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Preface

Many problems arising in biological, chemical, and medical research, which could
not be solved in the past due to their dimension and complexity, are nowadays
tackled by means of automatic elaboration. Powerful computers are indeed used
intensively for solving many problems having biological origin, thus creating the
emerging field of science called “bioinformatics.” However, the success of such ap-
proaches depends not only on brute computational strength of those computers, but
also, and often critically, on the mathematical quality of the models and of the algo-
rithms underlying those solution procedures.

Solving a problem may be seen as converting information, in such a way that
the solution of the problem (information in output) is extracted from its description
(information in input), possibly passing through a number of intermediate states.
By adopting this view, information handled when dealing with many of the above-
mentioned problems becomes, at some stage, a sequence. Nature often encodes
relevant information into sequences. Therefore, a central role in bioinformatics is
played by sequence analysis problems or by the related problems of analyzing the
effects or the behavior of some sequence.

The present volume offers a detailed overview of some of the most interesting
mathematical approaches to sequence analysis and other sequence-related problems.
Special emphasis is devoted to problems concerning the most relevant biopolymers
(proteins and genetic sequences), but the exposition is not limited to them. A con-
siderable effort has been made to render the volume comprehensible to researchers
coming from either of the two hemispheres of bioinformatics: mathematics and
computer science on one side, and biology, chemistry, and medicine on the other.

Rather than an exhaustive coverage of the topic, which would be clearly impossi-
ble to do in just one book, the volume is intended as a snapshot of the latest research
development and of the potentialities that operations research and machine learning
techniques bring in this interdisciplinary field of research. Moreover, the volume
aims at bridging the two mentioned halves of bioinformatics that are still quite dis-
joint, promoting a cross-fertilization hopefully fostering future research in the field.

Primary selection criterion for the chapters has been scientific quality and im-
portance. Additional selection criteria have been: (1) considering only approaches
having a nontrivial mathematical basis; and (2) providing up to date contents not
already largely available in other books published on similar subjects.
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Organization of the Volume

Due to the wide heterogeneity of the matter, from the point of view of both prob-
lems considered and techniques presented, it may be useful to the reader tracing the
following short sketch of the volume organization.

The first part of the volume deals with problems originating from the study
of protein sequences. Proteins and peptides are polymers made from units called
amino acids, and a basic problem is the determination of their amino acid sequence
when that is unknown. This is sometimes called analysis of the primary structure. In
Chap. 1, Bruni deals with this problem, with a focus on peptides, since proteins are
essentially polypeptide chains, and describes exact and complete approaches based
on propositional logic.

To be able to perform their biological functions, proteins fold into specific spatial
conformations. Another relevant problem is the determination of such structures,
known as the problem of protein structure analysis or prediction. In particular, the
disposition of highly regular substructures in the protein sequence, such as helices,
sheets, and strands, is called the secondary structure, while the three-dimensional
structure of a single protein molecule, and the spatial arrangement of the above-
mentioned elements of the secondary structure, is called the tertiary structure.

In Chap. 2, Di Lena et al. describe approaches to protein structure analysis based
on decomposition, with specific attention to the secondary structure prediction and
the protein contact map prediction by means of machine learning techniques. In
Chap. 3, Patrizi et al. tackle again the problem of secondary structure prediction,
performing a classification by means of nonlinear binary optimization techniques,
with the aim of detecting isoform proteins considered as markers in oncology. Sim-
ilarly, in Chap. 4, Biba et al. describe approaches to the protein folding prediction
by modeling the sequence by means of Markov logic networks, that is, networks
obtained by introducing probability in first-order logic.

The volume then gradually moves to problems originating from the study of
genetic sequences. Deoxyribonucleic acid, or DNA, is a long polymer made from
repeating units called nucleotides. It contains the genetic instructions used in the de-
velopment and functioning of all known living organisms. In Chap. 5, Ceci et al. deal
with the problem of discovering motifs, that are sequence patterns frequently ap-
pearing in DNA, RNA, or proteins, and therefore probably having specific biological
functions. They are discovered by mining association rules in the three-dimensional
space.

In Chap. 6, Mosca and Milanesi consider the problem of studying intermolecular
interactions among DNA, RNA, and proteins obtained by means of sequence anal-
ysis techniques. When viewing those interactions at a system level, the dynamics of
biochemical pathways can be simulated, and therefore better understood, by means
of mathematical models.

In Chap.7, Graga et al. deal with the problem of determining haplotype in-
formation, that is, genetic information inherited from ancestors, from genotype
information, that is, all the genetic constitution of an individual, using approaches
based on propositional logic. On related themes, in Chap. 8, Catanzaro describes the
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problem of calculating phylogenies, that is, graphs representing the evolutionary re-
lationships among species. Several optimization models for estimating them from
molecular data such as DNA and RNA under different paradigms are explained and
discussed.

In Chap.9, Salvi et al. tackle the problem of performing studies of human
genome by means of data mining techniques, known as genome-wide association
studies, for a stratified population. This means that the individuals of the population
are not uniform but carry different genetic backgrounds, and this often produces
false association results. The effects of different statistical techniques are consid-
ered to devise an efficient strategy for overcoming this problem.

The last part of the volume considers problems originating from the study of
polymers not having biological origin. Polymerization reactions can be divided into:
(1) addition polymerization, producing the so-called addition polymers (also classi-
fied as chain-growth polymers, with some exceptions), which grow one monomer
at a time, and (ii) condensation polymerization, producing the so-called conden-
sation polymers (also classified as step-growth polymers), which grow eliminating
small molecules during the synthesis. In Chap. 10, Montaudo deals with the prob-
lem of predicting the sequence distribution of addition polymers; while in Chap. 11,
Montaudo discusses the same problem for condensation polymers, using in both a
variety of mathematical techniques.

Rome, Italy Renato Bruni
March 2010
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Chapter 1
Complete and Exact Peptide Sequence Analysis
Based on Propositional Logic

Renato Bruni

Abstract Peptides are the short polymeric molecules constituting all the proteins.
They are formed by the linking of amino acids, and the determination of the amino
acid sequence of a peptide is a fundamental issue in many areas of chemistry,
medicine and biology. Nowadays, the prevalent approach to this problem consists
in using a mass spectrometry analysis. This gives information about the molecular
weight of the full peptidic molecule and of its fragments. Such information should
be used in order to find the sequence, but this constitutes, in the general case, a dif-
ficult mathematical problem. After a brief overview of the approaches proposed in
literature, and of their features and limits, the chapter describes in detail a promising
one based on propositional logic. Differently from the others, this approach can be
proved to be complete and exact.

1.1 Introduction

Peptides are short polymeric molecules formed by the linking of components called
amino acids by means of covalent bonds called peptide bonds, in order to form a
chain. Proteins are polypeptide chains; they are formed by a similar linking of amino
acids, but the chain is generally longer. There are several different conventions to
determine this distinction, see e.g. [4,32].

The determination of the sequence of amino acids forming a peptide or a pro-
tein is one of the most important and frequent issues in many areas of chemistry,
medicine and biology, as well as in several other applicative fields. In the case
of peptides, this is often called de novo sequencing, whereas in the case of pro-
tein, this is often called determination of the primary structure. However, proteins
are generally too extended for performing an accurate sequence analysis on the
whole chain in a single step. Therefore, a protein molecule is usually divided into

R. Bruni ()
Department of Computer and System Sciences, University of Roma “Sapienza”, Italy
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2 R. Bruni

its component peptides (via enzymatic digestion and subsequent fractionation with
HPLC or capillary electrophoresis, [32]), and the original analysis is converted into
a number of peptide analyses which are performed individually. It is worth noting
that this problem has a theoretical structure that is able to represent various other
problems of sequence analysis. At the very basic level, there is a set of possible
components that are individually known a chain formed by some of such compo-
nents, possibly repeated, whose sequence is not known and that cannot be inspected
directly; and the aim is to determine this sequence of components forming the chain.

Nowadays, a widely used and well-established approach to peptide sequence
analysis consists in the use of mass spectrometry [19, 20, 23, 28]. Such technique
can provide the absolute molecular weight distribution of a number of molecules
in the form of a spectrum: for each molecular weight, the amount of material hav-
ing that molecular weight produces a peak having a certain intensity. The study
of the weight pattern in the spectrum can be used for understanding the structure
of such molecules, especially when using the mass spectrometry/mass spectrome-
try methodology (also known as MS/MS, or tandem mass, [29]). This procedure
works as follows. After the first mass analysis, some molecules of the protonated
peptide under analysis, called precursor ion, are selected and collided with other
non-reactive elements. This interaction leads to the fragmentation of many of such
molecules, and the collision-generated decomposition products undergo a second
mass analysis. Therefore, such analysis provides the absolute molecular weight of
the full precursor ion, as well as those of the various ionized fragments obtained
from that precursor ion. Non-ionized fragments, on the contrary, do not appear in the
spectrum. Such experiments may be performed using several instrumental config-
urations, mainly triple quadrupole (QQQ), quadrupole time-of-flight (Q-TOF) and
ion trap devices [20].

Since the weights of the possible components are known, and rules for deter-
mining the weights of sequences of known composition are available, the MS/MS
information could be used in order to determine the unknown sequence of a peptide.
This is, however, a difficult mathematical problem, as explained in detail in Sect. 1.2.
Note that the presence of fragments constitutes the only source of information about
the inner structure of the molecule under analysis: in the absence of fragmentation,
the inner structure would be unknown. Several approaches to this problem have
been proposed, as reported in Sect. 1.3. In particular, a promising approach [5] is
based on a propositional logic modeling [12, 18, 31] of the problem, as explained
in Sects. 1.4 and 1.5. It can be shown that all and only the possible outcomes of
a sequence analysis can be obtained by finding all models of a propositional logic
formula. The off-line computation of the so-called weights database, which substan-
tially speeds-up the sequencing operations, is described in Sect. 1.6. This is obtained
by finding a correspondence between sequences and natural numbers, so that all se-
quences up to a certain molecular weight can be implicitly considered in the above
database, and explicitly computed only when needed. The procedure is illustrated
by considering the case of peptides, but may be adapted to generic polymeric com-
pounds submitted to mass spectrometry. Results on real-world problems, shown in
Sect. 1.7, demonstrate the effectiveness of this approach.
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1.2 From the Spectrum to the Sequence

The MS/MS spectrum contains our information about the structure but does not have
any direct reference to the components of the polymer, being a mere succession of
peaks corresponding to different molecular weights. The intensity of each peak is
proportional to the number of molecules having that weight in the sample under
analysis. A typical example is observable in Fig. 1.1. Further processing is then
requested.

An initial peak selection phase is needed. This is generally done by removing all
peaks below a certain intensity, since they are too noise-prone to be considered sig-
nificant, and by considering informative all other peaks. After this phase, the higher
molecular weight among informative peaks is the one of the full polymer under
analysis, whereas the others correspond to its fragments. Though fragmentation is a
stochastic process, some rules may be traced. The most abundant fragments are gen-
erally given by the cleavage of the weakest molecular bonds. Therefore, some types
of fragments, called standard fragments, are more common than others and should
more likely correspond to the peaks selected as informative in the spectrum. In the
case of peptides, for instance, there are six different types of standard fragments,
called a, b, ¢, X, y and z. Fragments appear in the spectrum when ionized by re-
taining one or more electrical charges. Unfortunately, when analyzing each of such
fragment peaks, we neither know the type of fragment that originated it (it could
be either any of the standard types or also a non-standard type) nor the number of
electric charges that this fragment retained.

Now, some analysis techniques search for specific weight patterns in the spec-
trum and check them against similar patterns available from a databases of com-
pounds [17]. However, when our compound is not in the databases (which may
very well happen) or when the it differs from the standard known form (protein
sequences, for instance, often undergo modifications), a constructive identification
is required. Constructive identification, however, is not immediate, and, more-
over, the information contained in the spectrum may be insufficient for a univocal
identification.
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Fig. 1.1 A MS/MS spectrum generated by collision-induced dissociation
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Definition 1.1. We will say that a sequence of components is compatible with a
given spectrum if every informative peak in the spectrum admits an interpretation
as a standard fragment of that sequence.

Often, however, there exists more than one sequence which is perfectly compatible
with a given spectrum. This means that the spectrum does not contain enough in-
formation to determine uniquely the sequence, and so there are more possibilities.
Consider, for instance, the case of an incomplete fragmentation: if a part of a poly-
mer never did break in the analysis, no detailed information on the inner structure
of that part can be achieved. In this case, all the possible sequences compatible with
the spectrum should be found, so as to guarantee accurate and objective charac-
ter of the analysis. Sometimes it may also happen that a spectrum contains one or
more peaks that have been selected as informative, but are instead due for instance
to noise, non-standard fragmentation or spurious components. They are therefore
not interpretable as standard fragments; hence, it may be the case that not even a se-
quence exists which is compatible with the given spectrum. In this case, the best that
can be done, informally speaking, is being compatible with as many peaks as it is
possible.

Definition 1.2. A sequence of components is v-compatible with a given spectrum
if every informative peak in the spectrum, except a number v of them, admits an
interpretation as a standard fragment of that sequence. This number of uninterpreted
peaks will be called the mismatch number v.

In order to analyze the features of the various approaches to the problem of passing
from the spectrum to the sequence, we need to define the following sets.

Definition 1.3. The resolvents of a spectrum are all the sequences that are compat-
ible with the that spectrum (but are not given: are those that should be found).

Definition 1.4. The results of a procedure are all the sequences that are given as the
outcome of the analysis procedure.

The above two sets may coincide or not, depending on the quality of the adopted
solution approach.

Definition 1.5. A solution approach is said to be complete if it guarantees finding as
results all the possible resolvents of the spectrum; incomplete when such guarantee
cannot be given, and therefore a part of the possible resolvents may be neglected.
This could mean finding, in some cases, no resolvents at all.

Definition 1.6. A solution approach is said to be exact if it guarantees that every
result given by the analysis is perfectly compatible with the given spectrum; ap-
proximate when this cannot be guaranteed, and therefore the results given are only
near-compatible, according to some nearness criterion.

A result given by an approximate procedure may just leave some informative peaks
without an interpretation as standard fragments, or may give interpretation that
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are not numerically precise. Note that this concept of approximate results is more
general and less precise than that of v-compatible solution. Nevertheless, due to the
stochastic aspects involved in the fragmentation process, these approximate results
may sometimes be probable solutions.

Completeness and exactness are clearly positive features for a solution approach.
However, complete and exact methods generally require larger computational times
than incomplete or approximate ones [17,21]. Note also that a complete and exact
procedure correctly produces no results (or only results with mismatch v > 0) when
the spectrum has no resolvents.

1.3 Different Approaches to the Problem

For that which concerns constructive peptide sequencing, known as de novo se-
quencing, some analysis procedures have been developed and implemented in a
number of software systems, e.g., DeNovoX [24], Mass Seq [25], Peaks [26] and
Spectrum Mill [27]. Each of such procedures is essentially based on one of the fol-
lowing two approaches.

The first one consists in searching the spectrum for continuous series of frag-
ments belonging to the same standard type and differing by just one amino acid,
which is therefore identified. The whole sequence can be obtained in this manner
when the spectrum contains a complete series of fragments. This, however, is of-
ten unlikely to occur. Since the fragmentation process is a stochastic one, though
peptides tend to break at the conjunction of amino acids, they usually do not break
at every conjunction of amino acids, and furthermore such cleavages may be of
any of the different types mentioned. And, if the collision energy is increased, the
peptide produces more fragments, but may also break at locations that are not the
conjunction of amino acids, producing some non-standard fragments. Hence, every
result given by the procedure is guaranteed to be a resolvent of the spectrum. On the
contrary, there could be many resolvents of the spectrum not obtained as results be-
cause of the incompleteness of the series of fragments. The above approach should
therefore be classified as heavily incomplete, though exact.

The second approach consists in iteratively generating, using Monte Carlo
methods [8], a large number of virtual sequences and evaluating the match of the
corresponding (theoretical) mass patterns with the (actual) mass pattern of the
spectrum under investigation. Therefore, sequences producing a spectrum similar
to the one under analysis can be obtained, but no completeness can be guaranteed.
The number of possible peptides is in fact very large: just for example, the possible
peptides composed of 12 amino acids, choosing them among 20 possible amino
acid types, are 20'2 & 10!, Hence, even hypothesizing of generating and checking
10° sequences per second, which for nowadays computer seems quite optimistic,
after 10% seconds of computation (almost 3 hours), only 10° sequences would have
been tried, which means a relatively small part of the possible ones (one every 10°
in the example). Therefore, only a negligible portion of the solution space would
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have been explored, and there could be many sequences producing a spectrum much
more similar to the one under analysis that have not been considered. And, even by
protracting the search or increasing the search speed, when the number of generated
sequences becomes near to the number of possible ones, no guarantee of repeating
the same sequences can be given. This would require either memorizing all the
tested ones and checking all of them after the generation of each new one, which
is clearly impossible to do in reasonable times for nowadays computer technology
[15], or generating them in some ordered manner, and not by means of Monte Carlo
methods. Finally, the similarity of spectra must be evaluated, by choosing some sim-
ilarity criterion, with the consequence that the approach becomes an approximate
one. The above described analysis techniques suffer therefore from considerable
structural limitations.

Due to its combinatorial nature, the problem has also been recently approached
by means of discrete mathematics. Specifically for the peptide sequencing problem,
there have been, on one hand, the graph theoretical construction proposed in [14],
which evolved into the dynamic programming algorithms proposed in [2, 11], and,
on the other hand, the branching-based algorithm proposed in [7], which evolved
into the propositional logic modeling proposed in [5]. The first approach has the
advantage of requiring a computational time for finding each solution which is
polynomial, hence tractable [15], when imposing some limitations to the problem,
namely no multi-charged fragments can appear in the spectrum, and only peaks cor-
responding to a set of fragment types which is “simple” [2] (e.g., only a-ions, b-ions
and y-ions) can appear in the spectrum. When overriding such limitations, polyno-
mial time cannot be guaranteed, and in any case the procedure cannot work with a
spectrum in which all types of fragments and charges may appear. The problem in
the general case is, however, NP-complete [2]. The second approach, on the other
hand, has no structural limitations regarding types of fragments and charges, and
performs a complete search. It requires, however, a heavier computational load; but
can be improved as described in the rest of the chapter.

1.4 A Mathematical View of the Fragmentation Process

When a polymer undergoes a MS/MS analysis, the occurring fragmentation process
gives an essential support to the sequencing. We now analyze in detail peptide frag-
mentation. Similar analyses may be performed of course also for other categories of
polymers. Peptides basically are single sequences of building-blocks called amino
acids. Each amino acid molecule has the following general chemical structure.

H

H,N — ¢ — COOH

R
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Table 1.1 Commonly considered amino acids

Name Abbreviations ~ Molecular weight Limitations
Glycine Gly (orG) 75.07 -

Alanine Ala (or A) 89.34 -

Serine Ser (or S) 105.10 -

Proline Pro (or P) 115.14 -

Valine Val (or V) 117.15 -
Threonine Thr (or T) 119.12 -

Cysteine Cys (orC) 121.16 -

Taurine Tau 125.15 Only C-terminal
Piroglutamic acid ~ pGlu 129.10 Only N-terminal
Leucine Leu (orLl) 131.18 -
Asparagine Asn  (orN) 132.12 -

Aspartic acid Asp (orD) 133.11 -
Glutamine Gln  (orQ) 146.15 -

Lysine Lys (orK)  146.19 -

Glutamic acid Glu (orE) 147.13 -
Methionine Met (orM) 149.22 -

Histidine His (or H) 155.16 -
Phenylalanine Phe (orF) 165.16 -

Arginine Arg  (orR) 174.21 -

Tyrosine Tyr (orY) 181.19 -

There is a large number of possible amino acids, differing in the internal chemi-
cal structure of the radical R, and, therefore, for their functional characteristics and
their molecular weights. Many of them cannot be specified in the genetic code;
hence, the most commonly considered ones generally include the 20 reported in
Table 1.1. Moreover, each amino acid may present one of the many possible modifi-
cations, such as phosphorylation, acetylation and methylation. This would produce
alterations to its standard molecular weight. Note also that the equivalent mass in-
volved in the molecular bindings leads to non-integer values for the amino acid
weights and that the very weight of each amino acid type is not a single fixed value,
but may assume different values depending on the presence of different isotopes of
the various atoms constituting the amino acid. Values reported in Table 1.1 are just
the average masses of the molecules.

An accurate and general sequencing procedure should be able to deal with the
above uncertainties, by taking as part of the problem data the information about:

e Which are the components that should be considered as possible for the current
analysis;

o Their weight values (in unified atomic mass units u, or daltons);
Possible limitations on the position they can assume within a peptide chain;
The desired numerical precision of the sequencing procedure, set on the basis of
the accuracy of the adopted mass spectrometry device;

e And any other incidentally known information.
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When performing a sequence analysis, the solution is obviously not known in ad-
vance. However, we often know which aspects of the solution can be considered as
possible for the current analysis, and which ones cannot. For instance, we may know
that a peptide under analysis contains at least a certain number of molecules of some
amino acid or does not contain another amino acid, etc. At worst, if nothing else is
known, simply every generic aspect of the solution should be considered as possible.

This may be formalized by evaluating the number n of possible compo-
nents (the amino acids) that must be considered for the current analysis, the set
N ={1,2,...,n} of the indices i corresponding to such components in increasing
weight order, the set

A ={ay,az,...,a,}, a; € Ry

of the weight values of such components (the molecular weights of the amino acids)
that must be considered for the current analysis, together with the sets

Min = {my,mo,...,my}, m; € Z
Max = {M],Mz,...,Mn}, M; >m;, M; € Z_:,_,

respectively, of the minimum and the maximum of the possible number of molecules
of each component that must be considered for the current analysis, the number d of
decimal digits that can be considered significant for the current analysis, and a value
6 € Ry of the maximum numerical error that may occur in the current analysis.
Amino acids can link to each other into a peptidic chain by connecting the aminic
group NH, of one molecule with the carboxyl group COOH of another molecule.
The free NH, extremity of the peptide is called N terminus, while the free COOH
extremity is called C terminus. Some amino acids, especially the modified ones, can
be situated only in particular positions of the sequence, i.e., only N-terminal or only
C-terminal. Since each of the peptidic bonds releases an H,O molecule, the weight
of a peptide is not simply the sum of the weights of its component amino acids.
Moreover, the weights observed in the spectrum correspond to the actual weights
only for the ionized molecules (ions) which retain one single electrical charge.
When, on the other hand, an ion retains more than one charge, the weight observed
in the spectrum is only a fraction of the actual ion weight. By considering the set

YO = {0 y3 v v €2y

of the numbers of molecules of each component (here the amino acids) contained in
the overall polymer (here the peptide), and the number ey > 1 of electrical charges
retained by the ionized peptide, the observed weight wg of the overall peptide is
given by the following equation:

Wo = ZieN (ylp(a[ — Ca)) + ¢a + coeo 15 (1.1)
€0

where ¢, and ¢ are constant values. When considering d = 3 decimal digits, ¢, is
18.015 and c¢ is 1.008.
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Example 1.1. A small peptide with sequence Leu-His-Cys-Thr-Val ionized by only
one charge, considering only d =2 decimal digits, has an observed weight of
wo = (131.18 — 18.02) + (155.16 — 18.02) 4 (121.16 — 18.02) + (119.12 — 18.02)
+(117.15—18.02) + 19.02 £ § = 572.69 + 6.

Several different types of fragments can be obtained during the fragmentation pro-
cess. In particular, there are three possible standard N-terminal ionized fragments,
called a-ion, b-ion and c-ion, and three possible standard C-terminal ones, called
x-ion, y-ion and z-ion, as illustrated in Fig. 1.2. Note that b-ions and y-ions are gen-
erally the most common.

Again, each fragment has a weight which is not simply the sum of those of its
component amino acids. By considering the number f of fragment peaks selected
in the spectrum; the set ' = {1,2,..., f} of the indices j corresponding to such
peaks in decreasing weight order; the set

W ={wiwa,...,wr}, w;j e Ry

of the weights corresponding to such peaks (so that wy remains the weight of the
overall peptide); the sets

sz{y{,yé,...,y,{}, yijeZ+ j=1...,f

of the numbers of molecules of each component contained in the fragment of weight
wj, j=1,..., f; the number #y,x of all the possible standard types of fragments
that should be considered for the current analysis; the set

T = {1s2s---7tmax}

of the indices ¢ corresponding to such types; the maximum number of electrical
charges emay that a ion may retain in the current analysis; the set

E :{]a2~~wemax}

of the numbers e of electrical charges that a ion may retain in the current analysis;
the type t; € T of the fragment of weight w;, j =1,..., f; the number e¢; € E of
electrical charges retained by the fragment of weight w;, j =1,..., f, the relation
that can be observed in the spectrum between the weight of each fragment and the
weights of its components is the following.

DieN [yij(ai —ca)] + ¢ + coej '
€j ’

w; = j=1....f (1.2)
Values ¢, and ¢ are as above, and ¢; is a constant value depending on the type ¢;
of the fragment. When considering d = 3 decimal digits, ¢; is —28.002 for a-ions,
0.000 for b-ions, 17.031 for c-ions, 44.009 for x-ions, 18.015 for y-ions and 1.992
for z-ions.
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1-st aa.  ...... k-th aa. ... g-th aa.

H,N—C C N——C—C N—-—C—COOH
R, H H O R4
a-ion: from N-terminus until z-ion: from C-terminus until
any link like the marked one any link like the marked one
b-ion: from N-terminus until y-ion: from C-terminus until
any link like the marked one any link like the marked one
c-ion: from N-terminus until x-ion: from C-terminus until
any link like the marked one any link like the marked one

Fig. 1.2 Different types of fragments obtainable from a peptide

In other words, the rules giving the weights of the six standard fragments having
only one charge are as follows:

e a-ion weights the sum of its component amino acids, each of which decreased by
18.015, plus (—28.002 + 1.008) = —26.994;

e b-ion weights the sum of its component amino acids, each of which decreased by
18.015, plus (0.000 + 1.008) = 1.008;

e c-ion weights the sum of its component amino acids, each of which decreased by
18.015, plus (17.031 + 1.008) = 18.039;

e x-ion weights the sum of its component amino acids, each of which decreased by
18.015, plus (44.009 + 1.008) = 45.017;

e y-ion weights the sum of its component amino acids, each of which decreased by
18.015, plus (18.015 4 1.008) = 19.023;

e z-ion, finally, weights the sum of its component amino acids, each of which de-
creased by 18.015, plus (1.992 + 1.008) = 3.000.

Besides, additional (non-standard) fragmentation may also occur: losses of small
neutral molecules such as water, ammonia, carbon dioxide, carbon monoxide, or
breaking of a side chain. In such cases, the weight of the fragment decreases accord-
ingly. Finally, since fragments appear in the spectrum only when they are ionized,
the fact that a fragment is observed does not mean that its complement fragment
will be observed as well.

Example 1.2. When considering the spectrum reported in Fig. 1.1 and making the
simplifying hypothesis of selecting only the peaks labelled with numbers (even if in
practice a slightly larger set of peaks should be considered), we have wo = 851.3,
f=9,and W ={764.3,651.3,627.1,538.2,496.1, 425.1,382.9, 201.0, 173.1}.
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1.5 A Logic Encoding of the Peak Interpretation Problem

Each peak of weight w; selected from the spectrum must be of one of the types
t €T and have a charge e¢; € E, but the exact type and charge is in general un-
known. In other words, each peak may have several different interpretations. If a
peak of weight w; is considered for instance an a-ion, it may be originated by a
certain amino acid sequence having a certain weight; if it is considered a b-ion, it
cannot be originated by that sequence, but by another sequence having a different
weight, and so on. Moreover, since there are rules about incompatibility of frag-
ments and electrical charges of ions, not all of the interpretations are admissible:
when interpreting one peak, the interpretations given to all other peaks must be con-
sidered. The peak interpretation problem is therefore a decision problem that should
be solved by considering all peaks at the same time.

Definition 1.7. The peak interpretation problem consists of assigning to each peak
w; selected from the spectrum, j = 1,..., f, (at least) one hypothesis about the
typet; € T and the charge e; € E of the fragment that originated w; in such a way
that all interpretations given to all peaks are coherent.

Definition 1.8. A set of interpretations for a set of peaks is coherent when all those
interpretations respect a number of logical rules formalizing our knowledge of the
problem.

Rules holding for every analysis are the incompatibility and multicharge rules,
which are given below. Other analysis-specific rules may be generated, as observed
below. Note that each peak should have at least one interpretation, but not necessar-
ily only one. A peak may in fact be originated by more than one type of fragment
incidentally having the same observed weight, even if this happens very rarely in
practice.

We formalize the peak interpretation problem by means of propositional logic.
By denoting with w; — ¢, e the fact that peak w; is interpreted as being due to a
fragment of type t € T and having an electrical charge e € E, we consider for each
interpretation of w; a propositional variable

Xjt,e € {True, False}, jeF, teT eckE

When considering for instance the above six standard types of fragments ob-
tainable from a peptide and a maximum electrical charge en.,x = 2, we have
T ={1,2,3,4,5,6} and E = {1,2}. The possible interpretations of a peak w;
are therefore 12, and this may be represented by means of the following clause
containing 12 variables, which means: peak w; is of type 1 and has
charge 1 or it is of type 2 and has charge 1 or ... or
it is of type 6 and has charge 2.

()Cj_>1,1 VXj521V:VXjs61VXj512VXjs22V-V )Cj_>6’2)
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Those clauses are called interpretation clauses. In order to get rid of the fact that
the weight of peptides and of their fragments is not simply the sum of those of their
component amino acids, we define now a different (theoretical) model of polymeric
compound, as follows.

Definition 1.9. Given a (real) single charge peptide of observed weight wy, the nor-
malized peptide associated with it is a (theoretical) polymeric compound having
weight wyg — (c; + ¢o). The possible components of such normalized peptide are
(theoretical) components having the following weights (which are those that amino
acids assume in the internal part of the peptidic chain)

A= {(a1 —cqa), (@2 —ca), ..., (an —ca)}

As a result, the weight of the normalized peptide, as well as the weights of its frag-
ments, is simply the sum of those of its components. By the above definition, the
normalization of a single charge real peptide of observed weight wg is composed
by a number of molecules of each of the components in A equal to the number of
molecules Y° = { y?, yg .., y2} of each amino acid contained in the real peptide
of observed weight wy.

Example 1.3. The normalized peptide corresponding to the real peptide of weight
572.69 of Example 1.1 has a weight of (572.69 — 19.02) = 553.67, and its compo-
nent have the following weights: (131.18 — 18.02) = 113.16, (155.16 — 18.02) =
137.14,(121.16—18.02) = 103.14, (119.12—18.02) = 101.10, (117.15—18.02) =
99.13. If such normalized peptide breaks for instance in Leu-His and Cys-Thr-
Val, such fragments, respectively, have weights: (113.16 4 137.14) = 250.30 and
(103.14 + 101.10 4 99.13) = 303.37.

We will consider for such normalized peptide the above described topological con-
cepts of N-terminus, C-terminus, peptidic bonds, etc., in their intuitive sense, as if it
was a real peptide.

When a peak receives an interpretation, an hypothesis has been done about
where the cleavage occurred in the peptide, and also about which was the chem-
ical structure of the peptide in that point. Asserting that, for a single charge peptide
of observed weight wy, peak w; is, for instance, a single charge b-ion means that
starting from the N-terminus of the normalization of that peptide, there has been a
cleavage between a CO and an NH, and that the part of such normalization going
from the N-terminus to that cleavage has weight

wj —1.008 + &

On the contrary, asserting that, for the same peptide, the same peak w; is now,
for instance, a single charge y-ion means that starting from the C-terminus of the
normalization of that peptide, there have been a cleavage between an NH and a CO
and that the part of such normalization going from the C-terminus to that cleavage
has weight w; — 19.023 & §. Therefore, the part of the same normalization going
from the N-terminus to that cleavage weights
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wo —(ca+co)—(w; —19.023) £ 6 =wp —w; £ 6

The two interpretations therefore bring to radically different hypothesis on the
structure of the normalized peptide, as illustrated by the following diagram for
wo — (ca + co) ~ 850 and w; ~ 300.

w;—1.008
K\A_’_\
N-terminus | CO| NH CO| NH C-terminus
\w—/
Wy — W;

We now consider, for the each variable x; ., with j € F, t € T, e € E, the
weight that the part of the normalized peptide going from the N terminus to the
cleavage corresponding to interpretation w; — ¢, e would assume.

Definition 1.10. An N-terminal portion of a normalized peptide is any part of that
compound going from the N-terminus to any peptidic bond between CO and NH
(a part that, if such bond was broken, would constitute a b-ion). The hypothe-
sized weight of such N-terminal portion is the one given by the following function

b(j,t,e)

b(j.t.e) = (wj — ¢ —coeje; for a-ions, b-ions, c-ions
I (wo — ¢a — coeg)eo — (Wj — ¢ — coej)e; for x-ions, y-ions, z-ions
Note that charge e of the precursor ion is known and fixed during each single
analysis. By using the above concepts, variable x;_,; ., = True implies that there
exists an N-terminal part of the normalized peptide having weight b(j,1,e) £ 6.

Tjste = True = N-terminus | CO| NH | C-terminus

%{_J

b(j.t.e)

We are now able to introduce, in form of clauses, the additional sets of rules that
an interpretation should respect in order to be coherent. A first one is the set of in-
compatibility rules. To this aim, we denote here variables using their corresponding
values for b. Two variables x;, and xp~ are incompatible if, for example, the differ-
ence between b’ and b” is smaller than the smallest possible component, that is:

b — b < (a1 — cq) — 28

More generally, x5 and xp~ are incompatible if the difference between b’ and b” has
a weight value which cannot be any combination of possible components. In other
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words, it does not exist any non-negative integer vector (y1,y2,...,ya)"" € Z',
verifying the following equation.

|’ —b"| = y1(a1 — ca) + ya(az — cq) + -+ + yn(an — ca) £28

Therefore, incompatibility clauses of the following form are added for all the
couples of incompatible variables x5 and xp.

(—|_Xb/ V —|xb//)

Another set of rules that should be considered in order to have a coherent interpre-
tation is that of multicharge rules. Depending on the mass spectrometry device, ions
retaining more than one electrical charge, called multicharged ions, are usually less
common than single charged ions, and it is common practice to assume that if a
multicharged ion has been observed in the spectrum, also the corresponding single
charged one should appear in the spectrum. Therefore, each variable x;/_; . with
e > 1 implies, if it exists, another variable x 7 1 with (j' — coe)e = j” — ¢y, as
follows:
(_‘Xj/»t,e \% xj”%t,l)

Finally, a number of additional clauses representing a priori known information
about the specific mass spectrometry device used for the analysis, about the ana-
lyzed compound or about other possibly known relations among the interpretations
of the various peaks may also be generated. This is because, clearly, the more
information can be introduced by means of clauses, the more reliable the results of
the analysis will be.

By assuming no limitations on the structure of the generated clauses, therefore
allowing the full expressive power of propositional logic, we obtain at this point
a set of v clauses Cy, C», ..., C,. Generally, incompatibility clauses are by far the
more numerous. Since all clauses must be considered together, we construct their
conjunction, that is a generic propositional formula .# in conjunctive normal form
(CNF)

F=CiACaNn---ANC,

Each truth assignment {True, False} for the variables x;_; ., with j € F, teT,
e € E, such that .# evaluates to True is known as a model of .%. We now have the
following result.

Theorem 1.1. Each model i of the generated propositional formula % corre-
sponds to a coherent solution of the peak interpretation problem for the peptide
under analysis. Moreover, no coherent solution of the peak interpretation problem
which does not corresponds to a model . of F can exist.

Proof. The proof relies on the fact that the formula .%# contains by construction
all the rules (peak assignment rules, incompatibility rules, multicharge rules) that a
peak’s interpretation must satisfy to be considered coherent. Therefore, each model
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W gives an interpretation satisfying all the rules. Conversely, each interpretation
satisfying all the rules corresponds to a truth assignment for the variables x;_,;
such that .Z is True. O

Finding a model of a generic CNF, or proving that such model does not exist,
is known as the satisfiability problem (SAT). Extensive references can be found in
[10, 16, 18,30]. This problem is NP-complete [15] in the general case. However, for
the average size of generated instances, solution times of a DPLL branching algo-
rithm are very moderate. Note also that in some special cases of peptide analysis,
one may be able to obtain polynomially solvable formulae by imposing syntactical
limitations on the structure of the generated clauses [3,9, 13,22]. For instance, when
considering only b-ion and y-ion as the possible types of fragments, and only single
charged ions, we obtain Quadratic formulae [1], which are polynomially solvable.

Since we are interested in all possible solutions of the peptide analysis, we are
interested in all the possible coherent peaks interpretations, that is we are interested
in finding all the models

{r, o, oo i}

of .%. This was obtained in practice by modifying the SAT solver BrChaff [6] in
such a way that, after finding a model, the search does not stop, but keeps exploring
the branching tree until its complete examination.

Example 1.4. When considering the compound of Example 1.2 (wy = 851.3,
f =9,and W = {764.3,651.3,627.1,538.2,496.1,425.1,382.9,201.0, 173.1}),
the possible components of Table 1.1, and allowing a-ion, b-ion, c-ion, x-ion, y-ion,
z-ion, and double and single charges, we obtain a formula .# with 108 variables and
4909 clauses, which has three models.

In case .% does not even have one model, this means that the considered sets of
possible fragment types 7 and/or possible charges E are not enough to give an
interpretation to all considered peaks. If 7 and E already include all possibilities
that should be considered for the current analysis, they cannot be widened. In simi-
lar cases, the problem is originated by the presence of uninterpretable non-standard
or noise peaks in the spectrum, which may be due to some experimental distur-
bance in the mass spectrometry analysis. For overcoming this type of problems,
the mass spectrometry should be improved. When this option is not available, the
formula .# should be considered as an instance of the maximum satisfiability prob-
lem (Max-SAT) [30], which consists of finding a truth assignment for the variables
Xj_»t,e maximizing the number of clauses which evaluate to True. By doing so,
some clauses will stay unsatisfied. Unsatisfied interpretation clauses correspond to
a solution not interpreting some peaks, hence having a mismatch number v > 0.
Unsatisfied incompatibility or multicharge clauses mean that not all rules for having
a coherent interpretation can be respected in the current analysis. In any of these
cases, the result of the analysis is less reliable, but the problem is in the input data.
It is worth to note that the SAT problem, and all its variants above described,
can be solved not only working in the field of propositional logic (as it is
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done by BrChaff and many other solvers), but also working with Integer Linear
Programming (ILP). Each clause, written in the following general form (P is the
set of indices of positive variables, N that one of negative variables)

\/ Xk V \/ Xk,

keP keN

can be converted into the following linear inequality

Zxk-l- Z(l—xk)zl

keP keN

Therefore, the set of all clauses becomes a set of linear inequalities constituting the
constraints of the ILP, an objective function can be added, and algorithms for solving
ILP can now be used, [21]. Generally speaking, however, the complexity of solving
the above described problems does not change: when the SAT problem belongs to
an easy special class, the same happens for the ILP. See [10] for further details.

1.6 Computing the Weights Database and Generating
the Sequences

As described, each variable x; ;. with j € F, t € T, e € E, corresponds to an
hypothesized weight b(j, ¢, e) of an N-terminal portion of the normalized peptide.
Therefore, given a model p for the generated formula .%#, consider all the hypoth-
esized weights of the N-terminal portions corresponding to all the True variables
of 1. By ordering such values in increasing weight order, we obtain what we call the
succession of breakpoints B* corresponding to model u for the normalized peptide
under analysis.
B* ={b1,ba,...,bp}

This means that when giving to the considered peaks W the interpretation repre-
sented by w, we have located the peptidic bonds of the normalized peptide under
analysis at the locations given by the values of the elements of B, as illustrated by
the following diagram.

b, by b,

N-terminus | CcO |NH CO| NH CO| NH |C-terminus

\ >

0  increasing hypothes. weight of N-term. port. Wy —C, —Cp
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Definition 1.11. Define now a gap as the difference between two adjacent
breakpoints (by+1,by), and a corresponding subsequence as the portion of the
normalized peptide spanning between the two peptidic bonds corresponding to the
two above adjacent breakpoints (b 41, bp).

Now we compute, for each value of gap by, — by, all the non-negative integer
vectors (y1, Y2, ..., yn)"" € Z', verifying the following equation.

bp+1—bp = y1(a1 —cq) + y2(az —ca) + -+ + yn(an —cq) £26

The results are all the possible subsequences that may cover the gap b4+, — by.
Denote such set of subsequences by S(by,+1 — by,). Note that S(by,+1 — by) depends
only on the value of the gap by 41 — by, and not on the locations of the breakpoints.
The first gap b; — 0 and the last one wy — (¢4 + co) — b, should be managed
in a way which is slightly different from that of the central gaps. They are indeed
the only gaps that may contain components having limitation on their positions in
the sequence (only N-terminal or only C-terminal, see Sect. 1.2); hence, this should
be considered. Furthermore, only an imprecision § instead of 2§ should be consid-
ered for the first gap, since only one extremity of the gap can be affected by such
imprecision. Define by = 0 for a more uniform notation.

In order to compute such subsequences, we use a weights database as follows.
The possible components of the normalized peptide can be viewed as an alphabet
XY’ on n symbols. For instance, if the possible components are the 20 amino acids
reported in Table 1.1, we have

Y = {Gly, Ala, ..., Tyr}

A subsequence of the normalized peptide is just a sequence of components and
therefore a string over this alphabet. Its weight is normalized and therefore can be
computed by summing the weights of the components. The set of all such strings
may be denoted as X*. Knowing the correspondences between all the elements
of X* and their weights would of course speed-up the operation of finding the
subsequences. However, generating all ¥'* would be clearly impossible from a com-
putational point of view. On the other hand, the set of strings having a molecular
weight not greater than A may be denoted as ¥ *<A If A is greater than or equal to
the maximum of the mentioned gaps, also ¥*=* may give the same help in the oper-
ation of finding the subsequences. For useful values of A, however, ¥*=* generally
becomes too large.

We describe now a procedure to consider it implicitly. Not that *=*, for any
fixed A, can be computed using only the information about the possible components
for the current analysis (or better yet, for the set of current analyses). We therefore
compute it off-line, before starting any sequence analysis, as soon as the information
about the possible components is available. Every sequence is put in correspondence
with a natural number, by considering the components of the sequence as a number
expressed in base n + 1 (n is the number of components). This correspondence
must be biunivocal and easily computable. For instance, with the 20 amino acids
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reported in Table 1.1, considering the sequence written horizontally, the last (the
rightmost) element would correspond to the symbol multiplying 21°, the last-but-
one element would correspond to the symbol multiplying 21! and so on. Moreover,
the first symbol (Gly) in the list of possible components (Table 1.1) would mean
number 1, the second (Ala) number 2 and so on. An empty position (no amino acid)
would mean number 0. This holds because, if any other amino acid would mean 0,
a sequence beginning with that amino acid would correspond to the same number
as the same sequence without the initial amino acid, and the correspondence would
not be biunivocal.

Example 1.5. The sequence Gly-Ser-Gly-Tyr, or, more precisely,
< no amino acid > - -+ <no amino acid > Gly Ser Gly Tyr

would then corresponds to the number 0 ... 0 1 3 1 20(or K) in base 21, that in base 10
is20x219(=20)+1x 211 (= 21) +3x21%(= 1323) +1x213(= 9261) = 10625.

The weights of all sequences up to molecular weight A are therefore computed off-
line and stored in correspondence with the described natural numbers representing
the sequences. This computation may be done efficiently using smaller solutions to
gradually compute larger solutions. Note that more sequences may have the same
molecular weight; hence, one weight may correspond to more than one natural num-
ber, even if one natural number corresponds to only one sequence, hence to one
weight. The natural numbers may also be not stored, but simply be the indices of an
array memorizing the weights. This constitutes the weights database: given a molec-
ular weight, it allows to find almost instantaneously which are all the sequences of
components that could produce a portion of normalized peptide having that weight.
Value A is chosen big enough to cover all the possible gaps that one could need to
sequence in the set of current analyses.

Therefore, for each gap by, — by, the set of all the possible subsequences
S(bp+1 — bp) covering that gap is computed in extremely short times by search-
ing the weights database for all natural numbers corresponding to the weight
bp+1 — by, and by explicitly generating the subsequences corresponding to such
natural numbers.

When all the sets of subsequences S(by+1 —bp), h =0, ..., p are available, all
the possible sequences .7, of the normalized peptide under the peak interpretation
[ can be generated with the concatenation of such sets in all possible ways, oper-
ation which we denote by @, but eliminating sequences violating the requirements
regarding minimum m; or maximum M; value on the number of each component.

Fu=8b1—bo) ®Sba—b1)) D@ S(wo—cq —co—bp)
Finally, when considering the sets of all the possible sequences {.7;,, %}y, -- -

Zu, 3 for all the possible models {ji1, it2, ..., 1} of F, the complete set of all
possible sequences . of the normalized peptide is obtained:

S =Sy U, U-USy,
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By construction, the set of all the possible sequences . of the normalized peptide
is also the set of all the possible sequences of the real peptide under analysis; hence,
the sequencing problem have been solved.

Note that, in the case when the formula .% is unsatisfiable, and a truth assign-
ment maximizing the number of clauses which evaluates to True has been found,
some gap may admit no subsequences because some incompatibility clauses are
not respected. A less reliable solution can in this case be obtained by merging each
unsequenceable gap with one of its neighboring ones (preferably the smaller).

Example 1.6. When considering the formula .% of Example 1.4 with 108 variables,
4909 clauses and three models, computing the weights database with A = 300 we
obtain three breakpoint successions, reported below together with all their corre-
sponding possible sequences:

{87.0,224.2,339.2,452.2,565.2, 662.2} which gives two sequences:
Ser-His-Asp-Leu-Leu-Pro-Gly-Leu
Ser-His-Asp-Leu-Leu-Pro-Leu-Gly

{87.0,224.2,339.2,452.2,565.2, 678.3} which gives two sequences:
Ser-His-Asp-Leu-Leu-Leu-Gly-Pro
Ser-His-Asp-Leu-Leu-Leu-Pro-Gly

{87.0, 184.0, 355.2,452.2, 565.2, 662.2} which gives four sequences:
Ser-Pro-Gly-Asn-Pro-Leu-Pro-Gly-Leu

Ser-Pro-Gly-Asn-Pro-Leu-Pro-Leu-Gly

Ser-Pro-Asn-Gly-Pro-Leu-Pro-Gly-Leu

Ser-Pro-Asn-Gly-Pro-Leu-Pro-Leu-Gly

However, since in this series of examples we selected from the spectrum of Fig. 1.1
only the labelled peaks, results are not as accurate as it would be possible when
selecting more peaks.

1.7 Implementation and Results

The described approach is implemented in C++. The initial input routine (1) reads
all informations about possible components and possible types of fragments and
charges and computes the weights database, and (2) reads the spectrum and extracts
from it all peaks above a certain value. After this, the logic formula .% representing
the peak interpretation problem is generated. All models of .# are then found by
means of the DPLL SAT solver BrChaff [6], modified in order to search for all
the models of the given formula. Then, for each model u of .%, the breakpoint
succession is computed, and all the possible subsequences covering each gap are
computed and linked together.

Those subsequences may be produced either by means of a specialized branching
algorithm working on-line, or by means of the weights database computed off-line
and used on-line. Finally, by considering the union of the set of sequences corre-
sponding to the different models of .%, all the solutions of the sequencing problem
are obtained.
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Table 1.2 Real-world peptide sequencing problems

Input data Outcomes Times
Wo f fmax  €max N X v r 4 w/o WD w WD
572.20 7 2 1 20 14 108 1 1 0.1 0.1
572.20 7 6 2 20 84 3,571 2 2 1.9 1.6
851.30 18 2 1 20 36 543 1 4 0.5 0.5
851.30 18 4 2 24 144 6,780 4 7 2.0 1.4
851.30 18 6 3 24 324 12,642 10 16 5.6 3.0
859.12 20 3 1 40 60 2,904 4 26 1.6 1.1
859.12 20 6 2 40 240 8,156 5 29 4.1 3.4
913.30 16 2 1 20 32 539 2 7 1.0 0.8
913.30 16 6 3 20 288 10,741 8 32 6.8 4.0
968.58 19 2 1 20 38 768 6 24 1.3 1.1
968.58 19 6 2 20 228 7,021 10 38 4.1 3.4
1037.10 18 2 1 20 36 714 7 25 1.4 1.0
1037.10 18 6 2 20 216 6,936 12 44 4.3 32
1108.60 21 2 1 26 42 2,687 8 18 35 2.1
1108.60 21 4 2 26 168 7,456 16 64 12.2 5.6
123420 19 2 2 20 76 4,529 9 26 8.3 32
123420 19 6 2 20 228 8,956 15 106 29.2 14.0
1479.84 20 2 1 20 40 690 7 22 14.3 6.8
1479.84 20 6 2 20 240 8,796 18 102 33.9 13.7
1570.60 22 2 1 21 44 2,498 9 35 28.5 16.3
1570.60 22 6 2 21 264 9,657 14 98 56.8 39.2
1607.69 27 2 2 26 108 5,744 6 20 443 20.9
1607.69 27 6 3 26 486 22,565 11 63 473.0 192.8

Table 1.2 reports various experiments of real peptide sequencing problems on a
Pentium IV 1.7GHz PC. In particular, we indicate: the weight of the peptide (wy);
the number of peaks extracted from the spectrum ( f); the number of considered
types (fmax) and charges (emax) of fragments; the number of possible components
(n); the number of variables (x) and clauses (v) of the obtained formula; the number
of models (r) of the obtained formula, the overall number of solutions (%), and
computational times (in seconds) for the whole sequencing procedure without the
weights database (w/o WD) and with it (w WD). Time for computing off-line the
weights database with A = 300 is 40 seconds and with A = 400 is 126 seconds.
Both values were sufficient for sequencing the gaps in the reported analyses. A time
of this order (the exact one depends on our a priori choice for A) should therefore
be considered just once for a whole series of tests with WD. It can also be stored
on hard disk and read by the input routine in a subsequent time. Those results are
intended to give real-world examples of application, rather than exploring all the
computational possibilities of the described procedure.

As observable from the table, results depend of course on the choice of possible
types and charges of fragments: for the same spectrum, different choices produce
different results, and the number of sequences compatible with the given input data
is sometimes large. This is an intrinsical character of the problem. However, all the
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solutions are generally very related, in the sense that some parts are just common,
and some other are given by all the combinations of a (generally small) number of
components.

The use of the weights database is always able to reduce computation times. This
reduction increases when increasing the solution time and grows faster than the lat-
ter one. In the examples, it passes from about 0.2 seconds for a problem with solution
time of 1second, i.e., a reduction of 20%, to about 280 seconds for a problem with
solution time of 473 seconds, i.e., a reduction of 59%. Therefore, the more consis-
tent speed-ups are obtained for the larger instances (the ones for which they are more
useful). The whole procedure is a powerful, accurate and flexible sequencing tool,
and allows the sequencing of compounds not handled by other available techniques.

1.8 Conclusions

The problem of the determination of the amino acid sequence of a peptide is
considered. Such problem is of basic relevance in biological and medical research,
but is difficult to model and computationally hard to solve. Data obtained from the
mass spectrometry analysis of a generic polymeric compound, constituted, accord-
ing to specific chemical rules, by a sequence of components, are here used to build
a propositional logic formula. The models of this formula represent coherent inter-
pretations of the set of data and are used to generate all possible correct results of
the analysis itself. The problem has been therefore subdivided into a peaks inter-
pretation phase and a sequence generation phase. The peaks interpretation phase is
solved by means of a DPLL SAT solver modified in order to search for all the mod-
els of a formula. The sequence generation phase is solved by computing off-line
a weights database, so that all sequences up to a certain molecular weight can be
considered implicitly, but only the needed ones generated explicitly. Results of tests
on real-world peptide sequencing problems demonstrate the effectiveness of this
approach. The use of the weights database is able to sensibly reduce computation
times, especially for larger instances.
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Chapter 2
Divide and Conquer Strategies for Protein
Structure Prediction

Pietro Di Lena, Piero Fariselli, Luciano Margara, Marco Vassura,
and Rita Casadio

Abstract In this chapter, we discuss some approaches to the problem of protein
structure prediction by addressing “simpler” sub-problems. The rationale behind
this strategy is to develop methods for predicting some interesting structural char-
acteristics of the protein, which can be useful per se and, at the same time, can be
of help in solving the main problem. In particular, we discuss the problem of pre-
dicting the protein secondary structure, which is at the moment one of the most
successful sub-problems addressed in computational biology. Available secondary
structure predictors are very reliable and can be routinely used for annotating new
genomes or as input for other more complex prediction tasks, such as remote homol-
ogy detection and functional assignments. As a second example, we also discuss the
problem of predicting residue-residue contacts in proteins. In this case, the task is
much more complex than secondary structure prediction, and no satisfactory results
have been achieved so far. Differently from the secondary structure sub-problem, the
residue-residue contact sub-problem is not intrinsically simpler than the prediction
of the protein structure, since a roughly correctly predicted set of residue—residue
contacts would directly lead to prediction of a protein backbone very close to the
real structure. These two protein structure sub-problems are discussed in the light of
the current evaluation of the performance that are based on periodical blind-checks
(CASP meetings) and permanent evaluation (EVA servers).

2.1 Introduction

Methods developed for the problem of the protein structure prediction in silico aim
at finding the three-dimensional (3D) conformation of the protein starting from its
amino-acidic residue sequence (primary structure) [7]. Protein function is strictly
dependent on the native protein 3D structure and protein structure prediction is one
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of the most important and mostly studied problems of computational biology [26].
Despite many efforts, an acceptable solution for new sequences, not having homol-
ogous sequences for which the 3D structure is known, is still to be found. Given the
difficulty to compute directly the protein 3D structure, many intermediate problems
have been addressed. One way to simplify the problem is to compute features that
are local with respect to the backbone of the protein. These are called secondary
structure motifs and are well characterised as alpha-helices, beta-sheets and coil on
the basis of specific values of torsion angles. The problem of predicting secondary
structures in proteins has been also addressed with machine learning methods and
it is presently considered one of the most successful problems of computational
biology [43]. In this chapter, we will comment on the most successful implementa-
tions of protein secondary structure prediction methods.

However, even when well predicted, secondary structure alone does not carry
enough information to understand protein 3D conformation. To this aim, it would
suffice to find global distance constraints between each couple of residues. This
sub-problem is commonly known as residue-residue contact prediction and it has
been again addressed with machine learning methods [3]. Residue-residue contact
prediction is today the only method that can grasp in a simplified manner long-range
interactions between residues of a protein sequence. Although the problem is still
far from being solved, we will review the most efficient algorithms that are presently
the state-of-the-art methods in the field.

So far, the most interesting results in secondary structure prediction and residue—
residue contact prediction have been achieved by a clever combination of machine-
learning methods with evolutionary information available in the ever growing
databases of protein structures [1, 11, 18,20].

In order to make the chapter self-contained as much as possible, in the follow-
ing sections we briefly review the most basic concepts of machine learning methods
(Sect.2.2) and the most commonly used techniques for extracting evolutionary in-
formation from databases of protein sequences (Sect. 2.3). The rest of the chapter is
devoted to the detailed description of the most famous secondary structure predic-
tors (Sect.2.4) and residue—residue contact predictors (Sect.2.5). For both topics,
we also describe in detail the standard evaluation criteria adopted to measure the
performance of the predictors and outline what is the state of the art in terms of
the respective evaluation criteria according to the experiments performed at CASP
meetings' and EVA server.’

2.2 Data Classification with Machine Learning Methods

Machine learning is concerned with the design and development of algorithms for
the acquisition and integration of knowledge. Biological data classification is a typ-
ical problem usually approached with machine learning methods.

!http://predictioncenter.org/
2 http://cubic.bioc.columbia.edu/eva/
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Data classification is the problem of assigning objects to one of the mutually
exclusive classes according to statistical properties derived from a training set
of examples sharing the same nature of such objects. The problem can be eas-
ily formalised in the following way. Assume that the data we want to classify is

represented by a set of n-dimensional vectors x € X = R” and that each one
of such vectors can be assigned to exactly one of m possible classes c€e C =
{1,...,m}. Given a set of pre-compiled examples £ = {(x1,c1),..., (Xk,Ck)},

where (x;,¢;) € X x C and |E| < | X|, the objective is to learn from E a mapping
f + X — C that assigns every x € X to its correct class ¢ € C. In the biolog-
ical context, each entry of the vector x € X usually represents a single feature
(observation) of the object we want to classify (i.e., x is not the object itself ), and
the number of classes is typically limited to two/three. Moreover, machine learning
methods generally do not provide a rigid classification of an object; they instead
return the probability that the object belongs to each one of the possible classes
(a classification can be obtained by choosing the class with higher probability).
In bioinformatics, the most widely used machine learning methods for data clas-
sification are neural networks (NN), support vector machines (SVM) and Hidden
Markov models (HMM). We do not discuss here the features and the limitations
of such methods (for an extensive introduction, see [5]), but we briefly outline the
problem of correctly evaluating the performance of predictors of protein structural
characteristic.

A reliable approach for assessing the performance of data classification is a nec-
essary pre-condition for every machine learning-based method. The cross-validation
is the standard technique used to statistically evaluate how accurate a predictive
model is. The cross-validation involves the partitioning of the example set into sev-
eral disjoint sets. In one round of cross-validation, one set is chosen as test set and
the others are used as training set. The method is trained on the training set and
the statistical evaluation of the performance is computed from the prediction re-
sults obtained on the test set. To reduce variability, multiple cross-validation rounds
are performed by interchanging training and test sets, and the results obtained are
averaged over the number of rounds.

A proper evaluation (or cross-validation) of prediction methods needs to meet
one fundamental requirement: the test set must not contain examples too much
similar to those contained in the training set. When testing prediction methods for
protein features (such as secondary structure or inter-residue contacts), this require-
ment transduces in having test and training sets compiled from proteins that share no
significant pairwise sequence identity (typically <25%). If homologous sequences
are included in both training and test set, the average prediction accuracy does not
provide a reliable estimation of the performance, and, in particular, it does not re-
flect the performance of the method for sequences not homologue to those in the
training set.
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2.3 Evolutionary Information and Multiple
Sequence Alignments

One of the most successful tools in bioinformatics is the introduction of evolution-
ary information as a key ingredient for protein structure and function predictions.
The evolutionary information contained in a set of (related) protein sequences can
be extracted from a multiple alignment of all the sequences in the set. The mul-
tiple sequence alignment (MSA) refers to the problem of aligning three or more
sequences in order to identify their regions of similarity. An MSA of a set of pro-
tein sequences is represented as a matrix, where each row corresponds to a single
sequence and each column corresponds to a set of aligned residues, one for each
protein in the set (Fig. 2.1).>* When properly computed, each column of the MSA
encodes the possible evolutionary mutations that can occur at the corresponding
positions in the sequences included in the MSA. Those columns of the MSA that
exhibit low variability correspond to regions that are highly conserved with respect
to the evolutionary mutations of protein sequences.

In a pioneering work, Benner and Gerloff [4] introduced the idea that multiple
sequence alignments can improve protein structure prediction. Their basic concept
relies on the fact that the most conserved regions of a protein sequence (in terms
of multiple alignments) are those regions which are either functionally important,
and/or buried in the protein core. By this, Benner and Gerloff demonstrated that
the degree of solvent accessibility of an amino acid residue could be predicted with

1gpg_
13pk A
11tk A
1php_
P25055
PO8ESI
28xD03 3 F
09PQL2 DV " YLINENA-KIVI
0978C6 RDS---KVVIVA

4m_ll|. | L-J.J:I.J i il i.

----------- 034536367=-6945965968 =-2451935829648 64745301=2¢

o LI | o TN L 1 1

Consensus

————————— ++SNEESIDDLWDL+GEKRVLIRVDFRVPV--ENGEKIT+DYRIRAALPTIRYL+D+GA-KV+L+SHLGRPKG

Fig. 2.1 Multiple sequence alignment taken from the BAIiBASE3 database (example BB50004
from RV50 reference set) and visualised with the Jalview software. Only the first 80 positions of the
alignment are visualised. The symbol “—” denotes a gap. Darker columns of the MSA correspond
to higher conserved regions. The only perfectly conserved positions are 33, 35, 57 and 74

3 BAIiIBASE3 database: http://www-bio3d-igbmc.u-strasbg fr/balibase/
4 Jalview software: http://www.jalview.org/
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reasonable accuracy by clustering the sequences in an aligned family, and assessing
the degree of sequence variability observed between very similar pairs. Lately, this
idea was exploited by Rost and Sander, who showed that it was possible to improve
the accuracy of the prediction of secondary structures and solvent accessibility intro-
ducing evolutionary information in the form of sequence profiles as input to neural
networks [42].

Differently from an MSA, whose dimension increases linearly with the number
of aligned sequences, a sequence profile of a protein is a matrix P whose columns
represent the sequence positions and whose rows are the 20 possible residue sym-
bols. The profile matrix P is computed from a MSA and it is relative to a specific
sequence of interest p. Each element P,; of the sequence profile represents the nor-
malised frequency of the residue type a in the aligned position i. In practice, given
an MSA that contains the sequence of interest p, we derive the column i of the cor-
responding profile by computing the frequencies of occurrence of each residue in the
column of the MSA corresponding to the ith residue of p. In this way, the informa-
tion contained in a profile P is not dependent on the number of aligned sequences so
that it becomes easy to use fragments of the matrix P as input for machine learning
methods.

The computation of an MSA for a query sequence is a complex process both
in terms of time and care required. It consists of two steps. First, a search of the
query sequence against a non-redundant dataset of protein sequences is needed in
order to select a set of chains that are similar to the query one. There are several
optimal and near-optimal pairwise-alignment algorithms to perform such searches.
Currently, the heuristic basic local alignment search tool (BLAST) [2] is considered
the standard-de-facto software for pairwise sequence comparison. Despite the fact
that exact algorithms are available for pairwise sequence comparison, the heuristic
BLAST is the most widely used due to its speed (non-redundant datasets can con-
tain millions of different protein sequences) and good performance compared to
exact algorithms. The selection of similar sequences must be performed carefully in
order to avoid the introduction of meaningless sequences in the MSA, such as se-
quences with low complexity regions. Low complexity regions represent sequences
of very non-random composition (“simple sequences,” “‘compositionally-biased
regions”). They are abundant in natural sequences and may determine high scoring
matching segments in unrelated protein sequences. To avoid this problem, BLAST
implements a filter procedure based on the SEG [49] software. SEG provides a mea-
sure of compositional complexity of a sequence segment and divides sequences into
contrasting segments of low complexity and high complexity. Typically, globular
domains have higher sequence complexity than fibrillar or conformationally disor-
dered protein segments. When used in BLAST, SEG replaces the low complexity
regions within the input sequence with X ’s to prevent spurious matching with unre-
lated sequences.

When the set of similar sequences has been selected, the second step consists
of building an MSA. Differently from the pairwise sequence alignment problem,
building an optimal multiple alignment is a difficult task and it is not computable in
reasonable time. Several software implementations of heuristic algorithms for MSA
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are available (MAXHOM [44], CLUSTALW [47], T-Cofee [29] and MUSCLE [10]
are currently the most widely used) and none of them is globally accepted as a
standard.

Few years ago, the procedure described above for building MSA was almost
standard and time-consuming; thus, during the construction and tuning of new
prediction methods most of the researchers used the homology-derived secondary
structure of proteins (HSSP) precompiled multiple sequence alignments generated
with the MAXHOM software. Currently, a faster and more accurate method for
the construction of reliable sequence profiles is the adoption of the position spe-
cific iterative (PSI) feature in BLAST [2]. In PSI-BLAST a sequence profile and
a position-specific scoring matrix (PSSM) are automatically constructed from a
pseudo-multiple alignment of the highest scoring hits in an initial BLAST search.
The PSSM is generated by calculating position-specific scores for each position
in the alignment. Highly conserved positions receive high scores and weakly con-
served positions receive scores near zero. The profile is used to perform a further
BLAST search and the current profile is refined according to the outcomes of the
new search. This iterative procedure is performed until the retrieved sequences re-
main constant or a fixed number of iterations are achieved. In [21], the prediction
accuracy of secondary structure was improved by using directly the PSI-BLAST
PSSM to feed a neural network system.

2.4 Secondary Structure Prediction

In biochemistry and structural biology, the protein secondary structure refers to
the three-dimensional shape of consecutive residue segments. The most common
secondary structure elements are alpha-helices and beta-sheets. The formation of
secondary structure elements is mostly guided by local inter-residue interactions
mediated by hydrogen bonds. For example, an alpha-helix is formed when hydro-
gen bonds occur regularly between positions i and i 4+ 4 in a protein segment. When
hydrogen bonds occur between positions i and i + 3, then a 3¢ helix is formed. A
beta-sheet is formed when two strands are joined by hydrogen bonds involving alter-
nating residues on each participating strand. In the 1950s, Pauling correctly guessed
the formation of helices and strands [31,32], before any protein structure had been
determined experimentally.

There are several methods for defining protein secondary structure elements. The
dictionary of protein secondary structure (DSSP) method [23] is actually considered
the de facto standard for secondary structure definition. The DSSP defines eight
types of secondary structure elements, based on hydrogen-bonding patterns as those
initially proposed by Pauling (Fig.2.2):

G = 3-turn helix (319 helix). Min length three residues.
H = 4-turn helix (alpha helix). Min length four residues.
I = 5-turn helix (pi helix). Min length five residues.

T = hydrogen bonded turn (3, 4 or 5 turn).
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Fig. 2.2 Graphical representation of the Escherichia coli phosphotransferase IIAmannitol (1a3a
chain A, 148 residues). The figure above shows the three-dimensional structure, highlighting
helices, strands (arrows) and coils (irregular loops). The figure below shows the amino-acidic
sequence and the respective DSSP secondary structure elements

e E = extended strand in parallel and/or anti-parallel beta sheet conformation. Min
length two residues.

e B = residue in isolated beta bridge (single pair beta-sheet hydrogen bond
formation).
S = bend (the only non-hydrogen bond-based assignment).
C = every residue that cannot be assigned to any of the above conformations.
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It is worth noting that the eight-state DSSP vocabulary is just a simplification of
the possible variations of hydrogen-bonding patterns present in proteins. For exam-
ple, the class C stands for loops or irregular elements, which are often called coils
or random coils. In order to simplify the DSSP classification, most of the secondary
structure prediction methods reduce further the DSSP vocabulary into three most
characteristic states, helix (H), strand (E) and other (L), according to the scheme
proposed in the secondary structure section of EVA server (EVAsec®): H includes
(H,G,I), E includes (E,B) and L includes all the others.

Predicting the protein tertiary structure from only its amino acid sequence is
actually one of the most challenging problems in structural bioinformatics. In con-
trast, the secondary structure prediction is more tractable and has been successfully
addressed in the last decades. In particular, the successful results in this field have
been achieved by combining machine learning methods with evolutionary informa-
tion available in the ever-growing databases of protein structures. Early secondary
structure prediction methods were based on statistics derived from protein segments
[6, 16]. The statistics were used to predict how likely the central residue in the seg-
ment is in some particular secondary structure element. Several different methods
(machine learning based and not) were exploited to derive statistics from protein
segments. The accuracy of all these methods was limited to slightly more than 60%.
A first significant step-forward in prediction accuracy was made by exploiting evo-
lutionary information encoded in MSA [43]. The PHD predictor by Rost and Sander
[42] is the first method that used MSA successfully for secondary structure predic-
tion and that was able to achieve a prediction accuracy >70%. The next step-forward
was made using more accurate evolutionary information resulting from improved
searches and larger databases. The PSIpred method by Jones [21] is historically the
first method for secondary structure prediction that cleverly used position-specific
alignments from PSI-BLAST and that achieved a further improvement of slightly
more than 5% in accuracy. The accuracy of modern secondary structure prediction
methods is currently about 77%. While this is not the best possible we can do, due to
the approximations made by the DSSP in assigning secondary structure classes, the
theoretical limit of prediction accuracy has been estimated approximately 88% [41].

The performances of secondary structure prediction methods were evaluated in
CASP1 experiments from CASP1 (1994) to CASPS5 (2002). Starting form CASP6,
the secondary structure prediction category was not included in the experiments
since the progress in this area was too little to be detected with the few amounts of
data available in CASP sessions. Currently, larger scale benchmarking is continu-
ously assessed by the EVAsec experiments. In the following section (Sect.2.4.1),
we review the most important measures of secondary structure prediction accuracy
(as defined in EVAsec) and we also provide a comparison of some secondary struc-
ture prediction methods in terms of these measures. We conclude (Sect. 2.4.2) with
the detailed description of two secondary structure predictors, PHD (Sect.2.4.2.1)
and PSIpred (Sect.2.4.2.2).

3 http://cubic.bioc.columbia.edu/eva/doc/intro_sec.html
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2.4.1 EVAsec: Evaluation of Secondary Structure
Prediction Servers

The objectives of EVAsec® are to provide a continuous, fully automated and
statistically significant analysis of protein secondary structure prediction servers.
EVAsec continuously evaluates secondary structure prediction servers in real time,
whenever new data are available. Secondary structure prediction servers are fully
automated websites that accept prediction tasks on request and provide answers in
electronic format. At the moment (April 2009), EVAsec is running since 303 weeks
and monitors 13 servers.

The most simple and widely used measure of secondary structure prediction ac-
curacy used in EVAsec is the per-residue prediction accuracy:

3
1
03 = IOO’NZM""’ 2.1)

i=1

where N is the length of the protein and M € N3*3 is the confusion matrix, i.e., M;
is equal to the number of residues observed in state i and predicted in state j with
i,j € {H, E, L}. Since a typical protein contains about 32% H,21% E,47% L, the
correct prediction of class L tends to dominate the overall accuracy. There are sev-
eral other measures defined in EVAsec (such as per-state/per-segment accuracy) that
can be used to limit this effect. The per-state measures are based on the Matthews
correlation coefficient:

_ pi-ni —ui -0
Vi Fui)-(pi +o0i)-(ni +ui)- (i +o0i)

(2.2)

i

wherei € {H, E, L}, pi = M, (true positives), n; = Z%&i Z?{#i M. (true neg-
atives), o; = Z%éi Mj; (false positives) and u; = Z;éi M;; (false negatives). The
most important per-segment accuracy is the Segment OVerlap (SOV) measure, based
on the average segment overlap between the observed and predicted segment instead
of the average per-residue accuracy:

100 inOV (s1, 3(s1,
y, MOV X)), @)

SOV =1 ov
oS maxOV(sy, s2)

where

e 51,5, are, respectively, the observed and predicted secondary structure segments
instatei € {H, E, L}, i.e., all residues of sy, s, are in state i,

e S is the set of segment pairs (s1, s2) that are both in the same state i and that
overlap at least by one residue. Conversely, S’ is the set of observed segments s;
for which there is no predicted overlapping segment s5.

e len(s;) is the number of residues in segment s,

e N = Z(SMZ)GS len(sy) + ZSIGS, len(sy) is the normalization value,
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e minOV(sy, s3) is the length of actual overlap of s; and s5, i.e., the extent for
which both segments have residues in state i,

e maxOV(sy,s2) is the length of the total extent for which either of the segments
S1 or s, has a residue in state i,

e §(s1,52) is equal to

maxOV(s, s2) — minOV(sy, s), minOV(s1, 52),
int(len(sy)/2), int(len(s2)/2)

The accuracy of prediction of the 13 servers currently monitored by EVAsec is
given in Table 2.1. The second column of the table gives the number of proteins pre-
dicted by each method and the third column gives the average accuracy (Q3) over all
proteins for the respective method. The results in Table 2.1 cannot be used for com-
parison, since different sets of proteins are used for each method. In Table 2.2, six
methods are compared on their largest common subset of 80 proteins. In Table 2.2,
also SOV and per-state accuracy measures Cg, Cg, Cr are included.

Table 2.1 Average prediction accuracy (third column)
for each secondary structure server monitored in EVAsec
(data updated at April 2009). Different sets of proteins
are used for each method (the number of proteins used is
given in the second column)

Method Num. proteins [0

APSSP2 [39] 122 75.5
PHDpsi [37] 229 75.0
Porter [33] 73 80.0
PROF _king [30] 230 72.1
PROFsec [40] 232 76.6
PSlIpred [21] 224 77.9
SABLE [36] 232 76.1
SABLE2 [36] 159 76.8
SAM-T99sec [24] 204 71.3
SCRATCH (SSpro3) [34] 207 76.2
SSpro4 [34] 144 77.9
Yaspin [27] 157 73.6

Table 2.2 Performance comparison of six secondary structure prediction methods on their largest
common subset of 80 proteins as evaluated in EVAsec (data updated at April 2009). The average
of three different accuracy measures & standard deviation are given: Q3 (see (2.1)), SOV (see
(2.3)) and Cyy, Cg, Cp, (see (2.2)). The first column of the table gives the rank of the corresponding
predictor

Rank  Method 03 SOV Cu Cg Cr

1 PROFsec 755+14 749+£19 0.65£0.03 0.70£0.04 0.56%0.02
PSIpred 768+ 14 754+£20 067003 0.73£0.04 0.55%0.02
SAM-T99sec  77.2%£12 746%£15 0.67£003 0.71£0.03 0.59%0.02
PHDpsi 734+£14 695£19 064£0.03 0.68+0.04 0.524+0.02

3 PROF king 71.6+£15 67.7£20 0.62£0.03 0.68+0.04 0.5140.02
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Most of the 13 methods are based on NN. The exceptions are PORTER,
SCRATCH, SSPro4 (based on bidirectional recurrent NN), SAM-T99sec (based
on HMM) and Yaspin (based both on NN and HMM).

2.4.2 Secondary Structure Prediction Methods

In this section, we describe in detail two of the most famous secondary structure
prediction methods: PHD® and PSIpred.” Both methods are based on NN and share
similar network topology. The main difference between the two methods is the way
evolutionary information is extracted from MSA and encoded into the NN input.
Early version of PHD used HSSP pre-computed multiple alignments generated by
MAXHOM. PSIpred uses the position-specific scoring matrix (PSSM) internally
computed by PSI-BLAST. As discussed in [41], the improvement of PSIpred with
respect to PHD is mostly due to the better alignments used to fed the NN. The
better quality of the alignments is in part due to the growth of the databases and the
filtering strategy used by Jones to avoid pollution of the profile through unrelated
proteins. A more recent version of PHD uses PSSM input and it is called PHDpsi
to distinguish it from the older implementation. The only difference between PHD
and PHDpsi is the use of PSSM input instead of frequency profile input.

Also for all the other secondary structure predictors, the main source of informa-
tion is the sequence profile or the PSSM. The main difference between the different
approaches relies on the technique used to extract knowledge from these two sources
of information. The particular technique is specific to the machine learning method
used. Here we decided to describe only PHD and PSIpred because, historically, they
represent the two most important step-forward in secondary structure prediction.

24.2.1 PHD

PHD has been described in [42]. The PHD method processes the input infor-
mation in two different levels, corresponding to two different neural networks:
(1) sequence-to-structure NN and (2) structure-to-structure NN. The final prediction
is obtained by filtering the solution obtained from consensus between differently
trained neural networks (3).

1. At the first level, the input units of the NN encode local information taken from
sequence profiles (from PSSM in PHDpsi). For each residue position i, the local
information is extracted from a window of 13 adjacent residues centered in i.
For each residue position in the window, 22 input units are used: 20 units en-
code the corresponding column in the sequence profile, 1 unit is used to detect

® http://www.predictprotein.org/
7 http://bioinf.cs.ucl.ac.uk/psipred/
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when the position is outside the N/C-terminal region (1 if outside and 0 if not)
and 1 unit accounts for the conservation weight at that position (see below for
definition). The output of the first level NN consists of three nodes, one for each
possible secondary structure element helix/strand/coil, corresponding to the state
of the central residue in the window. The first level NN classifies (13-residues
long) protein segments according to the secondary structure class of their cen-
tral residue. This classification does not reflect the fact that different segments
can be correlated, being, for example, consecutive and overlapping in the protein
sequence. Particularly, at this level, the NN has no knowledge of the correlation
between secondary structure elements. For example, it has no way to know that
a helix consists of at least three consecutive elements.

2. The second level is introduced to take into account the correlation between
consecutive secondary structure elements. The input of the second level NN is
compiled from the output of the first level NN. For every residue position, the in-
put unit encodes a window of 17 consecutive elements taken from the secondary
structure prediction of the first NN. Every position in the window is encoded
with 5 units: three for the predicted secondary structure, one to detect whether
the position is outside the boundaries of the protein and one for the conservation
weight. The output is set as in the first NN and, also in this case, corresponds to
the state of the central residue in the window.

3. The consensus is a simple arithmetic average over (typically four) differently
trained networks. The highest value of the three output units is taken as the final
prediction. To every such prediction, a reliability index can be associated with
the following formula

RI =[10- (01 — 02)], 2.4)

where 0] and o, are the highest and the second highest values in the output vec-
tor, respectively. The prediction obtained is finally filtered (with the help of the
reliability index) in order to fix some eventually unrealistic local predictions that
neither the second level NN nor the consensus were able to detect (particularly,
too short alpha-helix segments).

The conservation weight provides a score for positions in the MSA with respect
to their level of conservation: the more conserved is a position the higher is the
conservation weight score. Such a weight is contained in the HSSP database and it
is defined by

SN Wy - sim!
r,s=1"rs rs

Wy =——-F——— (2.5)
N
Zr,s:l Wrs
with
1
wy = 1 — —— -ident,,
100

where N is the number of sequences in the multiple alignment, ident,, is the per-
centage of sequence identity (over the entire length) of sequences r, s and simis
is the value of the similarity between sequences r, s at position i according to the
Dayhoff similarity matrix [8].
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2.4.2.2 PSlIpred

PSIpred has been described in [21]. The original implementation is based on neural
networks. An almost equivalent implementation with SVM has been described in
[48] and compared with the original version.

The neural network topology of PSIpred is very similar to the one used in PHD:
in both methods the input is processed in two different levels, and the final result
is obtained as the consensus between differently trained networks. The main dif-
ferences are the lengths of the windows used in the first and second levels: in both
networks PSIpred uses 15-residue long windows, while PHD uses lengths 13 and 17,
respectively. Moreover, the conservation weight is not included in the input of
PSIpred (it showed poor improvement also in PHD [42]). The most important differ-
ence between early PHD version and PSIpred is the way evolutionary information
is treated. In particular, the position-specific scoring matrix (PSSM) is used to fed
the NN instead of the classical frequency profile computed from MSA.

Here we review in detail the procedure used by Jones to produce meaningful
position-specific profiles with PSI-BLAST, as described in [21]. Although PSI-
BLAST is much more sensitive than BLAST in picking up distant evolutionary
relationships, it must be used carefully in order to avoid false-positive matches. In
particular, PSI-BLAST is very prone to incorporate repetitive sequences into the in-
termediate profiles. When this happens, the searching process tends to find highly
scored matches with completely random sequences. In order to maximise the perfor-
mances of PSI-BLAST, Jones builds a custom sequence data bank by first compiling
a large set of non-redundant protein sequences and then by filtering the databank in
order to remove low complexity regions [49], transmembrane segments [22] and
regions which are likely to form coiled-coil regions (these filtering are now auto-
matically performed by PSI-BLAST).

Finally, the input of the NN is computed from the PSSM of PSI-BLAST af-
ter three iterations, scaled to values between O and 1 with the logistic function
1/(1 + e*), where x is the raw profile value.

2.5 Residue-Residue Contact Prediction

Residue-residue contact prediction refers to the prediction of the probability that
two residues in a protein structure are spatially close to each other. Inter-residue
contacts provide much information about the protein structure. A contact between
two residues that are distant in the protein sequence can be seen as a strong con-
straint on the protein fold. If we could predict with high precision even a small
set of (non-trivial) residue pairs in contact, we could use this information as extra
constraints to guide the protein structure prediction. The prediction of inter-residue
contact is a difficult problem, and no satisfactory improvements have been achieved
in the last 10 years of investigation. On the other end, even if residue contact pre-
dictors are highly inaccurate, they still have higher accuracy compared to contact
predictions derived from the best 3D structure prediction methods [45].
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In the following sections, we describe the standards adopted for contact definition
and contact prediction evaluation (Sect.2.5.1). We next describe the most impor-
tant statistics used to extract contact information from MSA (Sect.2.5.2) and the
best performing contact predictors, as evaluated in the last five CASP editions
(Sect.2.5.3).

2.5.1 EVAcon: Evaluation of Inter-Residue Contact
Prediction Servers

Equivalently to EVAsec, the objectives of EVAcon® are to provide a continuous,
fully automated and statistically significant analysis of inter-residue contact predic-
tion servers. Differently from EVAsec, the statistics of EVAcon are not so frequently
updated and only very few servers are monitored at the moment. Anyway, EVAcon
provides the standards for contact definition and evaluation criteria for contact pre-
diction. These measures are also those adopted at CASP meetings.

There are several ways to define inter-residue contacts; all definitions are more or
less equivalent. In EVAsec, two residues are defined to be in contact if the Euclidean
distance between the coordinates of their beta carbon atoms (Cg) is <8 Angstroms
(A) (Fig.2.3). For Glycines, the coordinate of the alpha carbon atom (Cy) is con-
sidered instead of the Cg coordinate, which is missing (i.e., Glycines have only a
unique carbon atom).

The most important measure for the evaluation of contact predictors is the accu-
racy of prediction. The accuracy of prediction is defined as

Number of correctly predicted contacts
Number of predicted contacts

Since contact predictors usually return the probability that two residues are in con-
tact, the above formula is computed in slightly different way: the list of residue pairs
is sorted in decreasing order according to the predicted contact probability, and the
accuracy is computed by taking the first 2L, L, L/2, L/5 and L/10 (most probable)
pairs, where L here denotes the length of the protein. More formally, the accuracy
of prediction with respect to length [/ € { 2L, L, L/2, L/5,1./10} is defined as

Ace; = ”lﬂ (2.6)

where nc; is the number of correctly predicted contacts among the first / high-scored
pairs. It makes sense to distinguish between short-range contacts (i.e., contacts
between residues that are close in the protein sequence) and long-range contacts
(i.e., contacts between residues that are distant in the sequence). Long-range con-
tacts are much more sparse than short-range contacts, but they provide much more

8 http://cubic.bioc.columbia.edu/eva/doc/intro_con.html
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Fig. 2.3 Map of the C—Cp contacts at threshold 8 A of the protein 1a3aA of Fig. 2.2. Black dots
represent contacts

information about the protein structure and for this they are much more difficult
to predict correctly. For this reason, for the calculation of the accuracy with (2.6),
the predicted pairs of residues are split in three sets according to the separation
of the two residues in the pair (i.e., the number of residues between them): short-
range (from 6 to 11), medium-range (from 12 to 23) and long-range (>24) sequence
separation. Residue contacts whose sequence separation is below 6 do not pro-
vide useful information about the protein folding and are not evaluated. Among
all these measures, the most important evaluation parameter is the accuracy for se-
quence separation >24 and L/5 number of pairs.

Since the performances of contact predictors are not monitored as extensively
as secondary prediction servers, the statistics about the state-of-the-art accuracy of
inter-residue contact prediction is not very significant. According to the results ob-
tained in the last two CASP events [11, 20], we can evaluate the state of the art in
prediction accuracy as few percentage points above the 20% for sequence separation
>24 and L/5 number of contacts.

2.5.2 Contact Prediction with Correlated Mutations

The most simple approach to predict residue-residue contacts in a protein is based
on the evaluation of statistical properties derived from paired-columns of the MSA.
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This approach relies on a very simple but significant hypothesis: since evolutionary
mutations tend to preserve more protein structures than its sequence, residue sub-
stitutions must be compensated by other mutations in the spatially close neighbours
in order to not destabilise the protein fold. That is, during the evolutionary course
of protein sequences, a pair of residues in contact are more likely to co-mutate than
residues not in contact. This basic idea has been exploited in the reverse direction:
the probability of two residues to be in contact can be inferred by measuring how
much changes in one column of the MSA (corresponding to one of the two residues)
affect changes in the other column. There are various measures which can be used
to extract correlated mutation statistics from the MSA. Despite the intensive in-
vestigation of correlated mutation-based methods, this approach alone resulted in
a limited success in predicting residue—residue contacts. A possible explanation of
these performances can be that the statistical measures exploited so far are too weak
to discriminate between true correlation and background noise. Nevertheless, these
methods are still interesting on their own, and they have been often used proficiently
in conjunction with machine learning approaches for the contact prediction problem.

In the following sections, we shortly describe just few of the statistical measures
used to evaluate correlated mutations; more detailed information can be found in
[14,19].

2.5.2.1 Pearson Correlation

The best known implementation of the correlated mutation approach [17] uses the
Pearson correlation coefficients to quantify the amount of co-evolution between pair
of sites.

The Pearson product-moment correlation coefficient is a measure of the linear
dependence between two variables X, Y, and it is defined as

N _ _
C(X,Y):%Z(Xk_x)(yk_Y), @)

ox 0O
k=1 X0y

where N is the number of elements containedin X and Y, X is the average of X and
oy is its standard deviation. The coefficient —1 < C(X, Y) < 1 quantifies the degree
of linear dependence between X and Y. If C(X,Y) =1, then X isequalto Y uptoa
linear transformation. In general, if C(X,Y) ~ 1, X and Y are considered positively
correlated, not correlated if C(X,Y) ~ 0 and anti-correlated if C(X,Y) ~ —1.

To evaluate the Pearson correlation of a pair of sites (columns) 7, j in an MSA,
we have to define two substitution score vectors. Assuming that the MSA matrix M
contains ¢ aligned sequences, the substitution vector corresponding to position i is
defined as

X =8 = (8(Mi;i, M), §(Mq;, M3;). ..,
S(Mii, My), §(Mai, M3;), ..., 8(Mi—1i, My)),
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where §(My;, M};) is the score assigned to the substitution (mutation) My; — Mj;.
The substitution vector ¥ = §; corresponding to position j is computed in the same
way. The substitutions with gaps are not considered; hence, if My; — M); is a gap-
substitution then it is excluded from S; and My; — Mj; is also excluded form §; (the
conversely holds for position j). The coefficient C(S;, S;) quantifies the degree of
linear correlation for the evolutionary mutations as observed at the i th column of the
MSA with respect to the mutations occurring at the j th column. Perfectly conserved
columns and columns with more than 10% of gaps are usually excluded from the
analysis since they are uninformative.

This approach requires a similarity matrix to weight residue substitutions
My; — Mj;: that is, the substitution vector is defined in terms of a scoring scheme
8(My;, My;). The substitution scores are generally provided by the McLachlan
similarity matrix [28], which defines residue similarity in terms of their physico-
chemical properties. The choice to use the McLachlan is not critical since there
are several different similarity matrices that perform equally well [9]. Other related
implementations of this method have been proposed (a comprehensive review can
be found in [35]). These approaches differ from the original method [17] essentially
in the measures adopted to weight the co-evolving substitutions.

2.5.2.2 Mutual Information

The mutual information measures the mutual dependence of two variables X, Y. It
is defined as
p(x.y)

IX.Y) =) px.y)log P10 p2(y)’

xeX yeY

2.8)

where p; (x) is the marginal probability distribution of x in X, p,(y) is the marginal
probability distribution of y in Y and p(x,y) is the joint probability of x, y,
i.e., the probability that x and y occur in conjunction. The mutual information is
I(X,Y) = 0if and only if X and Y are independent.

To evaluate the mutual information of two columns 7, j of the MSA, we have to
compute the marginal probabilities of residues occurring in each respective column
and their joint probability. The variable X contains the different residues occurring
in the ith column of the MSA, and p;(x),x € X is the probability of residue x of
being in the ith column, i.e., pj(x) is the frequency of residue x in the ith column
of the MSA. The marginal probabilities of column j are computed in the same
way. The joint probability p(x, y), x € X, y € Y is the frequency of the pair x, y in
the columns i, j of the MSA. In order to compute the mutual information of two
positions i, j, the MSA is filtered from sequences containing a gap in position I
or j. Note that, if either position i or j are perfectly conserved in the MSA, their
mutual information reduces to 0.

A comparison in terms of prediction accuracy between Pearson correlation and
mutual information has been analysed in [14]. According to this analysis, mutual
information shows poor performances in contact prediction. Nevertheless, a more
deep analysis described in [45] shows that the significance of the observed mutual
information results in a much more strong measure for correlated mutations.
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2.5.2.3 Joint Entropy

The joint entropy is a measure of how much entropy (variation) is contained in two
variables X, Y. It is defined as

JX,Y)y=— > plx,y)logp(x,y), (2.9)
xeX,yeY

where p(x, y) is the joint probability of x, y.

To compute the joint entropy of a pair of columns in the MSA, X, Y and p(x, y)
are defined as in Sect.2.5.2.2. Note that for perfectly conserved positions, the joint
entropy reduces to 0. Highly conserved positions are more likely to correspond to
residues buried in the core of the protein, which is the most stable portion of a
protein structure and thus less subjected to evolutionary mutations. Most of the
residue-residue contacts are, in fact, localised in the core of a protein structure.
Therefore, residue pairs with lower joint entropy are more likely to be in contact
than pairs with higher entropy. In this sense, joint entropy is complementary to
Pearson correlation and mutual information, which cannot extract information from
highly conserved columns of the MSA (recall that perfectly conserved position are
excluded from the Pearson analysis and have mutual information equal to 0).

2.5.3 Contact Prediction with Neural Networks

We describe the best performing NN contact predictors CORNET,” PROFcon,'’ and
SAM-TO06con,!! as evaluated in the last five editions of CASP experiments (from
CASP4 in 2000 to CASPS8 in 2008).

All best known implementations of NN contact predictors have some common
similarities. First of all, due to the high variability of protein lengths, the NN input
cannot be set in order to directly encode the overall protein sequence. For this rea-
son, the NN input encodes specific information related to pair of residues and only
coarse-grained global features of the protein are taken into account. This informa-
tion is usually derived from the MSA and from structural/statistical properties of the
protein. We can identify three different kinds of information used in NN input units:

e Local information, derived from the respective local environments of the two
residues;
Global information, derived from the overall protein structure and/or sequence;
Faired-residue statistics, which include statistical properties derived from paired
columns of the MSA.

% http://gper.biocomp.unibo.it/cgi/predictors/cornet/pred -cmapcgi.cgi
10 http://cubic.bioc.columbia.edu/services/profcon/
1 http://compbio.soe.ucsc.edu/SAM_T06/T06-query.html
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All NN predictors described here differ essentially only by the features chosen to
capture these three different kinds of information.

The output layer of the NN contains a unique node, which during the training
phase is set to 1 if the two residues are in contact and to O if they are not. Accord-
ingly, in the prediction phase the output of the NN (a value between O and 1) is
interpreted as the probability that the two input residues are in contact.

In order to filter most of the (uninformative) data related to local contacts, the
set of training examples is computed only from residue pairs whose sequence
separation is larger than some threshold, typically >6. Moreover, to avoid the over-
estimation of non-contacts (which are much more abundant than contacts), the
training examples are usually balanced. The balancing is generally obtained by ran-
domly selecting only a fraction of the negative examples (typically 5%) from each
epoch of the training phase. This technique has the effect from speeding up the
learning process and assures that most of the negative examples are seen by the NN.

The performances and the limits of NN predictors are strictly related to their input
encodings. Different from the secondary structure prediction problem, the contact
probability is not a property that can be inferred locally, since it is a consequence
of repulsive and attractive inter-atomic forces over all the protein sequence. Due to
the limit imposed by the different protein lengths, the NN predictors are forced to
infer global information about the protein structure mostly from local information
only. This is probably the main reason why residue-residue contact prediction is
not as successful as secondary structure prediction. Nevertheless, the NN-based ap-
proaches are actually the state of the art in residue—residue contact prediction and
they provide much better performances than the contact prediction derived from
tertiary structure modeling (for free-modeling domains).

In the following sections, for each NN predictor, we focus on the specific en-
coding of the input information. More detailed description of the implementations
together with the analysis of their performances can be found elsewhere [13,38,45].

2.5.3.1 CORNET

The implementation of CORNET and its performances have been described
in[12,13].

In total, the input encodings requires 1,071 units. Most of the NN input en-
codes paired-residue statistics. For each residue pair i, j (j >i + 6) in the protein
sequence, the NN input encodes local information (a) in terms of sequence con-
servation of positions i, j and in terms of predicted secondary structure of their
immediate neighbours, i.e., the two windows [i — 1,i + 1] and [j — 1, + 1] are
considered. Two distinct paired-residue statistics are used (b): Pearson correlated
mutations and paired evolutionary information as observed in the two neighbouring
windows. No global information is taken into account.

a. For each position in the two neighbouring windows three input units encode the
secondary structure information (alpha/beta/coil). If the secondary structure in
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one position is predicted as alpha, then the corresponding entry in the input unit
is 1 and the remaining two entries are set to 0. The same holds for the other
secondary structure elements. When the neighbouring window is outside the
boundaries of protein, all entries of the secondary structure input units are set
to 0. The sequence variability, as computed in [15], is included only for positions
i and j (2 units).

The evolutionary information for the pair i, j is encoded as an input vector
containing 210 =20 - (20 + 1)/2 elements, one entry for each distinct pair
of aminoacids (symmetric pairs are considered equivalent). Every entry of the
vector contains the frequency of the occurrence of the related pair of amino-acids
in the multiple alignment with respect to positions 7, j. The evolutionary infor-
mation of the neighbours of 7, j is also taken into account. The positions consid-
ered to introduce the evolutionary informationare i —1,j —1),(i +1,j + 1)
(parallel pairings) and (i — 1, j + 1), (i + 1, j — 1) (anti-parallel pairings). The
correlated mutation information (1 unit) is defined as described in (2.7). For per-
fectly conserved positions, the correlation between i and j is set by default to 0
and for positions with more than 10% of gaps to —1.

2.5.3.2 PROFcon

The implementation of PROFcon and its performances have been described in [38].

In total, the input encodings require 738 units. For every pair of residues i, j, the

neural network input incorporates local information from the neighbours of 7, j and
from their connecting segment (a). Several global properties of the protein are taken
into account (b) but not the paired-residue statistics.

(a) The local information of the two residues is derived from two windows of width

nine centered in i, j and from the segment connecting 7, j. The connecting seg-
ment information is captured by taking a window of five consecutive residues
from k — 2 to k 4+ 2 where k = [i — j]. Each residue position in the three
windows is described by the frequency of occurrence of the 20 amino acid
types in that position (20 input units plus 1 more unit to detect when the po-
sition is outside the boundaries of the protein), predicted secondary structure
(4 units, helix/strand/coil and reliability of the prediction at that position as
defined in (2.4)), predicted solvent accessibility (3 units, buried/exposed and
prediction reliability) and conservation weight (1 unit) as defined in (2.5). Some
more features are introduced to better characterise the biophysical properties
of the pair i, j (7 input units: hydrophobic-hydrophobic, polar-polar, charged-
polar, opposite charges, same charges, aromatic-aromatic, other) and if they are
in low-complesity regions, as computed by the SEG software (2 input units).
Global features of the entire connecting segment are also considered: amino
acid composition (20 units), secondary structure composition (4 units) and the
fraction of SEG-low-complexity residues in the whole connecting segment
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(1 node). Finally, the length of the segment connecting i and j is encoded in
11 input units corresponding to sequence separations 6, 7, 8, 9, 10-14, 15-19,
20-24, 25-29, 30-39, 40-49, >49.

(b) This global information includes amino acid composition of the entire protein
(20 units), secondary structure composition (3 units) and protein length (4 units,
lengths 1-60, 61-120, 121-240 and >240).

2.5.3.3 SAM-T06con

This NN contact predictor is included in the protein structure prediction architecture
SAM-TO06. The implementation of the contact predictor and its performances have
been described in [45].

In total, the input encoding of the NN requires 449 units. The local information
(a) is accounted by taking a windows of length five centered in each one of the two
residues. Four distinct paired-residue statistics are used (b) and just the length of the
protein is taken into account as global information (c).

(a) For each position in the two windows, the NN input encodes the amino acids
distribution according to a Dirichlet mixture regularizer [46] (20 units), the
predicted secondary structure and predicted burial [25] (13 and 11 units,
respectively). Moreover, the entropy of the amino acids distribution (1 unit
for each window) and the logarithm of the sequence separation between the two
residues (1 unit) are included.

(b) The NN input encodes four paired-residue statistics (1 input unit for three of

them and 2 for the last one). The most simple statistics counts the number of
different pairs observed in the MSA columns corresponding to the two residues.
Other statistics considered are the joint entropy (2.9), the propensity of contact,
and a mutual information-based statistics (2.8). For these three last measures,
the logarithm of the rank of the statistic’s value is taken into the input, except
for the mutual information for which both the logarithm of the rank and the
exact value are added. The rank of a statistic value is computed as the rank of
the value in the list of values for all pairs of columns.
The propensity for two residue to be in contact is the log odds of a contact
between the residues vs. the probability of the residues occurring independently.
This measure has been slightly modified in order to give more weight to high-
separation with respect to low-separation contacts. Here the mutual information
statistics is introduced by computing its p-value (i.e., the probability of seeing
the observed mutual information by chance). The significance of the mutual
information shows better performances in contact prediction than the statistics
itself, as computed in (2.8). More detailed information about the propensity of
contact and the mutual information-based statistics can be found in [45].

(c) The only global information added is the logarithm of the length of the protein
(1 unit).
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2.6 Conclusions

In this chapter, we presented two different aspects of the protein structure prediction
problem: the prediction of protein secondary structure, which is simpler in its for-
mulation than the protein folding problem and from which sequential annotations
can be derived, and the most demanding problem of residue contact prediction in
proteins. The first relevant message from our analysis of the current state-of-the-art
methods is that a key-role is played by evolutionary information. This knowledge,
which can be exploited by using different multiple sequence alignment methods, is
one of the major resources to identify relevant domains of the protein that are re-
lated to secondary structure elements or packing regions. A second relevant message
is that the most successful predictors are based on machine-learning tools, indicat-
ing that for the described tasks (at least up-to-now) bottom-up approaches compete
favorably with the methods that directly predict the 3D structure of the proteins.
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Chapter 3
Secondary Structure Classification of Isoform
Protein Markers in Oncology

Gregorio Patrizi, Claudio Cifarelli, Valentina Losacco, and Giacomo Patrizi

Abstract The determination of the secondary structure of proteins can be consid-
ered a relevant procedure to characterise isoform protein markers for cancer and
other pathologies. Their recognition is modeled as a classification problem and
solved using a nonlinear complementarity problem restricted to binary variables.
The procedure will be tested on an available data sets of proteins to determine the
differences in the isoforms which affect the pathologies. Recognition accuracy is
attributable to the implementation of a nonlinear binary optimization problem and a
strict statistical methodology that does not require extraneous assumptions.

3.1 Introduction

Proteins assume a well-defined three-dimensional structure, which is determined
principally by their amino acid sequence. Per contra the structure of a protein deter-
mines its function and the sequence of amino acids which compose a given protein
determines its spatial relationship. Also in general, isoforms are different forms of
a protein that may be produced from small differences between alleles of a gene or
from the same gene by alternating splicing which differs in structure, but may also
be due to differences in their spatial characteristics, arising from small differences in
the amino acid chain, or other mechanisms not well defined [6,20,28]. There are 20
different amino acids which form proteins, and their combinations may be presented
in four levels of structures: the primary structure characterized by the sequence of
amino acids, a secondary structure in which their structure is distinguished by the
folding characteristics of the protein, classified by segments of the amino acids in-
dicated by a-helix, a helical type structure, 8-strand, a sheet-like structure, and a
residual class indicated as coil. Often the classification of segments is extended to
eight to ten classes, depending on requirements. The tertiary structure consists of
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the triple angles between successive amino acids, and in the quaternary structure,
proteins are lumped together in bigger composites [7].

Appropriate methods that achieve high sensitivity and specificity levels are re-
quired for early diagnosis of cancer for patient survival, and successful diagnosis
and prognosis of the disease are crucial. Protein markers are proteins usually present
in the blood, and their isoform incidence may vary with oncoming oncological ma-
lignancies, so the analysis of biomarkers in blood and other body fluids is applied in
the detection of the disease by applying various methods of molecular recognition
[29] to determine the relative proportions of different isoforms in the blood [24].
Suitable procedures must be defined to recognise and obtain samples of the vari-
ous isoforms, which can be determined, principally, by electrophoresis, probes, or
protein microarrays [1,34,37].

The relationships that bind consecutive amino acids in a protein may be charac-
terised by suitable class labels indicating the structural relationship between these
amino acids. Using analytical mathematical classification methods, on the basis of
the primary structure of a protein, the secondary structure is predicted and so the
particular isoform is consequently identified. Classification consists of assigning
an entity to a class, in such a way that similar entities are assigned to the same
class. The concept of similarity may be definable a priori and in this case a prob-
lem in taxonomy is formulated [13, 26], or the class and the membership status of
the given entities must be identified on the basis of some previously inferential set
of characteristics of the objects, a process basic to human knowledge [33], and the
classification results that are obtainable will depend on the information structure
provided [21]. For the algorithm that will be described, the average precision of
87% is obtained [5]. At this level of precision, isoform differences of proteins are
detectable; so the approach suggested is novel.

The aim of this chapter is to present a nonlinear complementarity algorithm,
limited to binary variables, to implement a classification algorithm to determine the
secondary structure of isoforms of proteins which constitute markers in oncology
through their secondary structure with a high precision. Thus, the outline of this
chapter is as follows. In the next section, the properties of the structure and the
dynamics of isoforms will be examined, in particular, with regard to their folding
characteristics. In Sect. 3.3, the classification algorithm is presented, while in the
following section the coherent statistical properties of the algorithm will be derived.
In Sect. 3.5, some experimental results regarding isoforms will be presented. Finally
in Sect. 3.6, the relevant conclusions will be drawn.

3.2 Structural Diversity of Isoform

Many biosensors for cancer are being studied and experiments are undertaken [29].
The identification of a group of proteins consistently changing in relation to the
disease is important in cancer research [29] and raises deep problems in deter-
mining the detailed secondary and tertiary structure of these proteins. For instance
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the identification of a protein by determining its primary structure or by empirical
experimental methods may not be sufficient; so a more complete functional analysis
of the isoform of a protein should be assessed by exploiting methods to determine
accurate secondary or tertiary structure. For example, tumor-screening markers for
prostate cancer consist in the identification of acid phosphate; however, a large
number of false-negative results limit the usefulness of this marker [27]. The de-
termination of a set of markers by identifying its secondary structure could result in
higher levels of specificity and sensitivity for the different types of markers. Again
for patients showing serum PSA levels between 4 and 10 mg ml™!, the positive pre-
dictive value is only 18-25% (mean 21%) and the diagnostic precision might be
increased by distinguishing more finely the markers, through determining more pre-
cise structural characteristics [27].

The recognition in situ carcinomas and pre-invasive foci of the primary breast ep-
ithelial tumors, hS100A7 expression often decrease in invading tumor foci; however,
its persistent expression in invasive carcinomas is associated with poor progno-
sis [34]. The hS100A7 (psoriasin) protein belongs to a large multigenic family of
calcium-binding EF-hand S100 proteins [25]. As evolutionary late genes, hS100A7
and hS100A1S5 are highly similar paralogs (93% sequence identity), most similar
among all S100 gene family. These proteins can be distinguished through the appli-
cation of specific antibodies to unique peptide sequences in the amino terminus. The
high homology of these proteins makes them often difficult to distinguish when co-
expressed, so their distinct biological functions compel an analysis of their dual
presence and potential contribution to normal breast and to cancer pathologies,
while both proteins contribute unique functional elements for breast physiology and
tumorigenesis, so the secondary or higher structures could distinguish directly their
functional characteristics.

The taxonomic characterization of proteins and the similarity of isoforms with
respect to disease must be analyzed formally to enact suitable prognosis proce-
dures. For instance bone and soft tissue sarcomas may be treated in some cases,
but it is held that improvements may be expected through global investigations of
the molecular backgrounds associated with the clinicopathologic characteristics of
tumors [15]. Moreover, a human gene (TP73) is a part of the p53 family of tran-
scription factors, which may form multiple protein isoforms. Careful studies of the
functions and the structure of the data available suggest to enrich the characterisa-
tion of the amino-terminally truncated p73 isoforms because of their role in driving
cellular responses to anticancer agents and tumor growth control [4].

3.3 The Classification Algorithm

A set of objects may be specified by a set of common attributes, which are then
assigned to certain classes. The classification problem consists in determining a
mapping from the set of objects, characterised by the set of common attributes, to
the set of classes. To define such a mapping, a training set is required with a set of
objects classified in known classes [18].
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Definition 3.1. A subset of a dataset is termed a training set if every entity in a
given set has been assigned a class label.

Definition 3.2. Suppose there is a set of entities £ and a set P = { Py, P>, . o P}
of subsets of the set of entities,i.e. P; C E,j € J ={1,2,....,n}. AsubsetJ C J
forms a cover of E if Ujej P; = E.If, in addition, for every k, j € J,j # k,
P; N P, = @itis a partition.

Definition 3.3. The dataset is coherent if there exists a partition, which satisfies the
following properties:

1. The relations defined on the training set and in particular the membership classes,
defined over the data set, consist of disjoint unions of the subsets of the partition.

2. Stability: The partition is invariant to additions to the dataset. This invariance
should apply both to the addition of duplicate entities and to the addition of new
entities obtained in the same way as the objects under consideration.

3. Extendibility: If the dimension of the attributes of the set considered is p and
it is augmented, so that the basis will be composed of p + 1 attributes, then
the partition obtained by considering the smaller set will remain valid even
for the extension, as long as this extension does not alter the relations defined
on the dataset. Thus, the labels characterizing the training set are correct under
either dimensional space.

Such a dataset is experimentally stable and precise partitions of the dataset can
be obtained.

Definition 3.4. A dataset is linearly separable if there exist linear functions such
that the entities belonging to one class can be separated from the entities belong-
ing to the other classes. It is pairwise linearly separable, if every pair of classes is
linearly separable. A set is piecewise separable if every element of each class is
separable from all the other elements of all the other classes.

Clearly if a set is linearly separable, it is pairwise linearly separable and piece-
wise separable, but the converse is not true.

Theorem 3.1. If a dataset is coherent then it is piecewise separable.

Proof. By the Definition 3.3, a partition exists for a coherent dataset and therefore
there exists subsets P; € E, j € J ={1,2,...,n} such thatforevery j # k € J,
P; N Py = @, as indicated by Definition 3.2.

A given class is formed from distinct subsets of the partition, so no pattern can
belong to two classes. Therefore, each pattern of a given class will be separable
from every pattern in the other subsets of the partition. Consequently, the dataset is
piecewise separable.

Theorem 3.2. Given a dataset which does not contain two identical patterns as-
signed to different classes, then a correct classifier can be formulated which realizes
the given partition on this training set.
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Proof. The proofis trivial, since if the dataset does not contain two identical patterns
that belong to different classes, each pattern or group of identical patterns can be
assigned to different subsets of the partition. This classifier is necessarily correct
and on this basis subsets can be aggregated, as long as the aggregated subsets of
different classes remain disjoint.

Corollary 3.1. Given that the training set does not contain two or more identical
patterns assigned to different classes, the given partition yields a completely correct
classification of the patterns.

Theorem 3.1 and the distinction introduced in the corollary are relevant to char-
acterize the dataset and the training set to ensure the avoidance of the juxtaposition
property, i.e. two identical patterns belong to different classes, entails that the Bayes
error is zero [8].

The classification algorithm to be formulated may be specified as a combinatorial
problem in binary variables [18,21]. Consider a training set with n patterns repre-
sented by appropriate feature vectors indicated by x; € R?,Vi = 1,2,...,n and
grouped in ¢ classes. An upper bound is selected for the number of barycenters that
may result from the classification, which can be taken “ad abundantiam” as m, or
on the basis of a preliminary run of some classification algorithm. Hence, the initial
barycenter matrix will be a p x mc matrix which is set to zero. The barycenters
when calculated will be written in the matrix by class. Thus, a barycenter of class k
will occupy a column of the matrix between (m(k — 1) + 1) and mk. The feature
vectors can be ordered by increasing class label. Thus, the first 7; columns of the
training set matrix consists of patterns of class 1, from n; + 1 to n, of class 2 and
in general from ny_; + 1 to ng of class k.

Let:

x; € R? : The p dimensional pattern vector of pattern i,
¢ classes are considered, k = 0,1,...,(c — 1). Let the number of patterns in
class cx be indicated by ny, then the n patterns can be subdivided by class so that
n=3Y4{Zonk

o z; €{0,1}{j =1,2,..mc} if z; = 1, then the barycenter vector j € {mk + 1}
,...,m(k + 1)} belonging to recognition class ¢ € {0,...,c — 1},

e y;; € {0, 1}, which indicates that the pattern i has been assigned to the barycenter
J ij =1),

e {; € R” so the sum of the elements of the vectors of the patterns assigned to
barycenter j = {1,2,...,mc},

e M alarge scalar.

Consider the following optimization problem defined in these variables:

mc
MinZ =) "z (3.1)
j=1
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m(k+1)
st. Y =120 Vk=0.1..(c—1:Yi=m_y+1...n 32
j=km+1
n mc
=3 > yij+n=0 (3.3)
i=1j=1
n
Mzj =Y yi;=0 V¥j=12...me (3.4)
i=1
n
=Y Xy =0  Vj=0.1,...mc (3.5)

i=1

—Z(lj—zxiyij) >0 (3.6)

j=1 i=1

T
Xi— — Xj— ————
m(l+1) m(l+1)
Zs=lm+1 Ysh Zs=]m+1 Ysh

mk+1) T
-y (x._ L ) (x._ i )Xy..>0
! m(k+1) ! m(k+1) U=
j=km+1 D rmkmt Yri D rmkmt1 Vri

Vi=1,2,....,n; h=12,...,mc; k,0=0,1,...,c—1; (3.7

z;,yij €1{0,1} (3.8)

The nonlinear optimization problem (3.1)—( 3.8) in binary values will solve the
classification problem for the problem. The nonlinear complementarity problem in
binary variables will be solved through successive linear complementarity problems
in binary variables, using a linear programming technique with parametric variation
in one scalar variable [22] which has given good results [9].

The solution of this optimization problem assigns each pattern to a mean vector,
called a barycenter (z;,j = 1,2,..., mc), whose values are given by the vectors
t;eRP, j = {1,2,...,mc} divided by the number of patterns assigned to that
barycenter. The least number of barycenters (3.1) which will satisfy the stated con-
straints is determined.

The n constraints (3.2) and (3.3) state that each feature vector from a pattern in
given class must be assigned to some barycenter vector of that class. As patterns
and barycenters have been ordered by class, the summation should be run over the
appropriate index sets.

The mc constraints (3.4) impose that no pattern be assigned to a nonexisting
barycenter.

The constraints (3.5) and (3.6) determine the vector of the total sum element by
element assigned to a barycenter, while for the set of inequalities (3.7) indicate that
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each feature vector must be nearer to the assigned barycenter of its own class than
to any other barycenter. Should the barycenter be null, this is immediately verified,
while if it is non zero, this must be imposed. The inequality (3.8) indicates that the
vectors z € R™ and y € R™ are binary.

The solution will determine that each pattern of the training set is nearer to a
barycenter of its own class than to a barycenter of another class. Each barycenter
has the class label of the patterns assigned to it, which will belong by construction
to a single class. This defines a partition of the pattern space.

A new pattern can be assigned to a class by determining its distance from each
barycenter formed by the algorithm and then assigning the pattern to the class of the
barycenter to which it is nearest.

In addition, the optimization problem (3.1)—(3.8) may be formulated as a nonlin-
ear complementarity problem facilitating the proof of convergence and termination
of the algorithm. The nonlinear complementarity formulation is a statement of the
Karush—Kuhn—Tucker condition of an optimization problem [19], and therefore, one
of the solutions of the nonlinear complementarity problem will be a solution to that
optimization problem

To demonstrate that the algorithm will converge to an optimal solution, consider
the domain of the optimization problem to be over RY a convex space.

Fw)>0  F:R¥N >RV (3.9)
w>0 weRY (3.10)
wl F (w) =0, (3.11)

where w comprises all the variables to be determined, the binary variables and the
lagrangian multipliers of the inequalities.
This problem can be written as a variational inequality:

FWT u=w)>0 (3.12)
w>0 (3.13)
Y u>0. (3.14)

The solutions of the two problems are identical and the following results have been
demonstrated [5].

Theorem 3.3. Let K C RY be a non empty, convex and compact set and let F
K — K be a continuous mapping. The following are equivalent:

1. There exists a fixed point w* € K for this mapping,
2. The variational inequality (3.12) and (3.14) has a solution,
3. The nonlinear complementarity problem (3.9)—(3.11) has a solution

Consider the nonlinear complementarity problem (3.9)—(3.11) and limit its solution
to occur within a trust region set, defined by a set of linear inequalities which can
be so indicated:

Dw>d, (3.15)
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such that this set defines a bounding polyhedron of appropriate dimension in the
given space, which may be added to problem (3.1)—(3.8) which can be refor-
mulated in the form of the system (3.9)—(3.11). Thus, consider the application
F : RN — RY and expand it in a Taylor series around a point w’ € RV to get:

F(w)y=F W)+ VF W) w-w), (3.16)

then for any & > 0, there exists a scalar r > 0 such that:

[F ) = F () 4 VF (') (o= w)] < ¢ o=

. Y |w=w| =r 3.17)

Thus, in a small enough neighborhood, the approximation of the nonlinear com-
plementarity problem (3.9)—(3.11) by a linear complementarity problem (LCP) will
result sufficiently accurate; therefore, the following linear approximation can be
solved iteratively:

Mw+q >0 (3.18)
w=>0 (3.19)
wl (Mw + q) =0, (3.20)

where M and q are appropriate linear approximations to the functional forms (3.9)-
(3.11), and by construction, the subspace of the Eucledian space is bounded and
closed; thus, the convergence of the algorithm can now be demonstrated as R" in a
convex space, so take a point w’ € RY such that F (w') > 0 and therefore feasible.
Determine a neighbourhood, as large as possible, which can be indicated by:

Q={wl||w-w|<r}, 3.21)

where r is the coefficient defined above in (3.17).
Suppose that the acceptable tolerance to our solution is &5 so that if (w*)7 F(w*) <
&5, then the solution is accepted. In this case, impose that:

er < —. (3.22)
o

The local convergence of the algorithm is established in the following theorem.

Theorem 3.4. If the linear complementarity problem has a solution w* where all
the trust region constraints are not binding, then such a solution is also a solution
to the nonlinear complementarity problem (3.9)—(3.11) for which F(w*) > 0 and
(w)T F(w*) < es.

Proof. Consider the solution w* of the linear complementarity problem
(3.18)=(3.20). Recall that & > eTw* by construction and without loss of gen-
erality, take o > 1. Consider this solution applied to the nonlinear complementarity
problem, there will result:
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|F (w*) = F )+ VF W) (w*=w)| <elw*—w|| <er<es  (323)

For the complementarity condition
WHTFw*) = w)T (FW*=F(W)+VF@)w* =) < [w*] er <es, (3.24)

which follows by the complementarity condition of the LCP and the Cauchy-—
Schwartz inequality. Further, & > e”w* > ||w*| because of the non-negativity
of the solution variables. Also er < %5, o

wT F(w*) < es. (3.25)

To sum up the problem, (3.1)—(3.8) is solved by expanding the vectorial func-
tions in a Taylor series around the iteration point and expressing the resulting linear
complementarity problem approximation (3.18)—(3.20) of the given nonlinear com-
plementarity problem within a suitable trust region.

Theorem 3.5. The following are equivalent:

1. The nonlinear optimization problem defined by (3.1)—(3.8) has a solution,
2. The nonlinear complementarity problem defined by (3.9)—(3.11) has a solution.
3. The linear complementarity problem defined by (3.18)—(3.20) has a solution.

Proof.

(1) = (2) : The nonlinear complementarity problem (3.9)—(3.11) is just a state-
ment of Kuhn—Tucker necessary conditions for a solution of the nonlinear optimiza-
tion (3.1)—(3.8),

(2) = (3) : Let the nonlinear complementarity problem (3.9)—(3.11) have a solu-
tion. This solution will satisfy the LCP (3.18)—(3.20),

(3) = (1) : Let the LCP (3.18)—(3.20) have a solution with the least number of
barycentres, then it is a linearisation of the necessary Kuhn-Tucker conditions for a
minimum solution to the nonlinear binary problem (3.1)—(3.8).

It has been shown that every linear complementarity problem can be solved by an
appropriate parametric linear programming problem in a scalar variable [22]. The
algorithm will find the solution of the linear complementarity problem, if such a
solution exists, such that |w| < «, for some constant « > 0, or declare that no
solution exists, so bounded. In this case the bound can be increased.

The termination of the classification algorithm may now be proved under a con-
sistency condition.

Theorem 3.6. Given a training set which does not contain two identical patterns
assigned to different classes, then a correct classifier will be determined.

Proof. If there is no juxtaposition of the patterns belonging to different classes, a
feasible solution will always exist to the problem (3.1)—(3.8). Such a solution is
to assign a unique barycentre to every pattern, with a resulting high value of the
objective function.



56 G. Patrizi et al.

Given that a feasible solution exists and that the objective function has a lower
bound formed from the mean vectors to each class, an optimal solution to the prob-
lem (3.1)—(3.8) must exist.

From the results derived above by Theorem 3.5 the thesis follows.

3.4 Statistical Properties of the Classification Algorithm

Consider a training set defined over a suitable representation space, which is piece-
wise separable and coherent; therefore, the aim of this section is to determine the
statistical properties that the set must satisfy so that it may be classified precisely by
applying the algorithm CASTOR (Complementarity Algorithm System for TOtal
Recognition [5]. A classification rule will apply to the dataset, and be just that par-
tition which has been determined from the training set, so that to each entity in the
dataset a class is assigned in line with the required properties. If the training set
and the dataset which includes the training set forms a random sample, then this
classification can be performed to any desired degree of accuracy by extending the
size of the training sample. Sufficient conditions to ensure that these properties will
hold if the dataset and the verification set are determined by non-repetitive random
sampling. Consider therefore a dataset {(x1, y1), (x2, ¥2), ..., (Xn, yn)}, where x;
is the feature vector of pattern i and its membership class is given by y;.

Without loss of generality assume that classification problems of two classes
only are considered, so that eventually a series of such problems must be solved
for a polytomous classification problem. Assume, also, that the patterns are inde-
pendently identically distributed with function F (z), where z; = (x;, y;). Also let
f(x,a) : R* — {0,1} o € I be the classifier, where I" is the set of parameters
identifying the classification procedure from which the optimal parameters must be
selected. The loss function of the classifier is given by:

0 if y=fxa)
L(y,f(x,w))—{1 iy £ fe (3.26)

The misclassification error over the population, in this case, is given by the risk
functional:

R(@) = / L (. f(x.0))dF(x. y) (3.27)

Thus, the value of & € I', say o™ must be chosen which renders the minimum
expression (3.27). Hence, for any sample the misclassification error will be:

* ¢ *
R (@) = ;;L(yi,f(xha ). (3.28)

which will depend on the actual sample, its size n and the classifier used. To avoid
introducing distributional properties on the dataset considered, the empirical risk
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minimization inductive principle may be applied, so that the risk functional R ()
given in (3.27) is replaced by the empirical risk functional R, () given by (3.28)
constructed purely on the basis of the training set, and the function which minimizes

risk is approximated by the function which minimizes empirical risk [31].

Definition 3.5. A dataset is stable, according to Definition 3.3, with respect to a
partition and a population of entities if the relative frequency of misclassification is
Remp (@*) > 0and

nll)rréo Pri{Remp(c™) > €} = 0, (3.29)

where a* is the classification procedure applied, ¢ > 0 for given arbitrary small
value and pr{.} is the probability of the event included in the braces.

By considering smaller and smaller subsets of the attribute space X, if there exists
a relationship between the attributes and the classes of the entities, the frequency of
the entities of a given class for certain of these subsets will increase to the upper
limit of one, while in other subsets it will decrease to a lower limit of zero. Thus
for a very fine subdivision of the attribute space, each subset will tend to include
entities only of a given class.

Definition 3.6. A proper subset Sy of the attribute space X of the dataset will give
rise to a spurious classification if the conditional probability of a pattern that belongs
to a given class ¢ is equal to its unconditional probability over the attribute space.
The dataset is spurious if this holds for all subsets of the attribute space X .

priyvi=c | (yi,xi) NS} = priyi =c | (yi,xi) N X} (3.30)

Theorem 3.7. Consider a training set of n patterns randomly selected, assigned to
two classes, where the unconditional probability of belonging to class one is p. Let a
be a suitable large number and let (n > a). Let the training set form b, barycentres,
then under CASTOR, this training set will provide a spurious classification, if

bn—nz(l—p) n>a (3.31)
Proof. From the Definition 3.6, a classification is spurious if the class assigned to
the entity is independent of the values of the set of attributes considered.

Any pattern will be assigned to the barycentre which is nearest to it, which with-
out loss of generality may be considered a barycentre of class one, being composed
of entities in class one. The probability that the pattern considered will result not of
class one is (1 — p), which is the probability that a new barycentre will be formed.
As the number of patterns are n, the result follows.

Theorem 3.8. Let the probability of a pattern to belong to class one be p, then
the number of barycentres required to partition correctly a subset S, containing
ns > a patterns, which is not spurious, formed from CASTOR algorithm is by < ng,
Vns > a.
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Proof. If the classification is not spurious, by Definition 3.6, without loss of
generality, the following relationship between the conditional and unconditional
probabilities holds for one or more subsets Sg, S, € X, S, N S = @:

privi=1|(xi,y) NSk}t > priyi=1|(xi,yi)N X} =p (3.32)
priyi =01 (x;,y)) NSy} < priyi=0|(xi,y))NX}=(1—-p) (3.33)

Thus on the basis of the algorithm, for the subsets Sx N X the probability that a new
barycentre of class one will be formed because one or more patterns result closer to
a pattern of class zero is less than (1 — p). In the set Sy N X, the probability that
patterns of class one will appear is less than p, so that the probability that a pattern
will be formed is less than p.

Therefore, if the number of patterns present in the subsets Sy N X is n; while
the number of patterns present in the subsets S, N X is ny, the total number of
barycentres for the patterns of class one will be:

bs < (1 — p)ng + pny (3.34)

As ng = ny + ny, there results by < ng, Vg > a.

Corollary 3.2. [31] The Vapnik—Cervonenkis dimension (VC dimension), s(C,n)
for the class of sets defined by the CASTOR algorithm restricted to the classifica-
tion of a non-spurious dataset which is piecewise separable, with ns elements, with
two classes, is less than 2", if ng > a.

Proof. By Theorem 3.8, the number of different subsets formed is by < ng < 2"
whenever ny > a and the dataset is not spurious.

Theorem 3.9. [8] Let C be a class of decision functions and ,; be a classifier
restricted to the classification of a dataset which is not spurious and returns a value
of the empirical error equal to zero based on the training sample (z1,22, . .., Zn)-
Thus, Inf yec L(Y) = 0, i.e. the Bayes decision is contained in C. Then,

priL(y}) > e} < 25(C,2n)27%" (3.35)

By calculating bounds on the VC dimension, the universal consistency property can
be established for this algorithm applied to the classification of a dataset which is
not spurious.

Corollary 3.3. [18] A non-spurious classification problem with a piecewise sepa-
rable training set is strongly universally consistent.
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3.5 Experimental Results

In this implementation, the amino acid sequences of any protein is subdivided into
segments of 13 amino acids. Each amino acid is coded as a five-bit string, and num-
bered from 1 to 20, so that each pattern vector is composed of 65 binary elements
and the 66th element is assigned the class label of the amino acid corresponding
to the class of the median one of the segment, element number 7. The training set
used is indicated by the protein data bank (PDB) [3], which defines a pattern vector
corresponding to that chosen segment of the amino acid sequence of the protein.
No multiple alignment information is included. In the subsequent segment, 13 con-
secutive amino acids are considered, starting from the second one of the preceding
segment and adding as a 13th segment the amino acid subsequent to the final one
of the immediately previous segment defined. Two consecutive patters differ in the
first and last element. Formally, a window of 13 amino acids is considered, and each
pattern is formed by shifting the window of one position. Particular techniques are
applied to initialise and terminate the patterns of a protein, and the class assigned
to each pattern is always the folding class belonging to the seventh element in the
pattern [5].

Consider all the sequences of the proteins which are included in a training set and
compare them pairwise to determine the number of alignment amino acids common
to the two proteins. An appropriate procedure is used to obtain the largest number
of aligned amino acids by sliding the two sequences up and down and also inserting
pieces of the string, according to strict rules [3]. For the similarity classification of
the proteins in the training set, the largest alignment value is determined from the
percentage of amino acids aligned between all proteins in the training set, and eight
convenient classes of similitude are defined by setting suitable intervals of alignment
percentage values. In Table 3.1, the similarity classes are shown together with the
percentage interval of alignment scores or similitude which indicates interval of the
largest percentage value of alignment of the protein in the training set.

For the purpose of this analysis, without loss of generality, proteins belonging
to an isoform class are defined as proteins belonging to similarity class 7. This is
taken as a necessary condition but is not a sufficient condition, since isoforms may
have very different similarity, in which case the markers can be easily identified by
traditional methods. Here, it is important to determine isoforms of proteins, which

Table 3.1 Similarity classes
and percentage similarity
among proteins

Similarity class Similitude

<0.30
0.30-0.40
0.40-0.50
0.50-0.60
0.60-0.70
0.70-0.80
0.80-0.90

>0.90

~N O R W~ O
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have been identified as biomarkers, whose classification by traditional methods are
insufficient to predict accurately the potential oncological malignities [15,27, 34].
Thus, by identifying their secondary structure a segmentation of the set of proteins
may be obtained to identify precise markers from the subsets of isoforms.

Training was performed for the dataset, considering a training set of over six mil-
lion patterns and 2,500 proteins, which defines the verification set. Each amino acid
in a segment was classified one by one to belong to a folding types «-helix, 8-strand
or coil. For every segment obtained from the dataset, the median amino acid was
classified (or recognised in a verification set) so that as the median of each segment
shifts by one residue, all the amino acids in the protein are iteratively recognised.
The size of the segment could be modified to avoid structural diversity in identical
subsequences, but in all the experiments carried out, the algorithm CASTOR con-
verged in training to a completely correct assignment; from this information, it is
believed that the behavior of the protein can be predicted more precisely and derive
from the secondary structure the tertiary and quaternary structure, which is an on-
going research project. However, the prediction of the secondary structure can be
used to characterise precisely the potential biomarkers to be considered.

To evaluate the algorithm proposed, a number of major procedures were used for
comparison which are PHD [23]: Profiled network from Heidelberg, DSC [16]: the
Discrimination of Secondary structure CLASS, PRED [11]: PREDATOR, NNSSP
[36]: The Nearest Neighbour Secondary Structure Prediction, MUL (unpublished):
The Mulpred algorithm ZPRED [38], and CONS [7]. All the classification algo-
rithms used for comparison apply multiple alignments to the formation of the pattern
vectors [23], since the inclusion of such information has long been recognized as
a way to improve prediction accuracy. The increased precision obtained in most
classification algorithms is 10-20% depending on the particular information used
[14,16]. However, the use of multiple alignments has been examined [5], and it is
doubtful if this procedure is legitimate, or is rather biased, since the information on
the protein to be classified may be contained in the alignment information and there-
fore the classification information is already known in part. The expected accuracy
of the prediction procedures is higher than it should be, if this information were not
considered. Per contra, the alignment information may help local classifications but
if there are nonlinear interactions, the bias may give an incorrect result.

To test the result of the classification and comparison to other major classification
algorithms, from the verification set of randomly selected patterns, those with sim-
ilarity level of 7 present in all the indicated classification algorithm were selected
as reported [7] and the results are given in Table 3.2. Moreover, in Table 3.2, for all
the proteins in the verification set the standard classification precision measure was
applied, indicated as Q3 which can be calculated:

> ie(n,E,c} number of residues predicted correctly

03 = (3.36)

Y ietH.E,c) number of residues in class i

where H stands for «-helix, £ for B-strands, and C for coils. Each protein con-
sidered is defined by an alphanumeric label of four elements standard for all the
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Table 3.2 Mean and Q3 classification precision of the Cuff 513 verification set by similarity
classes (56 proteins with CASTOR and traditional procedures selected)

Name CASTOR Sim.class PHD DSC PRED MUL NNSSP Zpred CONS Length

leca  1.000 7 0.808 0.772 0.801 0.705 0.764  0.602 0.801 136
4rxn  1.000 7 0.648 0.611 0.611 0.611 0.648 0.574 0.666 54
Irbp  1.000 7 0.729 0.695 0.569 0.511 0.563  0.482 0.712 174
6tmn  1.000 7 0.585 0.651 0.639 0.579 0.607  0.585 0.620 316
4xia  0.988 7 0.778 0.743 0.732 0.722 0.773  0.692 0.778 393
Icel  0.983 7 0.651 0.623 0.637 0.584 0.637 0.579 0.658 433
Imns 0.982 7 0.714 0.636 0.723 0.614 0.675 0.561 0.714 228
lvnc  0.979 7 0.685 0.663 0.644 0.623 0.652  0.583 0.691 576
lcei 0977 7 0.823 0.788 0.752 0.800 0.847  0.764 0.835 85
3chy 0.972 7 0.835 0.765 0.914 0.828 0.898  0.695 0.898 128
Icom 0.971 7 0.798 0.689 0.647 0.588 0.638  0.579 0.773 119
lern  0.956 7 0.413 0.587 0456 0.413 0456 0391 0456 46
lhxn 0.964 7 0.761 0.723 0.700 0.652 0.681 0.576 0.742 210
2cab  0.957 7 0.757 0.757 0.628 0.625 0.730  0.613 0.746 256
Iedl  0.909 7 0.750 0.950 0.450 0.300 0.800  0.250 0.850 20
Ibam 0.896 7 0.600 0.605 0.585 0.490 0.715  0.510 0.675 200
1fc2  0.894 7 0.651 0.720 0.418 0.511 0.720  0.465 0.651 43
Ieyx  0.865 7 0.765 0.721 0.727 0.607 0.645  0.645 0.765 158
2bop 0.852 7 0.600 0.564 0.670 0.529 0.423  0.552 0.635 85
1pyt  0.803 7 0.776 0.712 0.755 0.606 0.691 0.638 0.797 94
2asr  0.574 7 0.866 0.866 0.823 0.542 0.852  0.485 0.859 142
Ipdo 0.500 7 0.860 0.790 0.790 0.736 0.821 0.643 0.852 129

major protein data bases and full details of everyone can be obtained from any of
the databases. To analyze and determine precisely the secondary structure of the
isoforms, an accurate classification algorithm CASTOR was applied.

The predicted secondary structure is accurate and higher than the one obtained by
other procedures. The only exceptions are for 2 proteins 2asr (chemotaxis: the three-
dimensional structure of the aspartate receptor from Escherichia coli) and 1pdo
(phosphotransferase: phosphoenolpyruvate-dependent phosphotransferase system).
Considering that there are 2,506 protein patterns in the verification set, and 1,556
result in the similarity class 7, the mean prediction accuracy is 87%, while the Q5
mean measure resulted 88% [5].

From Table 3.2, the results indicate that the secondary structure can be deter-
mined from the sequences irrespective of the species and the type of cell considered,
since fundamental proteins such as histones or ribosomes and other types were all
correctly classified. The innovatory aspect of this research is that the proteins of
class 7 include far more different protein families than just structural and enzymatic
proteins. Identification of the secondary structure might therefore lead to a novel
method to study biological functions in addition of a method to predict precisely
oncological malignancies, by defining appropriate markers. From the theory devel-
oped in the previous sections and the experimental results given elsewhere [5], it
should be evident that proteins that arise infrequently are recognizable precisely,
and their analysis should allow to distinguish the most appropriate typology of
similar proteins.
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Table 3.3 Mean and Q3 classification precision of isoforms from the Cuff 513 verification set by
similarity classes (56 proteins with CASTOR and traditional procedures selected)

Name CASTOR Sim.class PHD DSC PRED MUL NNSSP Zpred CONS Length

lgal, 0.907 7 0.591 0.569 0.489 0.462 0.639 0500 0.612 186
lgal; 0.981 7 0.698 0.698 0.689 0.689 0.741 0.637 0.732 116
Lscu; 0917 7 0.768 0.743 0.727 0.677 0.719  0.661 0.752 121
Iscu, 0.938 7 0.802 0.777 0.777 0.691 0.827  0.654 0.814 81
Iscuz  0.967 7 0.845 0.765 0.812 0.798 0.879  0.758 0.879 149
2dln; 0.918 7 0.616 0.547 0.726 0.698 0.575  0.561 0.643 73
2dln;  0.962 7 0.678 0.714 0.678 0.666 0.726  0.547 0.714 84
2adm  0.962 7 0.538 0.615 0.526 0.485 0.603 0479 0.597 169
2adm  0.962 7 0.652 0.643 0.754 0.537 0.680  0.574 0.685 216
ldpg; 0.961 0 0.875 0.711 0.779 0.717 0.830  0.694 0.875 177
ldpg, 0.902 0 0.730 0.633 0.642 0.659 0.665  0.594 0.698 308
Irec; 0.812 3 0.686 0.735 0.696 0.705 0.754  0.686 0.715 102
Irec,  0.907 3 0.783 0.771 0.819 0.759 0.867  0.650 0.843 83

Table 3.3 shows the classification precision of CASTOR for six different families
of proteins and, again, the higher accuracy of this classification algorithm com-
pared with other procedures is noted. 1Gal is a flavoprotein oxydoreductase of the
glucose constituted by 581 amino acids involved in the respiratory chain of the ener-
getic pathways of the cells evidenced in the PDB database in two slightly different
forms: 1Scu is an ATP-binding protein tetramer, a ligase, also known as succinyl-
CoA synthetase. Its catalytic activity is involved in metabolic processes. 2DlIn is a
ligase with a protein chain of 306 residues involved in the biosynthesis of peptido-
glycans of the cell wall in Escherichia coli. Further, 2Adm is a methyltransferase
that counts 385 amino acids that catalyzes methylations involved in nucleic acid
binding. 1Dpg is an oxydoreductase constituted by a dimer (485 amino acids) that
enters in the early stages of the pentose phosphate pathway. Finally, 1rec (or recov-
erin) is a calcium-binding protein with 185 amino acids that belongs to the EF hand
superfamily; it serves as a calcium sensor in vision.

In Table 3.4, the small differences in the primary structure which give rise to
alternative sequences in the database can be considered as isoforms of the basic
protein, although their length may be quite different.

For this algorithm, the variation in the precision of the classification among given
classes of isoforms is very limited and the overall value is high, within experimental
variation. The secondary structure may differ among the isoforms of a protein and
precise structures are determined.

The folding characteristics of the protein and its isoforms are reported. The
database indications of the secondary structure were obtained from the database
specified. In many cases, the protein considered in the database is different from the
isoforms reported, obtained from the PDB database, hence all the estimated fold-
ing characteristics obtained with CASTOR algorithm should be compared with the
results indicated in the databases.
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Table 3.4 Folding

rol ) Protein/isoform Length Helix Strand Other (coil)
characteristics of the protein

given in EMBL-EBI and lgal 581 54 26 66
isoforms entries in the PDB lgal 186 19 7 23
databases according to the lgals 116 10 7 18
CASTOR algorithm selected) Iscu? 676 61 39 68
1scuy 121 9 7 11
Iscu 81 9 6 12
Iscuy 149 9 9 15
2dlin, 306 23 16 32
2dlin, 73 7 6 8
2dling 84 7 9 9
2adm 385 29 27 47
2adm 169 15 13 31
2adm 216 14 16 21
ldpg; 485 50 17 19
ldpg; 177 16 9 7
1dpg, 308 32 12 11
Irec; 185 35 6 7
Irec, 102 29 4 6
lrec; 83 7 5 5

42 chains of proteins included

The isoform folding characteristics are for the major part not given in the
databases; therefore, to provide a partial comparison, the only given folding val-
ues for the main protein is compared to the results determined with the CASTOR
algorithm.

Further analysis should be made to determine exactly the differences that occur,
and this research will be available in the near future. Nevertheless, the results here
indicated are deemed important as it is evident, even with these partial results, that
the secondary structure of the isoforms differ and their functional characteristics
will differ.

Thus, it is useful to determine the secondary structure of proteins and isoforms so
that the markers identified have unique characteristics and can be used as a standard
for diagnosis.

Further the prediction of secondary structure among isoforms may lead to a better
comprehension of the biological effect of mutations among the isoforms of a protein.
This might permit to determine more accurately the relationship of the biological
functions of isoforms and the protein of the class.

The analysis of secondary structures might lead to the identification of subtypes
among oncologic markers, defining also their biological implication. It is known that
subtypes of markers already identified are related to more precise prognosis and
to the eventual clinical evolution of the malignancy. The differences between two
isoforms may be as small as just one amino acid with, at the moment, totally unpre-
dictable effects on life, unless all the functional dependencies are fully determined.

This approach permits the effects to be determined more precisely, even if there
are only small modifications in the primary structure.
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There are many individual risk factors that have been identified for breast cancer.
Mutations within BRCA1 or BRCA2 have been considered, and the majority of
inherited breast cancer are attributed to these factors [10].

The study of hypoxic factors in BRCA1, BRCA2, and BRCAX breast cancers
has been carried out to study clinicopathological parameters and the intrinsic breast
cancer phenotypes. BRCA1 tumors correlated with basal phenotypes, various re-
ceptors, and absence of lymph node metastasis. The aggressive nature of BRCA1
and basal-type tumours may be partly explained by an enhanced hypoxic drive
and hypoxia-inducible factors (HIF) driven degradations because of suppressed and
aberrantly located FIH (factor inhibiting HIF) expressions. This may have important
implications, as these tumours may respond to compounds directed against certain
factors [35].

Since the gene encoding BRCA1 was first cloned in 1994, researchers have
sought to establish the molecular basis for its linkage to breast and ovarian cancer.
As universal functions for this protein have emerged, questions persist concerning
how its disruption can elicit cancer in a tissue- and gender-specific manner. A func-
tional interrelationship between BRCA1 and estrogen signaling may be involved in
breast tumorigenesis [30].

There are at least five isoforms of the protein BRCA which play an important
role in breast cancer pathologies, specified as BRCA1, BRCA2, BRCA3, BRCA4,
and BRCAS. However, the function of each isoform is not clear as indicated above
and so the identification of each isoform, which is determined by electrophoresis or
other probes or protein microarrays, should be integrated by the secondary structure
to make the isoform unique with respect to the functional characteristics.

In Table 3.5, the dimensions and the properties of the sequence alignment are
given. Comparison of the primary sequence of the isoforms by pair indicates ex-
tensive variations concerning the properties of the residues regarding the identity
of residues, their similarity, and the recourse to gaps to obtain the highest value of
similarity.

The comparative similarity of the folding characteristics for any pair of isoforms
can differ extensively even for similar isoforms since the type, gaps to obtain the
maximum similarity, and number of different residues must be considered.

The application of the CASTOR algorithm on the primary structure of each iso-
form yields the folding structure indicated. In particular, it is important to note that
although BRCA1 and BRCA2 differ in one residue, the effect of this modification
yields a markedly different folding structure, which may provide part of the justifi-
cation for the different effects on the malignancies of these isoforms.

The biological function of the BRCA gene products indicated have been studied
for over a decade, and the predisposition of their role in cancer should be studied
[32]. On the other hand, it is reaffirmed that the significance prevalence of heredi-
tary breast cancer in women (both BRCA1- and BRCA2- associated disease) plays
an important role. Moreover, the triple-negative immunophenotype is an imperfect
surrogate measure of germlike BRCA status [2].

In ulterior important research endeavours, the study of the pathways of the ma-
lignancies and the management of the pathologies associated [12, 17] are pursued
with respect to many different factors that may influence the pathologies. However
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Table 3.5 Folding characteristics of the protein given in EMBL-EBI and isoforms
entries in the PDB databases according to the CASTOR algorithm

Isoform BRCA1 BRCA2 BRCA3 BRCA4 BRCAS
Length 1,860 1,860 760 1,846 720
BRCAI - Identity % - 99.9 40.6 98.9 38.6
— Similarity % 99.9 40.6 98.9 38.6
— Gaps % 0.0 59.4 1.1 61.4
— Differences residues N 1 - 20 -
BRCA2 - Identity % - - 40.6 98.9 37.7
— Similarity % - 40.6 98.9 37.7
— Gaps % - 59.4 1.1 62.3
— Differences residues N - - 20 -
BRCA3 - Identity % - - 39.9 94.7
— Similarity % - - 39.9 94.7
— Gaps % - - 60.1 5.3
— Differences residues N - - - 40
BRCAA4 - Identity % - - - 37.7
— Similarity % - - - 37.7
— Gaps % — - = 62.3

— Differences residues N — - - _

Folding segments

Helix folds 167 164 71 147 78
Strands folds 82 83 38 72 41
Other folds 199 198 69 177 73

in many cases these factors may be multi-determined, and the complete analysis of
these aspects should be studied. There may be some important dependencies be-
tween different factors, so the effect of a modification may be undetermined, and
this will give rise to random-like effects, as reported in many studies.

A more complete analysis and a precise formalization of the various factors that
may affect malignancies should be pursued. This will require a detailed study of
the phenomenon so that the predictions of the outcome can be determined with a
given precision, and therefore, there will arise a certain confidence in the role of
each aspect.

To carry out these types of studies, the utilization of the prediction of the sec-
ondary structure of the proteins should be considered as a useful stage toward the
recourse to tertiary and quaternary structures and a more precise formulation of the
factors to be examined.

3.6 Conclusions

A classification process called CASTOR is described. It is based on a nonlinear
binary optimization algorithm as an implementation of a model which is derived
on a strict statistical methodology avoiding extraneous assumptions, which could
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limit the precision. Thus, through this implementation the secondary structure of
some isoform proteins can be identified and recognised as biomarkers to oncological
pathologies. This study has examined the potential benefits of secondary structure
predictions of proteins to permit a more precise formulation of isoforms and con-
sider the differential effects of each alternative isoform on the outcome.

To determine protein markers in oncology, the isoforms of possible proteins must
be distinguished and then their incidence on the pathology must be ascertained. For
instance, various BRCA isoforms may be determined correctly, but the selection
process could hide variants of some of these isoforms, as is evident in the results
presented, which may have differential effects on breast cancer.
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Chapter 4
Protein Fold Recognition Using Markov
Logic Networks

Marenglen Biba, Stefano Ferilli, and Floriana Esposito

Abstract Protein fold recognition is the problem of determining whether a given
protein sequence folds into a previously observed structure. An uncertainty com-
plication is that it is not always true that the structure has been previously ob-
served. Markov logic networks (MLNs) are a powerful representation that combines
first-order logic and probability by attaching weights to first-order formulas and us-
ing these as templates for features of Markov networks. In this chapter, we describe
a simple temporal extension of MLNSs that is able to deal with sequences of log-
ical atoms. We also propose iterated robust tabu search (IRoTS) for maximum a
posteriori (MAP) inference and Markov Chain-IRoTS (MC-IRoTS) for conditional
inference in the new framework. We show how MC-IRoTS can also be used for
discriminative weight learning. We describe how sequences of protein secondary
structure can be modeled through the proposed language and show through some
preliminary experiments the promise of our approach for the problem of protein
fold recognition from these sequences.

4.1 Introduction

Protein fold recognition is the problem of determining whether a given protein
sequence folds into a previously observed structure. An uncertainty complication
is that it is not always true that the structure has been previously observed. There-
fore, there is strong motivation for developing machine learning methods that can
automatically infer models from already observed sequences in order to classify
new instances.

Dealing with sequential data has become an important application area of
machine learning. Such data are frequently found in computational biology, speech
recognition, activity recognition, information extraction, etc. One of the main
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problems in this area of machine learning is assigning labels to sequences of
objects. This class of problems has been called sequential supervised learning [7].
Probabilistic graphical models and in particular hidden Markov models (HMM)
have been quite successful in modeling sequential phenomena. However, the main
weaknesses for this model are: (1) It handles sequences of flat alphabets only (i.e.,
sequential objects have no structure) and (2) It is hard to express dependencies in
the input data. Recently, to overcome the first problem, the work in [16] introduced
logical hidden Markov models (LoHMM), an extension of HMM to handle se-
quences of logical atoms. However, the second problem still remains for LoHMM.
For this reason, conditional random fields (CRFs) [12] have been proposed. CRFs
are discriminatively trained graphical models instead of generatively trained such
as HMMs. CRFs can easily handle non-independent input features and represent
the conditional probability distribution P (Y |X), where X represents elements of
the input space and Y of the output space. For many tasks in computational biology,
information extraction or user modeling CRF have outperformed HMM:s.

One of the problems where sequences exhibit internal structure is modeling
sequences of protein secondary structure. These sequences can be seen as se-
quences of logical atoms (details about logic can be found in [8]). For example, the
following sequence of the TIM beta/alpha-barrel protein represents a sequence of
logical atoms:

st('SB’, null, medium), st('SB’, plus, medium), he(h(right, alpha),long),
st('SB’, plus, medium), he(h(right, alpha), medium), ...

Helices and strands are represented, respectively, by he(type,length) and
st(orientation, length). Traditional HMMs or CRFs would ignore the structure
of the symbols in the sequence loosing therefore the structure that each symbol
implies or would take into account all the possible combinations (of orientation and
length) into account that could lead to a combinatorial explosion of the number of
parameters.

The first approach to dealing with sequences of logical atoms by extending CRFs
is that of [10] where the authors propose TildeCRF that uses relational regres-
sion trees in the gradient tree boosting approach [7] to make relational abstraction
through logical variables and unification. The authors showed that TildeCRF out-
performed previous approaches based on LoHMMs such as [6, 10].

Many real-world application domains are characterized by both uncertainty and
complex relational structure. Statistical learning focuses on the former, and rela-
tional learning on the latter. Statistical relational learning [9] aims at combining
the power of both. One of the representation formalisms in this area is Markov
Logic which subsumes both finite first-order logic and probabilistic graphical mod-
els as special cases [23]. Upon this formalism, Markov logic networks (MLNs) can
be built serving as templates for constructing Markov networks (MNs). In Markov
Logic a weight is attached to each clause and learning an MLN consists of struc-
ture learning (learning the clauses) and weight learning (setting the weight of each
clause).
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In this chapter, we describe Stochastic MLLNs, a simple model based on MLNs
that is able to deal with sequences of logical atoms. We also propose two algo-
rithms for inference and learning in SMLNs based on the iterated robust tabu search
metaheuristic. Finally, we model in SMLNs the problem of protein fold recognition
from sequences of protein secondary structure and show through some preliminary
experiments the promise of our approach.

The chapter is organized as follows: in Sect. 4.2 we introduce MNs and MLNSs,
in Sect. 4.3 we describe existing learning approaches for ML N, Sect. 4.4 introduces
Stochastic MLNSs, Sect. 4.5 introduces the iterated local search (ILS) and robust tabu
search (RoTS) metaheuristic and the satisfiability solver iterated robust tabu search
(IR0TS) that combines both and describes how IRoTS can be used for Maximum
a posteriori (MAP) inference in MLNSs instead of the Viterbi algorithm, Sect. 4.6
introduces Markov chain IRoTS (MC-IRoTS) for performing inference in MLNSs,
Sect. 4.7 describes how protein sequences can be modeled in SMLNs. Section 4.8
presents some preliminary experiments, and Sect. 4.9 concludes with future work.

4.2 Markov Networks and Markov Logic Networks

A Markov Network (or Markov random field) represents a model for the joint
distribution of a set of variables X = (X1,Xz,...,X) € x [5] (in this chapter, we
deal only with discrete features and variables). The model is composed of an undi-
rected graph G and a set of potential functions. There is a node for each variable and
a potential function ¢ for each clique in the graph (a clique in an undirected graph
G is a set of vertices V, such that for every two vertices in V, there exists an edge
connecting the two). A potential function is a non-negative real-valued function of
the state of the corresponding clique. The joint distribution defined by an MN is
given by the following:

1
PX=x)=- [ ]oe ). 4.1)
k

where x(; is the state of the kth clique (i.e., the state of the variables that appear in
that clique). The partition function, denoted by Z, is:

Z =Y T]ocxuy) (4.2)
X€X k

MNss are often represented as log-linear models, by replacing each clique potential
with an exponentiated weighted sum of features of the clique state. This replacement
gives the following:

1
P(X =x) = _ exp > wif(x) (4.3)
J
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A feature f may be any real-valued function of the state. The focus of this chapter
is on binary features, f; € {0, 1}. Thus, if we translate from the potential-function
form, the model will have one feature for each possible state x; of each clique and
its weight will be log(¢ (x(x;). This representation is exponential in the size of the
cliques, but, however, we can specify a much smaller number of features in a more
compact representation than the potential-function form. This is the case when large
cliques are present and MLNs try to take advantage of this.

A first-order knowledge base (KB) can be considered as a set of hard constraints
on a set of possible worlds: if a world violates a single formula, it will have zero
probability. The idea in Markov logic is to soften these constraints: when a world
violates a formula in the KB it will be less probable, but not impossible. The fewer
formulas a world will violate, the more probable it will be. Each formula has an
attached weight that represents how hard a constraint it is. A higher weight of a
formula means there is a greater difference in log probability between a world that
satisfies that formula and one that does not, all other things being equal.

An MLN [23] T is a set of pairs (F;;w;), where F; is a formula in first-
order logic (FOL) and w; is a real number. Together with a finite set of constants
C={c1,c2,...,cp} it defines a MN Mr,c as follows:

1. There is a binary node in Mr,c for each possible grounding of each predicate
appearing in T and the value of the node is 1 if the ground predicate is true, and
0 otherwise.

2. There is one feature in Mr,c for each possible grounding of each formula F; in T
and the value of this feature is 1 if the ground formula is true, and 0 otherwise.
The weight w; of the formula F; in T becomes the weight of this feature. There
is an edge between two nodes of Mr,c if and only if the corresponding ground
predicates appear together in at least one grounding of a formula in T.

An MLN can be viewed as a template for constructing MNs. The probability
distribution over possible worlds x defined by the ground MN Mr.c is given by:

F
P(X =x) = %exp (Z win; (x)) , “4.4)

i=1

where F is the number of formulas in T and #; (x) is the number of true groundings
of F; in x. When formula weights increase, an MLN will resemble a purely logical
KB, and in the limit of all infinite weights it becomes equivalent to it.

The focus of this chapter is on MLNs with function-free clauses assuming
domain closure in order to ensure that the MNs generated will be finite. In this case,
the groundings of a formula are formed by replacing the variables with constants in
all possible ways.

A simple example of a first-order KB is given in Fig. 4.1. Statements in FOL are
always true. The following FOL formulas state that if someone drinks heavily, he
will have an accident, and that if two people are friends, they either both drink or
both don’t drink.
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Vx  HeavilyDrinks(x) = CarAccidents(x)
Vx,y Friends(x,y) = (HeavilyDrinks(x) < Heavily Drinks(x))

Fig. 4.1 Example of a knowledge base in first-order logic

1.8 Vx HeavilyDrinks(x) = CarAccidents(x)
0.7 Vx,y Friends(x,y) = (HeavilyDrinks(x) < HeavilyDrinks(x))

Fig. 4.2 Example of a knowledge base in Markov logic

1.8 Vx HeavilyDrinks(x) = CarAccidents(x)
0.7 Vx,y Friends(x,y) = (HeavilyDrinks(x) < HeavilyDrinks(x))

Constants: Paolo (P) and Cesare (C)

CarAccidents(P) CarAccidents(C)

Fig. 4.3 Partial construction of the nodes of the ground Markov network

Since FOL statements, in practice are not always true, it is necessary to soften
these hard constraints. For example, in practice it is not always true that if someone
drinks heavily, he will have a car accident. In Fig. 4.2, it is presented a KB in Markov
Logic. As it can be seen, formulas have weights attached and statements are not
always true any more. Their degree of truth depends on the weight attached. For
instance, the first formula expresses a stronger constraint than the second.

The simple KB in Fig. 4.2 together with a set of constants defines an MN. For
example, suppose we have two constants in the domain that represent two persons,
Paolo and Cesare. Then, the first step in the construction on the MN is given by
the grounding of each predicate in the domain according to the constants of the
domain. Partial grounding is shown in Fig. 4.3 where only groundings of HDrinks
and CarAcc are considered. The complete nodes are shown in Fig. 4.4 where all the
groundings of the predicates represent nodes in the graph.

In the next step, any two nodes whose corresponding predicates appear to-
gether is some ground formula are connected. For example, in Fig. 4.5, the nodes
HDrinks(P) and CarAcc(P) are connected through an arc, because the two predi-
cates appear together in the grounding of the second formula. The complete graph
is presented in Fig. 4.6.
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1.8 Vx  HeavilyDrinks(x) = CarAccidents(x)
0.7 Vx,y Friends(x,y) = (HeavilyDrinks(x) < HeavilyDrinks(x))

Constants: Paolo (P) and Cesare (C)

CGranser) e (e

CarAccidents(P) CarAccidents(C)

Fig. 4.4 Complete construction of the nodes of the ground Markov network
1.8 Vx HeavilyDrinks(x) = CarAccidents(x)
0.7 Vx,y Friends(x,y) = (HeavilyDrinks(x) < Heavily Drinks(x))

Constants: Paolo (P) and Cesare (C)

Fig. 4.5 Connecting nodes whose predicates appear in some ground formula

1.8 Vx Heavily Drinks(x) = CarAccidents(x)
0.7 Vx, y Friends(x,y) = (HeavilyDrinks(x) < Heavily Drinks(x))

Constants: Paolo (P) and Cesare (C)

Heavily Drinks(P) -

Cimic)

Fig. 4.6 Connecting nodes whose predicates appear in some ground formula

4.3 Learning Approaches for MLNs

The first attempt to learn MLNs structure was that in [23], where the authors
used an inductive logic programming (ILP) system to learn the clauses and then
learned the weights by maximizing pseudo-likelihood [1]. In [17] another method
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was proposed that combines ideas from ILP and feature induction of Markov net-
works. This algorithm, which performs a beam or shortest first search in the space
of clauses guided by a weighted pseudo-log-likelihood (WPLL) measure, outper-
formed that of [23]. Recently, in [14] a bottom-up approach was proposed in order
to reduce the search space. This algorithm uses a propositional Markov network
learning method to construct template networks that guide the construction of can-
didate clauses. In this way, it generates fewer candidates for evaluation. Recently, a
structure learning algorithm based on ILS was proposed in [2] and it was shown to
improve over those in [14, 17]. For every candidate structure, in all these algorithms
the parameters that optimize the WPLL are set through limited-memory BFGS al-
gorithm [30]. L-BFGS approximates the second derivative of the WPLL by keeping
a running finite-sized window of previous first derivatives. Another algorithm that
works in a discriminative fashion was proposed in [3] which scores structures by
conditional likelihood and learns parameters by maximum likelihood.

Learning MLNSs in a discriminative fashion has produced much better results for
predictive tasks than generative approaches as the results in [25] show. In this work,
the voted-perceptron algorithm was generalized to arbitrary MLNs by replacing
the Viterbi algorithm with a weighted satisfiability solver. The voted perceptron
is a special case in which tractable inference is possible using the Viterbi algo-
rithm [4]. The new algorithm is gradient descent with a most probable explanation
(MPE) approximation to the expected sufficient statistics (true clause counts). These
could vary widely between clauses, causing the learning problem to be highly ill-
conditioned and making gradient descent very slow. In [15] a preconditioned scaled
conjugate gradient approach is shown to outperform the algorithm in [25] in terms
of learning time and prediction accuracy. This algorithm is based on the scaled con-
jugate gradient method and very good results are obtained with a simple approach:
per-weight learning weights, with the weight’s learning rate being the global one
divided by the corresponding clause’s empirical number of true groundings. The
scaled conjugate gradient approach was originally proposed in [31] for training
neural networks.

4.4 Temporal Extension of Markov Logic

In stochastic processes, the world evolves and a ground predicate’s truth value de-
pends on the time step . In order to model in MLNs the evolution of objects and
relations, we need to represent time. To achieve this, we introduce the concept of
temporal predicates which have an additional time argument. Time is represented as
a non-negative integer variable, and all predicates are of the form P(xy,...,xy,1)
where ¢ denotes time.

We define stochastic Markov logic networks (SMLNs) as a set of MLN formulas
defined on the temporal predicates. In addition, we borrow from linear temporal
logic (LTL) [19] the concept of temporal operator and introduce succ, a time pred-
icate (similar to the operator next in LTL) that represents the successor of a time
step ¢, i.e., succ(1,2), succ(2,3), and so on.
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In principle, the structure of SMLNs could be learned in a similar fashion as
for MLNs. This task could be made easier by imposing further restrictions such
as the Markovian assumption, or through the use of declarative bias. This can be
performed using the structure learning algorithms proposed in [2,3]. In this chapter,
we assume the structure of the model to be fixed and try to learn optimal parameters
for discriminative training of SMLNs for the problem of protein fold recognition
from sequences of secondary structure.

4.5 MAP Inference Using Iterated Robust Tabu Search

In logic, one of the main problems is determining whether a KB is satisfiable (SAT
problem), i.e., if there is a truth assignment to ground atoms that make the KB
true. This problem is NP-complete. However, stochastic local search (SLS) methods
have made great progress toward efficiently solving SAT problems with hundreds of
thousands of variables in a few minutes. The optimization variant of SAT is MAX-
SAT where the problem is to find a truth assignment that maximizes the number of
satisfied clauses (unweighted MAX-SAT) or if clauses have an associated weight,
maximize the total weight of the satisfied clauses (weighted MAX-SAT). Both,
unweighted and weighted MAX-SAT are NP-complete problems. First-order prob-
lems can also be successfully solved through SLS methods by performing first a
propositionalization and then applying a SAT solver.

Some of the currently best performing SLS algorithms for MAX-SAT are tabu
search (TS) algorithms, dynamic local search and ILS. Here, we will describe a
combination of a variant of TS with ILS to build a hybrid SAT solver that we will
use for inference and learning in SMLNGs.

4.5.1 Iterated Local Search and Robust Tabu Search

Many widely known and high-performance local search algorithms make use of
randomized choice in generating or selecting candidate solutions for a given com-
binatorial problem instance. These algorithms are called SLS algorithms [11] and
represent one of the most successful and widely used approaches for solving hard
combinatorial problem. Many “simple” SLS methods come from other search meth-
ods by just randomizing the selection of the candidates during search, such as
randomized iterative improvement (RII) and uniformed random walk. Many other
SLS methods combine “simple” SLS methods to exploit the abilities of each of
these during search. These are known as hybrid SLS methods [11]. ILS is one of
these metaheuristics because it can be easily combined with other SLS methods.
One of the simplest and most intuitive ideas for addressing the fundamental issue
of escaping local optima is to use two types of SLS steps: one for reaching local op-
tima as efficiently as possible, and the other for effectively escaping local optima.
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ILS methods [11, 13] exploit this key idea and essentially use two types of search
steps alternatingly to perform a walk in the space of local optima with respect to
the given evaluation function. The algorithm works as follows: the search process
starts from a randomly selected element of the search space. From this initial can-
didate solution, a locally optimal solution is obtained by applying a subsidiary local
search procedure. Then each iteration step of the algorithm consists of three major
substeps: first, a perturbation method is applied to the current candidate solution s;
this yields a modified candidate solution s” from which in the next step a subsidiary
local search is performed until a local optimum s” is obtained. In the third step, an
acceptance criterion is used to decide from which of the two local optima s or s’ the
search process is continued. The algorithm can terminate after some steps have not
produced improvement or simply after a certain number of steps. The choice of the
components of the ILS has a great impact on the performance of the algorithm.

ROoTS [27] is a special case of tabu search. In each search step, the RoTS algo-
rithm for MAX-SAT flips a non-tabu variable that achieves a maximal improvement
in the total weight of the unsatisfied clauses (the size of this improvement is also
called score) and declares it tabu for the next # steps. The parameter #¢ is called the
tabu tenure. An exception to this tabu rule is made if a more recently flipped vari-
able achieves an improvement over the best solution seen so far (this mechanism
is called aspiration). Furthermore, whenever a variable has not been flipped within
a certain number of search steps (we use 10n, n being the number of variables),
it is forced to be flipped. This implements a form of long-term memory and helps
prevent stagnation of the search process. The tabu status of variables is determined
by comparing the number of search steps that have been performed since the most
recent flip of a given variable with the current tabu tenure.

4.5.2 Iterated Robust Tabu Search

The original version of IRoTS for MAX-SAT was proposed in [26]. Algorithm 1
starts by independently (with equal probability) initializing the truth values of the
atoms. Then it performs a local search to efficiently reach a local optimum CLg
using RoTS. At this point, a perturbation method based again on RoTS is applied
leading to the neighbor CL- of CLg and then again a local search based on RoTS
is applied to CL{. to reach another local optimum CLY. The accept function de-
cides whether the search must continue from the previous local optimum or from
the last found local optimum CLY. (accept can perform random walk or iterative
improvement in the space of local optima).

Careful choice of the various components of Algorithm 1 is important to achieve
high performance. For the tabu tenure, we refer to the parameters used in [26] which
have proven to be highly performant across many domains. At the beginning of
each local search and perturbation phase, all variables are declared non-tabu. The
clause perturbation operator (flipping the atoms truth value) has the goal to jump
in a different region of the search space where search should start with the next
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Algorithm 1 Iterated Robust Tabu Search

Input: C: set of weighted clauses in CNF, BestScore: current best score)
CL¢ = Random initialization of truth values for atoms in C;
CLg = LocalSearchg,rs (CLg);
BestAssignment = CLg;
BestScore = Score(CLy);
repeat

CL’¢ = Perturbp,rs (BestAssignment);

CL’s = LocalSearchg,75 (CL ¢);

if Score(CL’g) > BestScore then

BestScore = Score(CL’g)

end if

BestAssignment = accept(BestAssignment,CL’s);
until two consecutive steps have not produced improvement
Return BestAssignment

iteration. There can be strong or weak perturbations which means that if the jump
in the search space is near to the current local optimum the subsidiary local search
procedure LocalSearchr,rs may fall again in the same local optimum and enter
regions with the same value of the objective function called plateau, but if the jump
is too far, LocalSearchr,rs may take too many steps to reach another good solution.
In our algorithm, we use a fixed number of RoTS steps 91/10 with tabu tenure n/2
where n is the number of atoms (in future work, we intend to dynamically adapt the
nature of the perturbation). Regarding the procedure LocalSearchr,ts, it performs
ROTS steps until no improvement is achieved for n?/4 steps with a tabu tenure
n/10 + 4. The accept function always accepts the best solution found so far. The
difference between our algorithm and that in [26] is that we do not dynamically
adapt the tabu tenure and do not use a probabilistic choice in accept.

4.5.3 MAP Inference Using IRoTS

MAP inference in MNs means finding the most likely state of a set of output
variables given the state of the input variables. This problem is NP-hard. For
discriminative training, the voted perceptron is a special case in which tractable in-
ference is possible using the Viterbi algorithm [4]. In [25], the voted perceptron was
generalized to MLNSs by replacing the Viterbi algorithm with a weighted SAT solver.
This algorithm is gradient descent, and computing the gradient of the conditional
log-likelihood (CLL) requires the computation of the number of true groundings for
each clause. This can be performed by finding the MAP state which can be com-
puted by dynamic programming methods. Since for MLNs, the MAP state is the
state that maximizes the sum of the weights of the satisfied ground clauses, this
state can be efficiently found using a weighted MAX-SAT solver. The authors in
[25] use the MaxWalkSat solver [24]. In this chapter, we propose to use IRoTS as a
MAX-SAT solver and show how this algorithm can be applied not only to MLN’s but
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also to the proposed extension of SMLNs. IRoTS is one the best weighted MAX-
SAT solvers and MAP inference in SMLNSs can benefit from it.

Given a SMLN in the form of clauses based on temporal predicates, includ-
ing a time predicate and a set of evidence atoms, the KB to be used as input for
IROTS is formed by constructing all groundings of clauses in the SMLNSs involving
query atoms. Then the evidence atoms are replaced by their true values followed by
simplification. Once the SMLN has been propositionalized, it is a natural input to
IROTS.

4.6 Markov Chain Iterated Robust Tabu Search

In this section, we describe how IRoTS can be combined with Markov Chain Monte
Carlo (MCMC) to uniformly sample from the space of satisfying assignments of a
clause. We show how the proposed algorithm MC-IRoTS can be used for inference
and learning in SMLNs.

4.6.1 Conditional Inference Through MC-IRoTS

Conditional inference in graphical models involves computing the distribution of
the query variables given the evidence and it has been shown to be #P-complete
[29]. The most widely used approach to approximate inference is using MCMC
methods and in particular Gibbs sampling. One of the problems that arises in real-
world applications is that an inference method must be able to handle probabilistic
and deterministic dependencies that might hold in the domain. MCMC methods are
suitable for handling probabilistic dependencies but give poor results when deter-
ministic or near deterministic dependencies characterize a certain domain. On the
other hand, logical ones such as satisfiability testing cannot be applied to proba-
bilistic dependencies. One approach to deal with both kinds of dependencies is that
of [21] where the authors use SampleSAT [28] in a MCMC algorithm to uniformly
sample from the set of satisfying solutions. As pointed out in [28], SAT solvers find
solutions very fast but they may sample highly non-uniformly. On the other hand,
MCMC methods may take exponential time, in terms of problem size, to reach the
stationary distribution. For this reason, the authors in [28] proposed to use a hybrid
strategy by combining random walk steps with MCMC steps, and in particular with
Metropolis transitions. This permits to efficiently jump between isolated or near-
isolated regions of non-zero probability, while preserving detailed balance.

We use the same approach as the authors did in [21], but instead of SampleSAT,
for MC-IRoTS we propose to use SampleIRoTS, which performs with probability
p aRoTS step and with probability 1 — p a simulated annealing (SA) step. We used
fixed temperature annealing (i.e., Metropolis) moves. The goal is to reach as fast as
possible a first solution through IRoTS and then exploit the ability of SA to explore
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a cluster of solutions. A cluster of solutions is usually a set of connected solutions,
so that any two solutions within the cluster can be connected through a series of flips
without leaving the cluster. In many domains of interest, solutions exist in clusters
and it is highly useful to explore such clusters without leaving them. SA has good
properties in exploring a connected space; therefore, it samples near-uniformly and
often explores all the neighboring solutions.

Through MC-IRoTS, we can perform conditional inference given evidence to
compute probabilities for query predicates. These probabilities can be used to make
predictions from the model.

4.6.2 Discriminative Learning by Sampling with MC-IRoTS

Discriminative approaches to weight learning try to optimize the CLL. Precon-
ditioned scaled conjugate gradient (PSCG) is the state-of-the-art discriminative
training algorithm for MLN and it was shown in [15] to outperform the voted per-
ceptron. PSCG is a conjugate gradient method that uses samples from MC-SAT
to approximate the Hessian for MLNs instead of the line search to choose a step
size. This approach is also known as scaled conjugate gradient and was originally
proposed in [20] for training neural networks. PSCG, in each iteration, takes a step
in the diagonalized Newton direction (for details, see [15]). Here, we propose to
use MC-IRo0TS to sample for approximating the Hessian for SMLNs. The goal is
to use samples from MC-IRo0TS that can serve as good estimates for computing the
Hessian.

4.7 Modeling Protein Sequences in SMLNs

In this section, we describe how sequences of protein secondary structure can be
modeled in SMLNSs, how to learn model parameters from the data, and how to make
predictions from the model.

4.7.1 Model Construction and Weight Learning

The approach we follow is quite simple: we write a few formulas that represent the
structure of the domain and then from the training sequences we learn the weights
of these formulas.

The dataset we refer to is that used in [10]. The data consist of logical sequences
of the secondary structure of protein domains:

beginSequence.
strand('SB’, null, medium).
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strand('SB', plus, medium).
helix(right, alpha, long).

strand('SB’, plus, medium).
helix(right, alpha, medium).
strand('SB', plus, short).
endSequence.

A simple SMLN that can be used to model these data can be the following:

/Ipredicates

Helix(wing, typeh, length, time)
Strand(types, pm, length, time)
Succ(time, time)

/lrules

Helix(Right, +tyl, +11, +t1) A Succ(t2,t1) A Helix(Right, +ty2, +12, 12)
Helix(Right, +tyl, +11, +t1) A Succ(t2,t1) A Strand(typl, +pl, +lel, 12)
Strand(typl, +pl, +lel, +t1) A Succ(t2,tl) A Helix(Right, +ty2, +12,12)
Strand(typl, +pl, +lel, +t1) A Succ(12, t1) A Strand(typl, +p2, +le2,12)

Strand(typl, +pl, +lel, +t1) A Succ(t2,tl) A Strand(typ2, +p2, +le2, 12)

The first three expressions represent the temporal predicates (Helix and Strand)
and the time predicate Succ. The rules express temporal relations between Helix and
Strand. The first rule expresses that a helix is followed by another helix, the second
rule states that helix is followed by a strand and so on. The last two rules differ in
that one states that strand is followed by another strand of the same type, while the
other states that two strands of different types appear in the sequence one following
the other. The + operator is used to express that the argument should be grounded,
so that a weight is learned for each grounded formula. If multiple variables are
preceded by +, a weight is learned for each combination of their values.

It must be noted that this model is not the only one. We have stated some regular-
ities that in general are true but we would like to learn weights that can express
how strong each rule it is. A reasonable model would also be that of learning
a rule for each grounding of the argument that expresses the type of strand, i.e.,
Strand(+typl, pl,lel, t1). We plan to experiment this in the future.
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4.7.2 Making Predictions from the Learned SMLNs

There are several ways in which a SMLNs can be used to make predictions regarding
sequences. One way is to predict the sequence with highest probability (this is per-
formed in other models by the Viterbi algorithm). In SMLNS, this means performing
MAP inference given the evidence. For example, given a certain sequence and a
query predicate (helix or strand), we can perform MAP inference through IRoTS
and return the positive query atoms. Then we can count how many of the returned
positive query atoms are true in the sequence and consider these atoms correctly
classified. If there are several models (one for each protein fold), a majority vote
can be used to assign the sequence, i.e., the sequence belongs to the model that
gives the highest number of correctly classified atoms for that sequence.

Another way to get a classifier is to get the probability of query atoms given
evidence through MC-IRoTS. In this case, CLL (conditional log-likelihood aver-
aged over all the groundings of the query predicate where predicted probability p is
summed for positive atoms and 1 — p for negative ones) can be used to assign the
sequence to the fold that produces the highest CLL.

4.8 Experiments

The goal of the experiments is to show that SMLNs are suitable for modeling and
learning with sequences of logical atoms and that reasonable predictions can be
made based on this model.

4.8.1 Dataset and Systems

We implemented the algorithms IRoTS and MC-IRoTS as extensions of the alchemy
system [18] and used the implementation of PSCG in this package to learn weights
for the SMLN.

The protein fold classification task is to predict one of the five most populated
SCOP folds of alpha and beta proteins (a/b). We will use for our experiments only
two folds from the dataset in [10] with a subset of the whole sequences. (Our goal
here is to show how SMLNs can be used for sequence modeling/learning and not
to boost performance or compare with other methods. For this reason we did not
optimize any parameters for the learning and inference algorithms). We randomly
extracted 80 sequences (totally 160) from each of the folds TIM beta/alpha-barrel
(c1) and NAD(P)-binding Rossmann-fold (c2). We divided this set in the training
set (60 sequences) and test set (20 sequences). The classification problem is a multi-
class one. We will learn for each fold a model based on the SMLN presented in the
previous section and will test both models on the 40 test sequences (thus for each
model, we have 20 positive and 20 negative testing sequences).
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In order to learn weights for the SMLN presented in the previous section we
used PSCG with MC-IRoTS as a sampler. We performed two weight learning
experiments, one for each protein fold giving in input the same SMLN. We used
100 iterations for PSCG with 50 samples for MC-IRoTS and the lazy version of
inference in alchemy [22].

4.8.2 Results

After learning an SMLN on each training set of 60 sequences, we performed MAP
inference through IRoTS with both learned models on the two testing sets. For each
sequence, every model produced positive query atoms, and we checked the number
of predicted positive atoms that were true in the sequence. The sequence was as-
signed to the model that inferred the highest number of correct predictions. From the
40 test sequences, 31 sequences were correctly assigned to the belonging fold, four
sequences were predicted equally by both models and five sequences were classi-
fied incorrectly. For the equally predicted sequences, we decided to use MC-IRoTS
to perform inference over these sequence to get CLL for each one. Surprisingly,
using the probability for each atom in the sequence, all these cases were correctly
classified; thus we achieved a classification rate of 35 out of 40.

These preliminary results are promising, showing that the modeling power of
the described approach is suitable for the problem of protein fold recognition.
Moreover, the model can be used to make predictions which seem reasonably good.
However, further exploration of alternative experimental evaluation could help to
perform extensive experiments and compare with state-of-the-art methods such that
in [10].

4.9 Conclusions

MLNSs are a powerful representation that combines first-order logic and probability
by attaching weights to first-order formulas and viewing these as templates for fea-
tures of MNSs. In this chapter we have described SMLNS, a simple extension of MLN
that is able to deal with sequences of logical atoms. We also propose iterated robust
tabu search (IRoTS) for MAP inference in SMLNs and Markov Chain-IRoTS (MC-
IRoTS) for conditional inference in SMLNs. We show how MC-IRoTS can also
be used for discriminative weight learning in SMLNs. As application domain, we
have described how sequences of protein secondary structure can be modeled in
SMLNSs and have shown through some preliminary experiments the promise of our
approach.

Regarding SMLNs in general, we would like to apply this simple extension of
MLNs to more complex domains where stochastic relational problems must be han-
dled. Natural application domains for SMLNs are areas such as Systems Biology
and Gene Regulatory Networks where networks involved in stochastic processes
need to be modeled.
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Chapter 5
Mining Spatial Association Rules for Composite
Motif Discovery

Michelangelo Ceci, Corrado Loglisci, Eliana Salvemini,
Domenica D’Elia, and Donato Malerba

Abstract Motif discovery in biological sequences is an important field in
bioinformatics. Most of the scientific research focuses on the de novo discovery of
single motifs, but biological activities are typically co-regulated by several factors
and this feature is properly reflected by higher order structures, called composite
motifs, or cis-regulatory modules or simply modules. A module is a set of motifs,
constrained both in number and location, which is statistically overrepresented and
hence may be indicative of a biological function. Several methods have been studied
for the de novo discovery of modules. We propose an alternative approach based on
the discovery of rules that define strong spatial associations between single motifs
and suggest the structure of a module. Single motifs involved in the mined rules
might be either de novo discovered by motif discovery algorithms or taken from
databases of single motifs. Rules are expressed in a first-order logic formalism and
are mined by means of an inductive logic programming system. We also propose
computational solutions to two issues: the hard discretization of numerical inter-
motif distances and the choice of a minimum support threshold. All methods have
been implemented and integrated in a tool designed to support biologists in the
discovery and characterization of composite motifs. A case study is reported in
order to show the potential of the tool.

5.1 Introduction

In biological sequence analysis, a motif is a nucleotide or amino-acid sequence pat-
tern which appears in a set of sequences (DNA, RNA or protein) with much higher
frequency than would be expected by chance. This statistical overrepresentation is
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expected to be indicative of an associated biological function. Examples of motifs
include DNA- and RNA-binding sites for regulatory proteins, protein domains and
protein epitopes.

DNA and RNA motifs are key to deciphering the language of gene regulatory
mechanisms and, in particular, to fully understand how gene expression is regu-
lated in time and space. For this reason, de novo (or ab initio) motif discovery, i.e.
identifying motif sites (signals) in a given set of unaligned biological sequences,
has attracted the attention of many biologists. However, they are also difficult to
identify, since motifs often produce weak signals buried in genomic noise (i.e. the
background sequence) [8]. This problem is known to be NP-hard [22], thus it is also
an interesting arena for computer scientists.

Most of the motif discovery tools reported in the literature are designed to dis-
cover single motifs. However, in many (if not most) cases, biological activities
are co-regulated by several factors. For instance, transcription factor-binding sites
(TFBSs) on DNA are often organized in functional groups called composite motifs
or cis-regulatory modules (CRM) or simply modules. These modules may have a
biologically important structure that constrains both the number and relative posi-
tion of the constituent motifs [34].

One example, among many that could be cited, is ETS-CBF, a cis-regulatory
module constituted by three single motifs, ©A, uB and CBF (core-binding fac-
tor). Both ©A and pB are binding sites for two transcription factors belonging
to the ETS proteins family, Ets-1 and PU.1, respectively. CBF is a protein that is
implicated in the activation of several 7' and myeloid cell-specific promoters and
enhancers. Enhancers are cis-regulatory sequences which control the efficiency of
gene transcription from an adjacent promoter. ETS-CBF is a common compos-
ite motif of enhancers implicated in the regulation of antigen receptor genes in
mouse and human. A comparative study of the tripartite domain of the murine
immunoglobulin p heavy-chain (IgH) enhancer and its homologous in human
has demonstrated that in both species the activity of the gene enhancer is strictly
dependent on ETS-CBF [12].

Therefore, it is of great interest to discover not only single motifs but also the
higher order structure into which motifs are organized, i.e. the modules. This prob-
lem is also known as composite [38] or structured [32] motif discovery.

Over the past few years, a plethora of single motif discovery tools have been
reported in the literature (see the book by Robin et al. [36]). They differ in three
aspects:

1. The representation of a pattern that constitutes a single motif,
2. The definition of overrepresentation of a motif pattern and
3. The search strategy applied to pattern finding.

A single motif can be represented either by a consensus sequence, which contains
the most frequent nucleotide in each position of the observed signals, or by a po-
sition weight matrix (PWM), which assigns a different probability to each possible
letter at each position in the motif [46].
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Both consensus sequences and PWMs are derived by the multiple alignments of
all the known recognition sites for a given regulatory factor and represent the speci-
ficity of a regulatory factor for its own recognition site. They refer to a sequence
that matches all the sequences of the aligned recognition sites very closely, but not
necessarily exactly. In a consensus sequence, this concept is expressed by notations
that indicate which positions of the consensus sequence are always occupied by
the same nucleotide (exact match) and which one can vary and how (allowed mis-
match), without affecting the functionality of the motif. Considering the example
DNA consensus sequence T[CT]NG{A}A, it has to be read in the following way:
the first, fourth and sixth position in the consensus are always occupied by T, G and
A, where T stands for thymidine, G for guanine and A for adenine; no mismatches
are allowed in these positions. The second nucleotide in the sequence can be a
cytosine (C) or alternatively a T. This mismatch does not affect the effectiveness
of the recognition signal. The third position of the consensus can be occupied by
any of the four nucleotide bases (A, T, C, G). At the fifth position any base can be
present except A.

A PWM of a DNA motif has one row for each nucleotide base (A, T, C, G) and
one column for each position in the pattern. This way, there is a matrix element for
all possible basis at every position. The score of any particular motif in a sequence
of DNA is the sum of the matrix values for that motif’s sequence. This score is the
same of the consensus only when the motif perfectly matches the consensus. Any
sequence motif that differs from the consensus in some positions will have a lower
score depending on the number and type of nucleotide mismatches.

In contrast to these sequence patterns, spatial patterns have also been investi-
gated [19], where spatial relationships (e.g. adjacency and parallelism) and shapes
(e.g., a-helices in protein motifs) can be represented.

The overrepresentation of motif patterns has been defined in several ways. In
some motif-discovery algorithms, a score is defined for each pattern (e.g., p-value
[47] or z-score [43]), and the observed motif scores are compared with expected
scores from a background model. In other algorithms, two separate values are com-
puted when evaluating motifs, one concerning the support, or coverage, of a motif,
and the other concerning the unexpectedness of a motif [35]. A third approach is to
use a measure of information content [25] of discovered patterns.

Search strategies can be categorized as enumerative (or pattern-driven) and
heuristic (or sequence-driven). The former enumerate all possible motifs in a given
solution space (defined by a template pattern) and test each for significance, while
the latter try to build a motif model by varying some model parameters such that
a matching score with sequence data is maximized. In general, enumerative algo-
rithms find optimal solutions for discrete representations of relatively short motifs,
but do not scale well to larger motifs and continuous models. TEIRESIAS [35]
is more sophisticated in using information about the relative occurrences of sub-
strings; therefore, it can be used to discover discrete representations of longer
motifs. Among the heuristic-based approaches, the most common is the expectation-
maximization (EM) [5], which is a deterministic local search algorithm. EM may
converge very fast, but the optimality of the returned point strongly depends on
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the starting point (seed). For this reason, it is used in combination with some
randomization techniques in order to escape from a poor local optimum even if
the chosen seed is bad [6].

Algorithms for the de novo discovery of modules, together with the parameters
of their constituent motifs [14, 41, 52], are more recent. These algorithms, which
exploit some form of spatial information (e.g., spatial correlation) on constituent
motifs to identify a module, are considered particularly promising since they may
offer both improved performance over conventional discovery algorithms of sin-
gle motifs and insight into the mechanism of regulation directed by the constituent
motifs [26]. However, in order to restrict the search space, they make some as-
sumptions which limit their flexibility in handling variations of either the number
or length of the constituent motifs or the spacing between them. For instance, the
hierarchical mixture (HMx) model of CISMODULE [52] requires the specification
of both the length of the module and the total number of constituent motif types.
Moreover, CISMODULE does not capture the order or precise spacing of multiple
TFBSs in a module. Segal and Sharan [41] propose a method for the de novo dis-
covery of modules consisting of a combination of single motifs which are spatially
close to each other. Despite the flexibility of their method in handling modules,
they assume that a training set (with positive and negative examples of transcrip-
tional regulation) is available in order to learn a discriminative model of modules.
The method EMC module proposed by Gupta and Liu [14] assumes a geometrical
probability distribution on the distance between TFBSs.

Although a recent study [18] has shown a significant improvement in predic-
tion success when modules are considered instead of isolated motifs, it is largely
believed that without some strong form of inductive bias,! methods for de novo
module discovery may have performance close to random. For this reason, another
line of module discovery methods has been investigated (e.g., Cister [13], Module-
Searcher [1], MScan [20], Compo [39]), which takes a list of single motifs as input
along with the sequence data in which the modules should be found. Single motifs
are taken from motif databases, such as TRANSFAC [15] and JASPAR [37], and the
challenges concern discovering which of them are involved in the module, defining
the sequence of single motifs in the module and possibly discovering the inter-motif
distances.’

Module discovery methods can be categorized according to the type of frame-
work, either discrete (e.g., CREME [42]) or probabilistic (e.g., Logos [51]), adopted
to model modules. In a discrete framework, all constituent motifs must appear in a
module instance. This simplifies inference and interpretation of modules, and of-
ten allows exhaustive search of optimal constituent motifs in a sequence window

! The inductive bias of a learning algorithm is the set of assumptions that the learner uses to predict
outputs given inputs that it has not encountered. It forms the rationale for learning since without it
no generalization is possible [29].

2 The distance is typically evaluated as the number of nucleotides which separate two consecutive
single motifs. More sophisticated distance measures might be used in future works if significant
progress is made in the prediction of DNA folding.
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of a given length. Conversely, a probabilistic framework is more expressive, since it
relaxes the hard constraints of discrete frameworks and associates each module with
a score which is a combination (e.g., the sum) of motifs and distance scores. Issues
of probabilistic frameworks are local optima and interpretability of results.

A recent assessment of eight published methods for module discovery [21] has
shown that no single method performed consistently better than others in all situa-
tions and that there are still advances to be made in computational module discovery.
In this chapter, we propose an innovative approach to module discovery, which can
be a useful supplement or alternative to other well-known approaches. The idea is
to mine rules which define “strong” spatial associations between single motifs [27].
Single motifs might either be de novo discovered by traditional discovery algorithms
or taken from databases of known motifs.

The spatial relationships considered in this work are the order of motifs along
the DNA sequence and the inter-motif distance between each consecutive couple of
motifs, although the mining method proposed to generate spatial association rules
has no limitation on both the number and the nature of spatial relationships. The as-
sociation rule mining method is based on an inductive logic programming (ILP) [31]
formulation according to which both data and discovered patterns are represented in
a first-order logic formalism. This formulation also facilitates the accommodation
of diverse sources of domain (or background) knowledge which are expressed in a
declarative way. Indeed, ILP is particularly well suited to bioinformatics tasks due
to its ability both to take into account background knowledge and to work directly
with structured data [30]. This is confirmed by some notable success in molecular
biology applications, such as predicting carcinogenesis [44,45].

The proposed approach is based on a discrete framework, which presents several
advantages, the most relevant being the straightforward interpretation of rules, but
also some disadvantages, such as the hard discretization of numerical inter-motif
distances or the choice of a minimum support threshold. To overcome these issues,
some computational solutions have been developed and tested.

The specific features of this approach are:

e An original perspective of module discovery as a spatial association rule mining
task;

e A logic-based approach where background knowledge can be expressed in a
declarative way;

e A procedure for the automated selection of some parameters which are difficult
to properly set;

e Some computational solutions to overcome the discretization issues of discrete
approaches.

These features provide our module discovery tool several advantages with
respect to competitive approaches. First, spatial association rules, which take
the form of A = C, provide insight both into the support of the module (repre-
sented by A A C) and into the confidence of possible predictions of C given A.
Predictions may equally concern both properties of motifs (e.g., its type) and spa-
tial relationships (e.g., the inter-motif distance). Second, the declarative knowledge
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representation facilitates the development and debugging of background knowledge
in collaboration with a domain expert. Moreover, knowledge expressed in a declar-
ative way is re-usable across different tasks and domains, thus easing the burden of
the knowledge engineering effort. Third, the resort to first-order (or relational) logic
facilitates the representation of input sequences, whose structure can be arbitrarily
complex, and increases the explanatory power of discovered patterns, which are
relatively easy to interpret for domain experts. Fourth, computational solutions
devised for both the problem of selecting a minimum support threshold and the
problem of discretizing numerical data fulfill the twofold goal of improving the
quality of results and designing tools for the actual end-users, namely biologists.
Further significant advantages are:

e No prior assumption is necessary either on the constituent motifs of a module or
on their spatial distribution;

e Specific information on the bases occurring between two consecutive motifs is
not required.

This work also extends our previous study [48], where frequent patterns are
generated by means of the algorithm GSP [3]. The extension aims to: (1) find asso-
ciation rules, which convey additional information with respect to frequent patterns;
(2) discover more significant inter-motif distances by means of a new discretiza-
tion algorithm which does not require input parameters; (3) automatically select the
best minimum support threshold; (4) filter redundant rules; (5) investigate a new
application of an ILP algorithm to a challenging bioinformatics task.

The chapter is organized as follows. Section 5.2 presents a formalization of the
problem, which is decomposed into two subproblems: (1) mining frequent sets of
motifs, and (2) mining spatial association rules. Input and output of each step of the
proposed approach are also reported. Section 5.3 describes the method for spatial
association rule mining. Section 5.4 presents the solution to some methodological
and architectural problems which affect the implementation of a module discovery
tool effectively usable by biologists. Section 5.5 is devoted to a case study, which
shows the application of the developed system. Finally, conclusions are drawn.

5.2 Mining Spatial Association Rules from Sequences

Before proceeding to a formalization of the problem, we first introduce some general
notions on association rules.

Association rules are a class of patterns that describe regularities or co-
occurrence relationships in a set 7 of homogeneous data structures (e.g., sets,
sequences and so on) [2]. Formally, an association rule R is expressed in the form
of A= C, where A (the antecedent) and C (the consequent) are disjoint conditions
on properties of data structures (e.g., the presence of an item in a set). The meaning
of an association rule is quite intuitive: if a data structure satisfies A, then it is
likely to satisfy C. To quantify this likelihood, two statistical parameters are usually
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computed, namely support and confidence. The former, denoted as sup(R, T), es-
timates the probability P(A A C) by means of the percentage of data structures
in T satisfying both A and C. The latter, denoted as conf(R, T), estimates the
probability P(C|A) by means of the percentage of data structures which satisty
condition C, out of those which satisfy condition A. The task of association rule
mining consists in discovering all rules whose support and confidence values exceed
two respective minimum thresholds. When data structures describe spatial objects
together with their spatial relationships, mined association rules are called spatial,
since conditions in either the antecedent or the consequent of a rule express some
form of spatial constraint.

We now give a formal statement of the module discovery problem, which is
decomposed into two subproblems as follows:

1. Given: A set M of single motifs, a set 7" of sequences with annotations about
type and position of motifs in M and a minimum value t,,;,,
Find: The collection S of all the sets Si, Sz, ..., S, of single motifs such that,
for each §;, at least t,,;, sequences in 7" contain all motifs in S;.

2. Given: A set S € S and two thresholds o,,,;, and Ky,
Find: Spatial association rules involving motifs in S, such that their support and
confidence are greater than o,,;, and k,;,, respectively.

Single motifs in M can be either discovered de novo or taken from a single motif
database. Each S; € S is called motif set. The support set of S; is the subset Ts; of
sequences in 7" such that each sequence in Ts; contains at least one occurrence of
each motif in S;. According to the statement of subproblem (1) |Ts; | > Tin. Ts; is
used to evaluate both support and confidence of spatial association rules mentioned
in subproblem (2).

The proposed approach is two-stepped since it reflects this problem decompo-
sition. In the first step, motif sets which are frequent, i.e., have a support greater
than t,,,, are extracted from sequences annotated with predictions for known single
motifs. Only information about the occurrence of motifs is considered, while spa-
tial distribution of motifs is ignored. This step has a manifold purpose: (1) enabling
biologists to guide deeper analysis only for sets of motifs which are deemed poten-
tially interesting; (2) filtering out sequences which do not include those interesting
sets of motifs; (3) lowering the computational cost of the second step.

In the second step, sequences that support specific frequent motif sets are ab-
stracted into sequences of spaced motifs. A sequence of spaced motifs is defined as
an ordered collection of motifs interleaved with inter-motif distances. Each inter-
motif distance measures the distance between the last nucleotide of a motif and
the first nucleotide of the next motif in the sequence. Spatial association rules are
mined from these abstractions. In order to deal with numerical information on the
inter-motif distance, a discretization algorithm is applied. The algorithm takes into
account the distribution of the examples and does not significantly depend on input
parameters as in the case of classical equal width or equal frequency discretization
algorithms. Details on both steps are reported below.
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5.2.1 Mining Frequent Motif Sets

To solve the first sub-problem, we resort to the levelwise breadth-first search [28]
in the lattice of motif sets. The search starts from the smallest element, i.e., sets
with one motif in M, and proceeds from smaller to larger sets. The frequent sets of
i motifs are used to generate candidate sets of (i + 1) motifs. Each candidate set,
which is potentially frequent, is evaluated against the set 7' of sequences, in order to
check the actual size of its support set. Then it is pruned if its support is lower than
Tmin- FOT instance, given M = {x, y,z} and T as in Fig.5.1a, the set S = {x, y}
is supported by Ts = {t2,t3}. If 7,5, = 2, then S is returned together with other
frequent motif sets in S.

5.2.2 Mining Spatial Association Rules

The sequences in the support set Ts of a frequent motif set S are represented as
chains of the form (my,dy,m,, ..., dy,—1, my), where each m; denotes a single mo-
tif im; € M), while each d;,i = 1,2,...,n — 1, denotes the inter-motif distance
between m; and m;4;. Each chain is a sequence of spaced motifs. For instance,
sequence t, in Fig. 5.1a is represented as (x, 10, y, 92, y).

From a biological viewpoint, slight differences in inter-motif distances can be
ignored. For this reason, we can group almost equal distances by applying a dis-
cretization technique which maps numerical values into a set of closed intervals.

a t,) .tttgcggcactgttgtcatttccggggt (y) aagatggctgcagtccgaatgectgageatcaa..
(t,) ..gagca (x) ggaatgccga (y) gactgatttgt —-——-- gttcgetattt (y) tcaaggtcca...
10bp 92bp
t,) ..gagac (x) gatgcgcc (y) ctgacggttta ——------ tcgaatcggctaag (y) tcaatcag...
" 8bp 98bp
b X e Ko
’ short .
medium

short-medium distance

Fig. 5.1 (a) Three different annotated sequences (¢, f,, t3) belonging to the set 7" where motifs
x and y have been found. The grey semi-boxes underline the nucleotide sequences between two
consecutive motifs (inter-motif distance). Inter-motif distances are expressed in base pairs (bp).
(b) Closed-intervals of inter-motif distances
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Therefore, a sequence of spaced motifs can be further abstracted into an ordered
collection of motifs interleaved by symbols (e.g., short, medium, and large) rep-
resenting a range of inter-motif distance. For instance, by considering the closed
intervals in Fig. 5.1b, both sequences #, and 73 in Fig.5.1a are represented by the
following sequence of spaced motifs:

(x, short, y, medium, y). 5.1

Each sequence of spaced motifs is described in a logic formalism which can be
processed by the ILP system SPADA (Spatial Pattern Discovery Algorithm) [24]
to generate spatial association rules. More precisely, the whole sequence, the con-
stituent motifs and the inter-motif distances are represented by distinct constant
symbols.? Some predicate symbols are introduced in order to express both prop-
erties and relationships. They are:

e sequence(t): t is a sequence of spaced motifs;

e part_of(t,m): The sequence ¢ contains an occurrence m of single motif;

e is_a(m,x): The occurrence m is a motif x;

e distance(my,m»,,d): The distance between the occurrences m1 and m5 is d.

A sequence is represented by a set of Datalog* ground atoms, where a Datalog
ground atom is an n-ary predicate symbol applied to n constants. For instance, the
sequence of spaced motifin (5.1) is described by the following set of Datalog ground
atoms:

sequence(ty),

part_of (t,m1), part_of (ta, mz), part_of (t2,m3),

. . . (5.2)
is.a(my, x), is.a(msy, y), is.a(ms, y),

distance(my, my, short), distance(m,, mz, medium).

The set of Datalog ground atoms of all sequences is stored in the extensional part
DEg of a deductive database D. The intensional part D of the deductive database
D includes the definition of the domain knowledge in the form of Datalog rules. An
example of Datalog rules is the following:

short_medium _distance(U, V') < distance(U, V, short). 53)
short_medium_distance(U, V') < distance(U, V, medium). ’

They state that two motifs’ are at a short_medium_distance if they are at ei-
ther short or medium distance (Fig.5.1b). Rules in Dy allows additional Datalog

3 We denote constants as strings of lowercase letters possibly followed by subscripts.
4 Datalog is a query language for deductive databases [9].
3 Variables are denoted by uppercase letters possibly followed by subscripts, such as U and V.
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ground atoms to be deduced from data stored in Dg. For instance, rules in (5.3)
entail the following information from the set of Datalog ground atoms in (5.2):

short_medium_distance(my, my), (5.4)
short_medium_distance(mo, m3). '

SPADA adds these entailed Datalog ground atoms to set (5.2), so that atoms with
the predicate short_medium_distance can also appear in mined association rules.

Spatial association rules discovered by SPADA take the form A = C, where
both A and C are conjunctions of Datalog non-ground atoms. A Datalog ground
atom is an n-ary predicate symbol applied to n terms (either constants or variables),
at least one of which is a variable. For each association rule, there is exactly one
variable denoting the whole sequence and other variables denoting constituent mo-
tifs. An example of a spatial association rule is the following:

sequence(T), part_of (T, My), is_.a(M, x), distance(M, M, short),

My # My = is.a(Ma, y) G-
where variable T denotes a sequence, while variables M, and M, denote two dis-
tinct occurrences of single motifs (M # M>) of type x and y, respectively. With
reference to the sequence described in (5.2), T corresponds to #; while the two
distinct occurrences of single motifs M and M, correspond to m; and m», respec-
tively. By means of this association rule, it is possible to infer which is the single
motif that follows in a short distance a single motif x. The uncertainty of the infer-
ence is quantified by the confidence of the association rule.

Details on the association rule discovery algorithm implemented in SPADA are
reported in the next section.

5.3 SPADA: Pattern Space and Search Procedure

In SPADA, the set O of spatial objects is partitioned into a set S of reference (or
target) objects and m sets Ry, 1 < k < m, of task-relevant (or non-target) objects.
Reference objects are the main subject of analysis and contribute to the computation
of the support of a pattern, while task-relevant objects are related to the reference
objects and contribute to accounting for the variation, i.e., they can be involved in
a pattern. In the sequence described in (5.2), the constant ¢, denotes a reference
object, while the constants m1, m» and m3 denote three task relevant objects. In this
case, there is only one set R; of task-relevant objects.

SPADA is the only ILP system which addresses the task of relational frequent
pattern discovery by dealing properly with concept hierarchies. Indeed, for each set
Ry, a generalization hierarchy Hj is defined together with a function v, which
maps objects in Hy into a set of granularity levels {1,..., L}. For instance, with
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motif Level 1
/N Lol
X y z
m, v m, v v Level 3
m,

Fig. 5.2 A three-level hierarchy defined on motifs

reference to the sequence described in (5.2), it is possible to define a three-level
hierarchy H; (Fig.5.2), where the top level represents a generic single motif, the
middle level represents distinct single motifs in M and the lowest level represents
specific occurrences of motifs. In this example, the function ¥; simply maps the
rootto 1, x, y, and z to 2 and m1, m» and m3 to 3.

The set of predicates used in SPADA can be categorized into four classes. The
key predicate identifies the reference objects in S (e.g., sequence is the key predicate
in description (5.2)). The property predicates are binary predicates which define
the value taken by an attribute of an object (e.g., length of a motif, not reported
in description (5.2)). The structural predicates are binary predicates which relate
task-relevant objects (e.g., distance) as well as reference objects with task-relevant
objects (e.g., part_of). The is_a predicate is a binary taxonomic predicate which
associates a task-relevant object with a value of some Hy.

The units of analysis D|[s], one for each reference object s € S, are subsets of
ground facts in D g, defined as follows:

D[s] = is.a(R(s)) U D[s|R(=)]U | ] DIri|R(s)]. (5.6)
ri €R(s)

where:

e R(s) is the set of task-relevant objects directly or indirectly related to s;

e is_a(R(s)) is the set of is_a atoms specified for each r; € R(s);

e DJ[s|R(s)] contains both properties of s and relations between s and some
ri € R(s);

e DJ[ri|R(s)] contains both properties of r; and relations between r; and some
rj € R(s).

This notion of unit of analysis is coherent with the individual-centered represen-
tation [7], which has some nice properties, both theoretical (e.g., PAC-learnability
[49]) and computational (e.g., smaller hypothesis space and more efficient search).
The set of units of analysis is a partitioning of D g into a number of subsets D|s],
each of which includes ground atoms concerning the task-relevant objects (transi-
tively) related to the reference object s. With reference to the sequence described
in (5.2), R(tz) = {m1,m,m3}, and D[t,] coincides with the whole set of ground
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atoms, including those inferred by means of rules in the intensional part Dy of the
deductive database. If several reference objects had been reported in (5.2), D[t;]
would have been a proper subset.

Patterns discovered by SPADA are conjunctions of Datalog non-ground atoms,
which can be expressed by means of a set notation. For this reason they are also
called atomsets [10], by analogy with itemsets introduced for classical association
rules. A formal definition of atomset is reported in the following.

Definition 5.1. An atomset P is a set of atoms po(ty), p1(t],t3), p2(t3,13), ...,
Pr (trl, trz), where py is the key predicate, while p;, i = 1,...,r, is either a struc-

tural predicate or a property predicate or an is_a predicate.

Terms ti] are either constants, which correspond to values of property predicates,
or variables, which identify reference objects either in S or in some Rj. Each p;
is a predicate occurring either in Dg (extensionally defined predicate) or in Dy
(intensionally defined predicate). Some examples of atomsets are the following:

Py = sequence(T), part_of (T, My),is.a(M;, x)

P, = sequence(T), part-of (T, My),is_.a(My, x), distance(M1, M, short)

P3 = sequence(T), part_of (T, M), is.a(My, x), distance(My, M5, short),
is-a(Ma,y)

where variable T denotes a reference object, while variables M; and M, denote
some task-relevant objects. All variables are implicitly existentially quantified.

Atomsets in the search space explored by SPADA satisfy the linkedness [16]
property, which means that each variable denoting a task-relevant object in an atom-
set P defined as in Definition 5.1 must be transitively linked to the reference object
t& by means of structural predicates. For instance, variables M and M5 in Py, P,
and P3 are transitively linked to 7' by means of the structural predicates distance
and part_of. Therefore, P1, P, and P3 satisfy the linkedness property.

Each atomset P is associated with a granularity level /. This means that all tax-
onomic (is_a) atoms in P refer to task-relevant objects, which are mapped by some
Yk into the same granularity level /. For instance, atomsets Py, P, and P; are asso-
ciated with the granularity level 2 according to the hierarchy H; in Fig.5.2 and the
associated function ¥; . For the same reason, the following atomset:

Py = sequence(T), part_of (T, My), is_.a(My, motif)

is associated with the granularity level 1.
In multi-level association rule mining, it is possible to define an ancestor relation
between two atomsets P and P’ at different granularity levels.

Definition 5.2. An atomset P at granularity level [ is an ancestor of an atomset
P’ at granularity level //, [ < [’, if P’can be obtained from P by replacing each
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task-relevant object h € Hy at granularity level / (I = v (h)) with a task-relevant
object &/, which is more specific than /& in Hy and is mapped into the granularity

level I’ (I" = Y (h')).

For instance, the atomset P4 defined above is an ancestor of Pj, since P; can be
obtained from P4 by replacing motif with x.

By associating an atomset P with an existentially quantified conjunctive formula
eqc(P) obtained by transforming P into a Datalog query, we can now provide a
formal definition of the support of P on a deductive database D. We recall that
D has an extensional part Dg and an intensional part Dy. Moreover Dg includes
several units of analysis D[s] one for each reference object.

Definition 5.3. An atomset P covers a unit of analysis D[s] if D[s] U Dy logically
entails eqc(P) (D[s] U Dy [ eqc(P)).

Each atomset P is associated with a support, denoted as sup(P,D), which is
the percentage of units of analysis in D covered by P. The minimum support for
frequent atomsets depends on the granularity level / of task-relevant objects. It is
denoted as 0,,;,[/] and we assume that 0, [ + 1] < oin[l], I = 1,2,..., L-1.

Definition 5.4. An atomset P at granularity level [ with support sup(P,D) is frequent
if sup(P, D) > 0[l] and all ancestors of P are frequent at their corresponding
levels.

In SPADA, the discovery of frequent atomsets is performed according to both
an intra-level and an inter-level search. The intra-level search explores the space of
patterns at the same level of granularity. It is based on the level-wise method [28],
which performs a breadth-first search of the space, from the most general to the
most specific patterns, and prunes portions of the search space which contain only
infrequent patterns.

The application of the level-wise method requires a generality ordering, which
is monotonic with respect to pattern support. The generality ordering adopted by
SPADA is based on the notion of 8-subsumption [33].

Definition 5.5. P; is more general than P, under -subsumption (P; >g P») if
and only if P; 6-subsumes P, i.e., a substitution 6 exists, such that P10 C P,.

For instance, with reference TO the atomsets P, P, and P3 reported above, we
observe that P; 6-subsumes P, (P; >¢ P») and P, -subsumes P; (P> =g P3)
with substitutions 68; = 6, = Q.

The relation >¢ is a quasi-ordering (or preorder), since it is reflexive and transi-
tive but not antisymmetric. Moreover, it is monotonic with respect to support [24],
as stated in the following proposition.

Proposition 5.1. Let Py and P, be two atomsets at the same level I, defined as in
Definition 5.1. If Py >¢ P,, then sup(Py1, D) > sup(P2, D).
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It is noteworthy that if P; >4 P, and P; is not frequent (sup(Py, D) < 0,in[l]),
then also P; is not frequent (sup(Pa, D) < 0mix[l]). This monotonicity property of
>g with respect to the support allows for pruning the search space without losing
frequent atomsets.

In the inter-level search, atomsets discovered at level / are refined by descending
the generalization hierarchies up to finding task-relevant objects mapped at level
[ + 1. These are the only candidate atomsets considered for evaluation, since other
candidates would not meet the necessary condition for atomsets to be frequent at
level [ + 1 when o[l + 1] < 6in[l] (see Definition 5.4). This way, the search
space at level / + 1 is heavily pruned. Moreover, information on the units of analysis
covered by atomsets at level / can be used to make more efficient the evaluation of
the support of atomsets at level / + 1. Indeed, if a unit of analysis D[s] is not covered
by a pattern P at granularity level /, then it will not be covered by any descendant
of P atlevel / + 1.

Once frequent atomsets have been generated at level /, it is possible to generate
strong spatial association rules, i.e., rules whose confidence is higher than a thresh-
old Kin[l]. In particular, each frequent atomset P at level [ is partitioned into two
atomsets A and C such that P = A A C and the confidence of the association rule
A = C is computed. Different partitions of P generate different association rules.
Those association rules with confidence lower than «,;,[] are filtered out.

We conclude by observing that in real-world applications a large number of fre-
quent atomsets and strong association rules can be gen