in figures 5.a and 5.b. In this figure, states are encoded with two bits, that correspond to 
the values of the activation of genes x1 and x2.

The synchronous version of this system could be translated to the SMV language as follows:

MODULE main 
VAR  
 x1 : boolean; 
	x2	:	boolean: 
ASSIGN 
 init(x1) := {TRUE,FALSE}; 
	init(x2)	:=	{TRUE,FALSE}; 
	next(x1)	:=	x2; 
	next(x2)	:=	x1	|	x2; 

The next SMV example shows how the boolean state variable sbf_v is changed in accordance with 
the values of the variables Cln3 and Clb1,2. These variables correspond to the SBF, Cln3 and Clb1,2 
genes, involved in the yeast cell cycle regulatory network. This network model, depicted in figure 6 will 
be analyzed and studied in section 4.

MODULE	sbf_m(cln3,clb12) 
VAR 
  sbf_v : boolean; 
ASSIGN 
  init(sbf_v) := 0; 
  next(sbf_v) := case 
				cln3	-	clb12	>0	:	1; 
				cln3	-	clb12	<0	:	0; 
				cln3	-	clb12	=0	:	sbf_v; 
  esac; 

Figure 4. Example network with two genes



396

Improved Model Checking Techniques

  --next(sbf_v):=0; 

With SMV it is possible to construct a model synchronous, asynchronous or hybrid. The use of SMV 
modules also makes the codification of multi-cellular models easier, as the transition rules for each 
component of the model have to be written only once. To use the same component in different cells it 
is only necessary to declare an instance of it for each cell.

For the two gene example system of Figure 5 a), we may, for example, want to address the following 
biological questions:

If at least one gene is active, will both genes be active in the future? This means that all states • 
in which at least one gene is active will always reach the state where both genes are active, and, 

Figure 6. Discrete model for the yeast cell cycle (from [Li et al., 2004])

Figure 5. State transition diagram for the synchronous (a) and asynchronous (b) update cases. Each 
state is encoded with two bits, that represent the values taken by state variables x1 and x2.
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therefore, that the formula, should be verified by the system. Since this is true for this example, 
the answer to the biological question is positive.
Will there always be a sequence of events that leads to a state where both genes are inactive? This • 
means that there should be always one path that will reach the state where both genes are inactive. 
The formula is not true in general, and is true only for state (false,false). Therefore, the answer to 
the biological question is negative.

State Space analysis in bionuSMV

Most model checkers, including NuSMV, work by verifying if the specified properties hold for the initial 
state of the system, or for a set of specified states. However, as mentioned previously, standard model 
checkers lack some features that are useful when analyzing discrete models of biological systems.

BioNuSMV implements these features, which make it possible to perform analyzes that enable research-
ers to gain additional insights into the characteristics of the state space of gene regulatory networks.

The new functionalities of BioNuSMV, relative to NuSMV and other standard model checkers are:

1.  When a property is not satisfied by the network under analysis, the model checker outputs not only 
a counter-example, but also the fraction of states that do not satisfy the property.

2.  It is possible to compute the set of attractors, or steady states, of the network under analysis.
3.  It is possible to compute the basins of attraction of each of the attractors, and characterize them 

using a special purpose language.
4.  A given property can be verified not only on the set of reachable states but also on the sets of states 

that constitute the attractors and/or the basins of attraction.

We now briefly describe how the new functionalities were created and included in the BioNuSMV tool.

Computation of the Fraction of States that Satisfy a Property

Standard model checkers output a counter-example when a given property is not verified by the system. 
Since BioNuSMV is based on implicit enumeration of the state transition graph, and the computation of 
every property is done by manipulating a BDD representation of sets of states, it is possible to compute 
efficiently the number of states that satisfy (or do not satisfy) a given property. This computation is per-
formed by computing the total number of distinct assignments to state variables that make a given func-
tion, represented by a BDD, evaluate to 1. This number is obtained by computing the number of distinct 
paths that lead to the constant node one, in the BDD, using a dynamic programming technique.

Computation of Steady States

We define a steady state as a terminal strongly connected component (SCC) of the state transition graph. 
The computation of the SCCs of a graph is a classic problem in computer science. However, the most 
common solutions have been designed for cases where the graph is stored explicitly. In BioNuSMV the 
state transition graph is represented implicitly by the transition relation, using a BDD.

BioNuSMV computes steady states using the Lockstep algorithm [Bloem et al., 2006]. The main 
improvement of this algorithm over the trivial algorithm is that, for each SCC, only one of the two 
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reachable state sets (backward or forward) is computed. The total number of image computations is of 
the order of nlogn, where n is the number of states in the graph.

Computation of the Basins of Attraction

Since the system is possibly non-deterministic, we must define carefully basin of attraction (BOA). In 
the case of deterministic systems, the basin of attraction of a steady state S is the set of all states x for 
which there is a path in the state transition graph that ends in one of the elements of S. In the case of 
non-deterministic systems, there are two possible definitions:

• weak basin of attraction - set of states x∈R for which there is at least one path from x to one of 
elements in S.

• strong basin of attraction - set of states x∈R for which all paths starting in R reach a state in S. This 
is equivalent to the definition for the deterministic case.

The computation of the basin of attraction of a given steady state can be done using the set of states S 
that constitute a steady state. The strong basin of attraction of a steady state S is given by the set of states 
that satisfy the CTL formula AFp where p is a proposition that is true only for the states in S. Similarly, 
the weak basin of attraction of a steady state S is given by the set of states that satisfy EFp.

In our running example there are two steady states, common to the synchronous and asynchronous 
versions: (false,false) and (true,true). For the first steady state, its synchronous and strong asynchronous 
basins of attraction are the same: the set constituted only by itself; its asynchronous weak basin of attrac-
tion has two elements (false,false) and (true,false). For the second steady state, the synchronous basin of 
attraction is equal to the asynchronous weak basin of attraction: {(false,true), (true,false), (true,true)}; 
the asynchronous strong basin of attraction is equal to {(false,true), (true,true)}. In the asynchronous 
version, the strong basin of attraction of (true, true) satisfies the formula, and the weak basin of attrac-
tion of (false, false) satisfies the formula ¬x2.

Verification of Properties in Attractors and Basins of Attraction

Since BioNuSMV has the ability to compute, using the methods described above, descriptions of the sets 
of states that constitute an attractor, or a basin of attraction, it is possible to verify if a given property is 
verified by one of these sets. The implementation of this functionality gives the user a way to specify 
that the given property should be verified not on the set of reachable states (as is standard in model 
checkers) but on a specific set of states, obtained in a previous operation.

exaMPle aPPlicationS and reSultS

In order to test the effectiveness and usefulness of the improved model checking techniques developed, 
we applied them to the study of two previously published qualitative models.
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yeast cell cycle network

In the budding yeast (Saccharomyces cerevisiae), the periodic alteration of gene transcription levels is 
the major driving force of the cell-cycle with about 800 genes involved in this process [Cho et al., 1998, 
Spellman et al., 1998].

The cell-cycle process consists of four phases: G1, growth and preparation of the chromosomes for 
replication; S, synthesis of DNA and duplication of the centrosome; G2, preparation for; M, mitosis. 
When a cell is in any phase of the cycle other than mitosis, it is said to be in interphase. Based on litera-
ture studies, Li et al. [Li et al., 2004] have proposed and analyzed a Boolean model of the gene regula-
tory network (Figure 6) that controls the cell-cycle in this yeast. Three classes of regulatory molecules 
have been considered: cyclins (Cln1, -2, and -3 and Clb1, -2, -5, and -6); the inhibitors, degraders, and 
competitors of the cyclin complexes (Sic1, Cdh1, Cdc20 and Cdc14); and transcription factors (SBF, 
MBF, Mcm1/SFF and Swi5).

In this proposed network, checkpoints like the cell size, the DNA replication and damage, and the 
spindle assembly have also been considered. However, except for the cell size checkpoint, all the other 
checkpoints were considered always transparent, and they will let the system evolve when necessary. 
The cell size checkpoint will act as a START signal. The authors studied the attractors of the network 
dynamics by starting from each of the states of the transition system. They have reported seven steady 
states, one of them very big with about 86% of the states converging to it. This super stable state cor-
responds to the G1 stationary state, with genes Sic1 and Cdh1 active. Based on this result the authors 
concluded that the regulatory network of the Yeast cell-cycle is robust to perturbations.

In this work the model is analyzed assuming a synchronous update mechanism, i.e., that, at any given 
state, all genes change state synchronously. This assumption, however, overly simplifies the actual dynam-
ics of the network, since different genes will change state at different speeds. We performed an analysis 
of this network using the same transition function, but assuming a more realistic asynchronous update 
of the state variables, that considers that different orderings for gene update are possible. We obtained 
the same seven steady states but the basins of attraction are now of significantly different sizes (see table 
1). This can be viewed as an indication that the proposed discrete model is not accurate enough.

Using the functionality made available by BioNuSMV, we have characterized the three largest 
strong basins of attraction in terms of the active and non-active genes. The most interesting results are 
the following:

Table 1. Basins of attraction for the 7 steady states of the yeast cell-cycle model, when the state is up-
dated asynchronously 

Active genes Size of weak BOA . Size of strong BOA

Sic1, Cdh1 1960 14

SBF, Cln1,2 1468 56

MBF, Sic1, Cdh1 1074 12

Cdh1 1737 1

No active genes 1760 2

Sic1 1935 2

MBF, Sic1 1036 2
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The cyclin Cln3 is off in all states that belong to a strong basin of attraction. This means that as • 
long as Cln3 is active the system cannot commit to one of the steady states.
In the strong basin of attraction of the (Sic1, Cdh1) steady state transcription factors SBF and • 
MBF are always off.
In the strong basin of attraction of the (SBF, Cln1,2) steady state, transcription factor SBF is al-• 
ways on and transcription factor MBF is always off.
In the strong basin of attraction of the (MBF, Sic1, Cdh1) steady state, transcription factor SBF is • 
always off and transcription factor MBF is always on.

The last three points suggest that the ability to turn off simultaneously the activity of the transcrip-
tion factors SBF and MBF plays an important role in determining the steady state of this network. This 
hypothesis is corroborated by the detailed continuous model of Chen et al. [Chen et al., 2004].

formation of the dorsal-Ventral boundary in D. 
Melanogaster wing imaginal disc

The second example we explored is a four cell discrete model of the gene regulatory network that con-
trols the formation of the dorsal-ventral boundary in the wing imaginal disc of the fruit fly [Gonzalez 
et al., 2006a].

The proposed modeling approach followed the generalized logical formalism previously developed 
by R. Thomas et al. [Thomas et al., 1995]. In this model seven regulatory elements were considered: 
Apterous (Ap), Cut (Ct), Delta (Dl), Fringe (Fng), Notch (N), Serrate (Ser) and Wingless (Wg). The set 
of values associated with these regulatory elements is {0, 1} for all the elements, excepting DI and Ser. 
In the case of these two regulators they can take the values 0, 1 or 2, corresponding to negligible, low 
and high product levels. Another aspect is that the framework proposed is a multi-cellular framework. 
Four cells were considered (Figure 7) to model the most crucial inter-cellular interactions involved in the 
expression of wg (wingless) at the dorsal-ventral (DV) boundary. Two boundary cells were used to model 

Figure 7. Graph model for the regulatory network that controls the creation of the dorsal-ventral bound-
ary in D. melanogaster [Gonzalez et al., 2006a]. Positive interactions are denoted by normal arrows, 
negative interactions by blunt arrows and ambivalent interactions by bullet arrows.
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the interactions across the DV boundary during the early signaling process. To model the interactions 
between boundary cells and their adjacent cells, two additional cells were included. These interactions 
appear in the mid-third larval instar.

In this work the authors used a fully asynchronous model and computed the steady states of the 
model using constraint programming. They obtained five singular steady states, only one of them with 
a genetic profile compatible with the existence of the boundary in the two middle cells. This somewhat 
negative result led us to investigate further the characteristics of this network.

After replicating the results of Gonzalez et al., [Gonzalez et al., 2006a], we computed and character-
ized the basins of attraction in order to gain a better understanding of the dynamics of the system.

One important remark is that the strong basin of attraction of the biologically observed steady stated 
is smaller than two of the other ones. In fact, only very particular orderings of changes in state variables 
led to the convergence to the desired steady state. We once again checked for the presence and absence 
of active genes in the strong basins of attraction.

This analysis suggested that we should somehow trim the space of reachable states by restricting 
some of the possible orderings of change of state variables to coerce the model to more accurately reflect 
the biological observations. One such restriction that is sensible from the biological point of view is to 
allow for a gene to be turned off only after it has activated its targets. We have imposed this restriction 
on Notch. This corresponds to assuming that sustained production of Notch in a cell always leads to the 
production of Cut and Wingless on the same cell. This modification led to an increase in the size of the 
strong basin of attraction of the real steady state by a factor of one hundred. However, this restriction 
was not enough to make the remainder four steady states disappear. It was still possible in this version 
of the model for a cell in a boundary to see the activity of Notch down-regulated and an increase in the 
activity of Delta and Serrate, leading to the appearance of a cell with boundary characteristics in one 
of the flanking cells.

In [Chen et al., 2004] a continuous model for the same system is presented. The authors describe 
similar difficulties in obtaining a robust model. To solve this problem they introduce a new hypothesis, 
that boundary cells are not sensitive to the effect of the Wingless gene. This means that Delta and Serrate 
no longer can be up-regulated in the boundary cells, preventing the loss of Notch activity in these cells. 
After we introduced this modification in the discrete model, we observed that the system has only one 
steady state, the one observed in vivo.

This result shows that the ability to perform the type of analysis made available by BioNuSMV can 
be instrumental in our quest for good experimental hypotheses that help elucidate the dynamic behavior 
of gene regulatory networks.

Table 2. Sizes of the basins of attraction of the regulatory network that controls the formation of the 
dorsal-ventral boundary in the wing imaginal disc of the fruit fly 

Active genes Size of weak BOA Size of strong BOA

– 241598788 5440

Dl,Ser / N,Ct,Wg / N,Ct,Wg / Dl,Ser 242620820 11424

N,Ct,Wg / Dl,Ser / Dl,Ser / N,Ct,Wg 243710054 21384

Dl,Ser / N,Ct,Wg / Dl,Ser / N,Ct,Wg 246633046 2496032

N,Ct,Wg / Dl,Ser / N,Ct,Wg / Dl,Ser 245750924 1795136
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concluSion and future work

We have presented a methodology and a tool for the analysis of gene regulatory networks that enables 
researchers to analyze and characterize the state space of the system under analysis.

The ability to compute and characterize the basins of attraction of the computed steady states is use-
ful, and can be used to improve the models, by helping in the identification of the reasons for lack of 
robustness and by suggesting corrections and refinements. In the two cases under study, we were able 
to propose changes in the model that led to more accurate predictions.

In more general terms, we argue that discrete models coupled with model checking techniques can 
be used effectively to grasp important characteristics of biological systems. A tool that supports these 
analyzes, BioNuSMV, a model checker with extended functionality, has been developed and is available 
to the research community.

The software described in this chapter is publicly available, and can be obtained by contacting the 
authors of this article.
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key terMS and definitionS

Cell Cycle: Is the series of events that take place in a cell leading to its division and duplication 
(replication).

Computation Tree Logic: It is a branching-time logic, meaning that its model of time is a tree-like 
structure in which the future is not determined; there are different paths in the future, any one of which 
might be an actual path that is realized.

Dorsal Ventral Boundary: Boundary between different cell types at the Drosophila wing.
Gene Regulation: The processes that cells and viruses use to turn the information in genes into gene 

products.
Gene Regulatory Networks: A gene regulatory network is a collection of DNA segments in a cell 

which interact with each other and with other substances in the cell, thereby governing the rates at which 
genes in the network are transcribed into mRNA.

Model Checking: To algorithmically check whether a simplified model of a system satisfies a given 
specification.

State Transition Graph: A graph consisting of circles to represent states and directed line segments 
to represent transitions between the states.
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introduction

All living things contain a “memory” of the past that explicitly defines their species and implicitly reflects 
the evolutionary events that led to their species. Typically, this memory is encoded in deoxyribonucleic 
acid, DNA, although it may also be encoded in ribonucleic acid, RNA (for retroviruses), or in epigenetic 
coding (such as methylation of DNA), or in three dimensional structures (such as the protein confirma-
tions of prions). Each organism uses this memory as a blueprint to design and maintain itself. But it is 
not like a blueprint that we use to build buildings which is a smaller symbolic picture of the building. 
Rather, it is more like a computer code, which when executed generates structures that have a very 
different form than the code itself. But it is unlike the computer codes that we currently construct. Our 
computer codes execute their instructions in a preset order. However, which instructions living things 
execute are chosen by a multilevel cacophony of highly interacting networks.

The Central Dogma of molecular biology (Crick, 1958) was that genetic expression is a one way 
street from the transcription of DNA into mRNA, and then the translation of mRNA into protein. But 
we are now beginning to appreciate that multiple processes, both forward and backward, control and 
edit how the instructions of DNA are executed into the proteins that form the structure and function of 
cells. In this chapter we explore how networks control DNA expression, from within DNA (depending 
on the physical structure of DNA and the regulation that one gene exerts on another), and from outside 
of DNA (depending on the editing of mRNA and protein regulatory networks). We show how under-
standing the physics of networks can be used to devise methods of analysis that reveal the global and 
local organization of these networks.

background

transcription regulatory networks (trn)

In transcriptional regulation, the product of one gene, a transcription factor (TF) protein, binds to the 
promoter region of another gene and increases or decreases its expression. The discovery of regulatory 
processes in the lac operon (Jacob & Monod, 1961) marked an historic step in biology. Lately, the as-
sembly of many such effects into a full network of genetic interactions has heralded the emergence of 
a system-wide view on transcriptional regulation (Thieffry et al., 1998): The transcriptional regulatory 
network (TRN) describes how genes regulate each other through the expression and binding of their TFs. 
In mathematical terms, the TRN is a directed graph consisting of nodes representing genes and links 
representing the directed regulatory interaction between two genes, mediated by a TF. The statistics of 
the topology of these connections are summarized by the in-degree and out-degree distributions which 
define the number of genes with a given number of incoming and outgoing connections.

In the bacterium Escherichia coli, evidence for the regulatory action of TFs is documented in what is 
‘’currently the largest electronically-encoded database of the regulatory network of any free-living organ-
ism’’ (Salgado et al., 2006), called RegulonDB. The most recent version (5.6) of the publicly available 
database comprises 2735 interactions between 1345 genes. A small fraction of genes (79) are top-level 
regulators with no input from other genes, while 1197 nodes are solely target nodes, with no regulatory 
output to other genes. Various studies used the information contained in RegulonDB to construct the E. 
coli TRN and, e.g., analyzed its motif content (Shen-Orr et al., 2002), the aggregation of such motifs 
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into larger clusters (Dobrin et al., 2004), and global topological features, as its modular and hierarchical 
structure (Ma et al., 2004). Also for another model organism, the yeast Saccharomyces cerevisiae, large 
TRNs have been constructed and investigated, either by single high-throughput experiments (the ChIP on 
Chip approach of Lee et al. (2002, 2007) revealed over 2000 targets of 106 yeast TFs) or by compiling 
the knowledge from different databases into one large network (Guelzim et al., 2002). A comparison of 
the TRNs of E. coli and yeast revealed a common hierarchical structure and surprising functional aspects 
(Yu & Gerstein, 2006): Most essential TFs, i.e. those proteins for which a gene knock-out leads to no 
longer viable cells strains, are in between the top-level regulators and the target genes.

Apart from using and analyzing databases, so called ‘reverse engineering’ approaches try to infer the 
topology of TRNs from gene expression profiles with a diverse toolbox. The emerging networks have 
been used to predict interactions in the E. coli TRN (Gardner et al., 2003) or propose a modular design 
of the yeast TRN (Ihmels et al., 2002). These techniques become especially relevant when applied to the 
expression profiles of human tissues (see, e.g., Basso et al. (2005) for an application to human B cells) 
or a species with mostly unknown regulatory interactions.

An interesting topological feature of the TRN is that it has an almost treelike structure (particularly 
for E. coli, but also for yeast, S. cerevisiae; see Alon 2006 for a detailed discussion). This observation 
has several consequences. First, hierarchical levels in the network can be meaningfully analyzed (Yu 
and Gerstein 2006). Secondly, it leads to the question, how information can be circulated in the network, 
when there is a dominant directed flow in the network dictated by its architecture. It becomes ever more 
transparent that additional interactions beyond transcription factors, particularly regulation based on 
protein interactions but also based on small regulatory RNA, disrupt this general feedforward structure 
and relay signals from the bottom layer again to the top-level input nodes (Yu and Gerstein 2006; Shi-
moni et al. 2007, Tsang et al. 2007).

the network that regulates gene expression is More than Just the trn

It is highly important to note that the TRN is only one component of the gene regulatory network. Tran-
scription of genes into RNA is in large measure regulated by proteins that bind DNA. These interactions 
include the basal transcription apparatus recognizing the core promoter and its associated general tran-
scription factors (reviewed in Arnone and Davidson, 1997); a host of other more specialized transcription 
factors that combinatorially regulate the transcription of specific subsets of genes through DNA-binding 
events (Thanos and Maniatis, 1995); nucleosome-forming histones that regulate the structure of chro-
matin fibers; and factors like histone acetylases that make the DNA more accessible to transcription 
factors (reviewed in Roth et al 2001) or DNA methylases that mark the genome epigenetically, in some 
cases completely silencing gene expression (reviewed in Jaenisch and Bird, 2003; Levine and Tjian, 
2003; Wray et al., 2003).

Transcribed non-coding RNAs, like micro RNAs and RNA binding proteins, also play a significant 
role in gene regulation by affecting mRNA stability and degradation. In addition to regulation of mRNA 
levels, regulatory complexity and protein diversity are further controlled at the level of splicing, which 
involves many RNA binding proteins that act in a combinatorial manner (reviewed in Mata et al. 2005). 
This level of post-transcriptional regulation can be important but is usually overlooked in interpreting, 
for example, microarray data. Most technologies measure the steady-state levels of mRNA, which are 
the result of both the rate of transcription and of RNA turnover. Thus, different events and pathways are 
involved in stabilizing the transcript, in eliminating faulty transcripts (Fasken and Corbett, 2005) and 
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in adjusting the level of mRNA to the physiological needs of the organism (Khodursky and Bernstein, 
2003). Many of these regulatory events involve the presence of specific sequences in the 3’UTR, which 
are bound by different ribosomal-binding proteins (Parker and Song, 2004). There is now an opportunity 
to integrate functional and structural data, to understand how the biophysical aspects of protein-nucleic 
acid interactions affect their functions. Until recently protein-nucleic acid interactions have largely been 
studied either through structural approaches (for example, structure determination of the polymerase 
holoenzyme) or through computational approaches based on sequence data (for example, de novo motif 
finding algorithms, or phylogenetic footprinting) or functional expression data (for example, using gene 
expression data to infer genetic regulatory networks). Recent technological advances have enabled many 
different types of data to be gathered at a genome-wide and proteome-wide scale, including: genomic 
sequences, tissue-specific ESTs and mRNA expression data, the abundance of various RNA populations, 
protein-protein and protein-ligand interactions, chromosomal interactions, and protein-nucleic acid 
binding data. In addition, efforts in structural biology are yielding structural data on proteins, protein 
complexes, and protein-ligand interactions.

Taken all together these multiple levels of interactions define the phenomenological model of how 
the activity of genes affects the activity of other genes (as well described, for example, by Brazhnik et 
al. 2002). In this chapter we use the phrase “gene regulatory network” to refer to the combined effects 
of all these interactions. We will use more restricted terms, such as “transcription regulatory network 
(TRN)” when we refer to only one component of the gene regulatory network, in this case those inter-
actions regulated by transcription factor proteins that bind to the regulatory regions of genes and alter 
their expression.

The new data from all these different experimental approaches provide new opportunities for an inte-
grative approach. Combining the previously distinct perspectives of structural, functional, and genomic 
analyses should improve our ability to identify essential biological associations, and ultimately to model 
and predict these interactions. Studies combining these different types of analysis and data spurs new 
collaborations between researchers in these historically distinct fields.

networkS

types of networks

The statistical and graph theoretical analysis of networks has become a rapidly evolving field in re-
cent years, not least due to the discovery of consistent structural principles of “small world networks” 
including clustering (Watts and Strogatz, 1998) and scale-free attributes (Albert and Barabasi, 2002). 
Numerous studies suggest that most scientifically and technologically significant large-scale networks 
ranging from social networks to cellular metabolism and the internet are neither random nor regular, 
but instead share common principles of organization (Strogatz, 2001). For the analysis of networks, 
several graph theoretical measures, such as the network’s clustering index and its characteristic path 
length, are of particular interest (described in more detail below). The cluster index captures the extent 
to which a unit’s neighbors connect to each other, forming a “clique” or local cluster. The characteristic 
path length is the average length of the shortest directed path between any two units in the network. 
The shorter the characteristic path length, the “closer” (in terms of distance in graphs), on average, are 
the network’s units.
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Random networks have been studied by Erdös & Rényi (1959) using random-graph theory. A graph 
is a pair of sets {P,E} where P is a set of N nodes and E is a set of edges connecting two elements of P. 
The graph is typically illustrated by dots corresponding to nodes and by lines corresponding to edges. 
Every pair of nodes is connected with equal probability p and the majority of nodes have approximately 
the same degree, close to the average degree ξ of the network. The degree distribution of the random 
network is a Poisson distribution with a peak at P(ξ). Random-graph theory studies the properties of the 
connection probability associated with graphs with N nodes as N→∞.

Scale-free networks are characterized by a hierarchy of connections that is self-similar across different 
scales or levels of structure and thus obeys a power law degree distribution of the form P k Ak a( ) = -

(Barabasi & Albert 1999). In a scale free network, structures extend over a wide range of scales. Such 
network topologies develop when new connections are added preferentially to nodes that already have 
many connections (Huberman et al. 1998; Adamic & Huberman 1999; Albert & Barabasi 2002).

Small world networks are characterized by a short characteristic path length and a high clustering 
coefficient (Albert & Barabasi 2002). Given the same number of nodes N and the average number of 
connections ξ, both a random network and a small world network have a similarly small average path 
length l. Under these same conditions a small world network has a higher clustering coefficient than a 
random network.

analyzing the connectivity of networks

The effective geometry in which the dynamics of a system evolves is determined by its connectivity 
matrix, together with the boundary conditions of the system. A symmetric connectivity matrix wij is 
given when its elements satisfy the condition wi,j = wj,i. The stronger constraint of translational invari-
ance requires that the values of the matrix elements are a function of the difference i-j only rather than 
a function of the absolute value of the indices i,j. This formulation is mathematically precise. A slightly 
weaker formulation for near-neighbor connections is given in the following. An effective one-dimensional 
geometry will be achieved, if the network nodes i may be indexed such that elements in the connectivity 
matrix wij may be ordered “around” its diagonal within a width which approximately remains the same 
along the diagonal. A meaningful choice of an index scheme will identify the neighborhood as shown 
in Figure 1. As long as most of the elements of the connectivity matrix follow this distribution scheme, 

Figure 1. One-dimensional connectivity with open boundary conditions (left) and periodic boundary 
conditions (right)
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the effective physical geometry will be one-dimensional. The boundary conditions will determine if the 
one-dimensional space, the line, will be closed for periodic boundaries or open otherwise.

An effective two-dimensional geometry will be obtained if an indexing scheme is adopted in which 
the neighborhood relations of the connectivity matrix may be expressed as shown in Figure 2. Again, 
as long as most of the elements of the connectivity matrix are ordered around its diagonal within an 
approximately constant width for each space dimension, then the effective geometry will be a two-
dimensional surface. If the boundary conditions are periodic, then closed surfaces are obtained which 
can take either the form of a two-dimensional torus or a sphere or ellipsoid. In principle, it is possible to 
construct many two-dimensional closed surfaces with arbitrary topologies, but these three, torus, sphere 
and ellipsoid, are the most common in applications. Open two-dimensional surfaces typically obey zero 
amplitude or zero flux boundary conditions.

other Measures that characterize networks: Path 
length and clustering coefficient

Network topologies are characterized from the perspective of statistical mechanics by the number of 
nodes N and by the number k of connections (or ‘’edges’’) to other nodes. Since not all nodes in the 
network have the same number of connections (referred to as the node degree), the spread in the node 
degrees is characterized by a distribution function P(k), which gives the probability that a randomly 
selected node has k connections. Among many measures to characterize network topologies, two well 
known measures are the average path length and the clustering coefficient. The average path length l of 
a network is defined as the number of edges in the shortest path between two nodes, averaged over all 
pairs of nodes (Watts and Strogatz, 1998; Albert and Barabasi, 2002). The clustering coefficient Ci of 

node i that has ki edges which connect it to ki other nodes, is defined as Ci
E

k k
i

i i

=
-

2

1( )
  where Ei  is 

the number of edges that actually exist between the ki nodes. The total number of all possible edges is 
ki(ki-1)/2. The clustering coefficient of the whole network is the average of all the Ci from every node 
i. The in-degree and out-degree are computed as the number of incoming and outgoing connections to/
from a node, respectively. The degree is the sum of in- and out-degree. The betweeness centrality is 
the fraction of shortest path between any two pairs of nodes passing through a particular node. If s is 
the source and t is the target node, then nst is the total number of shortest paths linking these and nst (i) 

Figure 2. Two-dimensional connectivity with open boundaries (left), double periodic boundaries (torus, 
middle) and spherical boundaries (right)
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passes through node i, Then betweeness centrality of the i-th node is calculated as
1
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Albert and Barabasi (2002) wrote a detailed review on the statistical description of network topologies 
and Sporns & Tononi (2007) provide a detailed description of network connectivity measures.

relationship between the Structure and the dynamics of a network

In the last few years, a wide range of disciplines have intensely studied how the topology of a network 
shapes, regulates, or even enhances dynamic processes on the network. For gene regulatory networks 
this question is particularly interesting, because an observed expression pattern may be viewed as the 
result of the dynamics of the interacting genes in the gene regulatory networks. Very obviously many 
other biological mechanisms contribute to gene expression levels in similar proportions (like DNA 
topology and the regulatory action of microRNA or protein-protein interactions not incorporated in the 
gene regulatory network based on transcription factors and their binding sites, just to name a few). An 
important future task is thus to isolate and understand the systematic contribution of dynamics on the 
gene regulatory network to gene expression levels. Here we briefly summarize a few general results on 
the link between topology and dynamics, which may be useful for understanding the potential impact of 
network topology on expression levels. Inspite of the very interesting findings on the relation of topology 
and dynamics, e.g., for phase oscillators (Arenas et al. 2006), synchronization in general (Nishikawa 
and Motter 2006; Atay and Biyikoglu 2004), epidemics (Moreno et al. 2002) and excitable dynamics 
(Graham and Matthai 2003; Roxin et al. 2004; Müller-Linow et al. 2006, 2008) or chaotic oscillators 
(Yook and Meyer-Ortmanns 2006), we will here focus on binary dynamics, as they may prove most 
helpful for the study of gene regulation.

A simple and very successful mathematical model of gene regulation has been formulated several 
decades ago by Kauffman (1969). It describes the interaction of binary elements in a random graph: In a 
network consisting of nodes (“genes”), every single node is regulated by other randomly selected nodes 
via definite Boolean functions (random Boolean network). The pattern of transitions between system 
states, the attractor structure of the system, can be thought of as a highly simplified model of cell dif-
ferentiation: different attractors correspond to different cell types; a basin of attraction in this general 
scheme corresponds to the range of initial conditions (and, in a sense, of environmental cues) leading 
to this attractor (or cell type). Based on the general framework of random Boolean networks and their 
extension to general network topologies (and particularly the use of threshold dynamics), huge progress 
has been made in the last few years in linking observed properties of the dynamics with topological 
features of the graph (see, e.g., Bornholdt, 2005).

Another modeling approach for complex biological systems are cellular automata (CA), which are 
Markovian dynamics on a finite state space. Proposed by von Neumann (see von Neumann 2001) as 
a model system for biological self-reproduction, a surge of research activity from the 1980’s onwards 
(Wolfram 1983) established them as a standard tool of complex systems theory. Cellular automata on 
graphs in principle allow assessing dynamical changes due to variation of graph topology (Marr and 
Hütt 2005).

The appearance of network motifs (i.e. patterns of interconnections that occur in a network far more 
often than expected at random) in transcriptional regulatory networks can be motivated using simple 
dynamical models (see Alon 2007 for an overview). There is also a similarity in motif content of func-
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tionally similar networks (Milo et al. 2004), where motifs are groups of few nodes with a specific link 
pattern. The subnetwork frequencies in genetic networks (Milo et al. 2004) have been shown (Klemm 
and Bornholdt 2005) to correlate with the dynamic robustness profile of these subnetworks: frequent 
three-node subnets (compared to a randomized graph) have the highest robustness of Boolean dynamics 
under a noisy update scheme.

Another interesting issue in the context of network dynamics is noise, which is known to be an 
important factor in quantitatively understanding gene regulation (McAdams and Arkin 1997). At the 
same time, noise has turned out to affect network dynamics in sometimes counterintuitive ways, being 
compensated (Moreira et al. 2004) or mimicked (Graham and Matthai 2003; Marr and Hütt 2006) or 
distorted (Amaral et al. 2004) by the network topology.

Spectral Properties of network Matrix representation

We have seen above that a graph can be represented in terms of its connection matrix which is also called 
its adjacency matrix. This representation allows comparing topological properties of the graph with 
spectral properties of the matrix. A theoretical foundation of this approach is essentially given by random 
matrix theory, where it has been shown that the frequency distribution of eigenvalues of many random 

symmetric matrices has a shape proportional to R2 2-l , where R delimits the range of eigenvalues 
and depends on the details of the random matrix (Wigner’s semi-circle law; Wigner 1958). Networks 
can be classified according to deviations from this eigenvalue distribution.

Spectral properties of the adjacency matrix or, alternatively, the graph Laplacian (which is the diago-
nal matrix of the degree sequence minus the adjacency matrix) have been studied. Key results include: 
attempts to classify networks according to deviations from this eigenvalue distribution (Banerjee and 
Jost 2007) and the observation that systematic gaps in the ranked eigenvalue sequence (as found, e.g. 
in hierarchical networks) organize the route towards synchronization of phase oscillators on a graph 
(Arenas et al. 2006).

Relations between topology and dynamics are produced by the interplay between eigenvalue sizes 
and the associated eigenvectors. The eigenvectors essentially are directions in node space, along which 
dynamic processes under certain conditions organize. At this intersection point of graph topology and 
linear stability analysis known from dynamical systems theory, particularly the eigenvector to the largest 
eigenvalue offers insight into the asymptotic behavior.

Let us return to the view of expression as a dynamic process on a network. The linear spread of excita-
tions in the network is a simple realization of dynamics, which can at the same time be formalized to be 
an iterative prescription for computing the eigenvector of the graph belonging to its largest eigenvalue. 
Recently, the components of the eigenvector of the adjacency matrix have been used to model absolute 
cDNA microarray expression levels (Shehadeh et al. 2006). As an appropriate surrogate on directed 
networks, one can weight the nodes with respect to whether these nodes are hubs (connected to many 
other nodes) or authorities (connected by many other nodes), see Kleinberg 1999. Those distributions 
have proved useful in identifying functionally important nodes in networks such as social networks or 
power grids or in identifying the best targets for internet search engines (as those linked to the authori-
ties). A linear relationship between expression and the importance of a node as a hub would imply an 
adaptation to the out-degree and therefore an information propagation reverse to the direction of the 
regulatory interaction. As soon as more data become available, particularly a wider range of TRNs, it 
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will be informative to search for resemblances of such patterns with the corresponding features of ex-
pression profiles. Eventually, a view may emerge, that the topological constraints the TRN imposes on 
gene expression resemble the iterative process of computing the TRN’s Perron-Frobenius eigenvector.

global expression Properties

These conceptual properties of the networks described above can be used to characterize the nature of 
gene regulatory networks in a new way. Previously, analysis has focused on a bottom–up approach, trying 
to piece together all the separate interactions between individual genes from the experimental data. The 
concepts from network analysis now make possible a top–down approach, trying to discover the overall 
organization of this network from experimental data. This approach (Shehadeh et al 2006; Liebovitch 
et al 2006) uses the fact that different network structures will produce different statistical patterns in 
the mRNA expression. Thus, the statistics of the mRNA expression can be used to gain valuable infor-
mation on the gene regulatory network. For example, the structure defined by the connectivity matrix 
wij can be related to the dynamics, the mRNA expression levels Xn at time n, by iterating Xn+1 = WXn 
until the expression levels reach a steady state. We formulated some basic models of different types of 
gene regulaion networks (both random and scale-free), computed the statistical properties of the mRNA 
levels produced by those models which could then be compared to the statistical properties of experi-
mentally data. Moreover, we have found that there is an important relationship between the structure 
of the network as described by the degree distribution, P(k), the probability that a node is connected to 
k other nodes, and the dynamics of the network as described by the probability density function, PDF, 
given by f(x), the probability that the mRNA expression is in the range (x,x+dx). For linear networks 
f(x) is proportional to P(k), and for nonlinear networks the tail of the distribution of f(x) has the same 
functional form as P(k). This is an important finding that shows that there is a strong interrelationship 
between the dynamics and the structure of a network.

Practical Example #1: Determining the Properties of the Gene Regulatory Network in the Fruit Fly 
Drosophila melanogaster

We now show how these network concepts can be applied to the practical analysis of experimental 
data and what is learned from that analysis. We computed the statistical pattern of mRNA expression 
as measured by the PDF of mRNA expression levels from different models of random networks hav-
ing different average numbers of connections, scale free networks having different scaling exponents, 
networks with either similar or different in-degree distributions and out-degree distributions, and net-
works having different average path lengths and clustering coefficients. We then compared the mRNA 
PDF from those models to the mRNA PDF measured from 54 expression sets where cDNA microarray 
technology was used to measure mRNA expression levels of virtually every gene in the heads of control 
and period null mutant Drosophila flies (Shehadeh et al 2006; Liebovitch et al 2006). An example of 
these results is shown in Figure 3. The experimental data was best represented by the PDFs of the scale 
free models of gene regulatory networks with scaling exponents in the range 1.5 to 2.0. These results 
were accomplished without knowing which gene is responsible for what mRNA level. This supports the 
feasibility of our basic idea that we can use the global, statistical information from the observed mRNA 
levels to infer information about the pattern of genetic interactions. This work still cannot uniquely 
determine the topology of a genetic network since it lacks the proof that the PDFs are unique for each 
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model. However, this work suggests that like many other natural networks, genetic networks seem to 
have scale free topology.

These results may also provide an aid to screen biological systems to determine which ones are the 
best candidates for therapeutic intervention. A system where the mRNA expression levels tell us that 
the genetic interactions depend on a balanced interaction of a very large number of genes, such as the 
models with random topology, may be a poor candidate system for basic scientific studies or clinical 
applications. There are just too many simultaneous interacting genes so that experiments or therapeutic 
treatments that alter one gene at a time will not be productive. A system that has a scale-free structure 
or a system in which there is only a limited number of genetic interactions or a strong hierarchy of con-
nections, such as models with a scale-free topology, may be a good candidate system for basic scientific 
studies or clinical applications. The small number of simultaneously interacting or controlling genes 
may make it possible to study the effects of each of these genes separately.

role of the tranScriPtion regulatory network

The expression of a gene is a highly complex procedure that involves transcribing a stable DNA sequence 
into an unstable messenger molecule (mRNA) and then translating the mRNA into a functional protein. 
The regulation of gene expression is at the core of many important biological processes and a central 
determinant of how organisms develop. It takes place on very different levels of cellular organization: 
from changes in the physical structure of DNA (thereby inhibiting or facilitating the access of the RNA 
polymerase to a gene’s promoter), over the specific binding of transcriptions factors (TFs) and their mutual 
interactions, the natural, or possibly miRNA induced degradation of mRNA to, finally, the regulation of 
translation at the ribosome. The regulation of transcription through TFs is, however, considered as the 
most direct route in this ensemble of regulatory actions. It is at the very beginning of mRNA synthesis 
and thus reliable and cheap. The global interaction pattern of TFs can be collectively described by the 
transcriptional regulatory network (TRN).

Figure 3. PDF of the mRNA expression levels of wild type Drosophila melanogaster (left) compared to 
a linear network model with symmetric in-degree and out-degree scale free distributions with scaling 
exponent equal to 2 (right)
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The ability to explicitly measure gene expression in many genes at once opens remarkable possibilities 
in determining the functional roles of expression patterns (see, e.g. Ideker et al. (2002) for a thorough 
analysis of the yeast galactose-utilization pathway with several high-throughput methods). In a very 
simplified view one can think of gene expression observed in microarray experiments as a result of a 
dynamic process on the TRN. This view is our starting point for studying whether the properties of the 
underlying TRN can be detected in the gene expression data. In light of the fact that gene expression is 
determined by many processes (like physical properties of DNA, mRNA interference, the protein-protein 
interaction network, and the environment), our aim is to find the specific role and the relative impor-
tance of the TRN topology. We thus use the most complete TRN available, the TRN of the bacterium 
Escherichia coli. It is electronically encoded in the RegulonDB database (Salgado et al., 2006), which 
includes the genes’ names, positions and operon association, together with known regulatory activating 
and inhibitory interactions. In what follows, we relate topological properties of genes in the TRN to the 
genes’ expression profiles. In doing so we pass from the scale of individual links (i.e. pairs of nodes) to 
sub-networks formed by all nodes topologically downstream of a particular node and then, finally, to 
the large-scale topological properties.

The simplest topological entity of the TRN is a link that connects a pair of genes. We can label each 
link with its regulatory characteristics as activating or inhibitory, according to its database annotation. To 
see if there is a consistent clear correlation in expression between the regulating gene and the regulated 
gene under different environmental and experimental conditions, we analyze the microarray data of E. coli 
aerobic shift experiments (Covert et al., 2004), available from the ASAP database (Glasner et al., 2003). 
Finding a substantial difference in the correlation values for activating and inhibitory links, respectively, 
would be the clearest signal for gene expression being dominantly determined by gene-gene interaction. 
Figure 4A shows scatter plots of the absolute expressions of regulated versus regulating genes for a 

Figure 4. Correlation of expression and TRN link characteristics. A Scatter plots of the expressions 
of the regulating gene versus the regulated gene for 16 arbitrarily selected transcriptional regulatory 
interactions in the largest connected component of the E. Coli TRN. The expression levels of genes 
connected by inhibitory interactions are shown in dark gray, activating interactions in light gray. No 
immediate correlation between expression and the type of regulatory interaction can be observed. This 
impression does not change if we consider whole operons or only genes without self-regulation. B The 
frequency distribution of the Pearson’s correlation coefficients for inhibitory (dark gray) and activating 
(light gray) links, normalized to the area under the curve. Both distributions look very similar, centered 
around a zero correlation. Only the elevation of the inhibitory curve at negative correlation indicates 
an effect of the type of regulation.
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random selection of inhibitory (dark gray) and activating (light gray) interactions. No consistent positive 
correlation of expression levels at the starting point and end point of an activating link or, respectively, 
an anti-correlation at the starting point and end point of an inhibitory link is observable.

The failure of this naive approach is in agreement with previous findings (Gutierrez et al., 2003; 
Herrgard et al., 2003) about the low fraction of consistent elements in pairwise regulatory interactions. 
These studies showed that the consistency between the expression profiles and the TRN is surprisingly 
low (around 10% for pairwise interactions in Herrgard et al. (2003) and about 40% for complex interac-
tions after a discretization process and sophisticated Boolean rule table application in Gutierrez et al. 
(2003)). The distributions of correlation values for both activating and inhibiting interactions are very 
similar (see Figure 4B) with only a slightly elevated amount of large negative correlation for inhibitory 
interactions. One obvious reason for the absence of clear correlations in pairwise regulatory interac-
tions is the ubiquity of complex promoters, where TFs act cooperatively to reach a transcriptional goal. 
Another reason might be the vast amount of data where neither the TF, nor the target reach a significant 
or functional relevant concentration level. Hence, pairwise interactions clearly cannot be separated from 
the effects of the rest of the network.

The TRN of E. coli is mainly acyclic. Hence, it can be decomposed into subnets with one root node 
and branch nodes, lying topologically downstream in the TRN. Such decomposition into causally con-
nected nodes is one way to address the link between the TRN and expression data beyond pairs of nodes. 
The largest connected component of the E. coli TRN, reconstructed from the latest RegulonDB version 
5.6, contains 1257 nodes and 2666 interactions (see Figure 5A), where self-loops have been discarded. 
This network contains 129 regulators, i.e. nodes with at least one outgoing link to other nodes. Each 
one of these regulators can be identified as the root node of the corresponding subnet. The soxS gene 
(Wu & Weiss, 1991) for example, responsible for redox stress response (Nunoshiba et al., 1993) has 24 
direct target nodes and is regulated by only one other gene, soxR. The soxS subnet comprises 226 branch 
nodes and 259 regulatory interactions, organized in five hierarchical layers, as shown in Figure 5B. The 
hierarchical level of each node is determined by a top down approach: The distance to the root node is 
calculated with a breadth first algorithm, with the additional constraint that links from lower to higher 
levels are forbidden. The whole TRN can be decomposed into a subnet graph, with nodes represent-
ing subnets and links between subnets indicate an overlapping set of branch nodes. This subnet graph 
consists of 129 nodes and 1144 links and is shown in Figure 5C.

Practical Example #2: Determining the Relative Contribution of the TRN in the Gene Regulatory 
Network in the Bacterium E. Coli

We can use the conceptual concepts of subnets described above, and their implementation in the 
RegulonDB database to determine the relative contribution of the TRN compared to all the other control 
from RNA, proteins, and the metabolic network in gene expression that taken together define the gene 
regulatory network. We do this in the following way. For any experimental gene deletion, we suppose 
that the branch nodes in the respective mutant subnet preferentially sense the mutational deletion by 
transcriptional regulatory connections. By comparing gene expression levels between the wild type and 
single-gene mutations, we can test the hypothesis that changes occur mostly topologically downstream 
of the mutated node rather than globally distributed throughout the network. This will then give us an 
estimate of the role played by the TRN in the total gene regulatory network.
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The microarray data used in Covert et al. (2004) contains absolute expression profiles for E. coli 
knockout strains of key transcriptional regulators in oxygen response (ΔarcA, ΔappY, Δfnr, ΔoxyR, ΔsoxS) 
under aerobic and anaerobic conditions. We compare the expression levels in wild type and mutant 
strains of all genes under either aerobic or anaerobic conditions. For each gene, each strain, and each 
condition, at least a triplet of replicated absolute expression values exists. We label a gene as affected, 
if the p-value of a two-sided t-test of the two distributions of expression values is below 0.05. (Here we 
tested the effect of each gene individually on its downstream components. An alternative statistical ap-
proach would have to be use an FDR multi-stage analysis such as that described by Tuglus and van der 
Laan, 2008.) We count the relative number of affected genes within the subnet, Rsub, and compare it to the 
relative number of affected genes in the whole network Rtrn. The ratio of these two observables Rsub/Rtrn 
measures the causal impact of the mutation within the subnet. The p-value of this ratio, calculated with 
a null model subnet consisting of randomly selected genes in the TRN without necessarily regulatory 
interactions, tells about the significance of the measured impact. As a concrete example, let us consider 
the soxS subnet, shown in Figure 5B. Under aerobic growth, 50 out of the 226 subnet genes are affected 
by the mutation of the root node, soxS, resulting in Rsub = 50/226. In the largest connected component of 
the TRN, comprising 1257 nodes, 188 are affected by the mutation of soxS, Rtrn = 188/1257. Thus, the 
ratio of these two observables, measuring the relative impact of the soxS knockout on the soxS subnet, is 
1.5. We can estimate the significance of this value by calculating the p-value of this ratio, i.e., the prob-
ability that this ratio or an even more extreme value occurs by chance. The p-value of each ratio can be 
calculated with the hypergeometric distribution. In terms of the example above, it gives the probability 
that we find 50 affected genes if we randomly select a set of 226 genes from a total number of 1257 
genes, containing 188 affected genes.

Figure 6 shows the impact ratios Rsub/Rtrn for all five mutant strains under aerobic and anaerobic 
conditions. The appY subnet comprises only 9 nodes, none of which is affected in either condition. 

Figure 5. Decomposition of the E. coli TRN into a subnet graph. A The largest connected component of 
the E. coli TRN comprises 1257 nodes, representing genes, and 2666 interactions, representing TF bind-
ing action. The size of the nodes scales with the number of regulated genes. B The soxS subnet comprises 
227 nodes and 259 regulatory interactions, organized into 5 hierarchical levels. C A full decomposition 
of the TRN results in a subnet graph with nodes representing subnets and links representing overlapping 
sets of branch nodes. The size of the nodes scales with the number of genes contained in the respective 
subnet, the width of the links scales with the relative overlap between the sets of branch nodes.
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The arcA and fnr subnets are affected in both conditions, with moderate ratios between 1.1 and 1.3. 
The oxyR subnet is affected under aerobic conditions, which is sensible, since the corresponding gene 
product OxyR is involved in the response to oxidative stress only (Lynch and Lin, 1996). Interestingly, 
the oxyR subnet is under-affected under anaerobic conditions with a ratio of 0.7, i.e., considerably less 
genes are affected within the subnet as compared to the whole TRN. This is also in accordance with the 
role of OxyR: Under anaerobic conditions, the subnet is neither used in the wild type, nor in the mutant 
strain. Finally, the soxS subnet is again affected under aerobic and anaerobic conditions. Although we 
find sensible values for the subnet affection for four of the investigated five mutant subnets, only half 
of these values are significant with p-values < 0.01. In all other cases, a large fraction of genes outside 
the subnet is equally affected: Under anaerobic growth, 29 out of 226 genes within the soxS subnet are 
affected while 111 out 1031 genes in the remaining network equally respond to a soxS deletion.

The result of this analysis is that approximately equal number of genes in the subnet and outside 
the subnet are affected as the expression level of any one gene changes. Therefore, a view where the 
effect of a mutation solely cascades down the sub-network of transcriptional interactions is obviously 
inadequate. Additional mechanisms within the TRN must also play a role, such as cooperative effects, 
like coordinated binding (see, e.g., Hermsen et al. (2006) for a recent computational approach) or DNA 
supercoiling (Travers and Muskhelishvili, 2005). It also suggests that additional mechanisms beyond 
the TRN also play an important role.

In summary, this analysis yields the important new finding that the TRN represents only approxi-
mately half of the regulatory control in the gene regulatory network. Thus, beside the regulatory role of 
the transcription factors of the TRN, the other factors that must play an equally important role in gene 
regulation include RNA, proteins, and the metabolic network.

Practical Example #3: Determining the Functional Dependence of the Expression on the Degree 
Distribution of the TRN in the bacterium E. Coli

Figure 6. Impact ratio Rsub/Rtrn for wild type versus mutant strain comparison under aerobic and an-
aerobic conditions. Rsub quantifies the relative number of affected genes within the subnet of the mutant 
gene, Rtrn quantifies the relative number of affected genes within the largest connected component of 
the E. coli TRN. The numbers inside the bars denote the p-value of the calculated ratio. The size of the 
respective subnets is 9 (appY), 506 (arcA and fnr), 201 (oxyR), and 226 (soxS).
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We can use the network concepts described above, namely the in-degree and out-degree distributions, 
to characterize the structure of the TRN. We can then correlate that information with the gene expression 
data to relate the structure of these networks to their dynamics. We do this by mapping the expression 
values of the whole data set onto the TRN in E. Coli.

While the correlations between expression and in-degree remain rather vague (see Figure 7A), a 
number of prominent features can be attributed to the correlation of expression and out-degree (Figure 
7B): (i) The expression of genes with zero out-degree, that is genes with no regulatory function, covers a 
very wide range of expression, while the expression of genes with out-degree > 0 is confined to expres-
sion levels < 6000. (ii) For genes with 0 < out-degree < 100, two groups clusters seem to emerge, one 
with moderate expression levels, one with low expression levels. The two groups of nodes appear even 
clearer in the inset of Figure 7B, where wild type expression data has been mapped on the operon-based 
TRN of E. coli. In this network, which has been introduced in Shen-Orr et al. (2002), nodes represent 
operons and links represent mutual regulatory interaction between members of two operons. Notably, 
no discernible pattern of group composition is observable when mapped to gene ontology classes. (iii) 
For the group of low expressed genes with out-degree > 0, a linear increase of the gene expression levels 
with the out-degree is observable. (iv) The absolute expression changes only weakly with environmental 
and genetic variations. Therefore, the out-degree of a gene in the TRN seems to be more influential than 
the in-degree on the gene’s absolute expression.

Summarizing, we find no immediate consistency of expression profiles with activating and inhibitory 
pairwise interactions in E. coli. This is in agreement with the recent observation that a more complicated 
rule table and an internal consistency of operons are required for detecting an agreement between such 
data sets (Gutierrez et al., 2003; Herrgard et al., 2003). For single-gene deletions, we find affected nodes 
both in the subnetwork downstream of the mutation and outside the subnet. While the ratio of affected 
nodes is generally higher within the sub-network, the large number of affected nodes in the remaining 

Figure 7. Gene degree in TRN and expression patterns in E. coli. The absolute expression of the 1262 
genes in the E. Coli TRN versus their in-degree (A) and their out-degree (B). We mapped all 41 aerobic 
shift experiments onto the inter-regulated genes. Correlations between expression and the number of 
regulated genes (out-degree) are observable, e.g. genes with many regulated targets genes are constrained 
to moderate expression. The inset in B shows the mapping of all wild-type expression data on another 
TRN representation, namely the network of transcriptional regulatory interactions between operons and 
genes in the E. coli genome as introduced in Shen-Orr et al. (2002). Note that we only display regulatory 
operons and genes in the inset, i.e. those with out-degree >0.
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network suggests that the system deals with perturbations in a cooperative manner beyond solely TRN 
interactions. Other mapping approaches, like Balázsi et al. (2006), Luscombe et al. (2004), or Marr et al. 
(2008) supply further functional insights and support this interpretation. Finally, we observe a systematic 
dependence of gene expression on a topological quantity, namely the out-degree of a node in the TRN, 
indicating that this is a genuine global network property. We identify classes of genes with specific ex-
pression profiles in E. coli: non-regulatory genes cover a wide range of absolute expression, while genes 
with a medium number of regulated target genes separate into two groups of different expression. The 
article of Grondin et al. (2007) shows similar results and offers a simple explanatory model.

We learn from the analysis of this example that changes in expression levels are widely distributed 
in the network, even in response to a local perturbation. This shows that gene regulation goes beyond 
the purely feed-forward structure implied by the TRN. The regulatory information may be fed back 
into the network by a variety of signals such as physical changes in the DNA conformation or protein-
protein interactions resulting in a re-distribution of regulatory signals. Evolutionary adaptation at the 
TRN network level that leads to an optimal functioning of the organism may explain some features 
of the distribution pattern of gene expression levels. An interesting example of this perspective is the 
recent work by Carmi et al. (2006). The observed expression profiles depend on both TF mediated and 
non-TF mediated regulatory mechanisms, like small non-coding RNAs (Shimoni et al., 2007) or DNA 
supercoiling (Marr et al., 2008). It seems worthwhile to segregate gene regulations into topological, 
global and local effects, which can partly be established by the evaluating expression data on TRNs. 
Indeed, mapping strategies as presented in this chapter may help to quantitatively estimate those non-TF 
mediated influences on gene expression.

concluSion

Most approaches to understanding the structure and function of the network of how genes regulate the 
expression of other genes have been to correlate the expression of individual genes and how they vary 
up and down together under different experimental conditions. That is, to determine the network from 
the bottom up. Here, we have shown that some important features of that network depend on its global 
topological properties which can be directly determined from the experimental data. Thus, we can de-
termine important features of the network from the top down. We showed how the statistics of the levels 
of mRNA reflects the global connectivity pattern of this network. This tells us that the gene regulatory 
network has a self-similar connection topology with a scaling exponent between 1.5 and 2. By bringing 
together information about the structure of the transcription regulatory network from the RegulonDB 
database and its function as measured by the mRNA expression levels recorded by microarrays, we 
showed that the patterns of mRNA expression depend on the topology of the network, namely on how 
many other genes any one gene regulates, and on how many genes regulate it. Many different mecha-
nisms are important in the regulation of gene expression including: the physical structure of DNA, the 
transcription regulatory network defined by the action of transcription factor proteins, RNA interference 
mechanisms, and protein-protein reaction networks whose proteins can bind back onto DNA and regulate 
gene expression. By comparing the number of genes that change their expression in the transcription 
factor subnetwork of a gene after a mutation or a change in an environmental condition, to the number of 
genes that change their expression outside of this subnetwork, we determined that approximately 1/2 of 
all the regulatory control of genes is through transcription factor proteins. The remainder of the genetic 
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regulatory control must therefore be the result of physical changes in DNA structure, RNA editing, or 
protein-protein interactions. This allows us to establish the fact that the transcription regulatory network 
is an important component but not the complete story in the control of gene expression.

future reSearch directionS

Our current research generates three important challenges for the future: 1) How can we match the 
local analysis of the small networks of a few interacting genes (such as that presented by Alon, 2007) 
into the global properties of the networks of large numbers of interacting genes (such as the analysis 
of Shehadeh et al. 2006, and Liebovitch et al. 2006)? This could be accomplished by both bottom-up 
approaches trying to synthesize the global dynamics from sets of coupled motifs or by top-down ap-
proaches that decompose global dynamics into constituent simpler dynamical systems. 2) The networks 
of DNA, RNA, metabolism, and proteins all interact with each other. Can we understand the operation 
of each of these three networks separately, or do we have to treat parts of them, or all of them, together 
in order to actually understand each one? Over the last several hundred years the trend in biology has 
been to dissect living things into separate non-interacting pieces and then to try to understand how each 
piece works. Can we understand how these pieces work separately from each other? The central issue is 
to determine what features and functions we can meaningfully learn from each of these three networks 
separately and what features and functions we can understand only from understanding how all these 
three networks interact together. This issue needs to be approached both experimentally (studying the 
different behaviors of isolated and whole systems) and theoretically (studying how the global dynamics 
of a system is different or the same from the dynamics of its constituent systems). 3) A hundred years 
ago Paul Ehrlich searched for a chemical magic bullet that would cure syphilis and have no other ef-
fects (Davis et al., p. 112). But there are no magic bullets, each chemical has both desired effects and 
undesired “side-effects”. These side effects are the necessary result of the cascade of interactions that 
the chemical induces in the complex biological regulatory networks. Rather than a fruitless search for 
magic bullets, perhaps we can use the complexity of these interacting networks to our advantage. If we 
understand enough about these networks, we can design therapies of multiple chemicals, which will 
interact within these networks, in just the right way, so as to increase their desired effects and reduce 
their undesired side effects (Liebovitch et al., 2007). How much do we need to understand about these 
interacting DNA, RNA, and protein networks in order to predict the effects of multiple inputs to make 
such a combinatorial multi-component therapy (CMCT) a reality? In our preliminary studies of this 
issue we have now demonstrated that data from drugs presented one-at-time and pairs-at-time can be 
used, with an artificial neural network, to accurately compute all the drug interactions for drugs pre-
sented 15-at-a-time for even a highly nonlinear network of interactions (Liebovitch et al., 2007). This 
is an important starting point for developing models of interaction that may lead to such combinatorial 
multi-component therapy therapies.
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key terMS and definitionS 

Connectivity Matrix: This matrix, wij, defines the strengths of the links between nodes i and j in a 
network. 

Degree Distribution: The statistical distribution of the number of nodes that connect to each node 
in a network.

Gene Regulatory Network: The network of interactions that define how genes regulate each other 
through DNA, RNA, and protein interactions.

Motif: A network of interactions between genes that occurs more often than those expected of purely 
random connections.
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Network: A set of nodes and links between them. In gene regulatory networks, the nodes are genes 
and the links between them are the DNA, RNA, and protein interactions between the genes.

Probability Density Function (PDF): The probability that values between x and x + dx are found 
with probability p(x).

Sub-Net: All of the genes connected by transcription factors downstream from a given gene.
Transcription Factor: A protein expressed by a gene that binds to DNA and regulates the expres-

sion of that gene or other genes.
Transcription Regulatory Network (TRN): The network of gene interactions mediated by the 

transcription factors expressed by genes that regulate other genes.
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abStract

Random Boolean Networks (RBN) have been introduced by Kauffman more than thirty years ago as a 
highly simplified model of genetic regulatory networks. This extremely simple and abstract model has 
been studied in detail and has been shown capable of extremely interesting dynamical behavior. First 
of all, as some parameters are varied such as the network’s connectivity, or the probability of express-
ing a gene, the RBN can go through a phase transition, going from an ordered regime to a chaotic one. 
Kauffman’s suggestion is that cell types correspond to attractors in the RBN phase space, and only those 
attractors that are short and stable under perturbations will be of biological interest. Thus, accord-
ing to Kauffman, RBN lying at the edge between the ordered phase and the chaotic phase can be seen 
as abstract models of genetic regulatory networks. The original view of Kauffman, namely that these 
models may be useful for understanding real-life cell regulatory networks, is still valid, provided that 
the model is updated to take into account present knowledge about the topology of real gene regulatory 
networks, and the timing of events, without loosing its attractive simplicity. According to present data, 
many biological networks, including genetic regulatory networks, seem, in fact, to be of the scale-free 
type. From the point of view of the timing of events, standard RBN update their state synchronously. 
This assumption is open to discussion when dealing with biologically plausible networks. In particular, 
for genetic regulatory networks, this is certainly not the case: genes seem to be expressed in different 
parts of the network at different times, according to a strict sequence, which depends on the particular 
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Introduction to Random Boolean Networks

Gene regulatory networks are formed by genes, messenger RNA, and proteins. The interactions between 
these elements include transcription, translation, and transcriptional regulation (Albert, 2001). The processes 
are extremely complex and we are just beginning understanding them in detail. However, it is possible, 
and useful, to abstract many details of the particular kinetic equations in the cell and focus on the system-
level properties of the whole network dynamics. This Complex Systems Biology approach, although not 
strictly applicable to any given particular case, may still provide interesting general insight.

Random Boolean Networks (RBNs) have been introduced by Kauffman more than thirty years ago 
(Kauffman, 1969) as a highly simplified model of genetic regulatory networks (GRNs). RBNs have 
been studied in detail by analysis and by computer simulations of statistical ensembles of networks and 
it has been shown to be capable of surprising dynamical behavior.

In the last decade, a host of new findings and the increased availability of biological data has changed 
our understanding of the structure and functioning of GRNs. In spite of this, we believe that the original 
view of Kauffman is still valid, provided that the model is updated to take into account the new knowl-
edge about the topological structure and the timing of events of real gene regulatory networks without 
loosing its attractive simplicity. Following these guidelines, our aim in this work is to describe and test 
a new model that we call Generalized Boolean Networks (GBNs), which includes, at a high level of 
abstraction, structures and mechanisms that are hopefully closer to the observed data.

Adhering to the original Kauffman’s view that attractors of the dynamics of RBNs are the important 
feature and that they roughly correspond to cell types, we will discuss the results of the systems ability 
to relax into stable cycles.

In Kauffman’s RBNs (known as Classical RBNs) with N  nodes, a node represents a gene and is mod-
eled as an on-off device, meaning that a gene is expressed if it is on (1), and it is not otherwise (0). Each 
gene receives K  randomly chosen inputs from other genes. From a simplistic point of view, the combined 
effect of proteins produced by genes g1  to gK  attaching to a mRNA binding site, thus either promoting or 
repressing the activity of gene g , can be seen as a direct effect of a function f g g g t g

K
t( ,..., , , )

1
1® + . In 

this case, we allow g  to be one of the arguments of the gene update function f , thus permitting self-
regulation. If we assume all genes are Boolean nodes, we can define the activity of any gene at time 
t + 1  as the result of a Boolean function of each of the gene’s entries at time t .

Initially, one of the 22K  possible Boolean functions of K  inputs is assigned at random to each gene. 
The network dynamics is discrete and synchronous: at each time step all nodes simultaneously examine 

network under study. The expression of a gene depends on several transcription factors, the synthesis of 
which appear to be neither fully synchronous nor instantaneous. Therefore, we have recently proposed 
a new, more biologically plausible model. It assumes a scale-free topology of the networks and we de-
fine a suitable semi-synchronous dynamics that better captures the presence of an activation sequence 
of genes linked to the topological properties of the network. By simulating statistical ensembles of 
networks, we discuss the attractors of the dynamics, showing that they are compatible with theoretical 
biological network models. Moreover, the model demonstrates interesting scaling abilities as the size 
of the networks is increased.
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their inputs, evaluate their Boolean functions, and find themselves in their new states at the next time 
step.

More precisely, the local transition rule j , which is one the 22 1K+
 possible Boolean functions of K  

inputs form the neighboring nodes plus that of the node itself, thus possibly implementing a biological 
situation where a gene regulates itself:

j : ,1S SK+ ®  

maps the state si
Î S = {0,1}  of a given node i  into another state from the set S , as a function of the 

states of the nodes that send inputs to i .
For a finite-size system of size N  (such as those treated herein) a configurationC t( )  of the RBN at 

time t  is defined by the binary string:

C t s t s t s t
N

( ) = ( ( ), ( ), , ( )),
0 1 1

 -  

where s t
i
( ) Î S  is the state of node i  at time t . The progression of the RBN in time is then given by 

the iteration of the global mapping, also called evolution operatorF :

F : ( ) ( 1), = 0,1,C t C t t® + ++   

through the simultaneous application at each node of the local transition rule j . The global dynamics 
of the RBN can be described as a directed graph, referred to as the CA’s phase space. Over time, the 
system travels through its phase space, until a point or cyclic attractor is reached whence either it will 
remain in that point attractor forever, or it will cycle through the states of the periodic attractor. Since 
the system is finite and deterministic, this will happen at most after 2N  time steps.

This extremely simple and abstract model has been studied in detail by analysis and by computer 
simulations of statistical ensembles of networks and it has been shown to be capable of surprising dy-
namical behavior. Complete descriptions can be found in (Kauffman, 1993; Aldana, Coppersmith & 
Kadanoff, 2003). We summarize the main results here.

First of all, it has been found that, as some parameters are varied such as K , or the probability p  of 
expressing a gene, i.e. of switching on the corresponding node’s state, the RBN can go through a phase 
transition. Indeed, for every value of p , there is a critical value of connectivity:

K p p p
c
( ) = [2 (1 )] 1- -  

such that for values of K  below this critical value K p
c
( )  the system is in the ordered regime, while for 

values of K  above this limit the system is said to be in the chaotic regime.
The regimes can be differentiated according to the proportion of nodes that are actively participating 

in an attractor by flipping their states “often”. In other words, assume that we can define two categories 
for the nodes of a system in an attractor: frozen and twinkling (Kauffman, 2000). Frozen nodes are those 
whose state remains unchanged for a long time, say fifty time steps. On the contrary, twinkling ones 
change their state frequently. In the ordered regime, the proportion of frozen nodes grows linearly with 
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the network’s size N , and a vast majority of the nodes are frozen. In the chaotic regime a majority re-
main twinkling. Finally at the critical regime, or so-called edge-of-chaos, the number of twinkling and 
frozen nodes is comparable. Another critical feature distinguishing the ordered form the chaotic regime 
is that in the first one, the lengths of the state cycle attractors scales palynomially with the size of the 
network, where as in the chaotic regime, it grows exponentially.

In classical RBNs K p
c
( ) = 2 , for p = 0.5 , corresponds to the edge between the ordered and the 

chaotic regime, systems where K < 2  are in the ordered regime, and K > 2  means that the system is 
in the chaotic phase for p = 0.5 . Kauffman found that for K = 2  the size distribution of perturbations 
in the networks is a power law with finite cutoff that scales as the square root of N . Thus perturbations 
remain localized and do not percolate through the system. The mean cycle length scales at most linearly with 
N  for K = 2 . Kauffman’s suggestion was that cell types correspond to attractors in the RBN phase 
space, and only those attractors that are short (between 2 and a few tens or hundreds of states) and stable 
under perturbations will be of biological interest. Thus, according to Kauffman, K = 2  RBNs lying 
at the edge between the ordered phase and the chaotic phase can be seen as abstract models of genetic 
regulatory networks.

For the sake of completeness, let us mention that the “discrete’’ approach to the high-level descrip-
tion of genetic regulatory networks is not the only possible one. A more realistic description is obtained 
through the use of a “continuous-state’’ model. In the latter, the levels of messenger RNA and proteins 
are assumed to be continuous functions of time instead of on/off variables. The system evolution is thus 
represented by sets of differential equations modeling the continuous variation of the components con-
centration. Here we focus on the discrete approach, but the interested reader can find more information 
on the continuous models in (Edwards & Glass, 2006), for instance.

RBNs are interesting in their own as complex dynamical systems and have been throughly studied as 
such using the concepts and tools of statistical mechanics (Derrida & Pomeau, 1969; Aldana, Copper-
smith & Kadanoff, 2003). There is nothing wrong with this; however, we believe that the original view 
of Kauffman, namely that these models may be useful for understanding real cell regulatory networks, 
is still a valid one, provided that the model is updated to take into account present knowledge about 
the topology of real gene regulatory networks, and the timing of events, without loosing its attractive 
simplicity.

froM randoM to generaliZed boolean networkS

In this section, we first describe and comment the main assumptions implied in Kauffman’s RBNs. Fol-
lowing this, we propose some modifications that, in our opinion, should bring the model closer to known 
facts about genetic regulatory networks, without loosing the attractive simplicity of classical RBNs.

Kauffman’s RBN model rests on three main assumptions:

The nodes implement Boolean functions and their state is either on or off;• 
The nodes that affect a given node in the network are randomly chosen and are a fixed number;• 
The dynamics of the network is synchronous in time.• 
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Discrete State Approach

The binary state simplification could seem extreme but actually it represents quite well “threshold 
phenomena’’ in which variables of interest suddenly change their state, such as neurons firing or genes 
being switched on or off. This can be understood since the sigmoidal functions one finds in the continu-
ous differential equation approach (Edwards & Glass, 2006) actually do reduce to threshold gates in the 
limit, and it is well known that Boolean functions can be constructed from one or more threshold gates 
(Hassoun, 1995). So, in the interest of simplicity, our choice is to keep the discrete Boolean model for 
the states of the nodes and the functions implemented at each node.

Random Networks

RBNs are directed random networks. The edges have an orientation because they represent a chemical 
influence from one gene to another, and the graphs are random because any node is as likely to be con-
nected to any other node in an independent manner. There are two main types of RBNs, one in which 
the connections are random but the degree is fixed and a more general one in which only the average 
connectivity is fixed. Random graphs with fixed connectivity degree were a logical generic choice in 
the beginning, since the exact couplings in actual genetic regulatory networks were largely unknown. 
Today it is more open to criticism since it does not correspond to what we know about the topology of 
biological networks. In fact, many biological networks, including genetic regulatory networks, seem to 
be of the scale-free type or of a hierarchical type (Vázquez, Dobrin, Sergi, Eckmann, Oltvai & Barabàsi, 
2004; Albert, 2005; Christensen, Gupta, Maranas, Albert, 2007) but not random, according to present data, 
as far as the output degree distribution is concerned. The degree distribution function p k( )  of a graph rep-
resents the probability that a randomly chosen node has degree k  (Newman, 2003). For directed graphs, 
there are two distributions, one for the outgoing edges p k

out
( )  and another for the incoming edges p k

in
( ) . 

The input degree distributions seem to be close to normal or exponential instead. A scale-free distribu-
tion for the degree means that p k( )  is a power law ( ) :P k k γ− , with g  usually but not always between 2  
and 3 . In contrast, random graphs have a Poisson degree distribution ( ); / !k kp k k e k− , where k  is the 
mean degree, or a delta distribution as in a classical fixed-degree RBN. Thus the low fixed connectivity 
suggested by Kauffman ( : 2K ) for candidate stable systems is not found in such degree-heterogeneous 
networks, where a wide connectivity range is observed instead. The consequences for the dynamics 
may be important, since in scale-free graphs there are many nodes with low degree and a low, but not 
vanishing, number of highly connected nodes (Albert & Barabasi, 2002; Newman, 2003).

The first work that we are aware of using the scale-free topology for Boolean networks dynamics is 
(Oosawa & Savageaui, 2002). Oosawa and Savageau took Escherichia coli as a model for their scale-
free nets with an average input degree k  of two. But, although interesting in this particular case, this is 
too limited as most other known networks or network fragments have higher connectivity levels. What 
is needed are models that span the range of observed connectivities.

Along this line, Aldana then presented a detailed analysis of a model Boolean network with scale-
free topology (Aldana, 2003). He has been able to define a phase space diagram for scale-free boolean 
networks, including the phase transition from ordered to chaotic dynamics, as a function of the power 
law exponent g . He also made exhaustive simulations for several relatively small values of N , the 
network size. In our model we have thus adopted networks with a scale-free output distribution, and a 



434

Generalized Boolean Networks

Poissonian input distribution, as this seems to be at least close to the actual topologies. In section 3 we 
shall give details on the construction of suitable graphs of this type for our simulations.

time evolution

Standard RBN update their state synchronously (SU). This assumption simplifies the analysis, but it is 
open to discussion if the network has to be biologically plausible (Edwards & Glass, 2006). In particular, 
for genetic regulatory networks, this is certainly not the case, as many recent experimental observations 
tend to prove. Rather, genes seem to be expressed in different parts of the network at different times, 
according to a strict sequence (Davidson, 2002). Thus a kind of serial, asynchronous update sequence 
seems to be needed. Asynchronous dynamics must nevertheless be further qualified, since there are 
many ways for serially updating the nodes of the network.

Two types of asynchronous updates are commonly used. In the first, a random permutation of the 
nodes is drawn and the nodes are updated one at a time in that order. At the next update cycle, a fresh 
permutation is drawn and the cycle is repeated. Let us call this policy Random Permutation Update 
(RPU). In a second often used policy, the next cell to be updated is chosen at random with uniform 
probability and with replacement. This is a good approximation of a continuous-time Poisson process, 
and it will be called Uniform Update (UU).

Several researchers have investigated the effect of asynchronous updating on classical RBN dynam-
ics in recent years (Harvey & Bossomaier, 1997; Mesot & Teuscher, 2003; Gershenson, 2004). Harvey 
and Bossomayer studied the effect of random asynchronous updating on some statistical properties of 
network ensembles, such as cycle length and number of cycles, using both RPU and UU (Harvey & 
Bossomaier, 1997). They found that many features that arise in synchronous RBN do not exist, or are 
different in non-deterministic asynchronous RBN. Thus, while point attractors do persist, there are no 
true cyclic attractors, only so-called loose ones and states can be in more than one basin of attraction. 
Also, the average number of attractors is very different from the synchronous case: even for K = 2  or 
K = 3 , which are the values that characterize systems at the edge of chaos, there is no correspondence 
between the two dynamics.

Mesot and Teuscher studied the critical behavior of asynchronous RBN and concluded that they do not 
have a critical connectivity value analogous to synchronous RBN and they behave, in general, very dif-
ferently from the latter, thus confirming in another way the findings of (Harvey & Bossomaier, 1997).

Gershenson (2004) extended the analysis and simulation of asynchronous RBN by introducing ad-
ditional update policies in which specific groups of nodes are updated deterministically. He found that 
all types of networks have the same point attractors but other properties, such as the size of the attractor 
basins and the cyclic attractors do change.

Considering the above reults and what is known experimentally about the timing of events in genetic 
networks we conclude, along with with Mesot & Teuscher (2003), that neither fully synchronous nor 
completely random asynchronous network dynamics are suitable models. Synchronous update is im-
plausible because events do not happen all at once, while completely random dynamics does not agree 
with experimental data on gene activation sequences and the model does not show stable cyclic attractors 
of the right size. For this reason, in the following section 3 we propose a new quasi-synchronous node 
update scheme, which we believe is closer to reality.
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SeMi-SynchronouS generaliZed boolean networkS

In this section we first present the methodology for constructing our model networks, and then we de-
scribe our new method for updating the nodes’ states.

construction of Model networks

As said above, Kauffman’s RBN are directed graphs. Let’s suppose that each node i  (i NÎ {1, , } ) receives 
k

i
in  inputs and projects a link to other k

i
out  nodes, i.e. there are k

i
out  nodes in the graph that receive an 

input from node i . Among the N  nodes of the graph, the distribution p k
in
( )  of the input connections 

is not necessarily the same of the distribution of the output connections p k
out

( ) . In fact, and as antici-
pated in the preceding section, according to present data many biological networks, including genetic 
regulatory networks, suggest a scale-free output distribution and a Poissonian or exponential input 
distribution (Vázquez, Dobrin, Sergi, Eckmann, Oltvai & Barabàsi, 2004; Albert, 2005; Christensen, 
Gupta, Maranas, Albert, 2007). Whether p k

in
( )  is Poissonian or exponential is almost immaterial for 

both distributions have a tail that decays quickly, although the Poissonian distribution does so even faster 
than the exponential, and thus both have a clear scale for the degree. On the other hand, p k

out
( )  is very 

different, with a fat tail to the right, meaning that there are some nodes in the network that influence 
many other nodes.

With the intention of following as close as possible the most current hypotesis on the topic of biologi-
cal networks topologies, we are using networks that follow a scale-free (power-law) output distribution 
and a Poisson input distribution, see Figure 1. We will compare experimental results of our model with 
those of Boolean Networks on random toplogies. Our method for generating directed graphs following 
these degree distributions is a variant of the so-called configuration model (Newman, 2003). We call it 
the Modified Configuration Model (MCM) (Tomassini, Giacobini & Darabos, 2007).

First, we must set a few constraints in order to be able to construct connected networks and compare 
their behavior with that of random topologies:

Figure 1. (a) Poisson input and (b) power-law output degrees cumulated distributions of generated 
networks of size N = 200  and g = 2.0 , g = 2.5  and, g = 3.0 , obtained using the Modified Con-
figuration Model for k = 4 . Distributions are discrete and finite; the continuous lines are just a guide 
for the eye.
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the number of vertices • N  in a network is fixed and constant;
in the case of a power-law distribution, the exponent • g  is predefined in order to have the Boolean 
Network in a specific regime (order, chaos or edge of chaos);
the average input degree has to match exactly the average output degree so that each egde has a • 
source and a target vertex. Therefore, we actually fix the average degrees of the distributions. In 
our case k k

in out
= = 4 ;

the minimum and maximum input and output degree of each node is fixed. In our case • 
k k

min
in

min
out= = 1  and k k

max
in

max
out= = 50 .

Knowing the desired average degrees k  and network size N , we can compute the number of edges 
E  in the netwok as E k N= × . In addition, the output degree distribution must follow the power-law 
function:

f k a k b( ) = × +-g  

and the output distribution must follow the Poisson function

g k c
k e

k

k k

( ) =
!

×
× -

 

for all k k k
min max

Î { , } . The constants a , b , and c  are to be defined so that the distributions satisfy all 
constraints specified above. In this case, we exhaustively enumerate all possible combinations of a  (where 
a > 0  and a k b N× +-g < ), b Î [0,1]  and c  (where c > 0  and g k N( ) < ) until the degree distribu-
tions comply with the desired network size, average in coming and out going degrees and, minimal and 
maximal individual vertex degree. Figure 1 shows a few examples of power-law output distributions 
and the corresponding Poisson input distribution obtained in this way.

Once the desired input and output distributions are defined, we have to generate the network by con-
necting the vertices. Again, we defined a set of constraints:

the input and output degree distributions are fixed, therefore, so is each node’s input and output • 
degree;
multiple egdes where source and target vertices are the same are not allowed;• 

Where the first constraint is fairly straightforward and easy to satisfy, the second one may pose a 
problem, especially towards the end of the connection process. If one draws pairs at random, it will be 
increasingly difficult to find suitable couples as the process of connecting the nodes advances and more 
and more have reached their desired input and output connectivity. In fact, chances are that one gets 
stuck in the process with only unsuitable pairs, implying a fastidious rewiring task. We have come up 
with a scheme to tackle this problem and minimize the chances of having identical connections at the 
end of the process, thus rewiring. This algorithm works as follows:

1.  we assign to each vertex v
i
 an input degree k

i
in  and an output degree ki

out  according to the net-
work’s input, respectively output, degree distributions;
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2.  we built two lists of vertices, one for source nodes l
out

 and one for target nodes l
in

, where each 
vertex will appear k

i
in  times in l

in
 and ki

out  times in lout . The size L  of both lists will be the same 
and L N k= × ;

3.  we shuffle each list separately;
4.  we try to connect elements of lin  to the corresponding element in l

out
 pairwise, starting at the top 

of the lists and working our way down the lists. If we hit a conflicting pair (both elements are the 
same vertex or the elements are already connected):
(a)  we shuffle separately both sublists going from the current position to the bottom;
(b)  if the conflict persists, we go back to (a). If the number of vertices to pair is down to one or 

if the conflict persists for more than a few tries, we disconnect all pairs and go back to (2);

This algorithm ensures that all the constraints are respected and is especially well suited to scale-
free networks, where the output degree distribution guarantees that a vast majority of the vertices will 
only appear kmin

out  times in the lout  list, thus limiting the probability of reaching a state where we have 
to restart the algorithm.

discrete timing of events

As we have seen above, in genetic regulatory networks, the expression of a gene depends on some tran-
scription factors, whose synthesis does not appear to be neither fully synchronous nor instantaneous. 
Moreover, in some cases like the gene regulatory network controlling embryonic specification in the sea 
urchin (Davidson, 2002; Olivieri & Davidson, 2004), the presence of an activation sequence of genes 
can be clearly seen. We concluded that neither fully synchronous nor completely random asynchronous 
network dynamics are suitable models. In our opinion, the activation/update sequence in a RBN should 
be in some way related to the topology of the network.

In (Giacobini, Tomassini, De Los Rios & Pestelacci, 2006) we have proposed a topology-driven 
semi-synchronous update method, called Cascade Update (CU). Although not a faithful model for true 
biological gene activation sequences, we do believe that our proposed scheme is closer to biological 
reality than the previously proposed ones: fully synchronous (SU) and various asynchronous policies. 
Preliminary investigations on the behavior of this semi-synchronous update were encouraging but full 
analysis of its dynamics showed CU to act equivalently to the fully synchronous update scheme. In fact, 
after only a few time steps virtually all the nodes had to be updated at each time step, thus making the 
system essentially fully synchronous.

Aiming at remaining as faithful as possible to biologically plausible timing of events, we considered 
the influence of one node on another as active biological activating or repressing factors: only when the 
state of the node is turned or stays on has this node an effect on the subsequent nodes in the cascade. 
In contrary, nodes changing their state to or remaining off have no impact on nodes they are linked to, 
thus breaking the cascade. In other words, only the activation of an activator or a repressor will have a 
repercussion on the list of nodes to be updated at the next time-step. We have called this update scheme 
the Activated Cascade Update (ACU) (Darabos, Giacobini & Tomassini, 2007).

As a consequence of this semi-asynchronous update, the definition of point or cyclic attractors changes 
slightly, because the state of a network at any give time t  is, from now on, not only determined by the 
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individual state s on off
i
t Î { , }  of each node but also by the list of nodes to be updated at the next time 

step lt+1 . The concept of loose attractor has, in this context, no relevance. An interesting phenomenon 
is the emergence of a new type of attractors periodic attractors that cycle through all the right network 
configurations in the right order, but have nevertheless slightly different lists l

t+1
. This possible as the 

fact that a node is updated does not automatically mean a change in its state at the next time step, thus 
no further change in the cascade. We call these configuration cyclic attractors (CCA) in contrast regular 
cyclic attractors as defined above.

Methodology and Simulations

Using the MCM model described in Section 3.1 we produce networks having a scale-free distribution of 
the output degrees and a Poisson distribution of the input degrees. In this work we investigate the effect of 
the new ACU update scheme presented in Section 3.2 vs. the previous SU for a set of g  exponents of the 
scale-free distribution g Î {2.0,2.5, 3.0} . In an effort to probe the network scaling properties, we have 
simulated ensembles of graphs with N Î {100,150,200} , all with a connectivity of k = 4 . The results 
will be compared to classical RBN. Networks of all three sizes above are evolved and, in order to ex-
plore their behavior in three different regimes, we propose to vary k Î {1.5,2.0,2.5} , thus keeping the 
probability p  of the node update functions to p = 0.5 .

For any given network produced, an update function is attributed to each node, consisting of a ran-
domly initialized lookup table, the entries of which are determined by the input degree of that particular 

Figure 2. A possible activated cascade update sequence. At time t = 0  a node N 0  is chosen at random 
and updated according to it inputs, if the new state of N

0
 is inactive, another starting node N 0  is chosen 

at random. At time t = 1  all the node receiving an input from N 0  are updated according to their own 
inputs, those becoming or remaining active (state on) decide which node will be updated at the next time 
step. The cascade continues according to this scheme.



439

Generalized Boolean Networks

node. Subsequently, we fix an initial configuration (IC), which is a set of initial boolean values chosen 
at random with probability p = 0.5 , for each node of the network. Then, we let the system stabilize 
over a number of initial steps depending on the size N  of the network (10’000 for N = 100 , 20’000 
for N = 150 , and 30’000 for N = 200 ). During these preliminary steps the chosen update scheme 
determines the next nodes to be updated. This allows the system to evolve and maybe reach the basin 
of an attractor. Should the cascade stop because there is no node to be updated, another initial node is 
selected at random and the process is restarted with the same realization. After this transient period, we 
determine over another 1’000 time steps if the system has reached an attractor. If so, we define the length 
of that attractor as the minimum number of steps necessary to cycle through the attractor’s configura-
tion. This is repeated 20 times, each of them with a new set of update rules for each node. A particular 
topology, together with a given set of node functions, is called a realization. Each realization is exposed 
to 500 ICs. In order to be thorough, we study 50 different networks (i.e. 1’000 realizations) both random 
graph and scale-free topologies, each using the two update schemes.

analysis of the results

For the ensemble of these evolution we monitored the probability p m( )  for a network realization to have 
exactly m  different attractors, and the probability p l( )  of an attractor to contain l  different states.

Number of Attractors

During the simulations, we have analyzed for each IC of each realization whether the system has relaxed 
to a single state (point attractor) or cycled through the configurations of a periodic attractor. Biologically 
speaking, a point attractor has a very limited significance, because it would either mean that the system 
vegetates with no chance of evolving or adapting, and ultimately the death of the system, or identify 
the end of the differentiation cycle of a stem cell. Therefore, in Table 1 we show the total number of 
attractors found. We only consider attractors of length between 1 and 50 states.

Table 1. Number of attractors for synchronous (SU) and semi-synchronous (ACU) update schemes. 
Results are shown for scale-free GBN (SFBN) with all values of g  and for classical RBN for all values 
of k , for all values of N

N = 100 N = 150 N = 200
SU ACU SU ACU SU ACU

SFBN g = 2.0 8 126 0 2 0 0

g = 2.5 27 379 0 3 0 0

g = 3.0 32 315 2 9 0 0

RBN
k = 1.5

8’523 499’983 12’628 499’994 13’478 499’985

k = 2.0
7’086 497’763 7’193 499’933 6’200 499’878

k = 2.5
1’009 352’449 229 431’182 72 462’932
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We note that the number of attractors found with the ACU is greater than those found with SU. But 
in the case of SFBN, the table also shows there is a significant drop in the number of attractors in scale-
free networks as N  grows, and virtually no attractors at all for values of N = 150  and N = 200 . In 
the case of ACU, we see that the systems still find a few attractors in cases where SU struggles.

In the case of classical RBNs, we observe that the number of attractors does not seem to be impacted 
by the scaling, and their number remains several orders of magnitude above that of scale-free structures. 
It fact, their number increases as N  grows, and using ACU almost every IC of every realization leads 
to an attractor. On the contrary, under synchronous updating the overall number of attractors decreases 
drastically as the system is going from less to more chaotic.

As for the type of attractors found in the case of semi-synchronous update, over 90% are regular 
cyclic attractors for scale-free structures and over 80% for random topologies.

Table 2 shows detailed experimental results for networks with N = 100 , the class of networks that 
offers most diversity in attractors. Here, we see the number of point attractors found with SFBN seems 

Table 2. Number of point attractors / cyclic attractors for synchronous (SU) and semi-synchronous (ACU) 
update schemes for networks with N = 100  nodes. Results are shown for scale-free GBN (SFBN) with 
all values of g  and for classical RBN for all values of k , for N = 100 . The average usage columns 
show how many times, in average, each attractor has been found. 

Number of attractors Average occurrence

SU ACU SU ACU

SFBN g = 2.0 0/8 105/21 1.12 1.36

g = 2.5 9/18 340/39 3.66 1.79

g = 3.0 4/28 266/50 6.875 3.212

RBN
k = 1.5

795/7728 498297/1686 57.0406 1.00

k = 2.0
376/6710 451451/46312 46.9009 1.0043

k = 2.5
108/901 254261/98188 50.4896 1.347

Figure 3. Scale-free boolean networks. Fraction of realizations having a given number of attractors with 
(a) g = 2.0  and (b) g = 3.0  for N = 100
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to decrease, and it is the opposite with longer attractors. We also note that the number of occurrences 
of all attractors found in SFBNs increases slightly as the g  factor increases, but remains very low for 
both updates. Whereas this is also true for RBNs under ACU, it is not the case when the update is syn-
chronous, where each attractor is found in average about 50 times.

Figures 4 and 5 compare the distribution of the number of attractors as a fraction of the different 
network realization respectively for scale-free networks and random networks of size N = 100 .

Figure 3 compares the distribution of the number of attractors for the two extreme values of g  and 
the two different update mechanisms. There is a striking difference between the distribution using SU 
and ACU. In the synchronous case, most realizations have no attractors at all, whereas in the semi-
synchronous case, the repartition is more even, with no realization having no attractor at all for g = 2.0  
and about 20% for g = 3.0 .

Figure 4. Classical random boolean networks. Fraction of realizations having a given number of at-
tractors using (a) SU and (b) ACU for N = 100

Figure 5. Scale-free boolean networks. Number of attractors found having a given length (between 1 
and 50) with (a) g = 2.5  for (b) g = 3.0  for N = 100 . For ACU, over 90% of the attractors found 
are point attractors (not plotted here for readability reasons).
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Figure 4 shows the attractors’ number distribution on random topologies. Each figure contains all 
different values of k , thus systems in different regimes, and (a) depicts the results for SU and (b) for 
ACU. Again, the contrast between the two update schemes is dramatic. Synchronous update leads to 
much less attractors than semi-synchronous ones, between 0 and 600 for SU and between 5’500 and 
10’000 for ACU. In addition, we witness a segregation in the distribution of networks in different re-
gimes. Systems in the chaotic regime tend to have in general fewer attractors than networks in the ordered 
regime or on the so called “edge of chaos”, a well known phenomenon (Kauffmann, 1993). This cut is 
not as clear in the case of SFBNs.

Attractors Length

We have also computed the average length of cycles for attractor sizes 2 to 50. Considering their prominent 
number, we have omitted point attractor that artificially lower that average. Table 3 depicts the different 
average length of the attractors for the same network realizations shown in the previous section. We see 
that, although the number of cyclic attractors between the distinct cases sometimes differs by several 
orders of magnitude, the average attractors length within a network kind through the different regimes, 
though constantly higher for SU.

When comparing SFBNs and classical RBNs at different regimes, we note that the average length 
of the attractors obtained on scale-free structures is roughly twice as long as those derived from random 
topologies. This is astonishing when we compare the number of attractors found. Therefore, Figures 7 
and 8 show the distribution of attractors for lengths from 1 to 50, over all the attractors. For readability 
reasons, we have limited the view of the number of attractors to 20 in the case of SFBNs, where the 
number of point attractors reaches a few hundreds and to 1500 for RBNs, where there are several thou-
sands of single configuration attractor.

By looking at Figure 5 we note that the numer of attractors longer than 1 is greater when ACU is 
used, especially below length of 10. In addition, the number of attractors degreases with their length, 
this phenomenon is not as apparent with random structures in Figure 6, although, more so with ACU.

Table 3. Average length of cyclic attractors for synchronous (SU) and semi-synchronous (ACU) update 
schemes and their standard deviation in subscript. Results are shown for scale-free GBN (SFBN) with 
all values of g  and for classical RBN with all values of k , for all values of N . 

N = 100 N = 150 N = 200
SU ACU SU ACU SU ACU

SFBN g = 2.0 23.87
12.10

11.90
15.45

- - - -

g = 2.5 28.66
16.80

12.46
12.48

-
4

0

- -

g = 3.0 23.14
14.65

15.64
14.961

- - - -

RBN
k = 1.5 13.76

9.85
4.48

1.05
16.65

12.99
4.15

0.93
17.21

12.69
4.20

0.87

k = 2.0 13.23
10.25

5.96
4.35

14.93
10.98

6.06
4.36

16.73
11.39

5.96
4.31

k = 2.5 14.36
12.17

9.58
8.95

12.29
10.96

9.97
9.01

12.68
9.42

9.94
9.04
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In all cases, we notice unexpected increase in value for attractors of even-length attractors. We can 
imagine that this is due to the binary nature of our networks. In the case of a point attractor, no node 
changes and there is thus a unique state. If we have 2 states, that could be explained by one node flip-
ping from on to off and back at each time step. Similarly, 4 states would mean 2 nodes are flipping, and 
so on.

fault tolerance of randoM boolean networkS

Failures in systems can occur in various ways, and the probability of some kind of error increases dramati-
cally with the complexity of the systems. They can range from a one-time wrong output to a complete 
breakdown and can be system-related or due to external factors. Living organisms are robust to a great 
variety of genetic changes, and since RBN are simple models of the dynamics of biological interactions, 
it is interesting and legitimate to ask questions about their fault tolerance aspects.

Kauffman defines a one type of perturbation to RBN as “gene damage’’ (Kauffman, 2000), that is the 
transient reversal of a single gene in the network. These temporary changes in the expression of a gene 
are extremely common in the normal development of an organisme. The effect of a single hormone can 
transiently modify the activity of a gene, resulting in a growing cascade of alternations in the expression 
of genes influencing each other. This is believed to be at the origine of the cell differentiation process 
and guides the development.

The effect of a gene damage can be measured by the size of the avalanche resulting from that single 
gene changing its behavior from active to inactive or vice-versa. The size of an avalanche is defined as 
the number of genes that have changed their own behavior at least once after the perturbation happened. 
Naturally, this change of behavior is compared to an unperturbed version of the system that would be 

Figure 6. Random boolean networks. Number of attractors found having a given length (between 1 and 
50) with (a) k = 1.5  for (b) k = 2.0  for N = 100 . For ACU, over 90% of the attractors found are 
point attractors (not plotted here for readability reasons).
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running in parallel. The size of the avalanche is directly related to the regime in which the RBN is; in 
the ordered regime, the cascades tend to be significantly smaller than in the chaotic regime. In real cells, 
where the regime is believed to lie on the edge of chaos, the cascades tend to be small too. Moreover, 
the distribution of the avalanche sizes in the ordered regime follows a power law curve (Kauffman, 
2000), with many small and few large avalanches. In the chaotic regime, in addition to the power law 
distribution, 30-50 precent of the avalanches are huge. The distribution of avalanches size of RBNs in 
the ordered regime roughly fits the expectations of biologists, where most of the genes, if perturbed, are 
only capable of initiating a very small avalanche, if any. Fewer genes could cause bigger cascades, and 
only a handful can unleash massive ones.

Another measurement of the effect of transient gene reversal, is to compare the change in the con-
figuration of the RBN between two consecutive time steps on an unperturbed system and on one where 
a single gene has been perturbed. The difference between two consecutive states st  and s

t+1
 of the 

system is measured in therms of Hamming distance, that is the number of genes that have changed their 
expression between st  and st+1 , normalized over the network size.

Naturally, one can imagine more sophisticated failure schemes on models of genetic regulatory net-
works such as RBN. These failures are usually inspired by real biological experiments conducted on real 
organismes. For example the gene knock-out experiments measures the expression level of all genes, 
in cells wich a knock-out gene and in normal cells, using cDNA microarray data. In (Serra, Villani & 
Semeria, 2004; Serra, Villani, Graudenzi & Kauffman, 2007), Serra used this type of failure on RBNs 
to predict the size of real avalanches on microarray data. He showed that a very simple model with few 
inputs and random topologies can approximate the distribution of perturbation in gene expression levels 
with respect to microarray data. Moreover, he present a theoretical study showing that this simple model 
is actually valid in a particular type of network topologies.

Another notable perturbation inspired by real biological regulatory networks applied to RBNs is the 
gene duplication phenomenon suggested in (Aldana, Balleza, Kauffman & Resendiz, 2006). Aldana stud-
ies the robustness of genetic regulatory networks using RBNs and explore their behavior when exposed 
to nature-inspired genetic perturbations: gene duplications. He shows that an intrinsic property of such 
networks is to tend to preserve and multiply previous phenotypes, encoded in the attractor landscape 
of the network.

This section only offers a flavor of a vast aspect of the study of GBNs. The influence of spatial and 
temporal choices on the robustness of GBNs deserves a whole chapter of its own. We encourage readers 
interested in this matter to consider specialized literature.

to Make a long Story Short

Random Boolean Networks (RBN) have been introduced by Kauffman as a highly simplified model of 
genetic regulatory networks (Kauffmann, 1993). This extremely simple and abstract model has been 
studied in detail by analysis and by computer simulations of statistical ensembles of networks and it has 
been shown to be capable of extremely interesting dynamical behavior. First of all, it has been found that, 
as some parameters are varied such as the network’s connectivity K , or the probability p  of expressing 
a gene, i.e. of switching on the corresponding node’s state, the RBN can go through a phase transition. 
Indeed, for every value of p , there is a critical value of connectivity K p

c
( )  such that for values of K  
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below this critical value the system is in the ordered regime, while for values of K  above this limit the 
system is said to be in the chaotic regime. Kauffman’s suggestion is that cell types correspond to at-
tractors in the RBN phase space, and only those attractors that are short and stable under perturbations 
will be of biological interest. Thus, according to Kauffman, RBN lying at the edge between the ordered 
phase and the chaotic phase can be seen as abstract models of genetic regulatory networks.

The original view of Kauffman, namely that these models may be useful for understanding real-life 
cell regulatory networks, is still valid, provided that the model is updated to take into account present 
knowledge about the topology of real gene regulatory networks, and the timing of events, without loos-
ing its attractive simplicity.

From the structural and topological point of view, random networks with fixed connectivity degree 
K  were a logical generic choice in the beginning, since the exact couplings in networks were gener-
ally unknown. Today it is more open to criticism since it does not correspond to what we know about 
the topology of biological networks. According to present data, many biological networks, including 
genetic regulatory networks, seem, in fact, to be of the scale-free type or hierarchical and not random as 
suggested, among others, by Albert and coworkers (Albert, 2005; Christensen, Gupta, Maranas, Albert, 
2007). In addition, Aldana has analyzed of Boolean networks with scale-free topology. He has been able 
to define a phase space diagram for Boolean networks, including the phase transition from ordered to 
chaotic dynamics, as a function of the power law exponent.

From the point of view of the timing of events, standard RBN update their state synchronously. This 
assumption simplifies the analysis, but it is open to discussion when dealing with biologically plausible 
networks. In particular, for genetic regulatory networks, this is certainly not the case, as many recent 
experimental observations tend to prove. Rather, genes seem to be expressed in different parts of the 
network at different times, according to a strict sequence which depends on the particular network under 
study. The expression of a gene depends on several transcription factors, the synthesis of which appear 
to be neither fully synchronous nor instantaneous. Moreover, in some cases like the gene regulatory 
network controlling embryonic specification in the sea urchin, we can clearly see the presence of an 
activation sequence of genes.

In view of the above shortcomings of RBN as an abstract description of genetic regulatory networks 
we conclude that neither fully synchronous nor completely random asynchronous network dynamics 
are suitable models. Therefore, we have recently proposed a new, more biologically plausible model. 
It assumes a scale-free topology of the networks and we define a suitable semi-synchronous dynamics 
that better captures the presence of an activation sequence of genes linked to the topological properties 
of the network.

By computer simulations of statistical ensembles of networks, we have monitored the probability 
p m( )  for a network realization to have exactly m  different attractors, and the probability p l( )  of an 
attractor to contain l  different states. We noted that the number of attractors found with the ACU is 
greater than those found with SU. But in the case of SFBN, there is a significant drop in the number of 
attractors in scale-free networks as the number of nodes N  grows. In the case of classical RBNs, we 
observe that the number of attractors does not seem to be impacted by the scaling, and their number 
remains several orders of magnitude above that of scale-free structures.

We have also computed the average length of cycles for attractor sizes 2 to 50. We see that, although 
the number of cyclic attractors between the distinct cases sometimes differs by several orders of magni-
tude, the average attractors length within a network kind through the different regimes, though constantly 
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higher for SU. When comparing SFBNs and classical RBNs at different regimes, we note that the average 
length of the attractors obtained on scale-free structures is roughly twice as long as those derived from 
random topologies. This is astonishing when we compare the number of attractors found.

From a biological point of view, RBNs in general and their subsequent evolutions, help understanding 
the dynamics of the complex biological systems, such as GRNs. Moreover, without giving up their attrac-
tive simplicity, Boolean Network model refinements in any aspect, spacial with new network topologies, 
temporal with more realistic update sequencing schemes or other, can be used in reverse engineering 
modeling techniques to unveil new interactions among components of biological regulatory networks.
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There exist many heterogeneous data sources that are closely related to gene regulatory networks. These 
data sources provide rich information for depicting complex biological processes at different levels and 
from different aspects. Here, we introduce a linear programming framework to infer the gene regulatory 
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tiple time-course expression datasets, ChIP-chip data, regulatory motif-binding patterns, protein-protein 
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introduction

Cells efficiently carry out molecular synthesis, energy transduction, and signal processing across a 
range of environmental conditions by gene networks, which we define broadly as networks of interact-
ing genes, proteins, and metabolites. Microarray technologies enable the simultaneous measurement 
of all RNA transcripts in a cell, producing tremendous amounts of gene expression data from different 
research groups. For instance, the Stanford Microarray Database (SMD) has deposited data for 70,113 
experiments, from 341 labs and 56 organisms, as of 2007 (Demeter et al., 2007). Thus there is a press-
ing need for the development of sophisticated algorithms for reverse-engineering gene networks. So 
far, many computational algorithms have been developed to analyze gene expression profiles to detect 
dependencies among genes over different conditions.

Generally speaking, there are two strategies for studying the relationships among genes. The “physi-
cal (direct) interaction” approach seeks to identify true physical interactions between regulatory proteins 
and their binding promoters to reconstruct the so-called transcriptional regulatory network (R. S. Wang, 
Wang, Zhang, & Chen, 2007). The second strategy, the “genetic (indirect) interaction” approach seeks 
to identify regulatory influences between RNA transcripts to reconstruct the so-called gene regulatory 
network (Y. Wang, Joshi, Zhang, Xu, & Chen, 2006). Thus, in general, the regulator transcripts may 
exert their effects indirectly through the action of proteins, non-coding RNA, metabolites, and the cell 
environmental factors. An advantage of the influence strategy is that the model can implicitly capture 
regulatory mechanisms at the protein and metabolite level that are not physically measured (Gardner & 
Faith, 2005). In this study we focus on the inference problem for gene regulatory networks. The detailed 
descriptions on the first strategy, i.e. inferring transcriptional regulatory networks, can be found in (R. 
S. Wang et al., 2007).

So far, a wide variety of approaches have been proposed to infer gene regulatory networks from 
time-course data or perturbation experiments (De Hoon, Imoto, Kobayashi, Ogasawara, & Miyano, 
2003; Dewey & Galas, 2001; Friedman, 2004; Gardner, di Bernardo, Lorenz, & Collins, 2003; Holter, 
Maritan, Cieplak, Fedoroff, & Banavar, 2001; Husmeier, 2003; Nachman, Regev, & Friedman, 2004; 
Tegner, Yeung, Hasty, & Collins, 2003). These approaches include discrete models of Boolean networks 
and Bayesian networks, and continuous models of neural networks and difference/differential equations. 
A common challenge for all these models is the scarcity of the data, since a typical gene expression 
dataset consists of relatively few time points (often less than 20) with respect to a large number of genes 
(generally over thousands). In other words, the number of genes far exceeds the number of time points 
for which data are available, making the problem of determining gene regulatory network structure a 
difficult and ill-posed one (D’Haeseleer, Liang, & Somogyi, 2000).

On the other hand, there are many heterogeneous data sources closely related to gene regulatory 
networks. These data sources provide rich information for depicting complex biological processes in 
cellular systems at different levels and from different aspects. It is necessary and important to understand 
gene expression and regulation through mining these data sources. Currently high-throughput microar-

interaction data, protein-small molecule interaction data, and documented regulatory relationships in 
literature and databases. Results on synthetic and real experimental data both demonstrate that the linear 
programming framework allows us to recover gene regulations in a more robust and reliable manner.
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ray technologies have produced tremendous amounts of gene expression data from different labs. At the 
same time, a large amount of protein-based data exist such as ChIP-chip, protein-protein interaction, 
and protein-small molecule interaction, which can also provide valuable information. Even though each 
experiment provides only limited information, these data are increasingly accumulated over many spe-
cies and can be freely accessed from public databases and individual websites. It is therefore valuable 
and challenging to integrate gene expression data with other protein-based data generated by different 
research groups. If such large amounts of data from different experiments or conditions are combined 
and further exploited in an integrative and systematic manner, the scarcity of data can be greatly allevi-
ated and the more accurate reconstruction of gene regulatory networks can be expected.

To address these challenges, we proposed a novel method to combine multiple time-course microar-
ray datasets from different conditions for inferring gene regulatory networks (Y. Wang, Joshi, Zhang et 
al., 2006). The proposed method, called GNR (Gene Network Reconstruction tool), is based on linear-
programming (LP) and a decomposition procedure. The method ensures the derivation of the network 
structure that is most consistent with all datasets. As a result, the method not only significantly allevi-
ates the problem of data scarcity, but also markedly improves the prediction reliability. We tested GNR 
using both simulated data and experimental data in yeast and Arabidopsis. The result demonstrates the 
effectiveness of GNR in terms of predicting new gene regulatory relationships.

Different experimental technologies measure different aspects of a biological system, typically with 
different systematic biases. For example, current high-throughput assays are usually associated with high 
false-negative and false-positive rates. Thus, microarray data alone have a limited utility in inferring gene 
regulatory networks. From the viewpoint of systems biology, the integration of data from different sources 
provides an effective strategy to deal with this issue by reinforcing consistent and reliable observations 
and removing inconsistent and noisy ones. Moreover, because different experimental technologies pro-
vide different types of insights into a biological system, the integration of multiple data types offers the 
most comprehensive information about a particular cellular process (Hwang et al., 2005). For example, 
gene perturbation experiments (e.g., knockouts or RNA interference) may indicate relationships between 
genes due to direct or indirect genetic interactions. In contrast, chromatin immunoprecipitation chip data 
may reveal direct protein–DNA interactions or cofactor associations with bound transcription factors. 
Combining them together with microarray data provides a much more detailed view of the regulatory 
network than either alone.

In this chapter, we introduce a new computational strategy to infer gene regulatory networks based 
on linear programming. The main advantage of our strategy is to recover gene regulations in a robust 
and reliable manner by including all the available information derived from multiple expression datasets 
at different conditions and time points, motif-occurrence, ChIP-chip data, protein-protein interaction, 
protein-small molecule interaction, published literature and databases, and knockouts or RNA interference 
experiments. Furthermore, we can incorporate external inputs or perturbations such as small molecules 
into the formulation so that molecular targets (genes) can be identified in a systematic way.

The chapter is organized as follows: Firstly, the heterogeneous data sources for deriving gene regula-
tory relationships are briefly summarized. Secondly, we group the existing prior information into hard 
and soft constraints, describe the gene regulatory network by linear differential equations, and introduce 
a linear programming model to integrate data. Thirdly, both synthetic data and real experimental data 
are used to demonstrate the effectiveness and efficiency of our method. Finally, future research direc-
tions are discussed.
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heterogeneouS data SourceS

Organisms use dynamic interactions of hundreds of genes to adapt to changes in the environment. To 
unravel this regulatory complexity, multiple technologies have been developed to detect the dependen-
cies among genes, generating large amounts of heterogeneous data (Joyce & Palsson, 2006). These data 
depict the living cell from different aspects and angles. Here we give a brief summary of the existing 
data sources related to gene regulation relationships and their characteristics.

Multiple time-course expression data

DNA microarray experiments are usually classified based on the type of array used in the experiment 
(cDNA and oligonucleotide arrays) or according to the organism that is profiled. From the viewpoint 
of gene regulatory network modeling, we distinguish between static and time series experiments. In 
static expression experiments, a snapshot of the expression of genes in different samples is measured. 
In time series expression experiments, a temporal process is measured at various time intervals. Another 
important difference between these two types of data is that while static data from a sample population 
(e.g. ovarian cancer patients) are assumed to be independently and identically distributed, time series 
data exhibit a strong autocorrelation between successive points.

Since many biological systems are dynamic systems, temporal profiles of gene expression levels 
during a given biological process can often provide more insights into how gene expression levels 
evolve in time and how genes are dependent among each other during a given biological process. One 
important feature of such time-course gene expression data is the possible dependency of gene expres-
sion levels across time points for a given gene. In addition, as gene expression levels evolve over time, 
time intervals can be an important factor that affects the gene expression levels. Methods which can 
preserve the time sequence and the time dependence of the observed data are needed for analyzing the 
time-course gene expression data.

Due to the limitation of experimental technologies, a typical single time-course gene expression 
dataset consists of relatively few time points (often less than 20). On the other hand, multiple gene ex-
pression data generated by different groups on many species are increasingly available and accessible 
from public databases or websites. By combining and exploiting such large amounts of data from differ-
ent experiments or conditions in an integrative and systematic manner, we can expect a more accurate 
reconstruction of the gene regulatory networks. It is worth mentioning that simply arranging multiple 
time-course datasets into a single expression profile dataset is inappropriate due to data normalization 
issues and lack of temporal relationships among these datasets.

chiP-chip data

Protein-DNA interactome data concerns the interactions between proteins and DNA, particularly be-
tween transcription factors and their target promoters. They fundamentally define the transcriptional 
regulatory network of the cell. The recently developed ChIP-chip methodology involves the chromatin 
immunoprecipitation of an epitope-tagged transcription factor (TF) bound to DNA fragments contain-
ing target promoters, followed by the hybridization of those amplified DNA fragments to an intergenic 
microarray. Currently large amounts of ChIP-chip data in yeast and other organisms are publicly avail-
able. For example, genome-wide location data performed in yeast by (Harbison et al., 2004; Lee et al., 
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2002) contain information regarding the binding of 204 regulators to their respective target genes in rich 
medium, and can be downloaded from their websites (http://web.wi.mit.edu/young/regulatory_code/ and 
http://web.wi.mit.edu/young/regulatory_network/).

ChIP-chip data have the advantage that they provide a direct biochemical link between TFs and pro-
moters and have the potential to identify targets without knowing the activating conditions. From this 
viewpoint, ChIP-chip data are a very important source of information for analyzing direct transcriptional 
regulatory interactions.

regulatory Motif occurrence data

We can also use the genome sequence data to infer regulatory relationships by systematically analyzing 
gene upstream regions in the genome to identify potential regulatory elements (also known as regula-
tory binding motifs). These motifs, often represented as regular expressions, were transformed into the 
corresponding weight matrices. We can then simply count the occurrences of regular expression-type 
patterns with the goal of identifying possible gene regulatory relationships. The weight matrices corre-
sponding to these motifs are subsequently used to screen all intergenic sequences. The higher the score 
of a motif hit in a gene, the more likely it will be a regulatory relationship (Brazma, Jonassen, Vilo, & 
Ukkonen, 1998).

Protein-Protein interaction data

Proteins are the products of gene transcription and translation, and they play important roles in a cell. 
Protein-protein interactions occur in many cellular processes, such as signaling cascades and enzyme-
complex formation. Identifying all functional protein-protein interactions is important for understanding 
the structure and function of the integrated cellular network. Currently, a lot of experimental protein-
protein interaction data are available on the web (http://www.thebiogrid.org/).

Protein-protein interaction data can be roughly classified into two classes: physical and genetic 
interactions. There are many methods for mapping physical and genetic interactions. From BioGRID 
(Breitkreutz et al., 2008), the physical methods include affinity capture MS, two-hybrid, affinity capture 
western, and reconstituted complex, whereas the genetic methods include synthetic lethality, synthetic 
growth defect, epistatic miniarray profile, dosage rescue, and phenotypic enhancement. Here we would 
like to illustrate in detail genetic interaction relationships. For example, synthetic lethality is a genetic 
phenomenon in which two non-lethal mutations yield a lethal phenotype when combined. This phe-
nomenon signifies the existence of genetic interactions between the two affected genes. Hence, genetic 
interactions may overlap with direct physical interactions or indirect logical interactions between genes 
as shown by perturbation experiments (e.g., knockouts or RNA interference).

Protein-Small Molecule interaction data

Small molecules can be used to dissect diverse biological processes, such as cellular metabolism, signal 
transduction and intracellular protein trafficking (Alaoui-Ismaili, Lomedico, & Jindal, 2002). Recently, 
the proliferation of web-based chemical databases has made information about an increasing number 
of compound structures and their biological properties publicly available. Among these databases are 
ChemBank, ZINC, PubChem, ChemDB, ChemMine, ChEBI, and DrugBank. Small molecule and protein 
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binding data are also abundant. For example, the DrugBank database is a unique bioinformatics and 
cheminformatics resource that combines detailed drug data with comprehensive drug target information 
(Wishart et al., 2007). BindingDB currently contains 20,000 experimentally determined protein–ligand 
complexes from the literature and PDB (Liu, Lin, Wen, Jorissen, & Gilson, 2007). Binding MOAD is a 
database of 9,836 protein–ligand crystal structures (Benson et al., 2007). STITCH contains interactions 
for over 68,000 chemicals and over 1.5 million proteins in 373 species (Kuhn, von Mering, Campillos, 
Jensen, & Bork, 2008). These data provide useful information for the interactions between the gene 
regulatory network inside the cell and the environmental factors outside the cell.

literature and database data

More reliable sources for gene regulatory relationships are from the literature and curated databases. 
For example, YEASTRACT (Yeast Search for Transcriptional Regulators And Consensus Tracking) 
is a curated repository of more than 12,500 regulatory associations between transcription factors and 
target genes in Saccharomyces cerevisiae (Teixeira et al., 2006), based on more than 900 bibliographic 
references. The information in YEASTRACT is updated regularly to match the recent literature on 
yeast regulatory networks. Since the regulatory relationships from literature and databases are usually 
generated by small-scale experiments, they are believed to be of high quality compared to large-scale 
experiments.

co-expression relationships from compendium data

In addition to time-course data, the steady state gene expression data are also available in the databases. 
They can be assembled into gene expression profile or compendium data and used to extensively analyze 
the gene co-expression relationship. These microarray profile data are very useful in our derivation of 
gene regulatory network in two ways.

On one hand, gene expression data can be used to find co-expressed gene pairs (which display high 
correlation coefficient or mutual information score amongst different expression experiments). Over the 
past few years, several lines of evidence suggest that co-expressed genes possessing similar expression 
patterns across a set of steady states are likely to encode proteins that participate in the same metabolic 
pathway, form a common structural complex, or might be regulated by the same mechanism (Butte, 
Tamayo, Slonim, Golub, & Kohane, 2000). At the same time, diverse regulatory mechanisms may be 
responsible for the observed co-expression relationships.

On the other hand, gene expression data can be used to pick out the gene pairs which do not possess 
any co-expression relationships. That is to say, we can use large scale co-expression analysis in dif-
ferent conditions to reveal gene pairs which correlate weakly in terms of their expression level across 
various conditions. These identified pairs can be used as non-coregulatory samples approximately in 
our network inference model.

Prior information about the network Structure

In addition to various experimental data sources, we can also incorporate prior information about the 
network structure. For example, from the viewpoint of topology, it is commonly believed that gene 
regulatory network is sparse in nature, i. e. each gene is only genetically affected by a limited number 
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of genes (Gardner et al., 2003; Yeung, Tegner, & Collins, 2002). Furthermore, some people argue that 
the gene regulatory network possesses common properties of complex networks such as small world 
and scale free (Gustafsson, Hornquist, & Lombardi, 2005). It is straightforward to incorporate this 
prior information into our inference model. The main idea here is to make the gene regulatory network 
sparse so that it is biologically plausible. Such a strategy has been widely used (Gustafsson et al., 2005; 
Y. Wang, Joshi, Xu, Zhang, & Chen, 2006; Y. Wang, Joshi, Zhang et al., 2006; Yeung et al., 2002). For 
instance, a heuristic manipulation of sparseness is used in the procedure of the network reconstruction 
by computational analysis on a series of time points (Gardner et al., 2003; Yeung et al., 2002). A sparse 
scheme is performed by specifying the average number of connections for every gene in (Gardner et 
al., 2003). Another strategy is to use additional information from the microarray analysis and from the 
published literature to reduce the size of the problem and increase the reliability of the results (Nariai, 
Tamada, Imoto, & Miyano, 2005).

linear PrograMMing fraMework for data integration

Figure 1 illustrates the scheme of our proposed method. The time-course datasets of microarray experi-
ments from different conditions or perturbations are collected. A gene regulatory network is described 
by ordinary differential equations (ODE). To infer the relationships between genes, the co-expression 
relations from time-course datasets and previously known regulations from the heterogeneous sources are 
collected as prior information, which are converted to hard and soft constraints respectively. In the end, 
the most consistent gene regulatory network is obtained with a linear programming-based algorithm.

Figure 1. The graphic depiction of the strategy to integrate heterogeneous data using a linear program-
ming framework
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linear differential equations for gene regulatory network

In general, a genetic network can be expressed by a set of nonlinear differential equations. Almost all of 
the existing approaches for gene regulatory network inference use linear or additive models, primarily 
due to the complex structures of biological systems and the scarcity of data (R. S. Wang et al., 2007; 
Y. Wang, Joshi, Xu et al., 2006; Y. Wang, Joshi, Zhang et al., 2006). Furthermore, linear equations can 
capture the main features of the network near the steady state, and can provide a good starting point for 
further modeling and analysis.

A common experimental technique for elucidating genetic network architecture is microarray measure-
ments after different perturbations to the cell. An external perturbation means an experimental treatment 
that can alter the transcription rate of the genes in the cell. An example of perturbation is the alteration 
of the environment, treatment of the cell with a chemical compound, or genetic perturbation involving 
over- or under-expression of particular genes. Recent developments in large-scale genomic technologies 
enable researchers to measure gene expression profiles at multiple time points following perturbation of 
the genes of interest. We will extend the linear differential equation model to reconstruct gene regula-
tory networks and identify compound targets by considering the external perturbations outlined in this 
chapter. The model is based on relating the changes of gene transcript concentrations to each other and 
to the external perturbations.

Assume that there are N microarray datasets X1, X2 …, XN with m1, m2, …, mN time points respectively 
for one organism. These time-course datasets may be measured under various environments or stimuli 
by different labs. Let us first consider one time-course dataset with m time points. A linear differential 
equation can be used to represent the rate of synthesis of a transcript as a function of the concentrations 
of other transcripts in a cell and the external perturbations:

dx t
dt

Jx t Pc t t t t t
m

( )
( ) ( ), , , ...,= + =           

1 2
       (1)

where x(t) =(x1(t), …, xn(t)) 
T∈R n, xi(t) is the expression level (mRNA concentrations) of gene i at time 

point t. J=(Jij)n×n is an n×n connectivity matrix with elements Jij representing the effect of gene j on gene i 
with a positive, zero, or negative sign, indicating activation, no interaction, and repression, respectively. 
P=(Pij)n×s is an n×s matrix representing the effect of the s perturbations or s small molecules on x, and 
c(t)∈Rs represents the external perturbations with s compounds at time t (In principle, the external per-
turbation can be of virtually any type. For example, an external environmental factor, a small molecule, 
an enzyme, a microRNA, or a post-translationally modified protein). A non-zero element Pij of P implies 
that the i-th gene is a direct target of the j-th perturbation or compound. Identifying P is an important 
first step towards biological function discovery of small molecules and drug design.

We can rewrite Equation (1) in a compact form for all time points of one dataset by matrix nota-
tion:

d
dt

J P
X

X C= +         (2)

where X=(x(t1),...,x(tm)) and dX/dt=(dx(t1)/dt,...,dx(tm)/dt) are n×n matrices with the first derivative of 
mRNA concentration dxi(tj)/dt=[xi(tj+1)-xi(tj)]/[tj+1-tj] for i=1,...,n; j=1,...,m. Although the forward differ-
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ence approximation here is utilized for numerical computation of dx/dt, backward or other difference 
approximation methods can be applied similarly. Suppose that there are s external perturbation com-
pounds, then C=(c(t1),...,c(tm)) is an s×m matrix representing the s perturbations. The unknowns to be 
calculated are connectivity matrix J and P.

Equation (2) can be reformulated as:

d
dt

J P
X X
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We then apply Singular Value Decomposition (SVD) to [XTCT]:
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where U is a unitary m×(n+s) matrix of left eigenvectors, S=diag(s1, …, sn+s) is a diagonal (n+s)×(n+s) 
matrix containing the (n+s) eigenvalues, and VT is the transpose of a unitary (n+s)×(n+s) matrix of right 
eigenvectors. We can then obtain a specific solution of each dataset with the smallest L2 norm for the 
Jacobian matrices J and P:

[ , ]J P
dX
dt

US VT= -1        (5)

where S-1= diag(1/s1, …, 1/sn+s) and 1/si is set to be zero if si=0.
Similarly, we can infer N networks from N datasets respectively:

[ , ]J P
dX
dt

U S Vk k
k

k k kT= -1        (6)

where the superscript k=1,...,N is the index of the k-th dataset. Note that without explicit normalization, 
Jk for each dataset is already a normalized matrix for different experiments with different time intervals 
due to the form of Equation (5).

Thus, the general solution of the Jacobian matrix Jk = (Jk
ij) and Pk = (Pk

ij) for each dataset k is ex-
pressed by

[ , ] [ , ]J P J P Y Vk k k k k kT= +        (7)

Equation (7) represents all possible networks that are consistent with each microarray dataset, depend-
ing on arbitrary variables Yk. Yk=(Yk

ij) is an n×(n+s) matrix, where Yk
ij is zero if sk

j ≠0 and is otherwise 
an arbitrary bounded scalar coefficient, i.e., |Yk

ij| ≤ M, where M is a given positive constant. In the next 
subsection we will explain how to construct the most consistent gene regulatory network [J P] from all 
[Jk Pk] by determining Yk, k=1,…, N.
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hard and Soft constraints

Before formally introducing the linear programming based integration framework, we briefly categorize 
the prior information. In our differential equation model we use the Jacobian matrix J to represent the 
gene regulatory relationships. The regulatory relationships can be directed, signed, and weighted. For 
example, element Jij represents an effect of gene j on gene i, while Jji represents an effect of gene i on 
gene j. Thus the influence between gene i and gene j is directed. Furthermore, a sign associated with Jij 
represents a specific role of regulation. For example, if the sign of Jij is positive, gene j is the activator 
of gene i. On the other hand, if the sign of Jij is negative, gene j is the repressor of gene i. Furthermore 
the associated weight (the absolute value) of element Jij indicates how strong the regulatory interaction 
is. Obviously, a zero weight of Jij indicates no interaction between two genes.

Thus, existing prior information about regulatory relationships can be roughly classified as fol-
lows:

•  Undirected. Given a gene pair, we only know that there is a regulatory interaction between them, 
but the information about regulator and target gene is unavailable. For example, protein-protein 
interactions occur at the protein level instead of gene level, and they provide us with some hints 
that there exist certain relationships between two genes but no directional information. The (non-)
co-expression relationships also belong to this class.

•  Directed and un-signed. In this class, we know that there is a directed regulatory interaction but 
we do not know if it is an activation or repression regulation. For example, the ChIP-chip data 
and regulatory motif occurrence data tell us about the transcriptional regulation relationship, i.e. 
a transcription factor binds to the promoter region of a target gene and possibly influences its ex-
pression level, but the activating or repressing information is not available.

•  Directed and signed. In this class, we know more about the regulation, both the regulation di-
rection and the activation or repression role. Literature and the existing databases provide such 
reliable information. Also we can derive such information from the GO functional annotations. 
For example, activation relation can be obtained by selecting those regulatory relations such that 
the regulator is either an activator or co-activator in GO function annotation. Similarly the set of 
repression relation can be obtained by selecting those regulatory relations such that the regulator 
is either a repressor or a co-repressor.

In practical implementation, we can simply treat the undirected relationship as two directed and un-
signed relationships (for example, the undirected relationship between A and B can be decomposed into 
two directed relationships: A to B and B to A). After this treatment, there are essentially two kinds of prior 
information: directed signed and directed unsigned. Available information from heterogeneous sources 
can be incorporated into our linear programming framework as soft and hard constraints, depending on 
the certainty of the information. The hard constraints include the directed and signed relationships. Their 
signs must be guaranteed and weight should be inferred. The soft constraints include the directed and 
un-signed relationships and their signs and weights are determined in the integration process.

Let us compare our method with traditional machine learning methods in terms of prior information 
incorporation. From the viewpoint of machine learning, the reliable information (gold standard positive 
and negative data) should be treated in a supervised way, i.e. they are labeled as positive or negative 
samples which are used to train the classifier. In our model, hard constraints similarly ensure that such 
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reliable prior information (directed and signed) is properly learned. The difference is that our method 
ensures that the reliable prior information must appear in the final results while gold standard data in 
machine learning methods are allowed to be incorrectly classified. On the other hand, the unreliable 
information (unlabeled data) in machine learning should be used in a semi-supervised way, i. e. they 
are taken as unlabeled samples which can provide useful information about sample distribution. In our 
model, soft constraints ensure that the useful prior information (directed and un-signed) is extracted 
while inaccurate information is filtered.

Next, we represent the hard constraints and soft constraints in matrix forms. Let the gold-standard 
directed and signed relationships be K=(K ij)n×n, which is an n×n matrix representing the known gene 
regulation information with signs. If the element Kij is nonzero, it means that gene j has regulatory ef-
fect on gene i (activation or repression depends on the sign of Kij, as determined by reliable biological 
experiments). The values for matrix K are set based on known information. Even though it is better to 
provide the quantitative strength of the known regulatory interactions in K, the vast majority of these 
are qualitative instead of quantitative in the databases or literature. In other words, one may know that 
gene i activates gene j, but the quantitative relationship is generally unavailable to depict how strong 
the activation is. In this case, we will decide final regulatory relationship from gene j to gene i from an 
LP-based algorithm by setting Kij >0 or Kij <0 as a hard constraint in the linear programming model. 
Here K serves as the gold standard positive data in the machine learning nomenclature, the difference is 
that we require the prior information in K to be correctly reflected in the final network structure.

There exists a second type of noisy prior regulatory information where the activation/repression role 
is unknown. We can represent such noisy information by soft constraints and store them into matrix 
U=(Uij)n×n, which is an n×n matrix representing the known gene regulation information without weights 
or signs. If the element Uij is not zero, it means that gene j probably has regulatory effect on gene i 
(activation or repression is unknown and should be determined by data integration), and 0 if otherwise. 
We will incorporate Uij into an LP-based algorithm as a soft constraint in our linear programming model 
by making all gene pairs for which Uij is not zero free of regularization in the optimization process. If 
small molecule-protein interaction data are available, they can be incorporated by extending matrix U 
to n×(n+s) in a similar way.

In addition, we will treat the non-regulation relationship separately and store them into matrix 
E=(Eij)n×n, which is an n×n matrix and represents the known gene non-regulation information. If the 
element Eij is zero, it means that gene i does not regulate gene j. Here E serves the similar role as the 
gold standard negative data in the machine learning meaning, the difference is prior information in E 
must be reflected in the final network structure. Because “gold standard” non-regulation relationships 
from biological experiments are often not published, negative examples need to be chosen with care. 
One possible selection method is to pick out the non-co-expression relationships from comprehensive 
expression compendium. The underlying assumption is that high quality non-regulatory relationships 
can be generated by considering pairs of genes whose expressions correlate weakly across various con-
ditions. This can be further improved by combining several non-co-expression relationship detection 
methods together or using strict cutoffs. We will incorporate Eij by using Eij=0 as a hard constraint in 
our linear programming model.

In the following, we will discuss how to incorporate existing prior information into the inference of 
whole network by the LP-based algorithm.
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linear Programming Model for data integration

Assume that there are multiple microarray datasets for one organism, each of which corresponds to its 
own general solution in Equation (7). The next step is to find a consistent and also biologically plausible 
solution by determining variables Yk, k=1,…, N. In (Y. Wang, Joshi, Zhang et al., 2006), we developed 
a method by exploiting L1 norm in the formulation of the objective function to infer a sparse and consis-
tent gene network. In this chapter, in addition to small molecule perturbations, we further consider the 
directed and signed regulatory relationship information K, directed and unsigned regulatory information 
U, and non-regulation relationships E. These new types of prior information are expected to improve 
the reliability of the inferred network and reduce the computational complexity.

Specifically, according to Equation (7), N networks can be separately inferred from N time-course 
datasets:

[ , ] [ , ]J P
dX
dt

U S V J P Y Vk k
k

k k kT k k k kT= = +-1       (8)

where the superscript k=1,...,N is the index of the k-th dataset. Next, we will derive a sparse network 
structure L=[J, P]=(Lij)n×(n+s) that is most consistent with Lk=[Jk, Pk]= (Lk

ij)n×(n+s) for k=1,...,N, as well as 
consistent with the directed and signed, directed and unsigned regulations, and non-regulatory relation-
ships between genes. Mathematically the problem can be formulated as:
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where Lk
ij is a function of Yk, and Y=(Y1,...,YN). The objective function has two terms. The first term is 

a matching term which forces the matching of L and Lk, whereas the second term is a sparseness term 
which forces L to be sparse as a result of the minimization of the sum of L1 norm.λis a positive parameter, 
which balances the matching and sparseness terms in the objective function. Here the soft constraints 
are added into the objective function in an implicit way, by removing the related sparseness terms of the 
objective function in Equation (9). The hard constraints are added as inequality or equality constraints 
in an explicit way. The first and second constraints are used to add the directed and signed information, 
and the third one is used to incorporate the non-regulatory relationship information.

The variables in (9) are Lij and all of nonzero Yk
ij. ω

k is a positive weight coefficient for the k-th 
dataset and ∑N

k=1ω
k =1. Since different datasets may have different data qualities (e.g., different tech-

nologies, the number of repeats in measurements, etc.), the weight coefficient is used to represent the 
reliability of each dataset. The optimization problem (9) is an LP with L1 norm, which is a well-studied 
problem. It is known that L1 gives a more robust answer compared with L2. The L1-norm is more robust 
to outliers than the L2-norm and does not penalize large deviations as much as the L2-norm. As a result, 
the L1-norm pays less attention to the parts of the regulatory interactions that are very different, and 
focuses more on the parts of the regulatory interactions that are conserved. As a result, this measure 
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is less sensitive toward noise and more robust towards outliers. Generally the optimal solution of (9) 
sets as many |Lij- L

k
ij| and |Lij| to zero as possible, thus ensuring a consistent and sparse structure for the 

inferred gene regulatory network.
As discussed previously, most documented regulation information is qualitative rather than quantita-

tive. Therefore, we add the first and second inequality constraints of Equation (9) as hard constraints 
according to its activation or repression role stored in matrix K, and the strength of regulation is decided 
from the optimization algorithm. For example, add Lij <0 if a repression relationship is known as Kij 
<0 and derive the value of Lij from the optimization process. In addition, the corresponding gene pair 
is removed from the second term (regularization term) in the objective function. We can also add the 
equality constraints Lij=0 to Equation (9) to take into account the non-regulatory data. In addition, we 
also encode prior information in U as soft constraints in the following way. Specifically, for a gene pair 
where Uij is non-zero (meaning that there probably exists regulatory relationship between the gene pair), 
we implement a soft constraint by removing the corresponding element of Lij from the second term of 
objective function so that it is not subject to regularization in the optimization process. In this way, these 
regulatory interactions may be present in the optimal solution with signs and weights learned from the 
optimization process. In cases where the optimization process assigns zero weight to a gene pair, we 
assume that the prior information is probably noisy and is therefore ignored by the algorithm. The final 
result depends on the consistency of this information with microarray datasets or other prior informa-
tion. It is reasonable since this prior information may or may not be correct, and therefore should be 
further filtered.

In Equation (9), each one of the matrices L, Y1, Y2, …, YN has almost n2 variables. Thus the total 
number of variables is about n3. For a gene regulatory network with 100 genes, even without prior in-
formation and other variables such as drug targets, the LP problem has 1,000,000 variables. To solve 
Equation (9) efficiently, a decomposition algorithm is used based on the special structure of Equation 
(9). This is done by iteratively solving the following two subproblems. We first fix L to solve N small-
sized matching subproblems LP1, LP2, …, LPN, followed by updating L by solving Equation (9) with 
fixed Y1, Y2, …, YN from the N subproblems. The procedure is repeated until convergence. The two 
decomposed subproblems are described in detail as follows.

•  Subproblem-1: Set Lk(q)=Lk(q-1)+ Yk(q)VkT. At iteration q, obtain Yk
ij(q) by solving subproblems 

LP1, LP2, …, LPN,
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where Lij(q-1) is fixed.

•  Subproblem-2: At iteration q, obtain Lij(q) by solving the following LP with all of Yk
ij(q) and Lk(q) 

fixed from Subproblem-1,
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Although the solution depends on λ, λ is the only parameter that needs to be tuned. The procedures 
of solving Equations (10) and (11) and the choice of parameter λ are similar to (Y. Wang, Joshi, Zhang 
et al., 2006).

Compared with un-constrained LP model in (Y. Wang, Joshi, Zhang et al., 2006), the constraints in 
the above LP provide a consistent way to integrate all kinds of prior information. Specifically we incor-
porate reliable signed, noisy unsigned, and non-regulatory data in a systematic way. Given the nature 
of the gene regulatory network inference problem is under-determined (In other words, the number of 
variables far exceeds the equations for which variables are related), the proper incorporation of the prior 
information from heterogeneous data sources improves the reconstruction accuracy.

It should be noted that the above methodology has three advantages in terms of both model and 
algorithm. Firstly, the variables Lij in Equation (9) include not only the connectivity matrix of genes 
which represents the effect of activation, no interaction and repression, but also the connectivity matrix 
of perturbations which represents the effect of the small-molecule perturbations on genes. This is very 
important because our method is able to properly identify the target genes of perturbations and thus has 
the potential to be applied to the drug design and mechanism of action discovery of molecules. Secondly, 
the objective function has both sparse and non-sparse terms. The non-sparse term is used to represent 
the interactions or effects among genes or between external inputs and genes based on the noisy prior 
information or experimental data. In this way, the soft constraints are considered and added in a consistent 
manner. Thirdly, the new model can improve reconstruction accuracy by introducing hard constraints 
on “gold-standard” prior information.

From the algorithmic and computational efficiency aspect, Equation (9) is a constrained L1 linear 
approximate problem, in contrast to the linear regression model of (Y. Wang, Joshi, Zhang et al., 2006). 
For the first subproblem, an efficient primal algorithm can be designed by taking advantage of the special 
structure of the linear programming formulation of the L1 problem; for the second subproblem, it can 
be decomposed as a series of constrained and unconstrained small-scale linear programming (Y. Wang, 
Joshi, Zhang et al., 2006) and the problem can be solved efficiently.

The data integration strategy in this chapter is different from the supervised inference methods (T. 
Kato, Tsuda, & Asai, 2005) which adopt the kernel matrix representation of networks and integrate dif-
ferent biological data in a simple weighted sum. In this chapter the gene regulations are derived from 
time-course data by differential equations instead of similarity evaluation in kernel matrix. Specifically, 
the “gold standard” prior information is expressed as hard constraints or soft constraints (i.e., sparse 
term in Lij of the objective function) in the LP formulation, depending on the certainty or reliability of 
the information. Thus, we can obtain the most consistent solution among multiple datasets by satisfy-
ing those constraints. In particular, in our prior information learning framework, our method ensures all 
of the hard constraints to hold, and prefers the soft constraints to hold, but the regulatory interactions 
corresponding to soft constraints may or may not hold depending on their consistency with other data. 
Therefore, if prior information is not reflected in the optimal solution, it is because this prior informa-
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tion is inconsistent with the microarray datasets and other information. As such, the proposed algorithm 
can also filter out the noise in prior information based on the requirement of consistency among all data 
sources.

reSultS

In this section, we first report a simulated numerical example to validate our method. Then we apply 
our method to a real experimental data to reconstruct yeast gene regulatory network. We show that our 
method is effective in recovering the network connectivity from integrated data sources. Importantly, with 
supervised information, our method can infer the network structure and further identify the compound 
targets in a more accurate and reliable manner.

Simulated example

The first example is a small simulated network to demonstrate the usefulness of data integration and 
prior information in the network inference method. We constructed a small regulatory network with six 
genes governed by:
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where xi reflects the expression level of the gene-i for i=1,...,6. One perturbation (s=1) is applied to the 
first gene, which is indicated by P=[2.0,0.0,0.0,0.0,0.0,0.0]T. P has all its elements equal to 0 except the 
element for the gene that is the direct target of the perturbation. u0 contains the detailed information 
about the perturbation, which can be either time-independent or time-dependent.

We generate four time-course datasets in different conditions. Every dataset has five time points 
and the time points are equally-spaced from the start to the end. These datasets differ in the choice of 
perturbation and time step. The first dataset is obtained by taking perturbation u0=1 as a constant and 
the time step is 0.1. The second dataset is also obtained by taking u0=1 as a constant but the time step 
is 0.15. For the third dataset, perturbation varies with time and gradually increase from u0=1 to u0=2, 
and the time step is 0.2. The fourth dataset is obtained without perturbation and with time step 0.2. The 
initial values of the system are randomly generated from [1.0, 1.1] and the Gaussian noise is added to 
the data matrix with zero mean and fixed standard deviation σ=0.2||X||, where ||X|| is the L∞ norm of 
the data matrix X. In the following, we will show that the datasets can be combined together to infer 
the gene regulatory network by our method. The parameter λ is set to 0.1 to make the inferred network 
sparse. The supervised information K is denoted by the following matrix,
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where nonzero elements will be added in the LP as constraints.
This simulated example illustrates the three advantages of our method for reconstructing gene regula-

tory networks. Firstly, our method can identify more correct regulatory relationships among genes. The 
numerical results are depicted in Figure 2, which shows the true network and the reconstructed networks 
without and with supervised information, respectively. In the case without supervised information, 4 
edges are identified correctly out of 7 predicted nonzero edges. In contrast, in the case with supervised 
information, 11 edges are identified correctly out of 16 predicted nonzero edges. Thus the prediction 
accuracy is improved from 57.14% to 68.75%.

Secondly, the inferred network by our method is quantitatively more accurate. We use the following 
indices E1 and E2 to assess the prediction accuracy:
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where Jij
T and Jij

R are interaction strength from gene-j to gene-i for the true and inferred networks, re-
spectively. We found that adding supervised information reduces the inference error. For example, E1 
decreases by 0.7139 (excluding the error reduction 1.73 due to the knowledge of K) and E2 decreases 
by 1.4857 (excluding the error reduction 1.20 due to the knowledge of K).

Thirdly, our method makes more accurate predictions about the targets genes of perturbation. This is 
very important as our method has the potential to be applied to the drug design and function discovery 
of molecules. According to the computational results, the inferred perturbation vector is P = [0.35, -0.08, 
0.09, 0.0, 0.0, 0.0] without supervised information, whereas the prediction results are improved to P = 
[1.25, 0.0, -0.01, 0.0, 0.0, -0.03] with supervised information. These results show that our method can 
correctly identify the first gene to be the direct target of the applied perturbation, and the knowledge of 
the supervised information can helps reduce inference error.

There are two reasons for the accurate inference by our method. The first reason is the contribution of 
multiple datasets. By combining the time-course datasets of different types and in different perturbation 
conditions, more information are utilized and the problem of high dimensionality is significantly allevi-
ated (refer to (Y. Wang, Joshi, Zhang et al., 2006) for details). The second reason is the contribution of 
prior information. Due to the scarcity of gene expression data and the high-dimensionality of the gene 
network parameter space, the problem of gene network inference is fundamentally under-determined. 
The supervised information help reduce the intrinsic dimensionality of the search space dramatically, 
thus making the inferred network more accurate both qualitatively and quantitatively.
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combining chiP-chip and expression data to infer 
gene regulatory network in yeast

We combined gene expression data with ChIP-chip data to infer gene regulatory network in yeast. 
As mentioned above, the ChIP-chip methodology involves the chromatin immunoprecipitation of an 
epitope-tagged TF bound to DNA fragments containing target promoters, followed by the hybridization 
of those amplified DNA fragments to an intergenic microarray (Lee et al., 2002). ChIP-chip data have the 
advantage that they provide a direct biochemical link between TFs and promoters and have the potential 
to identify targets without knowing the activating conditions. From this viewpoint, ChIP-chip data are 
an important source of information for direct transcriptional regulatory interactions. In this example 
we show the network reconstruction accuracy can be improved by incorporating TF DNA binding data 
(ChIP-chip data) into our model as prior information (soft constraints). We tested our method using the 
public time-series microarray data for cell cycle studies in Saccharomyces cerevisiae which are obtained 
from the Stanford Microarray Database (Demeter et al., 2007). We collected 4 datasets with different 
conditions (Response to Elutriation, 14 time points; Response to CDC15, 24 time points; Response to 
alpha factor fkh1, fkh2, 13 time points; Response to fkh1, fkh2,13 time points). Among all the yeast 
genes, 145 of them have changes of 2 fold up or down in at least 20% of the expression level across all 
datasets.

We added the TF-DNA binding data as prior information to infer the gene regulatory network in a 
more reliable manner. In (Lee et al., 2002), a genome-wide location analysis experiment was performed 
for 106 yeast TFs. From their supporting website (http://jura.wi.mit.edu/young_public/regulatory_net-
work/), we downloaded the TF-target gene interactions and TF-TF interactions as prior information. As 
a summary, there are 75 TFs (in the list of 106 TFs of (Lee et al., 2002)) in the 145 gene list, and there 

Figure 2. Regulatory network reconstruction for the simulated example with 6 genes. Red arrows rep-
resent activation, and blue arcs represent repression.
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are a total of 161 known interactions including 93 known TF-TF interactions and 68 TF-target gene 
interactions. Furthermore, we manually selected 22 interactions with known activating or repressing 
conditions by checking the GO database.

Then we apply our method to these real experimental data in yeast. There are two kinds of prior 
information. One is the 22 interactions with known activating or repressing conditions which can be 
directly added as the hard constraints in the LP model. The remaining 139 known interactions without 
activating or repressing information are taken as soft constraints for which we simply remove their cor-
responding sparse terms from the objective function of the LP model.

When λ=0, we obtained 622 interactions. All the 161 known interactions are correctly inferred. Among 
them, 22 interactions with known activating or repressing conditions are correctly inferred and the acti-
vating or repressing conditions of the remaining 139 interactions are predicted by our method. Among 
the newly inferred 461 edges, validation results by YEASTRACT database (Teixeira et al., 2006) show 
that there are 11 documented interactions and there are 66 edges identified as potential interactions, for 
which transcription factors have at least 1 binding site in the promoter regions of their target genes.

When we set the parameter λ=0.1 to make the inferred network sparse, a total of 219 interactions 
were inferred with predicted activating or repressing conditions. Again all the 161 known interactions 
(Among them, 22 interactions have known activating or repressing conditions) are correctly inferred. 
The validation results by YEASTRACT show that in the newly inferred 58 edges, 5 are documented 
and 11 are identified as potential interactions. In Figure 3, we draw the reconstructed gene regulatory 
network when λ=0.1 (self regulatory interactions are not shown).

In this experiment, we combine the time-series microarray data and genomic location data to infer 
whether a regulator acts as an activator or repressor. Generally, we can use genomic location data to infer 
the presence of regulators at promoters, but we cannot determine the type of TF-target gene interactions. 
By further combining gene expression data, our method can infer not only the existence of regulatory 
interactions between TFs and target genes, but also the sign of the regulation (positive or negative). From 
this example, we can also see that computational method is complementary to experimental methods, 
e.g., it provides information whether a TF is an activator or repressor by its regulatory role based on the 
dynamic behavior of the gene expression.

concluSion

Our proposed data integration and network reconstruction method in this chapter not only improves the 
reliability of the inferred gene regulatory network, but also can be applied to drug design and many other 
areas of biomedical research and bioengineering. Specifically, we propose to combine computational 
analysis of multiple microarray datasets and other types of biological experiments together for inferring 
gene regulatory network and further identifying small molecule targets of perturbation experiments. The 
proposed algorithm is mainly based on linear programming framework with the variables representing 
the regulatory relationships among genes and small molecule-protein interactions. Available information 
from heterogeneous data sources is incorporated into the LP as constraints. They can be divided into 
two classes according to data reliability. For example, the regulatory relationships mined from literature 
and databases are more reliable and we know exactly the regulator gene, target gene, and the activation 
or repression role. Hence, they can be treated as hard constraints in our linear programming which will 
be strictly reinforced. On the other hand, the co-expression data, ChIP-chip data and protein-protein 
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interaction data are generally noisy and the related pairs often are unsigned, meaning that the activation 
or repression role is unknown. In this case, we treat them as soft constraints, which may or may not 
be satisfied. In this way, our linear programming model provides a flexible prior information learning 
framework. It finds the most consistent gene regulatory network by balancing among heterogeneous 
data sources. One major advantage of the proposed method is that it theoretically ensures the derivation 
of the most consistent network with respect to the available datasets or information, thereby alleviating 
the problem of data scarcity and improving the reliability. In addition, this algorithm allows us to infer 
small molecule targets by integrating perturbation experiments, and holds the promise for applications 
in drug design and other areas in biomedical engineering.

future reSearch directionS

With rapid advances of various high-throughput experimental techniques, more and more biological 
data are increasingly available. Thus it is now possible to quantitatively study regulation interactions 
in a systematic way. Generally speaking, there are three kinds of regulatory relationships among the 

Figure 3. Inferred gene regulatory network when λ=0.1 by combining expression data with TF-DNA 
binding data. Self regulatory interactions are not shown. Known activations are shown in yellow with 
label ‘PA’. Known repressions are shown in green with label ‘PR’. Newly inferred activations that are 
subsequently confirmed are shown in red with label ‘CA’. Newly inferred repressions that are subsequently 
confirmed are shown in blue with label ‘CR’. Newly inferred activations and repressions that are yet to 
be confirmed are shown in pink with label ‘UA’ and gray with label ‘UR’, respectively.
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regulators (transcriptional factors and cofactors) and target genes. They are the relationships between 
target genes, the relationships between regulators, and the relationships between regulators and target 
genes. Network reconstruction aims to reveal regulatory mechanisms by inferring these relationships 
from biological data.

The mapping of the gene regulatory network—the set of interactions among all genes in the genome—
is one of the most difficult tasks in molecular biology. For example, there are 6000 genes in yeast, and 
as a result there are at least 18 millions parameters to be determined in our linear differential model. In 
contrast, the mapping of the transcriptional regulatory network — the set of all physical interactions 
among transcriptional factors and their target genes — has much less parameters from the computational 
viewpoint. There are about 200 transcriptional factors in yeast and 6000 target genes and thus there 
are about 1.2 million parameters to be determined. Compared to the above two tasks, the reconstruc-
tion of the transcriptional factor interaction network is perhaps the easiest. Since there are about 200 
transcriptional factors in yeast, we only need to determine about 20,000 parameters. It is well known 
that the transcription factor sub-proteome is very important for gene regulation and especially difficult 
for experimental characterization. Hence, the computational methodology to predict these regulatory 
subnetworks among TFs is crucial. In the case of the transcription factor interactome, transcriptional 
regulation in eukaryotes occurs through the coordinated action of multiple transcription factors. So 
combinatorial regulation is a primary mechanism for achieving fine-tuned transcriptional control, is an 
important component of the mechanisms of action for many biologically active small molecules, and 
holds the promise to reveal the complexity of gene regulation mechanisms (Balaji, Babu, Iyer, Luscombe, 
& Aravind, 2006; Bluthgen, Kielbasa, & Herzel, 2005; Chang, Wang, & Chen, 2006; M. Kato, Hata, 
Banerjee, Futcher, & Zhang, 2006).

The linear differential equation model in this chapter makes the important assumption that the struc-
ture of the regulatory network is stationary, and does not `rewire’ under the environmental conditions 
for those different datasets. This means that the change of environmental conditions is assumed to alter 
the level of gene expression instead of the network structure. Obviously this is not true in reality. One of 
the future research directions is to reverse engineer the network architecture from time-series microarray 
data based on a nonlinear differential equation model, which will capture the complex and nonlinear 
properties in gene regulatory process but will involve more parameters.

Data integration is still a very challenging problem. A complex network reconstruction methodology 
needs high resolution datasets so as to accurately infer the network structure. Here high-resolution data 
mean high-quality time-course microarray data which are expected to capture the dynamic behavior of 
the gene regulatory networks and also the conditional responsive transcription factor-DNA and protein-
protein interaction data. As a result, sophisticated data integration techniques play a key role.

Recently Faith et al. assembled 445 Escherichia coli microarrays to address this issue and demonstrated 
an unsupervised network inference method, called context likelihood of relatedness (CLR), which uses 
transcriptional profiles of an organism across a diverse set of conditions to systematically determine 
transcriptional regulatory interactions (Faith et al., 2007). By generating a compendium of microar-
rays, they showed that it is possible to infer a high-precision regulatory map and simultaneously obtain 
rich data on condition-specific regulation. The strategy here is simple: it assembles all the microarray 
datasets to a profile or compendium and applies algorithms based on correlation coefficients or mutual 
information measure, such as Relevance network (Butte et al., 2000), ARACNe (Margolin et al., 2006), 
and CLR (Faith et al., 2007) to find the co-expression or co-regulation relationships. This strategy 
can be potentially enhanced in several ways. First, the existing methods treat a set of time-course data 
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points independently and ignore the dynamic property of gene regulation process. Second, the exist-
ing methods can only identify whether two genes have regulatory relationships, but cannot provide the 
detailed information about regulatory roles such as activation or repression. The existing methods can 
be improved by considering as much dynamic information as possibly when integrating time-course 
microarray datasets.

We believe that data integration and network reconstruction should be conducted in a simultaneous 
way. We should determine the data integration parameters and the network structure parameters together. 
In this way, the solution will be expected to be globally optimal and the most consistent. In this chapter we 
provided such a model. It can be further extended to a more general model to assign weights to different 
sources of data. In the future, we will extend the current work of revealing the complex mechanisms of 
transcriptional control in two ways. First, regulatory network reconstruction can be greatly improved by 
the integration of more diverse genomic datasets such as sequence, protein structure, gene expression, 
TF-DNA interaction, non-coding RNA-mRNA interaction, protein-protein interaction, and metabolic 
reaction data. Second, transcriptional regulatory processes can be more accurately modeled by taking 
into account cooperativity among individual proteins, nonlinearity, and dynamic behaviors.
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introduction

Biological systems are intrinsically complex, still robust and at the same time able to quickly adapt 
to new situations. To understand, describe and model a wide range of biological systems −involving 
genes, proteins, metabolites and ecological food webs− networks have served as the unifying language 
(Barabasi et al. 2004). This description has often revealed a complex network topology. In the case of 

abStract

In this chapter we outline a methodology to reverse engineer GRNs from various data sources within 
an ODE framework. The methodology is generally applicable and is suitable to handle the broad error 
distribution present in microarrays. The main effort of this chapter is the exploration of a fully data 
driven approach to the integration problem in a “soft evidence” based way. Integration is here seen 
as the process of incorporation of uncertain a priori knowledge and is therefore only relied upon if it 
lowers the prediction error. An efficient implementation is carried out by a linear programming for-
mulation. This LP problem is solved repeatedly with small modifications, from which we can benefit by 
restarting the primal simplex method from nearby solutions, which enables a computational efficient 
execution. We perform a case study for data from the yeast cell cycle, where all verified genes are pu-
tative regulators and the a priori knowledge consists of several types of binding data, text-mining and 
annotation knowledge.
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Gene Regulatory Networks (GRNs), some features are the existence of key genes regulating multiple 
processes (“hubs”), feed-back motifs and modularity enhancing the system robustness (Milo et al. 2002; 
Barabasi et al. 2004). Furthermore, the dynamical systems seem to be tuned to enable a stable system 
by keeping hubs repressed, but still flexible by utilizing, e.g., incoherent feed-back loops (Gustafsson 
et al. In press b, Ma’ayan et al. 2008). In addition to the architectural complications, we know that gene 
regulation is a non-linear process including combinatorial control, saturation and stochasticity. These 
pieces give raise to an extremely challenging modelling problem, which becomes even more complicated 
by the size of the genome.

Further, the experimental advancements in the last decades have resulted in a vast amount of large-
scale data sets available through public databases. To infer a large-scale GRN it is of uttermost impor-
tance to take as much as possible of these data into account. Particularly informative for understanding 
genome-wide gene regulation is the interaction map between Transcription Factors (TFs) and their DNA 
binding regions. This information may give direct structural properties of the regulatory possibilities, 
e.g., the presence of a binding element upstream of gene of A for a TF which gene B codes for induces 
an enhanced possibility for regulation of gene A by gene B.

Other types of structural information may come from sequence based predictions, e.g., prediction 
of putative regulations from the TF binding sites (TFBS) and from common biological knowledge. 
The latter can be incorporated in a variety of ways, which may come from annotation knowledge or 
more “unclean” knowledge as text-mining. Annotation knowledge may be the collection of detailed 
knowledge from previous experiments, while text-mining may be a possibility to include the plethora 
of published biological papers in databases. On a more detailed causal level there is also a large number 
of time-series expression data sets for mRNA levels (see, e.g., Omnibus at Entrez (PubMed 2007) for 
collections at a unified format). However, although all these experiments are present on a large-scale, 
they are all typically several orders of magnitudes smaller than the number of presumptive regulators. 
Hence, all data at hand should be taken in consideration to overcome the indefiniteness of the reverse 
engineering problem. The greatest challenge in GRN inference to tackle is that the number of genes 
vastly exceeds the number of experiments, making it a tough statistical question. We should therefore 
strive to avoid introducing more entities in the model. Consequently, we project gene regulation onto the 
space of genes only, despite the fact that gene regulation is carried out from the interactions of mRNA 
molecules, proteins and metabolites (Brazhnik et al. 2002; Ptashne et al. 2002). Indeed, the obtained 
GRN is then an effective network of gene-to-gene interactions, where these interactions cannot be in-
terpreted as biochemical reactions.

Reverse engineering of genome-scale GRNs is a grand challenge for system biologists, with a high 
potential for drug discovery. The challenge consists in taking many small pieces of information ranging 
from widely different experiment types and prior knowledge properly into account. However, most of 
the genome-wide experiments are associated with great uncertainties, thus connected with many false 
positive and negative regulations. Nevertheless, algorithms have gradually become more refined, from 
the first cluster analyses of gene expression data (Eisen et al. 1998), to more recent dynamic network 
inferences (Segal 2003; Luscombe et al. 2004; Bonneau et al. 2006; Gustafsson et al. 2005; Wang et al. 
2006) taking more data into account (Luscombe et al. 2004; Bonneau et al. 2006). The next step to get 
more accurate descriptions of the GRNs is to carefully take different data sources into account, such as 
TF-bindings, protein-interactions, sequence information, literature knowledge and of course expression 
data. The introduction of several data types in the reverse engineering process enforces a method to 
weight the data types appropriately, i.e., to prioritize, filter and in some cases discard the data based on 
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how consistent it is with other data. The integration of multiple data sources in the inference serves two 
main purposes; to improve the biological significance of the GRN and to improve its ability to predict 
new experiments. The biological significance is almost certainly increased if the inference algorithm 
is fed with known facts about the biological system. However, to lower the prediction error, careful 
statistically sound model selection must be performed.

One important complication for GRN inference is the presence of non-Gaussian errors and outliers 
(Speed et al. 2000; Purdom et al. 2005). Most Ordinary Differential Equations (ODE) based algo-
rithms having their origin in other fields assume Gaussian errors, e.g., least squares based algorithms. A 
good inference algorithm should be able to handle the great uncertainties connected with the large-scale 
experiments, which for mRNA data obtained from microarrays have been shown to closely follow a 
double exponential (Laplace) distribution (Purdom et al. 2005). At the same time, the algorithm should 
be able to handle more certain knowledge, obtained from experimental studies of smaller scale.

In this chapter we introduce and discuss a computational efficient inference procedure based on 
ODEs to infer GRNs treating all evidences as soft, and at the same time assuming a more realistic error 
distribution. We demonstrate its efficiency and the necessity of “softness” for a case study where we 
infer a network integrating the data at hand. Indeed, this network has high biological significance and 
furthermore low expected prediction error.

background

To determine causal relationships on a gene level we utilize a popular model class that is continuous in 
time and deterministic, see e.g., D’haeseleer et al. (1999), van Someren et al. (2000), Holter et al. (2001), 
Yeung et al. (2002), Segal (2003), Gustafsson et al. (2005), Wang et al. (2006) for some different settings. 
The restriction to deterministic models does not mean that the cell is assumed deterministic; however 
our assertions are deterministic and correspond to expectation values. Within this class of models, the 
rate of change of gene expression for gene i, x t

i
( )can quite generally be described by


x t g x t x t t t

i i N i
( ) ( ( ), , ( ), ) ( )= +

1
e . 

Here x t
j
( )  is the gene expression at time t of gene j, N is the number of genes and ei

t( )  a sto-
chastic variable. However, such a model has infinitely many degrees of freedom and the model 
class must be restricted. One common choice is to limit gi  to time independent affine functions, i.e., 
x t a w x t t
i ij jj

N

i
( ) ( ) ( )= + +

=å0 1
e . In the case where the errors ei

t( )are individually independent fol-
lowing Gaussian distributions, minimizing the sum of squares is a proper choice for inference of the 
interaction matrix w .

The assumption of an affine (effectively linear) relationship is certainly wrong, but still there exist many 
reasons why it might be good enough. In the case of expression measurements from a single condition, 
we can consider it as the result of a linearization of the true non-linear function around a working point. 
This makes the approximation correct at least to a first order. It should also be noted that this formulation 
includes degradation into the model through negative self-interaction terms (w

ii
< 0 ), and therefore all 

self-interactions are the sum of degradation and self-regulation. However, another common experimental 
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situation is that the observation may come from perturbations, which have the purpose of driving the 
system far away from its working point. We will therefore also investigate the use of some non-linear 
functions in the dynamical equations.

However, inference of linear functions has great computational advantages, which might be of crucial 
importance given the size of the system. Yet another reason for linear modelling is the lack of detailed 
knowledge of the “true” dynamical equations, due to the projection of gene regulation onto the space of 
genes only. The detailed equations governing the biochemical reactions can to some extent be described 
with Michaelis-Menten equations, but when projecting several such processes, the result is unclear.

Back to the inference problem again (with Gaussian error distribution) we might without loss of gen-
erality discard the intercept term a0  from the model by centring data such that x t

i kk
( )å = 0 . In the 

case where the number of measurementsK N³ , the matrix w can be obtained from solving n ordinary 
least squares problems, where n is the number of genes to be explained, i.e.,
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Here w w w
i i iN· = { }1

, , t
k
is the time instance where the measurement k has been carried out. 

Note also that we assume that the genes have been ordered such that the n genes which we aim at ex-
plaining are ordered first, followed by the rest explanatory N-n genes. The rationale for having n N<  
is that the model should perform better for the genes associated to some specific process, but we still 
allow for novel regulators. However, in the typical microarray scenario, we haveK N<< , therefore 
we have infinitely many models that perfectly match the experimental data. To overcome this problem 
many different proposals have been made. Simulated experiments were suggested by D’haeseleer et al. 
(1999), choosing wi·  with the smallest L2 norm was exploited by Dewey et al. (2001) and sparseness 
was in the GRN inference setting incorporated by Yeung et al. (2002) and further extended by Wang et 
al. (2006). The use of a sparse solution relies on a biologically motivated assumption, i.e., each gene 
is only regulated by a few others while choosing w

i·  with the smallest L2 norm corresponds to a fully 
connected network. However, working with perfect fits is a heavy assumption and perfect fits can be 
obtained from exactly K predictors for each gene, and as the number of experiments increases the net-
work will become denser. A more stable version of utilizing sparseness, the LASSO, was proposed by 
Tibshirani (1996), which puts a L1 restriction on the predictors, i.e.,
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This was utilized by Gustafsson et al. (2005) for a global ad-hoc pick of L
i i
= ×0 1 2. ( )h , where hi

( )2  is 
the smallest L2-norm among all the solutions w

i· with perfect fit. The network obtained from this study 
was shown to be biologically relevant, even in the extreme case where n N= = 6178  and K=73 for 
the yeast cell cycle. The L1 constraint induces the solution to be on the border of a hyper octahedron, 
with sharp corners at the coordinate axes, thus the minimum of the quadratic objective on the constraint 
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is therefore likely to be in one of the corners, where some coefficients are exactly zero. A computational 
strategy for tackling this problem more efficiently was proposed by Efron et al. (2004), LARS, which 
made it possible to pick Li  from several runs of the algorithm (see CV below). The effect of the inequal-
ity in (2) is both to regularize the solution and to select a subset of the predictors. In a statistical frame 
the shrink lowers the variance of the fit, which indeed is a stochastic variable since it is a fit of a single 
realisation of the data. The decreased variance in the fit comes from posing an additional property of 
the model, i.e., assuming the model parameters to be small in a L1 sense, which leads to an increased 
bias of the model.

The overall performance of the inference procedure can be determined by the prediction error, i.e., 
the expected error on new data. This is indeed a complicated measure since we expect the model to have 
different errors for different data, as the model only at best is a crude approximation of the reality. This 
fact together with the limited amount of experimental data makes systematic recycling of data necessary 
in order to estimate the expected prediction error as good as possible. Furthermore, the performance of 
the model is a combination of both the variance and the bias, thus if the model assumptions are good 
the performance of the inference is increased.

Another common approach to shrinkw
i· , thus lowering thew

i· variance is to modify the LASSO-
inequality in (2) to yield w

ijj

N

i
2

1=å £W , which is called ridge regression (or Tikhonov regularization) 
and has been use for several decades in the statistician community (see, e.g., the text-book by Draper et 
al. 1998). Ridge regression and the LASSO relies on different model assumptions, the former assumes
w

i· to be Gaussian distributed and none of the coefficients will almost certainly be exact zero, while the 
latter assumes sparse non-zero elements in w

i· (Laplace distribution, Hastie et al. 2001, discussed in 
Incorporating prior knowledge section)1. However, as a subset selection operator the L1-norm tends to 
be somewhat greedy and picks only the most correlated predictors. This might be good if we have the 
correct model and lots of data and particularly it is good for interpretability, but it will not lower the 
prediction error significantly (Zou et al. 2005). For GRN inference this obstacle might be severe for the 
prediction error, since many genes are correlated and the sparseity of data is tremendous. Nevertheless it 
might work well as a subset selection operator and in combination with other types of data. The strength 
of the LASSO approach for subset selection was observed in the DREAM in silico challenge (DREAM 
2007), where the best algorithm for finding a directed unsigned description of the true network from 
an unknown model was based on the LASSO and adopted by Gustafsson et al. (In press a) with some 
nonlinear basis functions instead of xi .

Within the LASSO framework (equation (2)) Zou et al. (2005) proposed another important exten-
sion, called the elastic net, which modifies the inequality for the LASSO and ridge regression to yield 
a combined L1 and L2 shrink constraint, with the computational benefits of the LARS algorithm (Zou 
et al. 2005):

( )1 2

1
- + × £

=å m m
i ij i ijj

N

i
w w L ,        (3)

wherem
i
is a tuning parameter. The net effect of (3) is both a shrink of the number and the magnitude of 

the non-zero coefficients (if m
i
Î ( , )0 1 ). Furthermore, it makes it possible to have more non-zero coef-

ficients than experiments in the model. Particularly, (3) has a great impact when the regulatory genes 
are correlated; as mentioned above LASSO selects only the most correlated genes, while the elastic net 
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to some extent also includes slightly less correlated variables. In the case of highly correlated variables 
ridge regression and the elastic net have empirically been observed to yield lower prediction errors 
than the LASSO (see Zou et al. (2005) and references therein), but of course they include more indirect 
regulatory interactions as well. Therefore the choice of the mixture parametermi  for GRN inference may 
depend on whether direct interactions or low prediction error is preferred. For both the LASSO and elastic 
net the inequality regularizes the solution, increases the numerical stability, and decreases the variance 
of thew

i· estimates by an increased bias. However, as previously indicated, the model assumptions of 
all these approaches are very different. The elastic net is an important inference procedure for GRNs, 
especially when prediction of new experiments is desired we end the exploration of this procedure here. 
The strength of the elastic net for predicition was observed in the DREAM gene expression challenge 
(DREAM 2008), where the best performing algorithm in predicting new gene expression measurements 
was Gustafsson and Hörnquist, which utilized the elastic net (Gustafsson 2008). However, the main 
goal for inference is here for interpretational reasons, therefore we instead explore some extensions to 
the LASSO (equation (2)).

As mentioned above, the conventional method to infer a GRN by ODEs is to minimize the squared 
residual sum in (1). This is statistically motivated if the error distribution is Gaussian, since the parameters 
then correspond to the Maximum Likelihood Estimate. However, it has been argued by many research-
ers in the field that the microarray technique produce extremely noisy data with lots of outliers, i.e., the 
experiments have huge error bars (Speed et al. 2000; Ideker et al. 2001; Filkov et al. 2002; Purdom et 
al. 2005). Purdom et al. (2005) showed from empirical observations that the associated errors closely 
follow an asymmetric double exponential (Laplace) distribution., i.e., an asymmetric heavy tailed 
distribution. For such a distribution the Least Absolute Deviation (LAD) is preferred (Purdom et al. 
2005), i.e., minimizing the internal fit in L1 sense. Some earlier attempts in this direction have been 
made (Yeung et al. 2002, Wang et al. 2006), however neither taking prior knowledge nor sparseness 
into account in a data driven fashion.

incorPorating Prior knowledge

To get more reliable GRNs, prior knowledge or side knowledge must also be taken into account. An 
example of this may be the knowledge of binding sites of TFs in an upstream region to a gene, which 
indicates that the gene coding for the particular TF may regulate the corresponding gene. However, such 
type of knowledge often arises from other large-scale experiments, which also are connected with great 
uncertainties. We choose here to incorporate knowledge of that kind into the inequality constraint, i.e., 
we put less penalty on predictors suggested for regulation by other experiments than on those not sug-
gested. In other words, we increase the probability of drawing regulator j of target i by imposing a low 
prior (P

ij
). By combining LAD, L1-minimziation and the prior knowledge, we obtain:
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Here P
ij
³ 0  and contains a priori or side knowledge that gene j is a regulator to gene i, where 0 

mean that we have maximum a priori belief in an interaction and a high value indicates belief in no 
interaction. This results in an ordered priority list of the regulators, which represents the order the regu-
lators enter the model from an increase inL

i
, i.e., we demand less evidence (correlation to the target) 

for the regulators for which we have other supporting evidence. The resulting effect is that many un-
certain pieces are put together in a “soft evidence” based way, thus putting faith into prior knowledge 
still enabling for novel interaction discoveries. The prior may be a combination of different types of a 
priori knowledge, all associated with different information about the regulatory system. However, it is 
hard to manually put in how each type of prior knowledge contributes to the collected prior, P

ij
. To 

simplify the composition of different priors we introduceP
ij
m Î [ , ]0 1 , which represents the belief from 

prior type m that gene j is a regulator of gene i, unity represents maximum belief and zero means that 
we have no belief in such an interaction. We assume the prior to be a linear combination of all present 
prior knowledge, such that
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This particular formulation has the advantages that | |P
ij

j

N

N
=
å =

1

 and Pij
³ 0 . This means that the 

norm of the priors are the same for all am  for each gene, and that the left hand side of the inequality is a 
non-decreasing function ofa

m
. Note here that we introduce npriors extra parameters a

m
, which reflect 

the overall relevance of the prior types to the inference problem. In the next section (Model selection) 
we discuss how these extra parameters can be determined.

Furthermore, since the use of the L1-inequality is to shrink the solution, we can imposeLi i i
= ×l h( )1 , 

where 0 1£ £l
i  and hi

( )1  is the L1-norm of the solution with the smallest L1-norm among the perfect 
fits, i.e.,

h
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This gives us a natural baseline for the magnitude of the constraint.
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Model Selection

The above reverse engineering algorithm leaves some free parameters, l l l= { }1
, ,

n
 and 

a a a= { }1
, ,

npriors , which should be tuned in a data driven fashion. Here we utilize the popular and 
easily interpretable model selection idea to minimize the leave-out error function (Cross-Validation, 
CV), which in the LAD setting for each gene is:

L x t w x t
i i i k ij

t out

j k
j

N

k

K
k( , ) ( ) ( )l a = - -

==
åå 

11
.        (7)

This is the same function as the objective, but on data unseen to the inference procedure. The coef-
ficientsw

ij

t outk - come from the solution to the regression problem where measurement k is excluded 
from the fit. In the microarray setting, the number of measurements, K, is indeed small, and to get as 
good fit as possible it is important that as few time points as possible are left out at the same time. Par-
ticularly, leave-one-out cross validation is preferred, but in practise it may take too long time to solve 
K optimization problems. Instead, more points may be left out at the same time, e.g., in the case study 
below we left 10% of the data out each time (ten-fold CV). Thus the problem we solve is an approximate 

minimization over the non-linear function L
n

L
i ii

( , ) ( , )l a l aº å1
 (see section Implementation and 

computational considerations for details).We stress the importance of proper model selection in this set-
ting, since there is a substantial lack of data and numerous articles reporting on the huge errors present 
in the microarray technique (Ideker et al. 2001; Filkov et al. 2002; Purdom et al. 2005). This, together 
with other complicating issues, e.g., time-series being made from different cells, emphasize the need of 
careful model selection to avoid over-fitting.

Note that there are several alternatives based on the residual sum of squares to CV, e.g., AIC, BIC 
and GCV (Hastie et al. 2001, Thorsson et al. 2005). However, since we expect the model error to follow 
a non-Gaussian distribution the residual sum of squares is not a proper measure for the goodness of fit. 
Because of this, and the somewhat problematic estimation of degrees of freedom when including the 
prior distribution, we completely dismiss such an approach here.

generaliZationS

The model outlined in (4) has great computational advantages compared with a more general nonlinear 
model. However, two biologically motivated extensions taking into account some non-linear effects can 
be made within this framework. We introduce the non-linear functions fj  and g i  that should be specified 
in advance and are typically sigmoid functions, modelling saturation effects.

x t g w f x t t
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e        (8)

The problem is then converted to the standard form by applying the inverse function of g
i
,g

i
-1 , to 

(8) in which case the problem again becomes linear on the transformed data g x t
i i
-1( ( ))  and f x t

j j
( ( ))
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, instead of x t
i
( )  and x t

j
( ) , respectively. Caution should be taken when choosingg

i , as gi
-1  must be 

well defined in the range of x t
i
( )and not contain any flat regions. The nonlinear functions must be very 

restricted to avoid over-fitting and to be computationally efficient. An obvious choice is to let fj and gi 
to be sigmoid functions. For fi this can be motivated on the regulator level basis, the mechanism being 
that expression level increments only affect the rate up to some total level, which may be due to the 
presence of supporting proteins to recruit the regulators (Ptashne et al. 2002). On the rate level, forg i , 
it can be motivated by the mRNA creation speed, which may be limited by the presence of nucleotides, 
the speed of the polymerase and the degradation speed. The introduction of sigmoid functions formulates 
the need for a proper scale such that the non-linear effects can be observed where it still is possible for 
well-defined inverse transforms. Different parameter values may be optimal for different genes, but as 
we are normally short of data such a freedom will probably lead to an over-fit. In the sequel x t

i
( )  and 

x t
j
( )  can be interpreted as g x t

i i
-1( ( ))  and f x t

j j
( ( ))  respectively.

Another generalization is to also include expression data sets obtained from other conditions (Wang 
et al. 2006), which we primarily do not aim to model. The sparseness of data is a strong motivation for 
doing this; however the primary regulations through TFs are condition specific, and different regulatory 
paths are active during different processes (Segal et al. 2003; Luscombe et al. 2004). Therefore, it can 
at most be taken into account as another “soft evidence”, and should as such be put into the objective 
function in (4). Another important generalization when dealing with data from heterogeneous sources is 
to include external perturbations explicitly. For example, a cell culture may suddenly be warmed up to 
some temperature and remain there for a moment or be moved back to the original temperature causing 
different driving forces and different responses from the cell (Gasch et al. 2000).

Incorporating those generalizations the problem can be stated as to find the weighting of the mixture 
of prior belief parameters a  corresponding to the smallest leave-out error, i.e.,
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 is the 
minimum leave-out error with respect toli . Explicitly the leave-out error is 
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This corresponds to the mean absolute deviation of the prediction of the derivatives, where each term 
in (9) is the unbiased absolute deviation of the predictions (i.e., excluding the estimated experiment from 
the actual inference). The coefficients .w

i

t outk

·
-  are thereby determined from solving K n×  subproblems 

in which each minimization is carried out against a combination of the internal absolute deviation to the 
transformed data of interest and some other less important prior data set, explicitly
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Here we have introduced M external expression data sets with Km measurement microarrays, each 
having a driving force h t

n p+ ( ) known from the experimental setup, which for completeness also has 
been added to the primary expression data source.

iMPleMentation and coMPutational conSiderationS

Now we present a strategy to make the implementation computationally tractable. First, we adopt 
the doubling variable strategy to code for the absolute values in the constraint. Every single ab-
solute value in the equations is replaced by an addition of two non-negative parameters, e.g.,
w a b a b w a b

ij ij ij ij ij ij ij ij
= - ³ Þ = +, , 0 , where aij  represents positive regulation and b

ij
negative 

regulation. This also introduces the opportunity to easily incorporate prior knowledge of activators and 
repressors, which may be important but not utilized here. Second, we perform the same “trick” on the 
Absolute Deviation. For clarity we drop the term regarding multiple expression sets and obtain:
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The subproblems to be solved are then:
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Thus the K n×  subproblems that should be solved for each parameter set( , )l a are all LP problems 
each consisting of 2 × + -( )K N Kout variables and ( )K Kout- + 1  constraints with non-negative vari-
ables, where the number Kout corresponds to the number of experiments left out from the inference. For 
clarity we assume the number of left out experiments Kout = 1  in (12) above, but the generalization is 
straightforward. As K<<N the substitutions are not that devastating for the implementation, since we 
can solve the subproblems using the simplex method for Linear Programming. The full optimization 
problem now consists of a hierarchy of subproblems,
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where a b
ij

t out

ij

t outk k- -, are solutions to (12). In the optimization over the parameters( , )l a , we search for 
each a  the minimizer l *  by solving K n Kout× /  LP-problems. However, whenever we have solved 
a problem for the n genes and are modifying the left out experiments, or l , or even a , we may use the 
previously found solution as seed for the next optimization as a warm start for the optimization engine, 
which greatly decreases the calculation time. Taking this into account we implement the algorithm as 
follows. First, we set a l= =0 0, and for each i starting from l

i
= 0 we have the trivial solution 

w
i

t outk

·
- = 0  for all i, k. Then increasing li by 0.01 we can assume that we have a solution nearby 

and use the previously obtained w
i

t outk

·
- (or a b

ij

t out

ij

t outk k- -,  in the implementation) as initial guesses 
to warm start the LP-solver. We follow a particular starting solution, instead of utilizing restarts. This 
saves computation time, but may lead us wrong in some (hopefully rare) cases. The smoothness of the 
found solutions indicate however that this is a minor problem. In practice, we start from w

i

t outk

·
- = 0

and therefore prefer solutions near to this starting solution. Furthermore, as we have solved the prob-
lem for some leave out experiments at a particularl

i
, we can switch to use the solution obtained for 

the same li  (but for different k) as initial guess, which decrease the computation time further. As more 
leave-out calculations are performed the initial guess gets closer to the solution, particularly we then 
choose as an initial guess the median values of the calculated a b

ij

t out

ij

t outk k- -,  at earlier k, and estimated 
c d

ij

t out

ij

t outk k- -,  using the same technique.
In practise, the calculations are carried out by using the CPLEX primal LP-solver disabling the 

presolver and incorporating the initial values by MatLab implementation of Giorgetti (2005) to call the 
CPLEX-solver.

Case Studie – Yeast Cell Cycle

To exploit what type of nonlinearities and prior knowledge may in practise help the understanding of 
gene regulatory networks and compare with other approaches, we utilize the previously often explored 
extended Spellman dataset (Spellman et al. 1998; Cho et al. 1998). It consists of 4 time-series of mea-
sured mRNA-levels during one or more periods of the cell cycle with different synchronization processes 
presented as log-ratios. In the pre-processing of the data we filled in missing values with the KNNim-
pute (Troyanskaya et al. 2001) algorithm and estimated the derivatives using forward differences, i.e., 

x t
x t x t

t ti k
i k i k

k k

( )
( ) ( )

=
-

-
+

+

1

1
. Thex t

i k
( ) is normalized such that each gene has zero mean and unit standard 

deviation. This leads to a dataset with K=69 experiments and N=4153 Verified ORFs (VORFs) (Fisk 
et al. 2006), which we take all as presumptive regulators. However, since we work with cell cycle data 
we only expect those genes associated to the cell cycle to be explainable, therefore we pick only those 
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n=420 annotated as associated to the cell cycle by the Gene Ontology (GO) (Ashburner et al. 2000, Fisk 
et al. 2006)2 to serve as the genes whose transcription rates we predict.

To explore whether nonlinear functions should be utilized in this case we tested whether f
j

 and gi

as arctan functions can lower the leave-out errors L( , )l a  compared with the linear model. We choose 

f x x j
j
( ) tan ( ),= "-1  and g

i
,  such thatg x b x a i

i i i
- ( ) = -( )( ) "1

 tan ,  where a
K

x t
i i kk

K
=

=å1
1
 ( )

and 
b

x t ai

k i k i

=
× -

p
3 max ( ) . The scaling ensures that the domain of gi

-1  is centred on zero and that 
the maximum value of x t( )  is attained within the domain ofgi

-1 , which is not too flat and accounts for 
significant non-linear effects. However, from the table below (Table 1) we see that the simple linear 
model outperforms the others in this case.

Hence, in the forthcoming we discard the nonlinear functions from the analysis and focus on the 
incorporation of prior knowledge. The discussion in the introduction leads us to test the influence of 
the following types of prior/additional knowledge (Table 2):

Table 2.

Short name Source Type

S t a t i s t i c s  o f  n u m b e r  o f  r e g u l a t o r s 

#{P
i
m
· > 0 }

Average Min Max

CCassoc GO:7049
P

ij
m Î { , }0 1

420 420 420

CCreg GO:51726
P

ij
m Î { , }0 1

154 154 154

TFnet Yeastract
P

ij
m Î { , }0 1

4.1 0 22

ProtTFnet Yeastract + DIP
P

ij
m Î { , }0 1

21 0 96

TextMined GeneLinks/PubMed
P

ij
m Î é

ëê
ù
ûú0 1,

1877 0 4027

TFnetCC TFnet/CCassoc
P

ij
m Î { , }0 1

1.25 0 8

ProtTFnetCC ProtTFnet/CCassoc
P

ij
m Î { , }0 1

4.91 0 22

TextMinedCC TextMined/CCassoc
P

ij
m Î é

ëê
ù
ûú0 1,

207 0 417

Table 1.

Base functions
x and x

x and f x( ) g x-1( ) and x g x-1( ) and f x( )

L( )a = 0 0.0244 0.0278 0.0249 0.0253
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Cell cycle association, CCassoc (GO: 7049); the genes previously reported as associated to the • 
cell cycle should be the ones most active and their regulations most detectable. This will be a bi-
nary variable with 420 regulators for each gene.
Cell cycle regulation, CCreg (GO: 51726); the genes annotated as regulators of the cell cycle • 
should have an impact on the regulation of other genes. This will be a binary variable with 154 
regulators for each gene.
Transcription Factor binding edges, TFnet. This is a binary matrix with about 4.1 interactions per • 
gene, downloaded from YeastTract (Teixeira et al. 2006). The full TF-network obtained form the 
database has 163 known TFs which bind to any of the 4315 VORFs, for which 132 of them are 
TFs suggested to bind to targets associated to the cell cycle.
TF binding proteins, ProtTFnet; From the DIP yeast core protein interaction network (Xenarios • 
et al. 2000) and the full TF-network (Teixeira et al. 2006) we project TF-target regulations onto 
proteins that bind to TFs. The rationale being that TF binding proteins and TFs may form dimers 
which in turn regulate their targets. As TF-levels often are low and hard to detect we represent the 
levels of such dimers by the expression of the TF binding protein.
Text mined associations, TextMined; From the PubMed (2007) archive we derived an undirected • 
network of gene associations. We associate two genes to each other if the genes where reported 
in the same articles in PubMed from Gene Links, with the negative logarithm of the P-value for 
randomly retrieving that number of associations (Lundström 2007). The idea behind this network 
is that genes associated to each other from similar publications may be interrelated. These num-
bers are divided by the maximum numbers, making unity the largest value. For implementation 
reasons we only store these numbers using two decimals.
Intersections of TFnet, ProtTFnet and TextMined with the cell cycle association prior accounts for • 
the condition specific counterparts TFnetCC, ProtTFnetCC and TextMinedCC respectively. The 
rationale is to filter out edges active in other conditions, CCassoc is preferred to CCreg because 
of its semi-dense nature.

To explore the weighting among the prior information we bring them in one at the time, i.e., leaving 
the others out from the inference. For each type of prior to be incorporated, we perform a one dimen-
sional grid search using step size of 0.01 from 0 to 1 of the corresponding parameter, motivated by the 
assumption that many priors do not improve the GRN inference at all. The strategy is that this might 
rule out some priors and gives a hint of the optimal parameter setting. We see the result of these searches 
in Figure 1, where it is clear that CCassoc is the most important prior knowledge. Evidently, it serves 
as a good compromise between excluding many non-regulators and preserving indirect or previously 
undetected regulations. The optimal value of a

CCassoc
= 0 37.  being in the intermediate regime stresses 

the importance of using the prior as “soft evidence”, thus enabling for novel interaction findings while 
it still gives faith to earlier findings. It should also be noted that in all cases it is a less useful idea to 
fully rely on the prior knowledge and particularly in the CCassoc case it is devastating, leading to the 
poorest fits among all.

The next step is to set aCCassoc
= 0 37. ,  and we perform a one dimensional grid search for the other 

kinds of prior knowledge to explore what other priors produce the most information in pair with CCassoc. 
The result is visualized in Figure 2. Strikingly, no improvement is evident in this search, and therefore 
we conclude that no more prior should be incorporated.
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To compare the method against earlier attempts we performed the LASSO approach to regress in a 
least square sense (equation (2)). Here, LASSO was implemented by vanden Berghen (2007) by utiliz-
ing the LARS strategy from Hastie et al. 2004 and does not incorporate prior knowledge3. The LASSO 
net consisted of 2704 edges (27% with a positive sign) whereas the Least Absolute Deviation (LAD) 
network contained 24620 edges (whereof 43% positive). Among those we observe 1472 similar edges of 
which 1470 (99.9%) had the same signs in the two networks. Thus, one main effect of the LAD objec-
tive is an increase in the number of predictors, which in this case roughly coincide with the maximum 
number of edges ( )K K nout- × » 26000 . Hence, the average in-degree is about 62, which is far less 
than a complete network has. Still, though the magnitude of the L1-shrink is low.

In case one wants to prune the network, one can utilize the common rule of thumb of choosing the 
smallest parameter l

i
 corresponding to at most one standard deviation of the prediction error above the 

minimum (Hastie et al. 2001). This might be more important here than in the more common least squares 
case due to the flatness of the LAD error function in (7). A flat error function means that many values 
of the error function have indistinguishable function values when adding noise. Thus, due to multiple 
testing, the observed minimizer is biased towards the middle of the testing interval of Li , which prob-
ably means a denser network.

Finally, we note the prior knowledge incorporation in the LAD setting resulted in the optimal network 
corresponding to aCCassoc

= 0 37. (all othera
i
= 0 ), which can be seen as a compromise between the CCas-

soc prior and the expression data. Thus 51.9% (13162) of the edges have a cell cycle associated gene as a 
regulator and 24.5% (6210) of the edges overlap with the network corresponding to all ai

= 0 , leaving 
31.8% (8062) not recognised in any of the former two. Evidently, this procedure makes it possible to 
discover novel edges and at the same time preserve edges obtained from multiple sources.

Figure 1. The leave-out function,L( )a , displayed as a function of the influence parameter a . As we 
can see it is only the CCassoc that lowers L( )a  detectably and the minimizer a

CCassoc
= 0 37.  has a 

function value of 0.0234.
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concluSion

We have outlined a computational efficient optimization approach to the reverse engineering problem of 
gene regulatory networks, including a careful model selection. Furthermore, we have performed a case 
study on a genome-wide scale to demonstrate its practical applicability. The presented methodology is 
able to take into account various types of prior knowledge to overcome the data deficiency problem. 
The prior knowledge is incorporated at several stages, from the usage of double L1 regression to the 
integration of multiple large-scale data sets. The use of a L1 restriction on the predictor coefficients 
origins in the common belief that GRNs have a sparse nature, while the usage of the least absolute 
deviation, LAD, in place of least squares, as objective function, arise from the finding that the error 
distribution follows a double exponential (Laplace) form. However, the most important contribution of 
this chapter is to introduce a “data driven” incorporation of multiple data sets, where each data set only 
is included to the extent it decreases the expected prediction error, which is found from cross-validation 
procedures.

For the case study, we explored data from the yeast cell cycle. Interestingly, we observed that the 
ability of being associated to the cell cycle is by itself the single most important prior knowledge to 
incorporate. However, it is evident that the preference of these regulators should not be complete, since 
we observe intermediate incorporation values to be optimal. This emphasizes the need of using “soft” 
prior knowledge, contrary to some earlier works (e.g. Luscombe et al. (2004)). Indeed, the networks 
corresponding to indiscriminately incorporation of prior knowledge exhibited the largest prediction 
errors, even worse than no prior information at all. Eventually, in the incorporation steps, we found the 
optimal network to rely partially on genes annotated to the cell cycle as regulators. This network has 
many edges similar to its sources, but remarkably includes also a substantial portion (31.8%) of novel 
edges.

Figure 2. The leave-out function,L( )a , displayed as a function of the influence parameter a , when 
a

CCassoc
= 0 37.  is fixed. No lower value of the leave-out function can be obtained by including more 

prior knowledge.
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Furthermore, we incorporated non-linearities as sigmoid basis functions into the model, which at the 
end turned out to be neglected in our case study. One interpretation of this result may be that the linear 
functions are fine for single conditions and non-linearities will be of more importance when incorporat-
ing more heterogeneous data sets. This may be, since a linearization of a non-linear function can work 
accurately for a particular condition, but differently for combined conditions. Hence, at the same time 
when considering the effects from various conditions it may be of greater importance to work with 
non-linear models.

future reSearch directionS

The whole field of reverse engineering of biological networks still suffers from the absence of com-
mon measures for comparing different algorithms. Some attempts, though, have been made to arrange 
objective competitions, e.g., the DREAM (2007) initiative. However, if these competitions present real 
data, there are the obvious risks both that data are recognized and that the true network is too poorly 
understood (containing both false positives and false negatives) to act as a gold standard. On the other 
hand, an in silico network might be too unrealistic, possibly missing features evolutionary developed but 
yet not recognized by researchers, and certainly not taking into account all well known features of gene 
regulation. Nevertheless, a very important step forward would be to have a common standard against 
which most of the research community agrees to assess their algorithms.

The methodology presented here is promising for reverse engineering of large-scale GRNs, but there 
are several possibilities for improvements. One such future research direction comes from the observa-
tion that even though we use the LP simplex method and start from nearby solutions, the optimization 
takes time. Especially, the local optimization procedure with respect to li is time-consuming and not 
always satisfactory. Therefore, fast procedures to find optimal li  taking into account the specific prob-
lem structure -as the LARS algorithm does for LASSO type problems- would drastically increase the 
performance of the algorithm. To take into account as much data as possible, a mixture of weighted L1 
and L2 norms is desired both in the objective function and in the regularizer. Another important property 
may be the ability to use warm start strategies both for tuning the mixture of the priors, and to speed up 
Cross Validation. A step into this direction is the R-package by Friedman et al. 2008 which enable the 
user to follow a solution path when increasing the constraint for a mixture of weighted L1 and L2 norms 
this procedure within the realm of weighted least squares.

Yet, another direction concerns the lack of improvement for most of the prior knowledge. Whether 
it depends on the type of prior incorporated, low quality data (the Spellman data set is known to be of 
limited quality (see e.g. Filkov et al. 2002) and is rather old) or something else, is an important issue, 
but beyond the scope of the present text. It is often assumed that increased structural information, such 
as the interaction type prior knowledge, leads to better reconstruction of the networks. Here, we can in 
the case study observe the converse for most types of prior information. It also brings up the important 
issue of how the error function should be constructed. In this chapter, we only relied on the microarray 
data to estimate the error, but this is somewhat problematic since we know that these data are extremely 
noisy, and if we believe in other sources they could possibly stabilize the error function. How this should 
be performed is an important still open question.
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Finally we mention it would be of interest to explore how non-linearities and multiple conditions 
could improve the reverse engineering of the network and if the prior knowledge can be refined in a 
biologically motivated way to influence the final model. All this together would greatly increase the 
quality of the inferred networks and thus make them more tractable for the goal of understanding the 
biology on a systems level.
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key terMS and definitionS

Data Integration: Is the merging of data stemming from different sources, such as expression data 
and TF-binding data.

Prior Knowledge: is our prior belief of a certain event. In this chapter we fuse different pieces of e.g. 
structural data into our prior belief, which enables the integration of structural and expression data.

Soft Evidence: is the concept to take into account multiple pieces of evidence as uncertain knowledge. 
We use the concept to stress the fact that we are using the multiple prior edge information to increase 
the probability for an edge, and not merely as filters.

Least Absolute Deviation (LAD): is here the minimization criteria which we base our solutions on. 
It is known to be more robust towards outliers than the more popular least squares method.

Sparseness: in a regulatory network context means that there are relatively few interactions per 
gene.

Linear Programming (LP): denotes the optimization problem where the objective function is 
linear and there are linear constraints. Efficient optimization algorithms for solving LP problems exist, 
especially the simplex method.

Warm Start: Optimization is a starting of the optimization algorithm in a state where it is close to 
the optimum.

endnoteS

1  Note that the distribution of the model parameters is in a Bayesian notion stochastic, hence intro-
duces the regularization a prior distribution of the parameters. A non-Bayesian notion simply indi-
cates that our regularizer is based on the assumption that the model parameters follow a particular 
distribution.

2  By associated to the cell cycle we mean annotated to a biological process term with the relation 
“is_a” or “is_part_of” the GO-term 7049. The cell cycle annotation study is still an ongoing research 
project (Marguerat et al. 2006), and GO has the intention to be an updated data source.

3  Recently Friedman et. al. (2008) implemented the elastic net combined with weighting of priors 
and weighted regression, which also enables the outlined methodology within a quadratic objec-
tive.
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In this chapter, we describe the use of evolutionary methods for the in silico generation of artificial 
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showing the importance of detailed knowledge of all processes, especially the regulatory dynamics of 
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during the evolutionary process, and we suggest its implication to the mutational robustness of the 
regulatory network which is further supported by evidence observed in additional experiments.
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introduction

In biology, organisms consist of large numbers of heterogeneous elements existing on many spatial 
scales that nonlinearly interact physically and chemically on various timescales. Such interactions are 
the result of natural selection, the outcome of evolutionary process as driven by genetic variation and 
environmental change. It is one of the aims of systems biology to understand the principles of these 
interactions holistically and thereby to clarify the relationship between the microscopic regulatory dy-
namics and the macroscopic phenotypic properties of organisms. Knowledge from evolutionary history 
alone is insufficient for this endeavor because on the one hand it is not available in sufficient detail, 
and on the other, we can only infer the dynamics from extant organisms. Consequently, our knowledge 
about evolutionary lineage with regard to the dynamic properties of organisms is principally incomplete. 
Computer simulations and especially simulations of the evolutionary development of organisms provide 
us with a powerful tool to address this problem. Although having the inherent drawback of substantial 
simplifications of the processes involved, computer simulations of development offer us the possibility 
to study the complete dynamics that evolve during the artificial phylogenetic and ontogenetic history of 
organisms. Furthermore, in addition to studying known biological systems and processes, we can also 
study possible alternatives that – at least to date – we do not see in nature, which has been nicely phrased 
as studying “life as it could be” (Forbes (2000)). Also the seemingly apparent drawback of simplifica-
tion can actually help us to not get lost in too much biological detail and therefore allows us to see the 
broader “systems” picture more clearly.

Therefore, we should regard computer simulations as powerful tools to investigate facts that are not 
available from analysis of biological data alone. Of course, the connection between the computational 
model and the real biological system, i.e., the abstraction level of the model, needs to be taken into careful 
account when interpreting the results. For example, in a computational model of evolutionary develop-
ment, it is possible to observe all dynamics that take place on a simulated GRN, and at the same time all 
simulated GRNs can be put into their evolutionary context. This is possible because the data of such an 
experiment is at the same time complete and limited with regard to its complexity, making it possible to 
perform a thorough analysis. However, these observations are coupled to the simulation environment 
and it will be very unlikely that the simulated processes will fully mirror those that evolved in nature. 
What can be found however, are principles, for example, the role of feedback. Possible reasons for the 
emergence of such principles can then be carefully deduced from the computational models.

This chapter will review approaches to the simulation of the evolution of GRNs for systems biology, 
and will present a method for the simulation of evolutionary multicellular development. We will show how 
models are chosen in a task specific manner, such as evolving GRNs for certain behaviors like cellular 
clocks/oscillators. We then discuss the scientific value of these approaches.

The chapter is organized as follows: Following this introduction, we will briefly describe standard 
methods in biology used to collect data about GRNs from organisms and how knowledge from the data 
is extracted. We will then discuss the limitations of these approaches to biological research in general and 
thereby elucidate the underlying motivation in using computational models, emphasizing especially the 
expected benefits. After a review of different models used for simulated evolution of GRNs, we will describe 
a model of evolutionary development that we focus on in our own research, with an emphasis on the choice 
of abstraction level. An analysis made on evolutionary runs yielded from this model producing stable cell 
growth, is given as an example. The importance of understanding the features of evolved individuals in 
terms of both the dynamic structure of GRNs and their evolutionary history will be highlighted.
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Finally, we will discuss the use of computational models of evolutionary development in biological 
research as an important approach to understand the systems-aspect (e.g. Kitano (2002)) and point out 
possible future research directions.

reconStructing gene regulatory 
networkS froM biological data

introduction

If we want to infer and assess GRNs for computational analysis from biologic data, we need background 
knowledge about gene regulation and the common methods for building up vast databases on transcrip-
tional and posttranscriptional interactions. Therefore, we will briefly describe how gene regulation 
takes place in eukaryotic cells and then introduce methods commonly used to obtain information about 
gene regulation from biological organisms. We will then review a publication describing concisely, how 
such data can be integrated in a computational framework, to yield a systems-level understanding of the 
organism from which the data is derived.

Molecular basis of gene regulation

This section gives a short outline of the processes considered as the molecular basis of gene regulation. 
For a more complete description, see Alberts et al. (2002) and the further reading section. The DNA 
encodes all information necessary for the construction and maintenance of the associated organism. 
Hence, it can be seen as a blueprint, which encodes a temporal and spatial sequence of events that take 
place during development. Each cell in a multi-cellular organism contains a copy of the same DNA, such 
that the information is present and can be processed in a parallel manner by each cell separately. The 
DNA is structured into genes, which in a eukaryotic organism, are typically composed of five distinct 
functional regions (see Fig. 1a)):

1)  a promoter region,
2)  the transcription initiation site,
3)  the translation initiation site,
4)  a sequence of exons and introns,
5)  a translation termination site and
6)  a transcription termination site.

The process of transferring the information encoded on the DNA to the organism starts with the 
transcription of genetic information (Fig. 1b). The promoter region is responsible for the initiation of 
the transcription process. The RNA polymerase, an enzyme which transcribes the genetic information 
on the DNA into RNA so that it can be further processed, binds to the DNA at the promoter region. The 
transcription process is then started at the transcription initiation site. The RNA polymerase shifts along 
the DNA and copies the information into an RNA strand known as nuclear RNA (nRNA). This strand of 
RNA is then further processed to remove certain regions referred to as introns and re-align the remaining 
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regions (exons), which is called splicing. The resulting RNA, called messenger RNA (mRNA) is then 
transported to and translated on the ribosomes. Ribosomes are complexes of RNA and proteins, which 
specifically detect nucleotide triplets in the mRNA and accordingly align a sequence of amino acids, 
which then arrange into a three dimensional structure (folding) thus forming a protein. This protein serves 
as a basic building block for the cell. E.g., it can become part of the cell membrane or form complexes 
with other proteins. It can also serve as a signal, which means that it gets involved in the transcription 
process of genes as explained as follows.

The RNA polymerase needs special proteins to be able to bind to the promoter region of a gene to 
begin transcription. These proteins are called transcription factors (TFs). There are specific DNA sites 
where they can bind to at the promoter. These sites can be distinguished into enhancer sites and silencer 
sites. Enhancer sites attract those TFs, which ease the binding of RNA polymerase to the DNA. If such 
a TF is present, the transcription process can be initiated. A silencer can be seen as an inverse enhancer: 
If the TF is present, the probability of transcription is reduced.

The TFs that bind to enhancers or silencers are usually gene products themselves. Therefore, a regulatory 
link can exist between genes: the product of one gene enhances or silences the activity of another gene, 
which in turn can regulate the activity of another gene and so on. The resulting interaction network can 
be depicted as a graph, where genes are represented as nodes and TF-promoter interactions are depicted 
as the edges. The graph naturally consists of two different types of unidirectional link: activation and 

Figure 1. a) A schematic structure of a eukaryotic gene is depicted (compare Gilbert (2003)). Transcrip-
tion and translation initiation sites are denoted by red lines. b) The process of transcribing the DNA, 
then removing the introns and translating the mRNA into a protein, is outlined.
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inhibition, depending on the TF and its binding site. We are interested in the resulting gene regulatory 
networks because they are thought to be responsible for the different complexities of organisms; com-
plexity seems to depend not only on the number of genes that an organism possesses but more crucially 
perhaps, on how those very genes should interact with each other.

The process of transcription and translation, which includes both biochemical and biophysical pro-
cesses, is very complex and poses a big problem for computer simulations. We might ask, what level of 
detail does our model require in order that the essential properties of the modeled system can be plausibly 
captured? For example, is it important to model transcription and translation separately when looking 
at coordination of cellular processes such as cell cycle and division, or can we just build a model that 
has a direct DNA sequence-to-protein mapping? These questions are not trivial and thus need to be kept 
in mind when interpreting the results of the respective simulation. Of course, the level of abstraction 
depends on the scientific questions that are to be addressed.

obtaining grn data from biologic organisms

A variety of methods exist for investigating the processes involved in gene regulation and for collecting 
data on the GRNs of living organisms. We will introduce two popular methods that are typically em-
ployed. The first method is used to indicate the activity level of genes in a cell during a certain cellular 
condition, while the second method is used to discover binding events of TFs to particular regions on 
the DNA. For a thorough description of analysis methods, see the dedicated further reading section and 
Gilbert (2003).

The microarray technique allows for the monitoring of gene activity (level of mRNA) of many dif-
ferent genes in cells under different conditions. A DNA microarray is a collection of small DNA spots 
attached to a solid surface (e.g. glass). Each spot has many copies of identical molecules representing 
one gene. They are either genomic in which they are part of the respective gene taken from a biological 
individual, or they are short stretches of nucleotides corresponding to part of the gene. The gene has to 
be identified beforehand and the corresponding molecule must be put in place, such that complementary 
RNA or complementary DNA derived from experiments can be added for hybridization (selectively 
connecting complementary sequences). Three steps are performed during microarray analysis. First 
and foremost, RNA from a cell in a certain condition is extracted. This RNA represents the activity 
states of the genes, since mRNA strands that result from transcription are only synthesized if a gene is 
active. The second step consists of reverse transcription from RNA into complementary DNA (cDNA), 
where nucleotides are labeled with a fluorescent dye. Then, the cDNA is put on the microarray and left 
to hybridize with the prepared DNA on the DNA spots. The cDNA will only hybridize on those spots 
containing its complementary sequence. The amount of hybridized cDNA will be proportional to the 
number of RNA molecules which were initially present in the cell. Finally, a laser is used to excite the 
dye until it fluoresces, the intensity of which corresponds to the original activity of the respective gene 
in the original cell. The microarray technique allows for a surveillance and comparison of a large amount 
of genomic data, which yields both gene activity information under different conditions and information 
about the regulatory influence of proteins on a large genetic scale.

Chromatin immunoprecipitation (ChIP) is a method to monitor the actual binding of TFs to the DNA 
in vivo. Proteins that are bound to the DNA, which is necessary if they are to act as TFs, can be chemi-
cally immobilized and fixed to the DNA (cross-linked). This makes it possible to keep the association 
between protein and DNA sequence intact for readout. The readout is performed by breaking the DNA 
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into small fragments while keeping the proteins attached. The types of protein attached to the DNA 
fragments can then be isolated and analyzed separately. The DNA fraction that is still bound to these 
proteins can be read out and the respective sequence can be traced to the genetic code of the organism. 
In this way, the binding site of a protein can be found. A combination of this method with the microarray 
technology yields a powerful tool for detecting TF-gene-interaction.

Babu et al. (2004) give a review of different analyses performed in biology research -- using data 
similar to that described above -- in order that the structure of GRNs in simple organisms can be inferred. 
The knowledge that can be extracted from biological data with respect to dynamical properties and the 
evolution of such networks is addressed. In the presented approaches, both local and global structural 
characteristics of GRNs are analyzed. The article gives a good overview about the possibilities and 
limitations of the methods that are applied in biological data analysis.

analysis of regulatory network dynamics from biological data

The analysis of Nicholas M. Luscombe et al. (2004) shows nicely the importance of investigating the 
dynamical changes of links in GRNs during the lifetime of an individual when identifying their role in 
the structuring and maintenance of the organism. Also, their results show a clear necessity in critically 
reviewing the information that is obtained by different types of analysis of biological data, on the basis 
of knowledge about conditions and methods applied during data collection.

Luscombe et al. begin their analysis by assembling data for a static representation of known regula-
tory interactions in Saccharomyces cerevisiae (yeast). This data is available from different publications; 
essentially, it describes 7074 regulatory interactions between 142 TFs and 3420 target genes. The dy-
namic perspective is achieved by separating the gene expression data into five different conditions that 
typically occur during the lifetime of yeast: cell cycle, sporulation (production of spores), diauxic shift 
(a shift between growth phases), DNA damage and stress response. This separation leads to a dynamic 
view of a biological network on a genomic scale, since these five conditions are a temporal separation 
of cellular conditions.

The analysis of the five resulting networks shows that the different conditions all affect the network 
properties on both local and global scales. Firstly, half of the target genes are only expressed in one of 
the five conditions mentioned above. A closer inspection of the networks leads to a separation of charac-
teristic networks which can then be linked to two different kinds of condition. The authors refer to these 
conditions as endogenous processes, which reoccur periodically as part of ‘normal’ cell life (e.g. cell 
cycle), and exogenous processes. These processes are binary events triggered by external factors such as 
DNA damage or stress response. Topological measures applied to these different networks change con-
siderably between the two stages. The authors analyze in-degree, out-degree, path length and clustering 
of the networks, and conclude that depending on the type of condition the cell is in, an optimal strategy 
is chosen to either react quickly (exogenous conditions), or robustly (endogenous conditions). These 
two strategies necessarily show different network topologies. The second analysis deals with motifs, 
which are local features that further serve to characterize network behavior. Again, the relative number 
of characteristic motifs, such as the single-input motif, the multiple-input motif and the feed-forward 
loop motif, change considerably under different conditions.

Statistical analysis yields information on the presence of hubs across the conditions. A regulatory 
hub is a TF that regulates a dis-proportionally large number of target genes. The authors find that most 
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hubs (78%) are transient across conditions, which means that they are only strongly influential in one 
condition, and less so in the other conditions.

The implications of this work to systems biology research are twofold. Firstly, the structure and func-
tion of GRNs of biological organisms both change during the lifetime of an individual. Therefore, in 
order to gain insight into biological systems on a holistic level, dynamical models for the representation 
of such systems and the methods for their analysis need to be created that can incorporate this important 
aspect. Secondly, independent of whether this data serves as the basis for the design of a technical ap-
plication, or whether a computational model is to be designed for additional research, (e.g. evolutionary 
studies from a systems point of view), there is a clear necessity to understand and assess the fundamental 
conditions and assumptions, from which the biological data is derived, for example, the condition a cell 
is in, when GRN data is collected.

computer Simulation tools in Systems biology

The use of computers gains importance and leads to new insights in biological research. As seen above, 
it is common to use computational tools for the statistical analysis of network data, gathered from 
biological experiment. Another use of computers in systems biology is to replace the biological experi-
ment in part or completely by simulation. The reasons for choosing a computer simulation instead of 
a wet lab equivalent is manifold: biological experiments are often complex and expensive, or they are 
sometimes very sensitive to contamination such that only a small percentage of experiments actually 
yield any results at all. Also, many processes in vivo have their own timescale, which often gives rise 
to a problem of observation (both cases: if the process is too fast, observation is problematic due to the 
time resolution of the analysis tools, or if it is too slow, it is often not feasible to study processes over 
several generations of a species, for example). Another crucial point is the general ability to completely 
monitor a complex living system: measuring all processes and influences that might be the reason for 
certain observations is often a practical impossibility. Problematically, in vivo experiments often only 
investigate a small fraction of cellular process while other cellular activities, which would ideally be 
isolated and separated in order to remove their influence, cannot be easily stopped.

By contrast, computational models are cheap and clean, which usually means that they do not need 
expensive hardware and are not distorted by extraneous influences arising in the laboratory. Usually, 
a computational model can be chosen having a trade-off between speed and accuracy, which makes 
experimental research fast, and at the same time provides the ability to critically assess the results re-
garding significance. Another very important point is the possibility to store the complete data set from 
an experiment so it can be accessed multiple times for analysis. Thus, experiments are traceable, and 
repeatable in exactly the same way. Also, the well defined number of interacting components allows for 
a limit in complexity of the experiments, which eases any subsequent analyses.

The major problem for such computational models lies in the choice of the level of abstraction. 
This choice necessarily neglects some parts of the biological system, which in the worst case might be 
a component that strongly influences the process under investigation. Hence, a critical assessment of 
simulation results must be performed: firstly, by statistical analysis and secondly, by observation and 
validation in vivo.

Computational method in systems biology leads to a new and exciting opportunity for research: 
the observation of evolutionary process becomes tractable. Simulated evolution, based on simulated 
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mutation and selection yields a powerful tool to investigate the reasons for the formation of different 
features in biological systems, such as the evolutionary emergence of motifs (e.g. feed forward loops) 
in GRNs and as an evolutionary basis, it gives credence to the discussion about the omnipresence of so 
called scale-free topology in biological networks (Keller (2005)). These simulations can either take as a 
starting point for a repeated evolutionary cycle of mutation and selection, a model of the GRN of a real 
organism (e.g. derived from bacterial DNA), or start with a completely random initialization.

In the following section, we will review a few interesting approaches to evolving artificial GRNs 
from scratch to produce biologically motivated signaling behaviors. Then we will present a model that 
we developed for the investigation of evolving stable growth in multi-cellular organisms.

coMPutational ModelS for the eVolution of grnS

introduction

Having presented some of the computational methods for analyzing GRNs that are employed in biology 
research, we now turn to a more abstract use of computer simulations for the integration of an evolu-
tionary perspective into GRN analysis. In doing so, we will review a few works which are all similar 
in approach but in contrast to the work described in the last section, they use computational models 
for the generation of experimental data. We briefly introduce works of interest for reference, and then 
concentrate on two articles that show nicely the evolution of artificial GRNs to carry out specified func-
tions. These works are of great interest to researchers both in biology and in computer science, since on 
the one hand, they explore the space of possible solutions of GRNs that are evolvable in silico, and on 
the other, they address basic biological questions such as robustness of GRN dynamics and functional 
properties of GRN motifs.

It must be kept in mind however, that the simulated evolution in these cases usually takes inspiration 
from the evolutionary computation paradigm (Fogel (1995)) rather than from a biological, population 
genetics point of view. Accordingly, an abstract view of encoded information, where mutation is rep-
resented by an uncorrelated random change, is often preferred over a more biological perspective; in 
such view, there is no consideration of environmental constraints, genetic drift and linkage influence 
on the evolution of genotypes (Lynch (2007)). To account for such effects in computer models of GRN 
evolution, and to investigate the resulting features, for example, allelic diversity in populations, a more 
detailed simulation of environmental diversity, genetic representation and mating behavior would be 
necessary.

designing grns with Specified function

Different approaches exist to model GRNs which exhibit a particular functionality. Chen & Wang (2006) 
pursue an approach based on mathematical modeling of GRNs. Their model is based on a priori knowl-
edge about the structure of functional modules such as bistable switches and oscillators. They make a 
theoretical analysis of the presented networks to determine the dynamic behavior and thus give precise 
guidelines for the artificial creation of GRNs with a desired behavior.

Evolutionary methods for the design of GRNs are either employed in artificial life experiments or 
in biology research. An artificial life approach is given by e.g. Rudge & Geard (2005), where a slightly 



506

Dynamic Links and Evolutionary History in Simulated Gene Regulatory Networks

modified artificial neural network replaces the usual GRN model for the control of multicellular growth. 
It is shown that the network can evolve towards controlling the growth of leaf-like structures.

In the following section, we will concentrate on two representative biologically motivated models 
that show nicely, the use of computational methods to evolve GRNs with a specified function.

Evolving Switches and Oscillators in silico

An interesting application of simulated evolution of GRNs is presented by Francois & Hakim (2004). 
Francois and Hakim investigate the evolution of small gene networks which have the ability to perform 
a very basic task. They use simulation in silico without the introduction of a priori knowledge about 
the topology of these networks. The goal of this research is to understand the structure and dynamics 
of small functional building blocks in GRNs, since the investigation of the function of a given motif, as 
well as the finding of a suitable motif which should perform a given function, is not as straightforward 
as it seems. Usually, only a part of the interactions in a regulatory motif are known, and to realize a 
given function, a multitude of motifs could be used, sometimes even depending on the rate equations 
used for the computational model.

Francois and Hakim use the simulated evolutionary process to determine possible motifs for a given 
function. They choose two target functions, namely an oscillator and a bistable switch, which they select 
for, during evolution. A bistable switch is a small network motif consisting of at least two components, 
which has two different attractor states. Depending on the initial condition, the system converges into 
one of the two states.

The simulated genetic networks in the model of Francois and Hakim are defined by a number of genes, 
proteins and deterministic rate equations. Interactions take place in the form of activation or repression 
of gene expression through proteins and posttranscriptional interactions between proteins. The simula-
tion starts with two genes and randomly drawn production and degradation rates. Evolution advances 
by creating a population through mutation, evaluation and selection. Mutations can take place in the 
form of a change of production or degradation rate, a change of reactions and their kinetic constants, a 
creation of a new gene, creation of a new interaction between protein and gene promoter and by addition 
of a posttranscriptional reaction.

The results presented by Francois and Hakim show that both switches and oscillators are evolvable. 
Furthermore, the evolved GRNs are able to perform for a wide range of input parameters, and they ex-
hibit a good performance in the presence of noise. The authors also identify motifs in biological GRNs 
that resemble those found in their in silico evolutionary process: Bistable switches with a comparable 
architecture are found in the lac-operon, and in Xenopus oocyte maturation under special conditions. 
Another evolved bistable switch can be compared to a motif found during B. subtilis development. One 
of the oscillators which evolved in the experiments can be matched with the architecture of a biological 
circadian clock.

However, evolving sustained oscillatory dynamics based on computational models of gene regulatory 
networks has been found to be nontrivial. To address this problem, various fitness functions to facilitate 
the evolution of oscillatory dynamics have been suggested, see e.g., Paladugu et al. (2006) and Chu 
(2007). Our recent work (Jin & Sendhoff 2008) has also disclosed that it is quite difficult to evolve stable 
oscillation for gene regulatory models using differential equations based on a Hill function. However, 
it becomes much easier if a step function is used.
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In general, the above work sheds some light on how the problem of designing networks with a desired 
behavior can be tackled, and how it is possible to relate in silico evolved networks to biology. If such 
comparisons are biologically sensible, it might also be useful for answering questions about how such 
motifs evolved in biology, and especially to find evolutionary advantages in comparison with other re-
alizations of similar functions that are not seen in biology, i.e. which occur during evolution and at least 
partly exhibit the desired behavior, but still are not persistent throughout further generations.

Evolving Circadian Clocks

Here, we review an application of a computational method to the investigation of a typical biological 
phenomenon, namely circadian clocks. Circadian clocks are biochemical processes inside cells that emit 
periodical behavior and are tuned to the terrestrial dark-light cycle of day and night. Knabe et al. (2008) 
study the simulated evolution of artificial GRNs with the evolutionary goal to realize simple models of 
biological clocks which respond to periodic environmental stimuli. The investigation is based on simula-
tions which consider different external conditions in the evolutionary process. The influences of a noisy 
periodical input as well as blackout periods, where the external signal is not present for a certain amount 
of time, are investigated. Also, different types of external stimuli are simulated, such as a sine curve input 
signal and a pulse shaped input signal. The approach is used to address questions about the necessity 
of external signals for such periodic processes in nature, as well as questions about the evolution of the 
ability to adapt to perturbations in cycle length, phase shift and resetting of the external signal.

The experiments performed are in silico simulations of evolutions of single cell organisms. An artifi-
cial DNA, which encodes genes with TFs as gene products as well as cis- regulatory modules that bind 
TFs as enhancers or silencers, forms the basis for the evolutionary runs. The input signal is presented as 
a periodic modulation of one TF, while another TF is seen as the output of the system.

For the experiments, an initialization of the artificial DNA with random values is performed and a 
standard genetic algorithm with simulated mutation and crossover is used. The simulated evolution then 
yields artificial GRNs, which have the ability to produce periodic behavior on the basis of a periodic 
input, independent of the type of input (sine/pulse). Results are e.g. the possibility to evolve periodic 
behavior with and without phase shift between input and output, and internalization of the periodic 
rhythm such that in a blackout phase of the input, the output continues with periodic behavior. Interest-
ingly, the internalized rhythm has a slightly smaller period than the external one, in the case when the 
external signal is switched off. This phenomenon is similar to many biological organisms, which turn to a 
slightly different rhythm of day and night activity if an external daylight stimulus is not present. Another 
interesting finding is that evolved solutions are able to cope with a phase resetting in the external signal, 
even if this condition has not been encountered during the evolution of the GRNs. Therefore, coping 
with phase resetting seems to be an inherent ability of these successful circadian clocks. However, in 
which way and how strong the evolved GRNs rely on input from the environment turns out to be strongly 
dependent on the conditions under which they evolved, e.g. the presence of noise or a change of input 
signal from sine wave to pulse.

This kind of research shows nicely, how the simulated evolution in silico yields new insights into 
biological problems, and now makes it possible to hypothesize mechanisms underlying the features of 
biological circadian clocks and also to specifically validate these results in vivo. The simple GRN model 
allows for fast computation and easy observations of the dynamic processes, as well as the evolution-
ary steps which lead to them. Manual changes, such as switching between sine and pulse input is easily 
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achieved, and easy repetition of the experiments makes it possible to perform statistical analysis. The 
insight into evolutionary history, which can only be gained by such computational experiments, is a new 
perspective that could greatly facilitate GRN analysis in biology in future.

eVolVing Stable Multi-cellular deVeloPMent

introduction

We now present our work on modeling and evolving GRNs in silico. It is inspired by an evolutionary 
development model presented by Eggenberger (1997). Modeling evolutionary development has recently 
been of growing interest to the engineering and computer scientist community, since it is regarded as a 
possible approach to the design of complex systems. Related approaches can e.g. be found in Bowers 
(2006), Bentley and Kumar (1999), Federici (2004) and Miller (2003). We want to use simulated GRNs 
to control multi-cellular growth, since multicellularity poses many unanswered questions, e.g. how is the 
timing of events in a multicellular organism coordinated? How is cellular differentiation accomplished? 
Which mechanisms underlie stable development and finite growth? In the following, we will investigate 
the possibility to model a limited cell growth, which means that a finite number of cells is produced and 
no further cellular division occurs within a limited period of time. This limited growth is achieved when 
the dynamic system of the gene regulatory network reaches a stable attractor, which is a nontrivial task 
in simulated multi-cellular development.

The possibility to investigate dynamic and static features of simulated GRNs enables us to perform 
an analysis, which in an in vivo experiment would be impossible: we screen a number of individuals 
and their offspring throughout the evolutionary process by recording the genetic interactions in every 
developmental timestep. These interactions represent the complete dynamic behavior of the GRNs. We 
search for dynamic negative feedbacks, and investigate their role in mutational robustness. Another very 
recent work by Kwon and Cho (2008) investigates the link between feedback and robustness. However, 
the results do not take the evolution of networks into account. Interestingly, the role of negative feedback 
without the presence of evolution seems to be the exact opposite as described in the following.

We organize the section as follows. First, we describe the used genetic representation in detail and 
continue with a description of the cellular model for multi-cellular growth. Then we will discuss the 
experimental setup together with our visualization and analysis methods. Finally we discuss experi-
mental results which elucidate the role of an emerging feature in the evolved GRNs, namely negative 
feedback.

gene regulatory Model for cell growth

The model overview in this chapter is kept concise to allow for a focus on description and analysis of 
simulation results and their implications. For a more thorough model description, please refer to Steiner 
et al. (2006; 2007).

In the model, cellular growth is controlled by a genome stored inside a virtual DNA (vDNA), a copy 
of which is available for translation in all cells of an individual. This genome consists of regulatory 
subunits (RUs) and structural subunits (SUs), which are initially lined up randomly. A functional unit 
of this DNA, called a gene, is composed of a group of SUs and the preceding RUs. The SUs encode 
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actions that a cell should perform, while the RUs determine whether a functional gene is active or not. 
The actions encoded for in the gene will be performed only if it is active.

An illustrative example of a genome with three genes is given in Figure 2. Note that the RUs behind 
the last SU and the SUs in front of the first RU are ignored during the developmental process. SUs and 
RUs as building blocks of the vDNA are both represented as vectors of double precision values. The 
following description clarifies the setup:

Structural subunits: A SU encodes the action to be performed by a cell, and contains the pa-• 
rameters that specify the action. Possible actions include cell division, production of a diffusing 
chemical, and, the transcription factor (TF) for cell-cell signaling, and production of Cadherin 
molecules on the cell surface, which determine cell-cell adhesion forces. For division, only one 
value inside the SU is used, which codes for a division angle. A TF is encoded by four parameters: 
a label, a production rate, a decay rate and a diffusion rate. Cadherin molecules are encoded by 
one parameter which represents a type. Adhesion force calculation is then based on the similarity 
between Cadherin types on different cell surfaces.
Regulatory subunits: Two types of RUs are used in our model, either activating (enhancer) or • 
repressing (silencer) the expression of a gene. RUs can sense the presence of certain types of TFs 
in the vicinity of the cell. If the label of a TF is affine, i.e. numerically close to an associated label 
within the RU, and if the concentration of the TF lies above a threshold, which is also encoded in 
the RU, an activity value is determined for each RU. All activating (= positive sign) and repres-
sive (= negative sign) activity values belonging to the same gene are used to determine the overall 
activity of the gene.

Figure 2. An illustrative vDNA with three genes, each consisting of one or more structural subunits (SUs) 
and regulatory subunits (RUs). Two different kinds of RUs exist: silencer RU- and enhancer RU+. A SU 
coding for the production of a transcription factor (TF) is denoted by SUTF, a SU coding for a division 
by SUdiv and a Cadherin producing SU by SUcad.
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cells and their interactions

We define the simulation area for cellular growth by an equally spaced 26 by 26 grid with a step size of 
0.5, on which the concentrations of the TFs are calculated. Cells are modeled as spheres with a radius of 
one, and are not allocated on the grid, contrary to the TFs. They interact with each other by reading TFs 
from and releasing TFs to the nearest grid points and by cellular motion through rigid body interactions 
coupled with adhesion forces. For details of the implementation and the mathematical formulation of 
cellular interaction, please refer to Steiner et al. (2007).

The ability of TFs to diffuse is inspired by the biological way in which cellular communication is 
achieved: The release of signaling molecules by one cell and their diffusion to neighboring cells, where 
they trigger a signaling cascade to transfer the signal to the inside of the cell and thereby regulate gene 
expression, results in so called positional information. This information from the neighborhood causes 
different genes to be expressed in different cellular contexts. Note that for simplicity, instead of simulat-
ing signaling cascades, we use the concentration of a TF at a cellular position directly as ‘input’ to the 
RUs of the genes.

time Scales and Sequence of events

In the beginning of development, a single cell containing the vDNA is placed at the center of the simula-
tion area. To start the growth process, an initial TF (maternal TF) is released, which maintains a constant 
concentration in the whole area over the entire developmental time. The initial TF concentration in our 
model does not provide any positional information. Rather, it fulfills the minimal requirement for start-
ing a developmental process since it can be seen as a constant environmental influence (e.g. in contrast 
to a periodically changing environment).

In each developmental step, the following events take place. Firstly, the translation of the DNA is 
initialized for all existing cells. Secondly, if the TFs in the vicinity of the cell are affine to a RU and 
exceed the threshold encoded in the RU, they activate the gene, and the action that the gene encodes is 
executed. If a division gene is active, a new cell is placed inside the calculation area, close to its mother 
cell with an overlap. Finally, the position of all cells is updated to minimize overlap, and the diffusion 
simulation of the released chemicals is advanced in time. The whole process repeats until a termination 
criterion is met, i.e. until a stable state is reached or a maximal number of developmental time steps 
have passed.

the Selection

Having introduced our model, we will now describe the way we use this in silico simulation for the 
investigation of evolving GRNs.

From earlier investigations, we know that most randomly generated individuals cannot produce 
limited growth: either the initial cell does not divide at all, or new cells spread over the whole calcula-
tion domain in a cancer-like growth. Therefore the goal of evolution in our experiments is to find GRNs 
that result in a stable developmental process, which means that a stable state must be reached before a 
maximum number of developmental time steps is reached.

A development is stable, if it reaches a state where cells no longer move or divide, which can be 
identified by the observation that the concentration of the TFs either have decayed to a value below 



511

Dynamic Links and Evolutionary History in Simulated Gene Regulatory Networks

all activation thresholds, or have reached stable values, which indicates that no further change in gene 
activity can occur.

To have a function where fitness can increase continuously such that evolution can progress, the 
finite number of cells that make up the individual should be located inside a predefined diamond shape 
centered in the calculation area.

The evolution of limited cell growth is formulated as a minimization problem. The fitness f is defined 
by the following equation:
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where pi is a two-element vector containing the position of the i-th cell of the individual in the last 
time-step, N is the total number of cells, and ||.||1 denotes the 1-norm. In other words, the fitness is 
expressed by the number of cells outside a diamond shape around the center of the calculation area, 
deduced by the number of the cells inside the diamond shape. Constraints ensure that only individuals 
which produce stable growth are selected: Firstly, if the cells touch the border of the simulation area, 
the growth is presumably uncontrolled and infinite. Secondly, if the growth process does not reach a 
stable state within a maximum number of developmental time steps, it is not suitable for our purpose. 
In both cases, a penalty term of +700 is added to the fitness function, which is high enough to ensure 
that these individuals are discarded during the selection process. Note that in this setup, the smaller the 
fitness value, the “fitter” the individual is.

Static links in Simulated grns

We depict the static interactions of a GRN in Fig. 3. It belongs to a successful individual of an evolu-
tionary run described in the next section. The static interactions can be directly derived from the vDNA 
of an individual in the following way: The type of a TF is encoded in the SU of a respective gene. At 
the same time, each RU has an affinity parameter, which is compared to the type of a TF if present, to 
determine whether the TF can bind to the RU at all, independent of its concentration. This information 
leads to the static GRN: if the type of a TF encoded in a SU is close to the affinity parameter encoded 
in a RU, a regulatory link is drawn from the SU to the RU.

This kind of representation can be useful for an overview over possible interactions, although the 
generally high number of interactions makes it hard to analyze them in detail. In general, this repre-
sentation resembles the genome wide static interaction map which is commonly found in biology for 
different organisms such as yeast.

The major drawback of this visualization method is that it does not become clear, which interactions 
really become activated during development. The reason is that the real interaction between a TF-coding 
gene and a RU depends on thresholds and the concentration of the TF. The concentration then depends on 
the position of the cell in which the gene is active, the expression rate of the TF in all surrounding cells 
and thereby on the actual developmental time step. Therefore, to gain an insight into the real interactions, 
the missing information - TF-concentrations and time steps - needs to be included.
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dynamic links in Simulated grns

In Figure 4, we depict a time series of network interactions as they take place in the first cell of an indi-
vidual. Genes are represented by points and arranged in a circle. Since information about TF concentra-
tions in the vicinity of the cell can be obtained for every developmental time-step in the computational 
model, the real interactions between genes can be shown here. At each time step, the interactions are 
updated according to the changing TF concentrations. The top solid point in Fig. 4i), marked by ‘P’, 
denotes the pre-diffused TF and therefore, exhibits initial interactions. From there, gene activation and 
inhibition can be tracked in each successive time step, from Fig. 4 i) to Fig. 4 vi).

Note that this dynamic representation of the GRN can differ from cell to cell. For our experiments, 
we checked that all cells of one individual reach the point where the GRN converged to the same stable 
state. Therefore, our analysis is performed only for the first cell of an individual.

We use the information provided by the dynamic GRN for negative feedback analysis. In every 
developmental time step, we search for closed loops in the GRN and count the number of negative in-
teractions which are part of the loop. This is achieved by transforming the network into a tree-graph and 
looking for the occurrence of already visited nodes by stepping along the tree. The method yields the 
number of negative feedback loops for all developmental time steps in one individual. By comparison, 

Figure 3. The static interaction network of an individual from the evolutionary run. The pre-diffused TF 
is placed at the center of the calculation area. A close-up on one gene is depicted on the upper left side 
of the figure: the gene consists of a silencer RU (black ellipses), an enhancer RU (white ellipses) and 
two TF-coding SUs (blue rectangles). Two interacting genes and the pre-diffused TF are emphasized by 
bold circles. A solid arrow from the pre-diffused TF to the lower gene denotes an activating connection, 
which could be the starting point of a negative feedback loop between the two marked genes (the dashed 
arrow denotes a repressing interaction). Note, however, that the analysis of the dynamic GRN reveals that 
this feedback is not used, because the concentrations of the TFs do not exceed the threshold values.
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we can eliminate the occurrence of the same loop in successive time steps and thus find the number of 
unique negative feedbacks used throughout the developmental process. The following analysis can now 
be based on these dynamic interactions, which really occur during simulated development. In the review 
of Luscombe et al. (2004) above, we have already seen that the dynamic GRNs differ greatly from the 
static ones even in biology. Therefore, such an analysis is necessary and may yield new insights into 
developmental processes in general.

evolution of Stable growth and emergence of feedback

Simulated Evolution

We use a standard evolution strategy (ES), which is commonly used for computational optimization 
of engineering problems, as described in e.g. Schwefel (1995). ES is based on vectors of real valued 
parameters, which are called chromosomes. In our case, the vDNA is such a chromosome. These chro-
mosomes encode the process or designs that are to be optimized. Each chromosome belongs to a so 
called individual. This individual represents an individual solution to the given problem. A population 
of individuals is formed by simply gathering a certain number of these individuals.

On this basis, an evolutionary cycle can be described as follows: After an initialization step, where 
a population of individuals with randomly initialized chromosomes is generated, the following three 
steps

Figure 4. A time series of interactions inside the dynamic GRN. Each gene is depicted as a small circle. 
The red point denotes the pre-diffused TF. Active genes are marked as filled circles. The interactions 
between the genes are either repressive (red, dashed arrows) or activating (blue, solid arrows). In iii) 
we highlighted two genes that form a negative feedback loop with an activating interaction from left to 
right and a repressive interaction in the opposite direction. Each figure represents the state of the GRN 
in one time step. Note that the static condition for this individual is not yet reached after time-step vi).
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1.  Evaluation
2.  Selection
3.  Mutation

are repeatedly executed. In the evaluation phase, a decoding from the data in the chromosomes into 
the respective designs is performed. This corresponds to the simulated growth process described in our 
experiment. Then a fitness function is used to determine the quality of the resulting design. During the 
selection phase, a fraction of the individuals in this population is selected for reproduction, while the 
remaining individuals are discarded. Finally, mutating the selected individuals several times yields a new 
population for evaluation. This process is stopped after a certain number of repetitions (generations) or 
if some individual reaches a desired quality.

External Conditions for Simulated Development

Since external factors, such as pre-diffused TFs or the choice of maximal growth time affect the growth 
process, we will shortly provide information about the way we choose these boundary conditions for 
the simulated development.

In biology, it is often possible to observe the presence of predefined gradients of maternal TFs in 
the egg cell, facilitating polarization and axis formation. In our case, we do not provide such a gradient 
since it is important to us that the finite number of cell divisions is a result of a GRN reaching a stable 
state, and not a mere simple interpretation of external cues. Therefore, the concentration of the initial 
TF is equally distributed across the diffusion grid. Every grid point possesses the same amount at all 
times during growth. Thus, neither positional information, nor temporal differences can be used by the 
growth process to easily achieve finite growth.

The maximal developmental time is arbitrarily set to 100 developmental time steps, i.e. 100 rounds 
of processing of the vDNA. Of course, each individual that reaches this limit without stabilizing growth 
is not feasible and thus cannot reproduce.

We will now proceed with a description and discussion of the experimental results using analysis of 
dynamic GRNs.

results

Stable Growth

The result of a typical evolutionary run is presented in Fig. 5, where the fitness of the best individual 
and the average fitness are plotted. It can be seen from the figure that the population stagnates from 
time to time, before an innovation is found, which leads to a significant fitness increase. A much wider 
plateau has also been observed in some of the runs. Note that the goal of the experiment is not to show 
how well the diamond shape can be realized. Instead, our model serves to analyze systematic features of 
the simulated process. Successful individuals exhibit the non-trivial behavior to grow towards a stable 
state during their development. This means that their shape and final state of the GRN remain constant 
after a certain developmental time step. The dynamic GRN representation can now be used as a tool for 
analyzing different features in the evolution of developmental control resulting in this stable growth. We 
look at an interesting dynamic motif, namely negative feedback, as it evolves over generations. From 
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control theory, we know that negative feedback might act as a stabilizing component in a linear dynamic 
system, though it is not always the case in a nonlinear system (see Nicolis, 1995).

Feedback

The curve in Figure 6 shows the emergence of feedback during the evolutionary run. Since the analy-
sis is computationally expensive, we chose to test the 11 best individuals at every ten generations for 
feedback. The curve shows clearly, that negative feedback starts to prevail between the 40th and 60th 
generation. After generation 60, all 11 best individuals contain feedback loops. We are able to track 
the first occurrence of feedback back to the best individual of generation 44, whose dynamic GRN 
is depicted in Fig. 4. The negative feedback is visible in Fig. 4 iii): an activating connection from the 
highlighted gene on the left side to the highlighted gene on the right side, and a repressive connection 
in the opposite direction.

Figure 5. The best (dashed line) and average (solid line) fitness of a typical evolutionary run. The shape 
of the best individual after convergence to a stable state is shown for three different generations. The 
average fitness is computed only from those individuals that do not violate constraints.

Figure 6. The triangles mark the percentage of the 11 best individuals which possess one or more nega-
tive feedback loops. The analysis is performed at every 10th generation.
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We assume that negative feedback stabilizes the development of individuals against mutation. If 
the concentration increases beyond a defined threshold, the TF can decrease its own production. If the 
concentration decreases, the level of self influence is reduced resulting in a stable state. In comparison, 
a positive feedback loop could only cause a TF to increase its own production continuously without 
reaching a stable state. One possible effect is that offspring of individuals with negative feedback will be 
less sensitive to mutations, i.e., fewer lethal mutations will occur. Here “lethal” means that individuals 
will not grow at all or will not reach a stable state after the maximum number of allowed developmental 
time steps. In both cases, individuals are penalized, and not taken into account for further selection. Thus, 
the number of feasible offspring from an ancestor containing negative feedback loops is higher than the 
number of feasible offspring from an ancestor without negative feedback. If the fitness of individuals 
containing feedback is not worse than the fitness of those without feedback, the probability that a genome 
with feedback is passed on during evolution increases.

To verify this hypothesis, we perform a simple mutation experiment with four different individuals: 
The best individual from generation 44 which uses feedback, its direct ancestor from generation 43 
which has no feedback (see the static GRN in Fig. 3), the best individual at the end of the evolution-
ary run and a modified version of the best individual from generation 44. The modification consists 
of removing the gene from the vDNA that causes the negative feedback, marked in Fig. 4 iii) with the 
rightmost circle. Note that these individuals still exhibit a stable, finite growth process, thus none of 
them violate the constraints.

The four individuals are mutated 50 times each, for every sample point. Mutation is carried out by 
adding a random number generated from a zero-mean normal distribution with given standard deviation 
σ to each value of the vDNA. Thereafter, we count the number of individuals that still produce stable 
growth without violating the constraints and denote them as successful. Note that feasible individuals 
with a lower fitness than the unmodified ones are also among them. Fig. 7 shows the results of this 
experiment.

Figure 7. The results of the mutation experiment: four individuals are mutated 50 times for each strat-
egy parameter, i.e. mutational strength σ. The plot shows the percentage of individuals that survived 
mutation.



517

Dynamic Links and Evolutionary History in Simulated Gene Regulatory Networks

It is clearly shown that mutations with σ smaller than 10-5 affect individuals without feedback much 
more severely than individuals containing feedback: 100% and 96% respectively of the individuals 
containing feedback survive, while only 62% and 50% respectively survive without feedback. At σ = 
10-4, feedback is still an advantage, although the percentage of successful individuals has been reduced 
significantly to 70%. The percentage of lethal mutations with a σ larger than 10-3 is similar for all indi-
viduals. This might be the result of mutation destroying the negative feedback loop, thus destroying the 
whole control mechanism that mainly set the different individuals apart.

concluSion

Simulated evolutionary development is of great interest for two principal reasons. On the one hand, as 
mentioned above, it provides support for biological research, and on the other hand, technical systems 
design can profit from such models, e.g. through learning about dynamical features of certain network 
motifs.

technical Value of Simulated evolutionary development

Biological systems possess many desirable features for technical applications. Robustness towards noisy 
or faulty inputs, good performance under a multitude of conditions or in changing environments and 
evolvability are just a few examples. Therefore, it is desirable to understand the mechanisms underlying 
biological systems which bring about these features. Such mechanisms can be included in the design 
process of technical systems. For example, one could imagine the simulated growth of a complex in-
ner structure. Instead of encoding all positions of voids and their shapes, a developmental process can 
be used where material grows to yield a suitable design. This growth could be controlled by just a few 
variables, providing a significant advantage for optimization processes, as well as for the scalability of 
such approaches.

Support for biological research

We finally want to point out again that the combination of knowledge on evolutionary history and 
dynamics of developmental processes is important for understanding principles that govern biological 
systems. Computational approaches are indispensible for achieving such an understanding and for test-
ing certain hypotheses. Combining computational models of evolution of GRNs and systems biology 
research will give a new insight into biological processes on an evolutionary scale, which then can be 
used to augment investigations in biology, e.g. dynamic patterns or motifs that play an important role in 
simulation can be traced in different organisms and their functions understood. In the case of robustness 
against mutation, the occurrence of feedback-loops in GRNs of organisms that adapt to an environment 
that causes high mutation rates (e.g. places with high radioactivity) could be investigated and then a 
comparison with other organisms that evolved in less mutational conditions could be performed for a 
better understanding of biological adaptation mechanisms.
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future research directions

It is clear that a better understanding of the relation between network features and resulting system dy-
namics is necessary to advance many different fields of applications, such as e.g. molecular medicine, 
agriculture, and complex systems engineering. In addition to this point, there exists the problem of as-
sessing the changes in dynamics, resulting from a network change. Although mutational experiments 
in the light of (artificial) evolution are a first step in this direction, the resulting changes are far from 
understood.

Another challenge lies in the integrative nature of complex systems and organisms: Usually, they 
are part of a complex environment which directly influences their own structure and behavior. We must 
try to take this environment into account for research to gain a more holistic view of the structure and 
dynamics of individual organisms, and of complex systems in general.

Finally, the choice of the right level of abstraction for a given scientific question, especially when 
using computer models, should itself be considered a research question. Having a formal understanding 
of the effects and restrictions of modeling details on the simulation outcome would allow us to efficiently 
choose the right level of abstraction and to predict the degree of generalization of results.
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key terMS and definitionS

Gene Regulatory Network: A gene regulatory network (also called a GRN or genetic regulatory 
network) is a collection of DNA segments in a cell which interact with each other and with other sub-
stances in the cell, thereby governing the rates at which genes in the network are transcribed.

Evolution: The historical development of a biological group (as a race or species).
Phylogeny: A theory that the various types of animals and plants have their origin in other preexist-

ing types and that the distinguishable differences are due to modifications in successive generations ; 
also: the process described by this theory.

Development (Biology): The formation and growth of the embryo to a mature state.
Feedback: The return to the input of a part of the output of a system, or process (as in an automatic 

control device that provides self-corrective action).
Evolution Strategy (ES): A specific variant of evolutionary algorithms originally focusing on the 

phenotypic level of evolution and adaptation, ES was developed by Rechenberg, Schwefel and co-
workers [1].

Robustness (Biology): Capability of performing without failure under a wide range of conditions / 
under genetic mutation.

Genetic Switch: Part of a GRN that creates a shift from one expression state of a gene to another, 
depending on a chemical signal.
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introduction

The recent ability to sequence an organism’s genome, in particular the human one, was a great break-
through thought to be the key to new ways to diagnose, treat, and some day prevent the thousands of 
disorders that affect us. However, simply knowing the gene sequences is not enough and the challenge is 
currently in deciphering how genes determine the phenotypic traits of an organism and how the genome 
controls the development of organisms.

For a long time it was believed that the DNA in the genes was transcribed into RNA, which in turn 
was translated into proteins in a one-way process. This is called the molecular biology’s central dogma. 
The central dogma explains the basic process of gene expression into proteins, but is unable to explain 
several essential phenomena such as cellular differentiation, where cells with the same genetic information 
to behave differently according to their function in the organism. The explanation to such unaccountable 

abStract

In this chapter, we propose a new model for gene regulatory networks (GRN). The model incorporates 
more biological detail than other approaches, and is based on an artificial genome from which several 
products like genes, mRNA, miRNA, noncoding RNA, and proteins are extracted and connected, giving 
rise to a heterogeneous directed graph. We study the dynamics of the networks thus obtained, along with 
their topology (using degree distributions). Some considerations are made about the biological meaning 
of the outcome of the simulations.

DOI: 10.4018/978-1-60566-685-3.ch022
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processes lies in complex networks of interactions, known as regulatory networks, between genes and 
many other molecules including proteins, the very products of gene expression.

Since these regulatory networks are highly non-linear and have several thousand variables it is 
paramount to find computational models for them, albeit the difficulty of the task (Voit, 2000). Vari-
ous approaches more or less abstract and more or less general for modeling gene regulatory networks 
appeared in the last decades. On one end of a possible axis of classification there are highly detailed 
biochemical models, such as Reinitz’s phage-λ model (Reinitz, 1990), with which predictions and 
simulations of small and well understood systems can be performed; on the other end there are abstract 
models, such as Stuart Kauffman’s Random Boolean Networks (Kauffman, 1993), that are commonly 
used to study broad scale and gross properties of the networks. Towards this more abstract end of the 
range, considerations are usually made about the network’s topologies and dynamics (Kauffman, 1993; 
Thomas, 2001; Liebovitch, 2006; Barabási, 1999; Reil, 1999; Kuo, 2004; and Banzhaf, 2003; to name 
just a few). Most of the models used in these studies often merge the several processes that occur in 
protein synthesis, or focus on regulation only at transcription level. Given that regulation occurs at any 
stage of protein synthesis including transcription, RNA processing, mRNA decay, translation and post-
translation (Hartl, 2005); it should be interesting to observe how the dynamics and topologies might be 
different when intermediate steps and entities are considered.

In this chapter we consider existing classes of models and their relevance for the exploration of 
theories and hypothesis regarding the structural and dynamic properties of regulatory networks when 
additional layers of regulation are taken into account. A new model for gene regulation complying with 
this aim is described later on. In order to compare the networks obtained with this model with networks 
obtained from previous models, we study some of their statistical properties, including: topology (using 
degree distributions) and dynamic behaviors.

background

Several models for Gene Regulatory Networks have been proposed in recent years. Because the bio-
logical processes involved in gene regulation are so highly complicated, the majority of these makes 
the assumption that the control of gene expression resides only in the regulation of gene transcription. 
Moreover, this may also be due to the nature of the most widely available microarray data (Geard, 
2004; D’haeseleer, 2000). This overview is not meant to be exhaustive and we only briefly mention 
some of the known models. For a more extensive review and in-depth descriptions see de Jong (2002), 
Hasty (2001), Goncalves (2007), D’haeseleer (2000) and Geard (2004). We can classify the models 
that will be discussed here according to the following aspects: variables such as product concentrations 
are discrete, continuous or mixed; time is discrete and the update of the variables is either synchronous 
or asynchronous (there are, however, cases where time is continuous); space is discrete, continuous or 
absent (see Figure 1).

One very influential discrete approach early adopted a complex systems view of the genome (Kauff-
man, 1993). In this approach Kauffman represented the regulatory system as a network of logical compo-
nents connected at random, creating networks, which he coined as Random Boolean Networks (RBNs). 
These RBNs exhibited emergent properties, such as cyclic attractors, point attractors, robustness and 
homeostasis, that also occur in real biological systems. The abstract similarity between the RBNs and 
biological cells made the simplification of modelling time as discrete time steps and considering only 
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binary levels of gene activity (on or off) widely accepted. However, despite the interesting insights of 
Kauffman’s model it was unable to give much explanation for the regulatory mechanisms and, to many, 
did not exhibit sufficient parallels with the real networks (Reil, 1999). Rather than using a network for 
a base level representation, another discrete model was proposed by Reil (1999) using a more biological 
framework. This model, called the Artificial Genome, was based on a DNA-like sequence representing 
the genome, from which the network structure could be extracted. Similar models were proposed by 
Banzhaf (2003) and described by Hallinan (2004), Watson (2004) and Willadsen (2003).

In the Artificial Genome model a random sequence of bases is generated to represent an organism’s 
genome. This sequence is searched for genes, each one being defined by the six digits that follow each 
‘0101’ (defined to represent the promoter) sequence found. The sequences between genes are the regu-
latory regions for the genes immediately following them and the expression process is represented by 
incrementing each gene’s digits by one, modulo 4 (the number of bases). The sequence resulting from 
this operation is said to be the gene product and it will be used to search for matches in the regulatory 
regions. Whenever there is match, a regulatory link between the gene that originated the gene product and 
the gene regulated by the region where the match occurred is created (Figure 2). The regulation will be 
inhibitory or excitatory depending on the value of the last digit of the gene product and, after searching 
for all possible matches, a regulatory network can be created and displayed in a graph.

The Artificial Genome and its variations aimed to be biologically more significant by integrating 
developmental biology, providing in this way a richer ground for comparison. Similarly to the RBNs, the 
Artificial Genome presented different behaviors depending on the connectivity. With low connectivity 
the system enters a frozen regime, with high connectivity a chaotic regime and with medium levels the 
system enters the critical regime displaying cyclic patterns of expression. However, one of the criticisms 

Figure 1. A classification of regulatory network models. Some of these models are used with evolutionary 
algorithms, such as Genetic Algorithms, which have evolutionary time (iterations of the algorithm). Those 
models were placed at the origin of the time axis because the synchronous or asynchronous property is 
related to the timing of the variable update.
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about RBNs was that the nodes were only allowed a low connectivity in order to produce the different 
dynamics. In fact, with a connectivity greater than 2, the RBN networks would generally show chaotic 
dynamics whereas, in the Artificial Genome this value was found to be significantly higher (Willadsen, 
2003). Other works on this model focused on the study of the effects of sequence-level mutations at 
the network level (Watson, 2004) and others still, observed that there is a significant amount of unused 
sequence in genomes with complex gene expression (Reil, 1999). However, despite the many interesting 
insights, the Artificial Genome still comprises many simplifications. The main one being the merging 
of the entire process of gene expression (ignoring the intermediate products) and the use of an arbitrary 
operation for the creation of a gene product.

While the above models represent variables discretely, all product concentrations, activation levels 
or rates of transcription of genes can, in reality, vary in a continuous fashion. As such, several models 
have been proposed that take variables as continuous values and use differential equations to determine 
them. Examples of such models are the Additive Regulation Model, Neural Network models and models 
based on the S-System power law.

In the Additive Regulation Model (D’haeseler, 2000) the regulatory relations between genes are 
represented in a matrix of positive, negative or zero connections (Figure 3).

The occurrence of a nonzero entry in the matrix at row i, column j, indicates that there is a regulatory 

Figure 2. The artificial genome model. © 2008 MIT Press. Used with permission.

Figure 3. (A) Graph of a regulatory network where gene A regulates itself and gene B. Gene B regulates 
gene C which in turn regulates gene A. (B) Matrix representation of the graph. © 2008 MIT Press. Used 
with permission.
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connection from gene product i to gene product j. If this entry is positive the regulation is enhancing and 
repressive if it is negative. The expression level of each gene (xi), updated synchronously in each time 
step, could be given by the weighted sum of all variables:

dx

dt
= w x +bi

ji j i
j
å  

with xj the expression level of the ith gene, bi a bias term that indicates if the gene is expressed in the 
absence of regulatory inputs and wji the weight in the matrix from gene j to gene i . The previous equation 
could be improved to include the observation that most genes may have a sigmoidal response curve, i.e. the 
gene activation increases slowly and saturates at a maximum level. If, furthering the biological plausibility, 

a decay rate of gene products was added, the expression would become:
dx

dt
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with S() a sigmoidal function and Di the decay rate of gene i. The introduction of the nonlinear function, 
which should in principle be able to match the underlying regulatory network more closely, makes this 
model now similar to a recurrent neural network.

Regarding neural networks, some researchers investigated variations of the basic model, including 
a model in which proteins and mRNA products are represented by separate network layers (Vohradský, 
2001). It is possible to create a mapping between a neural network and a system of ordinary differential 
equations. The advantage of using such a model instead of the general-purpose differential equations 
is the availability of well known efficient learning algorithms (D’haeseler, 2000). Learning involves 
adjustments to the weights of the links that exist between the nodes of the network.

Finally, a model based in S-systems could be defined by a parameterized set of nonlinear differential 
equations:

1 1

n ng h
ij iji

i j i j
j= j=

dx
= x (t) x (t)

dt
 

with xi the expression level of gene i, n the number of network components, αi ≥ 0, βi ≥ 0 rate constants 
and gij, hij a representation of the interactive affectivity of xj to xi. The first product in the equation de-
scribes all the excitatory influences (influences that increase xi), while the second product describes all 
the inhibitory ones (that decrease xj).

These systems have a rich structure and should be flexible enough to capture relevant dynamics 
(Savageau, 1976; Voit, 2000; Kikuchi, 2003; and others), but the number of parameters that have to be 
estimated is large (about 2n 1(n + ) ) (Noman, 2005).

With the continuous models described above, biologically plausible features can be included 
(D’haeseleer, 2000) and reverse engineering/learning algorithms used to determine their parameters 
from real data (Ando, 2001; Sakamoto, 2001; Noman, 2005; van Someren, 2002). However, as with 
the previous discrete models discussed, the black box approach of the process they use makes them less 
suitable for the understanding of the mechanisms of gene regulation at the various levels.

These considerations motivated the creation of a new model with a string based framework similar to 
the Artificial Genome but breaking the expression process down to some important steps and overcom-
ing some of its simplifications (Goncalves, 2007). The networks derived by this model, called HeRoN, 
can be represented by a graph where the nodes represent the different products involved in gene expres-
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sion, thus heterogeneous, and the arcs establish the interactions between them. These networks can be 
analyzed from the topological and dynamical point of view of complex systems.

a Model for a heterogeneouS genetic network

The model we propose, HeRoN, is based on a string, from a four symbol alphabet, that represents a ge-
nome and derives from it various products such as genes, proteins and some more intermediate products. 
The expression algorithm is a six-step process:

1.  Generate the genome.
2.  Search the genome for genes.
3.  Generate RNA transcripts from the genes.
4.  Splice the RNA transcripts.
5.  Translate the mRNA into proteins.
6.  Generate microRNAs from the non-coding RNAs.

These steps will now be described in more detail.

1. generate the genome

The genome, represented as a string of integers, is randomly generated with a parametrical size. Each 
integer corresponds to a base: 0 to Thymine or Uracil, 1 to Adenine, 2 to Guanine, 3 to Cytosine.

2. Search the genome for genes

In real biological systems there are some promoter sequences that appear in most genes of many or-
ganisms, called consensus sequences, and the more a sequence in a genome resembles them, the more 
efficient the transcription. In our model the genome is searched for given sequences that represent 
these gene promoters (e.g. we use the string ‘0101’ to represent the TATA box sequence). A threshold 
symbolizing the binding strength between a RNA polymerase and the genome, was set as a parameter 
is such a way that that a sequence in the genome, with the same size as the given promoter sequence 
(‘0101’), is considered to be a valid promoter when its percentage of match with the given sequence is 
equal or above this threshold. Each time a valid promoter is found the genome is searched for a termi-
nation sequence. When such termination sequence, chosen to be a poly-A sequence of adjustable size 
(‘AAAA…’ corresponding to a sequence of 1’s in the four letter alphabet), is found a gene is created. 
Each gene consists of a promoter sequence, a coding sequence and a regulatory region. The coding se-
quence is the region located between the promoter and the termination sequence, while the regulatory 
sequence is the region located between the end of the previous gene (after its termination sequence) and 
the promoter (Figure 4A).
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3. generate rna transcripts from the genes

RNA transcripts are generated by complementing the bases in the coding sequence of the genes accord-
ing to the pairing A-T and C-G. In the four-integer alphabet the complementary pairs are 1-0 and 3-2 
(Figure 4A-B).

4. Splice the rna transcripts

Each RNA transcript is searched for introns that are removed from the sequence and stored in a list of 
components called non-coding RNAs (ncRNAs). The introns are detected by means of two sequences, 
called U1left and U1right, that simulate the role of U1 srRNA molecule which has two highly conserved 
consensus sequences complementary to the 5’ and 3’ ends of essentially all mRNA introns (Zhang, 
1999). The new sequences created from the RNA transcripts with the introns removed are called mRNA 
(Figure 4B-C).

Figure 4. (A) Structure of a gene in the HeRoN model. The sequences ‘0101’ and ‘1111’ correspond to the 
TATA box and the poly-A termination sequence, respectively. (B) RNA transcript created by complement-
ing the coding region of the gene. The U1left and U1right sequences highlighted are the two consensus 
sequences that signal the presence of an intron. (C) On the left a mature mRNA molecule is created by 
joining the two ends of the original sequence after the intron (represented on the right) is removed. (D) 
Protein created after the start codon ‘102’ which represents AUG was found on the mRNA molecule 
(translation begins at its second base where the start codon is located). Translation ends when a stop 
codon is found. In this example the stop codon ‘012’, which represents UAG, is located at the mRNAs 
eleventh base. (E) miRNA molecule generated from an intron with a stem-and-loop motif. © 2008 MIT 
Press. Used with permission.
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5. translate the mrna into Proteins

The mRNA molecules are searched for a start codon sequence (AUG, corresponding to ‘102’ in the 
four integer alphabet). When this sequence is found the mRNAs are read three bases at a time until a 
stop codon is found (UAA, UGA, or UAG, corresponding to ‘011’, ‘021’ or ‘012’). Each three bases 
are translated into one amino acid according to the genetic code table. The stop codon is not considered 
part of the protein (Figure 4C-D).

6. generate micrornas from the non-coding rnas

This step was added to the model because a large number of RNA transcripts did not produce proteins 
due to the fact that they missed the start codon. Searching in the literature for similar phenomena led to 
the subject of non-coding/junk DNA. Junk DNA has been a name given by researchers to large regions 
of DNA for which no function has yet been found. These regions include introns and large portions of 
intergenic sequences. Having found evidence that genes considered to be junk DNA have a regulatory 
influence (Martens, 2004) and that this kind of DNA makes up to 95% of chromosomes, researchers 
changed its name to non-coding DNA. In particular, the regulatory role of noncoding genes relates to the 
RNA interference (RNAi) mechanism. This mechanism of transcriptional gene silencing is induced by 
molecules of RNA associated with proteins. These molecules are called small interfering RNA (siRNA) 
when they derive from exogenous sources (outside the cell), or microRNA (miRNA), when they are 
produced from non-coding genes in the cell’s own genome. miRNAs are short single-stranded RNA 
stretches of 21 to 23 nucleotides processed from primary transcripts known as pre-miRNA to short stem-
loop structures called pre-miRNA and finally to functional miRNA (Gregory, 2006). The effect of their 
regulatory mechanism is that while some genes are transcribed at a normal rate, they are not expressed 
into proteins because they are degraded before leaving the nucleus.

The influence of these microRNAs was included in the model by defining that if a mRNA does 
not produce a protein, because it misses the start codon, that mRNA molecule is considered to be non-
coding and therefore is added to the ncRNA list where the introns were already stored. All ncRNAs are 
then scanned for hairpin loops with a minimum length. This indicates the presence of miRNAs that are 
considered as another product in the model (Figure 4C-E).

This expression algorithm just described creates lists of products and stores their corresponding se-
quences. References to the products from which they originated are also kept. To determine the interac-
tion network between the different products it is necessary to determine how they bind to one another, 
namely proteins to genes and miRNAs to genes.

Finding the interactions between miRNAs and genes is straightforward since the two products are made 
of the same units, nucleotides, and their binding is a simple match between complementary sequences. 
The other type of bindings involves elements that do not interact in a linear manner and are made up of 
different units, amino acids and nucleotides. In biological systems the protein’s ability to locate and bind 
with certain DNA sequences depends not only on the involved amino acid and nucleotide sequences but 
also on the protein’s three-dimensional structure and on the DNA’s double stranded structure.

Many models exist that try to predict DNA-protein binding sites (Baker, 2001) yet this is still an open 
topic in Bioinformatics. In addition to the existing approaches some authors find it important to examine 
the individual interactions between the amino acids and the nucleotides since underlying the binding are 
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the discrete interactions between them (Hoffman, 2004; Luscombe, 2001). Databases such as the Amino 
Acid-Nucleotide Interaction Database (AANT) categorize amino-acid-nucleotide interactions from 
experimentally determined protein-nucleic acid structures. In our model we use the statistical table of 
the entire AANT database (Table 1) along with a binding threshold to determine if a given protein binds 
with a DNA sequence. For each amino acid in the protein its binding probability with the correspond-
ing nucleotide in the DNA is given by the AANT statistic table. The interactions are compared with the 
threshold using one of four methods called: average, maximum, minimum and random (Figure 5).

When using the average (‘avg’) method an average of all the probabilities is calculated. For the 
maximum (‘max’) and minimum (‘min’) methods, the respective maximum or minimum probability is 
chosen. For the random method the probability of a random amino-acid-nucleotide pair, from the se-
quence, is chosen. In this example it was the V-G pair. The components are said to bind if the resulting 
probability is above or equal to the threshold.

The information gathered about the interaction between the components can then be used to create 
a graph representation of the network. In this graph: each gene creates many products, most of them 
ncRNAs and a single mRNA molecule; each mRNA either creates a protein or a miRNA molecule, and 
miRNA molecules can also derive from ncRNAs. All connections starting at a miRNA molecule end 
at a mRNA molecule and are repressive, while connections between proteins and genes can be either 
activating or repressive (Figure 6).

Table 1. Statistical table of the entire AANT database. Along with the name of the amino acids are the 
conventional three-letter and one-letter abbreviations. © 2008 MIT Press. Used with permission. 

Amino-acid A(%) C(%) G(%) T(%)

Alanine (Ala, A) 24.2 17.3 24.0 24.6

Arginine (Arg, R) 19.6 24.1 35.7 12.2

Asparagine (Asn, N) 25.5 20.0 23.9 17.7

Aspartate (Asp, D) 13.3 34.2 37.0 1.5

Cysteine (Cys, C) 29.1 18.8 24.8 23.1

Glutamine (Gln, Q) 28.0 17.7 29.4 13.7

Glutamate (Glu, E) 19.1 34.8 33.0 4.8

Glycine (Gly, G) 20.1 22.9 32.1 17.0

Histidine (His, H) 25.3 16.2 37.7 14.2

Isoleucine (Ile, I) 21.4 26.4 30.8 11.4

Leucine (Leu, L) 9.5 31.1 30.2 19.4

Lysine (Lys, K) 23.7 22.8 30.7 16.3

Methionine (Met, M) 22.1 27.9 22.1 9.8

Phenylalanine (Phe, F) 17.7 24.1 40.5 17.7

Proline (Pro, P) 37.0 11.0 21.0 2.0

Serine (Ser, S) 28.2 20.9 27.2 19.7

Threonine (Thr, T) 24.6 20.2 27.8 23.1

Tryptophan (Trp, W) 14.4 30.2 24.8 21.8

Tyrosine (Tyr, Y) 28.4 27.4 23.6 15.0

Valine (Val, V) 25.0 35.3 20.0 1
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exPeriMental Study

The experimental study that was carried out involves two main aspects: the study of the structural prop-
erties of the graphs and their dynamics.

The variable parameterization used throughout the experiments performed is shown in Table 2 and 
the parameters that were kept fixed are: string ‘0101’ for the promoter, promoter match threshold of at 
least 75%, string ‘1111’ (four base long poly-A) for the termination sequence, and a binding site size 
of 6 for the proteins. Experiments were run for all possible combinations of the ‘used values’ column 
on Table 2 and each combination of the variable parameters was run 10 times. The initial set of active 
genes for each of the runs was randomly taken from a uniform distribution.

Figure 5. Each amino-acid-nucleotide pair is searched for in the AANT statistic table (Table 1). © 2008 
MIT Press. Used with permission.

Figure 6. Activation/deactivation relationships between the different products. The positive and negative 
signs near the edges represent, respectively, activation or deactivation of a product. The black colored 
edges represent the regulatory connections while the grey edges represent the creation of a product. © 
2008 MIT Press. Used with permission.
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topology of the networks

The topology of a network is its most basic feature and three different classes of networks, regular lat-
tice, small-world and random networks, arise from the different ways large sets of elements connect. A 
network where each node is connected to its nearest spatial neighbors is called a regular lattice. Starting 
with a regular lattice and randomly rewiring a portion of its links creates small-world networks. At the 
extreme of this rewiring random networks are formed.

Gene regulatory networks, like most social and biological networks, such as the World Wide Web, 
the immune system, the brain and ant colonies, to name just a few, possess certain topological features 
that are non-trivial. For instance, while nodes on regular lattices have constant degree and ordinary 
random networks have Poisson degree distributions, it is found that many real-world networks have 
degree distributions measurably different from these. This strongly suggests that there are features of 
such networks that would be missed if they were to be approximated by an ordinary random graph or 
lattice (Newman, 2001), thus many recent works on real-world complex systems focus on the subject 
of small-world and scale-free networks. However, while there are several statistical properties of graphs 
that can be used to characterize their topology (e.g., the average path length or the clustering coefficient), 
the work done on this model focuses on the node’s degree distributions.

With very few exceptions (Newman, 2001), most frameworks for the study of graph statistical prop-
erties have been developed for unipartite, undirected graphs, i.e. for graphs with a single type of nodes, 
as opposed to n-partite graphs that have n distinct sets of nodes with undirected edges between them. It 
is, however, an important aspect for us to consider directed and heterogeneous graphs, since this is the 
case of the network graphs obtained with our model. One consequence of the graph being directed is 
that nodes have two different kinds of edges, the ones arriving to it and the ones leaving it - these will 
be referred to, respectively, as input and output connections. This is particularly important in analyzing 
the degree distribution of the nodes and therefore nodes of different kinds will be analyzed separately 
in relation to input and output connectivity.

The input and output degree distributions for each kind of node for a 20,000 base long genome and 
for a 500,000 base long genome are shown in Figure 7 and Figure 8, respectively on the left and right 
columns. Each column refers to the same network, obtained with a binding threshold of 29, the ‘avg’ 
binding choice, a miRNA binding size of 6 and an inhibition rate of 0. The number of products of each 
kind in networks of different sizes (with the same parameterization as above) is given in Table 3.

When comparing the columns in Figure 7 and Figure 8 it can be noticed that the ‘genome size’ pa-
rameter does not seem to qualitatively alter the connectivity distributions. However, the two parameters 
‘binding threshold’ and ‘binding choice’ determine the input connectivity distribution of the genes and 

Table 2. Variable parameterization. © 2008 MIT Press. Used with permission. 

Parameter Used values Possible values

genome size 20000, 100000 and 500000 any positive integer

miRNA binding site size 4, 5, 6 and 7 any positive integer

inhibition rate 0, 0.25, 0.50 and 0.75 any value between 0 and 1

binding threshold 29, 32, 33 and 34 any positive integer

binding choice avg, max, min and rand avg, max, min or rand
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the output connectivity distribution of the proteins. With a low binding threshold of 29 and a ‘max’ or 
‘avg’ binding choice, a heavily left skewed distribution with a fat tail is found for both the gene input and 
protein output connectivity (Figure 9A and C). These distributions are consistent with studies on other 
complex systems represented by directed graphs (Newman, 2001). For higher binding thresholds of 32, 
33 and 34, input and output connectivity distributions change shape (Figure 9B and D) and display a 
right side tail. Only the ‘max’ and ‘rand’ binding choices keep showing the input and output connectiv-
ity distributions of Figure 9A and C. Both the ‘max’ and ‘rand’ binding choices produce similar gene 
input and protein output connectivity distributions but the tail of the ‘max’ is shorter. This difference 
may not be significant to the observable dynamic behavior of the network, and in fact it is not, as shall 
be discussed later.

Regarding the gene output connectivity the shape of the distribution (Figure 7D) is always maintained 
because the parameters that could alter it (promoter, promoter match, termination sequence, left and 
right u1 and u1 match) were kept unchanged throughout the experiments. The linear-log and the log-
log plots for the gene output can be seen in Figure 10. On the linear-log plot the distribution falls on a 
straight line, indicating an exponential decay of the distribution of connectivity. On the log-log plot the 
distribution decays faster than a power law would, since if the distribution had a power law tail it would 
fall on a straight line. This is consistent with the work of some authors, who have shown evidence for 
the occurrence of three classes of small-world networks in real world networks: scale-free networks, 
characterized by a vertex connectivity distribution that decays as a power law; broad-scale networks, 
characterized by a connectivity distribution that has a power law regime followed by a sharp cutoff like 

Figure 7. Histograms of the degree distribution of gene input and output connectivities for a 20,000 
base long genome (left column), and a 500,000 base long genome (right column). (A) and (B) Gene 
input connectivity distribution. (C) and (D) Gene output connectivity distribution. © 2008 MIT Press. 
Used with permission.
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an exponential or Gaussian decay of the tail; and single-scale networks, characterized by a connectivity 
distribution with a fast decaying tail, such as exponential or Gaussian. The question of why this range 
of possible structures for small-world networks exists is explained by the preferential attachment of 
new nodes that gives rise to power law distributions. Consequently, in the broad-scale and single-scale 
networks there must be constraints limiting the addition of new links (Amaral, 2000).

In our model, one constraint exists for the connection of new nodes to genes that may account for the 
faster decay of the tail of the gene output distribution. Genes have output connections to two different 
types of nodes: mRNA nodes and ncRNA nodes. While a gene only produces one mRNA, it can produce 
several ncRNAs and, as such, those connections are the most significant in terms of the overall degree 
distribution. Bigger genes have higher probability of producing several ncRNAs but their ”ability” to 

Figure 8. Histograms of the degree distributions of the different species for a 20,000 base long genome 
(left column), and a 500,000 base long genome (right column). (A) and (B) mRNA input connectivity 
distribution. (C) and (D) Protein output connectivity distribution. (E) and (F) miRNA output connectivity 
distribution. © 2008 MIT Press. Used with permission.
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do so decays each time a ncRNA is created, since the sequence being searched is shortened (search for 
ncRNAs continues after the last found ncRNA).

As with the output of the genes, mRNAs receive two kinds of inputs: each mRNA receives one single 
input from a gene and possibly several inputs from miRNAs, so the shape of the distribution (Figure 
8B) depends mainly on the miRNAs. Parameters that influence the input distribution connectivity of the 
mRNAs are the genome size and the miRNA binding site size. Figure 11 shows the linear-log and the 
log-log plots of the mRNA input frequency. Similar to the output connectivity of genes, the linear-log 
plot falls on a straight line, with an exponential decay and the log-log decays faster than a power law 
would, therefore indicating that there may be constraints limiting the addition of new links between 
the miRNAs and the mRNAs. Since bigger mRNAs have higher probability of having more inputs, the 
shape of the input distribution may be greatly influenced by their size. These considerations indicate that 

Table 3. Number of each kind of product for different genome sizes, binding threshold 29 and binding 
choice ‘avg’. © 2008 MIT Press. Used with permission. 

Genome size Number of genes Number of mRNAs Number of ncRNAs Number of proteins

20000 57 46 556 46

100000 253 194 2993 194

500000 1361 1043 14531 1043

Figure 9. Histograms giving the gene and protein degree distributions for a binding threshold of 29 and 
‘avg’ binding choice on the left column, and for a binding threshold of 32 and ‘avg’ binding choice on 
the right column. (A) and (B) Gene input connectivity. (C) and (D) Protein output connectivity.



537

A Model for a Heterogeneous Genetic Network

the nature of these networks might not be scale-free as has been hypothesized (Geard, 2004; Hallinan, 
2004; Watson, 2004; Willadsen, 2003).

dynamics of the networks

Once a regulatory network is obtained its dynamics can be studied by defining a state variable for each 
element and observing how it changes over time. Starting with all elements ‘off’, meaning that, regard-
ing genes, they are not being expressed, or that, regarding other products, they are not present, a small 
number of genes are set to ’on’. This propagates through the network according to the algorithm below 
in which each element’s status is updated synchronously in discrete time steps:

1.  Some genes are activated.
2.  For each active gene the mRNA and ncRNA molecules that derive from them are activated.
3.  For each active mRNA or ncRNA molecule the miRNA and proteins that derive from them are 

activated.
4.  For each active miRNA the genes that are regulated by it are deactivated.
5.  For each active protein the genes that are positively/negatively regulated by it are activated/deac-

tivated. If a gene is both activated and deactivated negative regulation takes precedence.
6.  Return to 2.

Any active element turns inactive in one time step if its activator element is not active. The status of 
each kind of product is updated every three steps due to the propagation to the other products.

By being dynamic systems, these networks can be represented by states and transitions and different 
classes of behaviors can occur, such as the system reaching a point attractor or ordered phase, the system 
oscillating between two or more point attractors or changing erratically between states with no regular 
pattern. By an oscillatory behavior it is meant that a cycle of expression repeats itself periodically and 
this is of particular interest as it was observed that this is an emergent dynamic exhibited by biological 
gene regulatory networks such as the one described by Hirata (2002).

The three different regimes, ordered, cyclic and chaotic, were found by changing the parameters of 
the model and some typical examples are depicted in Figure 12. An ordered expression pattern in which 
some products become permanently active after a short transition period can be seen on the top left of 

Figure 10. (A) Linear-log plot of the gene output connectivity. (B) Log-log plot of the gene output con-
nectivity. © 2008 MIT Press. Used with permission.
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the figure. The cyclic patterns on the top right and bottom left were produced by the same network with 
different starting conditions (different initial set of active genes), i.e. they are different attractors of the 
system. On the bottom right a chaotic pattern is shown. The emergence of the three patterns is highly 
influenced by the variable parameters described in Table 2. Several observations can be made from the 
results:

• With a low miRNA binding site size there are no significant dynamics. This happens because 
many miRNAs are created and these only have a repressive effect on the network. Repression is 
at a rate between 55% and 100%;

• The 20,000 base long genome displays ordered and cyclic dynamics but not chaotic. This could 
be caused by the network being too small, hence too simple to show that kind of dynamic, or else 
because the cycle length is shorter. If it is the case of the network being too simple, a network 
with a 4,600,000 base long genome, which is the size of the E.Coli bacteria, could be expected to 
behave differently;

• The ’max’ and ’random’ binding choice parameters display the same dynamics. This is an interest-
ing observation that can be related to the topologies they create, which are only slightly different 
in respect to the connectivity distributions of protein outputs and gene inputs;

• The ’max’ and ’random’ binding choice parameters only display ordered dynamics. It can be ob-
served from their connectivity distributions that these choices create networks with more edges 
between proteins and genes than the ’avg’ and ’min’ choices. They are less influenced by the bind-
ing threshold parameter. Because they influence the creation of regulation connections between 
proteins and genes they are also less affected by the inhibition derived from the miRNAs.

• Cyclic and chaotic behaviour only appear with some amount of protein caused inhibition. There is 
a slow transition from ordered dynamics, through cyclic dynamics, to chaotic dynamics with the 
increase of the inhibition rate of the proteins. Another observation is that, for the 500,000 genome, 
with high thresholds (above 29), high protein inhibition (above 50%) and the average binding 
choice, all networks display chaotic behaviour for high values of miRNA size (6, 7 and 8).

In general it was observed that higher values of the miRNA size decrease the amount of inhibition in 
the network. For instance, while with miRNA size 5 and 50% protein inhibition rate, the total inhibition 
on the network (miRNA + protein inhibition) is between 73% and 93% (increasing with higher values 
of the threshold), with higher miRNA sizes the total inhibition is between 50% and 83% (the miRNA 

Figure 11. (A) Linear-log plot of the mRNA input connectivity. (B) Log-log plot of the mRNA input con-
nectivity. © 2008 MIT Press. Used with permission.
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influence is weaker). The increase in total inhibition rate with higher values of the threshold means 
that, while there are fewer protein-gene connections, the miRNA connections are maintained, thus the 
miRNAs influence is stronger.

One possible conclusion is that chaotic behaviours appear in networks with total inhibition rates 
between 50% and approximately 75%. Inhibition rates above 75% do not provide any dynamics while 
ordered dynamics appear preferably with low inhibition values up to 25% and cyclic dynamics appear, 
preferably, for inhibition rates from 25% to 50%.

It is also observed that ’max’ and ’random’ choices show little sensitivity to the binding threshold 
when compared to the other binding choices. This could mean that all networks created by ’max’ and 
’random’ have approximately the same density of connections. Apparently these choices create networks 
too connected to produce interesting behaviours other than ordered dynamics. On the other hand the 
’min’ choice also produces few dynamics of interest and, for this case, it may be that the network be-
comes too shallow with the increase of the binding threshold. The ’avg’ choice is the one showing more 
types of dynamics with a moderate density between ’min’ and ’max’ but still sensitive to the binding 
threshold.

concluSionS and future reSearch directionS

The new model we propose, HeRoN, introduces a level of biological detail to previous models of gene 
regulatory networks. Separating the several processes and representing all the products involved in hetero-
geneous networks allowed, in particular, to extend the model to incorporate a RNA interference mechanism 
and make interesting observations about the topology and dynamics of the networks obtained.

Figure 12.
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From the static point of view, although many authors claim that genetic regulatory networks have 
scale-free topologies, most of them (Geard, 2004; Hallinan, 2004; Watson, 2004; Willadsen, 2003) 
are not based on experimental results for this concrete type of network but rather on other biological 
networks, such as the protein-protein interaction networks and metabolic networks. Furthermore, oth-
ers (Liebovitch, 2006) use experimental mRNA concentration data to extract the networks ignoring all 
regulation other than regulation of transcription initiation. This could lead to misleading results since 
the presence of mRNA does not mean that the protein it codes for, a potential transcription factor, is 
actually synthesized, as other regulation mechanisms, such as the miRNA triggered inhibition, may be 
acting on it. A model that does not account for these mechanisms may incorrectly assume regulatory 
interactions between genes that are actually regulated by other products.

Another question of importance is that most models make a one-mode projection of an intrinsically 
heterogeneous network, i.e., they assume a network where all nodes are genes and the edges between 
them represent regulation relations. When such one-mode projection is made some information is obvi-
ously discarded (Newman, 2001). As was observed in real-world statistical data of other problems, real 
complex systems do not always have power law distributions because they are subject to constraints. In 
the HeRoN model we could not only find degree distributions that are constrained but we also introduced 
the study of degree distributions for some intermediate products.

Concerning the dynamics of the networks features such as stable and cyclic attractors, which exist 
in real biological networks, could be observed. The dynamics obtained seem to be closely related to the 
amount of negative connections with chaotic behaviors appearing for inhibition rates between 50% and 
75%, cyclic behaviors appearing for 25% to 50% rates and ordered dynamics for less the 25% rates. The 
dynamic of a network seem also to be influenced by the density of connections as it could be observed 
that neither very dense nor very shallow networks would produce cyclic patterns.

This work, and the corresponding model, can be extended in several directions. Given the difference 
in dynamics shown between the smaller and bigger genomes, experiments with genomes of realistic 
dimensions should be performed. A good starting point would be the genome of the E.Coli since it is 
one of the smallest (4,600,000 bases long) and the most studied genome available. A case study of an 
actual biological system would then allow a more objective evaluation of the model. Moreover, the 
model could be improved and made sounder, by taking into account aspects such as the concentration 
of products (a continuous variable) and the time delays involved.

It would also be interesting to extend the model and observe how the alternative splicing of genes 
could alter the output degree distribution of genes, proteins and miRNAs. Finally, although several 
interesting observations were made by analyzing the degree distribution of the nodes, there are several 
other statistical properties that could be used to better understand them. Future work should include a 
study on the clustering coefficient, the average path length between nodes, the distribution of component 
(subgraph) sizes and the existence of a giant-component.
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key terMS and definitionS

Complex Systems: Said to be systems of interacting components with no central control that display 
emergent global properties not present at the components level.

Consensus Sequence: A nucleotide sequence composed of the most frequently observed base at each 
position among several observed sequences.

Degree Distributions: The probability distribution of degrees (number of edges between a particular 
node and the others) in a graph.

N - Partite: Graphs whose set of vertices is divided into n subsets, forming such a partition that no 
two vertices belonging to the same subset are adjacent.

One-Mode Projection: A one-mode projection of a n-partite network is the condensation of the 
representation of the network by representing and connecting nodes of only one type.

Skewed Distribution: A distribution is said to be skewed when one of its tails is longer than the 
other.

Unipartite: Graphs with only one type of vertexes as opposed to n-partite graphs.
Undirected: In an undirected graph both ends of an arc are equivalent.
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introduction

Gene regulatory network (GRN) models, in their many forms (de Jong, 2002), provide a mathematical 
basis for representing and reasoning about biological processes. Of prime importance, is the use of GRNs 
to generate predictions of how a biological process changes over time through various forms of infer-
ence. One of the primary forms of inference is projection through simulation, especially in probabilistic 
GRN models. This chapter explores how to move beyond simulating biological processes, modeled as 

abStract

In this chapter, a computational formalism for modeling and reasoning about the control of biological 
processes is explored. It comprises five main sections: a survey of related work, a background on methods 
(including discussion of the Wnt5a gene regulatory network, the coefficient of determination method for 
deriving gene regulatory network models, and the partially observable Markov decision process model 
and its role in modeling intervention planning problems), a main section on the approach taken (including 
algorithms for solving the intervention planning problems and techniques for representing components 
of the problems), an empirical evaluation of the intervention planning algorithms on synthetic and the 
Wnt5a gene regulatory networks, and a conclusion and future directions section. The techniques de-
scribed present a promising avenue of future research in reasoning algorithms for improved scalability 
in planning interventions in gene regulatory networks.

DOI: 10.4018/978-1-60566-685-3.ch023
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GRNs, and focuses on strategically inserting (planning) intervening actions to control the process. With 
connections to both shortest path problems and automated theorem proving, planning is a well-studied 
problem in Artificial Intelligence that focuses on generating sequences of actions (plans) that will trans-
form an initial state into a goal state. The solution to the planning task (in this case an intervention plan) 
identifies how one might intervene with external control actions in abnormal development and prohibit 
cells from reaching undesirable states. This chapter explores planning interventions to avoid metastasis 
prone states in the WNT5A GRN.

The specific GRN model, described herein, represents a biological process by a set of genes and their 
regulatory influences over each other. The GRN focuses solely on genes (omitting proteins or other mol-
ecules) to model the high level behavior of many genes versus the low level behavior of a much smaller 
system. Because practical GRN models are typically learned from microarray data (Kim et al., 2000), 
they are situated at the right level of granularity for automated parameterization. As described below, 
microarray experiments measure the activity level of thousands of genes from living tissue in terms of 
mRNA concentrations (the products of gene transcription used to code proteins). Correlations between 
observed gene activity levels help describe regulatory influences. Predictor functions characterize the 
regulatory influences and provide a dynamic model (e.g., when genes g1 and g2 are highly active, gene 
g3 becomes inactive). The state of the GRN models the activity levels of genes and the predictor func-
tions describe possible next states.

Layered on top of the GRN model, a planning model includes outside interventions (e.g., using RNA 
interference to suppress a gene’s activity level) to alter the GRN predictor functions and effectively control 
the state evolution of the GRN. In an intervention plan, each action models either a possible intervention 
or non-intervention that will change the gene activity levels (i.e., the state of the GRN).

As one practical application of planning interventions, consider the treatment of cancer, where the 
chaining of multiple treatments is being aggressively explored. It is already clear that attention must be 
paid to the sequencing of these treatments. For example, cytotoxic drugs that induce replicative arrest 
and subsequent apoptosis (i.e. 5-fluorouracil or platinum containing drugs) rely on active replication to 
be effective. Cytostatic drugs (i.e. anti-estrogens, anti-angiogenics) on the other hand reduce ability to 
proliferate in order to reduce tumor load in patients and allow reductions in tumor size through active 
immunologic defense. Using a treatment sequence where a cytostatic drug is applied and still effective 
when the cytotoxic drug is given usually reduces the effectiveness of the cytotoxic drug, since far fewer 
tumor cells are actively replicating. The opposite sequence of treatment can be far more effective. It 
is likely that many treatment sequences will be either synergistic or antagonist based on timing and 
strengths of doses, and that a model that allows the physician to exploit the vulnerabilities of a disease 
to greatest therapeutic effect would be of great utility, not only for cancer treatment but also for other 
complex disorders.

While quite a bit of research remains to developing tools for designing treatment sequences, like those 
described above, this chapter discusses some of the relevant issues and a research direction that attempts 
to address the issues. Some of the important issues  surrounding the design of treatment sequences (i.e., 
intervention plans) are (i) defining a suitable representation of the GRN model, (ii) building GRN models 
either manually or automatically from data, (ii) designing algorithms that reason with GRN models, and 
(iv) providing feedback to biologists on the nature and efficacy of computed solutions. As described 
below and in the Background Section, we represent the GRN model within a stochastic state transition 
system where transitions are controllable -- called a Markov decision process. While building GRN 
models is not the main emphasis of this chapter, we discuss how to learn a GRN model from microar-
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ray data in the Background Section. The choice of algorithm used to reason with GRNs depends on the 
purpose; simulation algorithms described in the Background Section can be used to predict the steady 
state (stable) behavior of a GRN, and planning algorithms (the focus of this chapter, presented in the 
Planning Section) can be used to control the state changes of the GRN. Finally, providing feedback to 
biologists on solutions is important to validating their hypotheses about simulation or planning tasks; 
however, this chapter does not discuss this issue aside from pointing out useful metrics for comparing 
solutions in the section on Empirical Evaluation. We focus predominantly on the representation and 
reasoning algorithms necessary for constructing intervention plans because these are the most important 
new trends in systems biology, as evidenced by the increasing body of works that we discuss in the 
Related Work Section.

There are a number of planning formalisms that can capture GRN features; the formalism applied 
in this chapter is based on finite-horizon partially observable Markov decision processes (POMDPs), 
using the following motivations:

Intervention plans need only focus on a number of steps (the horizon) long enough to ensure the • 
GRN state will naturally transition to nominal states, and avoid abnormal states. Biological knowl-
edge and computational simulation of GRNs (Kim et al., 2002) indicate that cellular processes, 
left to their own, transition to (or through) stable attractor states. These states represent common 
cellular phenomena such as the cell cycle, division, etc. However, some states are consistent with 
disease, such as the metastasis of cancer. From abnormal states, planning interventions provides a 
method to push the evolution of the process toward nominal attractor states.
The cell has an inherently hidden state because full observations are prohibitively costly and • 
inaccessible (Datta et al., 2004). Planning with partial observability is important because biolo-
gists analyzing cellular processes cannot be expected to understand, nor obtain complete state 
information.
Biological processes are commonly viewed as stochastic (Elowitz • et al., 2002). Genes are typi-
cally regulated many different ways, meaning GRNs must allow for the probabilistic selection of 
predictor function for each gene.

Because state transitions are stochastic, provide only partial observations, and are only relevant over 
a limited planning horizon, the model for GRN interventions is based on decision theoretic planning 
(Boutilier et al., 1999), the problem of controlling a POMDP.

In addition to formulating the intervention planning problem as a POMDP, this chapter describes the 
application of a popular heuristic search algorithm used in AI planning, called AO* (Nilsson, 1980) to 
efficiently solve the problem. This chapter illustrates the computational advantage of AO* by showing 
how it avoids complete enumeration of all possible plans, and how it improves on existing dynamic 
programming techniques used for intervention planning (Datta et al., 2004). An empirical evaluation 
on several variations of a synthetic GRN shows the benefit of heuristic search over these alternative 
techniques. An evaluation of planning interventions for the WNT5A GRN (Kim et al., 2002), identifies 
how benefits translate to a GRN of biological significance.

This chapter is organized as follows. A review of related work describes prior research on representing 
GRNs and planning interventions. A background section contains a significant amount of material on 
a motivating GRN (built around the WNT5A gene, which plays a role in the metastasis of melanoma), 
a method to construct a GRN from microarray data based on the coefficient of determination, and the 
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POMDP model and its role in representing GRN intervention planning problems. A section on the ap-
proach taken to generate intervention plans describes two algorithms (one based on heuristic search, 
called AO*, and another based on dynamic programming) for solving problems represented as POMDPs 
and also discusses representation techniques used in conjunction with the algorithms. An empirical 
evaluation section compares both algorithms on several GRNs, either randomly generated or on the 
WNT5A GRN learned from actual microarray data. The chapter ends with a conclusion, discussion of 
future directions, an outlook, and list of supplemental reading.

related work

Prior work related to the approach described in this chapter can be categorized into techniques for reason-
ing about and simulating GRNs as Boolean networks, approaches for controlling GRNs, and algorithms 
within Artificial Intelligence for reasoning about biological processes.

boolean networks as a Model for gene regulatory networks

Studies of genetic regulatory networks can take many forms; some attempt to merely determine associative 
or predictive relations between genes, others seek to model network dynamics to the smallest biological 
nuance. A number of models have been proposed to study gene regulatory networks (de Jong, 2002). 
The complexity of these models ranges from simplistic models such as Boolean networks (Kaufmann, 
1993, 1969), to more complete and intricate models based on differential equations (Goutsias & Kim, 
2004, 2006). Evaluation of these models is done by examining how accurately the model reflects actual 
biology and how difficult the inference of a specific instance of the model is based on experimental 
data (de Jong, 2002). In general, as more low-level detail is added to a model, the more difficult it is to 
reconstruct the network from data.

A Boolean network is defined with a set of nodes (genes) and a set of Boolean functions. Each node 
acts as a binary variable to represent a gene’s state at each time point, either expressed (1) or not expressed 
(0). At each time point t, the value of the node is updated based on the input of the genes at time t-1 via 
a Boolean function. In practice, all of the nodes in a Boolean network are updated synchronously. One 
of the attractions to Boolean networks is that computationally efficient inference algorithms for Boolean 
networks have been presented (Lähdesmäki et al., 2003).

Studies have shown that Boolean network models exhibit a number of biologically interesting prop-
erties (Kaufmann, 1969). Boolean networks primarily focus on determining gene-gene interactions at a 
qualitative level, instead of quantitative aspects. Additionally, Boolean networks can provide insight into 
cellular states. Both the steady-state and switch-like behavior of cells can be captured and studied with 
a Boolean model (Kim et al., 2002). The ability to model both of these behaviors allows the analysis 
of common functions of the cell such as cell growth and cell cycle, as well as the response of a cell to 
external stimuli.

Beyond Boolean models, models exist that add a stochastic component. Models in this class include 
probabilistic Boolean networks (PBNs) (Shmulevich et al., 2002a, 2002b), and Bayesian networks 
(Murphy and Mian, 1999; Friedman et al., 2000; Hartemink et al., 2001). The addition of the stochastic 
component attempts to model both intrinsic and extrinsic noise in gene regulatory networks (Elowtiz et 
al., 2002). In probabilistic Boolean networks, as in traditional Boolean networks, Boolean functions are 
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used to determine the next state of the network. Unlike traditional Boolean networks, however, there is 
not a single function corresponding to a network state. The next state of the network is determined via 
selection of Boolean function from a set of valid Boolean functions based on the current state. PBNs 
have been studied using Markov chains and shown to demonstrate both homeostasis and the switch-like 
properties exhibited by actual biological systems (Kim et al., 2002).

controlling grns

Planning interventions in GRNs has been previously studied within the context of control theory, spe-
cifically, controlling Markov chains. AI planning and control theory have rich connections, and these 
similarities provide a common ground on which the empirical evaluations described in this chapter are 
based. The primary approach of previous work (Datta et al., 2003; 2004) on formulating intervention 
planning as a control problem was to characterize a dynamic programming operator that could identify 
the intervention to make in any state of the biological process. Dynamic programming uses the Bellman 
optimality principle to reduce the number of possible plans considered while finding the optimal plan. By 
construction, optimal plans are composed of optimal plan suffixes. That is, the second step of an optimal 
two step (horizon) plan must be an optimal one step plan. Since a multiple step plan can potentially visit 
any state during its execution, it becomes necessary to find all one step plans for all states, and then all 
two step plans for all states, and so on. Herein lies one of the problems with dynamic programming; 
even with knowledge of a start state, it does not necessarily limit those states considered for the plan 
and may generate many irrelevant subplans. In this formalism, Datta et al. (2003) formulate the problem 
as a fully observable Markov decision process and explore finite and infinite horizon control. Datta et 
al. (2004) also explore an extension to partial observability with finite horizon control. In both works, 
the underlying dynamics of the GRN is based on probabilistic Boolean networks and the techniques are 
evaluated within the WNT5A GRN. The difference, in terms of full or partial observability, is in how 
the plan respectively associates actions with states or probability distributions over states. This chapter 
describes partial observability, under the motivation that biological processes are for most practical 
purposes costly or difficult to fully observe in every detail.

artificial intelligence approaches

Some recent works in the AI community have focused on simply representing biological processes. 
Khan et al. (2003) seek to discover signal transduction pathways with a deterministic classical planner. 
The actions in the plan represent various chemical reactions, and the goal of the plan is to establish that 
there is a sequence of actions leading to an event, such as transcription. This particular planning problem 
has received considerable attention due to its inclusion in a recent International Planning Competition. 
The most significant differences from the work described in this chapter, are that the model is assumed 
deterministic, is at a finer level of granularity (modeling many cellular products), and is primarily con-
cerned with modeling the problem (versus exploring appropriate solution techniques).

Further along this vein of improved models of change in biological processes, Tran and Baral (2005) 
model change in biological processes as exogenous actions, termed triggers. In the planning considered 
in this chapter, the plans contain actions that represent both intervention and non-intervention, where the 
actions respectively model how the GRN changes under outside influence or naturally. Tran and Baral 
factor out the model of natural change in the biological process, representing it as triggers, which plans 
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can only indirectly affect. Actions become much simpler, in that they describe only the change due to 
the intervention, and not the coupling of the biological process and intervention.

background

This background section contains material on the WNT5A GRN and its significance. The section also 
describes the process of deriving a GRN from microarray data using the coefficient of determination 
(CoD), as described by Kim et al. (2000). With the derived GRN, the section continues by describing a 
POMDP based intervention planning formulation (Bryce and Kim, 2007). The following section describes 
how AI planning algorithms can be applied to efficiently solve this specific the POMDP formulation.

wnt5a gene regulatory network

Wnt5a, a product of gene WNT5A, is a member of the Wnt family of proteins. The WNT gene family 
consists of structurally related genes which encode secreted signaling proteins. These proteins have been 
implicated in oncogenesis (malignant transformation leading to the formation of a tumor) and in several 
developmental processes, including regulation of cell fate and patterning during embryogenesis (embryo 
development) (Weeraratna et al., 2002). Specifically, the expression level of WNT5A is closely related 
with metastatic status (spread from one organ to another) of melanoma (Bittner et al., 2000). Later, it 
was also proved experimentally that increasing the level of Wnt5a protein can directly change the cell 
metastatic competence (Weeraratna et al., 2002; Sosman et al., 2004). It has been also suggested that 
controlling the influence of Wnt5a in the regulation can reduce the chance of melanoma metastasizing 
(Weeraratna et al., 2002).

In this chapter, we will focus on an in-silico gene regulatory network constructed via various previous 
studies (Bittner et al., 2000; Kim et al., 2002; Weeraratna et al., 2002). The focus is the network of elements 
of the Wnt5a signaling pathway that deal with the phenotypic change from a less motile, less aggressive 
cell to a much more motile, more invasive cell. Early attempts at constructing mathematical models of the 
network of genes showing shared regulatory information with Wnt5a resulted in the identification of an 
interesting relationship between Wnt5a and Mart-1 (MLANA) expression (Figure 1, Kim et al., 2002).

The network was constructed from a cDNA gene expression data containing probes for 8,150 cDNAs 
(representing 6,971 unique genes) and the 31 cutaneous melanoma tumor samples (Bittner et al., 2000). 
To focus on a small set of important genes, prior work selected ten genes using the following criterion: (i) 
predictive relationships based on coefficient of determination (CoD) analysis (Kim et al., 2000; Dough-
erty et al., 2000), (ii) roles in classifying malignant melanoma (Bittner et al., 2000), and (iii) biological 
functionalities. Specifically, prior work first identified a group of predictors that can simultaneously 
predict multiple target genes. The more target genes a set of predictive genes can predict well, the larger 
its extent of prediction is. Then, the authors also located genes that can be well predicted by many genes. 
Even though a causative relationship cannot be directly inferred from the coefficient of determination, 
the study was interested in a core group of genes that had strong cross predictivity, independent of the 
actual direction of action. Taking the intersection of these two gene sets both meets this requirement 
and reduces the number of candidates for the network. Further requirements for this core group of genes 
(alone or in combination) are that they should (i) show characterized biological functionalities; (ii) control 
and regulate the activity of other genes; (iii) modulate the phenotype of a cell.
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Based on i) the coefficients of determination between each target gene and many possible predic-
tors and ii) either their known or likely roles in the Wnt5a driven induction of an invasive phenotype in 
melanoma cells, ten genes were chosen. For these selected genes, the authors estimated CoDs of single-, 
two-, and three-gene predictors from the data. The highest CoDs for each target are shown in Table 1. 
Based on Table 1, we obtain the wiring diagram shown conceptually in Figure 1.

This network implied that high Wnt5a expression was linked with low Mart-1 expression. Mart-1 
(MLANA) is a cell surface protein with epitopes (part of a macromolecule recognized by the immune 
system) commonly recognized by a class of tumor infiltrating lymphocytes (type of white blood cells) 
that have the ability to destroy melanoma cells (Kawakami et al., 1994; Cole et al., 1994). The coinci-
dental alteration of melanoma cells to a more aggressive, mobile form, in conjunction with the damping 
of production of an antigen that can target melanoma cells for immunologic surveillance and killing 

Figure 1. Multivariate relationship between genes

Table 1. The CoD values of the highest 3-to-1 combination for ten genes 

Predictor 1 Predictor 2 Predictor 3 Target CoD

WNT5A STC2 HADHB pirin 0.709

pirin S100P RET-1 WNT5A 0.683

WNT5A RET-1 Synuclein S100P 0.795

pirin WNT5A S100P RET-1 0.625

S100P RET-1 HADHB MMP-3 0.700

MART-1 synuclein STC2 PHO-C 0.920

pirin WNT5A MMP-3 MART-1 0.793

pirin WNT5A MMP-3 HADHB 0.772

pirin S100P MART-1 synuclein 0.559

pirin WNT5A PHO-C STC2 0.479
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makes this particular cascade interesting both in terms of cancer biology and therapy. The network has 
been extensively studied in the context of intervention (Datta et al., 2003; 2004).

The empirical evaluation section studies a seven gene version of this ten gene WNT5A network due 
to some representational challenges (discussed in detail below) that prevented consideration of the full 
network. The reduced network is also motivated by a need to compare with the previous work of Datta 
et al. (2004), where the authors used a seven gene network.

PoMdP Model of grns

This subsection describes the finite horizon POMDP model, formally defines intervention planning, and 
details the formulation of intervention planning in the POMDP.

POMDP Model: The finite horizon POMDP problem P is defined as the tuple hS, A, T, R, Ω, O, h, 
bIi, where S is a set of states, A is a set of actions, T: S £A [{?}£ S[{?}![0,1] is a transition probability 
function, R: S £A [{?}£S[{?}! R is the transition reward function, Ω is a set of observations, O: S £A 
£Ω! [0, 1] is the observation function, h is the planning horizon, and bI: S ![0, 1] is the initial belief state. 
We overload the symbol ? to denote both the terminal action and state signifying the end of the plan (i.e., 
the action and state at horizon h).

Consider a small example to illustrate the POMDP model. Let the set of states S be defined in terms 
of two states s1 and s2, such that S = {s1, s2}. Let the set of actions A = {I1, NI}, where “I1” signifies 
intervening by inhibiting a gene g1 and “NI” signifies not intervening. Let the transition probability 
function T and transition reward function R be defined as follows:

T(s1, I1, s1) = 1.0 R(s1, I1, s1) = -1 

T(s1, I1, s2) = 0.0 R(s1, I1, s2) = -1 

T(s2, I1, s1) = 0.8 R(s2, I1, s1) = -1 

T(s2, I1, s2) = 0.2 R(s2, I1, s2) = -1 

T(s1, NI, s1) =.5 R(s1, NI, s1) = 0  

T(s1, NI, s2) =.5 R(s1, NI, s2) = 0  

T(s2, NI, s1) =.25 R(s2, NI, s1) = 0  

T(s2, NI, s2) =.75 R(s2, NI, s2) = 0  

T(s1, ?, s1) = 1.0 R(s1, ?, s1) = 0 

T(s2, ?, s2) = 1.0 R(s2, ?, s2) = -10 

Let the set of observations contain two observations o1 and o2, such that Ω = {ο1, ο2}, and let the 
observation function O be defined for every action as:
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O(s1, ·, o1) = 0.7 O(s1, ·, o2) = 0.3 

O(s2, ·, o1) = 0.3 O(s2, ·, o2) = 0.7 

Let the initial belief state bI be defined as bI(s1) = 0.5 and bI(s2) = 0.5.
In this POMDP, the reward function indicates that the state s1 is a desirable end state because self 

transitions (those after the number of steps in the horizon) due to the ? action are rewarded 0, whereas 
the same action for s2 rewards -10. The reward for the terminal action can only be accrued once at the 
end of the plan. The intervention action I1 leads to s1 with high probability from both states and has a 
small cost (negative reward). The non-intervention action NI has no cost and, depending on the current 
state, transitions to the other with some probability (e.g., in s1 NI transitions to s2 with 0.5 probability). 
The observation function states that receiving observation o1 indicates that the current state is s1 with 
0.7 probability, or that it is s2 with 0.3 probability. The initial belief state assumes that either state is the 
initial state with 0.5 probability. As the next section defines, it is possible to compute the belief states 
reached by executing each possible action at the first time step and receiving an observation, using Bayes 
rule. Repeated computation of belief states reachable by different action and observation sequences (up 
to the horizon h) provides the information sufficient to find a solution, called a conditional plan (i.e., the 
best actions to perform for each observation sequence). However, full computation of every sequence 
is not always necessary, as we will see in the next section.

Intervention Planning Problem: Given our definition of the POMDP model, the following shows 
how an intervention planning problem maps to the POMDP. The intervention problem is defined by the 
tuple hG, Dom, F, X, W, Y, O, hi, where G is a set of genes, Dom is the set of activity levels for genes, 
F is a set of predictor functions, X is a set of interventions, W is an initial situation, Y is a goal descrip-
tion, O is a set of observations, and h is the horizon. The genes and their activity levels describe states 
of the POMDP, the predictor functions and interventions describe actions, interventions and the goal 
description define the reward function, and the initial situation, observations, and horizon map directly 
to their POMDP counterparts.

States: Each gene g 2G has an activity level from the domain Dom of values, of which we will only 
illustrate Boolean domains {g,:g}, active or inactive. A state s: G!Dom of the gene network maps each 
gene to a value d2Dom. The entire set of GRN states defines the POMDP states S.

For example, a four gene problem G = {g1, g2, g3, g4} would give rise to a sixteen state POMDP 
with states S = {s1 = {g1, g2, g3, g4}, s2 = {:g1, g2, g3, g4}, …, s16 = {:g1,:g2,:g3,:g4}}

Predictor Functions and Interventions: Given a state of the gene network, the predictor functions 
F are used to describe states reachable after one step. Interventions re-write predictor functions in F for 
specific genes to ensure the gene network transitions to specific states. Thus, each possible action in 
the POMDP is described by a set of predictor functions. A non intervention simply uses F to describe 
the action, but an intervention action x 2X replaces predictor functions in F to get a new set Fx. Each 
intervention x 2X is a set of predictors { f

g1
, fg2

, ... }, allowing us to define

Fx = F[x\{ f
g

| f
g

2F, f
g '

2x, g =g’}. 

Each predictor function fg is defined as the mapping f
g

:Dom|G’| !Dom from activity levels of genes 
in G’ µ G to the activity level of gene g. The interventions described in this chapter contain a single 
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predictor function f
g  where G’=∅, meaning that, irrespective of the state, g has its activity level set 

deterministically.
Since each gene may be predicted by several predictor functions, where each state transition selects 

one probabilistically, each predictor is assigned a weight w( f
g ) (based on its normalized CoD). The 

empirical analysis evaluates GRNs where the predictor functions and weights are both generated ran-
domly and from real microarray experiments.

Figure 2 depicts two actions in a four gene GRN, a non intervention action on the left and an action 
intervening g1 on the right. The genes on the left side of each action symbolize current state values 
for the genes, and the left symbolize the next state values. The dark circles indicate different predictor 
functions with their associated weights. Each of the predictor functions uses two genes to determine the 
next value of a gene, and there are two predictor functions per gene. For example, the non-intervention 
action has two predictors for g1, fg1(g2, g3) and fg1(g2, g4), with the respective weights 0.48 and 0.52. 
The first predictor function for g1 might be defined as follows:

g2, g3) =:g1 

fg1(g2,:g3) = g1 

fg1(:g2, g3) =:g1 

fg1(:g2,:g3) = g1 

to indicate the activity levels of g2 and g3 that map to various activity levels for g1 in the next state. 
The intervention action uses a single predictor for gene g1, effectively overwriting the predictors in the 
non-intervention action and leaving all other predictor functions as before.

Each action aF defined by the set of predictor functions F (similarly Fx) describes the transition prob-
ability function

Figure 2. Graphical depiction of predictor functions for a non-intervention (left) and intervention (right) 
action
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T(s, aF, s’) = Pr(s’ | F, s) = ∏g 2 G

w f s

w f s

g
f s F f s s g

g
f s F

g g

g

( ( ))

( ( ))

( ) : ( ) '( )

( )

Î =

Î

å

å

æ

è

çççççççççç

ö

ø

÷÷÷÷÷÷÷÷÷÷÷÷
. 

The matrix in Figure 3 is one representation of the transition probability function for the intervention 
action on the right in Figure 2. The rows correspond to the current state s and the columns refer to the 
next state s’, and the activity level for each gene is shown for each state. Notice that because the inter-
vention action ensures that the activity level for g1 is active in each next state, the transition probability 
matrix has all zero entries for any next state where g1 is inactive (highlighted grey entries). However, 
there are still a considerable number of zero entries in the matrix due to state transitions not possible 
in the GRN model. In the next section, an alternative, more compact, representation of the transition 
probability matrix is described.

Observations: After each step, whether by intervention or non intervention, the state of the gene 
network is observed. The set O µ G defines which genes are observable (by genetic markers, physiol-
ogy, etc.). The set of observations Ω = {o | o 2Dom|O|} is defined by all joint activity levels of genes in 
O. This chapter assumes that observations are perfect and the same for each action, meaning that if a 
state s and observation o agree on the activity level of each gene, then the probability of the observation 
is one (i.e., O(s, a, o) = 1, otherwise zero (i.e., O(s, a, o) = 0). Observations can be noisy (i.e., 0 ·O(s, 
a, o) ·1) in general.

For example, the four gene GRN might have the observables O = {g1, g3}, making the set of pos-
sible observations Ω = {o1 = {g1, g3}, o2 = {:g1, g3}, o3 = {g1,:g3}, o4 = {:g1,:g3}}. An observation 
function that models perfect observations would have the following example values:

O({g1, g2, g3, g4}, a, o1) = 1 

Figure 3. Transition probability matrix for the intervention action depicted in Figure 2



557

Planning Interventions for Gene Regulatory Networks as Partially Observable Markov Decision Processes

O({:g1, g2, g3, g4}, a, o1) = 0 

O({g1,:g2, g3, g4}, a, o1) = 1 

because in the first case o1 matches the values of genes in the state, in the second case the state does not 
match the observation, and in the third case the state matches the observation. The observation function 
can be defined similarly for all states and observations.

Rewards: The goal Y is a function describing desirable states. The goal maps states to real values 
Y:Dom|G| !R. The reward function for terminal actions and goal states is defined by the goal R(s, ?, ?) 
= Y(s). This chapter assumes that the reward associated with actions is -1 for intervention actions (i.e., 
R(s, aFx

, s’) = -1) and 0 for non intervention (i.e., R(s, aF, s’) = 0).
Initial Situation: The initial situation W is a distribution over GRN states W: Dom|G| ![0, 1]. This 

mapping to the POMDP initial situation is straight-forward, bI (s)=W(s).
Since the formulation has a distinct initial belief state, the approach explored next used heuristic 

search and knowledge of the initial belief state to guide expansion of a conditional plan. By searching 
forward from the initial belief state, it is possible to focus plan construction on reachable belief states.

Planning

This section describes an approach to solving the finite horizon POMDP representing the GRN interven-
tion planning problem. First, the semantics of conditional plans and the search space are defined; these 
are followed by a discussion of action and belief state representation, along with two search algorithms 
to find plans. The first algorithm is AO* (Nilsson, 1980), and the second Datta is based on a competing 
approach (Datta et al., 2004) from the GRN literature.

conditional Plans

A solution to the problem P is a conditional plan P of horizon h, described by a partial function P: V !A 
[{?} over the belief state space graph G = (V, E). A subset of the vertices b 2V (which are belief states) 
are mapped to a “best” action a, denoted P(b) = a. Each edge e2 E directed from b to b

a
o is mapped to 

an action a 2A and an observation o 2 Ω, and denoted e(b, b
a
o ) = (a, o). If P(b) = a and e(b, ba

o ) = (a, 
o), then P(b

a
o ) is the action to execute after executing a and receiving observation o. Throughout the 

discussion, it is assumed that the horizon is a feature of every state to ensure that the graph G is acyclic. 
Belief states where the horizon is equal to h have a single available action ? to signify the end of the 
plan, leading to a terminal ?.

If P(b) = a, and there exists an edge e(b, b
a
o ) = (a, o) then the successor belief state b

a
o is defined

b s b s O s a o
a
o

a
( ') ( ') ( ', , )= a , 

where

b s b s T s a s
a

s S

( ') ( ) ( , , ')=
Î
å , 
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and ® is a normalization constant. If for all s2 S, b s
a
o( )= 0 because no observation is consistent with 

the belief state ba, then the belief state is not added to the graph. For example, in the two state POMDP 
from the previous section, applying action I1 in the initial belief state bI results in bI1 (s1) = bI (s1)T(s1, 
I1, s1) + bI (s2)T(s2, I1, s1) = 0.5(1.0)+0.5(0.8) = 0.9 and bI1 (s2) = bI (s1)T(s1, I1, s2) + bI (s2)T(s2, I1, 
s2) = 0.5(0.0)+0.5(0.2) = 0.1. With the observations we have:

b s b
I
o

I1
1

1
1( ) = a  (s1)O(s1, I1, o1) =  

1
0 9 0 7 0 1 0 3. ( . ) . ( . )+

æ

è

ççççç

ö

ø

÷÷÷÷÷÷ 0.9(0.7) = 0.95,  

b s b
I
o

I1
1

1
2( ) = a  (s2)O(s2, I1, o1) =  

1
0 9 0 7 0 1 0 3. ( . ) . ( . )+

æ

è

ççççç

ö

ø

÷÷÷÷÷÷ 0.1(0.3) = 0.05, 

b s b
I
o

I1
2

1
1( ) = a  (s1)O(s1, I1, o2) =  

1
0 9 0 3 0 1 0 7. ( . ) . ( . )+

æ

è

ççççç

ö

ø

÷÷÷÷÷÷ 0.9(0.3) = 0.79, and 

b s b
I
o

I1
2

1
2( ) = a  (s2)O(s2, I1, o2) =  

1
0 9 0 3 0 1 0 7. ( . ) . ( . )+

æ

è

ççççç

ö

ø

÷÷÷÷÷÷ 0.1(0.7) = 0.21 

and similarly we find that b s
NI
o1 1( )  = 0.53, b s

NI
o1 2( ) = 0.47, b s

NI
o2 1( ) = 0.18, and b s

NI
o2 2( ) = 0.82.

The expected reward q(a, b) of a plan that starts with action a at belief state b is the sum of current 
and future rewards:

q a b b s T s a s R s a s b s O s a o V b
a a

o

os

( , ) ( ) ( , , ')( ( , , ') ( ') ( ', , ) ( ))= +
Î
å

W''ÎÎ
åå

Ss S
, 

where the expected reward for a belief state is V(b). Terminal vertices are assigned the expected goal 
reward

q b b s R s
s S

( , ) ( ) ( , , )^ = ^ ^
Î
å . 

In the example, if we assume that V(bI
o
1
1 ) = -7.4, V(b

I
o
1
2 ) = -3.2, V(b

NI
o1 ) = -9.1 and V(bNI

o2 ) = -10.3, 
then we have:

q(I1, bI) = bI(s1)(T(s1, I1, s1)(R(s1,I1,s1) + bI1 (s1)O(s1, I1, o1) V(b
I
o
1
1 )) + 

T(s1, I1, s2)(R(s1,I1,s2) + bI1 (s2)O(s2, I1, o1) V(b
I
o
1
1 ))) + 

bI(s2)(T(s2, I1, s1)(R(s2,I1,s1) + bI1 (s1)O(s1, I1, o2) V(b
I
o
1
2 )) + 

T(s2, I1, s2)(R(s2,I1,s2) + bI1 (s2)O(s2, I1, o2) V(bI
o
1
2 ))) 
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= 0.5(1.0 (-1.0 + 0.9(0.7)(-7.4)) + 

0.0 (-1.0 + 0.1(0.3)(-7.4))) + 

0.5(0.8 (-1.0 + 0.9(0.3)(-3.2)) + 

0.2 (-1.0 + 0.1(0.7)(-3.2))) = 3.7 

The values V(b) can be computed in many ways, below we describe an iteratively converging ap-
proach in the AO* algorithm and a dynamic programming algorithm studied by prior work. The actions 
that define the optimal values correspond to the actions defining an optimal plan.

representation

Actions and belief states represent probability distributions over state transitions and states, respectively. 
A practical consideration of any algorithm that constructs the belief state space graph is how to compactly 
represent a large number of probability distributions. It is common in AI planning to make use of the 
factored representation of states to capture structure compactly. In this case, state factors are genes.

Consider the table and diagram in Figure 4, called an algebraic decision diagram (ADD) (Bryant, 
1986). Each row in the table corresponds to a state, where the activity level for each gene is given, and 
the probability of the state in the belief state is given. The first two states have equal probability, and 
differ only in the last gene g4; an ADD can exploit this structure. The ADD is a graph representing state 
factors (genes) as nodes, and their values (activity levels) as edges. The solid edges indicate the value is 
“1” and the dashed edges indicate the value is “0”. Each path through the ADD from the root to a leaf 
node corresponds to a set of potential states. The path on the right corresponds to the first two states; 

Figure 4. Belief state and ADD representation
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because the node for g4 does not appear on the path, its value adds no information in representing these 
two states in the probability distribution. In this fashion it is possible to represent a large number of states 
very compactly when the states have identical probabilities within a belief state.

Similarly, it is possible to represent the state transition probability distribution for each action using 
an ADD. Figure 5 depicts the ADD for the intervention action described in the previous section. The state 
transition probability must represent a probability for each pair of states, meaning that the ADD must 
use nodes to represent both the predecessor state factors and the successor state factors (those nodes in 
Figure 5 whose factor has a dash). In the same spirit as the ADD for the belief state, each path through 
the ADD in Figure 5 represents a set of state transitions and their probability. Notice that because the 
action intervenes to activate g1, all paths through g1’ use a solid edge, meaning that g1’ must be active 
in all successor states. Action observation probability functions are represented in a similar fashion.

It is possible to use efficient (polynomial time) ADD algorithms to compute the successor belief states 
(for all constituent states at once) in the formulas given in the discussion of conditional plans above. 
The main operation involves a product between the belief state ADD with the transition ADD, followed 
by summation over predecessor states in the resulting ADD. These algorithms are beyond the scope of 
this chapter, and the interested reader is referred to (Meinel and Theobald, 1998).

Ao* algorithm

It is possible to solve the finite horizon POMDP problem with AO* search (Nilsson, 1980) in the space of 
belief states. The AO* algorithm, listed in Figure 6, takes the planning problem as input, and iteratively 
constructs the belief space graph G rooted at bI. The algorithm involves three iterated steps: expand the 
current plan with the ExpandPlan routine (line 3), collect the ancestors Z’ of new vertices Z (line 4), 
and compute the current best partial plan (line 5). The algorithm ends when it expands no new vertices. 
The following briefly describes the sub-routines used by AO*.

Figure 5. ADD representing state transition probability for the action intervening gene g1
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The ExpandPlan routine recursively walks the current plan to find unexpanded vertices (lines 2-4). 
Upon finding a vertex to expand, it generates all successors of the vertex (lines 5-15). Generating suc-
cessors involves assigning the ? action if the vertex is at the max horizon (line 9) or constructing the 
vertices reached by all action and observation combinations (lines 11-15). Notice that each vertex has 
its value initialized with an upper bound,

R R s a s h R s
s s S
a A

max
, '

max ( , , ') max( , ( , , ))= + ^ ^Î
Î

0 , 

on its expected reward. The upper bound plays a role in pruning vertices from consideration in the 
search.

After expanding the current plan, ExpandPlan returns the set of expanded vertices Z. In order for 
Update (Figure 7) to find the best plan, given the new vertices, AddAncestors adds to Z’ every ances-
tor vertex of a vertex in Z. The resulting set of vertices consists of every vertex whose value (and best 
action) can change after Update. The Update routine iteratively removes vertices from Z that have no 
descendent in Z and calls Backup until no vertices remain in Z. The Backup routine computes the value 

Figure 6. AO* search algorithm
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of a vertex and sets its best action. The reason Update chooses vertices with no descendent in Z is to 
ensure each vertex has its value updated with the updated values of its children.

AO* can often avoid computing the entire belief space graph G, leading to significant savings in 
problems with large horizons. By initializing vertices with an upper bound on their value it is possible 
to ignore vertices that have a consistently lowest upper bound. For example in Backup, if there exists 
an action whose q-value is always greater than the alternative actions, then the best action will never 
be set to one of the alternatives. Further, because the alternative actions are never considered best, Ex-
pandSolution will never expand them. As explored in the empirical evaluation, the reward function has 
a significant effect on the number of vertex expansions. In the worst case, it is possible to expand the 
entire graph G, as would the Datta algorithm.

Consider the example shown in Figure 8 of AO* expanding the belief state space to find a conditional 
plan. The belief state space graph begins with a single node for the initial belief state (top left of the 
figure), which is given an initial value V(bI) = Rmax = 3. In the first call to ExpandSolution, four successor 
belief states are generated, one for each action and observation pair. The edges are grouped by with a 
curved arc to indicate that they correspond to alternative observations but the same action. The number 
in between the connected edges indicates the immediate reward of the action, either “-1” to intervene or 
“0” to not intervene and let the GRN change on its own. Each new belief state is assigned a value Rmax 
= 3. AO* then updates the values of the actions to “2” and “3” (shown on the outside of the edges), and 
the value of bI. The best action to perform in bI maximizes its value, meaning that non-intervention is 
best, and the straight line connecting the edges for that action indicate that it is best and part of the cur-
rent best partial plan. At the next iteration, ExpandSolution generates the successor belief states for the 
belief states reached by following the current best partial plan, and the values are updated as before. The 
next iteration (lower left of the figure) again generates the successors of belief state in the current plan. 
Assuming the planning horizon is three, the newly generated successors are assigned values to indicate 
the expected reward received by satisfying the goal (whose value is 3). The value updating identifies a 

Figure 7. AO* subroutines
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new best action in the left-most branch of the plan, marking the intervention action, but in the right-most 
branch the non-intervention action is best. While AO* expanded the plan up to the maximum horizon, 
the updating changed the plan, requiring additional expansion. That is, Update propagates refined values 
back to the root node; because values may be only estimates in some cases, refined values can change 
the best partial plan and require additional exploration of the search graph. In the last iteration, AO* 
expands again and the values change, but no new plan is identified, so it terminates with a plan of value 
2.02. Notice that plans starting with the first intervention action are never explored; the upper bound on 
its value is two, and all partial plans explored by the algorithm had a value greater than two, meaning 
they were always better. Using even a loose upper bound can avoid generating unnecessary regions of the 
belief state space, and having tighter upper bounds can only improve the savings. However, computing 
such tighter bounds can be difficult and are an area of intense research in AI.

Datta algorithm

In order to compare the AO* planner to the work of Datta et al. (2004), Figure 9 provides a description 
of their algorithm, which will be referred to as Datta. Unlike the iterative AO*, Datta consists of two 
steps: expand G with ExpandPlanD, and then update each vertex v2V with Update. The ExpandPlanD 
routine recursively expands G by either reaching a terminal vertex at the horizon (line 2), or generating 
and recursing on each child of a vertex (lines 5-7). Following ExpandPlanD, Update computes the best 
action for each vertex in V.

Unlike AO*, Datta is unable to prune vertices from expansion, making it insensitive to the reward 
function. While the result of the two algorithms is identical, the time and space required can be very 

Figure 8. AO* example
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different. Both algorithms were implemented within the same planner and the empirical evaluation 
demonstrates their effectiveness on the GRN intervention planning problems. The authors also imple-
mented a straight-forward version of the Datta et al. (2004) algorithm that does not make use of several 
efficiency improvements within the planner, such as using ADDs Bryant (1986) for compact action and 
belief state representation, as well as duplicate belief state detection.

empirical evaluation

This section describes an empirical evaluation aimed to not only explore the limits of the planning 
techniques (based on AO* search and the ADD representation) described for intervention planning, but 
also compare with exiting algorithms (namely the Datta algorithm). The evaluation is broken into three 
parts. The first describes the test setup, and the following two describe a comparison of the algorithms 
on two GRNs and three intervention problems, and an internal evaluation to explore the scalability of 
the described approach.

Setup: The experiments, described below, are designed to test the feasibility of using AI planning 
techniques to solve GRN intervention problems, and are based on several GRNs, both randomly generated 
and the learned WNT5A GRN (Kim et al., 2002). The random variations are meant to stress different 
aspects of the planner, including its ability to prune the belief state space using bounds and the limits of 
its representation of the GRN and intervention actions as ADDs. Table 2 summarizes the features of the 
GRNs. All GRNs use two predictor functions per gene, each with two genes as predictors, as well as 
one observable gene. The first two GRNs help to illustrate the differences between the AO* and Datta 
algorithms; the random GRN “Random7-3” has seven genes and three intervention actions, and the 
WNT5A GRN has seven genes and one intervention action (two different intervention actions are used 
below). The WNT5A GRN is formulated to match the GRN presented by Datta et al. (2004), and the 
Random7-3 GRN is meant to explore how the algorithms behave when the number of interventions are 
increased. The predictor functions are selected randomly in the random GRNs and learned from microar-
ray data (using the coefficient of determination method described above) in the WNT5A GRN. (In the 
WNT5A GRN, the two predictor functions for each gene have the highest CoD, effectively setting their 

Figure 9. Datta algorithm



565

Planning Interventions for Gene Regulatory Networks as Partially Observable Markov Decision Processes

weight proportional to the CoD.) The last three GRNs “Random7-1”, “Random8-1”, and “Random9-1” 
increase the number of genes in the GRN from seven to nine and use a single intervention, as indicated 
by their names. While the WNT5A network described in the Background section contained ten genes, 
planning interventions is a more computationally difficult problem, relegating us to small GRNs, of 
at most nine genes, with Boolean gene activity levels. (The future research directions section, below, 
indicates techniques that may be employed to increase the number of genes.)

There are several intervention problems studied in the GRNs. In the Random7-3 GRN, the goal W is 
varied to assign different rewards to terminal states, while assigning interventions a negative reward of 
one. This illustrates the ability of AO* to prune the search space in comparison with enumeration. The 
WNT5A GRN allows the reproduction of two intervention problems studied by Datta et al. (2004). The 
first directly intervenes to suppress WNT5A (which happens to be the goal) and observes the pirin gene. 
The second attempts to indirectly control WNT5A by pirin (a predictor gene of WNT5A) intervention. 
Both WNT5A problems use the same reward function, assigning interventions a negative reward of 
one and the goal (activating WNT5A) a negative reward of three. The goal accrues negative reward to 
maintain consistency with the Datta et al. (2004) model. Thus plans avoid activating WNT5A, which is 
equivalent to deactivation. Both WNT5A networks use the initial belief state where each gene is set to 
an activity level with probability proportional to its observed frequency in the data. The last three net-
works are used to explore the internal scalability of the AI planning approach by increasing the number 
of genes, and holding constant the number of interventions at one intervention. Each problem assigns 
a reward of ten to the goal. A common factor scaled across all intervention planning problems is the 
horizon of the plan. As the horizon increases, the number of possible plans and the number of decision 
points grow exponentially, making the problem more challenging.

The planner is implemented in C++ and ran on a machine with 1GB of RAM. The experiments in-
volving the first two GRNs were given a twenty minute time limit and the experiments on the last three 
were given thirty minutes (to allow for long preprocessing time, converting the GRN into ADDs).

algorithm comparison

The leftmost plots in Figure 10 depict the number of expanded vertices (including terminal actions) 
in AO*, Datta, and the maximum possible (Max), and the rightmost plots depict the total run time in 
seconds for the corresponding plot on the left. The results for AO* are indexed by a number indicating 
the reward associated with the goal, since Datta is insensitive to reward. Max represents the number of 
vertices expanded in a search tree (versus a graph), similar to the original implementation of Datta et 
al. (2004). By implementing the Datta algorithm within the planner, like AO* it finds duplicate belief 
states. Without duplicate detection, Datta would expand as many vertices as Max. The leftmost plot in 

Table 2. Test GRNs 

|G| |Dom| |F| |X| |O|

Random7-3 
WNT5A

7 
7

2 
2

14 
14

3 
1

1 
1

Random7-1 
Random8-1 
Random9-1

7 
8 
9

2 
2 
2

14 
14 
14

1 
1 
1

1 
1 
1
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Figure 10 shows the associated total planning time (which is proportional to the number of expanded 
vertices). Missing bars indicate the instance was cut off by reaching the 20 minute time limit.

There are several important points to note in the results. AO* is sensitive to the goal reward function, 
expanding much fewer vertices than Datta in some cases. Despite AO* using dynamic programming over 
its partial solution many times, it never takes more time than Datta. When it is able to prune vertices, 
AO* scales much better.

The second row of plots in Figure 10 show results in the WNT5A GRN intervening WNT5A and 
observing pirin. Here AO* greatly outperforms Datta. The difference is partly due to the fact that AO* 
quickly recognizes that the optimal plan intervenes once at the end of each plan branch where WNT5A 
is not already inactivate. A direct implementation of the approach of Datta et al. (2004), which does no 
duplicate detection was able to solve this problem to a horizon of ten, using significantly more memory 

Figure 10. Number of expanded vertices (left) and total planning time in seconds (right) for random 
GRN (top), WNT5A intervention (center), PIRIN intervention (bottom).
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and time. While the implementation of Datta is limited by time, the direct implementation is limited 
by space, exceeding memory past horizon ten. The last row of plots in Figure 10 show results in the 
WNT5A GRN intervening pirin and observing WNT5A. Finding plans in this problem requires more 
search, but AO* can still prune.

grn Scalability

Having established the utility of AO* in pruning the belief state space, the next three GRNs help explore 
the utility of the ADD representation by increasing the number of genes from seven to nine. Figure 11 
presents results of the planner solving a single intervention problem of increasing horizon in each GRN. 
The results depict, as before, the number of belief states expanded by AO*, and the total time, and now 
include results for the reward and probability of goal satisfaction achieved in each instance.

As expected, the number of belief states expanded is the same regardless of the number genes, with the 
exception of a few variations due to duplicate belief states in the seven gene GRN in horizons four and 
six. The total time taken increases with the number of genes (because of larger ADDs) and the horizon 
(because of a larger belief state space). At horizon eight, only the seven gene GRN is solvable due to 
the extra time taken in creating the ADD representation for eight and nine gene GRNs. This indicates, 
as discussed further in the future research directions, that improving upon the ADD representation is 
necessary for increasing the number of genes. The plot of the rewards achieved by the optimal plans in 
each GRN indicates that the reward increases with the horizon, meaning that the length of the interven-
tion plan does play a role in the ability to achieve the desirable states. While the data is not necessarily 
exhaustive, it appears that the combined reward of the plan and goals achieved slows with the horizon 

Figure 11. Increasing genes, expanded belief states (top left), total time (top right), plan reward (bottom 
left), and goal probability (bottom right).



568

Planning Interventions for Gene Regulatory Networks as Partially Observable Markov Decision Processes

indicating stable behavior in the GRN where additional reward is accrued without performing additional 
intervention actions. Finally, the plot of the probability of goal satisfaction indicates a tendency toward 
increasing probability of goal satisfaction with the horizon. In some cases, as in the seven gene network 
at horizon six, the plan trades the reward associated with the probability of achieving the goal for reduced 
intervention cost (through non-intervention). This tradeoff between plan cost and goal satisfaction is 
made implicit through the combined expected reward measure optimized by the plan; as explored in the 
future research directions, it may be useful to decouple these measures and optimize them separately.

This section has shown that AI planning is a viable avenue of research where more scalable approaches 
to solving GRN intervention problems may exist. Where uninformed algorithms quickly exceed time 
limits as the horizon increases, the more informed AO* is sensitive to reward functions and can scale 
to larger horizons. Within both artificial and existing GRNs of practical interest, AO* performs well 
by pruning vertices based on upper bounds. As anticipated, the interest in increasing the horizon of the 
plans does have a pay off in terms of both the increased probability of reaching goal states and increased 
expected reward.

concluSion

This chapter has presented GRN intervention planning by describing techniques to derive GRNs from 
microarray data using the coefficient of determination, detailing the WNT5A GRN, describing the 
POMDP model and it applicability to capturing intervention planning. The main contribution of the 
chapter was the description of two alternative algorithms for solving the intervention planning prob-
lem as a POMDP and techniques used for representing the belief states and actions of the POMDP. An 
empirical evaluation showed that the planner (relying on several advances in AI planning to perform 
efficient reasoning) helped improve the scalability of planning interventions in GRNs over previous 
work. There remain several interesting directions for future research based on this study, and these are 
detailed in the following section.

future reSearch directionS

There are several directions for future research based on the work presented in this chapter. Four topics 
are considered below: reformulating the planning problem to separate plan cost and goal achievement 
as separate optimization criterion, revisiting the model of time, improving scalability, and considering 
alternative to ADDs for the planner representation of actions and the belief state space.

Separating action and goal costs

As all contemporary works on controlling GRNs, this chapter describes finding plans that optimize a 
single objective: the expected sum of control action costs and end state penalty costs. This can sometimes 
be a poor measure of the quality of an intervention plan because the cost of interventions and the cost 
of failure are not always expressed in the same currency. For example, when interventions costs reflect 
the cost of a particular drug or therapy and the failure cost reflects the cost of human life it might not 
make sense to combine the two into a single objective, even with a generous scaling factor. In cases 
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where these costs cannot be combined, we should approach the problem of planning interventions as 
multi-objective optimization. Computational approaches for planning with multiple objectives exist for 
deterministic settings (Refanidis and Vlahavas, 2003), but practical algorithms for planning with multiple 
objectives in stochastic settings are relatively immature.

Model of time

The model of time in most works on controlling GRNs assumes that the rate of control matches the rate 
of change in the biological process (i.e., every decision point for control is after a single step of change 
in the biological process). In reality, when executing an intervention plan, it is not clear how much the 
biological process has changed when each control action is executed. The GRN is at best an approxi-
mation of the biological process, and can miss how the regulatory levels of genes change at different 
rates, effecting how the biological process evolves and diverging from the GRN model. The described 
model of GRNs already allows for uncertainty in the state of the biological process, resulting from un-
certainty from the probabilistic predictor functions (i.e., regulatory mechanisms). It should be possible 
to strengthen the GRN model and resulting intervention plans by incorporating durational uncertainty 
into the predictor functions to refine state distributions. However, the data that could be used to create 
these distributions is currently difficult to obtain.

improved Scalability

This chapter has shown that using heuristic search and factored representations of GRNs can help 
improve scalability in intervention planning, increasing the planning horizon, the number of possible 
interventions, the number of observations, and the number of genes. Each of these factors plays a dif-
ferent role in planning interventions, and there are a number of techniques to improve scalability with 
respect to each. The horizon, and number of observations and actions determine the size of the belief 
state space graph, and the number of genes determines the size of the representation of belief states. As 
we saw, the heuristic search algorithm AO* used upper bounds on the possible remaining reward that 
can be achieved by extending the intervention plan through different belief states. These upper bounds 
helped determine when it was hopeless to construct the belief state space graph through a particular 
belief state, allowing us save considerable effort. With a perfect upper bound, it would be possible to 
only expand the belief state space graph that corresponds to the intervention plan, exerting the optimal 
amount of search effort. There are several techniques for estimating upper bounds, developed in the 
field of automated planning (Pearl, 1984), that could be extended to planning interventions for GRNs 
to help cut down search effort. Exactly computing and representing belief states can affect scalability, 
and we discuss several alternatives next.

alternative belief State representation

Our representation of belief states, as well as actions, uses ADDs; and our ADD operations exactly 
compute the transitions between belief states. There are two directions that can be pursued to improve 
the representation and reasoning needed to generate the belief state space graph: structure and approxi-
mation. Structure is the means by which we organize the regulatory relationships between genes and 
their regulatory levels. An alternative structure, called a dynamic Bayesian network (DBN), is based on 
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Bayesian belief networks (Pearl, 1988), where we compactly represent relationships by exploiting con-
ditional independence between genes. The DBN representation of GRNs is similar to PBNs (Shmulevich 
et al., 2002), but somewhat more expressive. For example, in a DBN it is possible to express correlations 
between predictor functions for different genes. Within DBNs, there are multiple approximate inference 
algorithms for computing successor belief states.

Addressing the above concerns of model expressiveness and underlying representations will ultimately 
lead to more useful intervention plans that can address complex biological processes.

outlook

The outlook for applying automated planning to designing interventions for GRNs is promising. The goal 
is to scale to represent and reason with GRNs large enough to capture biologically significant systems and 
this could require models with hundreds to thousands of entities. Automated planning has been applied 
to systems of similar scale, but under the assumption of deterministic change and fully observable states. 
Techniques for planning with stochastic change and partially observable states are advancing to operate 
on a similar scale. One area of intense current focus is finding aspects of models that can be addressed 
by algorithms for deterministic systems and those addressed best by algorithms for stochastic systems. 
By decomposing models in this fashion, it is possible to use the most appropriate type of algorithms and 
improve scalability. Moreover, advances in algorithms developed for simulating GRNs can be integrated 
quite readily with planning algorithms, further improving performance.
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key terMS and definitionS

Dynamic Programming: A problem solving technique that extends optimal sub-solutions to optimal 
complete solutions.

Gene Regulatory Network: A systems biology model of intracellular components and their interac-
tions.

Intervention: An externally controllable action that has a direct or indirect impact on the behavior 
of a biological system.

Melanoma: A malignant skin tumor.
Partially Observable Markov Decision Process: A formal model of extended decision making with 

stochastic actions and noisy observations of a partially observable environment.
Planning: Synthesizing a sequence of actions to achieve a goal.
Search: The process of evaluating alternative solutions by comparing partial or complete solu-

tions.
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1. introduction

Gene regulation plays a fundamental role in the development and evolution of organisms. Understand-
ing gene regulation within living cells is a major scientific challenge in the post-genome era. Indeed, 
the analysis of gene regulating networks may have important implications in many fields of science, 
including biology and gene therapy. It may also lead to methods of synthesizing artificial networks with 
applications in biotechnology and biocomputing (Gardner, Cantor, & Collins, 2000).

The λswitch (Ptashne, 2004) is a relatively simple gene regulating network that controls two alter-
native patterns of gene expression in the bacterial virus λ. This epigenetic switch ensures an efficient 
change from one pattern to the other in response to suitable environmental cues. Bistable switches are 

abStract

Gene regulation plays a central role in the development and functioning of living organisms. Developing 
a deeper qualitative and quantitative understanding of gene regulation is an important scientific chal-
lenge. The λ switch is commonly used as a paradigm of gene regulation. Verbal descriptions of the struc-
ture and functioning of the λ switch have appeared in biological textbooks. We apply fuzzy modeling to 
transform one such verbal description into a well-defined mathematical model. The resulting model is a 
piecewise-quadratic, second-order differential equation. It demonstrates functional fidelity with known 
results while being simple enough to allow a rather detailed analysis. Properties such as the number, 
location, and domain of attraction of equilibrium points can be studied analytically. Furthermore, the 
model provides a rigorous explanation for the so-called stability puzzle of the λ switch.
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common motifs in gene regulation networks, and the λ switch provides a convenient test case, as the 
virus is one of nature’s simplest organisms. In a recent survey paper, (Zhu et al., 2007) point out that 
the λ switch “has indeed established itself as one of the fundamental elements in biological processes 
and as a paradigm for both experimental and theoretical studies in biology.”

Developing suitable mathematical models for gene regulating networks is a non-trivial task. Several 
researchers have tried to gain a deeper understanding of the λ switch by deriving mathematical models 
for its dynamic behavior (see the review in Section 2.4 below). Most of the models are quite complex 
and, consequently, can be studied primarily using simulations and numerical analysis.

In this chapter, we apply fuzzy modeling (FM) to derive a new mathematical model for the λ switch. 
FM plays an important role in the fields of artificial intelligence and computational intelligence (Zadeh, 
1994; Klir & Yuan, 1995). It is routinely used to transform the knowledge of a human expert, stated in 
natural language, into an artificial expert system (AES) that imitates the human expert’s functioning 
(Siler & Buckley, 2004; Kandel, 1992). Indeed, the real power of fuzzy logic lies in its ability to handle 
and manipulate linguistic information based on perceptions (Dubois, Nguyen, Prade, & Sugeno, 1998; 
Margaliot & Langholz, 1999, 2000; Zadeh, 1996; Novak, 2005). FM provides a simple yet highly efficient 
approach for transforming verbal descriptions into well-defined mathematical models or algorithms.

Recently, FM has been used to derive mathematical models for biological phenomena. Biologists 
often provide verbal descriptions and explanations of the phenomena they study. FM provides a con-
venient tool for transforming these verbal descriptions into well-defined mathematical models. Note 
that this application of FM is somewhat different than the typical approach applied in the construction 
of AESs. The motivation is not to replace the human expert with an automatic algorithm, but rather to 
assist a human expert in transforming his/her knowledge concerning a biological phenomenon, stated 
in words, into a well-defined mathematical model. The usefulness of this approach was demonstrated 
by developing mathematical models for animal behavior (Tron & Margaliot, 2004, 2005; Bajec, Zimic, 
& Mraz, 2005; Rashkovsky & Margaliot, 2007; Rozin & Margaliot, 2007; Margaliot, 2007).

Fuzzy modeling of biological systems offers several advantages (Margaliot, 2008). The resulting 
model represents the real system in a form that corresponds closely to the way humans perceive it. Thus, 
the model is understandable, even by non-professionals, and each parameter has a readily perceivable 
meaning. The model can be easily altered to incorporate new phenomena, and if its behavior is different 
than expected, it is usually possible to determine which rule/term should be modified and how.

In this chapter, we apply FM to systematically transform (part of) the verbal description given in 
(Santillan & Mackey, 2004) into a mathematical model of the λ switch. The state-variables are the amounts 
of two regulatory proteins (CI and Cro), and the resulting model is a piecewise-quadratic second-order 
differential equation.

Simulations indicate that the model demonstrates adequate functional fidelity to the biological behav-
ior. Furthermore, the piecewise-quadratic nature of the model makes it amenable to rigorous analysis. 
Various properties that were previously shown in simulations can now be studied analytically. These 
include the location and stability of the equilibrium points, and the analysis of bifurcations that may 
explain the stability puzzle in the λ switch (Santillan & Mackey, 2004).

The remainder of this chapter is organized as follows. Section 2 briefly reviews the genetic switch. 
Section 3 applies FM to derive a mathematical model for the λ switch. Simulations and a rigorous analysis 
of the mathematical model are presented in Sections 4 and 5. The final section concludes.
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2. gene regulation and the l Switch

2.1. gene regulation

All the cells of an individual organism contain the same DNA, that is, the same genetic information. 
Yet, during the development of the organism from a fertilized egg, very different types of cells appear. 
The reason for this variety is that different genes are expressed or “turned on” in different cells. The 
information encoded in these genes is decoded into proteins. These proteins determine the structure and 
properties of the cell. Ptashne (2004) states: “At various stages, depending in part on environmental 
signals, cells choose to use one or another set of genes, and thereby to proceed along one or another 
developmental pathway.”

The controlled on/off switching of sets of genes is called gene regulation. Analyzing the gene 
regulation process in high level organisms is very difficult. This is due to the large number of genes in 
the DNA and the intricate interactions between the genes. For example, the human genome contains 
20,000–25,000 protein-coding genes; the Drosophila melanogaster, commonly known as the fruit fly, 
has approximately 14,000 protein-coding genes. It is thus natural that scientists turned their attention to 
gene regulation in simpler organisms. In particular, the λ phage virus, which has about 50 genes, became 
a prototype for studying gene regulation (Ptashne, 2004). The λ phage has been studied intensely over the 
last 50 years and almost all its components are now known in great detail. It is believed that developing 
a better understanding of the gene regulation process in the λ phage may shed light on developmental 
and epigenetic processes in higher organisms (Ptashne, 2004).

2.2. λ Phage Life Cycle

The λ phage is a virus that grows on a bacterium. The phage has a single DNA molecule. Upon infection 
of the bacteria, the phage injects its chromosome into the bacteria cell. The virus can then follow one of 
two different pathways: lysogeny or lysis.1 In the lysogenic state, the phage integrates its genome into 
the bacteria’s DNA and replicates as a part of the host bacterium. In the lytic state, the phage’s DNA 
is extensively replicated, new phages are formed within the bacterium, and after about 45 minutes the 
bacterium lyses and releases about 100 new phages (see Figure 1).

The two possible pathways are the result of expressing different sets of genes. The phage may switch 
from the lysogenic state to the lytic state. This is a kind of SOS response initiated when the host cell expe-
riences DNA damage. This happens, for example, if the bacteria is exposed to ultraviolet (UV) light.

The molecular mechanism responsible for the lysogeny/lysis decision is known as the λ switch. The 
λ switch has two important and striking properties. First, it is exceptionally stable. Once the lysogenic 
state is established, it remains stable for very long periods of time. In fact, the lysogenic state is more 
stable than the genome itself. The rate of mutations of the phage genome is between 10−6–10−7 per genera-
tion, whereas the loss rate of lysogeny is less than 10−7 per cell and generation (Little, Shepley, & Wert, 
1999; Rozanov, D’Ari, & Sineoky, 1998). Thus, the switch is robust in the sense that the probability for 
a random transition from one state to the other is extremely small. The second property of the switch is 
that it is highly efficient. In response to an appropriate signal, the phage switches to the lytic state very 
quickly. Thus, the switch demonstrates both stability and high switching efficiency. The coexistence of 
these two properties is known as the stability puzzle.
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Both these properties have a clear biological motivation. The switch should be activated only when 
the bacteria no longer provides a suitable host. In this case, the switch must be operated as quickly as 
possible, to ensure that the death of the host should not imply the death of the virus. The next section 
provides a simplified description of the mechanisms underlying the λ switch based on the excellent 
presentation in (Ptashne, 2004).

2.3. Structure and Dynamics of the λ Switch

A gene is expressed (or “on”) if it is being copied by an enzyme known as RNA polymerase. The tran-
scription process creates a messenger RNA (mRNA) which is an RNA copy of the gene. The mRNA 
molecule encodes the design of a protein.

The first step in the transcription process is the binding of RNApolymerase at a specific part of the 
gene known as the promoter. The DNA helix unwinds to produce a small open complex. One strand of 
DNA, the template strand, is used as a template for mRNA synthesis. As transcription proceeds, RNA 
polymerase traverses the template strand and uses base pairing complementarity with the DNA template 
to create an mRNA molecule.

The rate of transcription initiation can be related to the protein synthesis rate (Shea & Ackers, 
1985).

Control of transcription initiation is the most important mechanism for determining what genes are 
expressed and, consequently, which proteins are produced. Regulatory proteins can either increase or 
decrease the probability of binding to the promoter, and thus regulate the binding process.

Figure 1. Two developmental pathways; lysogenic and lytic. UV radiation can induce lytic growth
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The total transcription rate over a period of time depends on several parameters including the concen-
tration of transcription factors in the vicinity of the binding site, and the binding probability (sometimes 
referred to as affinity).

2.3.1. Structure of the λ Switch

The different pathways are determined by two genes: cI and cro. When cI is on (off) and cro is off (on), 
the phage is in the lysogenic (lytic) state. The genetic mechanisms of the λ switch concentrate along a 
short segment of the phage DNA which is known as the right operator (OR). The operator is composed 
of three adjacent sites: OR1, OR2, and OR3. It contains two promoters: PR, which overlaps OR2 and OR1, 
and PRM, which overlaps OR2 and OR3.

The transcription of the cI gene begins with the binding of RNApolymerase at PRM. The resulting 
product is a protein CI that exists in two forms: monomer and dimer (denoted CI2). In the lysogenic 
state, about 95% of the molecules are in the dimer form. The transcription of the cro gene begins with 
the binding of RNApolymerase at PR. The product of the cro gene is a protein Cro2 that exists in dimer 
form only.

2.3.2. Switch Dynamics

Both the CI2 and Cro2 proteins can bind to the OR1, OR2, and OR3 sites and thus regulate the activity of 
the promoters PR and PRM∙ CI2 has high affinity to OR1, OR2, whereas Cro2 has high affinity to OR3. Note 
that this creates a feedback loop: gene transcription yields proteins that bind to the sites regulating the 
transcription process.

For moderate CI concentration values, CI2 binds to OR1 and OR2 (see Figure 2). This blocks bind-
ing of RNApolymerase to PR and assists RNA binding to PRM. Thus, the gene cI (cro) is turned on (off), 
yielding an increase (reduction) in the production of CI (Cro2).

If CI concentration reaches very high values, then CI2 binds to OR3 as well. This blocks RNApoly-
merase binding at PRM and thus reduces the production rate of CI. The reduction in concentration im-

Figure 2. OR control region in the lysogenic state

Figure 3. OR control region in the lytic state
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plies that binding at OR3 becomes less probable (recall that CI2 has high affinity with OR1 and OR2). 
The net result is that CI concentration is regulated around some high level and the phage remains in the 
lysogenic state.

If Cro2 concentration is high, then it binds to OR3 and blocks binding of RNApolymerase to the PRM 
promoter (see Figure 3). This yields a reduction in the production of CI. If Cro2 concentration reaches 
very high values, then Cro2 binds also to OR2 and OR3. This blocks RNApolymerase binding at PR and 
thus reduces the production rate of Cro.

2.3.3. Triggering the switch

If CI concentration becomes sufficiently small (for instance as a result of radiation by UV light), then 
CI binding at OR1 and OR2 does not take place. This leads to two results. The first is a reduction in CI 
synthesis rate (since binding of CI2 at OR2 helps RNA polymerase bind to the PRM promoter). The sec-
ond result is that the RNA polymerase can bind to PR and thus initiate transcription of the cro gene (see 
Figure 3). This leads to an increase in Cro2 concentration. At high enough Cro2 concentrations, Cro2 
binds to OR3 and thus further represses CI production and lytic growth ensues.

2.4. Mathematical Models of the λ Switch

The first quantitative model for gene regulation in the λ phage appeared in (Ackers, Johnson, & Shea, 
1982). This is a statistical thermodynamic model that describes the roles of the CI protein and the right 
operator in maintaining the lysogenic state.

Shea & Ackers (1985) extended this model in order to include the effects of the other regulatory 
proteins, the behavior during lysogenic growth, and the induction of lysis. Under certain assumptions, 
they assert that a suitable model is the second-order differential





r t A P t k P t k d r t
c t A P t k d c t

r r

c c

( ) ( ( ) ( ) ) ( )

( ) ( ) ( )

= + - ,
= - ,

1 1 2 2

3 3        (1)

Where r (c) is the total amount of CI (Cro) molecules in the host cell; P1 (P2) is the probability of 
RNA binding to PRM when CI2 is present (not present) at the OR2 site; k1, (k2) is the maximal stimulated 
(basal) transcription rate; P3 is the probability of RNA binding to the PR promoter, and k3 is the maximal 
rate of cro transcription; Ar (Ac) is the number of CI (Cro) molecules made per transcript; and dr (dc) is 
the degradation rate of CI (Cro). The term P1k1 + P2k2 thus represents the rate at which RNA polymerase 
molecules start transcription of cI (i.e. the rate of RNA isomerization from closed to open complex). Note 
that P1k1 represents the stimulated transcription rate due to binding of CI2 at OR2, and P2k2 represents 
some basal transcription rate. Similarly, P3k3 is the cro transcription rate.

Several studies (Shea & Ackers, 1985; Aurell & Sneppen, 2002; Santillan & Mackey, 2004) used a 
statistical thermodynamic approach to estimate the binding probabilities P1, P2, and P3. This approach, 
although quite successful, has several disadvantages including: high complexity, the need for elaborate 
experiments, and the difficulty in specifying all the needed micro-parameters. More generally, it is 
not clear when equilibrium thermodynamic considerations may be used to infer high-level biological 
properties.
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Reinitz & Vaisnys (1990) have found an inconsistency between the theoretical and experimental 
results of this model. McAdams & Shapiro (1995) developed a very elaborate circuit simulation model 
for the lysis/lysogeny decision process. Arkin, Ross, & McAdams (1998) presented a stochastic kinetic 
simulation of λ phage development in the very early stage, that is, right after the virus infects the bacteria. 
They analyzed fluctuations in gene expression rates and other molecular-level fluctuations, and their 
effect on the lysis/lysogeny pathway selection. Aurell & Sneppen (2002) modeled the transition between 
epigenetic states as a first exit problem in a dynamic system with noise, with an emphasis on stability and 
robustness analysis. They have found that the theoretical results do not agree with the experimental data, 
and concluded that the current view of the λ phage is incomplete. Santillan & Mackey (2004) extended 
the model developed in (Shea & Ackers, 1985) to account for some recently discovered experimental 
data. They also suggested an interesting explanation for the so called stability puzzle of the switch in 
terms of bifurcations induced by changes in the CI degradation rate. Bakk, Metzler, & Sneppen (2004) 
have studied the sensitivity of the right operator using new experimental data.

Several researchers have modeled gene regulation networks using piecewise linear differential equa-
tions; see, e.g. (de Jong, 2002; de Jong et al., 2004) and the references therein.

Torres and Nieto (2006) review applications of fuzzy logic in medicine and bioinformatics including 
problems related to gene expression. Zhu et al. (2007) provide a review of the recent theoretical and 
experimental results on gene regulation networks.

All existing models of the switch are quite complex and, consequently, were studied primarily using 
simulations. In this paper, we apply FM to develop a new mathematical model for the λ switch. The 
behavior of this model is congruent with known experimental results. Furthermore, the new model is 
simpler than previous models and is amenable to rigorous analysis.

3. fuZZy Modelling

In this section, we use the FM approach to derive a mathematical model for the λ switch based on the 
verbal description of some biological observations.

A detailed presentation of FM can be found in many papers and books; see, e.g., (Klir & Yuan, 1995; 
Sousa & Kaymak, 2002). For the sake of completeness only, we begin by presenting the rudiments of 
FM using a very simple example. Readers familiar with FM may skip to Section 3.2.

3.1. fuzzy Modeling: a Simple example

Consider the scalar control system:

x t u t( ) ( ),=  

where x(t) ∈ R is the state of the system, and u(t) ∈ R is the control. Suppose that our goal is to design 
a control guaranteeing that lim ( )

t
x t

®¥
= 0  for any initial condition x(0) It is clear that in order to achieve 

this, the control must be negative (positive) when x(t) is positive (negative). This suggests the follow-
ing two rules:
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Rule 1: if (x is positive) then u = −c, 

Rule 2: if (x is negative) then u = c, 

Where c is a positive constant.
FM provides an efficient mechanism for transforming such rules into a well-defined mathematical 

mapping: u = u(x) The first step is to define the terms in the If part of the rules. To do this, we use two 
functions: μpositive(x) and μnegative(x). Roughly speaking, for a given x, μpositive(x) measures how true the 
proposition (xis positive) is. For example, we may take:

m positive x
x
x( ) =
>
£

ì
í
ïï

î
ïï

1 0
0 0
, ,

, .

  if 
 if  

However, using such a binary, 0/1, function will lead to a control that changes abruptly as x changes 
sign. It may thus be better to use a smoother function, say:

μpositive(x) = (1 + exp(−x))−1. 

Note that now μpositive(x) is a continuous function taking values in the entire interval [0,1] and satisfy-
ing: lim

x positive x
®-¥

( ) =m 0 , lim .
x positive x
®+¥

( ) =m 1 We may view μpositive(x) as the degree of membership of x 
in the set of positive numbers. A smoother membership function seems more appropriate for sets that are 
defined using verbal terms. For example, consider the membership in the set of tall people. A small change 
in a person’s height should not lead to an abrupt change in the degree of membership in this set.

Similarly, we may define μnegative(x) = 1 − (1 + exp(−x))−1. Note that this implies that:

μpositive(x) + μnegative(x) = 1, for all x ∈ R,  

i.e. the total degree of membership in the two sets is always 1.
Once the membership functions are specified, we can define the degree of firing (DOF) of each rule, 

for a given x, as DOF1(x) = μpositive(x) and DOF2(x) = μnegative(x). The output of the first (second) rule in 
our fuzzy rule-base is then defined by −cDOF1(x) (DOF2(x)). In other words, the output is obtained by 
multiplying the DOF with the value in the Then-part of the rule. Finally, the output of the entire fuzzy 
rule-base is given by suitably combining the outputs of the two rules. This can be done in many ways. 
One standard choice is to use the so-called center of gravity inferencing method yielding:

u x
cDOF x cDOF x
DOF x DOF x

( )
( ) ( )

( ) ( )
=

- +
+

1 2

1 2
. 

The numerator is the sum of the rules’ outputs, and the denominator plays the role of a scaling factor. 
Note that we may also express this as:
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u x c
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which implies that the output is always a convex combination of the rules’ outputs.
Substituting the membership functions yields the controller:

u x c x c x
c x
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Note that this can be viewed as a smooth version of the controller:
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Summarizing, FM allows us to transform verbal information, stated in the form of If-Then rules, into 
a well-defined mathematical function. Note that the fuzziness here stems from the inherent vagueness 
of verbal terms. This vagueness naturally implies that any modeling process based on verbal informa-
tion would include many degrees of freedom (Margaliot, 2008). Yet, it is important to note that the final 
result of the FM process is a completely well-defined mathematical formulation.

3.2. Fuzzy Modeling of the λ Switch

Following (Shea & Ackers, 1985), we consider a mathematical model of the form:





r t A a t d r t
c t A a t d c t

r r r

c c c

( ) ( ) ( )

( ) ( ) ( )

= - ,
= - ,        (2)

Where r (c) is the total amount of CI (Cro) molecules in the host cell; ar, ac are the transcription rates; 
Ar (Ac) is the number of CI (Cro) molecules made per transcript; and dr (dc) is the degradation rate of CI 
(Cro). Note that this definition implies that all the parameters and variables are positive. Note also that 
(2) is exactly the model (1) with:

a t a t a t k P t k P t
a t k P t

r s b

c

( ) ( ) ( ) ( ) ( )

( ) ( ).

= + = +
=

1 1 2 2

3 3
 

Specifying the time-varying transcription rates ar(t) and ac(t) is the most difficult part in the modeling 
process. We use FM in order to determine these rates, and thus complete the mathematical model (2).
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The application of FM in biological systems is based on a verbal description of the biological phe-
nomena. This is transformed into a set of fuzzy If-Then rules. Suitable membership functions are used 
to define the verbal terms in these rules. Inferencing produces a well-defined mathematical model (Tron 
& Margaliot, 2004).

3.3. Verbal Description of the λ Switch

The λ phage has been intensely studied over the last 50 years and many verbal descriptions of the λ 
switch exist. The most suitable for our purposes is the following description from (Santillan & Mackey, 
2004):

“…dimmers CI2 repress the production of Cro and enhance the production of CI Nevertheless, if the 
concentration of CI2 reaches very high values, the probability for CI2 to bind OR3 will be increased, which 
has the effect of repressing RNA polymerase binding to PRM. Thus CI2 regulates its own concentration 
by enhancing CI production if its concentration is not too high, and otherwise repressing transcription 
of gene cI If the CI2 concentration decreases, for instance by the cleavage of CI by RecA proteins (ac-
tivated by UV light), the probability for OR1 and OR2 to be free from CI2 is increased. This, on its own, 
creates the possibility that a polymerase will bind PR and start transcription of gene cro and, in the long 
run, leads to an increasing Cro2 concentration. At a high enough Cro2 concentration, a Cro2 can bind 
OR3 and repress CI production, establishing the lytic state. In this state, gene cro is on while gene cI is 
off. When the concentration of Cro2 is too high, a Cro2 can bind to OR2 and even to OR1, repressing the 
production of Cro.”

The first stage in the FM approach is transforming the given verbal description into appropriate 
fuzzy rules.

3.4. fuzzy rules

Our first set of rules describes the cI transcription rate ar:

Rule 1: if (r is mediumr) and (c is lowc) then ar = a1.

Rule 2: if (r is lowr) and (c is lowc) then ar = a2.

Rule 3: if (r is highr) or (c is highc) then ar = 0.

Here a1 > a2 > 0. The subscripts r, c in the verbal terms, such as in lowr and lowc, are used to distinguish 
between terms that will later be modeled using different functions. Rule 1 corresponds to the case where 
CI concentration is medium and Cro concentration is low, so CI binds to both OR1 and OR2, yielding 
the maximal cI transcription rate a1. Rule 2 corresponds to the case where the concentrations of both 
proteins are low, and the OR sites are free, yielding the basal transcription rate a2. The last rule describes 
the situation where either CI concentration is high (so it also binds to OR3), or the Cro concentration is 
high and Cro2 binds to the OR sites. In both cases, the transcription of the cI gene is suppressed.

The rules describing the cro transcription rate are:
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Rule 4: if (r is lowr) and (c is not_very_highc) then ac = a3.

Rule 5: if (r is mediumr) or (r is highr) or (c is very_highc) then ac=0.

Here a3 > 0, Rule 5 describes the situation where the transcription of Cro is suppressed. This hap-
pens when either: (1) CI concentration is medium, so cro is turned off; or (2) Cro concentration is very 
high, so it binds to OR1 or OR2. Rule 4 describes the complementary situation yielding the maximal cro 
transcription rate a3.

The next step is to model the verbal terms in the rules (e.g., lowc) using suitable membership func-
tions.

3.5. fuzzy Membership functions

Fuzzy terms such as “rismediumr” are modeled using membership functions, that is, a function μmedium_r(r) 
mapping the domain of possible r values to [0,1]. For a given r, μmedium_r(r) models the degree of member-
ship of r in the set of “medium values”. We say that the membership function is normal if there exists 
a value s such that μmedium(s) = 1.

We use piecewise linear (PWL) membership functions. These can be used to provide accurate ap-
proximation of arbitrary smooth functions and, as we will see below, lead to a mathematical model that 
is amenable to analysis.

For two vectors α, β ∈ Rn, with α1 < α3 < … < αn and βi ∈ [0,1] for i = 1, …, n, let s(∙; α, β) : R → R 
denote the PWL function such that s(αi; α, β) = βi. In other words, s linearly interpolates between the 
points (αi, βi), i = 1, …, n. The function 1 − s(∙; α, β) is also PWL, and for the sake of notational conve-
nience, we let b Î Rn  denote the vector such that s s( ) ( )×; , = - ×; ,a b a b1 .

Our fuzzy rules include seven verbal terms: lowr, mediumr, highr, lowc, highc, very_highc, and not_
very_highc. We model the terms characterizing r using membership functions in the form:

m a b

m a b
m

low r
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r s r

r s r
r

_
( ; , ),

( ),
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( ) = ; ,
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1 (( ).m mlow_r high_rr r( )+ ( )       (3)

Note that this implies that μlow_r(r) + μmedium_r(r) + μhigh_r(r) = 1 for all r Since r can attain either a low, 
medium, or high value, the sum of its degrees of belonging to all three sets should be 1. Eq. (3) yields
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where β3 := β1 + β2.
The verbal terms for c are defined using:
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Figure 4 depicts a schematic view of all the membership functions. The next step in the FM approach 
is fuzzy inferencing.

3.6. fuzzy inferencing

We use the center of gravity inferencing method, and product (sum) for the logical and (or) operator 
(Sousa & Kaymak, 2002). The first three fuzzy rules yield:

a r c
a r c a r c

Dr
medium_r low_c low_r low_c

r

( )
( ) ( ) ( ) ( )

, =
+

,1 2m m m m
    (5)

where

D r c r c
r

r medium_r low_c low_r low_c

high_r h

:= ( ) ( )+ ( ) ( )
+ ( )+

m m m m

m m iigh_c c( ).  

Using the definition of the membership functions yields: D c rr high_c high_r= + ( ) ( ).1 m m

Figure 4. Membership functions; (a) for r, (b) for c
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Since the two proteins suppress each other, we may assume that the system is never in a state where 
both CI and Cro concentrations are high, so μhigh_c(c) μhigh_r(r) ≈ 0. Thus, we simplify (5) to

a r c a r c a r cr medium_r low_c low_r low_c( ) ( ) ( ) ( ) ( ), = + .1 2m m m m      (6)

Note that the first (second) term on the right-hand side of this equation can be interpreted as the 
stimulated (basal) transcription rate.

Similarly, Rules 4 and 5 yield

a r c
a r c

Dc
low_r not_very_high_c

c

( )
( ) ( )

, = ,3m m
       (7)

where: D r c r rc low_r not_very_high_c medium_r high_r:= + + +m m m m m( ) ( ) ( ) ( ) vvery_high_c c( ).  Using the definition of 
the membership functions yields:

D r c r cc medium_r very_high_c high_r very_high_c= + +1 m m m m( ) ( ) ( ) ( )..  

Arguing as above yields Dc ≈ 1, so we simplify (7) to:

a r c a r cc low_r not_very_high_c( ) ( ) ( ), = .3m m        (8)

Substituting (6) and (8) in (2) yields:





r A a r c a r c d r
c

r medium_r low_c low_r low_c r= + - ,( ( ) ( ) ( ) ( ))1 2m m m m
== - .A a r c d cc low_r not_very_high_c c3m m( ) ( )      (9)

Note that since the membership functions are PWL, (9) is a piecewise-quadratic second-order dif-
ferential equation.

3.7. Parameter estimation

To complete the model (9), we need to specify the parameters Ar, Ac, a1, a2, a3, dr, dc, and the four member-
ship functions μlow_c(c), μnot_very_high_c(c), μlow_r(r), μmedium_r(r). To do so, we use some of the experimental 
data reported in (Shea & Ackers, 1985; Bakk et al., 2004; Hawley & McClure, 1982).

In particular, (Bakk et al., 2004) provide ar(r, 0), that is, the cI transcription rate as a function of CI 
in the absence of Cro. In this case, μsmall_c(c) = 1, so (6) yields:

a r a r a rr medium_r low_r( ), = ( )+ ( ).0 1 2m m        (10)

We can view the first (second) term on the right-hand side as the stimulated (basal) transcription rate, 
so a comparison with (1) yields:



586

Mathematical Modeling of the λ Switch
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Thus, we set a k P r
r

1 1 1 0= ,max ( ) , a k P r
r

2 2 2 0= ,max ( ) , and design the membership functions such 
that:
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This guarantees that the membership functions are normal. Summarizing, determining the member-
ship functions is done by constructing PWL approximations of the functions P r P r

r
1 10 0( ) max ( ), / , , and 

P r P r
r

2 20 0( ) max ( ), / , .
Figure 5 (a) depicts the transcription rates as a function of r in the (Bakk et al., 2004) model (dotted 

lines) and in our PWL approximation.

Using a similar technique for the case r = 0, we derived the parameters for s c( ); ,2 4
a b  and s c( ); ,2 5

a b  
(see Figure 5 (b)). All the model parameters are summarized in the Appendix.

Substituting (3) and (4) in (6) and (8) yields the transcription rates:

a r c s c a s r a s r

a r c a s
r

c

( ) ( )( ( ) ( ))

( ) (

, = ; , ; , + ; , ,

, =

2 4
1

1 3
2

1 1

3

a b a b a b

rr s c; , ; , .1 1 2 5
a b a b) ( )      (13)

Figure 5. Transcription rates ar(r,c) and ac(r,c) in our model (solid lines) and in the (Bakk et al., 2004) 
model (dotted lines). (a) as a function of r when c = 0; (b) as a function of c when r = 0
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Since s is PWL, this implies that the r-c domain is divided into cells, denoted Cij, such that for (r, 
c) ∈ Cij:

a r c rcp rp cp p
a r c rcp rp cp

r
ij ij ij ij

c
ij ij ij

( )

( )

, = + + + ,

, = + +
1 2 3 4

5 6 7 ++ .pij
8        (14)

The number and topology of these cells, and the values of the constants p & pij ij
1 8, , follow immediately 

from the parameters of the PWL membership functions. For example, one such cell is:

C r c r c11
1
1

2
1

1
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2
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and for (r, c) ∈ C11, Eq. (13) becomes:
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Note that this implies that the transcription rates are piecewise-quadratic functions.
Substituting (14) in (2) yields:





r A rcp rp cp p rd

c A rcp
r

ij ij ij ij
r

c
ij

= + + + - ,

= +

æ

è
çççç
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ø
÷÷÷÷÷1 2 3 4

5 rrp cp p cdij ij ij
c6 7 8+ + - ,

æ

è
çççç

ö

ø
÷÷÷÷÷

       (15)

with i, j ∈ {1, …, 5}. The pk
ij  values are listed in Tables 3 and 4 in the Appendix.

This completes the derivation of the mathematical model. Note that (15) is a piecewise-quadratic 
second-order differential equation. In the following sections, we study the behavior of (15) using both 
simulations and rigorous analysis.

4. SiMulationS

Figure 6 depicts phase space trajectories of (15). These were obtained by numerically solving the dif-
ferential equation (15) for several initial conditions (r(0), c(0)). Cell boundaries, denoted by dashed 
lines, are also shown.

It may be seen that the system admits at least two equilibrium points, one in cell C51 (denoted e51), 
and one in cell C14 (denoted e14). e51 ≈ (251, 1) corresponds to a steady-state where r is high and c is low 
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(i.e., the lysogenic state), and is locally asymptotically stable with a relatively large domain of attraction. 
e14 ≈ (4, 376) corresponds to the lytic state, and has a smaller domain of attraction.

Summarizing, the simulations indicate that under normal conditions, the switch admits two stable 
steady-states corresponding to the lysogenic and lytic states. It is important to note that the qualitative 
value e51 ≈ (251, 1) agrees with known experimental data for the total protein levels in the lysogenic 
state (Shea & Ackers, 1985; Aurell & Sneppen, 2002; Ptashne 2004).

In the next section, we rigorously analyze (15) in order to confirm the behavior depicted in Figure 6.

5. analySiS

5.1. equilibrium Points

For a given cell, Cij, (15) admits an equilibrium point if the equations:

0

0
1 2 3 4

5

= + + + - ,

= +

æ

è
çççç

ö

ø
÷÷÷÷÷A rcp rp cp p rd

A rcp rp
r

ij ij ij ij
r

c
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66 7 8
ij ij ij

ccp p cd+ + - ,
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è
çççç

ö

ø
÷÷÷÷÷        (16)

a d m i t  a  s o l u t i o n  e  =  ( r , c ) ,  s a t i s f y i n g  e ∈ C i j .  T h e  f i r s t  e q u a t i o n  

implies that r
cp p

d A cp p

ij ij

r r
ij ij

=
+

- -
,3 4

1 2( / )
 and substituting this in the second equation yields: 
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ø
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è
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ø
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è
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ø
÷÷÷÷÷( / ) ( / ) 1 2
, which is a quadratic equa-

tion in c. These equations are thus easily solved.

Figure 6. Phase space trajectories in the (r,c) plane
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For our parameter values, (15) admits three equilibrium points: e14 = (4, 376) ∈ C14, e24 = (7, 360) 
∈ C24, and e51 = (251, 1) ∈ C51 (the numerical values are rounded to the nearest integer). These values 
agree with experimental data (Ptashne, 1986, 1992). Linearization about the equilibrium points shows 
that e14 and e51 are locally asymptotically stable (LAS), whereas e24 is a saddle point.

5.2. limit cycles

Since the differential equation in each cell Cij is quadratic, it is possible in principle that either C14 or 
C51 contain a limit cycle. It follows from (15) that in cell Cij:

dr
dr

dc
dc

A cp p d A rp p dr
ij ij

r c
ij ij

c

 

+ = + - + + - ,( ) ( )1 2 5 7  

so the curve Z r c Cij ij dr
dr

dc
dc:= , Î : + ={( ) }  0  is a line. By the Bendixon-Dulac theorem (see, e.g., (Zhi-

fen, Tong-ren, Wen-zao, & Zhen-xi, 1992, p. 195)), any closed trajectory must intersect the line Zij. It 
is easy to verify that for the parameter values in our model Zij ∉ Cij for both (i, j) = (1, 4) and (i, j) = (5, 
1). Thus, we conclude the following.

Proposition 1. None of the cells Cij, i, j ∈ {1, …, 5}, contains a closed trajectory.

5.3. domain of attraction

Consider a differential equation:

x f x= ,( )        (17)

where f : Rn → Rn is a smooth vector field. Let x(t; x0) denote the solution of (17) at time t ≥ 0 for the 
initial condition x(0) = x0.

Definition 1. If e is an asymptotically stable equilibrium point of (17), then its domain of attraction is 
the set: D e y R x t y en

t
( ) { : lim ( ) }:= Î ; = .

®¥

In other words, any solution emanating from D(e) converges to e. The size and shape of the attraction 
domain provide important information on the behavior of the dynamic system. Our goal in this section 
is to obtain an estimation of the attraction domains D(e51) and D(e14). We denote the right-hand side of 
(15) by f ij i.e. f ij ∈ R2 is the vector field in cell Cij

Definition 2. A cell C r c r cij
i i j j= , : £ £ , £ £+ +{( ) }a a a a1

1
1 2

1
2  is called absorbing if the following 

four conditions hold:
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r ci( )a1 0, ³ , for all c j jÎ , +[ ]a a2
1

2

r ci( )a + , £1
1 0 , for all c j jÎ , +[ ]a a2

1
2

c r j( ), ³a2 0 , for all r i iÎ , +[ ]a a1
1

1

c r j( ), £+a 1
2 0 , for all r i iÎ , +[ ]a a1

1
1

In other words, on the boundary of Cij, fij points inside Cij

It follows from this definition that if Cij is absorbing, then any solution emanating from Cij remains 
in Cij for all t ≥ 0. By the Poincare-Bendixon theorem (Zhi-fen, Tong-ren, Wen-zao, & Zhen-xi, 1992), 
the ω-limit set of such a trajectory is either an equilibrium point or a limit cycle. Combining this with 
Proposition 1 yields the following result.

Proposition 2. Any absorbing cell Cij in our model contains a LAS equilibrium point eij and Cij Í 
D(eij).

Definition 3. Two cells Cijand Cpq are called contiguous if Cij Ç Cpq ≠ ∅.
Definition 4. A cell Cpq is said to be a transition to cell Cijif Cij and Cpq are contiguous, and for any x0 ∈ 

Cpq there exists a time t > 0 such that x(t; x0) ∈ Cij.

In other words, any solution emanating from Cpq reaches Cij at some time t > 0.
The next result provides a sufficient condition for a cell to be a transition cell based on the direction 

of the vector field along the boundaries of the cell. We use ∂Cpq to denote the boundary of cell Cpq.

Proposition 3. A cell Cpq is a transition to cell Cij if the following conditions hold. (1) Cpq does not 
contain any equilibrium points or limit cycles; (2) Cij and Cpq are contiguous; (3) for any x ∈ Cpq 
Ç Cij, the vector field fpq(x) points from Cpq to Cij; and (4) for any x ∈ ∂Cpq \ (CijÇ Cpq), fpq(x) points 
into Cpq .

The proof is immediate: by condition (1), any solution satisfying x(0) ∈ Cpq must leave Cpq at some 
time t > 0 The conditions on fpq imply that it can only leave to Cij

Proposition 3 can be used, for example, to prove that C41 is a transition to C51 (see Figure 6). The 
next result follows immediately from the above definitions.

Proposition 4. Suppose that Cij is absorbing and let eij ∈ Cij be the equilibrium point which exists by 
Proposition 2. If Cpq is a transition to Cij, then Cpq Í D(eij). Furthermore, any cell that is a transition 
to Cpq is also contained in D(eij). 

This simple result provides an iterative recipe for constructing an estimate for D(eij).
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5.3.1. estimatingD(e51)

We now use the results above in order to derive an estimation for D(e51), that is, the attraction domain 
of the lysogenic state. It is straightforward to prove (using the parameters given in the Appendix), that 
C51 is absorbing. By Proposition 2, it contains an LAS equilibrium point e51, and C51 ∈ D(e51). Using 
Proposition 3 shows that C41 is a transition to C51, so C41 ∈ D(e51).

The next step is to prove that C42 and C52 also belong to C41 ∈ D(e51). This, however, does not follow 
immediately from Proposition 3, since neither of these cells is a transition to C41 nor to C51 (see Figure 
7). It can be shown, however, that C52 can be divided into two sub-cells: C1

52  and C2
52  such that C1

52  is 
a transition to C51 (and, therefore, C D e1

52 51Î ( ) ), and any trajectory emanating from C42 reaches either 
C41 or C1

52 . This proves that C42 ∈ D(e51) (see Figure 7). Proceeding in this fashion yields the following 
result.

Proposition 5. D(e51) contains the cells: C31, C32, C33, C34, C41, C42, C43, C44, C51, C52, C53, and C54.

This large attraction domain suggests that e51 is “very stable” in the sense that a large magnitude 
perturbation is needed in order to force the system away from D(e51).

5.3.2. Estimating D(e14) 

It is easy to verify that C14 is absorbing and, therefore, contains an equilibrium point e14.

Figure 7. Cell transitions in the neighborhood of e51
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Proposition 3 can be used to show that C15 is a transition to C14 (see Figure 8), and Proposition 4 
implies that C15 ∈ D(e14). Thus, we proved the following.

Proposition 6. D(e14) contains C14 and C15. 

5.4. activating the Switch

For the parameter values described above, the system admits two LAS equilibrium points: e51 and e14 
corresponding to the lysogenic and lytic states, respectively. The system also admits a saddle point, e24, 
which is located near e14. The relatively large domain of attraction D(e51) may explain the robustness of 
the lysogenic state with respect to random perturbations.

However, the robustness of e51 also suggests that the transition from lysogeny to lysis must be rela-
tively slow, and this does not agree with the very fast switching behavior which takes place during a SOS 
response. The SOS response can be triggered by exposing the host bacteria to UV radiation. Cleavage 
by RecA proteins then leads to a decrease in CI concentration.

Santillan & Mackey (2004) presented an interesting mathematical model for the λ switch. They used 
simulations to show that increasing the CI degradation rate dr yields bifurcations in the dynamic model. 
For a sufficiently large value of dr, all equilibrium points disappear, except for the one corresponding 
to the lytic state, which becomes globally asymptotically stable. Thus, bistability is lost and all initial 
conditions converge to the lytic state. We now show that our model displays a similar behavior.

5.4.1. Simulations

Let dn := 1/2943 denote the nominal value of the CI degradation rate (see Table 2). Figure 9 depicts the 
phase space trajectories of our model for dr = 4dn It may be seen that there exists a single equilibrium 
point, e14, corresponding to the lytic state, and that e14 is globally asymptotically stable.

Figure 10 depicts the state space trajectories for the intermediate value dr = 2dn. It may be seen that the 
equilibrium point e51 and the saddle point move toward each other. For some value dr ∈ (2dn, 4dn), these 
two points disappear.2 Bistability is lost, and the lytic state becomes globally asymptotically stable.

Thus, our model can be used to explain the stability puzzle in a similar way as does the model in 
(Santillan & Mackey, 2004). Note, however, that the model in (Santillan & Mackey, 2004) is a fourth-
order differential equation with time-delay, and is therefore more complicated than our model. Indeed, 
our model seems simple enough to rigorously analyze the bifurcations. In particular, in our model the 
analysis of equilibrium points is reduced to studying the roots of a quadratic equation. In the next sec-
tion, we analyze this issue in more detail.

5.4.2. Analysis

In this section, we analyze the effect of increasing dr on the equilibrium point corresponding to the lytic 
state. We prove that this equilibrium point is very robust with respect to an increase in the degradation 
rate.

Our first result analyzes the effect of increasing dr on the roots of (16). More precisely, we assume 
that for some cell Cij, (16) admits a solution (re, ce) ∈ Cij for dr = dn, and study how (re,ce) is affected by 
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Figure 8. Cell transitions in the neighborhood of e14

Figure 9. Phase space trajectories. CI degradation rate increased to 4dn.
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increasing the value of the parameter dr. For the sake of notational convenience, we write pk instead of 
pk

ij .

Proposition 7. Consider the equations:

0

0
1 2 3 4

5 6 7 8

= + + + - ,

= + + +
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è
çççç

ö

ø
÷÷÷÷÷
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è

A rcp rp cp p rd

A rcp rp cp p
r r

c
ççççç

ö

ø
÷÷÷÷÷ - cdc.        (18)

Denote δ := p3p5 − p1p7 + p1dc/Ac Suppose that δArAc ≠ 0 and let: q1 = p5 / (δAr), q2 = (p1p6 − p2p5)/δ7q3 
= (p1p8 − p4p5)/δ7v = p1p2, w = p1q1, n = p2 +p3q2 + p1q3, m = p3q1 − 1/Ar, α = v + wdr, β = n +mdr, and γ 
= p4 + p3q3. Then the solutions of (18) are:

r c q d q r qr± ± ±=
- ±

= + +
b

a

D

2 1 2 3, ( ) ,         (19)

where Δ = β2 − 4αγ. Suppose that for dr = dn, 

r c q d q r qe e r e=
- -

= + +
b

a

D

2 1 2 3, ( )         (20)

Figure 10. Phase space trajectories. CI degradation rate increased to 2dn
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is a feasible solution (that is, (re, ce) ∈ Cij). Assume also that v, w, γ > 0; p1, m < 0; and γw2 − nmw + vn2 
> 0. Then for any dr ≥ dn:

(1) re decreases monotonically with dr, and lim .
d e

r

r
®¥

= 0

(2) ce increases monotonically with dr, and lim .
d e

r

c q w
p m®¥

= -3
1

g

Proof. The two equations in (18) yield c = (q1dr + q2)r + q3 Substituting this in the first equation of 
(18) yields αr2 + βr + γ = 0 and this implies (19). Straightforward algebraic manipulations yield

r
n md m d s d s

v wde
r r r

r

=
- - - + +

+

2
1 2

2( )
,        (21)

where s1 = (2nm − 4wγ)/m2, and s2 = (n2 − 4vγ)/m2. Since v, w > 0, the denominator in (21) is positive 
and increases monotonically with dr. Differentiating the numerator with respect to dr shows that the 
numerator is a decreasing function of dr. Hence, r in (21) is a monotonically decreasing function of dr. 
Using (21) and the condition m < 0 yields lim .

d e
r

r
®¥

= 0

Using (20) and (21) yields  c
n md m d s d s

p
qe

r r r=
- - - + +

+
| |

.
2

1 2

1
32

 We already know that the 

numerator is a monotonically decreasing function of dr, and since p1 < 0, ce is a monotonically increasing 
function of dr. Using the fact that m < 0, and the expression 1 1 2 2+ = + +x x o x/ ( )  yields

- - + + = - + + +md m d s d s d m m s d s dr r r r r r| | ( / / )2
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 Using the definition of s1 completes the proof of Proposition 7. 

For cell C14, substituting the parameters in the Appendix yields: δ = −6.8E − 013, q1 = −13680.9, 
q2 = −0.0472, v = 8.4E − 014, w = 0.00024, n = 4.71E − 06, m = −0.0861, γw2 − nmw + vm2 = 1.1E − 010, 
and ( , ) ( . , . ).r ce e d dr n=

= 3 8 376 1  Hence, all the conditions of Proposition 7 hold, and as dr increases, re 

decreases monotonically to 0, and ce increases monotonically to q w
p m3

1

379 4- =
g

. .  This implies that 

for any dr ≥ dn, the solution of (18) satisfies (re, ce) ∈ C14, i.e. the equilibrium point corresponding to the 

lytic state remains more or less intact. This is not so for the two other equilibrium points (see Figures 
9 and 10).

The next result shows that the equilibrium point corresponding to the lytic state also maintains its 
stability.
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Proposition 8. Suppose that the conditions of Proposition 7 hold. Let e(dr) := (re(dr), ce(dr)) denote the 
equilibrium point defined in (20). Suppose that for some nominal value dr = dn, with dn > 0, e(dn) 
is LAS. If p7, δ < 0 and p5 > 0 then e(dr) is LAS for any dr ≥ dn.

Proof. Denote y1 = r − re, y2 = c − ce. Using (15) and the fact that (re, ce) is a solution of (18) yields:
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
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1 2,        (22)

where a11 = Ar(cep1 + p2) − dr, a12 = Ar(rep1 + p3), a21 = Ac(cep5 + p6), and a22 = Ac(rep5 + p7) − dc. It is well-
known that the linear part of (22) will be asymptotically stable if:

a11 + a22 < 0        (23)

and

a11a22 − a12a21 > 0.        (24)

We now show that if (23) and (24) hold for some value dr = dn, with dn > 0, then they hold for any 
dr ≥ dn. Since p1 < 0 (p5 > 0), Proposition 7 implies that a11 (a22) decreases with dr. Hence, if (23) holds 
for dr = dn, it also holds for any dr ≥ dn. 

A straightforward calculation using (20) shows that

a a a a
A A

c
d

A A
p d

r c
e

c

r c
r

11 22 12 21
72

-
=- + - +d q( ) ,  

where θ is a constant. Since p7, δ < 0, Proposition 7 implies that a11a22 − a12a21 is an increasing function 
of dr. Hence, if (24) holds for dr = dn, it also holds for any dr ≥ dn. This completes the proof of Proposi-
tion 8. 

Using the parameter values given in the Appendix shows that all the conditions of Proposition 8 hold 
for cell C14. Summarizing, we suggest the following explanation for the stability puzzle. Under normal 
conditions (i.e., dr = dn), the system admits three equilibrium points. Both the lytic and the lysogenic 
equilibrium points are LAS, and the lysogenic point has a large basin of attraction. This explains the 
stability of the lysogenic state with respect to perturbations. However, during the SOS response dr is 
increased above a certain threshold value, and the dynamic landscape changes dramatically. The equilib-
rium point corresponding to the lytic state remains more or less intact, while the other two equilibrium 
points disappear. Thus, all initial states converge to the lytic state.

This explanation is, of course, similar to the one first suggested by (Santillan & Mackey, 2004). 
However, as demonstrated above, our model is simple enough to allow the study of this bifurcation 
behavior using rigorous analysis, and not only simulations.



597

Mathematical Modeling of the λ Switch

6. diScuSSion

As noted in (Zhu et al., 2007), biological theories are often of a descriptive nature. In other words, they 
consist of descriptions and explanations stated in natural language. Science can greatly benefit from 
transforming these verbal descriptions into well-defined mathematical models. Indeed, mathematical 
models summarize and interpret the empirical data, and are indispensable when we wish to rigorously 
analyze a dynamic system.

This raises the following problem: how can one convert a given verbal description into a well-defined 
mathematical model? FM, with its unique ability to handle and manipulate verbal information, consti-
tutes a natural approach for addressing this problem. Application of FM in this context consists of four 
steps: (1) identifying the state-variables; (2) restating the given verbal descriptions as a set of fuzzy 
rules relating these variables; (3) defining the fuzzy terms using suitable membership functions; and (4) 
inferring the fuzzy rule-base to obtain a well-defined mathematical model.

The close connection between the initial verbal description and the resulting mathematical model 
provides several advantages. The knowledge about the system is represented in three different forms 
in parallel: (1) the initial verbal descriptions and explanations; (2) the fuzzy rule-base; and (3) the 
mathematical model obtained by inferring the rules. This provides a synergistic view of the system. For 
example, simulations and analysis of the mathematical model can be used to check whether the model’s 
behavior is congruent with that actually observed in nature. When this is not the case, it is sometimes 
possible, due to the If-Then structure of the rules, to determine which fuzzy rule should be altered and 
how. Inferring the modified rule-base yields a modified mathematical model, and so on. Furthermore, 
any change in the rule-base can also be interpreted as a change in the initial verbal description, suggest-
ing directions for further research of the original natural phenomenon.

In this chapter, we applied FM to transform a verbal description of the molecular mechanisms under-
lying the λ switch into a well-defined mathematical model. Simulations indicate that the model provides 
reasonable qualitative and quantitative fidelity with experimental evidence. Unlike previous models, it is 
also simple enough to allow a rather detailed analysis. In particular, properties such as the number and 
location of equilibrium points, and their domains of attraction can be analyzed analytically.

Furthermore, the model provides for the first time a rigorous explanation of the so-called stability 
puzzle of the λ switch. This explanation is similar to the one suggested by (Santillan & Mackey, 2004) 
based on numerical analysis of bifurcations that appear when the degradation rate is increased. How-
ever, the latter model is a fourth-order differential equation with time-delays. Our model is a piecewise-
quadratic second-order differential equation. It is thus simple enough to allow a rigorous analysis of the 
behavior of the equilibrium points for various values of the degradation rate.
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key terMS and defintionS

Bifurcation: In mathematical models, a bifurcation occurs when a small change made to a parameter 
value of a system causes a sudden qualitative or topological change in its behavior.

Equilibrium Point: A point x  is called an equilibrium point of the differential equation x t f x t( ) ( ( ))=  
if f x( ) = 0 .

Stability of an Equilibrium Point: An equilibrium point x  is stable if trajectories that start near 
x  are qualitatively similar to the trajectory emanating from the equilibrium point, i.e. the trajectory 
x t x( ) =  .

Robustness of an Equilibrium Point: An equilibrium point x  is robust if it maintains its qualitative 
properties even when the values of certain parameters change.

Fuzzy Modeling: A systematic approach for transforming verbal descriptions into well-defined 
mathematical models.

Gene Regulation: The controlled on/off switching of sets of genes according to internal and external 
conditions.

λ Switch: The genetic mechanism controlling two alternative pathways in the λ virus. Commonly 
used as a paradigm of gene regulation.

Stability Puzzle: The λ switch demonstrates both: (1) very fast switching; and (2) robustness to 
random perturbations. These properties are usually contradicting, and their coexistence in the switch is 
known as the stability puzzle.

endnoteS

1  from the Greek, Lysis, act of loosening. Lysogenic, capable of producing or undergoing lysis.
2  Note that RecA cleaves CImonomers, whereas r(t) in our model is the total amount of CI molecules. 

In order to obtain a more accurate qualitative value for the bifurcation parameter, a more detailed 
model of the effect of cleavage on the degradation rate dr is needed.
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aPPendix
Table 1. Parameters of PWL functions; m a bmedium_r r s r( ) ( )= ; ,1 3 ,  m a blow_r r s r( ) ( )= ; ,1 1

, 
m a blow_c c s c( ) ( )= ; ,2 4 , and m a bnot_very_high_c c s c( ) ( )= ; ,2 5

α1 β1 b3

0 1 0.0001973

5 0.9748 0.02685

23 0.2644 0.7785

43 0.08677 0.9664

100 0.001903 1

1000 0 0.7114

Table 2. 

α2 b4 b5

0 1 1

100 0.4815 0.9358

200 0.2346 0.7643

300 0.1604 0.5807

400 0.1156 0.426

1000 0.04012 0

Table 3. Parameter values of the model (15) 

Ar 11

Ac 12

dr 1/2943 sec−1

dc 1/5194 sec−1

a1 0.008195 sec−1

a2 0.00078825 sec−1

a3 0.0133 sec−1

Table 4. Parameter values p1, …, p4 in each cell (see (15)) 

p1 p2 p3 p4

C11 -2.059e-007 3.971e-005 -4.096e-006 0.0007899

C12 -9.804e-008 2.892e-005 -1.95e-006 0.0005753

C13 -2.944e-008 1.52e-005 -5.856e-007 0.0003024

C14 -1.78e-008 1.171e-005 -3.541e-007 0.0002329

C15 -4.995e-009 6.588e-006 -9.937e-008 0.0001311

C21 -1.613e-006 0.0003111 2.941e-006 -0.0005672

C22 -7.682e-007 0.0002266 1.4e-006 -0.0004131

C23 -2.306e-007 0.0001191 4.205e-007 -0.0002171
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C24 -1.395e-007 9.175e-005 2.543e-007 -0.0001673

C25 -3.914e-008 5.162e-005 7.135e-008 -9.411e-005

C31 -3.63e-007 7e-005 -2.581e-005 0.004978

C32 -1.728e-007 5.099e-005 -1.229e-005 0.003626

C33 -5.189e-008 2.68e-005 -3.691e-006 0.001906

C34 -3.138e-008 2.064e-005 -2.232e-006 0.001468

C35 -8.806e-009 1.161e-005 -6.263e-007 0.000826

C41 -1.893e-008 3.651e-006 -4.061e-005 0.007831

C42 -9.015e-009 2.659e-006 -1.934e-005 0.005704

C43 -2.707e-009 1.398e-006 -5.806e-006 0.002998

C44 -1.637e-009 1.077e-006 -3.511e-006 0.00231

C45 -4.593e-010 6.058e-007 -9.852e-007 0.001299

C51 1.363e-008 -2.629e-006 -4.386e-005 0.008459

C52 6.492e-009 -1.915e-006 -2.089e-005 0.006162

C53 1.949e-009 -1.007e-006 -6.271e-006 0.003239

C54 1.179e-009 -7.755e-007 -3.792e-006 0.002495

C55 3.308e-010 -4.363e-007 -1.064e-006 0.001404

Table 5. Parameter values p5, …, p8 in each cell (see (15)) 

p5 P6 p7 p8

C11 4.301e-008 -6.698e-005 -8.538e-006 0.0133

C12 1.149e-007 -7.417e-005 -2.28e-005 0.01472

C13 1.23e-007 -7.58e-005 -2.442e-005 0.01505

C14 1.036e-007 -6.998e-005 -2.057e-005 0.01389

C15 4.756e-008 -4.756e-005 -9.441e-006 0.009441

C21 3.37e-007 -0.0005248 -1.001e-005 0.01559

C22 9e-007 -0.0005811 -2.673e-005 0.01726

C23 9.639e-007 -0.0005939 -2.863e-005 0.01764

C24 8.118e-007 -0.0005483 -2.411e-005 0.01628

C25 3.726e-007 -0.0003726 -1.107e-005 0.01107

C31 7.582e-008 -0.0001181 -4.001e-006 0.006232

C32 2.025e-007 -0.0001308 -1.069e-005 0.0069

C33 2.169e-007 -0.0001336 -1.144e-005 0.007052

C34 1.827e-007 -0.0001234 -9.639e-006 0.00651

C35 8.384e-008 -8.384e-005 -4.424e-006 0.004424

C41 1.271e-008 -1.98e-005 -1.288e-006 0.002005

C42 3.395e-008 -2.192e-005 -3.438e-006 0.00222

C43 3.636e-008 -2.24e-005 -3.683e-006 0.002269

C44 3.063e-008 -2.068e-005 -3.102e-006 0.002095

C45 1.406e-008 -1.406e-005 -1.424e-006 0.001424

C51 1.805e-011 -2.812e-008 -1.805e-008 2.812e-005

C52 4.821e-011 -3.113e-008 -4.821e-008 3.113e-005
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C53 5.164e-011 -3.182e-008 -5.164e-008 3.182e-005

C54 4.349e-011 -2.937e-008 -4.349e-008 2.937e-005

C55 1.996e-011 -1.996e-008 -1.996e-008 1.996e-005
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introduction

In the last years, modern high-throughput technologies enabled scientists to get a huge amount of quali-
tative and quantitative data on biological processes in the cell. Nearly complete metabolic networks of 
several organisms are available (Edwards, 2000), (Schilling, 2002). At present, the amount of qualitative 
data increases much faster than of quantitative data. In particular for GRNs, gene expression at mRNA 
level can be determined by various experimental high-throughput technologies. Due to experimental 
limits, the measurement of quantitative data in vitro as well as in vivo is often infeasible. In many cases, 
qualitative data is the only source for getting information about the system behavior. With the changing 

abStract

In this chapter, modeling of GRNs using Petri net theory is considered. It aims at providing a concep-
tual understanding of Petri nets to enable the reader to explore GRNs applying Petri net modeling and 
analysis techniques. Starting with an overview on modeling biochemical networks using Petri nets, 
the state-of-the-art with focus on GRNs is described. Other modeling techniques, for example, hybrid 
Petri nets are discussed. Basic concepts of Petri net theory are introduced involving special analysis 
techniques for modeling biochemical systems, for example, MCT-sets, T-clusters, and Mauritius maps. 
To illustrate these Petri net concepts, a more complex case study–the gene regulation in Duchenne 
Muscular Dystrophy–is explained in detail, considering the biological background and the interpreta-
tion of analysis results. Considering both, advantages and disadvantages, the chapter demonstrates the 
usefulness of Petri net modeling, in particular for GRNs.

DOI: 10.4018/978-1-60566-685-3.ch025
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relation of available qualitative and quantitative data of biochemical systems as one important reason for 
applying discrete methods, different approaches for qualitative modeling have been developed. These 
methods range from Boolean methods to stoichiometry based approaches such as elementary mode 
analysis (Schuster, 1993), extreme pathway analysis (Schilling, 2000), flux coupling analysis (Larhlimi, 
2006), and T-invariant analysis (Heiner, 2004).

The inconsistency and incompleteness of data, evoked by difficult and different measuring conditions, 
desire for modeling approaches which allow for combination of data at different abstraction levels in one 
model. In particular for biochemical networks, this property plays a crucial role, because, for example, 
gene regulatory processes are linked to signal transduction processes and/or metabolic processes. To 
investigate the interactions and dependencies of these different processes as they occur in the cell, we 
need to model these interactions in a unique description language.

Petri net (PN) theory offers the possibility to model systems at different abstraction levels within 
one model. Moreover, freely available PN tools often provide an intuitive graphic representation of the 
system with easily operating editors. This facilitates the communication between experimentally and 
theoretically working scientists, what is particularly useful in strong interdisciplinary fields like systems 
biology.

First PN models of biochemical processes have been developed by Reddy et al. (Reddy, 1994; Reddy 
et al., 1993 and 19961996), modeling the metabolic systems of the fructose metabolism in liver and the 
combined glycolysis and pentose phosphate pathway in erythrocytes.

In the past 15 years, many different applications of PNs to biochemical systems have been published. 
Modeling of metabolic networks as PNs is described in (Hofestädt, 1994), (Genrich, 2001), (Voss, 
2003), (Oliveira, 2003), and (Koch, 2005). The analysis of signal transduction networks using PNs was 
introduced by (Lee, 2004), (Takai-Igarashi, 2005), and (Sackmann et al. 2006). For these network types, 
mostly qualitative discrete simulation and analysis techniques have been applied. The foundations of 
quantitative PN modeling are described in (Hofestädt & Thelen, 1998) and (Koch & Heiner, 2008).

The transition from Boolean networks to PNs for analyzing gene regulation is developed in (Steggles 
et al., 2006) and extended in Steggles et al., 2007). Marwan et al. (Marwan et al., 2005) reconstructed 
a regulatory network, controlling commitment and sporulation in a bacterium.

For modeling gene regulation, often various biochemical systems using different PN types were con-
sidered. For example, Goss & Peccaud (Goss & Peccaud, 1998), (Goss & Peccaud, 1999) investigated the 
genetic network controlling ColE1 plasmid regulation using stochastic PNs. Also hybrid PNs that comprise 
qualitative as well as quantitative properties into one model have been applied to different biochemical 
systems (Matsuno et al., 2000) (Chen, 2003), (Hardy, 2004; Matsuno et al., 2003), (Hardy, 2004), (Saito, 
2006). The emphasis of these approaches is the analysis via simulation of gene regulation.

Besides investigations focused on these three biological network types, there are publications that 
combine different abstraction levels into one PN. For example, Simão et al. (Simão et al., 2005) com-
bine gene regulation and metabolic processes focusing on the simulation. The approach considers the 
qualitative modeling of the biosynthesis of tryptophan in E.coli.

Nutsch et al. (Nutsch, 2005) modeled the kinetic mechanism of flagellar motor switching and its 
sensory control using first a qualitative PN model, which was then refined to give a quantitative one.

Kielbassa et al. (Kielbassa, 2008) developed a PN model which describes the U1 snRNP (uridine rich 
small nuclear ribonucleoprotein) assembly pathway in alternative splicing in human cells, considering 
signaling processes, transport processes, and gene expression.



606

Petri Nets and GRN Models

For an overview of PN approaches in biology, see (Hardy, 2004), (Matsuno et al., 2006), (Chaouiya, 
2007), and (Koch & Heiner, 2008). A tool comparison of PN software tools to study properties and 
dynamics of biological systems can be found in (Peleg, 2005).

In this chapter, we emphasize discrete modeling and analysis of gene regulation illustrated by PN 
modeling of gene regulatory processes concerning Duchenne Muscular Dystrophy (DMD). The chapter 
is organized as follows. We begin in Section X.2 with a conceptual introduction into PN fundamentals 
using simple biological examples. We give basic definitions and introduce those analysis techniques, 
which are useful for modeling GRNs. In Section 3, we explain modeling of gene regulation in crucial 
processes for DMD, discussing the application of the PN concepts. In Section 4, after a short summary 
we conclude providing some key points.

Petri net fundaMentalS

Petri nets have been introduced by Carl Adam Petri (Petri, 1962) in his dissertation to describe, simu-
late, and analyze systems of causally related concurrent processes. Many applications, for example, for 
modeling manufacturing processes (Proth, 1997) or communication networks (Billington, 1999), led to 
the development of new theorems, algorithms, and tools. Besides qualitative discrete analysis, PN theory 
was extended by quantitative concepts as in stochastic PNs (Bause, 1996), (Haas, 2002), and continuous 
PNs (David, 2005). Nowadays, there exist many applications of PN theory to model technical systems, 
administrative systems, business process management (van der Aalst, 1999), and others (Reisig, 1985). 
For an introduction on PN theory, see (Peterson, 1981), (Reisig, 1985), (Murata, 1989), (Starke, 1990), 
and/or (Baumgarten, 1996). A good introduction into continuous and hybrid PNs can be found in (Alla, 
1998) and (David, 2005). To get an overview about existing PN methods, literature, and tools, visit the 
website (TGI-group, 2008).

Petri net fundamental terms and notations

Petri nets are directed, bipartite, and labeled graphs. They consist of two types of vertices, one for the 
passive and one for the active system elements. Vertices (or nodes) which describe the passive system 
elements, p Î P, are called places, and are visualized by circles. Transitions, t Î T, describe the ac-
tive elements of the system. They are drawn as rectangles of different size, e.g., as squares or flat bars. 
Places and transitions are connected by directed edges (or arcs), f Î F, in such a way that only vertices 
of different type are connected. The edges are labeled by positive integer numbers. Movable objects, the 
tokens, can be located on the places. The distribution of tokens over the net represents a certain marking, 
m, and defines a certain system state of the net.

definition (Petri net)

The 5-tuple N = (P, T, F, W, m0) is called a Petri net, if it holds:

• P and T are two finite, non-empty sets with P Ç T = Æ, P È T ¹ Æ. 
The elements of the sets P and T are called places and transitions, respectively.
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• F is a two digit relation with F ⊆ (P × T) È (T × P). 
The elements of F are called arcs. F is called the flux relation of N.

• W: F → N, is the weight of the arcs.
• m0 : P → N0 , is the initial marking of N.

The directions of the edges define for each transition a set of pre-places and a set of post-places, 
denoted as •t:= {p | p Î P Ù (p, t) Î F } and t•:= {p | p Î P Ù (t, p) Î F }, respectively. Accordingly, we 
define for each place a set of pre-transitions and a set of post-transitions, denoted as •p:= {t | t Î T Ù (t, p) 
Î F } and p•:= {t | t Î T Ù (p, t) Î F }, respectively. It is possible to model transitions without pre- or 
post-places and places without pre- or post-transitions. Transitions without pre- or post-places are used 
to represent the interface with the surroundings of the system, e.g., for substance input and output. We 
denote transitions without pre-places as input transitions and transitions without post-places as output 
transitions. Accordingly, we define input places and output places. 

In biochemical applications, places represent the chemical compounds:

in metabolic systems, the metabolites (e.g., sucrose, glucose, ATP, ADP);• 
in signal transduction systems, the proteins in different states (e.g., in their activated or inactivated • 
form, phosphorylated or dephosphorylated form) or in protein complexes;
in • GRNs, genes at different expression levels (e.g., overexpressed and underexpressed genes), or 
silencers and enhancers, but also proteins, protein complexes, and complexes between proteins 
and nucleic acids.

Transitions in biochemical networks represent the chemical reactions:

in metabolic systems, the enzyme-catalyzed conversions of metabolites, often named after the • 
enzyme (e.g., invertase, hexokinase);
in signal transduction systems, complex formation and decay reactions (e.g., dimerization, dis-• 
sociation) or activation/deactivation or phosphorylation/dephosphorylation;
in • GRNs, gene silencing and enhancing processes, transcriptional processes, binding, activation/
deactivation, phosphorylation/dephosphorylation, but also complex forming and decay reactions.

For larger systems, different kinds of networks can overlap, because gene expression can influence 
metabolisms and/or signal transduction pathways and vice versa.

To illustrate the new terms, let us consider the example in Figure 1. It represents a part of the 
gluconeogenesis pathway, which converts pyruvate into glucose. Following reactions form phospho-
enolpyruvate from pyruvate by way of oxaloacetate through the action of pyruvate carboxylase and 
phosphoenolpyruvate carboxykinase. The corresponding PN consists of two transitions, t1 and t2. In 
metabolic PNs, these transitions are often named after the enzyme which catalyzes the corresponding 
chemical reactions. Transition, t1, has four pre-places, pyruvate, CO2 (carbon dioxide), ATP (adenosine 
triphosphate), and H2O (water), and four post-places, oxalacetate, ADP (adenosine diphosphate), Pi 
(inorganic orthophosphate), and H+ (hydrogen ion). Transition, t2, exhibits two pre-places, oxalacetate 
and GTP (guanosine triphosphate), and three post-places, phosphor-enolpyruvate, GDP (guanosine 
diphosphate), and CO2. The node CO2 is graphically represented by two logical places named CO2, 
indicating the same node in the underlying graph. Logical places were introduced to achieve a better 
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graphical arrangement. Thus, both places always carry the same number of tokens. The arc (t1, H
+) is 

labeled by the weight two, whereas all other arcs carry the weight one, not explicitly drawn in graphic 
depictions. In metabolic systems, the arc weights correspond to the stoichiometric factors of the under-
lying stoichiometric chemical reaction equation.

PNs can contain loops, if there are two arcs in opposite directions between a place and a transition, 
see Figure 2. Both arcs can be summarized into one arc, which is called a read arc or test arc. The place, 
participating in the read arc, can, e.g., represent a side condition, because a sufficient amount of tokens 
on this place is necessary to enable the transition, participating in the read arc. Therefore, in chemical 
reactions, catalysts, e.g., enzymes, can be modeled as a place, participating in a read arc, because tokens 
on these places are not consumed.

The dynamic properties of a PN are defined by the firing of transitions. This corresponds to the oc-
currence of an action or, in biological context, of a chemical reaction. The firing rule ascertains how 
the action takes place. Before a transition can fire, it has to be enabled. A transition is enabled, if all 
pre-conditions and post-conditions are fulfilled. Pre-conditions are represented by pre-places and their 
markings. If the pre-places carry at least as many tokens as indicated by the weights of the respective 
outgoing arcs the pre-conditions are fulfilled. Accordingly, post-conditions are defined by post-places 
and their marking. The post-places have to be able to additionally carry as many tokens as indicated 
by the weights of the respective incoming arcs. We have not explicitly defined the capacity of a place, 

Figure 1. A metabolic PN and its chemical stoichiometric equations describing a part of the gluco-
neogenesis pathway. Places represent the metabolites and transitions the chemical reactions. The arc 
weights correspond to the stoichiometric factors. Transition, t1, has four pre-places, pyruvate, CO2 
(carbon dioxide), ATP (adenosine triphosphate), and H2O (water), and four post-places, oxalacetate, 
ADP (adenosine diphosphate), Pi (inorganic orthophosphate), and H+ (proton). Transition, t2, exhibits 
two pre-places, oxalacetate, GTP (guanosine triphosphate), and three post-places, phosphoenolpyruvate, 
GDP (guanosine diphosphate), and CO2. The node CO2 is graphically represented by two logical places 
named CO2, indicating the same node in the underlying graph.
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because we assume that the maximum number of tokens on a place can be infinite. Thus in our models, 
post-conditions are always fulfilled. We define the minimum number of tokens on the pre-places by the 
marking

t– (p):= W (p, t), if (p, t) Î F and 

t– (p):= 0, if (p, t) Ï F, 

and the number of tokens, which are added to each post-place by

t+:= W (t, p), if (t, p) Î F and 

t+ (p):= 0, if (t, p) Ï F. 

Thus, Dt:= t– – t+ gives the change of marking in the considered place.

definition (enabled transition)

Let N = (P, T, F, W, m0) be a Petri net and m a marking of N. A transition, t, is enabled in m, if t - £ m.

Figure 2. Three equivalent graphical representation for read or test arcs. Read arcs form loops. They 
can be used to model catalysts, because catalysts, e.g., enzymes, are necessary for the occurrence of a 
biochemical reaction, but will not be consumed during the reaction.
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definition (firing rule)

Let N = (P, T, F, W, m0) be a Petri net and m a marking of N.

A transition • t Î T can fire in a marking, m, if t is enabled in m.
After firing of • t, a successive marking, m’, is reached with m’:= m + Dt.

For firing of t, we write m t¾ ®¾ m’ for the transition from m to m’. The firing itself is atomic and 
contains no time relation. PNs that exhibit this timeless firing rule are called place/transition nets (P/T 
nets). In this chapter, we refer to P/T-nets.

Let us consider again our example of Figure 1. The pre-places of t1 carry each one token. Because 
the weights of the arcs between the pre-places and t1 are all equal to one, all pre-conditions for t1 are 
fulfilled, and t1 is enabled to fire. Transition, t2, is not enabled, even though if the place GTP carries one 
token, because one of the pre-conditions represented by the place, oxalacetate, is not fulfilled. After 
firing of t1, the PN enters a new system state. Tokens are produced on the post-places of t1 according 
to the corresponding arc weights, see Figure 3a. Thus, place H+ carries two tokens now. Consequently, 
transition, t2, is enabled and can fire to give the system state represented in Figure 3b.

Figure 3. The firing of the P/T net of Figure 1, whereat t1 is enabled, because all pre-conditions are 
fulfilled. a) The PN after firing of transition t1. As many tokens as indicated by the corresponding arc 
weights are produced on the post-places (oxaloacetate, ADP, Pi, and H+). Now, transition t2 is enabled. 
b) The PN after firing of transition t2. On each of the post-places (phosphoenolpyruvate, GDP, and CO2) 
one token has been produced, as indicated by the corresponding arc weights.
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The timeless firing rule characterizes the dynamic behavior of P/T nets. The modification of the fir-
ing rule by including time intervals for each transition leads to discrete timed PNs (Popova-Zeugmann, 
2005). Modeling concentrations instead of discrete tokens on places and using concentrations and time 
dependencies in the firing rule, we define continuous PNs. Hybrid PNs contain both discrete and con-
tinuous places and transitions. If, additionally, probabilities are involved in the firing rule, stochastic 
PNs result.

definition (firing Sequence)

Let N = (P, T, F, W, m0) be a Petri net, m a marking in N, and s = t1 … tn Î T a sequence of transitions. 
The symbol s denotes a firing sequence, if a marking, m’ in N, exists, such that m t tn1.....¾ ®¾¾¾ m’ and 

m’ = m + Dti

i

n

=
å

1

.

definition (reachable Marking)

Let N = (P, T, F, W, m0) be a Petri net. A marking, m in N, is called reachable in N for a marking, m* in 
N, if a firing sequence, s, from m* to m in N exists. If m* = m, we say m is reachable in N.

RN (m):= {m’|m *¾ ®¾¾ m’} denotes the set of all reachable markings in m. This set is of special 
interest, because it comprises all possible events defining all system states, and, thus, representing the 
state space of a PN. 

definition (State Space)

Let N = (P, T, F, W, m0) be a Petri net. The set RN (m):= RN (m0) is called the system state of N.
The state space is summarized in the reachability graph, RG. The vertices of RG represent the differ-

ent states, and the edges describe state transformations labeled by the responsible transition.

definition (reachability graph, rg)

Let N = (P, T, F, W, m0) be a Petri net. We call the graph a reachability graph, RG of N, if:

The set RN represents the vertices of the graph.• 

(• m, m’) denotes an edge of the graph, if a transition, t, exists with m t¾ ®¾ m’.

The state space gives also insights into non-reachability of certain states and, thus, information about 
actions that never will take place. For exploration of the system space, the state space should be finite. 
A system state is finite, if no place exists, carrying an infinite number of tokens. This is expressed by 
the following property.
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definition (boundedness)

Let N = (P, T, F, W, m0) be a Petri net. We call a Petri net N to be bounded, if the set of reachable mark-
ings is finite.

A place is • k-bounded, if there exists a positive integer number, k, which represents the maximal 
number of tokens on that place.
A • Petri net N is k-bounded, if all its places are k-bounded.
A • Petri net is structurally bounded, if it is bounded in every initial marking.

Biochemical PNs are usually modeled as open systems, using input and output transitions. Thus, 
tokens can always enter or leave the model, leading in most cases to places with infinite number of 
tokens, and thus, to unbounded networks. There are approaches to convert an unbounded network into 
a bounded one (Koch & Heiner, 2008).

Another important property refers to the liveness of a transition and of the entire PN.

definition (liveness)

Let N = (P, T, F, W, m0) be a Petri net, m an arbitrary marking of N, and t Î T an arbitrary transition.

A transition, • t, is live in the marking, m of N, if for every marking, m’Î RN (m), a further marking, 
m”Î RN (m’), with m mt'' '¾ ®¾  exists.
A transition • t is dead in the marking, m of N, if for every marking, m’Î RN (m), it holds: t –  m’.
A marking, • m, is called live in N, if all transitions, t Î T, are live in m.
A marking, • m, is called dead in N, if all transitions, t Î T, are dead in m.
A transition • t is called live (dead) in N, if t is live (dead) in m0.
A • Petri net, N, is called live (dead), if m0 is live (dead) in N.
A • Petri net, N, is called deadlock-free, if there is no reachable marking, where all transitions, t Î 
T in N, are dead.

Biochemical systems should be live, because it is assumed that biological processes can repeatedly 
occur. A dead system means that none reaction can take place, and the metabolism or signal transduction 
stops. For modeling drug dependencies, a dead transition or even a dead PN can be desired as effect of 
the drug after entering the system.

linear invariant analysis

Dynamically defined network properties can often be characterized by linear algebraic methods. In this 
context, the invariant properties play a crucial role. These invariants are important to characterize the 
dynamic system behavior, in particular for biochemical systems. Invariant properties are valid in each 
system state, independently of the current state represented by the current marking. The definition of 
invariants is based on the incidence matrix. Thus, it is not necessary to generate the whole state space, 
which often leads to a state space explosion (Valmari, 1998).



613

Petri Nets and GRN Models

definition (incidence Matrix)

Let N = (P, T, F, W, m0) be a Petri net. The corresponding incidence matrix C is defined by ” 1 £ i £ 
m, 1 £ j £ n:

C
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A matrix element, Cij, denotes the change of the token number on place, pi, by the firing of the transi-
tion, t j. PNs without loops are defined one-to-one by the incidence matrix. In chemistry, the incidence 
matrix is known as stoichiometric matrix. The incidence matrix of our example of Figure 1 is depicted 
in Figure 4, where, for example, the place, H+, will get two tokens, when t1 fires; CO2 will deliver one 
token, when t1 fires, and get a token by firing of t2.

definition (Place invariant – P-invariant)

Let N = (P, T, F, W, m0) be a Petri net and C the corresponding incidence matrix. Each non-trivial solution 
x Î N |T| of the homogeneous equation system CT × x = 0 is called a place invariant (P-invariant) of N.

Figure 4. The incidence matrix of the PN depicted in Figure 1. Each matrix element contains the number 
of tokens on the places (written vertically), which will be produced (positive numbers) or consumed 
(negative numbers) by firing of the transitions (written horizontally). For example the place, ADP, will 
get one token, when t1 fires; CO2 will deliver one token, when t1 fires, and get a token by firing of t2.
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Place-invariants describe rules of token conservation. A P-invariant is a set of places, for which the 
weighted sum of tokens is always constant, independently from any firing. If x = (x1, x2, …, x|P|) is a 
P-invariant in a Petri net N, it holds for each reachable marking, m:

x m p const x m p
i i i i

i

P

i

P

× = = ×
= =
å å

1 1
0

| | | |

( ) . ( ) . 

In biochemical systems, P-invariants describe conservation rules of compounds. In metabolic systems, 
ATP and ADP often form a P-invariant. In signal transduction systems, and GRNs those places, which 
describe the activated and non-activated state of a protein, often build a P-invariant.

definition (transition invariant – t-invariant)

Let N = (P, T, F, W, m0) be a Petri net and C the corresponding incidence matrix.

Each non-trivial solution • y Î N |T| of the homogeneous equation system C × y = 0 is called a tran-
sition invariant (T-invariant) of N.
Each • Parikh vector of a firing sequence, which represents a T-invariant, is called a feasible 
T-invariant.

The transitions of a T-invariant and the places in between describe subnets, which are connected and 
can overlap. Parikh vectors contain frequencies of their elements (for the formal definition see (Parikh, 
1966)). In PN theory, T-invariants are Parikh vectors, because they contain the frequencies of firing for 
each transition. If all transitions of a T-invariant fire according to their frequencies as indicated in the 
Parikh vector, an arbitrary initial system state will be reached again.

The set of the non-zero entries of an invariant, x, is called the support of x, written as supp(x). Because 
the solution space of these equations is infinite, we are interested in a minimal solution, from which each 
other solution can be obtained by linear combinations. An invariant x (P- or T-invariant) is minimal, if 
it does not contain any other invariant z, i.e., ó z: supp(z) Í supp(x), and the greatest common divisor 
of all entries of x is equal to one. In this chapter, we consider minimal invariants, writing P-invariant 
and T-invariant, respectively.

We can formulate minimal validation criteria for a biochemical PN (Heiner, 2004; Koch & Heiner, 
2008):

1.  The net should be connected.
2.  All transitions should be a member of at least one T-invariant. Otherwise, this transition does not 

influence the system behavior. That means that we can remove this transition without any change in 
the system behavior. If each transition of a PN belongs to at least one T-invariant, the PN is covered 
by T-invariants (CTI). Accordingly, we can define the property, CPI (covered by P-invariants), if 
each place belongs to at least one P-invariant.

3.  Each T-invariant should represent a biologically possible pathway, because T-invariants describe the 
complete basic system behavior. The process of assigning a biological meaning can be complicated 
and time-consuming for a huge number of T-invariants.
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extended invariant analysis

Because of the complexity and dimension of biochemical PN models, the number of T-invariants can 
become very large, some hundreds or thousands and even more. To facilitate the examination of a huge 
amount of T-invariants, we introduce two concepts, MCT-sets and T-clusters. MCT-sets, first defined in 
(Sackmann et al., 2005) summarize equal parts of T-invariants.

definition (Maximal common transition Set – Mct-set or MctS)

Let N = (P, T, F, W, m0) be a Petri net and X the set of all T-invariants, x. A transition set A Î T is called 
a maximal common transition set, MCT-set or MCTS, if and only if " x Î X: A Í supp(x) Ú A Ç supp(x) 
= Æ.

That means that for all i, j Î {1, 2, …, m} two transitions, ti and tj, are grouped into the same MCT-
set, if and only if they participate in exclusively the same minimal T-invariants, i.e., for all T-invariants, 
x, it holds: c{0} (xi) = c{0}(xj), where c{0} denotes the characteristic function, binary indicating whether the 
argument is equal to zero or not. Figure 5 depicts an example for two MCT-sets.

MCT-sets and the places in between describe disjoint subnets, which can, in turn, be disconnected. 
We interpret MCT-sets as building blocks of biochemical PNs. These building blocks can be used for 
network reduction. Additionally, it can be assumed that the genes involved in transitions of one MCTS 
are coherently up- and down-regulated, because they operate always together.

MCTS have been used in several applications of PNs to biology (Grafahrend-Belau et al., 2008), 
(Sackmann et al., 2006), (Grunwald, 2008), (Sackmann et al., 2007), (Koch & Heiner, 2008).

The transitions of an MCT-set, occur always together in a pathway described by the corresponding 
T-invariant. Thus, performing exhaustive knockout experiments, it is sufficient to consider the knockout 
of only one transition of an MCT-set.

Figure 5. A set of five T-invariants and their transitions. There are two MCT-sets, MCTS1= {t2, t3, t4} 
and MCTS2 = {t6, t7}. Transition, t2, is not member of MCTS2, because it also occurs in T-invariant4, 
in which transitions, t6 and t7, do not appear.
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Whereas T-invariants decompose the network into connected overlapping sub-networks, the concept 
of MCT-sets leads to decomposition into disjoint sub-networks, which must not necessarily be con-
nected. These sub-networks should reflect a biologically possible behavior. Thus, they can be used for 
validating the model.

The clustering of T-invariants represents another possibility for network decomposition. The arising 
transition clusters (T-clusters), also combine transitions like MCT-sets, but the classification criteria are 
not so strong such that the resulting sub-networks can overlap as T-invariants. T-clusters are also used 
to validate models of large and complex networks, exhibiting a huge amount of T-invariants.

Cluster analysis of a set of objects can be seen as a three step process: (1) selection of a distance 
measure to compute the distances between all pairs of objects, (2) selection of a clustering algorithm to 
group the objects based on their distances, and (3) selection of a cluster validity measure to identify the 
optimal number of clusters for interpretation.

1.  The Tanimoto coefficient (Backhaus, 2003) is suitable as distance measure. It defines the similarity 
between two objects, i and j, by

s s t t
a

a b c
ij i j= =

+ +
( , ) , 

where a is the number of features present in both objects, b is the number of features only present in 
object, i, and c is number of features only present in object, j . The distance between the two objects, dij, 
is then defined by dij = 1 – sij (Steinhausen, 1977). In our case, objects are represented by the support 
vectors of T-invariants.

2.  For clustering, we use UPGMA or the Nearest Neighbor approach (Saitou, 1987), (Studier, 1988). 
For large networks, UPGMA is much faster.

3.  The decision, which number of clusters is the correct one or where to cut the cluster tree, respec-
tively, is one of the fundamental problems in unsupervised classification. After the investigation 
of different indices, we use the Silhouette Width (Rousseeuw, 1987) as default measure.

T-clusters have been applied in several applications (Grunwald, 2008), (Sackmann et al., 2007), (Koch 
& Heiner, 2008). For a more detailed description with various biochemical examples see (Grafahrend-
Belau et al., 2008).

Mauritius Map analysis

Both, experimental and theoretical knockout analysis, are common approaches to investigate the system 
behavior of biochemical networks. It is of general interest to know which parts of the network will be 
affected by the knockout of a certain gene, i.e., a certain reaction. It can also be to asked, which reactions 
should be knocked out to achieve a desired system behavior.

Once we have validated our PN model according to (Heiner, 2004), (Koch & Heiner, 2008), we use 
the T-invariants for knockout analysis, because they describe the complete basic system behavior. Knock-
ing out one transition or a set of transitions, we can compute the T-invariants of the modified system. 
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Comparing the resulting T-invariants with the set of T-invariants of the original system, we identify those 
regions of the network, which are affected or not affected by the knockout.

To facilitate an exhaustive knockout analysis we use Mauritius maps, which represent a new data 
structure that graphically visualizes the dependencies of T-invariants in terms of a binary tree. Mauritius 
maps describe dependencies of sub-pathways, which result from T-invariant analysis. Mauritius maps 
enable for performing a systematic analysis of in silico knockout experiments.

definition (Mauritius Map)

Let N = (P, T, F, W, m0) be a Petri net and X the set of all T-invariants, x. A finite binary tree, T = (V, 
E), is called Mauritius map, if

The set • V is a finite set of all transitions, x, belonging to at least one T-invariant. The root vertex 
is located in the lower left corner.
The set • E = (H, R) is a finite set of edges between vertices, indicating dependencies of 
T-invariants.
The set • H represents horizontal edges, which connect vertices belonging to the same T-invariant.
The set • R represents vertical edges, which connect vertices of the left sub-tree with vertices of the 
right upper sub-tree belonging to the same T-invariant.

The root vertex has no left sub-tree, but a right sub-tree. This right sub-tree contains all transitions 
covering the PN. A branch in the tree indicates another T-invariant. Leafs are transitions that form a right 
sub-tree, consisting only of that transition, and exhibit a left sub-tree. Interior vertices have left and right 
sub-trees each describing sub-networks. These sub-networks are defined by the vertices following the 
path from the root to the interior vertex considered. Horizontal and vertical lines, respectively, represent 
edges to the children, whereas edges to the parent vertices are formed by junction of two such lines. 
Edges can contain several transitions, forming a set of transitions.

To answer the question for transitions with highest or lowest impact on the net behavior we measure 
the number of affected, i.e., destroyed, T-invariants. Beginning with the root, the most important transi-
tion is given by the horizontal line. Knocking out this transition, the impact on the system will be the 
highest in comparison to knocking out other transitions. Obviously, a transition, which is contained in 
all T-invariants, represents such a most important transition.

Knocking out a transition or a set of transitions, usually one part of the net remains active, and 
another part looses its biological function. The corresponding right child and its successors cover all 
affected pathways. The knockout of a transition fragments the net into two subnets. One subnet (left 
child) does not contain the transition knocked out, and represents the function of the model not affected 
by the knockout. The second subnet (right child) depends on the presence of the transition knocked out 
and will become inactive. Thus, only those pathways, which cover the left child and its successors, are 
not affected maintaining their biological functionality.

Let us consider the example in Figure 6a. It depicts a small PN, representing signal transduction. The 
signal has to pass in some way from transition t_in to transition t_out via transitions t_1, t_2, t_3, t_4, 
and/or t_5. The behavior is described by three T-invariants Inv1 = {t_in, t_1, t_2, t_3, t_out}, Inv2 = 
{t_in, t_3, t_4, t_out}, and Inv3 = {t_in, t_5, t_6, t_out}. Figure 6b depicts the corresponding Mauritius 
map. The root has no left child, because a knockout of the transition, t_in or t_out, would be lethal for 
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the system. Note that the transitions, t_in and t_out, represent an MCT-set. Their order is not relevant. 
A knockout of transition, t_3, does not affect the left sub-tree, i.e., the T-invariant, Inv3, containing t_5 
and t_6, but destroys the functionality defined by the right sub-tree, containing transitions t_1, t_2, and 
t_4. Knocking out transition t_1, Inv2 is still working, but not transition t_2.

Modeling gene regulation in duchenne MuScular dyStroPhy

Gene regulation has often been modeled using Boolean approaches (Thomas, 1995). We consider gene 
regulation as a process that covers more than off- and on-switching of genes. The facility to work at 
different abstraction levels represents a strength of PN modeling. Gene regulatory processes, which are 
often induced by signal transduction, can influence, for example, metabolic processes, but also other 
signaling pathways and vice versa. We are convinced of the necessity to take all these processes into 
consideration.

Figure 6. A small PN representing a signaling pathway (a) and its Mauritius map (b). a) The signal 
is going from t_in to t_out. Three T-invariants occur, Inv1 = {t_in, t_1, t_2, t_3, t_out}, Inv2 = {t_in, 
t_3, t_4, t_out}, and Inv3 = {t_in, t_5, t_6, t_out}. One MCT-set, consisting of t_in and t_out, exists. b) 
Knocking out transition t_in or t_out destroys the functionality of the system. Knocking out transition, 
t_3, affects not the left sub-tree (Inv3), but the right sub-tree (Inv1, Inv2). A knocking out of t_1 concerns 
only Inv1. Edges drawn as rather thick black lines cover large parts of the net, whereas edges drawn as 
thin gray lines describe an only local influence.
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Figure 7. The entire PN model of the pathomechanisms of DMD. The black places indicate logical 
places
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Now, let us consider our example – the processes that influence a disease – Duchenne Muscular 
Dystrophy (DMD). This disease is still lethal, because no efficient therapy exists. To get a better un-
derstanding of the underlying molecular processes and, thus, of new therapeutic ideas, we developed 
a model of processes downstream the dystrophin gene. Our example is large enough to explain some 
important aspects of modeling GRNs using PNs. The model is based on own experimental data and has 
been used by experimentalists to get new insights into system behavior.

biological background

DMD is one of the most common inherited human neuromuscular diseases. Primarily boys in early 
childhood come down with DMD, where all voluntary muscles are affected until death by respiratory 
and/or cardiac failure.

A mutation in the dystrophin gene, followed by the absence or functional impairment of a subsar-
colemmal cytoskeletal protein, causes the disorder. In DMD patients, the protein, dystrophin, is absent. 
The pathomechanism of DMD, represented by the network downstream of dystrophin, comprises 
various gene regulatory processes, such as the dystrophin-glycoprotein-complex (DGC) downstream 
pathway. DGC is formed in presence of dystrophin, and enters a reaction cascade that finally phos-
phorylates, i.e., deactivates, the nuclear transcription factor of activated T-cells, NFATc. NFATc can be 
dephosphorylated, i.e., activated, by the protein, calcineurin, which, in turn, is positively regulated by 
the RAP2B-calcineurin cascade, the RAP2B (Ras related protein 2B) downstream pathway. Activated 
NFATc can enter the nucleus, where it acts as a transcription factor for different essential genes, such as 
MYF5 (myogenic factor 5), UTRNA (utrophin A), and p21. The protein, p21, which inhibits the cyclin-
dependent kinases (CDK), is, in turn, a negative regulator of the G1 to S progression in the cell cycle. 

Figure 8. The sub-net describing the up- and down regulation of the CSNK1A1 gene. The gene is repre-
sented at different expression states, the protein itself (CSNK1A1), the enhanced gene (E+CSNK1A1), and 
the silenced gene (Si-CSNK1A1). The protein CSNK1A1 is produced by the transition, init_E_CSNK1A1, 
through up-regulation (up-reg_CSNK1A1). The down-regulation is enabled when the place for the pro-
tein carries at least two tokens, and removes CSNK1A1 through the transition, down-reg_CSNK1A1, 
and produces CSNK1A1 again.



621

Petri Nets and GRN Models

That means that p21 slows down cell proliferation, enhancing the dystrophic process. The reduction of 
p21 and, consequently, the improvement of proliferation of primary myoblasts of DMD patients could 
be a possible therapeutic approach. Calcineurin could be reduced to deactivate NFATc and, therefore, 
to decrease the p21 expression (Endesfelder et al., 2003), (Endesfelder et al., 2005).

the Petri net Model

The whole model depicted in Figure 7 is described in detail in (Grunwald, 2008). The entire PN models, 
the tables, and analysis files are given in the supplementary material (Koch, 2008a).

The PN is constructed according to the outline of the biological processes and the general PN model-
ing techniques for GRNs as explained in section X.2.1. The model is mainly based on own experimental 
data and additional literature knowledge. To fill gaps in the current knowledge, we had to introduce 
hypotheses, which could not be found in the literature, because they cannot be experimentally tested at 
the moment. For example, we introduce the transitions deact_NFATc_CSNK1A1 and deact_NFATc_JNK1 
to model the inactivation of NFATc by CSNK1A1 and by JNK1 in the nucleus. To represent the initia-
tion of silencing processes after an up-regulation of the transcription of the corresponding protein, we 
introduce the places, hypo_Silen_UTRNA and hypo_Silen_MYF5.

Modeling GRNs, we are working at a more abstract level of description than in case of metabolic 
systems. The term of stoichiometry has not that meaning as in metabolic systems, where the stoichiometry 
is clearly given by knowledge of the proportions of substances taking place in the reaction. Thus, we have 
no clear definition of arc weights in GRNs. We start with arc weights equal to one. For those reactions, 
for which we know the proportions from experimental data, we alter the arc weights according to the 
experimental results. To indicate the delay of down regulation, we increase the incoming arc weight of a 
transition such that the pre-condition, i.e., the pre-place, has to carry more tokens to enable the transition 
for firing. This is the case for the transitions down_reg_UTRNA, down_reg_MYF5, down-reg_RAP2B, 
down-reg_JNK1, down-reg_CSNK1A1, and bind_NFATc_DNA_genes. In Figure 8, for example, the 
transition, down-reg_CSNK1A1, is enabled, if there are at least two tokens on place, CSNK1A1. Thus, 
the transition, down-reg_CSNK1A1, is delayed compared to the transition, up-reg_CSNK1A1.

We model those genes, whose mRNA expression we obtained experimentally, providing three places. 
One place stands for up-regulation (enhancing) and the other for down-regulation (silencing). This 
concerns the genes RAP2B, CSNK1A1, JNK1, NFATc, calcineurin, UTRNA, and MYF5. Additionally, 
we introduce a place for the gene product. In these cases, we use a special subnet, which is depicted in 
Figure 8.

Three places represent the different expression states of the CSNK1A gene, the protein itself (CSN-
K1A1), the enhanced CSNK1A1 (E+CSNK1A1), and the silenced CSNK1A1 (Si-CSNK1A1). The protein 
CSNK1A1 is produced by the transition, init_E_CSNK1A1, through up-regulation (up-reg_CSNK1A1). 
The down-regulation of CSNK1A1 takes place, if its place carries at least two tokens as indicated 
by the corresponding arc weight. This down-regulation removes CSNK1A1 through the transition, 
down-reg_CSNK1A1, and produces CSNK1A1 again. Note that the structure of the net does not avoid 
a situation, in which the two places, E+CSNK1A1 and Si-CSNK1A1, will get tokens. Except for some 
proteins expressed in developmental stages only, the regulation of most genes, including CSNK1A1, 
does not necessarily result in a complete shutdown and turning-on, respectively. For example, enhancing 
CSNK1A1 leads to an increased expression by positive transcription factors, comprising a low effect of 
negative regulators (Si-CSNK1A1) as well as the other way around.
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For calcineurin and NFATc, an equilibrium between up- and down-regulation appears, because no 
differences in the mRNA expression levels in patients compared to normal control could be detected. 
We express this by initiation, up- and down-regulation, and removal of both substances.

We also increase the arc weights to reflect experimental results in cases of protein interaction, see the 
transitions DGC_act, phos_NFATc_CSNK1A1, phos_NFATc_JNK1, phosph_RB, and phos_E2F, and to 
avoid token accumulation for the transitions, reg_p21_p53 and degrad_Calcineurin.

Models using inhibitory arcs exhibit a decreased analysis power. It is well-known that the reachabilty 
problem, i.e., the question whether a certain marking, m, is reachable from an initial marking, m0. for 
PNs with at least two inhibitor arcs is not decidable (Hack, 1976), (Esparza, 1994). To maintain the 
analysis power we model inhibition by transitions, which remove tokens from the system. For example, 
p21 inhibits the kinase CDK2, whereas the dissociation of the E2F-RB-complex is inhibited by E2F 
phosphorylated by CDK2.

analysis results

The aim of the analysis is to get insights into the dynamic system behavior by the computation of static 
and dynamic properties of the system. In this context, we are interested in the computation of general 
properties, which always hold such as invariant properties. Before playing with the model, e.g., by 
constructing different scenarios, we have to validate the model to get trust into it.

First of all, let us phrase, which questions we want to address:

1.  Which properties the net holds?
2.  Which basic pathways exist?
3.  Do these pathways reflect the main biological behavior?
4.  Is the model consistent?
5.  Can we reduce the network?
6.  Which part of the net is the most and less important one, respectively?
7.  Can we easily perform knockout experiments?

To address the first question, we use the INA-tool (“INA - The Integrated Net Analyzer,”) producing 
the output file, duchenne.ina, compare (Koch, 2008b). The results show that our PN model is

• not ordinary, i.e., the arc weight of each arc is not equal to one,
• not homogeneous, i.e., all outgoing arcs of each place have not the same arc weights,
• not pure, i.e., the net contains loops,
• not conservative, i.e., the total number of tokens does change, because there are transitions, which 

add another amount of tokens to their post-places as they consume from their pre-places,
• not statically conflict-free, i.e., there are transitions with a common pre-place such that they are in 

static conflict about the tokens on this pre-place,
• connected, i.e., for each node exists a path via undirected edges to each other node,
• not CPI, i.e., the net is not covered by P-invariants,
• CTI, i.e., the net is covered by T-invariants, and
• unbounded and not structurally bounded, i.e., there are places, which can get an infinite number 

of tokens.
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There are transitions without pre-places and transitions without post-places.• 
There is • no dead state reachable.
The net is • live.

To answer question 2, we compute the system’s invariants and assign a biological meaning to each 
T-invariant. The net exhibits 107 T-invariants, see the file, duchenne.inv, in the supplementary material 
(Koch, 2008a), where T-invariants are represented also graphically, using different colors in separate 
files. The smallest T-invariants each contain three transitions, e.g., T-invariant, Inv5, includes transitions 
init_E_Calcineurin, up-reg_Calcineurin, and degrad_Calcineurin. The T-invariants, Inv96, Inv97, Inv98, 
and Inv99, represent the four largest T-invariants, each containing 32 transitions. All four T-invariants 
start with the DGC down-stream pathway that activates up-regulated JNK1, and leads to activation of 
NFATc by dephosporylation through the RAP2B-calicneurin pathway. Then, NFATc migrates into the 
nucleus to mediate transcription of MLC2, aActin, and ANF. In the nucleus, NFATc can be phosphory-
lated. i.e., inactivated by JNK1.

The following transitions occur in more than 67% of all T-invariants, thus, they have a crucial meaning 
for the network behavior, bind_PIP2, act_IP3, bind_CAM_Ca, gen_CAM, act_Calcineurin, dephosph, 
act_PLCe, Transfactor_in_nuc, and Transfac_in_cyt.

One T-invariant, Inv55, exhibits four output transitions, but no input transition. It forms a cyclic 
pathway, describing the balance between dephosphorylation of NFATc by calcineurin, activated by the 
RAP2B downstream pathway, and phosphorylation by the kinase CSNK1A1. Consequently, NFATc is 
not able to migrate into the nucleus and to act as a transcription factor. Thus, the cell down-regulates 
subsequent gene transcription without the need of protein degradation or gene silencing. All the other 
T-invariants contain input and output transitions.

Our net model does not exhibit P-invariants, because we did not explicitly modeled substances like 
ATP, ADP, or AMP, which are always available in one form in the cell and whose amount is generally 
conserved.

To answer question 3, based on the 107 T-invariants we yield 25 MCT-sets, which consist at least 
two transitions, see Table 1. The MCT-sets are provided in file, duchenne.mct, in the supplementary 
material (Koch, 2008a).

Except M1 and M22, the other 23 MCT-sets describe connected sub-networks. The MCT-set M22 
depicted in Figure 9 consists of the transitions, phos_E2F, init_RB, and inhib_E2F_RB_phos, whereat 
init_RB is not connected to phos_E2F or inhib_E2F_RB_phos, which, in turn, are connected. There is 
a branching of the pathway, represented by the T-invariants

• Inv1 = {init_CDK2,phosph_RB, phos_E2F, dephos_RB, init_compl,init_RB, inhib_E2F_RB_
phos, init_E2F},

• Inv2 = {init_CDK2, init_CDK4, phosp_RB, phos_E2F, t69.dephos_RB, init_compl, init_RB, in-
hib_E2F_RB_phos, init_E2F}, and

• Inv3= {init_CDK2, init_CDK6, phos_RB, phos_E2F, dephos_RB, init_compl, init_RB, inhib_
E2F_RB_phos, init_E2F}.

All invariants describe the process of inhibition of the E2F-RB complex via an initiation of RB. 
These T-invariants share the transitions in the MCT-set, which occur always together, and, exclusively, 
in these three T-invariants.
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After generation of RB and E2F, forming the E2FRB-complex, the pathway can emerge in different 
ways due to the fact that three different kinases are able to phosphorylate the RB protein. Inv1 describes 
the phosphorylation of RB and the retinoblastoma protein (phosph_RB) by CDK2. Inv2 models phos-
phorylation by CDK4 (phosp_RB). Inv3 includes phosphorylation of RB (phos_RB) by CDK6. Then, 
E2F_active phosphorylates E2F to form E2F_phos, and the successive pathway have all three transitions 
(phos_E2F, init_RB, inhib_E2F_RB_phos) in common. Thus, the three kinases, CDK2, CDK4, CDK6, 
responsible for phosphorylation of the same protein, are the reason for the disconnected MCT-set.

Table 1. The MCT-sets built by more than one transition. The asterisks mark the MCT-sets, M1 and M22, 
which describe disconnected sub-networks. 

MCT-set Composition Biological interpretation

M1* t0, t1, t6, t7, t8, t10, 
t30

Initiation of the Ca release out of the ER

M2 t2, t5 Ca-channel mediated Ca release depending on concentration gradient 
between ER and cytosol

M3 t3, t4 Ca release regulated by calreticulin

M4 t11, t12, t13, t14, t56, 
t57, t58

Activation of the DGC downstream pathway which activates JNK1

M5 t15, t17 Transcription of p21 by a transcription factor complex including NFATc

M6 t16, t20, t21, t22, t84 Transcription of MLC2, aActin, ANF by NFATc and other factors

M7 t18, t24, t40, t42, t85 Regulated transcription of UTRNA by NFATc and other factors

M8 t19, t25, t41, t43, t86 Regulated transcription of MYF5 by NFATc and other factors

M9 t26, t28 Down-regulation of RAP2B

M10 t27, t29 Up-regulation of RAP2B

M11 t31, t33, t34 Initiation of dystrophin followed by generation of DCG and simulation of 
DMD by DGC loss

M12 t35, t37 Down-regulation of CSNK1A1

M13 t36, t38 Up-regulation of CSNK1A1

M14 t39, t59 Inhibition of the p21 transcription by phosphorylated c-JUN

M15 t45, t47 Down-regulation of NFATc

M16 t49, t87 Up-regulation of calcineurin

M17 t50, t51 Down-regulation of calcineurin

M18 t52, t55 Up-regulation of JNK1

M19 t53, t54 Down-regulation of JNK1

M20 t63, t67 Initiation of CDK4 and phosphorylation of RB by CDK4

M21 t64, t66 Initiation of CDK6 and phosphorylation of RB by CDK6

M22* t68, t71, t75 Initiation of RB, phosphorylation of E2F by CDK2, which inhibits RB 
phosphorylation (preservation 
of E2F-RB complex)

M23 t69, t70, t76 Initiation of E2F followed by initiation of the E2F-RB complex and dephos-
phorylation of RB

M24 t72, t73 Transcription of S-phase genes

M25 t77, t78, t79 Initiation, and phosphorylation of p53 by CSNK1A1 which regulates tran-
scription of p21
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To answer question 5, MCT-sets are interpreted as building blocks, thus, leading to a network reduc-
tion. The reduced network is depicted in Figure 10. It can be used, for example, to facilitate an exhaus-
tive knockout analysis. Because the transitions in an MCT-set occur always together, it is sufficient to 
knockout only one arbitrary transition of an MCT-set.

For deepening the T-invariant’s analysis, we compute T-clusters as proposed in (Grafahrend-Belau et 
al., 2006). We used the Tanimoto coefficient as distance measure between T-invariants and the UPGMA 
algorithm for clustering with a threshold of 65%. Thus, we yield 34 T-clusters, which are listed with their 
composition of MCT-sets and transitions in the file, clusters.txt, in the supplementary material (Koch, 
2008a). Figure 11 depicts the cluster tree.

After exploration of T-invariants using MCT-sets and T-clusters, we can trust in our model that it is 
consistent and reflects the main biological behavior. The network reduction gives us an overview on 
functional building blocks (question 4 and 5).

To the last two questions we can respond by knockout analysis, which enables us to gain new insights 
into the system behavior.

Figure 9. Processes described by the disconnected MCT-set M22. The black shaded places indicate 
logical places.RB and E2F form the E2FRB-complex. Because three different kinases are able to phos-
phorylate the RB protein, the pathway can then emerge in different ways. Inv1 describes the phospho-
rylation of RB and the retinoblastoma protein (phosph_RB) by CDK2. Inv2 models phosphorylation 
by CDK4 (phosp_RB). Inv3 includes phosphorylation of RB (phos_RB) by CDK6. Then, E2F_active 
phosphorylates E2F to form E2F_phos, and the successive pathway have all three transitions (phos_E2F, 
init_RB, inhib_E2F_RB_phos) in common. Thus, the three kinases, CDK2, CDK4, CDK6, responsible 
for phosphorylation of the same protein, are the reason for the disconnected MCT-set.
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Figure 10. The reduced PN model, whereat each MCT-set is drawn as a hierarchical node. Each MCT-
set summarizes several transitions and the places in between.
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Figure 11. The clustering tree. The edges are labeled according to the distinguishing properties be-
tween T-clusters before the first branch and the common properties after the first branch. For example, 
T-cluster16 differs from T-Cluster17 in RAP2B regulation, but both clusters involve Ca release via 
calreticulin, and both, in turn, differ from T-clusters, 14 and 15, which both involve Ca release via the 
calcium channel.
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Let us first study the knockout impact defined by an MCT-set or a single transition. The impact of a 
knockout of a transition corresponds to the rate of reduction of the functional diversity of the system. It 
is determined by the percentage of the number of T-invariants affected by the knockout, assuming that 
the importance of a transition or of a set of transitions is related to the percentage of invariant destruc-
tion. In our PN model, the dephosphorylation of the transcription factor NFATc (M1), its migration into 
the nucleus (Transfactor_in_nuc), and the transport back to the cytosol (Transfactor_in_cyt), exhibit 
the largest impact, compare Table 2.

To study dependencies of the functional entities to each other, we use the Mauritius map represen-
tation. The entire Mauritius map is provided in the file, pn2_0803_fullb.pdf, supplementary material 
(Koch, 2008a).

To illustrate an example in more detail we want to restrict to the dominant part of the Mauritius map, 
where all edges of the tree with a relative knockout impact below 20% are dropped. Figure 12 depicts 
the corresponding Mauritius map.

The dominant part of the Mauritius map describes the interrelations of the molecular processes con-
tributing to the dephosphorylation of the transcription factor NFATc. We can see that the right edge of 
the root exhibits the most important activity, i.e., the molecular processes of the MCT-set, M1, covering 
the transitions act_PLCe.t30.M1, bind_PIP2.t0.M1, act_IP3.t1.M1, bind_CAM_Ca.t6.M1, gen_CAM.
t7.M1, act_Calcineurin.t8.M1, and dephosph.t10.M1, compare also Table 1. The central role of M1 cor-

Table 2. The most important activities according to their knockout impact. The impact of a knockout 
is measured by the percentage of the number of T-invariants affected by it. Activities with a knockout 
impact below 20% are not listed. 

MCT-set/transition Activity Knockout impact

M1 Dephosphorylation of NFATc 78%

t61 NFATc migrates into nucleus 73%

t83 Transportation of NFATc back to cytosol 67%

t81 Deactivation of NFATc by CSNK1A1 45%

M2 Ca release mediated by Ca-channel 39%

M3 Ca release regulated by calreticulin 39%

M9 Down-regulation of RAP2B 39%

M10 Up-regulation of RAP2B 39%

t32 Removal of dystrophin 37%

t52 Removal of silenced calcineurin 37%

t55 Initiation of enhancer of JNK1 37%

M4 Activation of the DGC pathway 36%

M5 Transcription of p21 36%

M12 Down-regulation of CSNK1A1 29%

M13 Up-regulation of CSNK1A1 29%

M15 Down-regulation of NFATc 29%

t46 Up-regulation of NFATc 28%

t82 Deactivation of NFATc by JNK1 22%
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responds to the key role of the dephosphorylation, i.e., activation of NFATc (dephosph.t10.M1). Dephos-
phorylation of NFATc relies on the activation of PLCe by RAP2B (act_PLCe.t30.M1), the generation 
of calmodulin (gen_CAM.t7.M1), the binding of calcium to calmodulin (bind_CAM_Ca.t6.M1), and the 
activation of calcineurin by calmodulin (act_Calcineurin.t8.M1). All these activities are indispensable 
to the dephosphorylation of NFATc, whereas alternatives exist for other processes of calcium release 
from the endoplasmatic reticulum (ER).

The transitions Transfactor_in_nuc.t61, describing the migration of NFATc into the nucleus, and 
Transfactor_in_cyt.t83, describing the transport of NFATc back to the cytosol, represent the labels of 
the next right edge in the Mauritius map. They are the most important transitions for the functional part 
of the model, which depends on dephosphorylation of NFATc. In this context, both transitions together 
act as an MCT-set, having, therefore, identical knockout effects. The right edge denotes the deactivation 
of NFATc by CSNK1A1 (deact_NFATc_CSNK1A1.t81), which is a precondition for the transportation 
of NFATc back to the cytosol.

The left edge of deact_NFATc_CSNK1A1.t81 is labeled by the molecular processes indispensable 
for the activation of JNK1 via the DGC downstream pathway, because the phosphorylation of NFATc is 
mediated either by CSNK1A1 or, via the DGC downstream pathway, by JNK1. Note that these processes 
only build an MCT-set in the context of the phosphorylation of NFATc, but may contribute in different 
ways to other activity groups of the net.

Let us now follow the child nodes of the activity of CSNK1A1 to phosphorylate, i.e., inactivate 
NFATc (deact_NFATc_CSNK1A1.t81). Deactivated NFATc cannot enter the nucleus, and would accu-
mulate in the cytosol. The high level of phosphorylated NFATc in the cytosol can be compensated by an 
advanced activity of calcineurin to dephosphorylate NFATc. The activation of calcineurin is mediated 
by the calcium regulated calmodulin. The necessary calcium is stored in the ER.

The molecular processes of the release of calcium from the ER into the cytosol, initiated by the 
concentration gradient between ER and cytosol (M2), or by regulated calreticulin (M3), are the labels of 
the following right and left edges, respectively. Both, M2 and M3, represent alternative ways to provide 
free calcium for binding to calmodulin.

Through extensive PN analyses we found that the RAP2B–calcineurin pathway turned out to be one 
of the most relevant parts for the net behavior. A knockout in that arm would lead to a malfunction of 
78% of the whole PN. The inhibition of calcineurin by cyclosporine A and FK506 causes profound bone 
loss in animal models suggesting a role of calcineurin in skeletal remodeling (Sun, 2005). Therefore, 
particularly for calcineurin, the phosphatase of our key component, NFATc, we conclude that an influ-
ence on calcineurin would have a big impact on NFATc mediated transcription, more precisely, on the 
reduction of p21 transcription. Latter can advance the increase of myoblast proliferation. This led in turn 
to experiments with chemical compounds such as cyclosporine A and okadaic acid, affecting calcineurin 
and phosphatases in general, respectively.

SuMMary & concluSion

This chapter aims at explaining the application of PN theory to model and analyze GRNs. To acquaint 
the reader with PNs, we give an introduction into basic definitions of P/T nets and their structural and 
dynamic properties using small biochemical examples. We explain which properties can be used to 
validate and investigate the system behavior.
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Figure 12. The dominant part of the Mauritius map, i.e., only edges with a relative knockout impact 
above 20% are considered. The name of a transition is concatenated with its transition number and 
MCT-set.
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The analysis is focused on exploring T-invariants, which decompose the net into a complete set of basic 
pathways. T-invariants describe always connected sub-networks with a special biological meaning.

For large and complex networks, which usually exhibit a large number of T-invariants, a further 
decomposition is possible by the concepts of MCT-sets and T-clusters. MCT-sets give disjoint sub-
networks that can be disconnected, whereas T-invariants and T-clusters can overlap. Both concepts result 
in biologically meaningful functional modules and can be used for model validation.

For knockout analysis, we introduce the use of Mauritius map, which represent dependencies of 
transitions and MCT-sets in T-invariants, and give a useful visualization based on binary trees.

In contrast to other publications on modeling GRNs using PNs, we explore a much larger system of 
processes concerning gene regulation in DMD, which is mainly based on own experimental data. We 
explain the meaning of system’s invariants and the results of their extended analysis in the biological 
context. Consequently, the PN and, in particular, its Mauritius map allow and, even more, simplify the 
search for candidate genes used in siRNA or vector-DNA experiments, additionally. Both techniques 
are specific for one gene, which makes it reasonable to have a tool for a selection of those candidate 
genes, which probably have the greatest impact on myoblasts of DMD patients. Using human primary 
myoblasts, an increase as well as a knockout of several proteins of the net is thought for validation of the 
network itself and its analysis results followed by examinations on mRNA and protein level to complete 
modeling of expression regulation.

A first great, often underestimated, advantage in using PNs is the intuitive graphical visualization 
allowing for hierarchical modeling. This point is in particular useful in the communication between 
computer scientists or mathematicians and biologist or medical scientists. The second great advantage 
is the variety of different analysis techniques to explore the net behavior based on structural as well as 
on dynamic properties.

The main advantage of PN modeling is the ability to model on the one hand at different description 
levels, and on the other hand to combine these description levels into one model. Discrete PNs can yield 
information about system’s consistency and system behavior without any knowledge of kinetic data. In 
particular for GRNs, where often kinetic data are missed, discrete modeling is the only way to get some 
insights into system behavior.

Quantitative modeling using PNs, usually based on ODEs, provide at the moment no significant 
advantage compared to software packages, well-established in systems biology. These packages are 
purpose-built for biological applications such that they often provide interfaces to SBML (Hucka, 2003), 
links to special pathway, enzyme, sequence and structure data bases, and also to literature data bases.

Hybrid PNs provide a powerful possibility to combine modeling at discrete and continuous level, 
especially for those cases with incomplete kinetic data. Software tools as GON (Nagasaki, 2003), (Doi, 
2003) and its commercial version Cell Illustrator (Poland, 2008) have been applied to simulate many 
different biochemical systems, providing a special visualization mode for analyzing and simulating 
GRNs.

A disadvantage and, thus, also a challenge is the lack of PN tools designed particularly for biological 
applications. In biology, there are many well-established terms and representations that can be translated 
to PNs. Because of the many exceptions in biology, a frequently changing knowledge, many incomplete 
data and a huge amount of data, biochemical models of interest are very complex and large. There are 
still limitations in exploring large biochemical systems, in particular for gene expression data of some 
thousands of genes.
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ferent abstraction levels
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ogy.  Her current research project is the modelling and simulation of  chemical kinetics on the Plasma 
Membrane of a cell using grid computing.  She has over 20 scientific publications.

Mr. Guanrao Chen was born in Chengdu, China. He received his B.E. in engineering mechanics from 
Chongqing University, China in 1997. Fascinated with computer technology, he switched his academic 
interest and obtained his M.E. in computer engineering from Sichuan University, China in 2000. His 
specialty then was image processing, especially with medical images. To pursue advanced education, 
he came to the United States and finished his Ph.D. of computer science in the University of Illinois at 
Chicago in 2008. His research is mainly on bioinformatics with the topics focused on identification and 
prediction of biological networks. He has several papers published on journals and in conferences such 
as BMC Bioinformatics and EMBS.

Luonan Chen is a Professor at Department of Electrical Engineering and Electronics, Osaka Sangyo 
University, and is also with ERATO Aihara Complexity Modeling Project of JST, Institute of Industrial 
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Science of The University of Tokyo, Japan, and Institute of Systems Biology, Shanghai University, China. 
He received his Bachelor degree from Department of Electrical Engineering, Huazhong University of 
Science and Technology (Wuhan, China) in 1984, He received his Master degree (1988) and Ph.D. degree 
(1991) from Department of Electrical and Communication Engineering, Tohoku University (Sendai, 
Japan). He is IEEE Senior member and the member of IEE Japan. His current interests are in systems 
biology and bioinformatics.

Dr Madhu Chetty has been working at Monash University, Australia for over thirteen years. His 
main research interests include but not limited to the application of Computational Intelligence (CI) 
techniques such as Neural Network, Genetic Algorithm, Bayesian Network, Fuzzy system etc to problems 
from bioinformatics. He has supervised number of students for their doctoral work in bioinformatics and 
has number of publications in journals and international conferences. He is also recipient of number of 
grants to support his research. He is the senior member of IEEE and has also served as vice chair of the 
IEEE technical committee on bioinformatics and bioengineering. Dr Chetty was the General Chair of 
the recently concluded PRIB’08 (Pattern Recognition in Bioinformatics) conference at Melbourne and 
is currently serving as associate editor of the Elsevier’s Neurocomputing journal and is on the editorial 
board of few journals in bioinformatics.

Tianjiao Chu is an assistant professor at University of Pittsburgh School of Medicine. In 2003 he 
got his PhD degree in logic, computation, and methodology from Carnegie Mellon University. His main 
research focus is in the field of bioinformatics. He is also interested in causal discovery and its applica-
tions. He has published papers on topics including machine learning, bioinformatics, and genetics.

Adriana Climescu-Haulica received a Ph.D. in mathematics from Ecole Polytechnique Fédérale 
de Lausanne in 1999 and a M.S. in computer science from the University of Iasi, Romania in 1990. As 
a research scientist with Communication Research Centre in Ottawa  she worked on stochastic calcu-
lus  applied to random signal detection.  During her lecturer appointment  with the Institut National 
Polytechnique de Grenoble she begun her research in computational biology. She was a scientist with 
Laboratoire Information Génomique et Stucturale - Conseil National de la Recherche Scientifique and 
Laboratoire Biologie-Informatique-Mathématiques, Commisariat Energie Atomique, France.  Her 
research interests include system biology, probabilistic learning, and statistical data mining. Her work 
addressed the mathematical modelling of transcriptional regulatory networks, biomarkers discovery, 
and the study of noncodingRNAs. She is currently the research lead of the Computational Biomedicine 
Investigation Project, in partnership with the Laboratoire Techniques de l´Ingénierie Médicale et de la 
Complexité-Informatique-Mathématiques Appliquées de Grenoble.

Ernesto Costa is Full Professor at the Department of Informatics Engineering of the University of 
Coimbra, where he concluded its B.Sc. in 1976. He received a 3rd Cycle Thesis in Computing Science 
from the University Pierre et Marie Curie (Paris, France) in 1981 and got a Ph.D. in Electronic Engi-
neering (area of Computing Science) from the University of Coimbra (Portugal) in 1985. His current 
research interests are in the areas of Evolutionary Computation, Complex Systems, and Computational 
Biology. He was the founder and Head of the Evolutionary and Complex Systems Group of the Centre 
for Informatics and Systems of the University of Coimbra. He participated in several projects, orga-
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nized several international scientific events and had published over 150 papers in books, journals and 
proceedings of conferences. He was the recipient of three international prizes.

Yang Dai received Ph.D degree in Management Science and Engineering from University of Tsukuba, 
Japan, in 1991. From 1991 to 1997 she was a research associate, an assistant professor at the Department 
of Management Science of Kobe University of Commerce. From 1997 -2001 she was an assistant pro-
fessor of Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan. 
Since 2001 she is on faculty of Department of Bioengineering, the University of Illinois at Chicago. 
Her research concerns the development of efficient algorithms for discrete and continuous optimization 
problems arising in the fields of computer science, engineering, and biology. Professor Dai recently has 
focused on bioinformatics problems related to functional genomics such as the analyses of microar-
ray gene expression and pathways, prediction of protein-protein interactions, immunoinformatics, and 
genome-wide association study of complex diseases. Professor Dai has published more than 60 peer 
reviewed papers in various journals and conferences proceedings.  

Christian Damasco is a Ph.D. student at the Università di Torino from January 2008. He is follow-
ing a Ph.D. course in Molecular Biotechnology and their main projects are focused on bioinformatic 
approaches to explore genes coexpression in Drosophila Melanogaster and mammals. He graduated in 
July 2006 in Molecular Biotechnology at the Università di Torino with a research thesis on bioinformatics 
methods based on genes coexpression analysis to discovery new mitotic genes. From January 2007, he 
collaborates as teaching assistant for the degree course in Biotechnology at the University of Turin and 
for the master’s degree course in Bioinformatics promoted by the Biotechnology Foundation of Turin.

David Danks is an Associate Professor of Philosophy and Psychology at Carnegie Mellon Univer-
sity, as well as a Research Scientist at the Institute for Human & Machine Cognition. He received a 
Ph.D. in philosophy from the University of California, San Diego in 2001, and came to CMU in 2003. 
Dr. Danks’s principal research interests are in computational cognitive science and machine learning, 
with particular interests in causal learning and reasoning, concept learning, and categorization. He has 
published in journals in computer science, psychology, and philosophy.

Christian Darabos graduated in 2004 from the University of Lausanne, Switzerland. He obtained 
a Master’s Degree in Computer Science, and specialized in bio-inspired computation and optimization 
methods, such as Genetic Algorithm and Genetic Programming. After a brief experience in the indus-
try, he returned to the University of Lausanne to undertake a Ph.D. in collaboration with the Molecular 
Biotechnology Center of the University of Turin, Italy. He is currently in the final year of the 5 year joint 
doctoral program between the Information Systems Department, under the supervision of Prof. Marco 
Tomassini in Lausanne, and Prof. Ferdinando di Cunto in Turin. He is also employed as a teaching and 
research assistant. He focuses his efforts in Complex Systems, particularly the dynamics of Biological 
Complex System. He is expected to graduate later in 2009.

Ana Teresa Freitas is an Assistant Professor at the Department of Electrical and Computer Engi-
neering of Instituto Superior Técnico. She is also a senior researcher at INESC-ID in the Knowledge 
Discovery and Bioinformatics group (KDBIO). She got the B.S. and Ms.C. degree in Electrical and 
Computer Engineer in 1990 and 1994, respectively, from IST, and a PhD in the area of Computer Aided 
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Design with applications to dynamic systems modeling in 2002. She has co-authored more than 30 pa-
pers in journals and international conferences in the areas of computational biology, bioinformatics and 
computer aided design. Her research interests are now centered in the areas of computational biology 
and bioinformatics, data mining, algorithms and complexity.

Dr. Alberto de la Fuente obtained his PhD degree at the Free University Amsterdam, while carrying 
out his research at the Virginia Bioinformatics Institute (VBI) with the main focus on Gene Regulatory 
Network inference. After graduating he stayed at VBI for a Post Doc position focusing on the integra-
tion of statistical genetics with network inference approaches. He currently is a Senior Researcher at 
CRS4 Bioinformatica in Pula, Sardinia, Italy. His main interests are reverse-engineering bio-molecular 
networks, studying their topology and dynamics, and to investigate these networks in the context of 
different ‘omics’ data sources. The overall goal of his work is to contribute to our understanding of 
complex diseases through the identification and analysis of bio-molecular networks.

Mario Giacobini has received a PhD in Computer Science from the University of Lausanne (Switzer-
land) and the University of Milano (Italy), with a work on Evolutionary Algorithms and Artificial Life. 
He is now Researcher at the Faculty of Veterinary Medicine of the University of Torino, pursuing his 
researches at the Department of Animal Production, Epidemiology and Ecology, and at the Molecular 
Biotechnology Center. His main research interests range from Computational Biology to Artificial Life, 
and from Evolutionary Game Theory to Computational Epidemiology. In particular, he is interested in 
how the communication topology of the particles that interact in a system influence its dynamics.

Dr. John Grefenstette is a Professor of Bioinformatics and Computational Biology at George Mason 
University. He obtained his B.S. in Mathematics from Carnegie Mellon University and his M.S. and 
Ph.D. in Computer Science from the University of Pittsburgh.  He previously served as Head of the 
Machine Learning at the Naval Research Laboratory in Washington, DC.  He also served as Chair of 
the Bioinformatics and Computational Biology Program at George Mason. Dr. Grefenstette serves on 
the editorial board for the journal Adaptive Behavior and has been Associate Editor for the journals 
Evolutionary Computation and Machine Learning. His research interests include machine learning, 
evolutionary algorithms, computational models of biological networks, and bioinformatics.

Clark Glymour received Bachelor’s degrees in Chemistry and Philosophy from the University of 
New Mexico, and a Ph.D. in History and Philosophy of Science from Indiana University in 1969. He 
has been a Guggenheim Fellow, a Fellow of the Center for the Advanced Study in the Behavioral Sci-
ences, a Phi Beta Kappa Romanelli Fellow, and is a Fellow the Statistics Section of the American As-
sociation for the Advancement of Science. His books include Theory and Evidence (Princeton, 1980); 
Foundations of Space-Time Physics (Minnesota, 1981); Examining Holistic Medicine (Prometheus, 
1983); Discovering Causal Structure (Academic, 1987); Causation, Prediction and Search (Springer, 
1993; MIT, 2001); Thinking Things Through (MIT, 1997); Android Epistemology (MIT, 2001); and 
The Mind’s Arrows (MIT, 2003).

Ângela Gonçalves concluded, in 2007, a M.Sc. in Informatics Engineering at the University of 
Coimbra, Portugal, with the thesis “A Computational Model for Genetic Regulatory Networks” under 
the supervision of Professor Ernesto Costa. Also in the University of Coimbra she was tutor of Theory 
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of Computation, Artificial Intelligence and Programming classes. From 2007 to 2008 she was a Trainee 
at the European Space Agency’s Centre for Earth Observation in Rome where she worked in the de-
velopment of software applications for the visualization and processing of earth observation data and 
in service chain modelling. She is, since 2008, a Ph.D. student at the University of Cambridge and the 
European Bioinformatics Institute.

Mika Gustafsson received a M.Sc. in mathematics from Stockholm University in 2003 and a
M.Sc. in physics from Linköping University, Sweden,  in the same year. Now he works on a Ph.D. 

dissertation in applied mathematical physics at Linköping Institute of Technology, focusing mainly on 
inference and analysis of networks.

Dr. Hoeschele obtained her PhD at Hohenheim University, Stuttgart, Germany, followed by postdoc-
toral work at Iowa State University and at the University of Illinois at Champaign-Urbana, USA. She is 
a Professor of Statistics at the Virginia Bioinformatics Institute and in the Department of Statistics at 
Virginia Tech, Blacksburg (VA), as well as an Adjunct Professor at the Wake Forest University Medi-
cal School in Winston-Salem (NC), USA. Dr. Hoeschele is a statistical geneticist with current main 
research interests in highly multivariate, Bayesian parametric and nonparametric, multiple quantitative 
trait loci linkage and association mapping, in causal network inference from systems genetics experi-
ments, and in basic statistical analyses of ‘omics’ data. The overall goal of her work is to contribute to 
our understanding of the genetic basis of complex diseases.

Michael Hörnquist is an associate professor of theoretical physics at Linköping University, Sweden. 
He received a Ph.D. from Linköping Institute of Technology in 1999. His research comprises various 
aspects of theoretical biological physics, such as computational systems biology and DNA dynamics.

Dr. Marc-Thorsten Hütt studied physics in Göttingen and Paris. He received is Ph.D. in 1997 
from Göttingen University. After research stays in Hamburg, Warsaw, Novosibirsk and Helsinki he 
joined Darmstadt University of Technology as a postdoc (1998) and later as an Assistant Professor of 
Theoretical Biology and Bioinformatics (2002). Since 2006 he is Professor of Computational Systems 
Biology at Jacobs University in Bremen, Germany. From 2000 to 2005 he was a member of Die Junge 
Akademie (a joint institution of Berlin-Brandenburger Akademie der Wissenschaften and Deutsche 
Akademie der Naturforscher Leopoldina). His research interests include spatiotemporal dynamics and 
pattern formation phenomena in biology, network dynamics and properties of biological networks, as 
well as the theory of self-organization and its applications to biology. His books (“Datenanalyse in der 
Biologie”, Springer 2001 and, together with Manuel Dehnert, “Methoden der Bioinformatik”, Springer 
2006) provide bridges between theory and experiment in an attempt to understand biological systems 
on many different scales.

Ivan Ivanov received BS and MS degrees in Mathematics from the Department of Mathematics, 
Sofia University, Bulgaria, and PhD in Mathematics at University of South Florida. He did postdoctoral 
work in Mathematics at Syracuse University and Texas A&M University, and was a postdoctoral trainee 
in the Training Program in Bioinformatics, Texas A&M University. He has been with the Department 
of Veterinary Physiology and Pharmacology, Texas A&M University since 2006, where he is currently 
an Assistant Professor. He also holds a joint appointment at the Department of Computer and Electrical 



  695

About the Contributors

Engineering, Texas A&M University and collaborates actively with the members of Genomic Signal 
Processing laboratory, Texas A&M University. For the past five years his research has been primarily 
in the field of Genomic Signal Processing with an emphasis on mathematical modeling of genomic 
regulatory networks.

Yaochu Jin received the Ph.D. degree in Automatic Control from Zhejiang University, China in 
1995 and the Dr.-Ing. degree in Neuroinformatics from Ruhr-University Bochum, Germany in 2001. 
Presently, he is a Principal Scientist at the Honda Research Institute Europe, Offenbach, and Scientific 
Coordinator, CoR-Lab Graduate School, Bielefeld University, Bielefeld. His research interests include 
artificial life, systems biology, and computational intelligence. Dr. Jin currently serve as an Associate 
Editor of the IEEE Computational Intelligence Magazine, IEEE Transactions on Neural Networks, 
and the IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews. He 
has been a Program (Co)-Chair and an invited Plenary Speaker of several international confereces and 
symposiums. He is a Senior Memeber of IEEE.

Dr. Viktor Jirsa earned a Ph.D. degree in Theoretical Physics from the University of Stuttgart. He is 
currently Director of Research at the Centre National de la Recherche Scientifique in Marseille, France, 
and  Associate Professor at Florida Atlantic University in the Center for Complex Systems and Brain 
Sciences and the Department of Physics. His research focusses on the understanding of the mechanisms 
underlying the emargence of low-dimensional (often cognitive) behavior from high-dimensional network 
dynamics.

Trupti Joshi is a Research Associate and Lab Manager in the Digital Biology Laboratory, Com-
puter Science Department at the University of Missouri-Columbia. She earned an MS Degree with 
computational biology and bioinformatics major from the University of Tennessee-Oak Ridge National 
Laboratory, Graduate School of Genome Science and Technology. Her research interests are in the areas 
of data mining, analysis of high-throughput biological data for function and biological pathway predic-
tion, regulatory networks identification, SNP discovery using new generation sequencing technologies 
including 454 and Illumina.

Lars Kaderali received a PhD in Computer Science from the University of Cologne. He worked 
as postdoc in the department of Theoretical Bioinformatics at the German Cancer Research Center 
in Heidelberg, and is now department head in Computational Systems Biology at the University of 
Heidelberg. His research focuses on the  application of machine learning and statistical approaches 
in Bioinformatics and Systems Biology, on the reconstruction of signal transduction and gene regula-
tory networks from high-throughput experimental data, and on mathematical modeling of virus-host 
interactions. Dr. Kaderali has published over a dozen original research papers, one book and several 
contributed book-chapters. He is member of the excellence cluster cellular networks at the University 
of Heidelberg, and faculty member of the Hartmut-Hoffmann-Berling International Graduate School 
of Molecular and Cellular Biology.

Stuart A. Kauffman, is a professor at the University of Calgary with a shared appointment between 
biological sciences and physics and astronomy. He is also the leader of the Institute for Biocomplexity 
and Informatics (IBI) which conducts leading-edge interdisciplinary research in systems biology. Dr. 
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Kauffman is also an emeritus professor of biochemistry at the University of Pennsylvania, a MacArthur 
Fellow and an external professor at the Santa Fe Institute. Originally a medical doctor, Dr. Kauffman’s 
primary work has been as a theoretical biologist studying the origin of life and molecular organization. 
Thirty-five years ago, he developed the Kauffman models, which are random networks exhibiting a kind 
of self-organization that he terms “order for free”. Dr. Kauffman is the author of The Origins of Order, 
At Home in the Universe: The Search for the Laws of Self-Organization, Investigations and Reinventing 
the Sacred: A New View of Science, Reason, and Religion.

Seungchan Kim, PhD, was trained in Math and Electrical Engineering at Texas A&M University, 
and in Computational Biology at the Cancer Genetics branch at NIH. As a founding member of the 
Translational Genomics Research Institute (http://www.tgen.org), he is jointly appointed as an Assistant 
Professor in Computer Science and Engineering at Arizona State University, which uniquely positions Dr. 
Kim to collaborate with leading computer and biomedical scientists. His research focuses on mathemati-
cal modeling and inference of gene regulatory networks.  In his previous works, Dr. Kim has developed 
several discrete-valued and continuous-valued mathematical models for gene regulatory networks, in-
cluding Probabilistic Boolean networks (PBNs) that allow stochasticity in Boolean networks. Recently, 
he is studying contextual specificity of genomic regulation, especially in cancer development.

Ina Koch studied theoretical chemistry at University of Leipzig with specialization in quantum 
chemistry. After study she worked on protein structure analysis and prediction at Central Institute for 
Cybernetics and Information Processes at Academy of Sciences. Ina Koch received her Dr. rer. nat. (PhD) 
in computer science. The PhD thesis considered the development of a fast algorithm for protein structure 
alignment. Since about ten years Ina Koch is interested in systems biology, in particular in Petri net 
modeling techniques applied to biochemical systems. She has experience in modeling metabolic systems, 
signal transduction networks, and gene regulatory networks. She occupied a temporary bioinformatics 
professorship at University of Jena and is now a professor for bioinformatics at Technical University of 
Applied Sciences Berlin doing her research at the Max Planck Institute for Molecular Genetics Berlin. 
Her research interest is method development for bioinformatics and computational systems biology.

Yasuaki Kuroe received his Ph.D. in industrial science from Kobe University, Kobe, Japan in 1982. 
In the same year he joined the faculty of Department of Electrical Engineering, Kobe University as 
a Research Associate. In 1991, he moved to the Department of Electronics and Information Science, 
Kyoto Institute of Technology as an Associate Professor. He is currently a Professor at the Department 
of Information Science, Kyoto Institute of Technology, Kyoto, Japan.  In 1996, he was a visiting Re-
search Scientist at the Massachusetts Institute of Technology. His research interests are in the areas of 
neurocomputing and computational intelligence, control theory and its application, and computer-aided 
analysis and design.

Hiroyuki Kuwahara received the B.S. and Ph.D. degrees in Computer Science from the University of 
Utah, Salt Lake City, UT, U.S.A. in 2001 and 2008, respectively.  He currently holds a junior researcher 
position at The Microsoft Research - University of Trento Centre for Computational and Systems Bi-
ology, Trento, Italy.  His research interests include development of computational methodologies to 
analyze dynamics of biochemical networks and computational analysis of systems-level properties in 
biochemical networks to offer new insights.
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Mr. Peter Larsen received his B.S. degree in Biological Sciences from Purdue University in 1993 
and his B.S. in Bioengineering from University of Illinois at Chicago.  Mr. Larsen has nearly fifteen 
years biotechnology research experience from Chicago area biotechnology companies and academic 
laboratories and has worked both at the bench and in computational analysis.  His research background 
includes engineering thermostable proteins for industrial purposes, metabolic engineering of antibiotic-
producing bacteria, and gene expression and aCGH microarray analysis.  His current research interests 
are in making use of the many available large databases of biological facts in the prediction of biologi-
cally relevant interaction networks.  He has a number of scientific publications and a patent.

Dmitriy Laschov was born in Russia in 1973. He received his B.Sc. degree in Electrical Engineer-
ing (EE) from the East Ukraine National University, in 1999, and his M.Sc. in EE from the School of 
Electrical Engineering –Systems, Tel-Aviv University, in 2008. He is currently employed as a software 
engineer in RAD Data Communications, Israel.

André Leier is a postdoctoral research fellow in the Department of Biosystems Science and Engineer-
ing, Swiss Federal Institute of Technology Zurich, previously at the Advanced Computational Model-
ling Centre, University of Queensland, Australia. He received his PhD in Computer Science from the 
University of Dortmund, Germany. His research interests include Computational and Systems Biology, 
Synthetic Biology, and Bioengineering, in particular, stochastic, spatio-temporal multi-scale modeling 
of cell signaling and genetic regulation and the role of delays in cellular processes.

Dr. Larry S. Liebovitch earned a B.S. in Physics from the City University of New York and a Ph.D. 
in Astronomy from Harvard University.  He was an Assistant Professor at Columbia University, is cur-
rently a Professor at Florida Atlantic University in the Center for Complex Systems and Brain Science, 
Center for Molecular Biology and Biotechnology, Department of Psychology, and the Associate Dean for 
Graduate Studies and Programs in the Charles E. Schmidt College of Science.  He uses fractals, chaos, 
networks, and other nonlinear methods to study molecular, cellular, physiological, and psychological 
systems which have provided insights into the structure and motion of ion channel proteins in the cell 
membrane, the timing of heart attacks, the spread of electronic and biological infections, the spatial 
pattern of artifacts found in archeological sites, the network of gene regulation, and the dynamics of 
conflicts between people.

Dr. Bing Liu obtained her PhD degree in Statistics under the instruction of Dr. Ina Hoeschele at the 
Virginia Bioinformatics Institute and the Department of Statistics at Virginia Tech, Blacksburg (VA). 
Dr. Liu’s PhD research was mainly focused on causal gene network inference via structural equation 
modeling. After graduation she joined the Monsanto Co, the world’s largest seed company. She is a 
statistical geneticist working for Monsanto’s global molecular breeding and crop discovery programs. 
The overall goal of her research is to contribute to Monsanto’s “sustainable yield initiative” – doubling 
yields in corn, soybeans and cotton by the year 2030, conserving more resources by decreasing inputs 
by one third per unit of output and improving farmers’ lives.

Michael Margaliot received the B.Sc. (cum laude) and M.Sc. degrees in Electrical Engineering from 
the Technion – Israel Institute of Technology – in 1992 and 1995, respectively, and the Ph.D. degree 
(summa cum laude) from Tel Aviv University in 1999. He was a post-doctoral fellow in the Department 



698  

About the Contributors

of Theoretical Mathematics at the Weizmann Institute of Science. In 2000, he joined the faculty of the 
School of Electrical Engineering-Systems, Tel Aviv University.  Dr. Margaliot’s research interests include 
stability analysis of differential inclusions and switched systems, optimal control, fuzzy control, compu-
tation with words, knowledge-based neurocomputing, and fuzzy modeling of biological phenomena. He 
is co-author of New Approaches to Fuzzy Modeling and Control: Design and Analysis (World Scientific, 
2000) and of Knowledge-Based Neurocomputing: A Fuzzy Logic Approach, (Springer-Verlag, 2009).

Tatiana T. Marquez-Lago studied her undergraduate degrees in Mexico city (UNAM, UP) later 
on obtaining her MSc and PhD in Mathematics from Simon Fraser University and the University of 
New Mexico, respectively. As a postdoctoral fellow, she has performed research for the University of 
Queensland, Australia and, as of today, for the Swiss Federal Institute of Technology, Zurich. Her re-
search mainly focuses on mathematical and computational techniques for fast and accurate simulations 
of chemical kinetics and cell-signalling processes. She also performs active research in pure mathematics 
(Numerical Analysis, Dynamical Systems), Synthetic Biology and Archaeology.

Carsten Marr received his diploma in general physics from Technical University Munich in 2002. He 
worked on quantum information at Max-Planck-Institute for Quantum Optics in Garching, Germany, and 
at Imperial College London, UK. He earning a Ph.D. in Biology from Technische Universität Darmstadt 
in 2007 and afterwards joined Jacobs University as a postdoctoral fellow, focusing on gene regulatory 
networks. Since January 2008, he is a member of the Computational Modeling in Biology group at 
Helmholtz Zentrum München, Germany, where he works on models of gene regulation, the integration 
of non-coding RNAs into regulatory networks and the large-scale analysis of biological networks.

Kenneth L. McMillan received the B.S. degree in electrical engineering from the University of 
Illinois, Urbana, in 1984, the M.S. degree in electrical engineering from Stanford University, Stanford, 
CA, in 1986, and the Ph.D. degree in computer science from Carnegie Mellon University, Pittsburgh, 
PA, in 1992. He has been a Chip Designer, Biomedical Engineer, a Member of the Technical Staff at 
AT&T Bell Laboratories, and is currently a Research Scientist at Cadence Research Laboratories, in 
Berkeley, CA. His current research interests include computer music, formal verification, and design 
methodology.

Chris Myers received the B.S. degree in electrical engineering and Chinese  history in 1991 from 
the California Institute of Technology, Pasadena, CA, and  the M.S.E.E. and Ph.D. degrees from Stan-
ford University, Stanford, CA, in 1993 and 1995, respectively. He is a Professor in the Department of  
Electrical and Computer Engineering, University of Utah, Salt Lake City, UT.  Dr. Myers is the author 
of over 80 technical papers and the textbook  Asynchronous Circuit Design.  He is also a co-inventor on 
4 patents.  His research interests include algorithms for the analysis of real-time  concurrent systems, 
analog error control decoders, formal verification,  asynchronous circuit design, and the modeling and 
analysis of genetic  regulatory circuits.  Dr. Myers received an NSF Fellowship in 1991, an NSF CAREER 
award in 1996, and best paper awards at Async1999 and Async2007.

Yoshihiro Mori received his Ph.D. in engineering from Kyoto Institute of Technology, Kyoto, Japan 
in 2002. In 1995 he joined the faculty of Department of Electronics and Information Science, Kyoto 
Institute of Technology as a Research Associate. He is currently a Research Associate at the Department 
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of Information Science, Kyoto Institute of Technology, Kyoto, Japan. His research interests are in the 
areas of systems biology and control theory and its applications.

Arlindo L. Oliveira received the BSc and MSc degrees  in electrical and computer engineering 
from Lisbon Technical University,  and the PhD degree in electrical engineering and computer science 
from the University of California, Berkeley, in 1986, 1989 and 1994, respectively. He is currently a 
professor at Instituto Superior Técnico, Lisbon Technical University. He is also a senior researcher at 
the Knowledge Discovery and Bioinformatics (KDBIO) group of INESC-ID. His research interests 
include bioinformatics, systems biology, string processing, algorithm design, combinatorial optimiza-
tion, machine learning, logic synthesis and automata theory.

Helio Pais his MSc in Computer Science and Engineering degree from Instituto Superior Tecnico, 
Technical University of Lisbon, Portugal, in 2006. He has been a member of the Knowledge Discovery 
and Bioinformatics (KDBIO) group of INESC-ID, Lisbon, Portugal, and an intern at Cadence Research 
Laboratories, Berkeley, California, USA. He is a student of the PhD Program in Computational Biol-
ogy organised by Instituto Gulbenkian de Ciência and is currently conducting his research training at 
the University of East Anglia, Norwich, United Kingdom, within the topic ‘Computational Biology of 
microRNAs’.

Michelle D. Quirk. is a scientist at  Los Alamos National Laboratory. She holds a Ph.D. in mathematics 
and a M.S. in computational sciences from the University of Texas in Austin, and a B.S. in theoretical 
mechanics from the University of Bucharest. Her expertise spans across computational physics, image 
processing,  fuzzy logic and soft computing, systems analysis, and decision analysis under uncertainty. 
Her research interests focus  on  suited mathematical and computational paradigms  for building effective 
decision-making tools  for complex systems and hybrid networks. In particular, she addresses problems 
of gene regulatory networks aimed to devise reliable reverse engineering methods.

Nicole Radde received her PhD in Applied Mathematics from the University of Cologne and worked 
as a postdoctoral researcher at the Institute for Medical Informatics, Statistics and Epidemiology at 
the University of Leipzig thereafter. Since October 2008, she has an appointment as a Junior Professor 
‘Systems Theory in Systems Biology’ at the Institute for Systems Theory and Automatic Control at the 
University of Stuttgart. Her research focuses on quantitative dynamic modeling approaches and graph-
theoretic analysis methods for cellular regulatory networks. She is member of the excellence cluster 
‘Simulation Technology’ at the University of Stuttgart.

Ramesh Ram received the B.Tech degree in Information Technology from Anna University, Chennai, 
India, in 2005. He is currently working toward the Ph.D degree majoring in Information Technology, 
Bioinformatics and Computational Biology at Gippsland School of IT, Monash University, Churchill. 
His research interests include system biology, genetic network modelling and inference, microarray data 
analysis, Grid computing and pattern recognition.

Dr. Andre Ribeiro is a senior researcher at the Computational Systems Biology Research Group, 
at Technical University of Tampere, Finland. He graduated in Physics, at Faculty of Sciences of Lisbon 
University in 1999 and obtained the PhD in Physics at Institute Superior Tecnico, Technical University 
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of Lisbon, Portugal in 2004. From 1997-98, he was a researcher at Dept. of Optoelectronics, Institute 
of Technologies of Information INETI, Portugal. From 2004-07, he was a Post Doctoral fellow under 
the supervision of Stuart A. Kauffman, at the Institute for Biocomplexity and Informatics of the Uni-
versity of Calgary, Canada, focusing on models of Genetic Networks and inference algorithms from 
expression data. Dr. Ribeiro is a reviewer for several scientific journals and member of the Portuguese 
Physics Society and of the Canadian Society for Systems Biology. His research interests include gene 
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