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FOREWORD

Both structural biology and bioinformatics have come of age as major arenas for
productive research and are commanding a high level of attention. These fields are
attracting the interest of traditionally “wet lab” biologists as well as of politicians,
governments of the world, and industry. Job opportunities for young scientists in this
domain exceed the pace of production, an atypical but wonderful circumstance. Indeed,
the opportunities for those being trained today are virtually unlimited. This conver-
gence—of independent assessments of merit—shows the extraordinary significance of
the interface between structural biology and informatics, and clearly demonstrates just
how timely this book is, as the initial foray into the new domain. In providing the very
first textbook in structural bioinformatics, Philip E. Bourne and Helge Weissig have
created a balanced set of contributions from the leading authorities in their respective
research problems. This comprehensive collection fully captures the spirit of excite-
ment at the “bleeding edge” of biodiscovery, or life at the frontier. The frontier between
computing and biology itself reflects the decades of extraordinary progress and revo-
lutionary advances in both domains. Indeed, for some time, the fields themselves have
been mature enough to contribute significantly to each other’s advancement. However,
over the last decade, the science funding arms of the world’s governments did not
have the necessary mechanisms in place to build biological informatics; similarly, as a
consequence of the lack of tools for data integration and biological modeling, the pace
of biological understanding at an in-depth systems level has not kept pace with the
technology advances that have powered experimental discovery and data collection,
but could not power a higher-level integrative insight into biosystems. Today, with
increased funding opportunities and recognition by the experimental community, we
are in the midst of a radical shift, to which this collection speaks directly and pow-
erfully, in the use of information technology and quantitative approaches in both the
basic and the applied life sciences.

The early generation of practitioners of bioinformatics, who by and large came
from the physical sciences and engineering, left academia when the large pharma-
ceutical firms recognized the importance of bioinformatics well before the sources of
research funding did. As a consequence, we lost a generation of “seed corn”: many of
the individuals who would be faculty today never came to work in this domain—simply
were never trained—since what opportunities there were existed largely within indus-
try. Textbooks of the highest quality and clarity are essential today, as we all struggle
to determine the right curriculum and the right content to train what will be the first
generation of students who are truly bioinformaticians. To teach the vast numbers of
young scientists looking to contribute in bioinformatics and, more generally, to enlarge
the community who can exploit information technology in the era of high-throughput
biology, requires authoritative treatments that provide the basis to pull in a new gen-
eration of scientists. Such works must also use the best treatments possible to reach a ix
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much larger audience, including mature scientists who wish to retrain themselves, and
need to set a standard for training everywhere in the world. This collection admirably
meets those goals and is a must read for all of us committed to understanding the
interplay of structure and function. By assembling the best thinkers to address system-
atically all of the challenges at the next stage of the genome effort, the editors have
created a book that will serve to educate the next generation, help us bring the best
people to universities to ensure that in the future we will have the requisite seed corn
to create the young faculty who will create the tools required for the new biology.

The role of modeling and theory (as predictive tools) have been brought home to
experimental molecular biophysicists and biochemists through the Critical Assessment
of Structure Prediction (CASP), a biannual contest to predict as accurately, routinely,
and broadly as possible, structures of unknown proteins for which the actual structure
will have been experimentally determined within a few months. Thus, the structures are
then known in time for a comparative analysis of successes and failures in the ultimate
science-product-on-the-line meeting, CASP, in each of its alternate year flavors. The
fact that theoreticians could demonstrate high quality results and improvements each
cycle in the power of a priori predictions of structure has had a profound influence on
the community and the peer review process. No longer can it be said that knowledge
of the actual experimental structure influenced the modeling. Reviewers and the com-
munity look to the accomplishments at CASP as setting a floor, as being the acid test
of the hardness or robustness of individual approaches. (This effort has also removed
some of the “not invented here” syndrome: it is better to use somebody else’s method
and be right than to be limited to one approach and fail.) CASP demonstrates better
than any other activity that computational tools have come of age as tools for structural
biology and structural genomics. (See the detailed and elegant description in the book.)
We can only hope that this collection will inspire extensions of CASP; for example, to
comparative analyses, from the perspective of sequence and of sequence and structure,
on automated functional assignment approaches.

In an era based on the availability of ever more fully sequenced genomes and on
a suite of high-throughput experimental biological methods, structure determination
and the knowledge base-driven (annotated database-driven) exploration of the impli-
cations of structure have captured center stage in bringing the implicit information
from the human genome to the service of society. The emphasis now is on obtaining
a better understanding of biological processes and should extend in the future to pro-
viding improved health care delivery. How did we get here, given the past decades of
excitement for a very different set of approaches in the life sciences, namely, those
of molecular biology? Many metaphors capture today’s challenge in bringing biology
from a qualitative science (or at most a binary science of yes or no, a spot on a gel or
its absence), to one in which the role of protein–protein interactions and the details of
proteins working as macromolecular machines are characterized in quantitative terms.
The accelerating pace of acquisition of experimental data and the challenges of data
integration are driving the massive shift in biology of moving from a descriptive sci-
ence to a predictive one. The data deluge following the technical advances in life
sciences research suggests the need to drink from a firehose filled with rapidly flow-
ing, incredibly complex data, and the need to swim in data to move forward in our
understanding. This perception gives rise to the common expression that biology is
becoming an information science. Mixing metaphors, biologists have left the twilight
zone and fearlessly have taken up the decade old challenge originally proposed by
Walter Gilbert: Use computational tools or become obsolete.
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In somewhat less than five years, computational biology and bioinformatics have
gone from uncertain stepchildren, often neglected, to the hottest job prospects and
the buzzwords on everyone’s lips. The reasons are obvious: We are already living
in the future as biologists; we feel the impact of fully sequenced genomes; we are
watching the transition to high-throughput biology and to a norm of asking global or
systemic questions, rather than using individual macromolecule-specific probes. While
it is amusing to read the phrase “classical bioinformatics” and more so to note its
routine use to describe what was originally (and still should be termed) genome infor-
matics, there is no doubt that the successes of the genome project and the impact of
computer technology have, over just a few years, opened up new vistas in biology. We
have only begun to see what will be and to learn how best to exploit computer and
information technology.

The funding available for bioinformaticians around the world does not yet reflect
the revolutionary opportunities. For biologists to live in the future, to use the metaphor
per jure, all research funding organizations should recognize the level of substantial,
sustained financial support needed to build a biological sciences informatics infrastruc-
ture and address the algorithmic, database, integration, and computational challenges.
Let us hope that this book can contribute to informing such a decision. There are
hopeful signs on the horizon for the larger nations and economies around the world.
As biological science becomes more dependent on contributions from its interface with
computing, the smaller nations (e.g., Belgium) will need to assert a level of contribution
for an appropriate niche. For the past decade, a number of the larger economies, such as
those of Germany, Japan, and the United Kingdom, initiated bioinformatics and specifi-
cally structural bioinformatics funding programs and that funding continues although it
does not yet reflect the opportunities. However, the United States, a central contributor
to the sea change, has had the insightful early support of private foundations. Fol-
lowing seminal awards, made by the Keck Foundation and by Burroughs-Welcome,
to facilitate the development of teams and support education, the Howard Hughes
Medical Institute instituted a series of awards in the form of new professorships in
computational biology and bioinformatics. At the same time, the National Institutes of
Health (NIH) began the process of implementing a major computational biology pro-
gram that includes education and development of software tools within pilot projects.
The NIH Protein Structure Initiative and the related biocomplexity program, as well
as the Information Technology Research program at the National Science Foundation
(NSF), provide a more stable basis for developing the infrastructure for this interface,
and one can now expect extension to all biological subfields.

The excitement that began with recognizing how molecular sequence information
could inform evolutionary studies, bring insights in cellular biology, identify genes
involved in disease etiology, and provide drug targets captures what led researchers in
the life sciences to adopt computational genomics or genome informatics as a routine
part of their experimental arsenal. Today, the second phase of the genome projects
are under way; this phase is known—depending on the cognizant federal agency—as
the Protein Structure Initiative, structural genomics, Genomes to Life, systems biol-
ogy, and/or quantitative biology. As such, the next step in bringing value of genomic
information to the service of society is clearly to address structural informatics.

Those of us concerned with macromolecular structure have long spoken the mantra:
form follows function, a given function requires a specific structure, or, as the inverse,
structure in turn can be seen to determine function. That is, if we know structure, we
can infer many aspects of biochemical and sometimes even cellular function, which can
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subsequently be experimentally tested. Backing up, given that we now know sequence,
from the implicit information in genomes, we can build better and better tools to model
structure explicitly and powerfully, and subsequently we can predict the details of prob-
able function, thereby greatly reducing the search space and focus experimental work
to test for only the most likely functions. We can also inform biological cartoons, the
descriptive way in which we biologists think, by computational modeling of dynamic
form and function—by pushing the boundaries beyond that which can be experimen-
tally determined to fill in the details of the dynamics of macromolecules underlying
living processes. To connect the abstract to the practical, this wonderful collection
of insightful articles shows how we can build the infrastructure for an integrative
approach to understanding biosystems through the power of knowing structure and its
implications for the mechanics of function.

The basis for all structural bioinformatics, the central community database for
structural biology, is the Protein Data Bank (PDB) and what it contains. Macromolec-
ular structures are archived and represented in its master encyclopedia or community
database. This book addresses the key points of the state of the art, beginning with
definitions and scope and our knowledge of protein structure and the tools for its deter-
mination, and proceeds through what is needed from computer and information science
and how these tools allow us to understand the complexity of biological systems. Over-
all, the individual chapters outline the suite of major basic life science questions such
as the status of efforts to predict protein structure and how proteins carry out cellular
functions, and also the applied life science questions such as how structural bioinfor-
matics can improve health care through accelerating drug discovery. Dictated by the
process of uncovering the mechanisms through which macromolecules act, this journey
of discovery, into all the quirks and still-undiscovered mainstream events, will keep
biologists entertained for centuries to come. This book is a great guidebook and a
proud step toward this understanding, and I recommend it to all of you.

John C. Wooley
Associate Vice Chancellor, Research
University of California, San Diego

La Jolla, CA



PREFACE

What is structural bioinformatics? As teachers of bioinformatics we are always sur-
prised to encounter students who are committed to a career in bioinformatics, yet at the
outset are not familiar with what bioinformatics encompasses. This situation is com-
pounded by many biologists who perceive bioinformatics as simply the use of tools for
sequence analysis. Here we define bioinformatics as the development and application of
algorithms and methods to turn biological data into knowledge of biological systems,
often requiring further experimentation suggested by initial data. More specifically,
bioinformatics can be divided into three parts: (1) theory and methods: algorithms, sta-
tistical methods, machine learning, ontologies, and so on; (2) applications: for example,
sequence analysis, whole genome assembly, protein structure prediction, and biological
databases; and (3) kinds of data: for example, base reads from DNA microarrays, mass
spectroscopy experiments, binding constants, and so forth. Structural bioinformatics
then becomes all of (1) and (2) applied to biological structure data. Clearly, biological
structure exists at different scales, from molecules to large complexes, organelles, cells,
and finally to complete organisms and populations of organisms. A complete treatment
of these biological scales would require many volumes. Here we restrict ourselves to
molecules, primarily protein, DNA, RNA, ligands, and complexes thereof. Chapter 1
provides additional detail of the scope of this book and the history of the field.

The remainder of the introductory section familiarizes us with the data we are
dealing with. For readers not already familiar with macromolecular structure data,
Chapters 2 and 3 describe protein, DNA, and RNA structure, respectively. Understand-
ing the nuances (scope, accuracy, completeness, etc.) of structural data is prerequisite
to any effective use of that data. Effective data use in turn requires an understanding of
the experiments that produce the data. The most popular methods for deriving macro-
molecular structure data are, in order (at this time), X-ray crystallography (Chapter 4),
NMR spectroscopy (Chapter 5), and electron microscopy (Chapter 6). The raw data
from these methods are most often a set of Cartesian coordinates representing the posi-
tions of the atoms in these structures. Browsing through tables of these data is clearly
not useful for a human in interpreting structure. Thus, visualization of structure has
evolved along with structural biology and this is discussed, with information about
where to get free tools to visualize structure, in Chapter 7.

In the early days of structural biology (up to the late 1970s) those in the field
could name all the structures that had been solved, many of which had Nobel prizes
attached to them. As the field grew such a feat was no longer possible, and databases of
structure data began to appear. Consistent use of structure data requires consistent data
representation and Section II is devoted to this topic. These data formats, described
in Chapter 8, are important because they contain information beyond the basic atomic
coordinates. The field is very fortunate to have a single resource, the Protein Data Bank
(PDB), that maintains the primary structure data for all publicly accessible structures xiii
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worldwide (Chapter 9). Many resources take this primary data and derive other useful
information (Chapters 10 and 11), at least a subset of which practitioners need to
be aware of.

As the number of structures increased, comparative analysis, the subject of Sec-
tion III, became possible. Chapters 12 and 13 describe structure classification schemes
and Chapters 14 and 15 describe structure validation, which is important to understand
the accuracy of data you are dealing with. The final chapter in this section (Chapter 16)
describes methods for three-dimensional structure comparison and alignment.

The more we know from comparing structures, the more we can learn about
structure and functional assignment. Secondary structure assignment can be made con-
sistently and reliably for the majority of structures (Chapter 17). Proteins exist as one
or more domains or compact structural and functional units. Hence, automated assign-
ment of domains is important (Chapter 18). Through the structural genomics projects,
structure determination is moving from a functional to a genomic initiative. That is,
structure was traditionally determined in an effort to further elucidate a known function.
We are now in a situation where structures are being determined with no elucidated
functions, thus making functional assignment critical (Chapter 19).

Proteins do not function in isolation, but as the result of complex protein–protein,
protein–ligand, and protein–solvent interactions. Section V describes these interac-
tions. The majority of these interactions are not captured in a structure of a complex,
but as a singleton with a signature that can be teased out to predict that interaction.
Evolutionary information from sequence (Chapter 20) and electrostatics (Chapter 21)
are important in this regard.

Section VI focuses on a special type of interaction where the protein and its
signature structure are a potential drugable target. Chapter 22 considers the docking
problem, predicting how two proteins or a protein and a ligand will interact, and
Chapter 23 describes the commercial drug discovery process and how it is changing
with the advent of more structures as potential drug targets and, of course, through
structural bioinformatics!

While the number of structures may be increasing rapidly, so is the number of
protein sequences, and so the idea of predicting a protein structure from its sequence
remains an obsessive goal. Progress is being made, spurred by an unusual biannual
competition, referred to as CASP—the Critical Assessment of Protein Structure Pre-
diction (Chapter 24). Subcategories of efforts within CASP and the field in general are
homology modeling (Chapter 25), fold recognition (Chapter 26) and ab initio struc-
ture prediction (Chapter 27). Other forms of prediction include secondary structure and
membrane components of structure (Chapter 28).

Finally, Chapter 29 describes the paradigm shift in structural biology, which is
much of the motivation for this book. Just as the human genome project could be held
responsible for the emergence of bioinformatics as a field of study, so perhaps looking
back in five years we will see structural bioinformatics having fully emerged as a
result of high-throughput structure determination (i.e., structural genomics). Whatever
the outcome, structural bioinformatics is an exciting place to be working right now.
What makes it more so are the wonderful leaders in the field, many of whom have
contributed (without much prodding) to the contents of the pages that follow. Their
and our excitement is captured in what follows. Curious? Come share the fun.

Philip E. Bourne
Helge Weissig
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1

DEFINING BIOINFORMATICS AND
STRUCTURAL BIOINFORMATICS

Russ B. Altman and Jonathan M. Dugan

WHAT IS BIOINFORMATICS?

The precise definition of bioinformatics is a matter of some debate. Some define it
narrowly as the development of databases to store and manipulate genomic informa-
tion. Others define it broadly as encompassing all of computational biology. Based on
its current use in the scientific literature, bioinformatics can be defined as the study of
two information flows in molecular biology (Altman, 1998). The first information flow
is based on the central dogma of molecular biology: DNA sequences are transcribed
into mRNA sequences, mRNA sequences are translated into protein sequences. Pro-
tein sequences fold into three-dimensional (3D) structures that have functions. These
functions are selected for, in a Darwinian sense, by the environment of the organism,
which drives the evolution of the DNA sequence within a population. The first class of
bioinformatics applications, then, can address the transfer of information at any stage
in the central dogma, including the organization and control of genes in the DNA
sequence, the identification of transcriptional units in DNA, the prediction of protein
structure from sequence, and the analysis of molecular function.

The second information flow is based on the scientific method: We create hypothe-
ses regarding biological activity, design experiments to test these hypotheses, evaluate
the resulting data for compatibility with the hypotheses, and extend or modify the
hypotheses in response to the data. The second class of bioinformatics applications
address the transfer of information within this protocol, including systems that gener-
ate hypotheses, design experiments, store and organize the data from these experiments
in databases, test the compatibility of the data with models, and modify hypotheses.

3

Structural Bioinformatics. Edited by Philip E. Bourne and Helge Weissig
Copyright  2003 John Wiley & Sons, Inc. ISBN: 0-471-20200-2



4 DEF IN ING B IO INFORMATICS AND STRUCTURAL B IO INFORMATICS

Although its use is still evolving, bioinformatics is not usually used to describe
computational approaches to problems in biology above the cellular level. The explo-
sion of interest in bioinformatics has been driven by the emergence of experimental
techniques that generate data in a high throughput fashion—such as DNA sequenc-
ing, mass spectrometry, or microarray expression analysis (Miranker, 2000; Altman
and Raychaudhuri, 2001; GISC, 2001; Venter et al., 2001). Bioinformatics depends on
the availability of large data sets that are too complex to allow manual analysis. The
rapid increase in the number of 3D macromolecular structures available in databases
such as the Protein Data Bank (PDB,1 Chapter 9; Berman et al., 2000), has driven the
emergence of a subdiscipline of bioinformatics: structural bioinformatics. Structural
bioinformatics is the subdiscipline of bioinformatics that focuses on the representa-
tion, storage, retrieval, analysis, and display of structural information at the atomic and
subcellular spatial scales.

Structural bioinformatics, like many other subdisciplines within bioinformatics,2 is
characterized by two goals: the creation of general purpose methods for manipulating
information about biological macromolecules, and the application of these methods to
solving problems in biology and creating new knowledge. These two goals are intri-
cately linked because part of the validation of new methods involves their successful use
in solving real problems. At the same time, the current challenges in biology demand
the development of new methods that can handle the volume of data now available,
and the complexity of models that scientists must create to explain these data.

Structural Bioinformatics Has Been Catalyzed
by Large Amounts of Data

Biology has attracted computational scientists over the last 30 years in two distinct
ways. First, the increasing availability of sequence data has been a magnet for those
with an interest in string analysis, algorithms, and probabilistic models (Gusfield,
1997; Durbin et al., 1998). The major accomplishments have been the development
of algorithms for pairwise sequence alignment, multiple alignment, the definition and
discovery of sequence motifs, and the use of probabilistic models, such as Hidden
Markov Models to find genes (Burge and Karlin, 1997), to align sequences (Hughey
and Krogh, 1996), and to summarize protein families (Bateman et al., 2000). Second,
the increasing availability of structural data has been a magnet for those with an interest
in computational geometry, computer graphics, and algorithms for analyzing crystal-
lographic data (Chapter 4) and NMR data (Chapter 5) and creating credible molecular
models. Structural bioinformatics has its roots in this second group. The development
of molecular graphics was one of the first applications of computer graphics (Langridge
and Gomatos, 1963). The elucidation of the structure of DNA in the mid-1950s and the
publication of the first protein crystal structures in the early 1960s created a demand
for computerized methods for examining these complex molecules. At the same time,
the need for computational algorithms to deconvolute X-ray crystallographic data, and
to fit the resulting electron densities to the more manageable ball-and-stick models,
created a cadre of structural biologists who were very well versed in computational

1See at http://www.rcsb.org.
2The International Society for Computational Biology (ISCB, http://www.iscb.org/) is the professional orga-
nization for bioinformatics, and many developments in structural bioinformatics are reported in the journals
and conferences associated with this society.
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technologies. The challenges of interpreting NMR-derived distance constraints into
3D structures further introduced computational technologies to biological structure. As
the number of 3D structures increased, the need to create methods for storing and
disseminating this data lead to the creation of the PDB, one of the earliest scientific
databases.3 It can be argued that we are currently seeing a third wave of interest in
biological problems from a group that were not engaged by the availability of one-
dimensional (1D) sequence data or 3D structural data. This third wave has arisen in
response to the increased availability of RNA expression data, and has captured the
interest of computational scientists with an interest in statistical analysis and machine
learning, particularly in clustering methodologies and classification techniques. The
problems posed by these data are different from those seen in both sequence and
structural analysis data.

Structural bioinformatics is now in a renaissance with the success of the genome-
sequencing projects, the emergence of high-throughput methods for expression analysis,
and compound identification via mass spectrometry. There are now organized efforts
in structural genomics (Chapter 29) to collect and analyze macromolecular structures
in a high-throughput manner, (Teichmann, Chothia, and Gerstein, 1999; Teichmann,
Murzin, and Chothia, 2001). These efforts include challenges in the selection of
molecules to study, the robotic preparation and manipulation of samples to find crys-
tallization conditions, the analysis of X-ray diffraction data, and the annotation of these
structures as they are stored in databases (Chapter 4). In addition, the PDB now has
a critical mass of structures that allows (indeed, requires!) statistical analysis of struc-
tures in order to learn the rules for how active sites and binding sites are constructed,
and that allows us to develop knowledge-based methods for the prediction of structure
and function. Finally, the emergence of this structural information, when linked to the
increasing amount of genomic information and expression data, provides opportunities
for linking structural information to other data sources in order to understand how
cellular pathways and processes work at a molecular level.

Toward a High-Resolution Understanding of Biology. The great promise
of structural bioinformatics is predicated on the belief that the availability of high-
resolution structural information about biological systems will allow us to reason
precisely about the function of these systems and the affects of modifications or per-
turbations. Whereas genetic analyses can only associate genetic sequences with their
functional consequences, structural biological analyses offer the additional promise of
ultimate insight into the mechanisms of these consequences, and therefore a more pro-
found understanding of how biological function follows from structure. The promise
for structural bioinformatics lies in four areas: (1) creating an infrastructure for building
up structural models from component parts; (2) gaining the ability to understand the
design principles of proteins so that new functionalities can be created; (3) learning
how to design drugs efficiently based on structural knowledge of their target; and
(4) catalyzing the development of simulation models that can give insight into func-
tion based on structural simulations. Each of these four areas has already seen success,
and the structural genomics projects promise to create data sets sufficient to catalyze
accelerated progress in all these areas.

With respect to creating an infrastructure for modeling larger structural ensembles,
we are already seeing the emergence of a new generation of structures larger by an

3See at http://www.rcsb.org.
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order of magnitude than the structures submitted to the PDB even a few years ago.
The two main achievements in the last couple of years have been the elucidation of the
structure of the bacterial ribosome (with more than 250,000 atoms) (Ban et al., 2000;
Clemons et al., 2001; Yusupov et al., 2001), and the publication of the structure of the
RNA polymerase structure (with about 500,000 atoms) (Cramer et al., 2000). These
two accomplishments allow us to examine the principles for how a large number of
component protein and nucleic acid structures can assemble to create macromolecular
machines. With these successes, we can now target numerous other cellular ensembles
for structural studies.

The design principles for proteins are now in reach because we have both a large
“training set” of example proteins to study, and because methods for structure pre-
diction are beginning to allow us to identify structures that are unlikely to be stable.
There have been preliminary successes in the design of four-helix bundle proteins
(DeGrado et al., 1987), and in the engineering of triose phosphate isomerase (TIM)
barrels (Silverman et al., 2001). There has been interesting work in “reverse folding”
in which a set of amino acid side chains is collected in order to stabilize a desired
protein backbone conformation (Koehl and Levitt, 1999).

Rational drug design has not been the primary way for discovering major thera-
peutics (Chapter 23). However, recent successes in this area give reason to expect that
drug discovery projects will increasingly be structure based. One of the most famous
examples of rational drug design was the creation of HIV protease inhibitors based on
the known 3D crystal structure (Kempf, 1994; Vacca, 1994). Methods for matching
combinatorial libraries of chemicals against protein binding sites have matured and are
in routine use at most pharmaceutical companies.

The simulation of biological macromolecular dynamics dates almost as far back
as the elucidation of the first protein structure (Doniach and Eastman, 1999). These
simulations are based on the integration of classical equations of motion and com-
putation of electrostatic forces between atoms in a molecule. Methods for simulation
now routinely include water molecules and are able to remain stable (the molecule
does not fall apart) and reproduce experimental measurements with some fidelity. The
simulation of larger ensembles and of structural variants (such as based on known
genetic variations in sequence) should lead to a more profound understanding of how
structural properties produce functional behavior.

Special Challenges in Computing with Structural Data

Structural bioinformatics must overcome some special challenges that are either not
present or not dominant in other types of bioinformatics domains (such as the analysis
of sequence or microarray data). It is important to remember these challenges when
assessing the opportunities in the field. They include:

• Structural data is not linear and therefore is not easily amenable to algorithms
based on strings. In addition to this obvious nonlinearity, there are also nonlin-
ear relationships between atoms (the forces are not linear), which means that
most computations on structure need either to make approximations or to be
very expensive.

• The search space for most structural problems is continuous. Structures are
represented generally by atomic Cartesian coordinates (or internal angular coor-
dinates) that are continuous variables. Thus, there are infinite search spaces for
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algorithms attempting to assign atomic coordinate values. Many simplifications
can be applied, such as lattice models for 3D structure (Hinds and Levitt,
1994), but these are attempts to manage the inherent continuous nature of
these problems.

• There is a fundamental connection between molecular structure and physics.
Although this statement seems obvious and trivial, it means that when reduced
representations, such as pseudoatoms (Wuthrich et al., 1983) or lattice models are
applied, they become more difficult to relate to the underlying physics that govern
the interactions. The need to keep structural calculations physically reasonable
is an important constraint.

• Reasoning about structure requires visualization. As mentioned earlier, the cre-
ation of computer graphics was driven, in part, by the need of structural biologists
to look at molecules (Chapter 7). This visualization is both a benefit and a detri-
ment: Structure is well defined and well-designed visualizations can provide
insight into structural problems. However, graphic displays have a human user
as a target and are not easily parsed or understood by computers, and thus
represent something of a computational “dead end.” The need to have expres-
sive data structures underlying these visualizations allows the information to be
understood and analyzed by computer programs, and thus opens the possibility
of further downstream analysis.

• Structural data, like all biological data, can be noisy and imperfect. Despite
some amazing successes in the elucidation of very high-resolution structures,
the precision of our knowledge about many structures is likely to be limited
by their flexibility, dynamics, or experimental noise. Understanding the protein
structural disorder may be critical for understanding the protein’s function. Thus,
we must be comfortable reasoning about structures about which we have only
partial knowledge.

• Protein and nucleic acid structures are generally conserved more than their asso-
ciated sequence (Chapter 20). Thus, sequences will accumulate mutations over
time that may make identification of their similarities more difficult, while their
structures may remain essentially identical. However, sequence information is
still much more abundant than structural information, and so for many molecules
it is the sequence information that is readily available. Thus, the need to iden-
tify distant sequential similarities in order to gain structural insights can be a
major challenge.

• Finally, we must recognize that there is a major gap in our knowledge of a
large fraction of proteins that are not globular and water soluble. In particu-
lar, membrane-bound and fibrous proteins are simply not well understood and
structures are not available in the numbers required to allow routine statistical
and informatics approaches to their study. The importance of this shortcoming
cannot be overemphasized, since these classes of proteins are among the most
important for understanding a large number of cellular processes of great interest,
including signal transduction, cytoskeletal dynamics, and cellular localizations
and compartmentalization.

• Structural genomics will likely produce a large number of structures at the level
of the domain—relatively well-defined modules that associate to form larger
ensembles. The principles by which these domains associate and cooperatively
function is a major challenge for structural biology.
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TECHNICAL CHALLENGES WITHIN STRUCTURAL BIOINFORMATICS

The scientific challenges within structural bioinformatics fall into two rough categories:
(1) the creation of methods to support structural biology and structural genomics, and
(2) the creation of methods to elucidate new biological knowledge. This distinction is
not absolute, but is useful for dividing much structural bioinformatics work. The support
of experimental structural biology is an area of particular interest currently with the
emergence of efforts in high-throughput structural genomics. Informatics approaches
are required for many aspects of this enterprise, and can be briefly reviewed here.

Target Selection. Structural genomics efforts with finite resources must carefully
select proteins to study. Informatics methods are used to compare the database of
existing structures and known sequences with potential targets in order to identify
those that are most likely to add to our structural knowledge base. This selection
can be informed by the expected novelty of the structure, and even its importance as
reflected in the published literature (Linial and Yona, 2000). A critical part of target
selection is the identification of domains within large proteins. Domains are often easier
to study initially in isolation, and then to study in complexes. The definition of domains
from sequence data alone is a challenging problem.

Tracking Experimental Crystallization Trials. One of the major bottlenecks in struc-
tural genomics is the discovery of crystallization conditions that work for proteins of
interest. In addition to the obvious need for storing and tracking information on the
proteins, the conditions attempted, and the results, there is also an opportunity to apply
machine-learning methods to these data in order to extract rules that may help increase
the yield of crystals based on previous experience (Hennessy et al., 2000). Until
recently the results of failed crystallization experiments were not generally available,
making it difficult to apply automated machine-learning methods to these data sets.

Analysis of Crystallographic Data. A long-standing area of computation within
structural biology are the algorithms for deconvoluting the X-ray diffraction pattern,
which involves computing an inverse Fourier transform with partial information (i.e.,
with missing phase information). There is interest in ab initio methods for automat-
ing these computations, and success in this area reduces the number of heavy atom
derivatives that must be created for structures of interest (Gilmore et al., 1998). Multi-
wavelength Anomalous Diffraction (MAD) (Hendrickson, 1991) is now the preferred
method for solving the crystallographic phase problem. Over one-half of all structures
are determined by MAD, a development in keeping with the availability of tunable
synchrotron sources. Similarly, once the electron density is computed there is a chal-
lenge in fitting the density to a standard ball-and-stick model of the atoms. While this
has been done manually (with graphic computer assistance), there is interest in finding
methods for using image-processing techniques to automatically identify connected
densities and matching them to the known shape of protein backbone and side-chain
elements (Barr and Feigenbaum, 1982). Recent progress has been made on automated
electron density map fitting and refinement (Chapter 4).

Analysis of NMR Data. NMR experiments provide complementary data to the crys-
tallographic analyses. NMR experiments produce two-dimensional (or higher) spectra
for which each individual peak must be assigned to an atomic interaction. The auto-
mated analysis and assignment of atoms in these spectra is a difficult search problem,
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but one in which progress has been made to accelerate the analysis of structure
(Zimmerman and Montelione, 1995). Given a set of atomic proximities from NMR, we
need methods to “embed” these distance measures into 3D structures that satisfy these
constraints. Distance geometry (Moré and Wu, 1999), restrained molecular dynamics
(Bassolino-Klimas et al., 1996) and other nonlinear optimization methods have been
developed for this purpose (Altman, 1993; Williams et al., 2001).

Assessment and Evaluation of Structures. Given the results of a crystallographic or
NMR structure determination effort, we must check the structures to be sure that they
meet certain quality standards. Algorithms have been developed for assessing the basic
chemistry of structural models, and also for identifying active sites and binding sites in
these structures (Laskowski et al., 1993; Feng, Westbrook, and Berman, 1998; Vaguine,
Richelle, and Wodak, 1999). Computational methods are still needed for automatically
annotating 3D structures with functional information, based on an understanding of
how molecular properties aggregate in three dimensions to produce function (such as
binding, catalysis, motion, and signal transduction) (Wei, Huang, and Altman, 1999).

Storing Molecular Structures in Databases. The storage of the results of structural
genomics efforts is an important task, requiring data structures and organizations that
facilitate the most common queries. Ideally, databases of structure will store not only
the resulting model, but also the raw data on which it is based. The PDB is the major
repository for 3D structural information on proteins; the Nucleic Acids Database (NDB;
Chapter 10) serves this function for nucleic acids. There is also an effort to store the
raw data associated with crystallography in the PDB/NDB and the raw data associated
with NMR in the BioMagResBank (BMRB).4

Correlating Molecular Structural Information with Structural and Functional Infor-
mation Gained from Other Types of Experimentation. In the end, we perform structural
studies in order to get an insight into how the molecules work. Structural studies
with crystallography and NMR are but two methods that can be used to probe struc-
ture–function relationships. The integration of the results of these methods with other
structural and functional data allows us to build comprehensive models of mecha-
nism, specificity, and dynamics. A major bottleneck for using informatics methods
for this integration is the lack of repositories of structural and functional data that
can be accessed by computer programs doing systematic analyses. One exception
is the noncrystallographic structural data about the 30S and 50S ribosomal subunits
stored in the RiboWEB knowledge base (http://riboweb.stanford.edu/). RiboWEB is a
knowledge base of ribosomal structural components that stores more than 8000 non-
crystallographic structural and functional observations about the bacterial ribosome.
It stores its information in structured “information templates” that are easily parsed
by computer programs, thus making possible automated comparison and evaluation of
structural models. For example, RiboWEB has been used to assess the compatibility
of the published ribosomal crystal structures with over 1000 proximity measurements
from cross-linking, chemical protection, and labeling experiments (collected during
the last 25 years). Incompatibilities between these data and the crystal structures may
suggest artifactual data or (more usefully) may suggest areas of important dynamic
motion for the ribosome (Whirl-Carrillo et al., 2002).

4See at http://www.bmrb.wisc.edu.
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Understanding the Structural Basis for Biological Phenomenon

Given the structural information created by efforts in X-ray crystallography and NMR,
there are a wide range of analytic and scientific challenges to informatics. It is not
possible to cover the full scope of activities, but they can be reviewed briefly to show
the richness of opportunities in the analysis of structural data.

Visualization. The creation of images of molecular structure remains a primary
activity within structural biology (Chapter 7). The complexity of these molecules seems
to demand novel display methods that are able to combine structural information with
other information sources (such as electrostatic fields, the location of functional sites,
and areas of structural or genetic variability). The issues for informatics include the
creation of flexible software infrastructures for extending display capabilities, and the
use of novel methods for rapidly rendering complex molecular structures (Huang et al.,
1996; Sanner et al., 1999).

Classification. The database of known structures is already sufficiently large that
it is necessary to cluster similar structures together, in order to form families of
proteins. These families are often aggregated into superfamilies, and indeed entire struc-
tural hierarchies have been created. The Structural Classification of Proteins (SCOP;
Chapter 12) is an example of a semiautomated classification of all protein structures
(Murzin et al., 1995), and there have been numerous efforts to create automated classi-
fication—usually based on the pairwise comparison of all structures to create a matrix
of distances (Chapter 13; Holm and Sander, 1996; Orengo et al., 1997).

Prediction. Despite the growth of the structural databases, the number of known
3D structures has lagged far behind the availability of sequence information. Thus, the
prediction of 3D structure remains an area of keen interest. The Critical Assessment for
Structure Prediction (CASP;5 Chapter 24) meetings have provided a biennial forum for
the comparison of methods for structure prediction. The main categories of prediction
have been homology modeling (based on high sequence homology to a known structure
(Chapter 25) (Sánchez and Sali, 1997), threading (based on remote sequence homology)
(Bryant and Altschul, 1995), and ab initio prediction (based on no detectable homology
(Chapter 27) (Osguthorpe, 2000). The diversity of methods invented and evaluated is
quite inspiring, and the resulting lessons about how proteins are put together have been
significant.

Simulation. The results of crystallographic studies (and to some extent, NMR stud-
ies) are primarily static structural models. However, the properties of these molecules
that are of the greatest interest are often the result of their dynamic motions. The
definition of energy functions that govern the folding of proteins and their subsequent
stable dynamics has been an area of great interest since the first structure was deter-
mined. Unfortunately, the time scales on which macromolecular dynamics must be
sampled (fractions of picoseconds) are much shorter than the time scale on which bio-
logically important phenomena occur (microseconds to seconds). Nevertheless, the
availability of increasingly powerful computers and the clever approximation and
search methods are enabling molecular simulations of sufficient length and accuracy to

5See at http://predictioncenter.llnl.gov.
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emerge, and are making contributions to our understanding of protein function.6 The
associated computation of electrostatic fields of macromolecular structures (Chapter 21)
has emerged as an important component of understanding molecular function (Shein-
erman et al., 1992).

INTEGRATING STRUCTURAL DATA WITH OTHER DATA SOURCES

Structural bioinformatics has existed in some form or other ever since the determina-
tion of the first myoglobin structure. One could argue that the roots go back further
to the time when small molecular structure determination was introduced. In any case,
the challenges for the field are clearly abundant and significant. As we look to coming
decades, it appears that a primary challenge in structural bioinformatics will be the
integration of structural information with other biological information to yield a higher
resolution understanding of biological function. The success of genome-sequencing
projects has created information about all the structures that are present in individual
organisms, as well as both the shared and unique features of these organisms. Even
with the success of structural genomics projects, bioinformatics techniques will prob-
ably be used to create homology models of most of these genomic components. The
resulting structures will be studied with respect to how they interact and perform their
functions. Similarly, the emergence of microarray expression measurements provides
an ability to consider how the expression of macromolecular structures is regulated at
a structural level (including the key structural machinery associated with transcription,
translation, and degradation). Mass spectroscopic methods that allow the identification
of structural modifications and variations (such as genetic mutation or post-translational
modifications) will need to be integrated with structural models to understand how they
alter functional characteristics. Finally, cellular localization data will allow us to place
3D molecular structures into compartments within the cell as we build more complex
models of how cells are organized structurally in order to optimize their function.
This exciting activity will mark the next phase of structural bioinformatics—when
the organization and physical structure of entire cells is understood and represented in
computational models that provide insight into how thousands of structures within a
cell work together to create the functions associated with life.

REFERENCES

Altman RB (1993): Probabilistic Structure Calculations: A Three-Dimensional tRNA Structure
from Sequence Correlation Data. First International Conference on Intelligent Systems for
Molecular Biology, July 6–9, 1993, National Library of Medicine, Bethesda, MD.

Altman RB (1998): A curriculum for bioinformatics: the time is ripe. Bioinformatics 14:549–50.
[The requirements for a graduate program in bioinformatics.]

Altman RB, Raychaudhuri S (2001): Whole-genome expression analysis: challenges beyond
clustering. Curr Opin Struct Biol 11(3):340–7.

Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000): The complete atomic structure of the
large ribosomal subunit at 2.4 A resolution. Science 289:878–9.

6The IBM BlueGene project (http://www.research.ibm.com/bluegene) is focused on the creation of a very
large supercomputer, with the theoretical capability of simulating the folding of a small protein in about
one year. The computer is being designed to have 1015 floating point operations per second.



12 DEF IN ING B IO INFORMATICS AND STRUCTURAL B IO INFORMATICS

Barr A, Feigenbaum E (1982): Crysalis. In: Barr A, Feigenbaum EA, editors. The Handbook of
Artificial Intelligence. Stanford, CA: HeurisTech Press, pp 124–33.

Bassolino-Klimas D, Tejero R, Krystek SR, Metzler WJ, Montelione GT, Bruccoleri RE (1996):
Simulated annealing with restrained molecular dynamics using a flexible restraint potential:
theory and evaluation with simulated NMR constraints. Protein Sci 5(4):593–603.

Bateman A, Birney E, Durbin R, Eddy SR, Finn RD, Sonnhammer EL (2000): The pfam protein
families database. Nucleic Acids Res 28:263–6.

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov I, Bourne PE
(2000): The Protein Data Bank. Nucleic Acids Res 28:235–42.

Bryant SH, Altschul SF (1995): Statistics of sequence–structure threading. Curr Opin Struct
Biol 5:236–44.

Burge C, Karlin S (1997): Prediction of complete gene structures in human genomic DNA. J
Mol Biol 268:78–94.

Clemons WM Jr, Brodersen DE, McCutcheon JP, May JL, Carter AP, Morgan-Warren RJ,
Wimberly BT, Ramakrishnan V (2001): Crystal structure of the 30S ribosomal subunit from
thermus thermophilus: purification, crystallization and structure determination. J. Mol. Biol.
310:827–43.

Cramer P, Bushnell DA, Fu J, Gnatt AL, Maier-Davis B, Thompson NE, Burgess RR,
Edwards AM, David PR, Kornberg RD (2000): Architecture of RNA polymerase II and
implications for the transcription mechanism. Science 288:640–49.

DeGrado W, Regan L, Ho SP (1987): The design of a four-helix bundle protein. Cold Spring
Harb Symp Quant Biol 52:521–6.

Doniach S, Eastman P (1999): Protein dynamics simulations from nanoseconds to microseconds.
Curr Opin Struct Biol 9:157–63.

Durbin R, Eddy SR, Krogh A, Mitchison GJ (1998): Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge: Cambridge University Press. [A good book
for the study of sequence analysis.]

Feng Z, Westbrook J, Berman HM (1998): NUCheck. Rutgers publication NDB-407. Rutgers
University, New Brunswick, New Jersey.

Gilmore CJ, Dong W, Bricogne G (1998): A multisolution method of phase determination by
combined maximisation of entropy and likelihood. VI. The use of error-correcting codes as
a source of phase permutation and their application to the phase problem in powder, electron
and macromolecular crystallography. Acta Crystallogr A55:70–83.

[GISC] GENOME INTERNATIONAL SEQUENCING CONSORTIUM (2001): Initial
sequencing and analysis of the human genome. Nature 409:860–921.

Gusfield D (1997): Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge: Cambridge University Press.

Hendrickson WA (1991): Determination of macromolecular structures from anomalous
diffraction of synchrotron radiation. Science 254:51–8.

Hennessy D, Buchanan B, Subramanian D, Wilkosz PA, Rosenberg JM (2000): Statistical
methods for the objective design of screening procedures for macromolecular crystallizationÌ.
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FUNDAMENTALS OF PROTEIN
STRUCTURE

Eric D. Scheeff and J. Lynn Fink

THE IMPORTANCE OF PROTEIN STRUCTURE

Most of the essential structure and function of cells is mediated by proteins. These
large, complex molecules exhibit a remarkable versatility that allows them to perform
a myriad of activities that are fundamental to life. Indeed, no other type of biological
macromolecule could possibly assume all of the functions that proteins have amassed
over billions of years of evolution.

Any consideration of protein function must be grounded in an understanding of
protein structure. A fundamental principle in all of protein science is that protein
structure leads to protein function. The distinctive structures of proteins allow for the
placement of particular chemical groups in specific places in three-dimensional space.
It is this precision that allows proteins to act as catalysts (enzymes) for an impres-
sive variety of chemical reactions. Precise placement of chemical groups also allows
proteins to play important structural, transport, and regulatory functions in organisms.
Since protein structure leads to function, and protein functions are diverse, it is no
surprise that protein structure is similarly diverse. Further, the functional diversity of
proteins is expanded through the interaction of proteins with small molecules, as well
as other proteins.

For those who wish to study protein structure, this diversity represents a challenge.
Upon their determination of the first three-dimensional globular protein structure (the
oxygen-storage protein myoglobin) in 1958, John Kendrew and his co-workers reg-
istered their disappointment (Kendrew et al., 1958): “Perhaps the most remarkable
features of the molecule are its complexity and its lack of symmetry. The arrangement
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16 FUNDAMENTALS OF PROTE IN STRUCTURE

seems to be almost totally lacking in the kind of regularities which one instinctively
anticipates, and it is more complicated than has been predicated by any theory of
protein structure.” Despite these initial frustrations, subsequent studies of the myo-
globin structure based on higher-quality data revealed that the protein did have some
regularities; these regularities were also observed in other protein structures.

Decades of research have now yielded a coherent set of principles about the nature
of protein structure and the way in which this structure is utilized to effect func-
tion. These principles have been organized into a four-tiered hierarchy that facilitates
description and understanding of proteins: primary, secondary, tertiary, and quaternary
structure. This hierarchy does not seek to describe precisely the physical laws that
produce protein structure, but rather is an abstraction to make protein structural studies
more tractable.

THE PRIMARY STRUCTURE OF PROTEINS: THE AMINO ACID SEQUENCE

Amino Acids

Proteins are linear polymers of amino acids,1 and it is the distinct sequence of compo-
nent amino acids that determines the ultimate three-dimensional structure of the protein.
The sequence of a protein is often referred to as its primary structure. The concept of
proteins as linear amino acid polymers was initially proposed by Fischer and Hofmei-
ster in 1902 (Fruton, 1972). At that time, the prevailing theory in protein science was
that proteins lacked a regular structure and consisted of loose associations of small
molecules (colloids). This issue was hotly debated for over 20 years, until the linear
polymer theory achieved general acceptance in the late 1920s (Fruton, 1972). In 1952,
Fred Sanger made the important discovery that proteins could be distinguished by
their amino acid sequences (Sanger, 1952). Indeed, he found that proteins of exactly
the same type have identical sequences. Sanger’s work helped to remove remaining
doubts about the accuracy of the linear polymer theory.

Amino acids are small molecules that contain an amino group (NH2), a car-
boxyl group (COOH), and a hydrogen atom attached to a central alpha (α) carbon
(Figure 2.1). In addition, amino acids also have a side chain (or R group) attached to
the α carbon. It is this group, and this group alone, that distinguishes one amino acid

H
R

OH

O
H

H

N Ca C′

amino group carboxyl group

side chain

Figure 2.1. The structure of a prototypical amino acid. The chemical groups bound to the

central alpha (α) carbon are highlighted in gray. The R-group represents any of the possible 20

amino acid side chains.

1Specifically, the amino acids used in proteins are alpha(α) amino acids.
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from another. Furthermore, the side chain confers the specific chemical properties of
the amino acid.

Cellular genomes contain coded instructions for the production of multiple pro-
teins, and there are 20 amino acids that can be incorporated into a protein via these
instructions. The resulting sequence of a protein can contain any combination and
number of the 20 amino acids, in any order. Though amino acids had been known to
be the building blocks of proteins prior to the turn of the twentieth century, the exact
set of amino acids used in proteins was not determined until 1940 (Fruton, 1972).
This set of 20 amino acids is considered standard in that it is common to all observed
organisms. Modified forms of these 20 amino acids do exist in proteins, but these are
the product of modifications that occur subsequent to protein synthesis.2

The 20 standard amino acids can be loosely grouped into classes based
on the chemical properties conferred by their side chains. Three classes are
commonly accepted: hydrophobic, polar, and charged. Within these classes, additional
subclassifications are possible; for example, aromatic or aliphatic, large or small, and
so forth (Taylor, 1986). Figure 2.2 provides one possible amino acid classification.

A few amino acids have distinctive properties that merit closer attention. The side
chain of proline forms a bond with its own amino group, causing it to be cyclic.3

Though proline generally exhibits the properties of an aliphatic nonpolar amino acid,
the cyclic construction limits its flexibility, and this impacts the overall structure of
proteins that contain it.

Glycine is also of interest because its side chain consists of only a single hydrogen
atom. In effect, glycine has no side chain, and this confers a unique property among the
20 amino acids: glycine is achiral. Any carbon bound to four distinct groups (as seen
in the other 20 amino acids) is said to be chiral (Figure 2.3). Chiral molecules can exist
in two distinct forms, which are in effect mirror images of each other. These two forms
have been deemed the D and L forms.4 In 1952, Fred Sanger discovered that proteins
seem to be constructed entirely of L-amino acids (Sanger, 1952). Indeed, for unknown
reasons, all known organisms have standardized on the L form of amino acids for the
genetically directed production of proteins. D-amino acids are seen in polypeptides in
rare cases, but they are a result of direct enzymatic synthesis (Kreil, 1997).

The Peptide Bond

Amino acids can form bonds with each other through a reaction of their respective
carboxyl and amino groups. The resulting bond is called the peptide bond, and two or
more amino acids linked by such a bond are referred to as a peptide (Figure 2.4). A
protein is synthesized by the formation of a linear succession of peptide bonds between
many amino acids (as directed by the genetic code) and can thus be referred to as a
polypeptide. Once an amino acid is incorporated into a peptide, it is referred to as an
amino acid residue, and the atoms involved in the peptide bond are referred to as the
peptide backbone.

2There is one exception. In a few proteins, a selenium-containing residue, selenocysteine, can be incorporated
during protein synthesis (Zinoni et al., 1986; Atkins and Gesteland, 2000).
3Because of the cyclic bond in proline, this molecule is technically an imino acid. However, proline is
commonly referred to as one of the 20 amino acids.
4International chemical convention calls for the designations R and S, respectively, but D and L are the
traditional, and currently dominant, terms.
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The specific characteristics of the peptide bond have important implications for
the three-dimensional structures that can be formed by polypeptides. The peptide bond
is planar and quite rigid. Therefore, the polypeptide chain has rotational freedom
only about the bonds formed by the α-carbons. These bonds have been termed the
Phi (�) and Psi (�) angles (Figure 2.5). However, rotational freedom about the �
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Figure 2.2. The 20 standard amino acids used in proteins, grouped based on the properties

of their side chains. The shared amino acid structure is shaded gray. Each amino acid is labeled

with its full name, followed by its three-letter and one-letter abbreviations. This classification

groups amino acids based on the form that predominates at physiological conditions (note that

their amino and carboxyl groups are charged under these conditions). This classification is useful

as a guideline, but does not convey the full complexity of side chain properties. For example,

tryptophan and histidine do not fall clearly into a single grouping. Tryptophan is somewhat

polar due to the nitrogen in its five-membered ring, but has a hydrophobic six-membered ring

at the end of its side chain. Histidine can be neutral polar and/or positively charged under

physiological conditions.

NH2 NH2Ca COOH HOOC

R

H

Ca

R

H

L-amino acid D-amino acid

Figure 2.3. The possible stereoisomers of a prototypical amino acid. Note that these structures

are mirror images of each other. The L-form is the only type incorporated into proteins via the

genetic machinery.

R

H

Ca

Ca
C′

O

RO H

N
N

H

H

C′

Figure 2.4. The peptide bond. Two peptide units (amino acid residues) are shown shaded in

light gray. The peptide bond between them is shaded in dark gray. The R-group represents any

of the possible 20 amino acid side chains.

(Cα−N) and � (Cα−C′) angles is limited by steric hindrance between the side chains
of the residues and the peptide backbone. Consequently, the possible conformations
of a given polypeptide chain are quite limited. A Ramachandran Plot (a plot of �
vs. � angles) maps the entire conformational space of a polypeptide, and illuminates
the allowed and disallowed conformations (Ramachandran and Sasisekharan, 1968)
(Figure 2.6). These plots were developed by G. N. Ramachandran in the late 1960s
based on studies of sterically allowed � and � angle combinations. See Chapter 14
for a more detailed discussion of these plots.

Some key exceptions to these conformational limitations can be attributed to
glycine and proline. As noted previously, glycine’s side chain (a single hydrogen
atom) is very small. There is markedly reduced steric hindrance about the � and �
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amide plane

side chain

amide plane

N

O C

H

R

Ca

H

N

O

C

H

y

f

Figure 2.5. The planar characteristics of the peptide bond, and rotation of the peptide backbone

about the Cα atom. Note the two planar peptide bonds about a central alpha carbon, shown here

as a ball-and-stick model. Rotation is only possible about the � (Cα−N) and � (Cα−C′) angles.

Arrows about the two angles show the direction that is considered positive rotation. In this figure,

both angles are approximately 180◦. From R.E. Dickerson and I. Geis. The Structure and Action of

Proteins. New York: Harper & Row, 1969. Used with permission from Geis Archives.

angles of this residue, thus, expanding the possible conformational space. Conversely,
the cyclic bond present in proline residues reduces the conformational freedom beyond
the limitations observed with other amino acids.

THE SECONDARY STRUCTURE OF PROTEINS: THE LOCAL
THREE-DIMENSIONAL STRUCTURE

The secondary structure of a protein can be thought of as the local conformation of the
polypeptide chain, independent of the rest of the protein. The limitations imposed on the
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Figure 2.6. A schematic representation of a Ramachandran plot (a plot of � vs. � angles). Gray

regions denote the allowed conformations of the polypeptide backbone. Circles indicate the

paired angle values of the repetitive secondary structures. Definitions of symbols: βA, antiparallel

β sheet; βP , parallel β sheet; βT , twisted β sheet (parallel or antiparallel); α, right-handed α helix;

L, left-handed helix; 3, 310 helix; π , π helix.

primary structure of a protein by the peptide bond and hydrogen bonding considerations
dictate the secondary structure that is possible. During the course of protein structure
research, two types of secondary structure have emerged as the dominant local confor-
mations of polypeptide chains: alpha (α) helix and beta (β) sheets. Interestingly, these
structures were actually predicted by Linus Pauling, Robert Corey, and H. R. Branson,
based on the known physical limitations of polypeptide chains, prior to the experimen-
tal determination of protein structures (Pauling, Corey, and Branson, 1951; Pauling
and Corey, 1951a). Indeed, if the Ramachandran plot is examined, helices and sheets
contain � and � angles that fall within the two largest regions of allowed conforma-
tion (Figure 2.6). These structures exhibit a high degree of regularity: the particular �
and � angle combinations in the polypeptide chain are approximately repeated for the
duration of the secondary structure.

Although helices and sheets satisfy the peptide bond constraints, this is not the only
factor that explains their ubiquity. Both of these structural elements are stabilized by
hydrogen bond interactions between the backbone atoms of the participating residues,
making them a highly favorable conformation for the polypeptide chain. Helices and
sheets are the only regular secondary structural elements present in proteins. However,
irregular secondary structural elements are also observed in proteins, and are vital to
both structure and function.
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α Helices

A helix is created by a curving of the polypeptide backbone such that a regular coil
shape is produced. Because the polypeptide backbone can be coiled in two directions
(left or right), helices exhibit handedness. A helix with a rightward coil is known as a
right-handed helix. Almost all helices observed in proteins are right-handed, as steric
restrictions limit the ability of left-handed helices to form. Among the right-handed
helices, the α helix is by far the most prevalent.

An α helix is distinguished by having a period of 3.6 residues per turn of the
backbone coil. The structure of this helix is stabilized by hydrogen-bonding interactions
between the carbonyl oxygen of each residue and the amide proton of the residue 4
residues ahead in the helix (Figure 2.7). Consequently, all possible backbone hydrogen
bonds are satisfied within the α helix, with the exception of a few at each end of the
helix, where a partner is not available.

N

N

N

N

N

R
side chain

O

O

O

O

O

O

O

Ca

Figure 2.7. Diagram of an α helix using a ball-and-stick model. The bonds forming the backbone

of the polypeptide are darkly shaded. The α helix is stabilized by internal hydrogen bonds formed

between the carbonyl oxygen of each residue and the amide proton of the residue 4 residues

ahead in the helix, shown here as dashed lines. Note that the polypeptide backbone curves

towards the right, and as such the α helix is a right-handed helix. From R.E. Dickerson and I. Geis.

The Structure and Action of Proteins. New York: Harper & Row, 1969. Used with permission from

Geis Archives.
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Other helices have also been observed in proteins, though much less frequently due
to their less favorable geometry. The 310 helix has a period of 3 residues per turn, with
hydrogen bonds between each residue and the residue 3 positions ahead (Taylor, 1941;
Huggins, 1943) (Figure 2.8). This type of helix is usually seen only in short segments,
often at the ends of an α helix. The very rare pi (π) helix has a period of 4.4 residues
per turn, with hydrogen bonds between each residue and the residue 5 positions ahead,
and has only been seen at the ends of α helices (Low and Baybutt, 1952).

β Sheets

Unlike helices, β sheets are formed by hydrogen bonds between adjacent polypeptide
chains rather than within a single chain. Sections of the polypeptide chain participating
in the sheet are known as β strands. β strands represent an extended conformation of
the polypeptide chain, where the � and � angles are rotated approximately 180◦ with
respect to each other. This arrangement produces a sheet that is pleated, with the
residue side chains alternating positions on opposite sides of the sheet (Figure 2.9).

Two configurations of β sheet are possible: parallel and antiparallel. In parallel
sheets, the strands are arranged in the same direction with respect to their amino-
terminal (N) and carboxy-terminal (C) ends. In antiparallel sheets, the strands alternate
their amino and carboxy terminal ends, such that a given strand interacts with strands
in the opposite orientation. β sheets can also form in a mixed configuration, with
both parallel and antiparallel sections, but this configuration is less common than the
uniform types mentioned above. Almost all β sheets exhibit some degree of twist
when the sheet is viewed edge on, along an axis perpendicular to the direction of the
polypeptide chains. This twist is always right-handed.

An important variant of the classical β sheet structure is the β bulge. The β
bulge, most often observed in antiparallel β sheets, is a hydrogen bond between two
residues on one β strand with one residue on the adjacent strand (Richardson, Getzoff,
and Richardson, 1978; Chan et al., 1993). This structure can alter the direction of the
polypeptide chain and augment the right-handed twist of the sheet (Richardson, 1981).

Other Secondary Structure

α helices and β sheets account for the majority of secondary structure seen in proteins.
However, these regular structures are interspersed with regions of irregular structure
that are referred to as loop or coil. Loop regions are usually present at the surface of
the protein. These regions are often simply transitions between regular structures, but
they also can possess structural significance, and can be the location of the functional
portion, or active site, of the protein.

Most of these structures were predicted and observed in the 1960s and 1970s
(Venkatachalam, 1968; Chandrasekaran et al., 1973; Lewis et al., 1973; Chou and
Fasman, 1977). Because of their irregularity, these elements are difficult to classify.
However, some types of structure are ubiquitous enough that they have been loosely
categorized. Hairpin loops (or reverse turns) often occur between antiparallel beta
strands, and involve the minimum number of residues (4–5) required to begin the next
strand. Many other types of turns exist, and can be classified by the regular secondary
structures that they connect and by the � and � angles of the residues involved in the
turn. Transitions involving more residues (6–16) are often referred to as omega (�)
loops because they resemble the shape of the capital Greek letter omega (Richardson,
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Figure 2.9. Diagram of an antiparallel β sheet using a ball-and-stick model. The bonds forming

the backbone of the polypeptide are darkly shaded. The β sheet is stabilized by hydrogen

bonds (shown here as dashed lines) formed between the carbonyl oxygen of a residue on one

strand and the amide proton of a residue on the adjacent strand. Note that this arrangement

produces a sheet that is pleated, with the residue side chains alternating positions on opposite

sides of the sheet. From R. E. Dickerson and I. Geis. Hemoglobin: Structure, Function, Evolution,

and Pathology. Menlo Park, CA: The Benjamin/Cummings Publishing Company, 1983. Used with

permission from Geis Archives.

1981). These loops can involve complex interactions that include the side chains, in
addition to the polypeptide backbone. Extended loop regions involving more than 16
residues have also been observed.

Although loop regions are irregular, these structures are generally as well ordered
as the regular secondary structures. However, experimental determination of protein
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Schematic Diagrams of Proteins
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Figure 2.10. One of the earliest pioneers in protein visualization was Irving Geis (Dickerson

and Geis, 1969; Kendrew, 1961), who created some of the most definitive representations

of protein structure. His hand-drawn depictions were so enlightening that they appear in

textbooks to this day (and appear in this chapter). Although hand drawings are extremely

valuable, they are ultimately impractical because of the large number of protein structures

that must be depicted (and the unusual level of talent required). Arthur Lesk and Karl

Hardman (1982) were the first to popularize the use of computers to automatically generate

schematic diagrams, given the (experimentally determined) spatial coordinates of the atoms

in the protein. For more on molecular visualization, see Chapter 7.

The N-terminal domain of the catalytic core of eukaryotic protein kinase A (PKA, PDB id

1APM: residues 35–123) is depicted here using four different representations. This section of

PKA contains a five-stranded antiparallel β sheet and three helices. Figure 2.10a depicts this

domain using an all-atom line representation. As can be seen, it is difficult to determine the

overall structural characteristics of this protein using such a representation. Because proteins

are often large and complex structures, views at the atomic level tend to obfuscate the

important features. For this reason, a variety of schematic diagrams have been developed for

the visual representation of protein structure. These diagrams replace the individual residues

with shapes that represent the secondary structure they belong to, and facilitate recognition

of motifs and domains.

Simple topology diagrams are two-dimensional projections of the protein structure that

are particularly useful for comparing the tertiary structures of different proteins (Holbrook

et al., 1970). In these diagrams, β strands are represented by arrows that point from the N

terminus to the C terminus; α helices are represented by cylinders. Connections between the

secondary structural elements (loops) are simply represented as lines. These diagrams clearly

illustrate the topology (connectivity) between the secondary structural elements and parallel

or antiparallel nature of β sheets (Figure 2.10b).

Cartoon diagrams illustrate the topology of the protein, as well as the spatial relationship

between the structural components. These diagrams represent the three-dimensional structure

of the protein as it actually occurs, with the atoms replaced by the same elements used in

topology diagrams. Initially conceived by Jane Richardson, and presented as hand drawings

(Richardson, 1981), this representation is now very commonly used in protein visualization

software packages (Figure 2.10c). Figures 2.10a and 2.10c were generated with the MolScript

package (Kraulis, 1991), and are shown in an identical spatial orientation. The cartoon images

in Tables 2.1 and 2.2 were also generated with the MolScript package.

TOPS diagrams, developed by Michael Sternberg and Janet Thornton, allow both the

topology and interaction of structural elements to be represented in a two-dimensional

format (Sternberg and Thornton, 1977). Here, the secondary structural elements are viewed

edge on, as if they were projecting outward in a direction perpendicular to the plane of the

page. β strands are represented by triangles; an upward-pointing triangle portrays a strand

pointing out of the page while a downward-pointing triangle portrays a strand pointing

into the page. Helices are represented by circles. Lines represent the loops connecting these

elements and also help to portray chain direction (Figure 2.10d). Software is available to

automatically generate these figures (Flores et al., 1994).
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structures has shown that some loop regions are disordered, and thus do not achieve a
stable structure. This type of loop region is referred to as random coil.

THE TERTIARY STRUCTURE OF PROTEINS: THE GLOBAL
THREE-DIMENSIONAL STRUCTURE

The tertiary structure of a protein is defined as the global three-dimensional structure
of its polypeptide chain. In a striking display of foresight, Alfred Mirsky and Linus
Pauling correctly described several important aspects of protein tertiary structure in
1936 (Mirsky and Pauling, 1936): “Our conception of a native protein molecule . . . is
the following. The molecule consists of one polypeptide chain which continues without
interruption throughout the molecule . . .; this chain is folded into a uniquely defined
configuration, in which it is held by hydrogen bonds between the peptide nitrogen and
oxygen atoms and also between the free amino and carboxyl groups of the diamino
and dicarboxyl amino acid residues.”

The prediction of Mirsky and Pauling is especially striking considering that very
little structural data was available and the linear polymer theory was still unproven at
that time. As described previously, hydrogen bonds are important in the stabilization
of secondary structure, but Mirsky and Pauling correctly divined their importance in
tertiary structure stabilization as well.

Mirsky and Pauling correctly predicted the role of hydrogen bonds in protein
structure; however, it subsequently became apparent that other forces were important.
With the determination of the structure of myoglobin by John Kendrew (Kendrew
et al., 1958), protein scientists at last could begin to confirm many of their assumptions
about various aspects of tertiary structure. Subsequent determination of the myoglobin
structure using more accurate data (Kendrew et al., 1960), and the determination of
the structure of hemoglobin by Max Perutz (Perutz et al., 1960) allowed scientists
to begin to directly catalogue aspects of protein tertiary structure for the first time.
Years of experimentation now make it possible to understand how secondary structural
elements combine in three-dimensional space to yield the tertiary structure of a protein.

Side Chains and Tertiary Structure

There are a wide variety of ways in which the various helix, sheet, and loop elements
can combine to produce a complete structure. These combinations are brought about
largely through interactions between the side chains of the constituent amino acid
residues of the protein. Thus, at the level of tertiary structure, the side chains play a
much more active role in creating the final structure. In contrast, backbone interactions
are primarily responsible for the generation of secondary structure (particularly in the
case of helices and sheets). Most proteins each have a distinctive tertiary structure;
the secondary structural elements of these proteins will always fold in the same way
to produce the same tertiary structure.5 This consistency is vital to proper function of
the protein.

5Some proteins do not have an intrinsically ordered structure, but rather spend much of their time in a
disordered state. Often, the function of these proteins depends on achieving an ordered structure only under
certain conditions or while engaged in specific interactions (Wright and Dyson, 1999).
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The Protein Fold

The final three-dimensional tertiary structure of a protein is commonly referred to as
its fold. Appropriately, the process by which a linear polypeptide chain achieves its
distinctive fold is known as protein folding. Protein folding is a complex process that
is not yet completely understood, and will not be described in great detail here. In most
(if not all) cases, the primary structure of the protein contains all of the information
required for it to acquire the correct fold. Further, random polypeptide sequences will
almost never fold into an ordered structure; an important property of protein sequences
is that they have been selected by the evolutionary process to achieve a reproducible,
stable structure (Richardson, 1992). Despite the deterministic nature of protein folding,
it is not yet possible to accurately predict the final structure of a protein given only
its sequence (see Section VII for a discussion of the methods currently used to tackle
this problem).

Domains and Motifs

Within the overall protein fold, distinct domains and motifs can be recognized. Domains
are compact sections of the protein that represent structurally (and usually function-
ally) independent regions. In other words, a domain is a subsection of the protein that
would maintain its characteristic structure, even if separated from the overall protein.
Motifs (also referred to as supersecondary structure) are small substructures that are not
necessarily structurally independent: generally, they consist of only a few secondary
structural elements. Specific motifs are seen repeatedly in many different protein struc-
tures; they are integral elements of protein folds. Further, motifs often have a functional
significance, and in these cases represent a minimal functional unit within a protein.
Several motifs can combine to form specific domains.

Molecular Interactions in Tertiary Structure

As with secondary structure, intramolecular forces are integral in defining and stabiliz-
ing the tertiary structure. The molecular interactions between structural elements, and
individual side chains within these elements, help determine the protein fold. Because
of the variety of chemical characteristics of the 20 standard amino acids, many types
of interactions between them are possible. Furthermore, it is important to note that
many proteins exist in an aqueous environment; intermolecular interactions with water
(solvent) must be considered in addition to interactions within the protein itself.

A dominant molecular interaction in the tertiary structure of proteins is the
hydrophobic effect (Tanford, 1978). Residues with hydrophobic side chains are packed
into the core of the protein, away from the solvent, while charged and polar residues
form the surface of the protein and are able to interact with polar water molecules
and solvated ions. Although residues with hydrophobic side chains fit naturally into
the core of the protein, their polar polypeptide backbone does not. In order for the
backbone to participate in the hydrophobic core, its hydrogen bonding groups must be
satisfied such that their polarity is, in effect, neutralized. Ordered secondary structural
elements (helices and sheets) provide this neutralization through their regular hydrogen
bonding patterns. Thus, secondary structural elements are critical to the formation of
the hydrophobic core.

Residues with polar side chains can also participate in the hydrophobic core. They
are, however, subject to the same restrictions as the polypeptide backbone: they must be
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involved in an interaction that neutralizes their polarity. Buried polar residues can form
hydrogen bonds with other polar residues, or with sections of the polypeptide backbone
not participating in a regular secondary structure. Alternately, in some proteins small
pockets exist in which buried polar residues satisfy their hydrogen bonds with water
molecules. These water molecules are completely isolated from the solvent and are
integral to the protein structure.

Charged residues can also occur within the hydrophobic core. This arrangement is
possible only if the charged residue is paired with another residue of opposite charge,
such that the net charge is zero. This interaction, initially proposed by Henry Eyring and
Allen Stearn in 1939, is known as an ion pair or salt bridge (Eyring and Stearn, 1939).

Eyring and Stearn also surmised that covalent connections between residue side
chains were important in maintaining tertiary structure (Eyring and Stearn, 1939).
Indeed, covalent interactions have been observed in some proteins. However, only
one of the standard 20 amino acids is capable of participating in a covalent linkage:
cysteine. The disulfide bond (−S−S−) can occur between the thiol (−SH) groups of
two cysteine residues.6 This interaction exists in proteins in order to further stabilize
the protein fold. Cysteine residues do not always participate in disulfide bonds; in
proteins, the majority of these residues are not part of a disulfide linkage.

Protein Modifications

Even though amino acids have a wide variety of chemical characteristics, chemical
modifications and interaction with nonpolypeptide molecules can further extend the
capabilities of proteins. At the level of tertiary structure, it is important to note these
phenomena, as they can be critical to both the structure and function of proteins.

The chemical properties of the 20 standard amino acids can be extended through
side chain modification. In some cases, such modification can be indispensable to
the proper formation of tertiary structures. For example, the fibrous protein collagen
contains a modified proline residue, hydroxyproline, which greatly stabilizes the protein
fold (Pauling and Corey, 1951b). In other cases, residue modification has no effect on
fold, but rather extends the functional repertoire of the protein.

Molecules, such as carbohydrates and lipids, can be attached to the protein via
covalent bonds with specific residues. Carbohydrate modifications are often seen on
proteins that function extracellularly and are known to play a role in intracellular protein
localization. Lipid modifications can help anchor a protein in the cell membrane.

Proteins can also associate with small molecules or metal atoms (covalently or
noncovalently) in order to diversify their functional and structural capabilities. Many
enzymes employ such molecules as cofactors, which assist them in chemical catalysis
(Karlin, 1993). Other proteins require these molecules or atoms for proper tertiary
structure formation. For example, the zinc-finger motif, a structural motif important
for the interaction of some proteins with DNA, cannot form without the covalent
interaction of a zinc atom with specific cysteine, or cysteine and histidine, residues
(Lee, 1989).

Fold Space and Protein Evolution

One might imagine that the ways in which secondary structures can be combined to
form a complete protein fold are almost limitless. Indeed, the variety of protein folds

6When cysteine is involved in a disulfide bond it is referred to as cystine.
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and the chemical diversity of their residues lead to a wide array of functions. This
universe of extant folds is often called fold space. Interestingly, currently available
protein structure data suggest that fold space is in fact quite limited, relative to the
range of folds that would seem possible a priori. Current estimates suggest that there
may be about 1000 unique protein folds (Chothia, 1992; Govindarajan, Recabarren,
and Goldstein, 1999; Wolf, Grishin, and Koonin, 2000). It is likely that two forces have
played a role in the limitation of fold space: divergent evolution of protein function
and convergent evolution of protein structure.

In the case of divergent evolution, the number of extant protein folds is limited
because they are derived from a relatively small group of shared common ancestor
proteins. These early ancestor proteins would have discovered a stable fold, which
has then been duplicated and reused by organisms for many other functions over the
course of evolution. Presumably, modification of an existing fold is more likely to
occur than the spontaneous generation of a novel fold. There is clear evidence that
this sort of modification has occurred over and over; it is possible because the link
between protein structure and function is not direct (Todd, Orengo, and Thornton,
2001). Though protein structure leads to protein function, similar protein structures
will not always have similar functions. Many cases exist where two proteins have
similar sequences and structures, but differ by a few key amino acid residues in an
active site and hence have very different functions. Thus, it is important to consider a
protein’s overall tertiary structure as a guide to the function of that protein, rather than
a definition of the function (see Chapter 19). This functional versatility suggests the
possibility that many protein folds will never be seen because organisms have simply
not required or developed them.

In the case of convergent evolution, the number of extant folds is limited because
certain folds are much more biophysically favored, and so have been created inde-
pendently in multiple cases. Certain folds are clearly over-represented in the set of
proteins of known structure, even when efforts are made to reduce the representational
bias inherent in the Protein Data Bank (PDB) (Berman et al., 2000; see Chapter 9).
In some cases, there is no discernable sequence similarity between proteins of similar
fold, suggesting that they have converged on a similar structure independently and do
not share a common ancestor (Holm and Sander, 1996). Further, some protein-folding
models have suggested that a small subset of folds will be biophysically favored over
all others (Li et al., 1996; Govindarajan and Goldstein, 1996). Hence, it is possible that
many folds will never be seen because they are not structurally favorable, and other
more favorable folds can be adapted to the needed functions.

The divergent and convergent protein evolution scenarios are not mutually exclu-
sive, and both appear to have had a part in limiting the range of folds in fold space.
Even though fold space appears limited, it is still complex enough to make classification
and comprehension of protein folds difficult (see Chapters 12 and 13).

Biochemical Classification of Folds

One method of protein classification partially sidesteps the issue of structural organi-
zation in favor of biochemical properties. Here, proteins are classified into three major
groups: globular, membrane, and fibrous.

Globular proteins exist in an aqueous environment, and thus fold as compact struc-
tures with hydrophobic cores and polar surfaces. They exhibit the typical structural
elements that have been discussed above. This class of proteins is well represented in
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the PDB, partly because these structures are the easiest to determine experimentally
(see Chapters 4–6). Because of the variety of determined structures available, glob-
ular proteins have been used as the basis for most protein structure studies (Berman
et al., 2000). Indeed, the first two experimentally determined structures, myoglobin and
hemoglobin, are globular (Kendrew et al., 1958; Perutz et al., 1960) (Table 2.1).

Membrane proteins exhibit many of the same characteristics as globular proteins,
but they are distinguished in two important ways. First, they exist in a completely

T A B L E 2.1. Biochemical Folds

Fold Protein Example Protein Schematic

Globular proteins Myoglobin

(PDB id 1A6M)

Membrane
proteins

Rhodopsin

(PDB id 1AT9)

Fibrous proteins Collagen

(PDB id 1QSU)
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different environment from typical globular proteins: the cell membrane. In the inte-
rior of the cell membrane, the protein is surrounded by a hydrophobic environment.
Thus, the regions of the protein within the cell membrane must have a hydropho-
bic surface in order to be stable. Some proteins exist almost entirely within the cell
membrane, whereas others have membrane-spanning or membrane-interacting domains.
Second, experimental structure determination of membrane proteins is more diffi-
cult than that encountered with globular proteins (see Chapters 4–6). These proteins
are very poorly represented in the PDB, thus, are poorly understood. However, the
structures that have been determined suggest that they use the same secondary struc-
tural elements and follow the same general folding principles as globular proteins
(Table 2.1).

Fibrous proteins differ markedly from both membrane and globular proteins. These
proteins are often constructed of repetitive amino acid sequences that form simple,
elongated fibers. Their repetitive design is well suited to the structural roles they often
play in organisms. Some fibrous proteins consist of a single type of regular secondary
structure that is repeated over very long sequences. Others are formed from repetitive
atypical secondary structures, or have no discernable secondary structure whatsoever
(Table 2.1).

Structural Classification of Folds

As more and more protein structures have been determined, development of increas-
ingly specific fold classifications has become possible. Cyrus Chothia and Michael
Levitt derived one of the first such classifications, which grouped proteins based on
their predominant secondary structural element (Levitt and Chothia, 1976). This clas-
sification consisted of four groups: all α, all β, α/β, and α + β. All α proteins, as the
name suggests, are based almost entirely on α helical structure, and all β structures
are based almost entirely on β sheet. α/β structure is based on a mixture of α helix
and β sheet, often organized as parallel β strands connected by α helices. Finally,
α + β structures consist of discrete α helix and β sheet motifs that are not interwoven
(as they are in α/β structure). As known fold space has become more complex, these
types of classifications have been adjusted and extended such that a complete hierarchy
is created that places almost all known protein structures into specific subclassifica-
tions. Two approaches to this sort of classification (SCOP and CATH) are described
in Chapters 12 and 13.

THE QUATERNARY STRUCTURE OF PROTEINS: ASSOCIATIONS OF
MULTIPLE POLYPEPTIDE CHAINS

Tertiary structure describes the structural organization of a single polypeptide chain.
However, many proteins do not function as a single chain, or monomer. Rather, they
exist as a noncovalent association of two or more independently folded polypeptides.
These proteins are referred to as multisubunit, or multimeric, proteins and are said to
have a quaternary structure. The subunits, or protomers, may be identical, resulting
in a homomeric protein, or they can be comprised of different subunits resulting in a
heteromeric protein (Figure 2.11).

The first observation of quaternary structure has been attributed to The Svedberg.
His use of the ultracentrifuge to determine the molecular weights of proteins in 1926
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Figure 2.11. The four-tiered hierarchy of protein structure, depicted for the protein hemo-

globin. Hemoglobin is a multisubunit, heteromeric protein consisting of four all-helical subunits.

The figure begins with a depiction of primary structure in the upper left corner and proceeds

to quaternary structure in a clockwise direction. The primary and secondary structure depictions

were generated with the MolScript package (Kraulis, 1991). Tertiary and quaternary structure

depictions from R. E. Dickerson and I. Geis. Hemoglobin: Structure, Function, Evolution, and

Pathology. Menlo Park, CA: The Benjamin/Cummings Publishing Company, 1983. Used with

permission from Geis Archives.

resulted in the separation of multisubunit proteins into their constituent protomers
(Klotz, Langerman, and Darnall, 1970). The concept of quaternary structure was not
of general biochemical interest until experiments on enzyme regulation in the early
1960s showed that protein subunits were crucial to understanding higher levels of
cellular function (Gerhart and Pardee, 1962; Monod, Changeux, and Jacob, 1963; Klotz,
Langerman, and Darrall, 1970).

Interestingly, most proteins are folded such that aggregation with other polypep-
tides is avoided (Richardson, 1992); the formation of multisubunit proteins is therefore
a very specific interaction. Quaternary structures are stabilized by the same types of
interactions employed in tertiary and secondary structure stabilization. The surface
regions involved in subunit interactions generally resemble the cores of globular pro-
teins; they are comprised of residues with nonpolar side chains, residues that can
form hydrogen bonds, or residues that can participate in disulfide bonds. Table 2.2
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T A B L E 2.2. Functional Relevance of Quaternary Structure

Functional Relevance Protein Example Protein Schematic

Cooperativity
The association of subunits that
bind the same substrate is often
able to enhance binding
capabilities of the multimer
beyond what is possible with
individual subunits. This
cooperativity is realized
through the ability of the
subunits to influence each other
based on their close proximity.

Hemoglobin

(PDB id 1A3N)

Co-localization of Function

Different subunits can associate
in order to confer multiple
functions on a single protein.
Often these functions involve
distinct steps in the processing
of a single substrate. Thus, the
co-localization of function
provided by a multisubunit
complex can further enhance
the abilities of a protein.

Tryptophan Synthase

(PDB id 1QOP)

Combinations of Subunits

Combinatorial shifts in
quaternary structure are able to
bestow impressive versatility to
protein function and regulation.
Protein function can be altered
by subunit swapping, and
protein regulation can be
achieved via interactions with
different subunits.

Immunoglobulin

(PDB id 12E8)

Structural Assembly

Very large structural proteins
are made possible by the
association of a large number
of small subunits. This
component-based assembly
simplifies the construction of
such structures and allows the
information required to code
these proteins to be more
concise.

Actin

(PDB id 1ALM)
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explains some of the functional advantages that are bestowed on proteins by their
quaternary structure.

CONCLUSION

Protein structure is complex, but it should be noted that by the 1970s protein scientists
had determined most of the basic principles. These findings were confirmed in later
years, as the pace of protein structure determination increased. These basic principles
of protein structure now form the stable foundation needed for researching many of
the remaining questions in protein science.

Computational tools now available, and described throughout this book, make
management of the complexity of protein structure information more tractable. Protein
structures can be more easily determined (see Chapter 29), and hypotheses as to the
nature of protein structure can be more easily tested. As a result, it is now possible to
pose more sophisticated questions, and in the coming years protein scientists can look
forward to an understanding of protein structure and function on a much deeper level.

INFORMATION ON THE INTERNET

Principles of Protein Structure Using the Internet, an on-line course at Birkbeck College,
University of London: http://www.cryst.bbk.ac.uk/PPS2/. [A very useful source of
information, it covers some areas of protein structure that were beyond the scope of
this chapter.]

The RCSB Protein Data Bank (PDB): http://www.rcsb.org/pdb/. [The sole worldwide public
repository for macromolecular structure data.]

Education Resources Listing at the PDB: http://www.rcsb.org/pdb/education.html. [A collection
of links to educational resources covering protein structure.]

TOPS homepage and server: http://www.sander.embl-ebi.ac.uk/tops/. [Used to create one of the
figures in this chapter.]

MolScript homepage: http://www.avatar.se/molscript/. [A popular package for generating images
of protein structure, used to create many of the figures in this chapter.]

FURTHER READING

Branden C, Tooze J (1999): Introduction to Protein Structure (2nd ed). New York: Garland
Publishing. [Perhaps the finest book on the topic of protein structure. It features a well-written
text and excellent hand-drawn illustrations.]

Mathews CK, van Holde KE (2000): Biochemistry. Redwood City, CA: The Ben-
jamin/Cummings Publishing Company.

Voet D, Voet JG (1995): Biochemistry (2nd ed). New York: John Wiley & Sons.
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FUNDAMENTALS OF DNA
AND RNA STRUCTURE

Stephen Neidle, Bohdan Schneider, and Helen M. Berman

In 1946, Avery provided concrete experimental evidence that DNA was the main con-
stituent of genes (Avery, MacLeod, and McCarthy, 1944); universal acceptance of
this idea came with the publication of the Hershey–Chase experiments (Hershey and
Chase, 1951). After the seminal discovery of the double helical nature of DNA in
1953 (Watson and Crick, 1953), the focus of nucleic acid structural research turned
to fiber diffraction of natural and defined sequences (Arnott, 1970; Arnott, Campbell,
Smith, and Chandrasekaran, 1976). Through these studies, we gained many insights
into nucleic acid structure. We learned that hydration, ionic strength, and sequence
all affect conformation type, and that nucleic acids can adopt a wide variety of struc-
tures, including single-stranded helices (Arnott, Chandrasekaran, and Leslie, 1976)
and parallel helices (Rich et al., 1961), as well as triple and quadruple helices (Arnott,
Chandrasekaran, and Marttila, 1974).

Once it was possible to synthesize and purify oligonucleotides (Khorana, Tener,
and Moffatt, 1956), the use of crystallography and later NMR to determine nucleic
acid structures became a reality. The first crystal structure that contained all the com-
ponents that could have, in principle, allowed us to see a double helix was that of
a very small piece of RNA-UpA (Seeman et al., 1971). Rather than forming a dou-
ble helix, it displayed unusual conformations, which anticipated some of the many
conformations that we now know exist in nucleic acids. In 1973, the double helix
was visualized at atomic resolution with the determination of the crystal structures of
two self-complementary RNA fragments, ApU and GpC (Rosenberg et al., 1973). The
determination of the structures of dinucleoside phosphates complexed with drugs fol-
lowed and laid the foundation for our understanding of nucleic acid recognition (Tsai,
Jain, and Sobell, 1975).
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The publication in 1980 of a structure of more than a full turn of B-DNA (Wing
et al., 1980) laid aside the doubts of even the most skeptical (Rodley et al., 1976)
that DNA was a right-handed double helix. The structure is also a milestone in our
understanding of the fine structure of DNA whereby it is possible to determine the
effects of sequence on structure. Interestingly, it was at the same time that the structure
of an unusual left-handed form of DNA—Z-DNA—was solved (Wang et al., 1979).

In parallel with the studies of these synthetic oligonucleotides, researchers were
successful in purifying t-RNA. The publication of the structure of yeast phe t-RNA in
1974 (Kim et al., 1974; Robertus et al., 1974) represented the first, and until recently,
the only structure of a natural intact nucleic acid. Now we are seeing an ever-increasing
number of structures of RNA that are giving us insights into the RNA world.

In this chapter, we present the principles of nucleic acid structure. We then present
a brief overview of the current state of our knowledge of nucleic acid structure deter-
mined using X-ray crystallographic methods. Discussion of nucleic acids in complex
with proteins is reserved for another review.

CHEMICAL STRUCTURE OF NUCLEIC ACIDS

In the early years of the twentieth century, chemical degradation studies on material
extracted from cell nuclei established that the high molecular-weight “nucleic acid”
was actually composed of individual acid units, termed nucleotides. Four distinct types
were isolated: guanylic, adenylic, cytidylic, and thymidylic acids. These acids could
be further cleaved to phosphate groups and four distinct nucleosides. The latter were
subsequently identified as consisting of a deoxypentose sugar and one of four nitrogen-
containing heterocyclic bases. Thus, each repeating unit in a nucleic acid polymer
comprises these three units linked together: a phosphate group, a sugar, and one of the
four bases.

The bases are planar aromatic heterocyclic molecules and are divided into two
groups: the pyrimidine bases thymine and cytosine, and the purine bases adenine and
guanine. Their major tautomeric forms are shown in Figure 3.1. Thymine is replaced
by uracil in ribonucleic acids. RNA also has an extra hydroxyl group at the 2′ posi-
tion of their pentose sugar groups. The sugar present in RNA is ribose; in DNA, it
is deoxyribose. The standard nomenclature for the atoms in nucleic acids is shown in
Figures 3.1 and 3.2. Accurate bond length and angle geometries for all bases, nucleo-
sides and nucleotides, have been well established by X-ray crystallographic analyses.
The most recent surveys (Clowney et al., 1996; Gelbin et al., 1996) have calculated
mean values for these parameters (which define their equilibrium values) from the
most reliable structures in the Cambridge Structural Database (Allen et al., 1979) and
the Nucleic Acid Database (Berman et al., 1992). These parameters have been incor-
porated in several implementations of the AMBER (Weiner and Kollman, 1981) and
CHARMM (Brooks et al., 1983) force fields widely used in molecular mechanics and
dynamics modeling, and in a number of computer packages for both crystallographic
and NMR structural analyses (Parkinson et al., 1996). Accurate crystallographic anal-
yses, at very high resolution, can also directly yield quantitative information on the
electron-density distribution in a molecule, and, hence, on individual partial atomic
charges. These charges for nucleosides have hitherto been obtained by ab initio quan-
tum mechanical calculations, but are now available experimentally for all four DNA
nucleosides (Pearlman and Kim, 1990).



CHEMICAL STRUCTURE OF NUCLE IC AC IDS 43

Figure 3.1. The five bases of DNA and RNA. The atoms are numbered according to standard

nomenclature. From (Neidle, 2002). Reprinted by permission of Oxford University Press.

Individual nucleoside units are joined together in a nucleic acid in a linear manner,
through phosphate groups that are attached to the 3′ and 5′ positions of the sugars
(Figure 3.2). Hence, the full repeating unit in a nucleic acid is a 3′,5′-nucleotide.

Nucleic acid and oligonucleotide sequences use single-letter codes for the five-
unit nucleotides—A, T, G, C, and U. The two classes of bases can be abbreviated
as Y (pyrimidine) and R (purine). Phosphate groups are usually designated as “p”. A
single oligonucleotide chain is conventionally numbered from the 5′ end; for example,
ApGpCpTpTpG has the 5′ terminal adenosine nucleoside, with a free hydroxyl at
its 5′ position, and thus the 3′ end guanosine has a free 3′ terminal hydroxyl group.
Intervening phosphate groups are sometimes omitted when a sequence is written. Chain
direction is sometimes emphasized with 5′ and 3′ labels. Thus, an antiparallel double-
helical sequence can be written as:

5′CpGpCpGpApApTpTpCpGpCpG
3′GpCpGpCpTpTpApApGpCpGpC

or simply as
(CGCGAATTCGCG)2

Structural publications on DNA usually prefix a sequence with “d,” as in d(CGAT),
to emphasize that the oligonucleotide is a deoxyribose rather than an oligoribo-
nucleotide.

The bond between sugar and base is known as the glycosidic bond. Its stereochem-
istry is important. In natural nucleic acids, the glycosidic bond is always β, which is
to say that the base is above the plane of the sugar when viewed onto the plane and
therefore on the same face of the plane as the 5′ hydroxyl substituent (Figure 3.3). The
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Figure 3.2. The organization and nomenclature of repeating units in a polynucleotide chain.

The torsion angles for the sugar phosphate backbone are given as Greek letters. α = O3-P-05′-C5′;
β = P-O5′-C5′-C4′; γ = O5’-C5′-C4′-C3′; δ = C5′-C4′-C3′-O3′; ε = C4′-C3′-O3′-P; ζ = C3′-O3′-P-O5′;
χ = O4′-C1′-N1-C2. Reprinted with permission from John Wiley & Sons from (Berman, 1997).

Figure 3.3. The stereochemistry of a natural β-nucleoside. Solid bonds are coming out of the

plane of the page, toward the reader. Dashed bonds are going away from the reader. Reprinted

from (Neidle, 2002). Reprinted by permission of Oxford University Press.

absolute stereochemistry of other substituent groups on the deoxyribose sugar ring of
DNA is defined such that when viewed end-on with the sugar ring oxygen atom O4′ at
the rear, the hydroxyl group at the 3′ position is below the ring and the hydroxymethyl
group at the 4′ position is above.

A unit nucleotide can have its phosphate group attached either at the 3′ or 5′
ends, and is thus termed either a 3′ or a 5′ nucleotide. It is chemically possible to
construct α-nucleosides, and from them α-oligonucleosides that have their bases in the
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“below” configuration relative to the sugar rings and their other substituents. These
α-nucleotides are much more resistant to nuclease attack than standard natural β-
oligomers and have been used as antisense oligomers to mRNAs on account of their
superior intracellular stability.

BASE PAIR GEOMETRY

The realization that the planar bases can associate in particular ways by means of
hydrogen bonding was a crucial step in the elucidation of the structure of DNA. The
important early experimental data of Chargaff (Zamenhof, Brawermann, and Chargaff,
1952) showed that the molar ratios of adenine : thymine and cytosine : guanine in DNA
were both unity. This observation led to the proposal by Crick and Watson that in each
of these pairs the purine and pyrimidine bases are held together by specific hydrogen
bonds, to form planar base pairs. In native double-helical DNA, the two bases in a base
pair necessarily arise from two separate strands of DNA (with intermolecular hydrogen
bonds) and so hold the DNA double helix together (Watson and Crick, 1953).

The adenine : thymine (A·T) base pair has two hydrogen bonds compared to the
three in a guanine : cytosine (G·C) one (Figure 3.4). Fundamental to the Watson–Crick
arrangement is that the sugar groups are both attached to the bases asymmetrically
on the same side of the base pair. This asymmetric arrangement defines the mutual
positions of the two sugar–phosphate strands in DNA itself. Atoms at the surface of
the sugar–phosphate backbone define two indentations with different dimensions called
minor and major grooves. The major groove is by convention faced by C6/N7/C8 purine
atoms and their substituents, and by C4/C5/C6 pyrimidine atoms and their substituents;
the minor groove by C2/N3 purine and C2 pyrimidine atoms and their substituents.

The two base pairs are required to be almost identical in dimensions by the Wat-
son–Crick model. High resolution (0.8–0.9 Å) X-ray crystallographic analyses of the
ribodinucleoside monophosphate duplexes (GpC)2 and (ApU)2 by A. Rich and col-
leagues in the early 1970s has established accurate geometries for these A : T and G : C
base pairs (Rosenberg et al., 1976; Seeman et al., 1976). These structure determina-
tions showed that there are only small differences in size between the two types of
base pairings, as indicated by the distance between glycosidic carbon atoms in a base
pair. The C1′· · ·C1′ distance in the G·C base pair structure is 10.67 Å, and 10.48 Å in
the A·U-containing dinucleoside.

The individual bases in a nucleic acid are flat aromatic rings, but base pairs bound
together only by nonrigid hydrogen bonds can show considerable flexibility. The ver-
tical arrangement of bases and base pairs is flexible and restrained mainly by stacking
interactions of bases. This flexibility is to some extent dependent on the nature of the
bases and base pairs themselves, but is more related to their base-stacking environ-
ments. Thus, descriptions of base morphology have become important in describing and
understanding many sequence-dependent features and deformations of nucleic acids.
The former features are often considered primarily at the dinucleoside local level,
whereas longer-range effects, such as helix bending, can also be analyzed at a more
global level.

A number of rotational and translational parameters have been devised to describe
these geometric relations between bases and base pairs (Figure 3.5), which were orig-
inally defined in 1989 (the “Cambridge Accord”) (Dickerson et al., 1989). These
definitions, together with the Cambridge Accord sign conventions, are given for some
key base parameters.
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Figure 3.4. (a) A·T and (b) G·C base pairs, showing Watson–Crick hydrogen bonding. The major

and minor sides of the bases are shown. Reprinted from with permission from John Wiley & Sons

from (Berman, 1997).

Propeller twist (ω) between bases is the dihedral angle between normals to the
bases when viewed along the long axis of the base pair. The angle has a negative
sign under normal circumstances, with a clockwise rotation of the nearer base when
viewed down the long axis. The long axis for a purine–pyrimidine base pair is defined
as the vector between the C8 atom of the purine and the C6 of a pyrimidine in a
Watson–Crick base pair. Analogous definitions can be applied to other nonstandard
base pairings in a duplex including purine–purine and pyrimidine–pyrimidine ones.

Buckle (κ) is the dihedral angle between bases, along their short axis, after propeller
twist has been set to 0◦. The sign of buckle is defined as positive if the distortion is
convex in the direction 5′ → 3′ of strand 1. The change in buckle for succeeding
steps, termed cup, has been found to be a useful measure of changes along a sequence.
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parameters. Reprinted with permission from Adenine Press from (Lu, Babcock, and Olson, 1999).

Cup is defined as the difference between the buckle at a given step, and that of the
preceding one.

Inclination (η) is the angle between the long axis of a base pair and a plane
perpendicular to the helix axis. This angle is defined as positive for right-handed
rotation about a vector from the helix axis toward the major groove.

X and Y displacements define translations of a base pair within its mean plane in
terms of the distance of the midpoint of the base pair long axis from the helix axis.
X displacement is toward the major groove direction when it has a positive value.
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Y displacement is orthogonal to this, and is positive if toward the first nucleic acid
strand of the duplex.

The key parameters for base pair steps are:

Helical twist (�) is the angle between successive base pairs, measured as the
change in orientation of the C1′–C1′ vectors on going from one base pair to the next,
projected down the helix axis. For an exactly repetitious double helix, helical twist is
360◦/n, where n is the unit repeat defined above.

Roll (ρ) is the dihedral angle for rotation of one base pair with respect to its
neighbor, about the long axis of the base pair. A positive roll angle opens up a base
pair step toward the minor groove. Tilt (τ ) is the corresponding dihedral angle along
the short (i.e., x-axis) of the base pair.

Slide is the relative displacement of one base pair compared to another in the
direction of nucleic acid strand one (i.e., the Y displacement), measured between the
midpoints of each C6–C8 base pair long axis.

Unfortunately there is now some confusion in the literature regarding these param-
eters, in part because the Cambridge Accord did not define a single unambiguous
convention for their calculation and two distinct types of approaches have been devel-
oped to calculate them (Lu, Babcock, and Olson, 1999). In one approach, the parameters
are defined with respect to a global helical axis, which need not be linear. The other
approach uses a set of local axes, one per dinucleotide step. Another ambiguity is
that a variety of definitions of local and global axes have been used. Fortunately, the
overall effect for most undistorted structures is that only a minority of parameters
appear to have very different values depending on the method of calculation, using
a number of the widely available programs: CEHS/SCHNAaP (El Hassan and Calla-
dine, 1995; Lu, Hassan, and Hunter, 1997), CompDNA (Gorin, Zhurkin, and Olson,
1995; Kosikov et al., 1999), Curves (Lavery and Sklenar, 1988; Lavery and Skle-
nar, 1989) FREEHELIX (Dickerson, 1998), NGEOM (Soumpasis and Tung, 1988;
Tung, Soumpasis, and Hummer, 1994) NUPARM (Bhattacharyya and Bansal, 1989;
Bansal, Bhattacharyya, and Ravi, 1995) and RNA (Babcock, Pednault, and Olson,
1993; Babcock and Olson, 1994; Babcock, Pednault, and Olson, 1994).

To resolve the ambiguities in description of base morphology parameters, a stan-
dard coordinate reference frame for the calculation of these parameters has been
proposed (Lu and Olson, 1999), and has been endorsed by the successor to the Cam-
bridge Accord, the 1999 Tsukuba Accord described in detail in (Olson et al., 2001).
The right-handed reference frame is shown in Figure 3.6. It has the x-axis directed
toward the major groove along the pseudo two-fold axis (shown as •) of an idealized
Watson–Crick base pair. The y-axis is along the long axis of the base pair, parallel to
the C1′· · ·C1′ vector. The position of the origin is clearly dependent on the geometry
of the bases and the base pair. The geometry of the bases has been taken from the
published compilations (Clowney et al., 1996; Gelbin et al., 1996). The Tsukuba ref-
erence frame is unambiguous and has the advantage of being able to produce values
for the majority of local base-pair and base-step parameters that are independent of
the algorithm used.
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displace and pivot complementary bases in the optimization of the standard reference frame for

right-handed A- and B-DNA, with the origin at • and the x- and y-axes pointing in the designated

directions. Reprinted with permission from (Olson et al., 2001).

CONFORMATION OF THE SUGAR PHOSPHATE BACKBONE

The five-member deoxyribose sugar ring in nucleic acids is inherently nonplanar. This
nonplanarity is termed puckering. The precise conformation of a deoxyribose ring can
be completely specified by the five endocyclic torsion angles within it (Figure 3.7a).
The ring puckering arises from the effect of nonbonded interactions between sub-
stituents at the four ring carbon atoms—the energetically most stable conformation
for the ring has all substituents as far apart as possible. Thus, different substituent
atoms would be expected to produce differing types of puckering. The puckering can
be described by either a simple qualitative description of the conformation in terms
of atoms deviating from ring coplanarity, or precise descriptions in terms of the ring
internal torsion angles.

In principle, there is a continuum of interconvertible puckers, separated by energy
barriers. These various puckers are produced by systematic changes in the ring torsion
angles. The puckers can be succinctly defined by the parameters P and τm (Altona and
Sundaralingam, 1972). The value of P, the phase angle of pseudorotation, indicates the
type of pucker since P is defined in terms of the five torsion angles τ0 − τ4:

tan P = (τ4 + τ1)− (τ3 + τ0)

2 ∗ τ2 ∗ (sin 36◦ + sin 72◦)

and the maximum degree of pucker, τm, by

τm = τ2/(cos P)

The pseudorotation phase angle can take any value between 0◦ and 360◦. If τ2 has
a negative value, then 180◦ is added to the value of P. The pseudorotation phase angle
is commonly represented by the pseudorotation wheel, which indicates the continuum
of ring puckers (Figure 3.7b). Values of τm indicate the degree of puckering of the ring;
typical experimental values from crystallographic studies on mononucleosides are in
the range 25–45◦. The five internal torsion angles are not independent of each other,
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Figure 3.7. (a) The five internal torsion angles in a ribose ring. (b) The pseudorotation wheel
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angle for the two principal sugar conformations. From (Neidle, 2002). Reprinted by permission of

Oxford University Press.

and so to a good approximation, any one angle τj can be represented in terms of just
two variables:

τj = τm cos[P+ 0.8π(j − 2)]

A large number of distinct deoxyribose ring pucker geometries have been observed
experimentally by X-ray crystallography and NMR techniques. When one ring atom is
out of the plane of the other four, the pucker type is an envelope one. More commonly,
two atoms deviate from the plane of the other three, with these two either side of the
plane. It is usual for one of the two atoms to have a larger deviation from the plane
than the other, resulting in a twist conformation. The direction of atomic displacement
from the plane is important. If the major deviation is on the same side as the base
and C4′–C5′ bond, then the atom involved is termed endo. If it is on the opposite
side, it is called exo. The most commonly observed puckers in crystal structures of
isolated nucleosides and nucleotides are either close to C2′-endo or C3′-endo types
(Figure 3.8a, b). The C2′-endo family of puckers have P values in the range 140–185◦;
in view of their position on the pseudorotation wheel, they are sometimes termed S
(south) conformations. The C3′-endo domain has P values in the range −10◦ to +40◦,
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and its conformation is termed N (north). In practice, these pure envelope forms are
rarely observed, largely because of the differing substituents on the ring. Consequently
the puckers are then best described in terms of twist conformations. When the major
out-of-plane deviation is on the endo side, there is a minor deviation on the opposite,
exo side. The convention used for describing a twist deoxyribose conformation is that
the major out-of-plane deviation is followed by the minor one, for example C2′-endo,
C3′-exo.

The pseudorotation wheel implies that deoxyribose puckers are free to intercon-
vert. In practice, there are energy barriers between major forms. The exact size of
these barriers has been the subject of considerable study (Olson, 1982a; Olson and
Sussman, 1982). The consensus is that the barrier height is dependent on the route
around the pseudorotation wheel. For interconversion of C2′-endo to C3′-endo, the
preferred pathway is via the O4′-endo state, with a barrier of 2–5 kcal/mole found
from an analysis of a large body of experimental data (Olson & Sussman, 1982), and a
somewhat smaller (potential energy) value of 1.5 kcal/mole from a molecular dynamics
study (Harvey and Prabhakarn, 1986). The former value, being an experimental one,
represents the total free energy for interconversion.

Relative populations of puckers can be monitored directly by NMR measurements
of the ratio of coupling constants between H1′–H2′ and H3′–H4′ protons. These
show that in contrast to the “frozen-out” puckers found in the solid-state structures
of nucleosides and nucleotides, there is rapid interconversion in solution. Nonethe-
less, the relative populations of the major puckers are dependent on the type of base
attached. Purines show a preference for the C2′-endo pucker conformational type,
whereas pyrimidines favor C3′-endo. Deoxyribose nucleosides are primarily (>60%)
in the C2′-endo form and ribonucleosides favor C3′-endo. Sugar pucker preferences
have their origin in the nonbonded interactions between substituents on the sugar
ring, and to some extent on their electronic characteristics. The C3′-endo pucker of
ribose would have hydroxyl substituents at the 2′ and 3′ positions further apart than
with C2′-endo pucker. Ribonucleosides are therefore significantly more restricted in
their mobility than deoxyribonucleotides; this has significance for the structures of
oligoribonucleotides. These differences in puckering equilibrium and hence in their
relative populations in solution and in molecular dynamics simulations, are reflected
in the patterns of puckers found in surveys of crystal structures (Murray-Rust and
Motherwell, 1978).

Correlations have been found, from numerous crystallographic and NMR studies,
between sugar pucker and several backbone conformational variables, both in isolated
nucleosides/nucleotides and in oligonucleotide structures. These are discussed later in
this chapter. Sugar pucker is thus an important determinant of oligo- and polynucleotide
conformation because it can alter the orientation of C1′, C3′, and C4′ substituents,
resulting in major changes in backbone conformation and overall structure, as indeed
is found.

The glycosidic bond links a deoxyribose sugar and a base, being the C1′–N9
bond for purines and the C1′–N1 bond for pyrimidines. The torsion angle χ around
this single bond can in principle adopt a wide range of values, although as will be seen,
structural constraints result in marked preferences being observed. Glycosidic torsion
angles are defined in terms of the four atoms:

O4′–C1′–N9–C4 for purines

O4′–C1′–N1–C2 for pyrimidines
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Figure 3.9. (a) A guanosine nucleoside with the glycosidic angle χ set in an anti conformation.

(b) Guanosine now in the syn conformation. From (Neidle, 2002). Reprinted by permission of

Oxford University Press.

Theory has predicted two principal low-energy domains for the glycosidic angle,
in accord with experimental findings for a large number of nucleosides and nucleotides.
The anti conformation has the N1, C2 face of purines and the C2, N3 face of pyrim-
idines directed away from the sugar ring (Figure 3.9a) so that the hydrogen atoms
attached to C8 of purines and C6 of pyrimidines are lying over the sugar ring. Thus,
the Watson–Crick hydrogen-bonding groups of the bases are directed away from
the sugar ring. These orientations are reversed for the syn conformation, with these
hydrogen-bonding groups now oriented toward the sugar and especially its O5′ atom
(Figure 3.9b). A number of crystal structures of syn purine nucleosides have found
hydrogen bonding between the O5′ atom and the N3 base atom, which would stabi-
lize this conformation. Otherwise, for purines, the syn conformation is slightly less
preferred than the anti, on the basis of fewer nonbonded steric clashes in the latter
case. The principal exceptions to this rule are guanosine-containing nucleotides, which
have a small preference for the syn form because of favorable electrostatic interactions
between the exocyclic N2 amino group of guanine and the 5′ phosphate group. For
pyrimidine nucleotides, the anti conformation is preferred over the syn, because of
unfavorable contacts between the O2 oxygen atom of the base and the 5′-phosphate
group. The results of molecular-mechanics energy minimization’s on all four DNA
nucleotides in both syn and anti forms (using the AMBER all-atom force field) are
fully in accord with these observations.

The sterically preferred ranges for the two domains of glycosidic angles are:

Anti: −120 > χ > 180◦

Syn: 0 < χ < 90◦

Values of χ in the region of about −90◦ are often described as “high anti.” There
are pronounced correlations between sugar pucker and glycosidic angle, which reflect



54 FUNDAMENTALS OF DNA AND RNA STRUCTURE

the changes in nonbonded clashes produced by C2′-endo versus C3′-endo puckers.
Thus, syn glycosidic angles are not found with C3′-endo puckers due to steric clashes
between the base and the H3′ atom, which points toward the base in this pucker mode.

The phosphodiester backbone of an oligonucleotide has six variable torsion angles
(Figure 3.2), designated α, β, γ, δ, ε, and ζ , in addition to the five internal sugar tor-
sions τ0· · ·τ4 and the glycosidic angle χ . As will be seen, a number of these have
highly correlated values (and therefore correlated motions in a solution environment).
Steric considerations alone dictate that the backbone angles are restricted to discrete
ranges (Sundaralingam, 1969; Olson, 1982b), and are accordingly not free to adopt any
value between 0◦ and 360◦. Figure 3.10 uses a conformational wheel to show these
preferred values, which are directly readable from their positions around the wheel.
The fact that angles α, β, γ , and ζ each have three allowed ranges, together with the
broad range for angle ε that includes two staggered regions, leads to a large number of
possible low-energy conformations for the unit nucleotide, especially when glycosidic
angle and sugar pucker flexibility is taken into account. In reality, only a small num-
ber of DNA oligonucleotide and polynucleotide structural classes have actually been
observed out of this large range of possibilities; this is doubtless in large part due to
the restraints imposed by Watson–Crick base pairing on the backbone conformations
when two DNA strands are intertwined together. In contrast, crystallographic and NMR
studies on a large number of standard and modified mononucleosides and nucleotides
have shown their considerably greater conformational diversity. For mononucleotides
backbone conformations in the solid state and in solution are not always in agreement;
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Figure 3.10. Conformational wheel (Schneider, Neidle, and Berman, 1997) showing the torsion

angles for BDL001 (Drew et al., 1981). Black lines show actual values of torsion angles, cyan

background their allowed range in the B-type DNA conformation (Schneider, Neidle, and Berman,

1997). The grey shades in the outer rings show the average value(s) of the torsions in dark grey

flanked by values of one and two estimated standard deviations in lighter grey. Figure also

appears in Color Figure section.
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the requirements for efficient packing in the crystal can often overcome the modest
energy barriers between different values for a particular torsion angle. A large range of
base. . . base interactions characterize many larger RNA molecules, which can therefore
adopt a variety of backbone conformations.

A common convention for describing these backbone angles is to term values
of ∼60◦ as gauche+ (g+), −60◦ as gauche− (g−) and ∼180◦ as trans (t). Thus,
for example, angles α (about the P-O5′ bond) and γ (the exocyclic angle about the
C4′–C5′ bond), can be in the g+, g− or t conformations. The two torsion angles
around the phosphate group itself, α and ζ , have been found to show a high degree
of flexibility in various dinucleoside crystal structures, with the tg−, g−g− and g+g+
conformations all having been observed (Kim et al., 1973). A- and B-DNA adopt to
g−g− and g−t conformations; Z-DNA adopts the g+g+, tg− and tg+ conformations.
The torsion angle β, about the O5′–C5′ bond, is usually trans. All three possibilities
for the γ angle have been observed in nucleoside crystal structures, although the g+
conformation predominates in right-handed oligo- and polynucleotide double helices.
The torsion angle δ around the C4′–C3′ bond adopts values that relate to the pucker
of the sugar ring, since the internal ring torsion angle τ3, (also around this bond), has
a value of about 35◦ for C2′-endo and about 40◦ for C3′-endo puckers; δ is about 75◦
for C3′-endo and about 150◦ for C2′-endo puckers.

There are a number of correlations involving pairs of these backbone torsion
angles, as well as sugar pucker and glycosidic angle, that have been observed in
mononucleosides and nucleotides (which are inherently more flexible in solution as
well as being more subject to packing forces in the crystal), and more recently, in
oligonucleotides (Schneider, Neidle, and Berman, 1997; Packer and Hunter, 1998).
Some of the more significant correlations are:

• Between sugar pucker and glycosidic angle χ , especially for pyrimidine nucleo-
sides. C3′-endo pucker is usually associated with median-value anti glycosidic
angles, whereas C2′-endo puckers are commonly found with high anti χ angles.
Syn glycosidic angle conformations show a marked preference for C2′-endo
sugar puckers.

• Scattergrams between α and ζ show clear distinctions for the A-, B-, and Z-DNA
conformational classes. The same is true from scattergrams between χ and
ζ . Overall, values of torsion angles α, ζ, δ, and χ form a “fingerprint” of a
nucleotide or the whole structure (Schneider, Neidle, and Berman, 1997) with a
predictive power sufficient to provide information for structural classification of
the DNA double helix.

STRUCTURES OF NUCLEIC ACIDS

DNA Duplexes

The first structures of nucleic acids were of DNA duplexes derived using fiber diffrac-
tion methods. B-DNA, the classic structure first described by Watson and Crick (Watson
and Crick, 1953), as refined using the linked-atom, least-squares procedure developed
by Arnott and his group (Kim, et al., 1973). In canonical B-DNA (Figure 3.11), the
backbone conformation has C2′-endo sugar puckers and high anti glycosidic angles.
The right-handed double helix has 10 base pairs per complete turn, with the two polynu-
cleotide chains antiparallel to each other and linked by Watson–Crick A·T and G·C
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(a) (b) (c)

Figure 3.11. Canonical helical types of A-, B-, and Z-DNA from (Berman, Gelbin, and Westbrook,

1996) with permission from Elsevier Science. Figure also appears in Color Figure section.

base pairs. The paired bases are almost exactly perpendicular to the helix axis, and they
are stacked over the axis itself. Consequently, the base-pair separation is the same as
the helical rise—3.4 Å. An important consequence of the Watson–Crick base-pairing
arrangement is that the two deoxyribose sugars linked to the bases of an individual
pair are asymmetrically on the same side of it. So, when successive base pairs are
stacked on each other in the helix, the gap between these sugars forms two continuous
indentations with different dimensions in the surface that wind along, parallel to the
sugar-phosphodiester chains. These indentations are termed grooves. The asymmetry
in the base pairs results in two parallel types of groove, whose dimensions (especially
their depths) are related to the distances of base pairs from the axis of the helix and
their orientation with respect to the axis. The wide major groove is almost identical
in depth to the much narrower minor groove, which has the hydrophobic hydrogen
atoms of the sugar groups forming its walls. In general, the major groove is richer in
base substituents—O6, N6 of purines and N4, O4 of pyrimidines—compared to the
minor one (Figure 3.4). These differences in chemistry of the major and minor groove,
together with the steric differences between the two, has important consequences for
interaction with other molecules.

Over 230 single crystal structures with B-DNA conformations have been deter-
mined since the first such structure was published (Figure 3.12a) (Drew et al., 1981).
The average values of the base morphology parameters are close to the canonical val-
ues derived from fiber studies. However, the individual structures have diverse shapes.
Many DNA structures are bent by as much as 15◦ (Dickerson, Goodsell, and Kopka,
1996) and the groove widths are variable (Heinemann, Alings, and Hahn, 1994). The
bending is a function of some of the base morphology parameters, in particular twist
and roll. Attempts to relate the base morphology parameters to the sequence of the bases
have shown some trends. Twist and roll appear to be correlated with regressions that
depend on the nature of the bases in the step; purine–pyrimidine, purine–purine, and
pyrimidine–purine steps show distinctive differences (Quintana et al., 1992; Gorin,
Zhurkin, and Olson, 1995). A–T base pairs in AA steps have high propeller twist
and bifurcated hydrogen bonds (Yanagi, Prive, and Dickerson, 1991). Stretches of A
in sequences appear to be straight (Young et al., 1995). However, stretches of A in
sequences appear to be straight, but certain steps such as TA and CA show a very
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(a) (b)

(c) (d)

Figure 3.12. Examples of B-DNA. (a) The Dickerson dodecamer (Drew et al., 1981); (b) B-DNA

daunomycin (Frederick et al., 1990). The drug is intercalated in between the CG base pairs;

(c) Netropsin-DNA complex (Goodsell, Kopka, and Dickerson, 1995). The drug is bound in the

minor groove; (d) DNA tetraplex (Phillips et al., 1997). Figure also appears in Color Figure section.

large variability due to either crystal packing, sequence context, or both (Lipanov
et al., 1993).

Included among the many B-DNA structures are 25 with base mispairing. Interest-
ingly, these mutations cause only local perturbations to the structures and the overall
conformations of these structures remains the same as the parent structures. Hydration
also plays an important role in the structure of B-DNA. The spine of hydration first seen
in the dodecamer structure and described in some detail (Dickerson et al., 1983) has
proven to be an enduring feature of these molecules. A detailed analysis of the hydra-
tion around the bases in DNA has demonstrated that the hydration is local (Schneider
and Berman, 1995). Hydrated building blocks from decameric B-DNA were used to
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construct the dodecamer structure and the spine was faithfully reproduced. That same
analysis strongly suggests that the patterns of hydration, be they spines or ribbons,
are a function of the base morphology and that there is strong synergy between the
hydration and base conformations.

Canonical A-DNA (Figure 3.11) has C3′-endo sugar puckers, which brings con-
secutive phosphate groups on the nucleotide chains closer together—5.9 Å compared
to the 7.0 Å in B-form DNA—and alters the glycosidic angle from high anti to anti.
As a consequence, the base pairs are twisted and tilted with respect to the helix axis,
and are displaced nearly 5 Å from it, in striking contrast to the B helix. The helical
rise is, as a consequence, much reduced to 2.56 Å, compared to 3.4 Å for canonical
B-DNA. The helix is wider than the B one and has an 11 base-pair helical repeat. The
combination of base pair tilt with respect to the helix axis and base pair displacement
from the axis results in very different groove characteristics for the A double helix
compared to the B form. This combination also results in the center of the A double
helix being a hollow cylinder. The major groove is now deep and narrow, and the
minor one is wide and very shallow.

Analysis of the A-DNA crystal structures has shown that there are variations in
the helical parameters that appear to be related to crystal packing (Ramakrishnan and
Sundaralingam, 1993). Two sequences each crystallize in two different space groups:
GTGTACAC (Jain, Zon, and Sundaralingam, 1989; Jain, Zon, and Sundaralingam,
1991; Thota et al., 1993) and GGGCGCCC (Shakked et al., 1989). In both cases the
helical parameters are different in different crystal forms. Another analysis of a series
of A-DNA duplexes shows that there is an inverse linear relationship between the
crystal packing density and the depth of the major groove (Heinemann, 1991).

In the earlier days of nucleic acid crystallography, it had been thought by some that
the A conformation was simply a crystalline artifact and not likely to bear any relation-
ship to biology. Now it has been demonstrated that in the TATA binding protein–DNA
complex (Kim et al., 1993; Kim, Nikolov, and Burley, 1993), the conformation of the
DNA is an A–B chimera (Guzikevich-Guerstein and Shakked, 1996). The apparent
deformability of the base geometry seen in A-DNA oligonucleotide crystal structures
may prove to be an advantage in forming protein-DNA complexes.

One of the earliest A-type structures determined demonstrated a unique arrange-
ment of water molecules consisting of edge-linked pentagons (Shakked et al., 1983).
This pattern, like the spine seen in B-DNA, provoked the continued pursuit of the role
of hydration in the stabilization of the different forms of DNA. One theory is that the
economy of hydration seen in A-type structures may provide a structural explanation
for the B to A transition as the humidity is lowered (Saenger, Hunter, Kennard, 1986).
In a study of the hydration of a series of A-DNA structures it was demonstrated that
the bases have specific patterns and that both the direct and the water-mediated inter-
actions could be related to recognition properties of DNA and proteins (Eisenstein and
Shakked, 1995).

Around the same time that the single crystal structure of B-DNA was determined,
a left-handed conformation called Z-DNA was discovered (Wang et al., 1979). The
zigzag phosphate backbone defines a convex outer surface of the major groove and the
deep central minor groove (Figure 3.11). Z-type structures have alternation of cytosine
and guanine with a cytosine at the first position. Of the unmodified Z-DNA structures,
there are very few examples in which there have been substitutions of A for G and
T for C. Modifications of the cytosines with methyl groups at the five positions have
allowed for more drastic sequence changes as exemplified for a structure with tandem
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G’s in the center (Schroth, Kagawa, and Ho, 1993), and another with an AT at that
position (Wang et al., 1985).

The basic building block of Z-DNA is a dinucleotide with the twist of the CG
steps 9◦ and of the GC steps 50◦. The backbone conformation of Z-DNA is character-
ized by the alternation of the χ angle of the guanine and the cytosine where the former
is syn and the latter anti. The values for backbone torsion angles do not resemble
those found in either A- or B-DNA. In many Z-DNA crystals, the central step of one
chain has a different conformation from the other steps. This conformational polymor-
phism is called ZI and ZII (Gessner et al., 1989). Analysis of the packing patterns in
Z crystals has shown that it is possible to correlate the pattern of water bridges with
the presence of the ZI–ZII pattern (Schneider et al., 1992).

The hydration characteristics of Z-DNA crystals are very uniform with a spine
of hydration in the central minor groove and tightly bound water on the exterior
major groove (Gessner, Quigley, and Egli, 1994). The effects of solvent reorgani-
zation as a result of subtle sequence changes has been offered as a very plausible
explanation for the different stabilities of these sequences (Wang, et al., 1984; Kagawa
et al., 1989).

Drug Complexes

Three major types of drug interactions have been observed. The intercalation mode
was first observed in a co-crystal between UpA and ethidium bromide (Tsai, Jain,
and Sobell, 1975) and in a subsequent series of dinucleoside drug complexes (Berman
and Young, 1981). The first intercalation complexes (Wang et al., 1987) with longer
stretches contained daunorubicin sandwiched between the terminal CG base pair. Now
more than 200 related structures have been determined, thus, shedding light on the
effects of changes in the drug and the sequence. The determination of the structure of
a complex between actinomycin D (Kamitori and Takusagawa, 1994) and an octamer
in which the drug is bound to the central GC base pair showed how the double helix
can accommodate the drug without itself fraying.

The second class of drug complexes have been those that bind the drug in the minor
groove. Starting with the structure of netropsin bound to the Dickerson dodecamer
(Kopka et al., 1985), there have been over 30 structures determined in which the
drugs bind to the minor groove (Figure 3.12c). Several of these structures contain the
Hoechst benzimidazole derivative, which is typical in having a planar heteroaromatic
cross-section whose dimensions complement those of the A/T narrow minor groove in
multiple binding geometries. In general, these groove binders show strong sequence
specificity that is moderated by a combination of hydrophobic and hydrogen bonding
interactions (Tabernero, Bella, and Alemán, 1996). There is an example in this class of
complexes in which two drugs are bound in the minor groove of an octameric fragment
of DNA (Chen et al., 1994).

Although covalent adducts are thought to be key in carcinogenesis as well as show-
ing antitumor activity, in general, it has been very difficult to obtain crystalline samples.
There are few examples: an anthramycin molecule bound to a dodecamer (Kopka et al.,
1994). Other carcinogenic adducts that have been crystallized are simple modifications
to the O6 methyl group of G. Two structures containing this type of modification
crystallized in the same approximate unit cell as the parent dodecamer but are not
isomorphous (Gao et al., 1993; Vojtechovsky et al., 1995). Such a variability of crystal
packing may demonstrate how a local lesion may actually affect interaction and recog-
nition properties. A pharmaceutically important structure is that of the antitumor agent
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cis platinum covalently bound to tandem guanine residues in a DNA duplex. The DNA
is strongly bent as a result of this interaction (Takahara et al., 1995). In addition, several
of the complexes containing daunomycin are actually covalent adducts that were formed
from the presence of formaldehyde in the crystallization drop (Wang et al., 1991).

DNA Quadruplexes

The existence of tetrameric arrangement of DNA and RNA helices was first shown
in fiber of poly G and poly I (Arnott, Chandrasekaran, and Marttila, 1974). The bio-
logical relevance was discovered later when it was hypothesized that these types of
conformations may occur in telomeres (Rhodes and Giraldo, 1995). There are now sev-
eral examples of crystal structures of quadruplex DNA. Guanine-rich DNA sequences
can form multistranded structures as a consequence of the ability of guanine bases to
form hydrogen-bonded arrays involving two of its faces at once. The best-characterized
such arrangement is the guanine quartet formed with four guanine bases. The result-
ing structures have four strands that can arise from a single strand folded back in a
intramolecular arrangement. Four separate strands can also associate together, as can
just two. The resulting structures, termed quadruplexes, have considerable diversity
that depends on both the number of separate strands involved, and on the interven-
ing nonguanine loop sequences. A number have been characterized by NMR, with
rather less by X-ray crystallography. Figure 3.12d shows an example of one such
crystal structure.

RNA Duplexes

In the last few years, there has been a pronounced increase in the number of RNA struc-
tures determined. This is due in part to the improved ability to obtain pure material and
crystallize it (Wyatt, Christain, and Puglisi, 1991; Wahl et al., 1996). Although RNA
is generally single stranded, double-stranded RNA can be readily formed, analogous to
duplex DNA. Uracil participates in U•A base pairs that are fully isomorphous with A•T
ones in duplex DNA. Duplex RNA is conformationally rather rigid, and its behavior
contrasts remarkably with the polymorphism of duplex DNA in that only one major
polymorph of the RNA double helix has been observed. This double helix has many
features in common with A-DNA, and accordingly is known as A-RNA. The confor-
mational features of canonical RNA helices have been obtained from fiber-diffraction
studies on duplex RNA polynucleotides from both viral and synthetic origins. A-RNA
is an 11-fold helix, with a narrow and deep major groove and a wide, shallow minor
groove, and base pairs inclined to and displaced from the helix axis. A-RNA helices
have the C3′-endo sugar pucker. Another difference from duplex DNA is that RNA
helices, though capable of a small degree of bending (up to ca. 15◦), does not undergo
the large-scale bending seen, for example, in A-tract DNA.

A number of structures of base-paired duplex RNA have been reported, the first
being the structures of r(AU) and r(GC) (Rosenberg et al., 1976; Seeman et al., 1976).
Crystallographic analyses of sequences, such as the octanucleotide r(CCCCGGGG),
have shown helices of length sufficient for a full set of helical parameters to be
extracted. This sequence crystallizes in two distinct crystal lattices, enabling the effects
of crystal-packing factors on structure to be assessed (Portmann, Usman, and Egli,
1995). In each instance, rhombohedral and hexagonal, the RNA helices are very simi-
lar, and their features closely resemble those in fiber-diffraction canonical A-RNA. The
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Figure 3.13. Examples of RNA. (a) RNA duplex with mismatches r(GGACUUCGGUCC) (Holbrook

et al., 1991); (b) A-RNA duplex (Dock-Bregeon et al., 1989); (c) Hammerhead ribozyme (Pley,

Flaherty, and McKay, 1994); (d) tRNA (Sussman et al., 1978). Figure also appears in Color Figure

section.
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structure of r(UUAUAUAUAUAUAA) (Figure 3.13b) was the first to show a full turn
of an RNA helix (Dock-Bregeon et al., 1989). Again, the helix is essentially classical
A-RNA.

The increasing availability of high-resolution crystal structures has enabled RNA
hydration in oligonucleotides to be defined. Some general rules are beginning to emerge
for the water arrangements beyond the obvious finding of an inherently greater degree
of hydration compared to DNA oligonucleotides, on account of the 2′-OH group being
an active hydrogen bond participant. There is no analogue of the minor-groove spine
of hydration seen in B-DNA. Again, this finding is unsurprising since in A-RNA the
minor groove is too wide for such an arrangement.

Mismatched and Bulged RNA

RNAs can readily form stable base pair and triplet mismatches and extra-helical regions
within the context of normal RNA double helices. Such features, notably extra-helical
loops, have been the subject of intense structural study, since they are present in large
RNAs (tRNAs, mRNAs, ribosomal RNA), and together with various types of base
stacking, are responsible for maintaining their tertiary structures. It is paradoxically
common for crystal structures of short sequences containing potential loop regions such
as the UUCG “tetraloop” (which forms an especially stable extrahelical loop structure
in solution), often not to show such features. This failure to produce extra helical
loops is probably a consequence of the high ionic strength of many crystallization
conditions, together with the preference of some sequences to pack in the crystal as
helical arrays. So, instead of loops, these crystal structures tend to have runs of non-
Watson–Crick mismatched base pairs where the loop would have formed. For example,
an A-RNA double helix, albeit with G•U and U•U base pairs, is formed in the crystal
by the sequence r(GCUUCGGC)d(BrU) (Cruse et al., 1994). There is evidence of some
deviations from the exact canonical A-RNA duplexes formed by fully Watson–Crick
base pairs, since this helix has <10 base pairs per turn. The dodecamer sequence
r(GGACUUCGGUCC) (Figure 3.13a) similarly forms a base-paired duplex (Holbrook
et al., 1991), with U•C and G•U base pairs. The A-RNA helix here has a significant
increase in the width of its major groove, possibly on account of the water molecules
that are strongly associated with the mismatched base pairs. Much greater perturbations
are apparent in the structure of the dodecamer r(GGCCGAAAGGCC) (Baeyens et al.,
1996), where the four non-Watson–Crick base pairs in the center of the sequence
form an internal loop with sheared G•A and A•A base pairs. The resulting structure
is very distorted from A-RNA ideality, with a compression of the major groove, an
enlargement of the minor groove width to 13.5 Å, and a pronounced curvature of the
resulting helix. This sequence forms a tetraloop in solution (Baeyens et al., 1996).
The G•U base pair is a prominent and very important element of large RNA structures
since it is especially stable (Varani and McClain, 2000), on account of its two hydrogen
bonds. It is known as the “wobble” pair, since a G in the first position of a codon can
accept either a C or a U in the third anticodon (wobble) position.

The RNA genome of the HIV-1 retrovirus contains many nonhelical features,
some of which have been studied by structural methods. Its dimerization initiation site
has features that act as signals for RNA packaging. The expected secondary structure
(containing two loops in a “kissing-loop” arrangement) was not observed. Instead,
the duplex contains two A•G base pairs, each adjacent to an extra-helical, bulged-out
adenosine (Ennifar et al., 1999). This tendency of short RNA sequences to maximize
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helical features is also apparent in the crystal structure of a 29-nucleotide fragment from
the signal recognition particle (Wild et al., 1999), which forms 28-mer heteroduplexes
rather than a hairpin structure. Even so, this duplex has features of wider interest,
since it has a number of non-Watson–Crick base pairs such as a 5′-GGAG/3′-GGAG
purine bulge. Their overall effect is to produce backbone distortions so that the helix
has non-A-RNA features such as a widening of the major groove, by ∼9 Å, and local
undertwisting of base pairs adjacent to A•C and G•U mismatches.

Transfer RNA

The crystal structure of yeast phenylalanine tRNA (Figure 3.13d) was determined in
the early 1970s, simultaneously by two groups (Kim et al., 1974; Robertus et al., 1974).
These tRNAs together with a few others remained the sole complex RNA molecular
structures available for 20 years, until the first ribozyme structure. Both independent
structures, one monoclinic (Robertus et al., 1974) and the other orthorhombic (Kim
et al., 1974), are similar. They showed that the molecule is folded into an overall
L-shape, with the two arms at right angles to each other. The original cloverleaf is
still apparent, but with additional interactions between distant parts of the structure.
The arms consist of short A-RNA helices, together with these extensive base–base
interactions that hold the two arms together. The longer double helical anticodon arm
has the short helix of the D stem stacked on it. The other arm is formed by the helix of
the acceptor stem, on which is stacked the four base-pair T arm helix. This key feature
of helix–helix stacking, has turned out to be of central importance for other complex
RNAs. The nine additional base. . . base interactions that maintain the structural fold
all tend to be in the elbow region, where the two arms are joined together. Almost
all of these are of non-Watson–Crick type, and several are triplet interactions. Other
subsequent crystal structures of tRNAs have shown that the overall L shape is invariant,
as are many of the tertiary interactions.

Ribozymes

The ability of certain RNA molecules to catalytically cleave either themselves or other
RNAs is shown by five distinct categories of RNA to date, with undoubtedly more
remaining to be discovered:

1. the RNA of self-splicing group I introns—that from Tetrahymena was the first
ribozyme to be discovered (Cech, Zaug, and Grabowski, 1981). These introns
contain four conserved sequence elements and form a characteristic secondary
structure. The initial step of the cleavage involves nucleophilic attack by a
conserved guanosine,

2. the RNA of self-splicing group II introns, which also have conserved sequence
elements, but a very different secondary structure and a distinct mechanism
of cleavage that involves the nucleophilic attack of a conserved adenosine,
contained within the intron sequence,

3. the RNA subunit of the enzyme RNase P,
4. self-cleaving RNAs from viral and plant satellite RNAs. These are smaller

ribozymes than the group I or II intron ones, and include the hammerhead
ribozyme,

5. ribosomal RNA in the ribosome.
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The crystal structures of hammerhead ribozymes were the first to be determined
(Figure 3.13c). One is of a complex with a DNA strand containing the putative cleavage
site (Pley, Flaherty, and McKay, 1994); since ribozymes do not cleave DNA, this is
effectively an inhibitor complex. The structure shows three A-RNA stems connected to
a central two-domain region containing the conserved residues. In the structure of the
group I intron (Cate et al., 1996), the 160 residue single-stranded molecule is arranged
such that the helices are aligned to maximize base stacking (Figure 3.14).

The Ribosome

The ribosome is responsible for protein synthesis in all prokaryotic and eukaryotic
cells. It consists of two subunits, each a complex of proteins and ribosomal RNA. The
complete 70S prokaryotic ribosome has a total molecular weight of about 2.5 million
Daltons. In prokaryotics the 30S subunit contains about 20 proteins and a single RNA
molecule of around 1500 nucleotides in length. The larger 50S subunit contains half
as many more proteins and a large RNA of about 3000 nucleotides, together with the
small (120 nucleotide) 5S RNA. The primary function of the small subunit is to control
tRNA interactions with messenger RNAs. The large subunit controls peptide transfer
and undertakes the catalytic function of peptide bond formation.

Structural studies on bacterial ribosomes have been underway for almost 40 years,
with the ultimate goal of achieving atomic resolution in order to understand the
mechanics of ribosome function. In the last few years, several groups have suc-
cessfully determined the structures of ribosomal subunits as well as the whole ribo-
some (Ban et al., 2000; Schluenzen et al., 2000; Wimberly et al., 2000; Yusupov
et al., 2001).

The 3.0 Å crystal structure of the 30S subunit (Figure 3.15a) has located the com-
plete 16S ribosomal RNA of 1511 nucleotides together with the ordered regions of 20
ribosomal proteins, altogether organized into four well-defined domains. The implica-
tion is that there is considerable flexibility between them, which is needed in order
to ensure the movement of messenger and transfer RNAs. The overall shape of the
30S particle is dominated by the structure of the folded RNA. The secondary struc-
ture of the RNA shows over 50 helical regions. The numerous loops are mostly small
and do not disrupt the runs of helix in which they are embedded. There are extensive
interactions between helices, mostly involving co-axial stacking via the minor grooves.
In one type of helix–helix interaction two minor grooves abut each other, with con-
sequent distortions from A-type geometry. These distortions, which tend to involve
runs of adenines, are facilitated by both extrahelical bulges and noncanonical base
pairs, as have been observed in simple RNA structures. Less commonly, perpendicular
packing of one helix against another (also via the minor groove) is mediated by an
unpaired purine base. This mode is of especial importance since it involves the func-
tionally significant helices in the 30S subunit. The motifs of RNA tertiary structure
such as non-Watson–Crick base pairs, base triplets, and tetraloops all contribute to the
overall structure.

The majority of the 20 ribosomal proteins in the structure each consist of a globular
region and a long flexible arm. The latter have been too flexible to be observed in
structural studies on the individual proteins, but have been located in the 30S subunit,
where they play important roles in helping to stabilize the RNA folding, by essentially
filling in the numerous spaces in the RNA folds.

The structure identifies the three sites where tRNA molecules bind and function,
and where the essential proofreading checks for fidelity of code-reading and translation
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Figure 3.14. Group I intron ribozyme (Cate et al., 1996). Figure also appears in Color Figure

section.

occur. These sites are: the P (peptidylation) site, when a tRNA anticodon base pairs
with the appropriate codon in mRNA, and where the peptide chain is covalently linked
to a tRNA; the A (acceptor) site, when peptide bonds are eventually formed (the actual
peptidyl transferase steps occur in the 50S subunit); the E (exit) site, for tRNAs to be
released from the subunit as part of the protein synthesis cycle.



66 FUNDAMENTALS OF DNA AND RNA STRUCTURE

(a)

(b)

Figure 3.15. The (a) 30s and (b) 50s ribosome structure (Ban et al., 2000; Schluenzen et al., 2000;

Wimberly et al., 2000). Image created by David Goodsell for the Protein Data Bank’s Molecule of

the Month series at http://www.pdb.org/. Figure also appears in Color Figure section.

tRNA itself is not present in this crystal structure, but the RNA from a symmetry-
related 30S subunit effectively serves to mimic it as the anticodon stem-loop. Its
interactions with the 30S RNA are also mediated (1) via minor groove surfaces, helped
by some contacts with ribosomal proteins, and (2) via backbone contacts. Interestingly,
the exit site of the tRNA is almost exclusively protein-associated, whereas the other
functional sites are composed of RNA and not protein. It is thus the ribosomal RNA
that mediates the functions of the 30S subunit, and not the ribosomal proteins.
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In the 2.4 Å crystal structure of the 50S subunit (Figure 3.15b), 2711 out of the
total of 2923 ribosomal RNA nucleotides have been observed, together with 27 ribo-
somal proteins, and 122 nucleotides of 5S RNA, with the subunit being about 250 Å
in each dimension. Although the RNA itself can be arranged into six domains on the
basis of its secondary structure, overall the 50S subunit is remarkably globular, reflect-
ing its greater conformational rigidity compared to the 30S subunit, consistent with its
functional need to be more flexible.

The structure of the complete 70S ribosome, although still at relatively low reso-
lution, reveals much about the interactions between the subunits that are an essential
element of the protein synthesis cycle (Yusupov et al., 2001). It is notable that even
though the resolution as yet precludes any detailed study of the interactions involved,
the three bound tRNA molecules are all extensively contacted by ribosomal RNA in
addition to the necessary established functional interactions such as codon–anticodon
recognition. The ribosome structures are rich mines of information on RNA tertiary
folds. As they progress to increasingly higher resolution, we can anticipate the eluci-
dation of some general rules governing RNA folding.

CONCLUSION

Since the early 1980s, the number of structures of nucleic acids has grown expo-
nentially. DNA crystallography has provided information about sequence effects, fine
structures, and hydration. This information allows us to have a much better under-
standing of RNA crystallography, which has shown that RNA has a rich assortment of
structural motifs. Continued efforts to uncover the underlying principles of nucleic
acid structure will result in much greater insights into the complex functions of
these molecules.

ACKNOWLEDGMENTS

This chapter has made use of text materials from “Nucleic acid crystallography: a
view from the Nucleic Acid Database” in Prog. Biophys. Mol. Biol. (Berman, et al.,
1996) with permission from Elsevier Science and from Chapter 3 of Nucleic Acid Struc-
ture and Recognition by Stephen Neidle (2002). Reprinted by permission of Oxford
University Press.

FURTHER READING

Bartels H, Agmon I, Franceschi F, Yonath A (2000): Structure of functionally activated small
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COMPUTATIONAL ASPECTS
OF HIGH-THROUGHPUT

CRYSTALLOGRAPHIC
MACROMOLECULAR STRUCTURE

DETERMINATION
Paul D. Adams, Ralf W. Grosse-Kunstleve, and Axel T. Brunger

The desire to understand biological processes at a molecular level has led to the routine
application of X-ray crystallography. However, significant time and effort usually are
required to solve and complete a macromolecular crystal structure. Much of this effort
is in the form of manual interpretation of complex numerical data using a diverse array
of software packages, and the repeated use of interactive three-dimensional graphics.
The need for extensive manual intervention leads to two major problems: significant
bottlenecks that impede rapid structure solution (Burley et al., 1999), and the intro-
duction of errors due to subjective interpretation of the data (Mowbray et al., 1999).
These problems present a major impediment to the success of structural genomics
efforts (Burley et al., 1999; Montelione and Anderson, 1999) that require the whole
process of structure solution to be as streamlined as possible. See Chapter 29 for a
detailed description of structural genomics. The automation of structure solution is
thus necessary as it has the opportunity to produce minimally biased models in a short
time. Recent technical advances are fundamental to achieving this automation and
make high-throughput structure determination an obtainable goal.
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HIGH-THROUGHPUT STRUCTURE DETERMINATION

Automation in macromolecular X-ray crystallography has been a goal for many re-
searchers. The field of small-molecule crystallography, where atomic resolution data
are routinely collected, is already highly automated. As a result, the current growth
rate of the Cambridge Structural Database (CCSD) (Allen, Kennard, and Taylor, 1983)
is more than 15,000 new structures per year. This growth rate is approximately 10
times the growth rate of the Protein Data Bank (PDB) (Berman et al., 2000). See
Chapters 9, 10, and 11 for further details of structural databases. Automation of macro-
molecular crystallography could significantly improve the rate at which new structures
are determined. Recently, the goal of automation has moved to a position of prime
importance with the development of the concept of structural genomics (Burley et al.,
1999; Montelione and Anderson, 1999). In order to exploit the information present
in the rapidly expanding sequence databases, the structural database must also grow.
Increased knowledge about the relationship between sequence, structure, and function
will allow sequence information to be used to its full extent. For structural genomics
to be successful, macromolecular structures will need to be solved at a rate signifi-
cantly faster than at present. This high-throughput structure determination will require
automation to reduce the bottlenecks related to human intervention. Automation will
rely on: the development of algorithms that minimize or eliminate subjective input; the
development of algorithms that automate procedures that were traditionally performed
by hand; and, finally the development of software packages that allow a tight inte-
gration between these algorithms. Truly automated structure solution will require the
computer to make decisions about how best to proceed in the light of the available data.

The automation of macromolecular structure solution applies to all of the proce-
dures involved. There have been many technological advances that make macromolec-
ular X-ray crystallography easier. In particular, cryoprotection to extend crystal life
(Garman, 1999), the availability of tunable synchrotron sources (Walsh et al., 1999a),
high-speed charge-coupled device (CCD) data collection devices (Walsh et al., 1999b),
and the ability to incorporate anomalously scattering selenium atoms into proteins
have all made structure solution much more efficient (Walsh et al., 1999b). The desire
to make structure solution more efficient has led to investigations into the optimal
data collection strategies for multiwavelength anomalous diffraction (Gonzalez et al.,
1999) and phasing using single anomalous diffraction with sulfur or ions (Dauter et al.,
1999; Dauter and Dauter, 1999). Gonzalez and her colleagues have shown that multi-
wavelength anomalous diffraction (MAD) phasing using only two wavelengths can be
successful (Gonzalez et al., 1999). The optimum wavelengths for such an experiment
are those that give a large contrast in the real part of the anomalous scattering factor
(e.g., the inflection point and high-energy remote). However, Rice and his colleagues
have also shown that, in general, a single wavelength collected at the anomalous peak
is sufficient to solve a macromolecular structure (Rice, Earnest, and Brunger, 2000).
Such an approach minimizes the amount of data to be collected and increases the effi-
ciency of synchrotron beamlines, and is therefore likely to become an important and
widely used technique in the future.

DATA ANALYSIS

The first step of structure solution, once the raw images have been processed, is
assessment of data quality. The intrinsic quality of the data must be quantified and
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the appropriate signal extracted. Observations that are in error must be rejected as
outliers. Some observations will be rejected at the data-processing stage, where multiple
observations are available. However, if redundancy is low, then probabilistic methods
can be used (Read, 1999). The prior expectation, given either by a Wilson distribution
of intensities or model-based structure-factor probability distributions, is used to detect
outliers. This method is able to reject strong observations that are in error, which tend
to dominate the features of electron-density and Patterson maps. This method could
also be extended to the rejection of outliers during the model refinement process.

When using isomorphous substitution or anomalous diffraction methods for exper-
imental phasing the relevant information lies in the differences between the multiple
observations. In the case of anomalous diffraction, these differences are often very
small, being of the same order as the noise in the data. In general the anomalous
differences at the peak wavelength are sufficient to locate the heavy atoms, provided
that a large enough anomalous signal is observed (Grosse-Kunstleve and Brunger,
1999). However, in less routine cases it can be very important to extract the maximum
information from the data. One approach used in MAD phasing is to analyze the data
sets to calculate FA structure factors, which correspond to the anomalously scattering
substructure (Terwilliger, 1994). Several programs are available to estimate the FA

structure factors: XPREP (Bruker, 2001), MADSYS (Hendrickson, 1991) and SOLVE
(Terwilliger and Berendzen, 1999a). In another approach, a specialized procedure for
the normalization of structure factor differences arising from either isomorphous or
anomalous differences has been developed in order to facilitate the use of direct
methods for heavy atom location (Blessing and Smith, 1999).

Merohedral twinning of the diffraction data can make structure solution difficult
and in some cases impossible. The twinning occurs when a crystal contains multiple
diffracting domains that are related by a simple transformation such as a twofold rota-
tion about a crystallographic axis, a phenomenon that can only occur in certain space
groups. As a result the observed diffraction intensities are the sum of the intensities
from the two distinctly oriented domains. Fortunately, the presence of twinning can
be detected at an early stage by the statistical analysis of structure factor distributions
(Yeates, 1997). If the twinning is only partial, it is possible to detwin the data. Perfect
twinning typically makes structure solution using experimental phasing methods diffi-
cult, but the molecular replacement method (see below) still can be successfully used.

HEAVY ATOM LOCATION AND COMPUTATION
OF EXPERIMENTAL PHASES

The location of heavy atoms in isomorphous replacement or the location of anoma-
lous scatterers was traditionally performed by manual inspection of Patterson maps.
However, in recent years labeling techniques such as seleno–methionyl incorporation
have become widely used. Such labeling techniques lead to an increase in the number
of atoms to be located, rendering manual interpretation of Patterson maps extremely
difficult. As a result, automated heavy atom location methods have proliferated. The
programs SOLVE (Terwilliger and Berendzen, 1999a) and CNS (Brunger et al., 1998;
Grosse-Kunstleve and Brunger, 1999) use Patterson-based techniques to find a starting
heavy atom configuration that is then completed using difference Fourier analyses.
Both Shake-and-Bake (SnB) (Weeks and Miller, 1999) and SHELX-D (Sheldrick and
Gould, 1995) use the direct methods reciprocal-space phase refinement combined with
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modifications in real-space. SnB refines phases derived from randomly positioned
atoms, while SHELX-D derives starting phases by automatic inspection of the Patterson
map. All methods have been used with great success to solve substructures with more
than 60 selenium sites. SHELX-D and SnB have been used to find up to 150 and 160
selenium sites, respectively.

After the heavy atom or anomalously scattering substructure has been located,
experimental phases can be calculated and the parameters of the substructure refined. A
number of modern maximum-likelihood based methods for heavy atom refinement and
phasing are readily available: MLPHARE (Otwinowski, 1991), CNS (Brunger et al.,
1998), SHARP (La Fortelle and Bricogne, 1997), SOLVE (Terwilliger and Berendzen,
1999a). The SOLVE program has the advantage of fully integrating and automating
heavy atom location, refinement, and phasing, and therefore is very easy to use. The
SHARP program implements a more complex algorithm for phasing, making use of
two-dimensional integration over both phases and amplitudes. This method is compu-
tationally expensive, rendering SHARP typically an order of magnitude slower than
other phasing programs, but in the case of significant nonisomorphism between heavy
atom derivative data sets the improvement in the phases can be worth the additional
computing time.

DENSITY MODIFICATION

Often the raw phases obtained from the experiment are not of sufficient quality to
proceed with structure determination. However, there are many real space constraints,
such as solvent flatness, that can be applied to electron density maps in an iterative
fashion to improve initial phase estimates. This process of density modification is
now routinely used to improve experimental phases prior to map interpretation and
model building. However, due to the cyclic nature of the density modification process,
where the original phases are combined with new phase estimates, introduction of
bias is a serious problem. The γ correction was developed to reduce the bias inherent
in the process, and has been applied successfully in the method of solvent-flipping
(Abrahams, 1997). The γ correction has been generalized to the γ perturbation method
in the DM program, part of the CCP4 suite (Collaborative Computational Project 4,
1994), and can be applied to any arbitrary density modification procedure, includ-
ing noncrystallographic symmetry averaging and histogram matching (Cowtan, 1999).
After bias removal, histogram matching is significantly more powerful than solvent flat-
tening for comparable volumes of protein and solvent (Cowtan, 1999). More recently a
reciprocal-space, maximum-likelihood formulation of the density modification process
has been devised and implemented in the program RESOLVE (Terwilliger, 2000).
This method has the advantage that a likelihood function can be directly optimized
with respect to the available parameters (phases and amplitudes), rather than indirectly
through a weighted combination of starting parameters with those derived from flat-
tened maps. In this way the problem of choices of weights for phase combination is
avoided. The SOLVE and RESOLVE programs together provide a relatively automated
way to go from experimental data to a map suitable for model building.

MOLECULAR REPLACEMENT

The method of molecular replacement is commonly used to solve structures for which
a homologous structure is already known. As the database of known structures expands



M AP I NTERPRETAT ION 79

as a result of structural genomics efforts, this technique will become more and more
important. The method attempts to locate a molecule or fragments of a molecule,
whose structure is known, in the unit cell of an unknown structure for which experi-
mental data are available. In order to make the problem tractable, it has traditionally
been broken down into two consecutive three-dimensional search problems: a search
to determine the rotational orientation of the model followed by a search to determine
the translational orientation for the rotated model (Rossmann and Blow, 1962). The
method of Patterson Correlation (PC) refinement is often used to optimize the rotational
orientation prior to the translation search, thus increasing the likelihood of finding the
correct solution (Brunger, 1997). With currently available programs structure solution
by molecular replacement usually involves significant manual input. Recently, however,
methods have been developed to automate molecular replacement. One approach has
used the exhaustive application of traditional rotation and translation methods to per-
form a complete six-dimensional search (Sheriff, Klei, and Davis, 1999). More recently,
less time-consuming methods have been developed. The EPMR program implements
an evolutionary algorithm to perform a very efficient six-dimensional search (Kissinger,
Gehlhaar, and Fogel, 1999). A Monte-Carlo simulated annealing scheme is used in the
program Queen of Spades to locate the positions of molecules in the asymmetric unit
(Glykos and Kokkinidis, 2000).

To improve the sensitivity of any molecular replacement search algorithm, max-
imum likelihood methods have been developed (Read, 2001). The traditional scoring
function of the search is replaced by a function that takes into account the errors in
the model and the uncertainties at each stage. This approach is seen to greatly improve
the chances of finding a correct solution using the traditional approach of rotation and
translation searches. In addition, the method performs a statistically correct treatment
of simultaneous information from multiple search models using multivariate statistical
analysis (Read, 2001). This method will allow information from different structures
to be used in highly automated procedures while minimizing the risk of introducing
bias. In the future molecular replacement algorithms may permit experimental data to
be exhaustively tested against all known structures to determine whether a homolo-
gous structure is already present in a database, which could then be used as an aid in
structure determination.

MAP INTERPRETATION

The interpretation of the initial electron density map, calculated using either experimen-
tal phasing or molecular replacement methods, is often performed in multiple stages
(described below) with the final goal being the construction of an atomic model. If the
interpretation cannot proceed to an atomic model, that is often an indication that the
data collection must be repeated with improved crystals. Alternatively, repeating pre-
vious computational steps in data analysis or phasing may generate revised hypotheses
about the crystal, such as a different space group symmetry or estimate of unit cell con-
tents. Clearly, completely automating the process of structure solution will require that
these eventualities are taken into consideration and dealt with in a rigorous manner.

The first stage of electron density map interpretation is an overall assessment of the
information contained in a given map. The standard deviation of the local root-mean-
square electron density can be calculated from the map. This variation is high when the
electron-density map has well-defined protein and solvent regions and is low for maps
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calculated with random phases (Terwilliger and Berendzen, 1999b; Terwilliger, 1999).
Terwilliger and Berendzen also have shown that the correlation of the local root-mean-
square density in adjacent regions in the unit cell can be used as a measure of the
presence of distinct, contiguous solvent and macromolecular regions in an electron
density map (Terwilliger and Berendzen, 1999c).

Currently the process of analyzing an experimental electron density map to build
the atomic model is a time-consuming, subjective process and almost entirely graphics
based. Sophisticated programs such as O (Jones et al., 1991), XtalView (McRee, 1999),
QUANTA (Oldfield, 2000), TurboFrodo (Jones, 1978), and MAIN (Turk, 2000) are
commonly used for manual rebuilding. These greatly reduce the effort required to
rebuild models by providing: libraries of side chain rotamers and peptide fragments
(Kleywegt and Jones, 1998) and map interpretation tools and real space refinement
of rebuilt fragments (Jones et al., 1991). However, Mowbray and her colleagues have
shown that there are substantial differences in the models built manually by different
people when presented with the same experimental data (Mowbray et al., 1999). The
majority of time spent in completing a crystal structure is in the use of interactive
graphics to manually modify the model. This manual modification is required either
to correct parts of the model that are incorrectly placed or to add parts of the model
that are currently missing. This process is prone to human error because of the large
number of degrees of freedom of the model and the possible poor quality of regions
of the electron density map.

Although interactive graphics systems for manual model building have made the
process dramatically simpler, there have also been significant advances in making
the process of map interpretation and model building truly automated. One route to
automated analysis of the electron density map is the recognition of larger struc-
tural elements, such as α-helices and β-strands. Location of these features can often
be achieved even in electron density maps of low quality using exhaustive searches
in either real space (Kleywegt and Jones, 1997) or reciprocal space (Cowtan, 1998;
Cowtan, 2001), the latter having a significant advantage in speed because the transla-
tion search for each orientation can be calculated using a Fast Fourier Transform. The
automatic location of secondary structure elements from skeletonized electron density
maps can be combined with sequence information and databases of known structures
to build an initial atomic model with little or no manual intervention from the user
(Oldfield, 2000). This method has been seen to work even at relatively low resolution
(dmin ∼ 3.0Å). However, the implementation is still graphics based and requires user
input. A related approach in the program MAID also uses a skeleton generated from
the electron density map as the start point for locating secondary structure elements
(Levitt, 2001). Trial points are extended in space by searching for connected elec-
tron density at Cα distance (approximately 3.7Å) with standard α-helical or β-strand
geometry. Real-space refinement of the fragments generated is used to improve the
model. Both of these methods suffer from the limitation that they do not combine the
model-building process with the generation of improved electron density maps derived
from the starting phases and the partial models.

In order to completely automate the model-building process, a method has been
developed that combines automated identification of potential atomic sites in the
map (Perrakis et al., 1997) with model refinement (Murshudov, Vagin, and Dodson,
1997). An iterative procedure is used that describes the electron density map as a
set of unconnected atoms from which proteinlike patterns, primarily the main-chain
trace from peptide units, are extracted. From this information and knowledge of the
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protein sequence, a model can be automatically constructed (Perrakis, Morris, and
Lamzin, 1999). This powerful procedure, known as warpNtrace in ARP/wARP, can
gradually build a more complete model from the initial electron density map and in
many cases is capable of building the majority of the protein structure in a completely
automated way. Unfortunately, this method currently has the limitation of a need for
relatively high-resolution data (dmin < 2.0Å). Data that extend to this resolution are
available for less than 50% of the ∼16,500 X-ray structures in the PDB. To extend
the applicability of automated map interpretation to lower resolution data, work has
started using pattern recognition methods (Holton et al., 2000). The resulting program
is called TEXTAL and shows great promise for the interpretation of maps, even at a
data resolution as low as 3.0Å. Data of this quality are available for approximately
95% of the structures in the PDB. We anticipate that the combination of secondary
structure fragment location, the pattern matching methods of the TEXTAL program,
and iteration with structure refinement for map improvement will in the future provide
a general solution to the problem of model building at resolutions better than 3.5Å.

REFINEMENT

In general the atomic model obtained by automatic or manual methods contains some
errors and must be optimized to best fit the experimental data and prior chemical
information. In addition, the initial model is often incomplete and refinement is carried
out to generate improved phases that can then be used to compute a more accurate
electron density map. However, the refinement of macromolecular structures is often
difficult for several reasons. First, the data-to-parameter ratio is low, creating the danger
of overfitting the diffraction data. This method results in a good agreement of the
model to the experimental data even when it contains significant errors. Therefore, the
apparent ratio of data to parameters is often increased by incorporation of chemical
information, that is, bond length and bond angle restraints obtained from ideal values
seen in high-resolution structures (Hendrickson, 1985). Second, the initial model often
has significant errors, often due to the limited quality of the experimental data, or a
low level of homology between the search model and the true structure in molecular
replacement. Third, local (false) minima exist in the target function. The more local
minima and the deeper they are, the more likely refinement will fail. Fourth, model
bias in the electron density maps complicates the process of manual rebuilding between
cycles of automated refinement.

Methods have been devised to address these difficulties. Cross validation, in the
form of the free R-value, can be used to detect overfitting (Brunger, 1992). The radius
of convergence of refinement can be increased by the use of stochastic optimization
methods such as molecular dynamics-based simulated annealing (Brunger, Kuriyan, and
Karplus, 1987). Most recently, improved targets for refinement of incomplete, error-
containing models have been obtained using the more general maximum likelihood
formulation (Murshudov, Vagin, and Dodson, 1997; Pannu et al., 1998). The resulting
maximum likelihood refinement targets have been successfully combined with the pow-
erful optimization method of simulated annealing to provide a very robust and efficient
refinement scheme (Adams et al., 1999). For many structures, some initial experimen-
tal phase information is available from either isomorphous heavy atom replacement or
anomalous diffraction methods. These phases represent additional observations that can
be incorporated in the refinement target. Tests have shown that the addition of experi-
mental phase information greatly improves the results of refinement (Pannu et al., 1998;
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Adams et al., 1999). We anticipate that the maximum likelihood refinement method
will be extended further to incorporate multivariate statistical analysis, thus, allowing
multiple models to be refined simultaneously against the experimental data without
introducing bias (Read, 2001).

The refinement methods used in macromolecular structure determination work
almost exclusively in reciprocal space. However, there has been renewed interest in
the use of real-space refinement algorithms that can take advantage of high quality
experimental phases from anomalous diffraction experiments or noncrystallographic
symmetry averaging. Tests have shown that the method can be successfully combined
with the technique of simulated annealing (Chen, Blanc, and Chapman, 1999).

The parameterization of the atomic model in refinement is of great importance.
When the resolution of the experimental data is limited, then it is appropriate to use
chemical constraints on bond lengths and angles. This torsion angle representation is
seen to decrease overfitting and to improve the radius of convergence of refinement
(Rice and Brunger, 1994). If data are available to high enough resolution, additional
atomic displacement parameters can be used. Macromolecular structures often show
anisotropic motion, which can be resolved at a broad spectrum of levels ranging from
whole domains down to individual atoms. The use of the Fast Fourier Transform to
refine anisotropic parameters in the program REFMAC has greatly improved the speed
with which such models can be generated and tested (Murshudov et al., 1999). The
method has been shown to improve the crystallographic R-value and free R-value as
well as the fit to geometric targets for data with resolution higher than 2Å.

VALIDATION

Validation of macromolecular models and their experimental data (Vaguine, Richelle,
and Wodak, 1999) is an essential part of structure determination (Kleywegt, 2000).
Validation is important both during the structure solution process and at the time of
coordinate and data deposition at the Protein Data Bank, where extensive validation
criteria are also applied (Berman et al., 2000). See Chapters 14 and 15 for descriptions
of validation methods based on stereochemistry and atomic packing. In the future,
the repeated application of validation criteria in automated structure solution will help
avoid errors that currently occur as a result of subjective manual interpretation of data
and models.

CHALLENGES TO AUTOMATION

Noncrystallographic Symmetry

It is not uncommon for macromolecules to crystallize with more than one copy in
the asymmetric unit. This result leads to relationships between atoms in real space
and diffraction intensities in reciprocal space. These relationships can be exploited
in the structure solution process. However, the identification of noncrystallographic
symmetry (NCS) is generally a manual process. A method for automatic location
of proper NCS (i.e., a rotation axis) has been shown to be successful even at low
resolution (Vonrhein and Schulz, 1999). A more general approach to finding NCS rela-
tionships uses skeletonization of electron density maps (Spraggon, 1999). A monomer
envelope is calculated from the solvent mask generated by solvent flattening. The
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NCS relationships between monomer envelopes can then be determined using standard
molecular replacement methods.

These methods could be used in the future to automate the location of NCS
operators and the determination of molecular masks. In the case of experimental
phasing using heavy atoms or anomalous scatterers, it is possible to locate the NCS
from the sites (Lu, 1999). The RESOLVE program automates this process such that
NCS averaging can be automatically performed as part of the phase improvement
procedure.

Disorder

Except in the rare case of very well-ordered crystals of extremely rigid molecules,
disorder of one form or another is a component of macromolecular structures. This
disorder may take the form of discrete conformational substates for side chains (Wilson
and Brunger, 2000) or surface loops, or small changes in the orientation of entire
molecules throughout the crystal. The degree to which this disorder can be identified
and interpreted typically depends on the quality of the diffraction data. With low-to
medium-resolution data, dual side chain conformations are occasionally observed. With
high-resolution data (1.5Å or better) multiple side chain and main chain conformations
are often seen. The challenge for automated structure solution is the identification of the
disorder and its incorporation into the atomic model without the introduction of errors
as a result of misinterpreting the data. Disorder of whole molecules within the crystal,
as a result of small differences in packing between neighboring unit cells, cannot be
visualized in electron density maps. However, the effect on refinement statistics such
as the R and free-R value can be significant because no single atomic model can fit
the observed diffraction data well. One approach to the problem is to simultaneously
refine multiple models against the data (Burling and Brunger, 1994). An alternative
approach is the refinement of Translation-Libration-Screw (TLS) parameters for whole
molecules or subdomains of molecules (Winn, Isupov, and Murshudov, 2001). This
introduces only a few additional parameters to be refined while still accounting for
the majority of the disorder. However, it still remains a challenge to automatically
identify subdomains.

CONCLUSION

Over the last decade of the twentieth century there have been many significant advances
toward automated structure determination. Programs such as SOLVE (Terwilliger and
Berendzen, 1999a), RESOLVE (Terwilliger, 2000), and the warpNtrace suite (Perrakis
et al., 1999) combine large functional blocks in an automated fashion. The program
CNS (Brunger et al., 1998) provides a framework in which different algorithms can
be combined and tested using a powerful scripting language. Progress toward full
automation will be made in the short term by linking existing programs together using
scripting languages or the World Wide Web. However, a long-term solution will require
the construction of a fully integrated system that makes use of the latest advances in
crystallographic algorithms and computer science. The software that truly automates
the crystallographic process will need to be intimately associated with data collection
and processing. We anticipate that the next generation of automated software will
permit the heavy atom location and phasing steps of structure solution to be performed
in a few minutes. This speed will enable real time assessment of diffraction data as
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it is collected at synchrotron beamlines. Map interpretation will be significantly faster
than at present, with initial analysis of the electron density taking minutes rather than
the hours or days required currently.
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MACROMOLECULAR STRUCTURE
DETERMINATION BY NMR

SPECTROSCOPY
John L. Markley, Eldon L. Ulrich, William M. Westler, and Brian F. Volkman

The fundamental hypothesis of structural genomics is that a more complete mapping
of peptide sequence space onto conformational space will lead to efficiencies in deter-
mining structure–function relationships (Burley, 2000; Heinemann, 2000; Terwilliger,
2000; Yokoyama et al., 2000). Longer-range scientific goals are the prediction of struc-
ture and function from sequence and simulations of the functions of a living cell.
Structural genomics is part of a wider functional genomics effort, which promises to
assign functions to proteins within complex biological pathways and to enlarge the
understanding and appreciation of complex biological phenomena (Thornton et al.,
2000). Because of its potential to greatly broaden the targets for new pharmaceuticals,
structural genomics is expected to join combinatorial chemistry and screening as an
integral approach to modern drug discovery (Dry, McCarthy, and Harris, 2000). It is
clear that much larger databases of structures, dynamic properties of biomolecules,
biochemical mechanisms, and biological functions are needed to approach these goals.
Because of its ability to provide atomic-resolution structural and chemical informa-
tion about proteins, NMR spectroscopy is positioned to play an important role in this
endeavor. Already, NMR spectroscopy contributes about 15% of the protein structures
deposited at the Protein Data Bank. In addition, NMR spectroscopy is used routinely in
high-throughput screens to determine protein:ligand interactions (Hajduk et al., 1999;
Shuker et al., 1996). NMR is also a key tool in mechanistic enzymology and in stud-
ies of protein folding and stability. As discussed here, advances in key technologies
promise rapid increases in the efficiency and scope of NMR applications to structural
and functional genomics.
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COMPARISON OF NMR SPECTROSCOPY AND X-RAY
CRYSTALLOGRAPHY

Currently, the only methods worthy of serious consideration for high-throughput protein
structure determination are single-crystal diffraction and solution-state NMR spec-
troscopy. The two methods have complementary features. X-ray crystallography rep-
resents a mature and rapid approach for proteins that form suitable crystals. NMR has
advantages for structural studies of small proteins that are partially disordered, exist
in multiple stable conformations in solution, show weak interactions with important
cofactors or ligands, or do not crystallize readily. Low-resolution structures derived
from NMR data can be used in phasing X-ray data. NMR spectroscopy is an incre-
mental method that can rapidly provide useful information concerning overall protein
folding, local dynamics, existence of multiple-folded conformations, or protein–ligand
or protein–protein interactions. This information can be useful in designing strate-
gies for structure determinations by either NMR or X-ray crystallography. Several
ongoing structural genomics pilot projects are employing a combination of X-ray
crystallography and NMR spectroscopy. This chapter discusses the current status and
future prospects of macromolecular structure determination by solution state NMR
spectroscopy. Although the focus is on proteins, the approaches can be generalized to
other classes of biological macromolecules. Solid-state NMR spectroscopy shows great
promise for structural studies of proteins that may not be amenable to investigation in
solution, such as membrane proteins, and for functional investigations of proteins in
the solid state. Solid-state NMR strategies for biomolecular sample preparation, data
collection, and analysis are developing rapidly, and are expected to assume prominence
in the next few years. Further discussion of this highly specialized field is beyond the
scope of this chapter, and interested readers are directed to recent articles and reviews
(Ramamoorthy, Wu, and Opella, 1999; Bertram et al., 2000; Bertram et al., 2001; Far-
rar et al., 2001; Gu and Opella, 1999; Jaroniec et al., 2001; Kim, Quine, and Cross,
2001; Luca et al., 2001; Marassi and Opella, 2000).

PHYSICAL BASIS FOR BIOMOLECULAR NMR SPECTROSCOPY

NMR spectroscopy investigates transitions between spin states of magnetically active
nuclei in a magnetic field. The most important magnetically active nuclei for proteins
are the proton (1H), carbon-13 (13C), nitrogen-15 (15N) and phosphorus-31 (31P). All
are nuclei of spin one-half, which in an external magnetic field have two spin states, one
at lower energy with the magnetic spin paired with the external field, and one at higher
energy, with the magnetic spin opposing the external field. The magnetic moment of
each nucleus precesses about the external magnetic field and is influenced by other
fields. Influences on a given spin are generated by neighboring spins in the molecule,
giving rise to intrinsic NMR parameters, or by radio-frequency pulses and/or pulsed
field gradients as programmed by the NMR spectroscopist. In an NMR experiment, a
sequence of radio-frequency pulses and pulsed field gradients are applied to the spins
present in the molecule studied. The excited spins are allowed to interact with one
another and with the external magnetic field. Then, the state of the system is read out
by detection of the current induced by the nuclear spins of the sample in the receiver
coil of the NMR spectrometer. The physical basis for NMR is well understood, and the
spectroscopic consequences of a given pulse sequence applied to a particular molecule
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can be simulated to a good level of precision (Ernst, Bodenhausen, and Wokaun, 1987;
Cavanagh et al., 1996).

NMR EXPERIMENTS

The NMR spectrometer can be programmed to operate on all nuclei of a given atom
type, or selectively on nuclei with particular spectral features (chemical shift range,
spin–spin coupling range, etc.). NMR spectroscopy is unique in that the Hamiltonian of
the system under study can be manipulated easily by the application of radio-frequency
pulses and/or pulsed field gradients. The versatility in creating sequences of complex
“spin gymnastics” makes possible a myriad of NMR experiments by which particular
parameters can be investigated. A huge variety of NMR experiments are at one’s
disposal when collecting data for a structure determination or functional investigation.
The NMR field is still young and dynamic, and these experiments continue to evolve;
thus, the optimal set of experiments for a structure determination or structure–function
study is a matter of exploration and individual taste. The approaches described here
are ones we have found to be effective.

The classical approach to structure determination is to first use multidimensional,
multinuclear NMR methods to determine “sequence-specific assignments”; that is,
resolve signals from the 1H, 15N, and 13C nuclei of a protein and assign them to
specific nuclei in the covalent structure of the molecule. The assigned chemical shifts
themselves provide reliable information about the secondary structure of the protein
(Wishart, Sykes, and Richards, 1991; Wishart, Sykes, and Richards, 1992; Wishart and
Sykes, 1994; Wishart and Nip, 1998), and the oxidation states of cysteine residues
(Sharma and Rajarathnam, 2000), and can be used to test or validate structural models.
Additional structural restraints are obtained from an interpretation of data from one or
more different classes of NMR experiments: (1) NOE spectra, which provide 1H–1H
distance constraints; (2) three-bond spin–spin coupling experiments, which provide tor-
sion angle constraints; (3) residual dipolar couplings from partially oriented proteins,
which provide distance and spatial constraints (with respect to the orientation axes)
for pairs of coupled nuclei. Additional hydrogen bond constraints are determined from
hydrogen exchange experiments, chemical shifts, and/or trans-hydrogen-bond couplings
(Cordier et al., 1999; Cordier and Grzesiek, 1999).

NMR BIOINFORMATICS

Table 5.1 summarizes NMR data classes that are specific to structural and functional
genomics. The major international repository for biomolecular NMR data is BioMag-
ResBank (BMRB) http://www.bmrb.wisc.edu, which is affiliated with the Research
Collaboratory for Structural Bioinformatics (RCSB) http://www.rcsb.org/. Coordinates
for structural models derived from NMR data, as from crystallography, are archived
at the Protein Data Bank (PDB) (Berman et al., 2000) http://www.rcsb.org/pdb/ (see
Chapter 9).

The primary information to be archived in a protein NMR investigation include:
(1) a complete description of the protein system studied (specification of each con-
stituent and the stoichiometry of interacting constituents); (2) the solution conditions
for each protein sample investigated (solvent, pH, temperature, and pressure, and con-
centration of each constituent); (3) a full description of each NMR experiment used
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T A B L E 5.1. Summary of the NMR Data Classes That Are Specific to Structural and
Functional Genomics

Raw NMR data

Time-domain data: free induction decays from a particular experiment with a particular sample
under defined conditions. The multiplicity of the spectrum (1D, 2D, 3D, 4D) results from
the number of time domains sampled.

Processed NMR data

Frequency-domain data: spectra derived from time-domain data by Fourier transformation and
or other signal processing methods.

NMR parameters extracted from NMR data

Peak lists derived from individual data sets
Chemical shifts
1H–1H NOE
J-couplings
Residual dipolar couplings
NMR relaxation rates

Derived information

Percentage of expected peaks observed in a data set
NMR peak assignments
Percentage of theoretical peaks assigned
Covalent structure
Bond hybridizations
Secondary structural elements
Interatomic distances
Torsion angles
Hydrogen bonds
Order parameters and other dynamic information
Solvent exposure
Three-dimensional structure (coordinates of the family of conformers that best correspond to

the experimental data; coordinates of the conformer that is designated as “representative”)
Binding constants
pH titration parameters (pKa values, Hill coefficients, titration shifts)
Hydrogen exchange rates
Delocalization of unpaired electrons
Thermodynamics and kinetics of structural interconversions
Disordered regions

in collecting data for the sample; (4) the NMR parameters and derived information
obtained in the investigation; and (5) the unprocessed, time-domain NMR spectra col-
lected. The present goal of the data banks (PDB and BMRB) is to accommodate the
inclusion of additional information on the preparation of the sample and the methods
for structure determination at the level of detail provided in the methods section of
a research journal. BMRB is now accepting raw (time-domain) data associated with
NMR structure determinations contributed by authors.
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In the interest of maintaining a common chemical shift standard for biomolecules,
the international community has adopted the methyl signal of internal 2,2-dimethylsila-
pentane-5-sulfonic acid (DSS) at low concentration as the 1H chemical shift standard.
Chemical shifts of nuclei other than 1H are referenced indirectly to the 1H standard
through the application of a conversion factor for each nucleus derived from ratios of
NMR frequencies (Markley et al., 1998).

Structures are represented by a description of the input data used for structure
determination and refinement, the methods used to determine the structure, a statistical
analysis of the results, and the structure itself, which usually is represented by a family
of conformers that best satisfy the input constraints along with geometric and energetic
criteria. One of these conformers (or an additional one derived by averaging and energy
minimization) is specified as being the single representative structure.

BMRB archives additional information about the chemical properties of proteins
derived from NMR spectroscopy, including hydrogen exchange rates at specified sites
and pH titration parameters (pKa values, Hill coefficients, and pH-dependent spectro-
scopic shifts) for titratable groups. Figure 5.1 illustrates the full range of information
at BMRB.

NMR-STAR is the tag-value data format for biomolecular NMR developed by
BMRB in collaboration with the PDB and a number of contributors from the NMR
community. NMR-STAR is an implementation of the STAR format developed for
small-molecule crystallography (Hall, 1991; Hall and Spadaccini, 1994). The mmCIF
data format used in biomolecular crystallography (see Chapter 8) is a relational ver-
sion of STAR. BMRB is developing software tools for interconverting NMR-STAR
and mmCIF. NMR-STAR is used by BMRB as its data input format and by many
biomolecular NMR software packages as a data exchange format. Specification of the
NMR-STAR format and software tools for operating on NMR-STAR files are avail-
able from the BMRB web site http://www.bmrb.wisc.edu. BMRB data are exported
in the ASCII NMR-STAR format and in a format that can be loaded easily into a
relational database.

Structure

Single-entry
information

Molecular
system

Kinetics Thermodynamics

Experimental
details

Spectral
parameters

Citations

Study

Figure 5.1. Scope of biomolecular NMR data archived at BMRB. More detailed views of the data

types and the specifications for NMR-STAR data formats are available from the BMRB web site.
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As the database of publicly accessible biomolecular NMR data at BMRB expands,
the collection is becoming more and more valuable as a resource for data mining and
for the development of statistical correlations between NMR observables and structural
and chemical properties of biomolecules.

NMR SCREENING METHODS

NMR spectroscopy can be used as a high-throughput method for screening the products
of target protein production for protein folding and stability under various conditions
(pH, ionic strength, buffer type, and exposure to libraries of common cofactors and
metal ions) (Fejzo et al., 1999; Hajduk et al., 1999; Peng et al., 2001; Shuker et al.,
1996). For proteins labeled with 15N, proton–nitrogen heteronuclear correlation meth-
ods, such as a fast 1H–15N heteronuclear single-quantum correlation (HSQC) (Mori
et al., 1995), provide a convenient approach to monitoring the state of the protein.
With a cryogenic probe, 1H–15N HSQC data can be collected in as little as 5 minutes.
The spectrum yields a fingerprint for the protein that contains 1H–15N cross peaks

Figure 5.2. Two-dimensional 1H–15N HSQC spectrum of [U–15N]apo-D-alanyl carrier protein at

600 MHz and 25 ◦C. Backbone amide signals are labeled with the one-letter amino acid code

and residue number. Side-chain amide NH2 resonances are connected with horizontal lines

and labeled.
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from each residue in the sequence (except for proline, which has no NH group) plus
signals from the side-chain amides of asparagine and glutamine. With transverse relax-
ation optimized spectroscopy (TROSY) approaches (Pervushin et al., 1997; Pervushin,
2000), this type of screening should be feasible with 15N-labeled proteins as large as
60 kDa or 2H, 15N-labeled proteins as large as 150 kDa.

Figure 5.2 shows the 1H–15N HSQC spectrum of a typical small globular protein.
By examination of the spectral dispersion, one can readily determine whether a protein
is folded (well-dispersed pattern of peaks), unfolded (undispersed peak pattern), or in
an aggregated or molten globule state (absence of most expected peaks).

For studies of ligand binding, one compares 1H–15N HSQC spectra for the protein
alone and in the presence of the ligand; the shifting and broadening of peaks indicate
regions affected by ligand binding. The results of these screens can be used to decide
which targets are worthy of further pursuit, which conditions are optimal for structural
investigations by X-ray or NMR, or whether it may be profitable to pursue domain
selection (paring down of the protein sequence into isolated folded domains by removal
of unstructured intervening sequences). If ligand binding is detected, the identity of
the ligand can be determined by subscreening or mass spectrometric analysis.

The longitudinal surveys of proteins studied by structural genomics projects are
beginning to yield statistics on proteins that are soluble but largely unstructured. As
more data accumulate on protein disorder, it should become possible to increase the
success of predicted disorder in proteins (Li et al., 1999; Romero et al., 1998; Romero,
Obradovic, and Dunker, 2001). Examples are already at hand for proteins that fail to
fold in the absence of a partner protein or peptide or that fold only in the presence of
a metal ion or cofactor.

Figure 5.3 shows how NMR spectroscopy can be used to quickly determine that
an isolated protein is unfolded and that the addition of a ligand (Ca2+ in this case)
leads to a 1 : 2 protein : Ca2+ complex with concomitant folding of the protein (Lytle
et al., 2000). The sequence of dockerin did not suggest initially that it binds cal-
cium (the metal ligands fail to correspond to the standard EF hand topology). The
ligand-binding screen, however, provided direct evidence, which was confirmed by

Figure 5.3. Ca2+-induced folding of dockerin domain detected by 2D 1H–15N HSQC NMR

spectra. The lack of chemical shift dispersion without added Ca2+ clearly indicates the absence of

a unique folded tertiary structure for the dockerin.
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Figure 5.4. NMR structure of a type I dockerin domain from the cellulosome of Clostridium

thermocellum. Backbone N, Cα and C′ atoms of the 20 conformers with the lowest target function

values out of 100 calculated structures are superimposed (left panel), and the minimized average

structure is shown as a ribbon diagram (right panel). The two α-helices are shown in cyan and the

3–10 helical turn in green. Calcium ions are shown as yellow spheres.

the subsequent solution structure (Fig. 5.4) (Lytle et al., 2001). A qualitative screen of
this kind is possible with proteins 65 kDa or larger (with TROSY) and will be used
for proteins destined for X-ray structure analysis that indicate ligand stabilization in
prior screens.

HOW PROTEIN NMR SAMPLES ARE PREPARED

Protein Production and Labeling

When successful, bacterial expression provides a cost-effective, flexible, reliable, and
scalable way to support structural characterizations. Protein production in Escherichia
coli has an established record of being the most successful approach for provid-
ing protein targets for structural genomics. Suitable expression vectors are readily
available, and the method is more economical than production in eukaryotic cells.
Furthermore, promising proteins can be subsequently labeled metabolically with heavy-
atom-labeled amino acids for X-ray or stable isotopes for NMR (Edwards et al., 2000).
Metabolic labeling of biomolecules with stable isotopes (15N, 13C and/or 2H) for
NMR spectroscopy was pioneered with E. coli expression systems and have been
extended successfully to only a few other systems (Markley and Kainosho, 1993).
These efforts have paved the way for the development of automated downstream pro-
cesses for larger-scale protein production and purification. Automation strategies are
known for many of the steps in the bacterial growth and evaluation procedures (such
as cloning, colony picking, cell growth, liquid handling, centrifugation, mixing, and
fluorescence assay).

It is a general experience, however, that a certain percentage of proteins do not
express abundantly in soluble form in bacteria. Insolubility arises either from an intrin-
sic property of the protein (for example, aggregation due to an exposed hydrophobic
surface) or because inappropriate folding mechanisms in the expression host per-
mit aggregation of folding intermediates (Chrunyk et al., 1993; Goff and Goldberg,
1987; Henrich, Lubitz, and Plapp, 1982). Expression can be particularly difficult for
eukaryotic proteins that consist of multiple domains, that require cofactors or pro-
tein partners for proper folding, or that normally undergo extensive post-translational
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modification. The use of different expression systems can assist in the production of
proteins that do not express well in E. coli. At present, eukaryotic options available
for expressing these proteins, such as yeast, insect, or human cells, have disadvan-
tages with respect to high-throughput operation. In their current forms, culture of
insect and human cells is expensive and time-consuming, and current yeast systems,
such as Pichia, lack the capacity to add some of the posttranslational modifications
that are important for proteins from higher organisms and pose problems in lysing
the cells. In addition, the development of metabolic labeling in these systems is in
its infancy.

Sample Concentration, Volume, and Stability

The higher the protein concentration, the faster the NMR data can be collected, provided
that the protein does not aggregate. Practical lower limit protein concentrations are
about 200 µM with ordinary probes and about 60 µM with cryogenic probes. The
decreased concentration requirement of the cryogenic probe may make it possible to
collect data from proteins that aggregate at higher concentrations. With ordinary NMR
tubes, a sample volume of 300 to 500 µL is required, depending on the length of
the detection coil in the probe. With a susceptibility matched NMR tube, it may be
possible to use volumes as small as 200 µL.

The sample must remain stable over the data collection period. If the stability
of the sample is a limiting factor, it is possible to use separate samples for different
NMR experiments. Ideally, all data sets are collected with the same sample, because
slight differences in solution conditions can lead to chemical shift differences that
make it difficult to compare results from different experiments. One of the advantages
of cryogenic probes and higher fields is that the overall data collection time for each
experiment is shortened. This makes it possible to investigate systems that are less
stable over time.

INTRODUCTION TO PROTEIN STRUCTURE DETERMINATION BY NMR

Protein NMR methods have advanced to the point where small- to medium-sized pro-
tein domain structures can be determined in a routine manner. Key milestones in the
development of this technique include NOE-based resonance assignment and structure
refinement (Wüthrich, 1986), efficient stable isotope labeling methods (Markley and
Kainosho, 1993), detection of multinuclear correlations (Oh et al., 1988; Oh, West-
ler, and Markley, 1989; Ortiz-Polo et al., 1986; Westler, Ortiz-Polo, and Markley,
1984; Westler et al., 1988a; Westler et al., 1988b) coupled with indirect detection and
multinuclear NMR spectroscopy (Delaglio et al., 1995; Ikura, Kay, and Bax, 1990;
Ikura, Kay, and Bax, 1991; Kay, Marion, and Bax, 1989; Kay et al., 1990). The last
decade of the twentieth century saw refinements of these basic ideas, such as the
use of pulsed field gradients for coherence selection and line-narrowing by TROSY
(Pervushin et al., 1997; Czisch and Boelens, 1998; Pervushin et al., 1998a; Pervushin
et al., 1998b; Salzmann et al., 1998; Salzmann et al., 1999a; Salzmann et al., 1999b;
Xia, Sze, and Zhu, 2000; Zhu et al., 1999a; Zhu et al., 1999b), coupled with significant
improvements in commercially available NMR hardware and the remarkable advances
in desktop-computing capabilities.

Protein domains of up to roughly 25 kDa are generally amenable to NMR struc-
ture determination, provided that soluble, stable, U–13C- and U–15N-labeled samples
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can be obtained. This isotope enrichment enables the use of sensitive heteronuclear
correlation experiments for the task of matching all chemical shifts in the protein with
specific amino acid residues and atoms. Once all 1H, 15N, and 13C resonances have
been assigned, the correlations observed in nuclear Overhauser enhancement (NOE)
experiments can be interpreted in terms of short (<5 Å) interproton distances. NMR
structures are obtained from constrained molecular dynamics calculations, with these
NOE-derived 1H–1H distances as the primary experimental constraints. As a con-
sequence of chemical shift degeneracy, many NOE correlations may have multiple
assignment possibilities, and the results of preliminary structure calculations are used
to eliminate unlikely candidates on the basis of interproton distances. Refinement con-
tinues in an iterative manner until a self-consistent set of experimental constraints
produces an ensemble of structures that also satisfies standard covalent geometry and
steric overlap considerations. These structures are validated and reported in the PDB
in a manner analogous to those obtained from X-ray crystallographic methods (see
Chapters 14 and 15).

Structures of smaller proteins can be determined with samples at natural abundance.
If the protein is reasonably soluble (≥1 mM), and particularly if a high-sensitivity
cryogenic probe is available, it is possible with moderate effort to obtain 1H–13C and
1H–15N correlations at natural abundance. This additional information can be useful for
signal assignments and for additional chemical shifts for secondary structure analysis.
High-throughput strategies for protein structure determination generally are designed
for proteins double-labeled with 13C and 15N (Mr < ∼20, 000) or triple-labeled with
13C, 15N, and 2H (Mr > ∼20, 000). NMR spectra of larger molecules are character-
ized by increasingly rapid decay of the signal to be detected, leading to increased line
widths and lowered sensitivity (signal-to-noise ratio) and by greater overlap and sig-
nal degeneracy. Even with triple-labeled proteins, these problems make it increasingly
difficult to solve NMR structures of proteins larger than 40 kDa with current method-
ology. Higher magnetic fields and TROSY methodology suggest that these limitations
can be overcome to some extent.

Selective labeling approaches make it possible to obtain information about selected
regions of proteins even as large as 150 kDa. These methods include labeling by sin-
gle residue type (Markley and Kainosho, 1993) and segmental labeling by peptide
semisynthesis, including the use of an autocatalytic cleaving element (intein technol-
ogy) (Yamazaki et al., 1998; Xu et al., 1999).

Even with protein sample concentrations in the millimolar range (>10 mg/mL), co-
addition of 8 or 16 transients may be required at each time point in some two- or three-
dimensional experiments to achieve sufficient signal-to-noise (s/n). New cryogenic
probe technology enables reduction of the data acquisition period by up to a factor
of 10. This results from the three- to fourfold enhancement in sensitivity achieved
by cooling the probe and preamplifier circuitry to very low temperatures. Because
of the square-root relationship between time and sensitivity in signal averaging, an
inherent sensitivity improvement of threefold is equivalent to a ninefold increase in
signal averaging. In practical terms, the s/n of an experiment acquired with one or two
transients at each time increment on a cryogenic probe should be equivalent (if not
superior) to one acquired with 16 transients using a conventional (noncooled) probe.
For this example, the cryogenic probe results in an eightfold reduction in experiment
time with no negative consequences. The increased sensitivity afforded by a cryogenic
probe is especially important for NOE experiments. The ultimate limit for rapid data
collection is the longitudinal relaxation rate (R1) of the nucleus to be detected.
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A PROTOCOL FOR PROTEIN STRUCTURE DETERMINATION
BY NMR SPECTROSCOPY

As mentioned above, NMR methodology is evolving rapidly, and competing approaches
are being explored in various structural genomics centers. We describe the NMR side
of a protocol for semiautomated protein structure determination by a combination of
NMR spectroscopy and X-ray crystallography. Proteins emerging from the protein pro-
duction pipeline are divided by molecular weight: Those >60 kDa are diverted to the
X-ray crystallization screens; those ≤60 kDa are labeled with 15N (from 15NH3Cl in the
minimal growth medium as the sole nitrogen source) and subjected to automated NMR
screening to determine their state of folding and aggregation under a variety of solution
conditions. Ideally, an NMR spectrometer equipped with a sample preparation robot,
sample changer, and cryogenic probe will be used for these screens (a 600 MHz system
should be adequate for this purpose). NMR screens are used to determine aggregation
state (through measurement of transverse diffusion by gradient NMR), folding state
(from analysis of the amide region of 1D 1H NMR spectra and the pattern of 1H–15N
correlation spectra), effect on structure of ligand binding, and to survey proteins for the
presence of unstructured regions. The results of the NMR screens are used in deciding
whether to proceed with NMR structure determination (for a smaller protein) or to
transfer the protein to the crystallization trials pipeline, or to reengineer the protein
for greater stability, solubility (by mutation or addition of a solubility tag) (Zhou,
Lugovskoy, and Wagner, 2001), removal of unstructured regions, or domain separa-
tion. Proteins that pass these screens as candidates for NMR structure determination
are double-labeled (Mr < 20, 000) from 15NH3Cl and [U–13C]-glucose in the growth
medium or triple-labeled (Mr > 20, 000; high-throughput methods for triple labeling
are still under development, prospects are discussed below in Future Prospects). The
costs of the isotope in protein samples that produce at the level of a few mg/liter of
culture are about $100 for 15N-labeling and $500 for the 15N,13C-labeling.

Collection of residual dipolar coupling data for structure determination or refine-
ment (Prestegard, 1998; Tian, Valafar, and Prestegard, 2001; Tjandra et al., 1997;
Tjandra and Bax, 1997a; Tolman et al., 1995) requires that samples be oriented par-
tially in the magnetic field. The orientation can be achieved in a number of ways;
for example, by including in the sample bicelles (Ottiger and Bax, 1999; Sanders,
Schaff, and Prestegard, 1993; Tjandra and Bax, 1997b) or phage particles (Hansen,
Mueller, and Pardi, 1998). NMR spectrometers of 500 and 600 MHz equipped with
cryogenic probes are adequate for the collection of triple-resonance data. If avail-
able, spectrometers with cryogenic probes operating at or greater than 750 MHz are
preferably employed in collecting NOE and isotope-filtered/selected NOE data.

Standard Data Collection Protocols for Proteins

The improved sensitivity from cryogenic probes permit data collection sufficient for a
protein structure in seven days or less, rather than one or two months. If the protein
concentration is sufficiently high that data can be recorded without signal averaging,
the total data collection period can be as short as 30 hours. The two-dimensional (2D)
and three-dimensional (3D) pulse schemes listed in Table 5.2 have been in routine use
in many laboratories for several years.

Modifications of these pulse sequences are available for NMR instruments equipped
with cryogenic probes (e.g. from the NMRFAM web site http://www.nmrfam.wisc.edu)
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T A B L E 5.2. Typical Series of NMR Data Sets Collected for a Full Structure Determination

Sample 1: [U–15N]-protein, H2O solution; 3 days Sample 2: [U–15N, U–13C]-protein, H2O

2D 1H–15N HSQC solution; 4 days
3D 1H–15N NOESY-HSQC 2D 1H–13C HSQC (aromatic)
3D 1H–15N TOCSY-HSQC 2D 1H–13C CT-HSQC (aliphatic)
2D [f2 –15N-filtered] 1H–1H NOESY (for

aromatics)
3D HNCO

2D [f2 –15N-filtered] 1H–1H TOCSY (for
aromatics)

3D HNCACO

3D HNCA
3D HNCOCA
3D CBCACONH
3D CCONH
3D HNCACB
3D HCCH-TOCSY
3D 1H–13C NOESY-HSQC (aliphatic)
3D 1H–13C NOESY-HSQC (aromatic)
Residual dipolar couplings

and reduced-dimensionality versions also have been developed (Montelione et al.,
2000). Protein samples with two labeling schemes are required: [U–15N] and [U–13C,
U–15N]. Protein labeled with 15N suffices for initial screening of conditions and is
advantageous because of the low cost of the isotopically labeled precursor; material
also can be used for collection of 3D 15N-edited Nuclear Overhauser Enhancement
SpectroscopY (NOESY) and TOtal Correlated SpectroscopY (TOCSY) data. Two-
dimensional homonuclear spectra often provide the most efficient means to obtain
resonance assignments and NOE constraints for the side chains of aromatic residues.
These spectra can be acquired on the [U–15N] protein sample, using a 15N half-filter
in the f2 dimension to eliminate amide resonances, leaving only aromatic side-chain
signals in the downfield half of the 1H spectrum. All other spectra require a sample of
doubly labeled [U–15N, U–13C] protein.

Processing and Analyzing NMR Data Sets: The Stepwise Approach

The usual approach in a biomolecular NMR study is to first convert time-domain data to
frequency-domain spectra by Fourier transform. Then peaks are picked from each spec-
trum and analyzed. Methods have been developed for automated peak picking or global
analysis of spectra to yield models consisting of peaks with known intensity, frequency,
phase, and decay rate or line width (in each dimension) (Chylla and Markley, 1995).
Our current protocols for processing, peak picking, and assignment of NMR spectra
primarily use the programs NMRPipe (Fourier transformation) (Delaglio et al., 1995),
SPARKY (peak picking and analysis) http://www.cgl.ucsf.edu/home/sparky/, XEASY
(peak picking and semiautomated assignment) (Bartels et al., 1995), and GARANT
(fully automated assignment) (Bartels et al., 1996; Bartels et al., 1997), on either Irix
or Linux computing platforms. The iterative process of NOE assignment and structure
calculations relies primarily on XEASY and DYANA (automated NOE assignment and
torsion angle dynamics calculations) (Güntert, Mumenthaler, and Wüthrich, 1997).

Convert and Process Raw Data. Before processing, time-domain data files acquired
on Bruker spectrometers must be converted to the proper format for NMRPipe (Delaglio
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et al., 1995). This conversion is accomplished using the bruk2pipe program supplied
with NMRPipe. The corresponding bruk2pipe and NMRPipe scripts for each experi-
ment type are stored in the database at the time of the initial setup. Postconversion to
XEASY format can also be performed.

Peak Picking of All Spectra. Standard methods for obtaining chemical shift assign-
ments begin with triple-resonance experiments that correlate various combinations of
backbone and side-chain 13C signals with the amide 15N and 1H signals. A 2D 1H–15N
HSQC serves as the initial reference spectrum for directing the identification of signals
in all 1HN-correlated 3D spectra (HNCO, HNCACO, HNCA, HNCOCA, CCONH,
CBCACONH, HNCACB). In cases where significant degeneracy is apparent in the
2D HSQC, the 3D HNCO spectrum will be used to resolve overlapped spin systems.
Currently, this task is performed in a semiautomated mode using the strip plot features
of XEASY. On acceptance of the final peak list, each peak is assigned an arbitrary
spin system identifier and stored in a database. This 2D 1H–15N peak list is used
to generate a strip plot representation of the first 3D (e.g., HNCO), and candidate
signals along the orthogonal vector defining the strip are automatically picked, form-
ing a preliminary peak list for the 3D spectrum. As in the 2D HSQC, this array of
strips usually is inspected to determine the completeness and fidelity of the automatic
peak picking.

Sequence-Specific Assignments

At this stage, the set of carefully screened signals from seven 3D spectra are ready for
analysis by semi- or fully automated methods for obtaining sequential assignments. The
primary tools for semiautomated assignment at NMRFAM are XEASY and SPARKY
(T. D. Goddard and D. G. Kneller, SPARKY 3, University of California, San Fran-
cisco). GARANT, which has been used at NMRFAM, shares the same file formats
with XEASY and DYANA, simplifying the data pathway by eliminating file conver-
sion problems, and it has the ability to provide side-chain assignments, along with
backbone assignments.

A number of automated assignment strategies have been described in the litera-
ture. They include methods such as AUTOASSIGN (Zimmerman et al., 1997), which
requires data from a particular set of experiments, and CONTRAST (Olson, 1995;
Olson and Markley 1994), which handles data from a wide range of experiments.
AUTOASSIGN can be accessed using a graphical interface developed for the program
SPARKY, which may simplify the tasks of submitting data files to and evaluating
results from AUTOASSIGN calculations.

NOE Assignment and Structure Calculation

Efficient and accurate assignment of NOEs for structure determination is strongly
dependent on the completeness and accuracy of the chemical shift assignments. Side-
chain assignments normally are derived from 3D 15N TOCSY-HSQC, HCCH-TOCSY,
CCONH, and CBCACONH data.

Semiautomated assignment of NOEs can be performed in XEASY using chemical
shift filters to suggest possible assignment combinations. Peak lists in XEASY format
serve as direct input for the torsion angle dynamics (TAD) program DYANA, which
has useful features for automated assignment of NOEs, that use both chemical shift
and distance filtering. Fully automated structure refinement using the NOAH module of
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DYANA for iterative NOE assignment and TAD has proven successful in some cases
at NMRFAM. A robust automated approach is the most desirable, and an enhanced
version of DYANA with significantly improved automated NOE refinement capabilities
has been described (Güntert, 2000; Güntert et al., 2000).

Final Refinement and Validation

The final stages of refinement often require inspection of NOE assignments that result
in consistently violated distance constraints. NOEs that have overestimated intensi-
ties due to peak overlap can produce too-restrictive constraints and require manual
adjustment. A fully automated refinement scheme may be able to resolve many such
conflicts, but manual intervention will probably be required at some point to achieve
the desired goals for precision (lowest root-mean-square deviation [rmsd]), agreement
with experimental and covalent geometry constraints (lowest energy/target function),
and normal torsion angle geometry (no residues in disallowed regions of φ/ψ space).
DYANA provides diagnostic output with concise summaries of all the necessary data
for each ensemble of structures calculated, often simplifying the search for problematic
restraints or assignments.

Deposition of Completed NMR Structures

Normal deposition procedures require extensive data entry. The groups involved in
structural genomics are developing software to harvest the information needed for data
bank depositions in the course of the work on a particular target. The accumulated data
can be checked by reference to software packages described below.

VALIDATION OF STRUCTURAL MODELS

The optimal validation approach to be taken depends on the experimental data col-
lected and how they were used in deriving the family of conformers that represents the
structure. Two approaches are used for the validation of biomolecular NMR structures.
In the first, the agreement between experimental data and coordinates is assessed. The
second measures the match between many aspects of the geometry and the expected
range of permissible values for each geometric parameter. Ranges of expected values
can be derived theoretically, or can be obtained from databases of protein structures
(PDB), nucleic acid structures (Nucleic Acids Database, NDB), and small molecules
(Cambridge Structural Database, CSD). These two types of structure validation provide
complementary checks on the quality of structures and are described below along with
various existing software packages.

As with X-ray structures, the stereochemical quality of protein models can
be checked with the software tools PROCHECK (Laskowski et al., 1993), and
WHAT IF (Vriend, 1990). NMR-specific tools include AQUA and PROCHECK-NMR
(Laskowski et al., 1996). Recently, WHAT IF has been extended to include a check
on hydrogen geometry (Doreleijers et al., 1999b). Structural studies on peptides (Engh
and Huber, 1991) and nucleic acids (Parkinson et al., 1996) solved at high resolution
and present in the CSD resulted in a set of reference values and standard deviations of
bond lengths and bond angles for heavy atoms that are taken as reference values for
larger biomolecules. In most common force fields, the force constants for geometry
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constraints are chosen to reflect the variation in these geometric parameters. The check
on bond lengths and bond angles is one of the many checks that should be performed
before accepting a refined model. Severe deviations from the commonly accepted
standard geometry signal problematic regions in a structure.

Software packages used to solve and refine NMR structures (DYANA, CNS, and
others) provide a rich set of diagnostic tools and a summary of the violations between
experimental data and the coordinates. In general, NMR structures of acceptable qual-
ity meet the following validation criteria: (1) an rmsd for NOE violations less than
∼0.05 Å and no persistent NOE violation greater than 0.5 Å across the ensemble of
structures (Doreleijers, Rullmann, and Kaptein, 1998); (2) an NOE completeness of
at least 50% for all NMR observable proton contacts within 4 Å (Doreleijers et al.,
1999a); (3) all torsion angles within the range of the restraints; (4) chemical shift
values within acceptable ranges, unless verified independently. At the time the struc-
tures are released, full documentation of the structure and the experimental data as
described in the International Union of Pure and Applied Chemistry (IUPAC) pub-
lication “Recommendations for the Presentation of NMR Structures of Proteins and
Nucleic Acids,” should be provided, as well as the reports generated by the software
packages mentioned above.

A number of approaches to validating NMR structures against NOE restraints
or peak volumes and against residual dipolar couplings have been proposed. H. R.
Kalbitzer and co-workers have developed an improved software package for back-
calculating NOESY spectra from structures that takes into account relaxation and scalar
coupling effects; this approach and an associated “R” factor offer a promising way of
validating NMR structures (Gronwald et al., 2000; Kalbitzer, 2001). Brünger and co-
workers have developed a complete cross-validation technique, in analogy to the free
R-factor used in X-ray crystallography, that provides an independent quality assessment
of NMR structures based on the NOE violations (Brünger, 1992). The free R-factors
of different NMR structures are only comparable if the NOE intensities have been
translated into distance restraints in the exact same way. The Clore (Clore, Starich, and
Gronenborn, 1998) and Bax (Ottiger and Bax, 1999) groups have developed quality
factors for residual dipolar couplings. In cases where dipolar coupling data can be
obtained easily, these factors provide an attractive approach to validation.

Validation of structural models against assigned chemical shifts is another promis-
ing technique for checking structures. The measurement of chemical shifts is easy and
precise but the back-calculation of the expected chemical shift from a structure is less
trivial (Case, 1998). Williamson and co-workers have related measured proton chem-
ical shifts of proteins to values calculated on the basis of NMR and X-ray structures
(Williamson, Kikuchi, and Asakura, 1995). The chemical shifts derived from NMR
structures showed the same degree of agreement with the measured proton chemical
shifts as X-ray structures with a resolution between 2 and 3 Å (σ of 0.35 ppm). Meth-
ods for back-calculating chemical shifts from structure are improving rapidly (Case,
2000). The BioMagResBank (BMRB) (Seavey et al., 1991; Ulrich et al., 2000) con-
tains over 900,000 experimental chemical shifts for proteins, nucleic acids, and small
molecules and more than 7,000 experimental coupling constants. As of 2002, BMRB
entries with related PDB coordinate entries totaled 965, and 342 of these BMRB
entries were available with chemical shifts referenced consistently using the IUPAC
recommendations. Workers are beginning to mine this wealth of information (Wishart
et al., 1997), which is expected to grow rapidly in coming years (Cornilescu, Delaglio,
Bax, 1999).
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NMR AND MOLECULAR DYNAMICS

Because signals observed in solution by NMR report on the chemical properties of
nuclei, including their relative motions with respect to the laboratory and molecular
frames, the method is uniquely suited for investigations of the kinetics and thermody-
namics of molecular motions, segmental motions, dynamic conformational equilibria,
and ligand-binding equilibria. Whereas regions of proteins that are statically or dynam-
ically disordered may fail to produce resolvable electron density, NMR signals from
such regions generally are observed and can be investigated.

FUTURE PROSPECTS

In order to achieve a high-throughput mode of structure determination by NMR spec-
troscopy, it will be necessary to reduce, by a substantial fraction, the average cost of
a structure in terms of both time and resources. Future improvements in the efficiency
of the NMR approach are being achieved through: (1) reducing data acquisition times
by capitalizing on the substantial sensitivity gains afforded by novel cryogenic probe
technology; (2) streamlining project management and facilitating automation by storing
all data in a relational database with customized interface modules for each analysis
task; and (3) producing proteins by cell-free systems that offer reductions in sample
cost, simplified spectral analysis, and higher-quality structures.

Cell-Free Protein Production

The development of new systems and strategies capable of synthesizing any desired
soluble, labeled protein or protein fragment on a preparative scale is one of the most
important tasks in biotechnology today. Two strategies are currently employed: chem-
ical synthesis and cell-free protein synthesis. Chemical synthesis is not suitable for
long peptides, because the yields are low and the costs are high. In contrast, cell-free
biological systems can synthesize proteins with high speed and accuracy, approaching
in vivo rates (Kurland, 1982; Pavlov and Ehrenberg, 1996). Commercial implemen-
tations of this technology (although not yet sufficiently useful to routinely support
structural proteomics efforts) are available, and recent research advances in this area
have been documented in the literature (Baranov et al., 1989; Endo et al., 1992; Roberts
and Paterson, 1973; Spirin et al., 1988). To date, an E. coli cell-free system yielding
as much as 6 mg of protein per ml of reaction volume has given the best results
(Kigawa et al., 1999). However, such high productivity can only be expected with
relatively small proteins since with large proteins the increasing molecular weight of
mRNAs results in increased probability of degradation by endogenous E. coli ribonu-
cleases. Furthermore, it is likely that E. coli cell-free systems are not optimal for
the synthesis of eukaryotic proteins. Recent important advances have been made in
cell-free protein expression from wheat germ extracts: these include the removal of
an inhibitor of protein synthesis (Madin et al., 2000), and improvements in coupled
transcription–translation procedures (Endo, 2001), or capping and polyadenylation of
messenger RNA used in direct cell-free translation (Kumar et al., 2000). Cell-free
protein expression (both E.coli and wheat-germ cell-free systems) is being used for
routine expression screening at RIKEN in Japan (Yokoyama, 2000). It appears that
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cell-free protein production methods will become increasingly important to the future
of structural and functional genomics.

We envision cell-free protein production as a most promising long-term approach
to protein production for structural proteomics. There are six reasons for this:

1. Volumes can be kept manageable. In favorable cases, sufficient protein for a
structural investigation can be produced from a reaction volume of under 5 mL.

2. Proteins can be produced that would be toxic to cells.
3. The ratio of desired protein to unwanted protein is high, simplifying purification.
4. In a cell-free system, one has the potential for introducing a variety of agents

to promote correct folding (chaperones, prolyl peptidyl isomerases, disulfide
isomerases, etc.).

5. Enzymes and substrates can be added to promote post-translational modifi-
cations.

6. Labeled amino acids can be introduced without scrambling of the label.

The production of labeled proteins from cell-free systems requires that labeled
amino acids be supplied in the reaction mixture. Whereas 1–2 g each of labeled ammo-
nium chloride and glucose typically are required for the generation of a double-labeled
NMR sample (at yields of 5–10 mg/L culture), considerably less amino acid mixture is
needed for cell-free protein production. The optimal concentration of each amino acid
in the cell-free reaction mixture is about 1 mM. At currently achievable protein yields
(0.4 to 1.1 mg protein/mL of reaction mixture), a reaction volume of about 8 mL is
needed to produce enough protein for 2–3 NMR samples. U–15N- and U–15N,13C-
amino acids are commercially available at prices that enable considerable price savings
over production of labeled proteins from E. coli cells.

Stereo Array Isotope Labeling (SAIL) and the Principle of Minimized
Proton Density

The ideal labeling pattern for protein NMR experiments is one in which only one of the
two prochiral groups, −C−C(H2) or −CMe2, is visible by NMR. For aromatic rings,
the principle is to minimize the proton density and indirect couplings (Kainosho, 2000;
Kainosho et al., 2001). All methyls are replaced by −CHD2. There are 10 advantages
of this labeling pattern for NMR spectroscopy:

1. Defeat of the predominant dipolar relaxation mechanisms through the intro-
duction of −CHD- and −CHD2 groups decreases R2 relaxation; this makes
signals sharper and increases signal-to-noise (s/n).

2. Increased s/n and resolution are obtained through reduction of losses through
coherence transfer.

3. By reducing spin-diffusion pathways, it becomes possible to measure accurate
NOEs and residual dipolar couplings at longer distances.

4. Prochiral assignments come directly from the labeling pattern and are known
absolutely, which simplifies structure determinations and makes them more
accurate.
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5. The labeling pattern eliminates many longer-range couplings; this sharpens
the signals and makes it easier to measure couplings more accurately (J and
residual dipolar).

6. Spectra are less crowded and are thus more amenable to automated
assignments.

7. The labeling pattern will extend the range of high-throughput structure
determinations to higher molecular weights (this issue has not been explored
fully to date, but the cutoff certainly will be raised above 30 kDa).

8. The labeling pattern is compatible with all double- and triple-resonance NMR
experiments, including TROSY.

9. Since both the methyl and methylene groups have the same (unit proton)
intensity, internal mobility effects can be read from spectra by inspection of
apparent intensity.

10. The labeling pattern supports the determination of NMR solution structures of
proteins at high resolution.

Overall, the increase in s/n through the use of SAIL is about a factor of three
(M. Kainosho, personal communication), similar to that achieved with cryogenic
probes. The combination of SAIL and cryogenic probe data collection should lead to
almost an increased s/n of 10. Structural studies will require less protein. Alternatively,
at the same protein concentration used with conventional labeling, the data can be
collected much faster. In either case, the quality of the data will be far superior to that
achieved with conventional labeling. Still there is a limit imposed by the size of the
molecule as imposed by R1 relaxation.

Stereo-array-labeled amino acids must be produced by chemical synthesis. Kain-
osho and co-workers have worked out synthetic routes for all required amino acids,
and it is hoped that this approach can be made commercially viable so that it will be
available to all researchers in the field.

Concerted Methods for Assignment and Structure Determination

Newly emerging methods indicate the possibility of determining structures without
prior assignment of chemical shifts (Grishaev and Llinás, 2002; Madrid, Llinás, and
Llinás, 1991; Tian, Valafar, and Prestegard, 2001; Zweckstetter and Bax, 2001). Such
approaches bypass the tedious assignment process and ideally provide a probabilistic
view of the structure determined by a given set of input data. These approaches are
still at the early stage of development, but show great promise for accelerating the
process of determining high-resolution NMR structures or for rapid determinations
of protein folds.
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Parkinson G, Voitechovsky J, Clowney L, Brünger AT, Berman HM (1996): Bond lengths and
angles, DNA/RNA. Acta Crystallogr D52:57–64.

Pavlov MY, Ehrenberg M (1996): Rate of translation of natural mRNAs in an optimized in vitro
system. Arch Biochem Biophys 328:9–16.

Peng JW, Lepre CA, Fejzo J, Abdul-Manan N, Moore JM (2001): Nuclear magnetic resonance-
based approaches for lead generation in drug discovery. Methods Enzymol 338:202–30.

Pervushin K (2000): Impact of Transverse Relaxation Optimized Spectroscopy (TROSY) on
NMR as a technique in structural biology. Quart Rev Biophys 33:161–97.



REFERENCES 111
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ELECTRON MICROSCOPY
Niels Volkmann and Dorit Hanein

As modern molecular biology moves from single molecules toward more complex
multimolecular machines, the need for structural information about these assemblies
grows. Nuclear magnetic resonance (NMR) spectroscopy (see Chapter 5) and X-ray
crystallography (see Chapter 4) are well-established approaches for obtaining atomic
structures of biological macromolecules, but it has become increasingly clear that the
structures of individual components of assemblies can be only a first step to under-
standing a biological phenomenon. Biological events are usually more than the sum of
their parts.

Due to dramatic improvements in experimental methods and computational tech-
niques, electron microscopy has matured into a powerful and diverse collection of
methods that allow the visualization of the structure and dynamics of an extraordinary
range of biological assemblies at resolutions spanning from molecular (about 2–3 nm)
to near atomic (0.3 nm). Many of the restrictions of X-ray crystallography or NMR
spectroscopy do not apply to electron microscopy. Crystalline order is helpful but not
necessary; there is no upper size limit for the structures studied, the quantities of sample
needed are relatively small, and cryomethods enable the observation of molecules in
their native aqueous environment (Dubochet et al., 1988). All in all, imaging of large
and multicomponent cellular machinery close to physiological conditions is possible
using electron microscopy and image analysis.

In the early years of electron microscopy, electron micrographs of molecules in
a thin film of heavy atom stain were used to produce structures that were interpreted
directly. Later, the interpretation of the two-dimensional (2D) images as projected
density summed along the direction of the electron beam led to the ability to reconstruct
the three-dimensional (3D) object that was imaged (DeRosier and Klug, 1968). The
1980s marked the development of electron cryomicroscopy where macromolecules are
examined without the use of heavy atom stains by embedding the specimens in a thin
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film of rapidly frozen water (Dubochet et al., 1988). This use of unstained specimens
led to structure determination of the molecules themselves rather than the structure
of a stain-excluding volume (negative stain). The staining procedures greatly enhance
the signal-to-noise ratio for imaging of biological macromolecules but are severely
limited by preservation artifacts. The signal-to-noise ratio in electron cryomicroscopy
is much lower, but it allows imaging of biological specimens close to their native, fully
hydrated state.

Up to November 2001, four atomic resolution structures had been obtained by elec-
tron cryomicroscopy of thin 2D crystalline arrays (Henderson et al., 1990; Kühlbrandt,
Wang, and Fujiyoshi, 1994; Nogales, Wolf, and Downing, 1998; de Groot, Engel, and
Grubmuller, 2001). For most biological macromolecules and assemblies, it has not yet
been possible to determine their structure beyond 0.7–3 nm resolution using electron
microscopy and image analysis. Although this resolution precludes atomic modeling
directly from the data, near-atomic models often can be generated by combining high-
resolution structures of individual components in a macromolecular complex with a
low-resolution structure of the entire assembly. Combination of electron microscopy
with bioinformatics-based technologies such as pattern recognition, database searches,
or homology modeling are increasingly used to generate molecular models of large
assemblies as well. This chapter gives an overview of key aspects of electron cryo-
microscopy and puts them into context with structural bioinformatics. More informa-
tion on the various aspects of electron cryomicroscopy can be obtained from several
recent review articles (Baumeister, Grimm, and Walz, 1999; Baumeister and Steven,
2000; Chiu et al., 1999; Kühlbrandt and Williams, 1999; McEwen and Frank, 2001;
Saibil, 2000).

ELECTRON OPTICS AND IMAGE FORMATION

Electron cryomicroscopy provides 3D electron-density maps of macromolecules very
similar to the electron-density maps determined by X-ray crystallography. In the imag-
ing process of electron microscopy, the incident electron beam passes through the
specimen and individual electrons are either unscattered or scattered by the specimen.
Scattering occurs either elastically, with no loss of energy, or inelastically, with energy
transfer from the scattering electrons to electrons in the specimen; thus, leading to radi-
ation damage. The electrons emerging from the specimen are collected and focused by
the imaging optics of the microscope (Fig. 6.1). In the viewing area either the electron
diffraction pattern or the image can be seen directly by eye on the phosphor screen,
detected by a change-coupled device (CCD) camera, or recorded on photographic film
or imaging plate.

Structural information can only be obtained from coherent, elastic scattering of
the electrons. The amplitudes and phases of the scattered electron beam are directly
related to the Fourier components of the atomic distribution in the specimen. When the
scattered beams are recombined with the unscattered beam in the image, they create an
interference pattern that, for thin specimens, is directly related to density variations in
the specimen. Thin samples of biological molecules fulfill the weak phase approxima-
tion, a theory of image formation that is used to describe the phase-contrast images of
weakly scattering specimens. Although there is practically no contrast when the image
is in focus, spherical aberration and defocus combine to give a phase-contrast image.
The imaging characteristics are described by the contrast-transfer function (CTF),
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Figure 6.1. Simplified schematic diagram showing the principle of image formation in the elec-

tron microscope. The incident electron beam illuminates the specimen. Scattered and unscattered

electrons are collected by the objective lens system and focused back to form first an electron

diffraction pattern and then an image. In practice, an in-focus image has no contrast, so images

are recorded with the objective lens system slightly defocused (d), taking advantage of the

out-of-focus phase contrast mechanism.

which can be derived from the weak phase approximation. The CTF describes the
contrast transfer as a function of spatial frequency. It has alternating bands of posi-
tive and negative contrast (Fig. 6.2), appearing in diffraction images as Thon rings. In
order to restore the correct structural information, the images must be corrected for
the CTF. For high-resolution studies, images must be collected at a range of defocus
values to fill in missing data caused by zeros in the CTF whose positions vary with
the actual defocus.

The most important consequence of inelastic scattering is the deposition of energy
in the specimen, leading to radiation damage. Scattering events with X-rays are about
1000 times more damaging than those with electrons, but the cross-section for electron
scattering is 105 times greater. Therefore, radiation damage is a much more serious
problem for electron microscopy and cooling is essential for imaging of high-resolution
detail. Still, radiation damage is limiting even at low temperature. Therefore, the image
exposures are chosen to be the weakest possible to obtain a measurable signal. Con-
sequently, the signal-to-noise ratio of the recorded images is extremely low. This low
signal-to-noise limits the amount of information that can be obtained from an image
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Figure 6.2. Graph of CTF plotted against spatial frequency. The lines represent underfocus

levels of 2 µm (thin line) and 3 µm. The inset shows the typical Thon rings that are caused by

the modulation effect of the CTF and are visible in diffraction patterns of electron micrographs

recorded with defocused lens systems. The finite source size and nonmonochromatic electron

beam both cause Gaussian decay of the CTF. In practice, contrast is much weaker at high spatial

frequencies as a result of further decay caused by other factors such as inelastic scattering or

specimen drift. When the CTF crosses the zero line (the straight line in the plot), the phases need

to be flipped in order to correct for the contrast reversal at the corresponding spatial frequencies.

At the spatial frequencies where the CTF actually approaches zero, no information is present. By

collecting various data sets with different defocus, these information gaps can be filled.

of a single biological macromolecule. The high-resolution structure cannot be deter-
mined from a single molecule alone but requires the averaging of the information
from at least 10,000 molecules in theory and even more in practice (Henderson, 1995).
For example, five million molecules were used to determine the atomic structure for
bacteriorhodopsin (Henderson et al., 1990).

The electron optical resolution of electron microscopy is on the order of 0.1 nm,
much coarser than the diffraction limit imposed by the electron wavelength. The res-
olution is restricted by the small aperture size needed because of aberrations in the
electromagnetic lenses. However, additional resolution restrictions for macromolecules
come from radiation sensitivity, specimen movement in the electron beam, and low
contrast. These effects have so far limited the resolution of macromolecular imaging
to 0.3–0.4 nm in the best cases. Particularly for single particles, the loss of con-
trast beyond 2 nm resolution is a major limitation. This limit can be extended by the
use of a field emission gun (FEG) electron source. The small apparent source size
gives a highly coherent illumination that provides much better phase contrast at high
resolution.
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The microscope can be used either as an imaging or a diffraction instrument.
Unlike diffraction experiments, in which phase information is lost, the image recorded
by microscopy contains both amplitude and phase information. However, a much higher
electron dose is needed to record the image than for the electron-diffraction pattern.
Mechanical stability is particularly critical for obtaining phases. Movement does not
affect the amplitudes in electron diffraction provided the crystalline area stays in the
beam, but any movement during image recording distorts the phases and may easily
make the image unusable.

THREE-DIMENSIONAL RECONSTRUCTION

The determination of 3D structure by electron cryomicroscopy follows a common
scheme for all macromolecules. Briefly, each sample must be prepared in a relatively
homogeneous, aqueous form. This specimen is then rapidly frozen (vitrified) as a thin
film, transferred to the electron microscope, and imaged under low-dose conditions (less
than 5000 electrons/nm2). Before image analysis, the best micrographs are selected
in which the electron exposure is correct, there is no specimen movement, minimal
astigmatism, and a reasonable amount of defocus. Interesting areas are boxed out for
further use.

An electron micrograph consists of 2D projections of a 3D object. To retrieve
its 3D structure, sufficiently sampled angular views of the object need to be aligned
and combined. An object might possess crystalline, helical, icosahedral, or rotational
symmetry, or no symmetry at all. The presence of symmetry means that redundant
motifs are provided in the specimen, thereby enhancing the signal-to-noise ratio of the
image, providing geometric constraints for the alignment of the objects, and reducing
the number of images required to obtain a reconstruction. The exact steps of image
analysis and image acquisition vary according to the symmetry and nature of the
specimen. Three basic tasks are common to all samples (Fig. 6.3). First, images of
the object must be obtained in a sufficient number of orientations. This task can be
achieved using the natural design of the object (helical filaments or icosahedral viruses),
using experimental design (by tilting the sample holder in the microscope to specified
angles), or through a random distribution of orientations (single particles). Second, the
orientation and center of the object needs to be determined. Iterative refinement of
these parameters is usually carried out by cross-comparison between different images
or by projection images of preliminary models. Third, image shifts must be applied
computationally either in real space or Fourier space to bring all views of the object to a
common origin. Only then can a 3D reconstruction be calculated. The different sample
geometries require different data-collection schemes and image-processing approaches.
These are described below.

Crystalline Arrays

Ordered protein arrays, often only one molecule thick, are too insubstantial to be
analyzed by X-ray crystallography. Due to the comparatively large cross-section of
electron scattering and the resulting increase in scattering power, structure determina-
tion using electron beams is feasible for these samples. The strategy followed is to
build up a 3D Fourier transform of the repeating unit by recording data from arrays
tilted through various angles. The calculated Fourier transform of each image pro-
vides phases and amplitudes of a central plane through the 3D Fourier transform. For
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Figure 6.3. The principle of 3D reconstruction from 2D projections using the Arp2/3 complex

(Volkmann et al., 2001a) as an example. The electron beam illuminates the molecule in different

orientations. This illumination gives rise to sets of 2D projection images that need to be classified

and oriented. In order to enhance the signal, as many projection images of the same molecule

orientation as possible are averaged. The 2D Fourier transform of each projection (shown below

the averaged projection images) is a section through the 3D Fourier transform of the underlying

structure. The 3D Fourier transform is represented by two intersecting transform sections derived

from the top and front view of the structure. Once enough sections are available, the full 3D

Fourier transform can be interpolated and inverse transformed into a 3D density reconstruction.

well-ordered arrays, electron diffraction yields amplitudes superior to those calculated
from the image and are consequently incorporated instead. In addition to the direct
measurement of phases that distinguishes electron crystallography from X-ray crystal-
lography, the images can be corrected for short-range lattice disorder such as bending
or wrinkling of the arrays (Henderson et al., 1990; Kunji et al., 2000). This extends
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the resolution of the calculated transform from each image. There is a missing cone
of data because the maximum tilt angle possible is 60–70◦. This results in anisotropic
resolution: features parallel to the plane of the array are better resolved than features
perpendicular to the plane. Other possible complications with obtaining high-resolution
structures from crystalline arrays include difficulties in finding proper crystallization
conditions and lattice defects. Once images of sufficient quality are acquired, lattice
reflections calculated from each image are assembled into the 3D Fourier transform,
which is interpolated and inverse transformed to give the 3D density map.

Electron crystallography is well suited for intrinsic membrane proteins that are
visualized in their natural environment embedded in a lipid bilayer. Bacteriorhodopsin,
which naturally exists as planar arrays in the cell, was the first molecule with an
atomic model provided by electron crystallography (Henderson et al., 1990). The plant
light-harvesting complex is another example of an atomic model entirely based on
electron crystallographic analysis (Kühlbrandt, Wang, and Fujiyoshi, 1994). Recently
also electron-crystallography-based models of the membrane protein aquaporin became
available (de Groot, Engel, and Grubmuller, 2001). In addition, the 3D structures of
about a dozen or so membrane proteins were determined at a resolution of 0.5 nm
to 1 nm (for a recent review see Stahlberg et al., 2001). An atomic model also has
been obtained for tubulin, a major component of the cytoskeleton (Nogales, Wolf, and
Downing, 1998), and several other proteins that are not integral membrane components
have also been studied at somewhat lower resolution (see Stahlberg et al., 2001).

Helical Assemblies

Many biological assemblies occur naturally in helical form, particularly cytoskeleton
filaments. These filamentous structures are particularly attractive targets for helical
reconstruction techniques as they are not usually amenable to crystallization due to
their natural tendency to polymerize. Actin filaments (see, for example, De La Cruz
et al., 2000; Orlova and Egelman, 2000; Steinmetz et al., 2000); actin filaments bound
to capping proteins (McGough et al., 1997); actin complexed to domains of cytoskele-
tal proteins such as α-actinin (McGough, Way, and DeRosier, 1994), fimbrin (Hanein,
Matsudaira, and DeRosier, 1997; Hanein et al., 1998), utrophin (Moores, Keep, and
Kendrick-Jones, 2000), calponin (Hodgkinson et al., 1997) have all been studied by
electron microscopy and helical reconstructions techniques. Conformational changes in
motor proteins (myosin, kinesin, NCD) are being investigated by using electron cry-
omicroscopy techniques with actin- or microtubule-bound motors (for recent reviews,
see Vale and Milligan, 2000; Volkmann and Hanein, 2000).

Helical crystallization has also been used for structure determination, particularly
in the case of membrane proteins, which can be induced to form tubular crystals.
Diffraction from a helix occurs on a set of layer lines related to the pitch repeat.
An advantage of helical analysis over crystalline arrays is that the repeating unit is
naturally presented over a range of angular views and tilting is not usually necessary
for 3D reconstruction (DeRosier and Moore, 1970). However, it is more difficult to
collect a large enough number of the repeating units and to achieve high resolution.
Possible complications that arise during helical analysis include partial decoration of
the helix under study, bending of the helix in the plane of the image and perpendicular
to the plane, or imperfect helical symmetry. The majority of the helical reconstructions
are in the 1.5–3 nm range, but 0.4–0.5 nm resolution also has been achieved using
tubular crystals of the nicotinic acetylcholine receptor (Miyazawa et al., 1999).
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Single-Particle Analysis

Isolated single particles (macromolecules) offer certain practical advantages for electron
cryomicroscopy. Because there is no requirement for crystallinity, virtually any particle
is eligible. For more detailed information on single-particle reconstruction see recent
reviews by Frank et al. (2000), van Heel et al. (2000) and the textbook by Frank
(1996). In summary, single-particle reconstruction takes advantage of the fact that
molecular complexes often exist as many copies in the specimen, visible as isolated
particles, distinguished only by their orientations. Thus, a snapshot of a sufficiently
large number of particles covers the complete angular range of possible orientations. A
small number of micrographs, each of a different field of view, often contain enough
particles to reconstruct the molecule in three dimensions. The averaging of many
copies of the structure by this approach reduces the noise and carries potential for
reaching high resolution, even for particles without symmetry. Computationally, the
most challenging task is to determine and refine the particle orientations.

Orientation analysis is much more straightforward if the sample is biochemically
homogeneous and is also facilitated by internal particle symmetry. In order to gen-
erate a high-resolution reconstruction, an initial starting model at moderate resolution
(∼3 nm) is acquired as a first step. Methods for acquiring an initial starting model
include the random conical tilt method (Radermacher, 1988), angular reconstitution
(van Heel, 1987), the use of models of related structures, or electron tomography (see
below). The second stage involves cyclic model-based refinement. At each stage, more
accurate values for the viewing angles of each particle are obtained by matching it
against projections of the current model, each of which represents a particular view.
Translational refinement is also fine-tuned. Then, a refined reconstruction is calculated
and the procedure is iterated exhaustively until convergence.

The resolution attained depends on several factors, including the number of par-
ticles in the data set, the accuracy of the orientation parameters, and the quality of
the original data. Even under the most favorable conditions macromolecules yield
noisy, low-contrast images. For successful orientation determination, a sufficient signal
for discrimination among projections must be generated. In practice, this requirement
places a lower size limit on macromolecules that can be analyzed by this technique
with the current limit being at 220 kDa for particles without internal symmetry (Volk-
mann et al., 2001a). Particles of 1–10 MDa are considered optimal for high-resolution
single-particle analysis.

The first single-particle analysis at resolutions below 1 nm was of the capsid of
hepatitis B virus (Böttcher, Wgnne, and Crowther, 1997; Conway et al., 1997) and
papillomavirus (Trus et al., 1997). Icosahedral capsids have the advantage of 60-fold
symmetry, which reduces the amount of particles required for averaging. As 1 nm is
the spacing typical of close-packed α-helices, density maps with resolutions higher than
1 nm are particularly informative for proteins with high α-helix contents. In addition
to a handful of icosahedral virus structures that were determined at resolutions better
than 1 nm (Mancini et al., 2000; Zhou et al., 2000; Zhou et al., 2001), the structure of
a ribosomal subunit (Matadeen et al., 1999), a particle without internal symmetry, was
determined at a resolution of 0.75 nm. While these results are very encouraging, the
vast majority of single-particle analyses today yield reconstructions with resolutions
considerably lower than 1 nm, thus precluding direct analysis and modeling of helical
arrangements.
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Electron Tomography

The most general method for obtaining 3D information by electron microscopy is
tomography. The method is not only applicable to isolated particles but also to pleo-
morphous structures such as mitochondria, other organelles, or even whole cells (for a
recent review, see Baumeister, Grimm, and Walz, 1999). A special issue of the Jour-
nal of Structural Biology edited by Koster and Agard (1997), a textbook edited by
Frank (1992), and another upcoming special issue of the Journal of Structural Biology
(in preparation) are all devoted to electron tomography. In this technique, a series of
images is taken of a single specimen as the specimen is tilted over a wide range of
angles. Sometimes, for better angular coverage, another tilt series is taken with the
specimen rotated by 90◦.

Tomography is the only method available for reconstruction of specimen with
unique structure (no multiple copies). An entire cell for example would fall into this
category, as it would be impossible to find two cells that are exactly identical. Today,
with the use of computer-controlled microscopes and the availability of CCD cam-
eras, it has become possible to image large-scale structures at a resolution of better
than 5 nm, with data sets comprising up to 150 projections with a cumulative dose
as low as 5000 electrons/nm2. Tomography is undergoing considerable growth at the
present time due to the realization that molecular information can be obtained from
unstained, frozen-hydrated whole cells (Grimm et al., 1998) and isolated organelles
(Nicastro et al., 2000). The main disadvantage of the tomographic approach is that
radiation damage builds up during the multiple exposures as the specimen is being
tilted. Although data collection with extremely low doses of radiation is under devel-
opment, the experimental realization and image processing under such conditions still
poses great challenges. Similar to electron crystallography, there is a missing wedge
of data because of the maximum tilt angle, resulting in anisotropic resolution. Fea-
tures perpendicular to the electron beam are better resolved than features parallel to
the beam.

Although the main area of application for electron tomography is large, multi-
component objects, structures of single macromolecules also have been determined in
negative stain (Rockel et al., 1999) as well as in vitrified ice (Nitsch et al., 1998).
In this case, the 3D, noisy tomograms of the single macromolecules were aligned
and averaged in three dimensions. To generate an averaged, high-quality 3D structure,
only a few hundred particles are required using tomographic techniques (Koster et al.,
1997), an advantage of using electron tomography instead of single-particle analysis
that requires several thousand particles for structure determination. Resolution of up
to 2.2 nm was achieved using this single-particle tomography approach.

Hybrid Methods

A recent trend is the innovative combination of the more traditional methodologies
mentioned above in order to push the limits of electron microscopy even further. For
example, single-particle image-processing methods can be exploited for disorder cor-
rection of subunits or groups of subunits in ordered assemblies such as helical filaments
(Egelman, 2000; Yu and Egelman, 1997) or crystalline arrays (Sherman et al., 1998;
Verschoor, Tivol, and Mannella, 2001). Helical orientation parameters (that tend to be
more accurate than single-particle orientation parameters) can be used to aid single-
particle reconstructions of asymmetric particles attached to the end of helices (Yonekura
et al., 2000). A combination of helical analysis and electron crystallographic techniques
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Figure 6.4. Example for a hybrid study that combines elements of electron crystallography and

helical reconstruction with homology modeling and molecular docking approaches to elucidate

the structure of an actin-fimbrin crosslink (Volkmann et al., 2001b). Fimbrin is a member of a

large superfamily of actin-binding proteins and is responsible for cross-linking of actin filaments

into ordered, tightly packed networks such as actin bundles in microvilli or stereocilia of the inner

ear. The diffraction patterns of ordered paracrystalline actin-fimbrin arrays (background) were

used to deduce the spatial relationship between the actin filaments and the various domains of

the crosslinker. Combination of this data with homology modeling and data from docking the

crystal structure of fimbrin’s N-terminal actin-binding domain into helical reconstructions (Hanein

et al., 1998) allowed us to build a complete atomic model of the cross-linking molecule. Figure

also appears in Color Figure section.

is being used to interpret 2D paracrystalline arrays of filamentous structures (Sukow
and DeRosier, 1998; Volkmann et al., 2001b and Fig. 6.4) and electron tomography is
being used to generate starting models for single-particle analysis (Walz et al., 1999).

Imaging Protein Dynamics

In electron cryomicroscopy, molecules can be imaged in their native, fully hydrated
environment, unrestricted by a crystal lattice. This technique gives the opportunity to
study macromolecules in their various functional states and to determine the associ-
ated conformational changes. Actin- and microtubule-based motor proteins are good
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examples where function-related motions can be detected by electron cryomicroscopy.
Changes of the nucleotide state of several actin-bound myosin isoforms, for example,
induce large conformational changes that are readily identified by eye (see for example
Carragher et al., 1998; Jontes, Wilson-Kubalek, and Milligan, 1995; Whittaker et al.,
1995). In addition, recent advances in computational methodology and image pro-
cessing allowed more subtle changes to be identified and quantified in these systems
(Volkmann et al., 2000). Another example for glimpses of a molecular machine in
motion is provided by recent electron microscopy studies of the ribosome, which began
to unravel the structural changes associated with different functional states in the trans-
lation process (Frank and Agrawal, 2000; Gabashvili et al., 2001; Spahn et al., 2001b;
VanLoock et al., 2000). Electron microscopy of the chaperonin GroEL revealed a large
repertoire of hinge rotations and allosteric movements in the chaperonin ATPase cycle
(Roseman et al., 2001).

Because the freezing step in electron cryomicroscopy is very rapid (considerably
less than 1 msec), it is possible to capture very short-lived structural states by spraying
a ligand onto the specimen just before freezing. The spray method allowed capturing
the acetylcholine-activated state of the nicotinic acetylcholine receptor, which has a
lifetime of only 10 msec (Berriman and Unwin, 1994). A stopped-flow mixer system
combined with an atomizer spray has been developed for actomyosin kinetic studies
(Walker et al., 1999).

A possibility for detecting dynamics or mixed conformations directly in electron
microscopic reconstructions is the analysis of the local variability using statistics on
the single molecular units that contribute to the final average. Variants of this idea
were developed for single-particle analysis (Liu, Boisset, and Frank, 1995) as well as
for helical reconstructions (Rost, Hanein, and DeRosier, 1998).

COMBINATION WITH OTHER APPROACHES

In the 3D structure determination of macromolecules, X-ray crystallography covers
the full range from small molecules to very large assemblies such as viruses with
molecular masses of megadaltons. The limiting factors are expression, crystallization,
and the stability and homogeneity of the structure. In the case of NMR, structures can
be determined from molecules in solution, but the size limit, although increasing, is
presently of the order of 100 kDa. Dynamic aspects can be quantified, but again the
structures of mixed conformational states cannot be determined. Electron microscopy
provides complementary information to these other methods, being able to tackle very
large assemblies as well as transient or mixed states, and usually requires small amounts
of material. However, for the majority of the biological specimens studied, it has not
yet been possible to determine their structures beyond 1.5 nm to 3 nm. By combining
electron microscopy and image analysis with other sources of information, the gap
between high-resolution information as obtained by X-ray crystallography and NMR
and lower-resolution information such as that coming from light microscopy can be
bridged.

X-Ray Crystallography

Combining electron microscopy and crystallographic data can take two forms. When
the whole specimen can be crystallized, the electron microscopy results can be used
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as an initial molecular-replacement phasing model. The principal difficulty here is the
frequently poor overlap between the data from electron microscopy (highest resolution
2–3 nm) and the X-ray data (spots with resolution lower than 3 nm are often hidden
in the beamstop). If successful phasing can be initiated with the electron microscopic
reconstruction, it can be used to find heavy atoms, as was the case in the analy-
sis of a ribosome subunit (Ban et al., 1998). Electron microscopic reconstructions
can also be used to improve and extend crystallographic phases by noncrystallo-
graphic symmetry averaging (see, for example, Prasad et al., 1999) or as constraints
in maximum-likelihood phasing procedures (Volkmann et al., 1995).

When the complete biomolecular assembly of interest can be imaged by elec-
tron microscopy but cannot be crystallized, lower-resolution information from electron
microscopy can often be combined with the high-resolution information from atomic
models of the assembly components. Manual fitting is widely used for this purpose (for
a review, see Baker and Johnson, 1996). With this method, the fit of the atomic model
into iso-surface envelopes calculated from the electron microscopic reconstruction is
judged by eye and corrected manually until the fit “looks best.” Objective scoring
functions have been used occasionally to assess the quality and to refine the initial
manual fit. If the components of the assembly under study are large molecules with
distinctive shapes at the resolution of the reconstruction, manual fitting can often be
performed with relatively little ambiguity (see, for example, Rayment et al., 1993;
Smith et al., 1993). However, divergent models of the same complex docked by eye
have also been reported (Hoenger et al., 1998; Kozielski, Arnal, and Wade, 1998). In
addition to atomic models from X-ray crystallography, models derived by homology
modeling are increasingly used for docking studies (see, for example, Spahn et al.,
2001a; Volkmann et al., 2001b).

Recently, approaches aiming at automated, quantitative docking of atomic struc-
tures into lower-resolution reconstructions from electron microscopy have been devel-
oped. These methods employ global, exhaustive searches for the best fit, using var-
ious density correlation measures (Rossmann, 2000; Volkmann and Hanein, 1999),
sometimes combined with density filtering operations (Roseman, 2000; Wriggers and
Chacon, 2001), or by matching vector distributions derived by vector quantization of
the atomic model and the reconstruction (Wriggers and Birmanns, 2001; Wriggers
et al., 1999).

Open issues in this area include estimation of fitting quality, validation of results,
estimation of fitting errors, and detection of ambiguities. A promising concept in this
regard is that of solution sets (Volkmann and Hanein, 1999; Volkmann et al., 2000). In
this approach, the global search is followed by a statistical analysis of the distribution
of the fitting criterion. The analysis results in the definition of confidence intervals that
lead eventually to solution sets. These sets contain all fits that satisfy the data within the
error margin defined by the chosen confidence level. Structural parameters of interest
can then be evaluated as properties of these sets. For example, the uncertainty of each
atom position of the fitted structure can be approximated by calculating the root-mean-
square deviation for each atom using all members of the solution set. Ambiguities in
the fitting are clearly reflected in the shape of the solution set (Hanein et al., 1998).
The size of the solution set can serve as a normalized goodness-of-fit criterion. The
smaller the set, the better the data determines the position of the fitted atomic structure.

The statistical nature of the approach allows the use of standard statistical tests,
such as Student’s t-test, to evaluate differences between models in different functional
states and to help model conformational changes (Volkmann et al., 2000). It also allows
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Figure 6.5. Example of a combination of high-resolution structural information from X-ray

crystallography and medium-resolution information from electron cryomicroscopy (here 2.1 nm).

Actin and myosin were docked into helical reconstructions of actin decorated with smooth-muscle

myosin (Volkmann et al., 2000). Interaction of myosin with filamentous actin has been implicated

in a variety of biological activities, including muscle contraction, cytokinesis, cell movement,

membrane transport, and certain signal transduction pathways. Attempts to crystallize actomyosin

failed due to the tendency of actin to polymerize. Docking was performed using a global search

with a density correlation measure (Volkmann and Hanein, 1999). The estimated accuracy of the

fit is 0.22 nm in the myosin portion and 0.18 nm in the actin portion. One actin molecule is shown

on the left as a molecular surface representation. The fitted atomic model of myosin is shown

on the right. The transparent envelope represents the density corresponding to myosin in the

3D reconstruction. The solution set concept (see text) was used to evaluate the results and to

assign probabilities for residues to take part in the interaction. Figure also appear in Color Figure

section.

estimating the probability that a certain residue is involved in the interaction between
two components (Fig. 6.5). This probabilistic ranking of residues in terms of their
involvement in binding gives a better starting point for the design of mutagenesis
experiments.

Difference mapping between the density calculated from the fitted model and the
reconstruction from electron microscopy (similar to Fc-Fo maps in crystallography) is
a powerful tool in locating portions of the structure that are not present in the crystal
structure. For example, recent fitting of myosin crystal structures into reconstructions
of actin-bound myosin revealed the location of a functionally important myosin loop of
about 10 residues in reconstructions of about 2 nm resolution (Volkmann and Hanein,
1999; Volkmann et al., 2000). This loop was not resolved in any of the crystal structures
due to structural flexibility. Presumably, actin binding stabilizes the loop so it becomes
detectable in the reconstructions.

Pattern Recognition

In the absence of atomic models, structural interpretation of large macromolecules at
intermediate resolution is a difficult task, although structural information is still present.
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Individual domains, components, and structural elements must be identified in the
reconstruction to yield a tentative atomic model. If the resolution of the reconstruction
under study is better than 1 nm, α-helices become identifiable within the density by
eye as well with pattern-recognition approaches. Very recently, a new method for helix
recognition was developed (Jiang et al., 2001). This approach incorporates a multistep
process that includes cross-correlation, density segmentation, segment quantification,
and explicit description of the identified helices. The final helices are represented as
cylinders, each specified by its length and six orientation parameters. The information
encoded by these parameters as well as the relative position and orientation of the
helices to each other can then be used to identify homologous structures based on
spatial arrangement of secondary structural elements of proteins using a library based
on protein structures in the Protein Data Bank (PDB) or to match helical regions
from secondary structure prediction with the derived helical fragments in order to map
sequence to structure. The latter method was recently used to derive the fold of rice
dwarf virus that was reconstructed at 0.68 nm resolution (Zhou et al., 2001).

Pattern recognition approaches are also being developed for the interpretation of
noisy, low-resolution tomograms of cells and large subcellular structures. The main
experimental difficulty in interpreting these types of tomograms is the assignment of
density to a particular molecular component. In this context, the pattern recognition
can be divided in a feature extraction and a template-matching step. First, features of
interest are extracted from the tomogram using segmentation algorithms (Frangakis and
Hegerl, 1999; Volkmann, submitted). The second step consists of classification of the
extracted features by template matching using a database of known atomic structures.
Recently, a feasibility study of pattern recognition algorithms using calculated volumes
and tomographic data sets containing isolated particles was conducted (Böhm et al.,
2000). The tests demonstrate the feasibility of this strategy by showing that a distinction
between the proteasome and the thermosome, molecules with similar shape but slightly
different dimensions, can be made with reasonable confidence even in experimental
tomograms at a resolution between 4 nm and 8 nm.

FUTURE DIRECTIONS

Technical advances in data acquisition and in computational methods have made it pos-
sible to reconstruct biological macromolecular complexes at resolutions ranging from
3 nm to 0.35 nm. The development of more powerful computational methods coupled
with the availability of faster computers with large storage capabilities will continue to
have a major impact on the field. Parallel computing should further speed up the image
analysis and 3D reconstruction process (Perkins et al., 1997). Automatization of data
collection (see, for example, Carragher et al., 2000; Koster et al., 1992) and image
analysis (see, for example, Ludtke, Baldwin, and Chiu, 1999) are important factors
toward higher throughput. Electron microscopy provides complementary information
to that from atomic-resolution techniques such as X-ray crystallography or NMR. Fur-
ther development of methods for combining these data sources by docking is likely to
play a major role in the future. An integration of these docking methods with struc-
tural database searches is also an attractive possibility for the future. Pattern recognition
tools will make it possible to provide a bridge between cell biological function and
molecular mechanism. Again, combination with database searches would add value.
In summary, further technical progress with systematic integration of bioinformatics
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tools should allow electron microscopy to be a major player in the future of structural
bioinformatics.
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MOLECULAR VISUALIZATION
John Tate

A clear, concise visual representation of a macromolecular structure, be it a single
image, a pair of stereo images, or a full-blown, interactive three-dimensional view,
remains probably the most eloquent way to describe the very significant volume of data
that is encapsulated in the atomic coordinates of a model. The goal of this chapter is
to examine the different ways in which macromolecular structures may be represented,
and to give brief overviews of a few of the macromolecular visualization packages that
are currently available.

The programs and packages mentioned here are some of the most commonly used
examples of macromolecular visualization software and they can be divided roughly
into three classes: the first and possibly the least visually demanding visualization
task surrounding macromolecular models is the construction of an atomic model. The
starting point for model building may be a blank screen and a sequence, in which case
the model must be built largely from scratch, or it may be an existing structure that can
be modified and molded to fit the data for the target structure. Either way, the process
is highly interactive, and packages that deal with this specialized area of visualization
are generally large and complex but at the same time rather limited in the styles of
representation that are available, the emphasis being on the data themselves rather than
their representation.

Once a structure is built, refined, and available for wider use, the challenge becomes
that of obtaining useful information from the structure. In many cases simply the shape
and secondary structure composition of a structure can be invaluable, but an atomic
resolution model contains dramatically more information than just this. Extracting
detailed information from a model requires tools that allow interactive manipulation
and query of atomic coordinates, from measuring distances and angles to displaying a
series of overlaid multiple structures. Although there are more possibilities for using
different styles of representation at this stage, the emphasis at this point is again on
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clarity and visual simplicity, and more importance is generally attached to tools that
enable a user to interrogate a structure than to those that provide a range of visual styles.

Finally, once the structure is ready for publication, software is required to generate
clear, informative, and attractive representations of atomic data, most often in the form
of static images, but possibly also as two-dimensional animations or three-dimensional,
interactive scenes. Displaying a macromolecular structure on a high-powered graphics
workstation allows one or perhaps several users to interactively explore and investigate
that structure, but unfortunately the mass of information that is easily gathered by a
single user can be difficult to condense sufficiently to make it amenable to wider distri-
bution. Presentation software must filter the large volumes of data into a form suitable
for the low-detail mediums that are currently used to distribute structure information,
generally still a two-dimensional figure in a standard printed journal.

A BRIEF HISTORY

Those researchers trying to determine the first molecular structures were faced with
not only the theoretical challenge of calculating electron density values, but also the
daunting task of somehow interpreting this electron density and obtaining the atomic
coordinates that constitute a theoretical model of a macromolecular structure. The
earliest molecular models, such as that of myoglobin (Kendrew et al., 1958), were built
from masses of rods, wires, and spheres, so complex that the molecule itself was often
lost in the web of supporting metalwork that was required to maintain its structure (see
Fig. 7.1). The technical challenge of actually constructing such models from electron

Figure 7.1. Sir John Kendrew with the model of insulin, one of the first protein structures to

be determined by X-ray crystallography. Components of the actual model are just visible through

the forest of vertical support rods.
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density was eventually met by the Richards Box, a construction affectionately known as
Fred’s Folly (Richards, 1968). These elegant, if cumbersome, optical devices involved
stacks of glass or Perspex sheets onto which electron density contours were traced
out by hand. A half-silvered mirror was used to superimpose an image of the electron
density contours on an image of the physical model, so that the operator could see
the model overlaid with the experimentally derived map. Peering into the dim image
the crystallographer could manually build the model of the protein structure by joining
together small fragments of molecule and adjusting them to fit the faint outlines of
electron density by eye.

As with many other areas of science, macromolecular structure determination
truly took off with the advent of electronic computing, and, as graphics technolo-
gies developed, so did the field of macromolecular visualization. Until relatively cheap
and plentiful computing power became available, any calculation of the kind required
for molecular structure determination was a painful manual undertaking, while visu-
alization still involved either a hand-built physical model or a computer-generated,
two-dimensional representation, formed by plotting electron density values or atomic
coordinates on paper. Gleaning any useful information from the model or plot required
good spatial awareness and not a little imagination.

The earliest attempts at electronic representations of molecular models used a
computer-controlled oscilloscope to display a rotating image of a protein structure,
with the speed and direction of rotation being controlled by the user (Levinthal et al.,
1968). The system had many shortcomings (the image had to be constantly rotated
to give any impression of three-dimensionality, the model was fixed and could not be
altered by the user, and the hardware required to drive the system was itself specialized
and experimental), but it was an essential proof of concept and undoubtedly a herald
of things to come.

Once Levinthal and colleagues had demonstrated the power of electronic visu-
alization, several groups constructed graphics systems of their own, using whatever
number-crunching and display systems they had available locally or could build for
themselves. These early graphics systems were milestones in molecular visualization,
as crystallographers were finally able to view their models as truly three-dimensional
objects, but they were mostly ad hoc constructions, difficult to build and almost as
difficult to use. At about the same time, in the late 1960s, the head of the com-
puter science department of the University of Utah and a professor from Harvard
founded a company with the goal of developing and advancing the new field of com-
puter graphics. In 1969 Evans and Sutherland (E & S) (http://www.es.com/) produced
one of the first commercial vector graphics systems, the crude and very expensive
Line Drawing System (LDS1). Although it was far from a financial success, LDS1
proved that computer graphics was an invaluable way to display complex data, and
gave the company the impetus to develop a range of graphics systems and work-
stations that were the workhorses of the field of macromolecular visualization for
many years.

Vector graphics systems were limited in the range of styles of representation that
were available, and they gradually gave way to far more flexible systems that used
raster-based displays. Raster systems were capable of richer and more detailed depic-
tions of molecules than simple lines, and, as they developed, the software that was
used to display molecular structures was also improved to take advantage of the new
possibilities. One of the earliest and most widely used programs for constructing and
manipulating molecular structures was FRODO (Jones, 1978), written by Alwyn Jones



138 MOLECULAR VISUAL IZAT ION

and colleagues. FRODO provided high-quality, interactive, color images of electron
density maps and structures, and gave the user the ability to fit a model into displayed
density by moving fragments of the model or even individual atoms. The program
also provided sophisticated tools such as a structure “regularizer” that could improve
the geometry of a model by refining bond distances and angles against idealized val-
ues, helping to make the process of model building more accurate and less error
prone. Originally written for the DEC PDP 11/40 with a Vector General 3404 display,
FRODO was ported to the E & S Picture System 2 and other graphics platforms,
including later E & S systems. The program remained in widespread use throughout
the 1980s before eventually being superceded by O (Jones et al., 1991). O was intended
to correct many of the architectural problems that had built up in FRODO, allowing
more complex features to be added and giving more flexibility for the user. The pro-
gram is still under development and remains one of the most popular crystallographic
model-building packages.

At around the same time as the crystallographic community was making the
switch from FRODO to O, at the other end of the spectrum in terms of complex-
ity and features, lightweight structure viewers were also being developed, solely for
the purpose of examining molecular structures. One such program was RasMol, devel-
oped by Roger Sayle as part of his graduate work in the early 1990s. The program
started life as a test-bed for ideas about interactive rendering and gradually became
what is now one of the most popular and widely used general-purpose molecular
visualization programs. KINEMAGE (Richardson and Richardson, 1992) was even
more lightweight than RasMol, but it was designed for a somewhat different pur-
pose: the goal of a KINEMAGE scene was to encapsulate a visual description of
the molecule that was created by the author of the structure, and provide the user
with views and descriptions of the model that were written by the person who knew
the structure best. Although some features of KINEMAGE were limited, even com-
pared to RasMol, its ability to display an authored scene, with labels, annotation,
and specific view orientations, was undoubtedly ahead of its time and most of these
features are yet to be reproduced by any of the mainstream visualization programs
currently available.

The next major sea change in molecular visualization was once again the result
of new developments in computer technology. By the start of the 1980s the computer
science department of the University of Utah had a reputation for computer graphics,
having already spawned Evans and Sutherland and given a number of young researchers
a head start in the computer graphics industry. Among the graduates of the Utah
computer science department was Jim Clark, who, in 1982, founded Silicon Graphics,
with the aim of making the most powerful graphics platform in the world and making
it affordable. By 1987 Silicon Graphics had achieved these goals and had produced
the de facto standard in computer graphics. Large Silicon Graphics systems powered
flight simulators for the aviation industry, powerful rendering clusters were used to
create stunning special effects for movies, and Silicon Graphics desktop workstations
were the platform for molecular visualization.

Until very recently Silicon Graphics had a virtual monopoly on scientific com-
puters, making powerful workstations with high quality three-dimensional-graphics
capabilities, and selling them at a price that individual academic groups could readily
afford. However, in late 1990s the revolution in Personal Computer (PC) hardware
brought major changes to all aspects of structural biology, as cheap and extremely
powerful desktop PCs largely outpaced all but the most expensive workstations in
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both raw power and graphics capability. Driven principally by the electronic games
industry, PC graphics technology has rapidly caught up with the more established
graphics platforms from established vendors such as Silicon Graphics, and at the time
of writing it is possible to buy a $1,000 PC that can match or even outperform a ded-
icated graphics workstation costing an order of magnitude more. It is already possible
for any user to generate views of macromolecular structures that are both visually
appealing and at the same time almost bewilderingly detailed, and, as graphics tech-
nologies continue to develop, the possibilities for macromolecular visualization can
only increase.

VISUALIZATION STYLES AND SOFTWARE

The styles used to represent a given structure change radically according to the various
uses of the representation. At the outset, when trying to solve a structure by crystal-
lography, the goal of the crystallographer is to turn a blank screen and a sequence
into a three-dimensional atomic model of a structure, and representation styles nec-
essarily focus on the constituent atoms of the molecule. NMR structure solution is
radically different from crystallographic structure solution, and although some inter-
active manipulation of models can be required at certain stages of the process, the
tools used for this manipulation are often the same as those used for electron density
interpretation. Although there are now refinement/model building packages, such as
ARP/wARP (Lamzin and Wilson, 1993), that can reliably construct crystallographic
atomic models largely automatically, they still rely on having relatively high-resolution
electron density maps to work with, and in most cases crystallographers still pore
over visual representations of electron density and construct models using complex,
interactive software packages.

Several visualization packages are used for crystallographic model building, and
common to all of them are the ability to display electron density, and tools for manip-
ulating atomic coordinates to fit that density. Probably the most widely used of these
packages is O (Jones et al., 1991). It incorporates a wide range of model-building tools,
which, like those of its predecessor, FRODO, are aimed at making model construc-
tion and manipulation simpler and more accurate. With a similar set of features, XFit,
part of the XtalView crystallography package (McRee, 1999), is an alternative model-
building program. In contrast to the command-driven interface of O, XFit is entirely
mouse-driven, and all functions can be accessed from a graphical user interface, mak-
ing it slightly easier to learn than O and less intimidating for beginners. QUANTA
(http://www.accelrys.com/quanta/) is a commercial package for macromolecular crys-
tallography from MSI (now Accelrys) that provides a similar range of tools to the
other model-building programs, but also integrates with other MSI products that can
perform model refinement and simulations.

The representation styles used by all of these model-building packages are sim-
ilar: electron density is invariably represented as the now-familiar three-dimensional
“chicken-wire” contours (see Fig. 7.2), since this generally gives an observer the best
impression of the three-dimensional shape of the node of density that is being inter-
preted without obscuring the atomic structure that is being manipulated. For the same
reason, probably the most useful style for displaying atomic coordinates for manip-
ulation is the simple wire-frame bonds representation (also visible in Fig. 7.2), with
the lines being colored according to the type of the atoms being linked (red for oxy-
gen, blue for nitrogen, etc.). Basic lines can usually be drawn very quickly by most
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Figure 7.2. A typical fragment of electron density and a section of atomic model from the

structure of the CuA domain from cytochrome BC3 (Williams et al., 1999) (PDB ID code 2CUA),

displayed using XFit from the XtalView package. Bonds are colored according to the atoms that

they join. Putative hydrogen bonds, are drawn as dashed white lines. Figure also appears in Color

Figure section.

graphics systems, so even a large structural ensemble can generally be represented in
this fashion without bringing the computer to a complete halt.

Other representation styles, although rarely used to represent an entire molecule,
are often used to complement simple line drawings. In the case of ligands or heteroge-
nous compounds that are bound to a larger structure, drawing the smaller molecule
with atoms and bonds represented by solid spheres and rods (or “sticks”) can be useful
in helping the observer to pick it out from a complex scene. A common way to demon-
strate the approximate van der Waal’s radii of atoms is to draw them as large, solid
spheres, also known as space filling or CPK representation, and this can also be useful
for highlighting the position and interactions of smaller molecules bound to larger ones.
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Figure 7.3 shows a representation of a region of the coat protein of human rhinovirus
1A, including a drug molecule that is bound in a small cavity within the virus protein.
With the drug molecule represented as a space-filling sphere, it becomes significantly
easier to locate it in the scene, and also to get an impression of the character of the
structure surrounding it.

Many different programs can generate these relatively simple representations of
molecules, but probably the most widely used is RasMol (http://www.umass.edu/
microbio/rasmol/). It is simple to use, yet flexible, and can be used for display and
interrogation of atomic models. Thanks to the clever programming behind its graph-
ical interface, and unlike most full-blown structure manipulation packages such as
O and XFit, RasMol can comfortably display a full, all atom representation of even
large molecules in CPK or ball-and-stick style and still allow the user to manip-
ulate the view and query the scene interactively. RasMol runs well on practically

Figure 7.3. A region of human rhinovirus 1A (HRV-1A), including a bound drug molecule (Kim

et al., 1993) (PDB ID code 2HWD). The virus proteins are shown as a simple backbone trace, with

the drug represented as space-filling spheres. Figure also appears in Color Figure section.
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every platform, from PC/Mac through all flavors of Unix and even VMS, and is
probably the most useful general-purpose structure viewer currently available. As
well as the original version, there are other versions of the program that build on
the basic RasMol to add various new features. RasTop (http://www.bernstein-plus-
sons.com/software/RasTop 1.3.1/), for example, is a Windows-only program that adds
a more comprehensive user interface and extensions to the features of the original
RasMol such as mouse-based selection of regions of a model, additional scripting
commands, and improvements in the display options.

The next level of detail at which molecules are commonly represented utilizes
somewhat abstract views of macromolecular (and in particular, protein) structures. The
propensity of proteins to form well-defined secondary structural elements—α-helices
and β-strands—is a fundamental property of protein structure. Jane Richardson pio-
neered a style of representing α-helices as simple cylinders or broad, spiral ribbons,
and β-strands as broad, flat ribbons (Richardson, 1985), and this remains one of the

Figure 7.4. The structure of the reduced form of human thioredoxin (Weichsel et al., 1996)

(PDB ID code 1ERT), drawn in the Richardson-style schematic secondary structure representation.

The protein chain β-strands are represented by arrows pointing from the N- to the C-terminus,

and α-helices are drawn as spiral ribbons. Regions without defined secondary structure are shown

as a simple, smooth tube. The four β-strands form a β-sheet at the center of the structure, which

is easily visible in this kind of schematic representation. The image was generated using MolScript

and render. Figure also appears in Color Figure section.
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most enduring and appealing ways of representing protein secondary structure. By
abstracting away the atomic coordinates and representing a structure according to sec-
ondary structure alone, this schematic style aptly describes both the arrangement of
individual atoms in adjacent residues along the chain, as well as the interaction between
more widely separated atoms through hydrogen bonding. Figure 7.4 shows the sec-
ondary structure of thioredoxin, illustrating the clarity that can be obtained with this
simple representation style.

Practically all programs that can be used to view macromolecular structures can
also generate interactive, Richardson-style, three-dimensional representations of protein
structures. An important noninteractive program for generating attractive images of
molecular structures is MolScript (Kraulis, 1991). MolScript scenes are described using
a powerful scripting language and available representation styles for atomic coordinates
include wire-frame, CPK, or ball-and-stick styles, while secondary structure elements
may be drawn as solid spirals and arrows for α-helices and β-strands, respectively.
Output formats include PostScript and JPEG, but probably the most useful output
format is a simple three-dimensional representation that can be fed in to render, a
ray-tracing program from the Raster3D package (Merritt, 1997) that can be used to
produce high-resolution ray-traced images of the MolScript scene (see Figure 7.4).
Version 2 of MolScript adds a useful graphical front end, which allows scenes to be
previewed in an interactive OpenGL viewer before they are written directly as an
image or passed to an external rendering program. A widely used modification of
the original version of MolScript, known as bobscript (Esnouf, 1997), adds enhanced
coloring capabilities and, most significantly, the ability to display electron density maps
as solid surfaces or meshes, although there is no facility for previewing a scene as in
MolScript v2.

Along with electron density, many visualization programs can display various
other kinds of three-dimensional data, such as electrostatic charge. In some cases it
may be appropriate to display the data in the form of meshes, as for electron density,
but another common style of representation is a projection of the data values onto
molecular surfaces. The earliest visualization programs, such as FRODO, were able
to give an idea of the van der Waal’s surface of a molecule, usually using arrays of
dots plotted at the van der Waal’s radius for each atom, but as computing power and
graphics capabilities have improved, many users now have access to graphics hardware
that can readily display interactive representations of molecular surfaces as solid three-
dimensional shapes. Grasp (Nicholls, 1993) was one of the earliest programs to be able
to display surfaces interactively and although it is no longer in development and is
available for only one computing platform (SGI), it remains one of the most commonly
used programs for looking at the properties of macromolecules. Electrostatic potential
is a property that lends itself well to being mapped onto a three-dimensional surface.
Grasp is capable of coloring a solid surface according to the density and polarity of
charge surrounding surface vertices, and the resulting patches of positive and negative
charge dramatically illustrate the nature of the charge on the surface of a molecule.

Several newer programs can also display various three-dimensional data as solid
and even translucent surfaces. One such package is Chimera (Huang et al., 1996),
which can display both electron density and various kinds of surface as meshes and
opaque or semitransparent solid surfaces. The core features of Chimera include a flex-
ible interactive viewer for displaying molecular structures in a wide variety of styles,
as well as basic structure editing tools, but the program also has a modular design that
allows new features to be added easily. External modules, written in python, a powerful
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high-level scripting language, add the ability to render arbitrary volume data, to perform
semiautomated docking of small molecules to larger structures, and to share modeling
sessions across the network between users in different physical locations. Although
designed to be extensible, Chimera is essentially closed-source, and is distributed only
in binary form, at least at present. In contrast, PyMol (http://pymol.sourceforge.net/),
another flexible, extensible package for molecular visualization, sports many of the
same features as Chimera, but is freely available and open source. The program sup-
ports a wide range of representation styles, from simple line drawings through chicken
wire or solid molecular surfaces (see Fig. 7.5) and density maps. Control is via a
python-based scripting language and scenes can be manipulated interactively using a
built-in viewer, output directly as images, or ray-traced with another built-in module
to produce publication quality images.

Finally, one of the most powerful packages that can be used for visualizing molec-
ular surfaces is AVS, from Advanced Visual Systems (http://www.avs.com/). AVS is
a completely general-purpose visualization tool that uses a novel graphical editor to
design networks that link together many separate modules, each of which performs a
single task. It is notoriously difficult to master, but, with the right modules and careful
design of networks, it can generate good results and provides an extremely flexible
environment for investigation of molecular properties and structure and for all types
of interactive visualization.

Figure 7.5. A molecular surface drawn as a mesh, overlaid on a secondary structure representa-

tion of the toxin LQ2 from Leiurus Quinquestriatus (Renisio et al., 1999) (PDB ID code 1LIR). The

image was prepared entirely within PyMol. Figure also appears in Color Figure section.
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WEB-BASED VISUALIZATION SOFTWARE

Historically, in order to run a particular program, a user has been forced to obtain,
compile, and install that program locally before he or she can even begin to use it. With
the advent of the World Wide Web and the explosion of interest in server-based rather
than locally installed software, this scenario is no longer always the case. Technologies
such as Java, Active X, JavaScript, and so forth mean that users can run increasingly
complex applications without having to explicitly download them, and rely instead on
having the application delivered automatically along with a Web page, all for a single
click of a mouse.

Java applets are probably the most commonly used form of Web-deliverable, plat-
form-independent software, allowing developers to write a single program that can be
deployed on many different kinds of computer, from PC to Macintosh to Unix, without
any changes to the code or data it uses. Although Java has been slow to catch on with
certain platforms, it is now widely available and is fairly well supported by all of the
major Web browsers on most platforms. For simple, low-resolution visualization tasks,
Java is a very capable solution and is becoming popular with developers because of its
power and ease of use, and with users because of the ease of deployment of applications.

WebMol is a lightweight Java applet (http://www.cmpharm.ucsf.edu/∼walther/
webmol.html) (Fig. 7.6a) that can display and query a molecular structure. Since it
is focused mainly on interrogation of a scene rather than visualization, it can display
a structure in only a few different styles, but it does provide some sophisticated tools
for querying atom-level data from a model. Tools such as live, interactive Ramachan-
dran plots (see Fig. 7.6b) make WebMol a useful tool for assessing the quality of a
model and for extracting detailed information from that model. Distance-matrix view-
ers make WebMol a useful tool for assessing the quality of a model and for extracting
detailed information from that model. In the same vein, another Java applet, QuickPDB
(http://cl.sdsc.edu/QuickPDB.html) is one of very few visualization programs, Web-
based or otherwise, that provides tools for interrogating both the structure and sequence
of a protein structure simultaneously. Although the tools are rudimentary, QuickPDB is,
as the name suggests, quick and easy to use, even over slow Internet connections, and is
accessible from practically every reasonably recent Web browser. QuickPDB is one of
the visualization options from the Research Collaboratory for Structural Bioinformat-
ics (RCSB) Protein Data Bank (PDB) site (http://www.rcsb.org/pdb/). The Molecular
Interactive Collaborative Environment (MICE) (Tate, Moreland J, Bourne PE, 2001)
is another Java applet for viewing molecular structures, but it provides less support for
querying the structure and places more emphasis on the representation of the structure.
Figure 7.7 shows an example of a scene generated in MICE, in this case a molecule
of reverse transcriptase (RT) from the human immunodeficiency virus (HIV). The key
feature of MICE that differentiates it from other lightweight structure viewers, and
indeed, from even the more complex molecular visualization packages, is that MICE
allows users to generate interactive views of any structure in the PDB and to then share
that view in real time with other users across a network. Multiple users in different
physical locations can collaborate over a single shared scene, passing control between
users as needed, and using tools such as a shared pointer to identify regions of a scene
that are under discussion. Generation of the scene, creation of a collaboration, and con-
trol of an ongoing collaboration are all possible through simple form interfaces, and no
configuration on the part of the user is required to make use of any features, making
MICE simple to use, as well as powerful. Like QuickPDB, MICE is also available as
one of the visualization options in the RCSB PDB site.
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Web browsers began life as simple tools for displaying simple pages, but as the
potential of the browser was realized, it became clear that there was no way that
developers of the browser itself could hope to keep up with the mass of applications,
technologies, and services that would soon be available on the Web. Netscape got
around this problem by introducing a “plug-in” architecture to their browser that would
allow third-party software developers to create modular applications that would be
installed inside Netscape and used to cope with suitably enhanced Web pages and sites.
Microsoft Internet Explorer soon followed suit and now most major Web browsers have
some mechanism for making use of third-party modules. Chime is a commercial deriva-
tive of RasMol from MDL Information Systems (http://www.mdlchime.com/chime/),
packaged in the form of a browser plug-in but having all of the same capabilities and
flexibility as its stand-alone cousin. Once installed in a Web browser, Chime is invoked
to handle PDB format files, creating a RasMol-style view of the structure. As well as

(a)

Figure 7.6. (a) The structure of c-AMP-Dependent protein kinase (Knighton et al., 1991) (PDB ID

code 2CPK) displayed using WebMol. Although the representation styles are somewhat limited,

WebMol does have some fairly advanced features, such as (b) an interactive Ramachandran plot

that allows regions of a structure to be selected on the basis of the location of a residue in the

plot. Figure 7.6(a) also appears in Color Figure section.
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(b)

Figure 7.6. (Continued)

being useful in its own right as a means of viewing downloaded PDB files on the
fly, Chime also forms the kernel of the Protein Explorer (http://proteinexplorer.org/), a
Web application that provides a framework for examining and manipulating structures,
using animations and pregenerated descriptions of structures of interest.
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Figure 7.7. The structure of reverse transcriptase (RT) from the human immunodeficiency virus

(HIV) (Hopkins et al., 1996) (PDB ID code 1RT1), displayed using MICE. This particular RT structure

includes a drug molecule, just visible at the base of the cleft between the ‘‘finger’’ and ‘‘thumb’’

domains. Figure also appears in Color Figure section.

TOOL KITS FOR VISUALIZATION

At least in the field of molecular visualization, most applications are still written as
individual, stand-alone programs or as a collection interconnected applications that
possess a set of features and requirements that are determined entirely by the author.
Although the developer may be receptive to the requests and suggestions of the users,
changes and enhancements are usually still under the immediate control of the author
of a given package. Many visualization programs are distributed only as precompiled
binaries for a given platform, and others may be available as source code that is
designed to build and run on only a small range of platforms. Users do not expect
packages to be significantly configurable, nor to be readily extensible by anyone but
an experienced programmer.

This model of software development is by far the most common, but it is also rather
restrictive. The end users of a program must accept the shortcomings of the available
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software or they must generally start from scratch and write their own bespoke package
to suit their needs, which inevitably leads to large numbers of small, unconnected
programs being written by large numbers of developers working independently, each
writing ad hoc, undocumented scripts or programs to solve precisely the same problems
as their peers.

A better, more efficient solution is to provide users with high-level tool kits, from
which they can quickly and relatively easily construct custom programs to fit any
problem at hand. This model of development underlies several current visualization
projects; the idea that users should be given high-level modules that each perform a
specific task, and a framework within which to arrange them, rather than complete,
monolithic programs with features and capabilities they will never use.

There are several of these tool-kit-style packages under development. One such
is project is Birdwash (http://yoda.imsb.au.dk/birdwash/), a set of modules dealing
with building, refinement, and analysis of macromolecular structures, written by one
of the authors of O, and building on the experiences of designing and implement-
ing a complex visualization and structure manipulation package. At time of writing
the Birdwash tool kit includes modules for visualizing atomic structures and elec-
tron density, and a means of editing structures as is required for crystallographic
model building. Similar but unconnected projects are the Molecular Modeling Toolkit
(MMTK) (http://dirac.cnrs-orleans.fr/programs/mmtk.html), aimed more at molecular
simulations rather than model construction, and the continuation of the MICE project,
the Molecular Biology Toolkit (MBT). The goal of MBT is to construct a pure Java tool
kit that will provide high-level tools for displaying and editing both macromolecular
structures and sequences. Probably the most advanced tool kits and modules are those
from the group of Art Olson (http://www.scripps.edu/pub/olson-web/), that specialize
in creating graphical tools for structure visualization and manipulation. Having previ-
ously developed modules for manipulating molecular structures under AVS (Duncan,
Macke TJ, Olson AJ, 1995), the group has considerable experience in the design of
such tools, and their current tool kit includes a variety of python modules, including
a structure loader, a surface generator, structure viewers, and molecule docking tools,
all of which can be used to make purpose-built applications with only a minimum of
high-level programming.

CONCLUSION

Any list of software will inevitably be biased by the interests and experience of the
author. Given the wealth of programs that are currently available for visualizing macro-
molecular structure and taking into account the ongoing development efforts in the field,
it is also inevitable that such a list will be incomplete and out of date as soon as it
is written. This chapter gives only the briefest of overviews of a few of the packages
that are available to anyone wanting to look at the structures of macromolecules, but
it is hoped that by illustrating just a few of the possibilities, the reader will be able
to assess the usefulness and usability of these and other packages for themselves, and
will be able to find the most appropriate one for any given task. Table 7.1 lists the
programs discussed in this chapter along with their capabilities, comments, the pros
and cons of each, on the platforms on which they run.
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THE PDB FORMAT, mmCIF, AND OTHER
DATA FORMATS

John D. Westbrook and P. M. D. Fitzgerald

In this chapter, the data formats and protocols used to represent primary macromolec-
ular structure data are presented. The historical format used by the Protein Data Bank
(PDB) is described first. Dictionary-based representations such as the macromolecu-
lar Crystallographic Information File (mmCIF) are presented. Finally, data structuring
technologies employing markup languages are discussed along with protocols that
provide data access through application program interfaces.

THE PROTEIN DATA BANK FORMAT

The Protein Data Bank (PDB; http://www.pdb.org/; see also Chapter 3) (Bernstein
et al., 1977; Berman, et al., 2000) was first established in 1971 by Walter Hamilton at
Brookhaven National Laboratory in response to community requirements for a central
repository for information about biological macromolecular structures. Seven structures
were included in the PDB at its inception. The essential elements of the format used
to encode these first entries are still the core of the PDB format used today. Because
of the simplicity of the format and its consistency in representing three-dimensional
structures, the PDB format remains the most widely supported means of exchanging
macromolecular structure data.

The PDB format consists of a collection of fixed format records that describe
the atomic coordinates, chemical and biochemical features, experimental details of
the structure determination, and some structural features such as secondary structure
assignments, hydrogen bonding, and biological assemblies and active sites. The details
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         1         2         3         4         5         6         7 
1234567890123456789012345678901234567890123456789012345678901234567890123456789

ATOM    145  N   VAL A  25      32.433  16.336  57.540  1.00 11.92      A1   N
ATOM    146  CA  VAL A  25      31.132  16.439  58.160  1.00 11.85      A1   C
ATOM    147  C   VAL A  25      30.447  15.105  58.363  1.00 12.34      A1   C
ATOM    148  O   VAL A  25      29.520  15.059  59.174  1.00 15.65      A1   O
ATOM    149  CB AVAL A  25      30.385  17.437  57.230  0.28 13.88      A1   C
ATOM    150  CB BVAL A  25      30.166  17.399  57.373  0.72 15.41      A1   C
ATOM    151  CG1AVAL A  25      28.870  17.401  57.336  0.28 12.64      A1   C
ATOM    152  CG1BVAL A  25      30.805  18.788  57.449  0.72 15.11      A1   C
ATOM    153  CG2AVAL A  25      30.835  18.826  57.661  0.28 13.58      A1   C
ATOM    154  CG2BVAL A  25      29.909  16.996  55.922  0.72 13.25      A1   C

Figure 8.1. An abbreviated example of the column-oriented data format for PDB ATOM records.

The ATOM records in this example contain fields for the record name, atom serial number, an

atom name, a residue name, a polymer chain identifier, a residue number, the x, y, z Cartesian

coordinates, the isotropic thermal parameter and the occupancy. Atoms with serial numbers

149–154 also contain a label for alternative conformation in column 17.

of the format are described in the PDB Contents Guide (Callaway et al., 1996). This
document enumerates the field formats for each PDB record and remark and describes
the PDB conventions for naming atoms, residues, and nucleotides.

Each item of data in the PDB format is assigned to a range of character positions
in one of many PDB record types (HEADER, SOURCE, REMARK, etc.). The ATOM
records shown in Figure 8.1 encode the atomic coordinate data. ATOM records are
among the more than 45 named data records in the PDB format. These named data
records have strict column-formatting rules.

During its early history, the PDB served as a simple repository and a point of
dissemination for structure data and was used primarily by crystallographers and
later NMR spectroscopists. PDB entries during this early period resemble journal
publications and contain lengthy descriptive text sections encoded in the REMARK
records. An example of how refinement information was coded in pre-1994 PDB entries
is shown in Figure 8.2a.

As the number of structures in the archive increased and the user base broadened,
the PDB confronted changing requirements to enable comparative analysis of the data
in the archive. Such studies minimally require a consistent representation of the data
and an increase in the types of the data included in each entry. Accordingly, exten-
sions in the PDB format were advanced in 1992 (Protein Data Bank, 1992) and 1996
(Callaway et al., 1996). Figure 8.2b is an example of how refinement information is
coded in the current PDB format. Due to the archival nature of the prior entries, neither
format change was backwardly propagated to earlier entries. Although format exten-
sions significantly increased the encoding precision and level of detail for both the
biochemical and experimental descriptions, the format of the PDB coordinate records
has remained largely unchanged.1

Although the PDB format has served as the standard for representing macromolec-
ular structure data for nearly three decades, both the underlying data and the user

1Coordinate records such as ATOM records were extended in column positions beyond 72 to include
a segment identifier, element symbol, and atomic charge. In the earliest PDB format, column positions
beyond 72 were reserved for punch card sequence numbers.
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REMARK   3
REMARK   3 REFINEMENT. MOLECULAR DYNAMICS REFINEMENT BY THE METHOD OF
REMARK   3  A. BRUNGER, J. KURIYAN, AND M. KARPLUS (PROGRAM *XPLOR*).
REMARK   3  THE R VALUE IS 0.172 FOR ALL 32852 REFLECTIONS IN THE
REMARK   3  RESOLUTION RANGE 11 TO 2.1 ANGSTROMS.

(a)

REMARK   3
REMARK   3  DATA USED IN REFINEMENT.
REMARK   3   RESOLUTION RANGE HIGH (ANGSTROMS) : 2.1
REMARK   3   RESOLUTION RANGE LOW  (ANGSTROMS) : 11.0
REMARK   3   DATA CUTOFF            (SIGMA(F)) : 0.0
REMARK   3   DATA CUTOFF HIGH         (ABS(F)) : NULL
REMARK   3   DATA CUTOFF LOW          (ABS(F)) : NULL
REMARK   3   COMPLETENESS (WORKING+TEST)   (%) : NULL
REMARK   3   NUMBER OF REFLECTIONS             : 32852

(b)

Figure 8.2. (a) An example portion of PDB REMARK 3 given in the data format used prior to

1992. In this example information about the refinement is given as free text. (b) An example

portion of PDB REMARK 3 given in the current data format. In this example the text is more

structured. Figure reprinted from Bhat et al., 2001 with permission from Oxford University Press.

requirements for this data have changed dramatically. Together these considerations
have posed informatics challenges that the current PDB format cannot fully address.

The macromolecular structure data represented in a PDB entry has increased in
both the type and complexity. In addressing changes in experimental methodology,
the PDB format has been extended with new REMARK records. For example, the
organization and information content of REMARK 3 that encodes refinement informa-
tion has been modified and extended for each new refinement program and program
version. Although extending REMARK records in this way captures information in
a manner that is easy for a human to read, the diversity of organization of this data
makes it very difficult to design software that can automatically and reliably extract
information from these records. Data in these records is also defined only in terms of
the program that computed the information. Information between programs may not
be directly comparable.

The PDB format uses fixed-width fields to represent data, and this restriction places
absolute limits on the size of certain items of data. For instance, the maximum number
of atom records that can be represented in a single structure model is limited to 99,999,
and the field width of the identifier for polymer chains is limited to a single character.
Although these restrictions were certainly reasonable when the format was first defined,
this is no longer the case. Many large molecular systems, such as the ribosomal subunit
structures, cannot be represented in a single PDB entry. These entries must be divided
into multiple PDB files, seriously complicating their use.

As the size and diversity of structure data in the PDB archive has grown, it has
become an increasingly important resource in structural biology. User requirements for
PDB data have grown from accessing individual entries to analysis and comparison of
experimental and structure data across the entire archive. The latter has been facilitated
by the increased accessibility of database technologies. To support comparative analysis
and database applications requires data uniformity and internal consistency that are
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SEQRES   1    396  MET ASP GLU ASN ILE THR ALA ALA PRO ALA ASP PRO ILE

SEQRES   2    396  LEU GLY LEU ALA ASP LEU PHE ARG ALA ASP GLU ARG PRO

. . .

ATOM      1  N   MET     5      41.402  11.897  15.262  1.00 48.61

ATOM      2  CA  MET     5      40.919  13.262  15.600  1.00 47.70

ATOM      9  N   PHE     6      39.627  14.840  14.228  1.00 48.66

ATOM     10  CA  PHE     6      39.199  15.440  12.964  1.00 45.33

. . .

Figure 8.3. An abbreviated example illustrating sequence inconsistency between PDB records.

The PDB SEQRES records describe the sequence of the polymer that was crystallized. The sequence

labels in the PDB ATOM records report the coordinates and the residue sequence observed in the

refined structure. These should be consistent; as shown in this example there have often been

exceptions. This example highlights the sequence conflict between ASP in the chemical sequence

(SEQRES) with PHE, residue number 6 in the ATOM records.

typically beyond the needs of software-accessing individual entries, such as molecular
graphics applications.

The difficulty in the reliable extraction of experimental information from each
entry has already been discussed in terms of the format variation of REMARK records
used to encode experimental details (i.e., refinement information in REMARK 3). Inter-
nal consistency problems within PDB entries arise in cases in which the portions of
structure or individual structural elements are referenced in different PDB records in a
noncorresponding manner. Because the PDB format does not specify the precise rela-
tionship between the polymer sequence given in the SEQRES records and the observed
residue sequence within the ATOM records, the sequence information that is presented
in the PDB entry cannot be used directly. To use these data, additional sequence align-
ment must be performed to resolve gaps and possible conflicts. An example of this
problem is shown in Figure 8.3.

Consistency problems can also arise in other records that reference structural fea-
tures such as those records describing secondary structure, active sites, and biological
assemblies. Although the relationships between these records and the coordinate data
that they reference are obvious to the experienced user, they can only be understood
by a careful reading of the format description document. Because these relationships
are not electronically accessible, each such relationship must be coded as a special
case by any software that needs to validate inter-record consistency.

mmCIF—A DICTIONARY-BASED APPROACH TO DATA DESCRIPTION

The Crystallographic Information File (Hall, Allen, and Brown, 1991) was created to
archive information about crystallographic experiments and results (Hall, 1991) and is
the format in which all structures described in articles sent to Acta Crystallographia C
are submitted. In 1990, the International Union of Crystallography (IUCr) formed a
working group (Fitzgerald et al., 1992) to expand this dictionary so that it would be
able to do the same for macromolecules.

The original short-term goal of the working group was to fulfill the mandate set by
the IUCr: to define mmCIF data names that needed to be included in the CIF dictionary
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in order to adequately describe the macromolecular crystallographic experiment and
its results. Implicitly this mandate included the need to describe all of the data items
included in a PDB entry. Long-term goals were also determined: to provide sufficient
data names so that the experimental section of a structure paper could be written auto-
matically and to facilitate the development of tools so that computer programs could
easily access and validate mmCIF data files.

In order to describe the progress of this project and to solicit community feedback,
several informal and formal meetings were held. The first meeting, hosted by Eleanor
Dodson, convened in April 1993 at the University of York. The attendees included the
mmCIF working group, structural biologists, and computer scientists. A major focus of
the discussion was whether the formal structure of the dictionary that was implemented
using the then-current Dictionary Definition Language (DDL 1.0) (Westbrook and Hall,
1995) was adequate to deal with the complexity of the macromolecular data items.
Criticisms included the idea that the data typing was not strong enough and that there
were no formal links among the data items. A working group was formed to try to
address these issues. The second workshop was hosted by Phil Bourne in Tarrytown,
New York, in October 1993. The topics at that meeting focused on the development of
software tools and the requirements of an enhanced DDL. In October 1994, a workshop
hosted by Shoshana Wodak at the Free University of Brussels, resulted in the adoption
of a new DDL that addressed the various problems that had been identified at the
preceding workshops. The dictionary was cast in this new DDL 2 and was presented
at the American Crystallographic Association (ACA) meeting in Montreal in July 1995.
This dictionary was open for further community review. The dictionary was placed on a
World Wide Web site and community comments were solicited via a list server. Lively
discussions via this mmCIF list server ensued, resulting in the continuous correction
and updating of the dictionary. Software was developed and was also presented on this
web site. A workshop held at Rutgers in 1997 provided tutorials for using both the
dictionary and the software tools that had been developed at that time.

In January 1997, the mmCIF dictionary containing 1700 definitions was completed
and submitted to the IUCr committee that oversees dictionary development (COMCIFS)
for review and in June 1997, Version 1.0 was released (Fitzgerald et al., 1996; Bourne
et al., 1997). The method adopted for managing dictionary extensions uses a scientific
journal as a model. Proposed extensions are sent to the editors of the mmCIF Dictio-
nary (Fitzgerald et al., 1996, Editorial Board: Paula Fitzgerald, Editor, Helen Berman,
Associate Editor) who send the new definitions to a member of the board of editors
for scientific review. These editors have expertise in the various areas covered by the
dictionary. Once the definitions are reviewed for their scientific content, they are sent
to the technical editors. More than 100 new definitions have been proposed since the
fall of 1997 and have been reviewed using the procedures outlined. Version 2 of the
mmCIF dictionary contains many of these new definitions and was released the fall
of 2000.

Software libraries to parse and access data CIF and mmCIF have been produced
for a number of popular languages including: C/C++, JAVA, FORTRAN, PERL and
Python (see http://deposit.pdb.org/mmcif/ for a list of programs).

Dictionary and Data File Syntax

The syntax used in both mmCIF data files and dictionaries derived from the STAR
(Self-defining Text Archive and Retrieval) (Hall, 1991) grammar and is similar in most
respects to the syntax used by core CIF for describing small molecule crystallography.
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_refine.ls_number_reflns_obs   32852
_refine.ndb_ls_sigma_F           0.0
_refine.ls_d_res_low            11.0
_refine.ls_d_res_high            2.1
_refine.ls_percent_reflns_obs  100.0
_refine.ls_R_Factor_obs        0.172
_refine.ls_R_Factor_all        0.172

Figure 8.4. An example portion of the mmCIF REFINE category containing the same informa-

tion as in the PDB REMARKs in Figure 8.2a and 8.2b. This example illustrates keyword-value pair

formatting that is characteristic of the mmCIF syntax.

_diffrn_measurement.diffrn_id          'Data set 1'
_diffrn_measurement.device             '3-circle camera'
_diffrn_measurement.method             'omega scan'
_diffrn_measurement.details
; 440 frames, 0.20 degrees, 150 sec, detector distance 12 cm,
detector angle 22.5 degrees
;
_diffrn_measurement.specimen_support    ?

Figure 8.5. An example illustrating the encoding of text strings using mmCIF. Short strings,

such as Data set 1 and omega scan, are surrounded by either single or double quotation marks.

Multiline strings such as the value of diffrn measurement.diffrn id are encapsulated by

semicolons in the first column of the beginning and ending lines of the string.

In its simplest form, an mmCIF data file looks like a paired collection of data
item names and values. Figure 8.4 illustrates the assignments of values to selected
refinement parameters analogous to the PDB format data in Figures 8.2a and 8.2b.
The syntax is described here.

The leading underscore character identifies data item names. The underscore char-
acter is followed by a text string interpreted as containing both a category name and a
keyword name separated by a period. The keyword portion of the name is the unique
identifier of the data item within the category. In the examples shown in Figure 8.4,
all of the data items belong to the REFINE category. This example also illustrates
the one-to-one correspondence required between item names and item values. Data
category and data item names are not case sensitive.

Figure 8.5 illustrates how text strings are expressed. Short text strings may be
enclosed in single or double quotation marks. Text strings that span multiple lines are
enclosed by semicolons that are placed at the first character position of the line. There
are two special characters used as placeholders for item values, which for some reason
cannot be explicitly assigned. The question mark (?) is used to mark an item value as
missing. A period (.) may be used to identify that there is no appropriate value for the
item or that a value has been intentionally omitted.

Vectors and tables of data may be encoded using a loop directive. To build a
table, the data item names corresponding to the table columns are preceded by the
loop directive, and followed by the corresponding rows of data. The mmCIF example
in Figure 8.6 builds a table of atomic coordinates.

The use of the loop directive has a few restrictions. First, it is required that all of
the data items within the loop belong to the same data category. Second, the number
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loop_
_atom_site.group_PDB
_atom_site.type_symbol
_atom_site.label_atom_id
_atom_site.label_comp_id
_atom_site.label_asym_id
_atom_site.label_seq_id
_atom_site.label_alt_id
_atom_site.cartn_x
_atom_site.cartn_y
_atom_site.cartn_z
_atom_site.occupancy
_atom_site.B_iso_or_equiv
_atom_site.footnote_id
_atom_site.auth_seq_id
_atom_site.id
ATOM N N  VAL A 11 . 25.369 30.691 11.795 1.00 17.93 . 11 1
ATOM C CA VAL A 11 . 25.970 31.965 12.332 1.00 17.75 . 11 2
ATOM C C  VAL A 11 . 25.569 32.010 13.881 1.00 17.83 . 11 3
# [data omitted]

Figure 8.6. An abbreviated example of the mmCIF category ATOM SITE. This category is orga-

nized as a table and illustrates the use of the loop directive, followed by the list of data items

names as the simple means of declaring an mmCIF table. The data values that follow the list

of data item names are assigned to each data item (column) in turn. Here, the value, ATOM, is

assigned to the column for atom site.group PDB in each of the three rows in this example.

of data values following the loop must be an exact multiple of the number of data item
names. Finally, mmCIF does not support the nesting of loop directives.

Data blocks are used to organize related information and data. A data block
is a logical partition of a data file or dictionary created using a data directive.
A data block may be named by appending a text string after the data directive,
and a data block is terminated by either another data directive or by the end of
the file.

Figure 8.7 illustrates how data blocks can be used to separate similar information
pertaining to different structures. This separation is required because the mmCIF syntax
prohibits the repetition of the same category at multiple places within the same data
block. As a result, the simple concatenation of the contents of the above two data
blocks into a single data block would be syntactically incorrect.

Definitions in mmCIF data dictionaries are encapsulated in named save frames
(Fig. 8.8). A save frame is a syntactical element that begins with the save directive
and is terminated by another save directive, end of file, or new data block. Save
frames are named by appending a text string to the save directive. In the mmCIF
dictionary, save frames are used to encapsulate item and category definitions. The
mmCIF dictionary is composed of a data block containing thousands of save frames,
where each save frame contains a different definition. Save frames appear in data
dictionaries but they are not used in data files. Save frames may not be nested.

The content of this dictionary definition has the same item-value pair organization
as in the previous data file examples. DDL2 dictionary definitions typically contain
a small number of items that specify the essential features of the item. The example
definition includes: a description or text definition, the name and category of the item,
a code indicating that the item is optional (not mandatory), the name of a related
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#
# --- Lines beginning with # are treated as comments 
#
data_X987A
_entry.id                         X987A
_exptl_crystal.id                 'Crystal A'
_exptl_crystal.colour             'pale yellow'
_exptl_crystal.density_diffrn      1.113
_exptl_crystal.density_Matthews    1.01

_cell.entry_id                         X987A
_cell.length_a                         95.39
_cell.length_a_esd                      0.05
_cell.length_b                         48.80
_cell.length_b_esd                      0.12
_cell.length_c                         56.27
_cell.length_c_esd                      0.06

# Second data block
data_T100A

_entry.id                           T100A
_exptl_crystal.id                  'Crystal B'
_exptl_crystal.colour              'orange'
_exptl_crystal.density_diffrn      1.156
_exptl_crystal.density_Matthews    1.06

_cell.entry_id                         T100A
_cell.length_a                         68.39
_cell.length_a_esd                      0.05
_cell.length_b                         88.70
_cell.length_b_esd                      0.12
_cell.length_c                         76.27
_cell.length_c_esd                      0.06

Figure 8.7. An abbreviated example illustrating the organization of mmCIF files in data blocks.

Data blocks are declared using the data directive and optionally followed by a data block name.

In this example, data blocks X987A and T100A are declared. The information in these data blocks

is treated as logically distinct even if the data block exists within the same data file.

save__exptl.details
item_description.description

;  Any special information about the experimental work prior to 
  the intensity measurement. See also _exptl_crystal.preparation.

;
_item.name                  '_exptl.details'
_item.category_id             exptl
_item.mandatory_code          no
_item_aliases.alias_name    '_exptl_special_details'
_item_aliases.dictionary      cif_core.dic
_item_aliases.version         2.0.1
_item_type.code               text
save_

Figure 8.8. An example of the mmCIF data definition for data item exptl.details. This

definition contains a textual definition, name and category identity, a code indicating the item is

optional, an alias name to a previous dictionary, and a data type.
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definition in the core CIF dictionary, and code specifying that the data type is text.
A further description of the elements of the dictionary definitions is presented in the
next section.

Semantic Elements of the mmCIF Data Dictionary

The elements of DDL provide the organizational framework for building data dictio-
naries like mmCIF. The role of the DDL is to define which data items may be used
to construct the definitions in the data dictionary, and also to define the relationships
between these defining data items.

The dictionary language contains no information about a particular discipline such
as macromolecular crystallography; rather, it defines the data items that can be used
to describe a discipline. The contents of the mmCIF dictionary are metadata, or data
about data. The contents of the DDL are meta-metadata, the data defining the metadata.
DDL defines data items that describe the general features of a data item like a textual
description, a data type, a set of examples, a range of permissible values, or perhaps
a discrete set of permitted values. Consequently, data modeling using DDL can be
applied in many application areas not just macromolecular structure description.

The lowest level of organization provided by the DDL is the description of an
individual data item. Collections of related data items are organized in categories.
Categories are essentially tables in which each repetition of the group of related items
adds a row. The terms category and data item are used here in order to conform with
the previous use of these terms by STAR and CIF applications; these terms could be
replaced by relation and attribute (or table and column) commonly used to describe
the relational model that underlies the DDL.

Within a category, the set of data items determining the uniqueness of their group
are designated as key items in the category. No data item group in a category is
allowed to have a set of duplicate values of its key items. Each data item is assigned
membership in one or more categories. Parent–child relationships may be specified
for items belonging to multiple categories. These relationships permit the expression
of the very complicated hierarchical data structures required to describe macromolec-
ular structure.

Other levels of organization in addition to category are also supported. Related
categories may be collected together in category groups, and parent relationships may
be specified for these groups. This higher level of association provides a vehicle to
organize a large, complicated collection of categories into smaller, more relevant,
and potentially interrelated groups. This organization effectively provides a chaptering
mechanism for large and complicated dictionaries like mmCIF. Within the level of a
category, subcategories of data items may be defined among groups of related data
items. The subcategory provides a mechanism to identify, for example, that the data
items month, day, and year collectively define a date.

For categories, subcategories, and items methods may be specified. Methods are
computational procedures that are defined and expressed in a programming language
(e.g., C/C++, PERL, or JAVA) and stored within a dictionary. Among other things,
these dictionary methods may be used to calculate a missing value or to check the
validity of a particular value.

The highest levels of data organization provided by DDL2 are the data block and
the dictionary. The dictionary level collects a set of related definitions into a single
unit, and provides the attributes for a detailed revision history on the collection.
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The detailed features of the DDL used to build the mmCIF data dictionary are
described elsewhere (Westbrook and Bourne, 2000; Westbrook et al., forthcoming).

mmCIF Dictionary Content

The mmCIF dictionary contains approximately 1700 definitions describing the
macromolecular experiment and its structural results. This dictionary includes
definitions describing all aspects of macromolecular structure; experimental details
about crystallization, data collection, data processing, phasing, and refinement;

entity
 id

  formula_weight
  details
  src_method
  type

entity_src_nat
 entity_id

  common_name
  genus
  species
  strain
  tissue
  tissue_fraction
  details

entity_src_gen
 entity_id

  gene_src_common_name
  gene_src_genus
  gene_src_species
  gene_src_strain
  host_org_common_name
  host_org_genus
  host_org_species
  plasmid_name
  (many others...)

entity_name_com
 entity_id
 name

entity_name_sys      
 entity_id
 name 

  system

atom_site
 id

  label_entity_id
  label_asym_id
  label_atom_id
  label_comp_id
  label_seq_id
  type_symbol
  aniso_B (esd)
  aniso_U (esd)
  Cartn_x,Cartn_y,Cartn_z
  fract_x,fract_y,fract_z
  occupancy

  (many others...)

entity_keywords
 entity_id
 text

•

•

•

•

•
•

•
•

•
•

Figure 8.9. A schematic diagram illustrating the content and relationships among a portion of

the mmCIF categories describing chemical entities, entity names, entity source organism, and the

relationship between the entity and atomic level of description. In this figure, boxes enclose the

data items within each mmCIF category, and arrows indicate the correspondence between data

items that are common to multiple categories, with the arrowheads pointing in the direction of

the parent data item. The category key data items are indicated with black dots.
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and other supporting data categories describing citation and software. A complete
discussion of the contents of the mmCIF dictionary has been previously described
(Bourne et al., 1997; Fitzgerald et al., forthcoming).

mmCIF Molecular Entities provides a summary of a portion of mmCIF data cate-
gories describing chemical structure. In this discussion the data categories are presented
in the form of a schematic diagram, a brief description, and a set of examples. In the
diagrams, boxes enclose the data items within each mmCIF category, and arrows indi-
cate the correspondence between data items that are common to multiple categories,
with the arrowheads pointing in the direction of the parent data item. The category key
data items are indicated with black dots.

mmCIF Molecular Entities. An entity is a chemically distinct part of an mmCIF
entry. There are three types of entities: polymer, nonpolymer, and water. A common
name, systematic name, source information, and keyword description can be assigned
to each mmCIF entity. The relationships between categories that describe these entity
features are illustrated in Figure 8.9. Figure 8.10 is an example of an entity description
taken from an HIV protease structure (PDB 5HVP [Fitzgerald et al., 1990]).

loop_
_entity.id
_entity.type
_entity.formula_weight
_entity.details
1  polymer       10916
;  The enzymatically competent form of HIV protease is a dimer. This
   entity corresponds to one monomer of an active dimer.
;
2  non-polymer  647.2’  ’.’

’.’3  water         18      
#
loop_
_entity_name_com.entity_id
_entity_name_com.name
1  HIV-1 protease monomer’

’
’

’
’

’ ’ ’ ’ ’ ’

1  HIV-1 PR monomer
2  acetyl-pepstatin
2  acetyl-Ile-Val-Asp-Statine-Ala-Ile-Statine
3  water
#
loop_
_entity_src_gen.entity_id
_entity_src_gen.gene_src_common_name
_entity_src_gen.gene_src_strain
_entity_src_gen.host_org_common_name
_entity_src_gen.host_org_genus
_entity_src_gen.host_org_species
_entity_src_gen.plasmid_name
1 HIV-1  NY-5  bacteria   Escherichia   coli   pB322
#

‘

‘

‘
‘
‘
‘
‘

‘ ‘ ‘ ‘ ‘ ‘

Figure 8.10. An abbreviated example of the mmCIF description of the chemical features of HIV

protease. In this example, three entities are defined. One entity is a monomer of HIV protease,

a second is the peptidic inhibitor, and the third is solvent. Common names for these entities are

specified. The source organism from which the protein sequence was obtained is also specified in

this example.
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mmCIF Polymer and Non-polymer Entities. Additional data categories are pro-
vided to describe polymeric entities. Polymer type, sequence length, information about
nonstandard linkages, and chirality may be specified. The monomer sequence for each
polymer entity is listed in category ENTITY POLY SEQ. This sequence information is
directly linked to the sequence specified in the coordinate list. It is also linked to the full

entity_link
  entity_seq_num_1
  entity_seq_num_2
  entity_id_1
  entity_id_2
 link_id

  details

entity_poly_seq
 entity_id
 num
 mon_id

  hetero

chem_link
 id

  details

atom_site
 id

  label_entity_id
  label_asym_id
  label_atom_id
  label_comp_id
  label_seq_id
  type_symbol
  aniso_B (esd)
  aniso_U (esd)
  Cartn_x,Cartn_y,Cartn_z
  fract_x,fract_y,fract_z
  occupancy
   (many others...)

entity_poly
 entity_id

  nstd_chirality
  nstd_linkage
  nstd_monomer
  number_of_monomers
  type
  type_details

chem_comp
 id

  model_details
  model_source
  mon_nstd_class
  mon_nstd_details
  mon_nstd_flag
  mon_nstd_parent
  name
  number_atoms_all
  number_atoms_nh
  one_letter_code
  type

entity
 id

  formula_weight
  details
  src_method
  type

Figure 8.11. A schematic diagram illustrating the content and relationships among the mmCIF

categories describing polymer entities. In this figure, boxes enclose the data items within each

mmCIF category, and arrows indicate the correspondence between data items that are common

to multiple categories, with the arrowheads pointing in the direction of the parent data item.

The category key data items are indicated with black dots.
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loop_
_entity_poly.entity_id
_entity_poly.type
_entity_poly.nstd_chirality
_entity_poly.nstd_linkage
_entity_poly.nstd_monomer
1  polypeptide(L)  no  no  no

#
loop_
_entity_poly_seq.entity_id
_entity_poly_seq.num
_entity_poly_seq.mon_id

1    1  PRO   1   2  GLN    1   3  ILE   1   4  THR    1   5  LEU
1    6  TRP   1   7  GLN    1   8  ARG   1   9  PRO    1  10  LEU
1  11  VAL    1  12  THR    1  13  ILE   1  14  LYS    1  15  ILE
1  16  GLY    1  17  GLY    1  18  GLN   1  19  LEU    1  20  LYS
1  21  GLU    1  22  ALA    1  23  LEU   1  24  LEU    1  25  ASP

# - - - abbreviated - - -

Figure 8.12. An abbreviated mmCIF description of a polymer entity, including the enumeration

of the three-letter residue codes of the entity polymer sequence.

chemical description of each monomer or nonstandard monomer in the CHEM COMP
category group. The relationships between categories describing polymer entities are
illustrated in Figure 8.11 and Figure 8.12, which show an example of the description
of a polymeric entity for a simple protein.

Non-polymeric entities are treated as individual chemical components. These enti-
ties may be fully described in the CHEM COMP group of categories in the same manner
as monomers within a polymeric entity. Like polymeric entities, each non-polymeric
entity carries both an entity identifier and a component identifier. These identifiers form
part of the label used to identify each atom ( atom site.label entity id and
atom site.label comp id). For polymeric entities the monomer identifier and

the component identifier are the same; however, the atom label also includes an addi-
tional field for the sequence position ( atom site.label seq id). An example for
a drug–DNA complex illustrating both polymer and nonpolymer entity descriptions is
shown in Figure 8.13.

Atomic Positions. The refined coordinates are stored in the ATOM SITE cat-
egory. Atomic positions and their associated uncertainties may be stored in either
Cartesian or fractional coordinates, and temperature factors and occupancies may be
stored for each position.

Each atomic position must be uniquely identified by the data item atom site.id.
Each position must also include a reference ( atom site.type symbol) to the table
of elemental symbols in category ATOM TYPE. All other data items in ATOM SITE
category are optional.

A typical atomic position for a macromolecule includes a variety of label informa-
tion. The data items that label atomic positions, can be divided into two groups: those
that are integrated into higher-level structural descriptions and those that are provided
to hold alternative nomenclatures. The data items in the former group are prefixed by
label and the latter carry an auth prefix.
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#
loop_
_entity.id
_entity.type
_entity.src_method
   1  polymer       ‘man’
   2  non-polymer ‘man’
   3  water        .
    #
loop_
_entity_keywords.entity_id
_entity_keywords.text
   1  ‘NUCLEIC ACID’
   2  ‘DRUG’
    #
loop_
_entity_name_com.entity_id
_entity_name_com.name
   2  ADRIAMYCIN
   3  WATER
    #
loop_
_entity_poly_seq.entity_id
_entity_poly_seq.mon_id
_entity_poly_seq.num
   1  T  1
   1  G  2
   1  G  3
   1  C  4
   1  C  5
   1  A  6
#
loop_
_entity_poly.entity_id
_entity_poly.number_of_monomers
_entity_poly.type
   1  6  ‘polydeoxyribonucleotide’

(a)

Figure 8.13. An abbreviated example of an mmCIF description of a drug–DNA complex. This

example includes the description of the both the DNA strand and drug adriamycin. The mmCIF cat-

egories depicted in Figures 8.9 and 8.10 are populated in this example. In particular, this example

illustrates how mmCIF describes the chemistry of both polymer and nonpolymer molecules.

(a) The chemical entities in this drug complex are defined. The first entity is the DNA poly-

mer strand and second entity is the drug adriamycin. The nucleotide sequence of the DNA is

enumerated. (b) The list of chemical components in the complex is specified. This list includes

the nucleotide monomers, the drug, and the solvent. The atomic coordinates a portion of the

first nucleotide (thymine) are given. This coordinate data is explicitly related to the chemi-

cal description through identifiers for entity ( atom site.label entity id =1), component

( atom site.label comp id = T) and sequence order ( atom site.label seq id =1).
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loop_
_chem_comp.id
_chem_comp.name
      A    ADENINE
      T    THYMINE
      C    CYTOSINE
      G    GUANINE
      DM2  ADRIAMYCIN
      HOH  WATER
#
loop_
_atom_site.id
_atom_site.label_atom_id
_atom_site.label_comp_id
_atom_site.label_asym_id
_atom_site.label_seq_id
_atom_site.label_entity_id
_atom_site.Cartn_x
_atom_site.Cartn_y
_atom_site.Cartn_z
_atom_site.occupancy
_atom_site.B_iso_or_equiv
      1  O5*   T A   1   1   -18.744  20.195  22.722  1.00  36.68
      2  C5*   T A   1   1   -18.262  20.915  23.867  1.00   4.63
# - - - abbreviated - - -

(b)

Figure 8.13. (Continued)

OTHER DATA DICTIONARIES

The methodology used to develop the mmCIF data dictionary has been applied to
describe the content of a number of other content areas not completely covered in
the mmCIF dictionary. All of these dictionaries have been developed to be consistent
with the mmCIF data representation. These dictionaries, which are all available from
the PDB mmCIF Resource Site (http://deposit.pdb.org/mmcif/), cover the following
content areas:

• The imgCIF dictionary describes the details of crystallographic data collection,
including data from image detectors in ASCII and binary data format.

• The BioSync dictionary describes the features and facilities provided by syn-
chrotron beamlines (Kuller et al., 2002).

• The MDB dictionary is an extension of the mmCIF dictionary for homol-
ogy models.

• The Symmetry extension supplements the mmCIF dictionary with detailed
aspects of crystallographic symmetry.

• The Cryo-EM extension dictionary supplements the mmCIF dictionary for struc-
ture and volume data from three-dimensional electron microscopy experiments.

• PDB exchange dictionary supplements the mmCIF dictionary with data items
used internally by PDB and data items required to describe high throughput
structure determinations in structure genomics projects.
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OTHER FORMATS AND PROTOCOLS

Much attention in the area of data format has recently been focused on technolo-
gies related to the extensible markup language (XML). XML provides a framework
for structuring complex information and documents. XML follows the syntax conven-
tions of the simpler hypertext markup language (HTML); however, XML extends the
functionality of HTML by clearly separating the description of information from its
presentation. To achieve this, XML employs a strategy of customizable style sheets
(http://www.w3c.org/Style/) that can be used to define how a particular set of data will
be displayed. XML is used as a data exchange vehicle in a variety of commercial soft-
ware platforms. Public domain software libraries for parsing, accessing, and traversing
XML data are available for most popular programming languages.

An XML document may be described by a Document Type Definition (DTD).
The DTD specifies the permissible syntax of an XML document. A DTD specification
primarily addresses the particular data items that can appear in a document, and how
the items must be ordered and/or organized in hierarchies. There is rather limited
support within a DTD for defining data semantics at the level of the data dictionaries
discussed previously.

An emerging alternative to the DTD is the XML schema. XML schemas extend
the descriptive functionalities of DTDs by providing support for strong data typing,
complex data types, enumerations, range restrictions, and parent–child and key rela-
tionships. At the time of this writing the first XML schema specification was still under
review by the W3C (http://www.w3c.org/XML/Schema).

Both DTDs and XML schemas focus on those aspects of data that are interpretable
by software. Neither document definition provides for the encoding of data definitions
or the examples. To fully capture these important semantic elements of the mmCIF
data dictionary a more robust approach is required.

The Object Management Group (OMG) has recently standardized an exchange
protocol for metadata and metadata models. The XML Metadata Interchange (XMI;
http://www.omg.org/technology/xmi/) standard is designed to provide for encoding and
exchange of metadata models conforming to the OMG Meta Object Facility (MOF;
http://cgi.omg.org/cgi-bin/doc?formal/00-04-03/) metadata model. MOF is a compre-
hensive framework for defining metadata models. The Unified Modeling Language
(UML), the de facto standard for graphically modeling data and software, is based
on MOF. The DDL meta-model underlying mmCIF also conforms to the OMG MOF
specification and hence XMI could be used as a means of storing mmCIF metadata in
an XML form.

A growing number of commercial and public domain software applications pro-
vide support for XML. Many of these applications provide sophisticated display and
query features that can be applied to the XML data. Owing to the availability of off-
the-shelf access and query tools, this format would appear to be a good choice for
storing structure data.

Although it is straightforward to re-encode mmCIF data in XML, the trivial
element-based encoding shown in Figure 8.14 results in a large overhead of XML
tags. For a medium-sized protein structure of 200 residues this results in a 10-fold
increase in data file size. Storage efficiency can be obtained by storing data column-
wise. For instance, the entire list of atom site.id values could be stored between
the single pair of XML tags, <id></id>. With such encodings, one loses many of
the access, display, and query features that make XML desirable. It is also necessary
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<atom_site_list>
   <atom_site>
      <id>1</id>
      <label_atom_id>O5*</label_atom_id>
      <label_comp_id>T</label_comp_id>
      <label_asym_id>A</label_asym_id>
      <label_seq_id>1</label_seq_id>
      <label_entity_id>1</label_entity_id>
      <Cartn_x>-18.744</Cartn_x>
      <Cartn_y>20.195</Cartn_y>
      <Cartn_z>22.772</Cartn_z>
      <occupancy>1.0</occupancy>
      <B_iso_or_equiv>36.68</B_iso_or_equiv>
   </atom_site>
   <atom_site>
      <id>18</id>
      <label_atom_id>C5*</label_atom_id>
      <label_comp_id>T</label_comp_id>
      <label_asym_id>A</label_asym_id>
      <label_seq_id>1</label_seq_id>
      <label_entity_id>1</label_entity_id>
      <Cartn_x>-18.262</Cartn_x>
      <Cartn_y>20.915</Cartn_y>
      <Cartn_z>23.867</Cartn_z>
      <occupancy>1.0</occupancy>
      <B_iso_or_equiv>4.63</B_iso_or_equiv>
    </atom_site>
<!--- abbreviated -->
</atom_site_list>

#
loop_
_atom_site.id
_atom_site.label_atom_id
_atom_site.label_comp_id
_atom_site.label_asym_id
_atom_site.label_seq_id
_atom_site.label_entity_id
_atom_site.cartn_x
_atom_site.cartn_y
_atom_site.cartn_z
_atom_site.occupancy
_atom_site.B_iso_or_equiv

1  O5*   T A   1   1   -18.744  20.195  22.722  1.00  36.68

2  C5*   T A   1   1   -18.262  20.915  23.867  1.00   4.63

#

(a)

(b)

Figure 8.14. (a) An abbreviated example of XML element-based encoding of ATOM SITE data.

In this example, the coordinates of two atoms are included. Each coordinate record is enclosed

within <ATOM SITE> tags. The other element names are taken directly from the item names

defined in the mmCIF dictionary less the category name. For instance, the value of atom site.id

is stored with <id></id> tags. In this XML encoding, the XML tags are replicated for each item

of data. (b) The data corresponding to Figure 8.14a expressed using mmCIF. In the mmCIF

representation, the keywords defining the data items are specified once as part of the loop

declaration.
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to customize parsing software to manage list-oriented data. It is hoped that as XML
becomes more widely used by large data-oriented applications, these trade-offs between
efficiency and functionality can be overcome.

No single file format is satisfactory for all users and applications. One way to
avoid file format issues entirely is to provide access to data through an application
program interface (API). Depending on the language implementation the API pro-
vides access to data through a collection of functions, procedures, or methods. The
OMG standardizes API developed using its Common Object Request Broker Archi-
tecture (Corba). Corba supports an interface definition language (IDL) for defining
programmable interfaces that are both language and platform independent. Corba has
also been developed to support distributed cross-platform access. The Corba IDL for
macromolecular structure (http://cgi.omg.org/cgi-bin/doc?lifesci/00-02-02) is based on
the mmCIF data representation and provides efficient program access to all of the data
in PDB entries (http://omg.sdsc.edu/; Greer, Westbrook, and Bourne, 2002).

CONCLUSION

In this chapter, the syntactical features of a number of ways to represent macromolecu-
lar structure data have been discussed. Each of these has its strengths and weaknesses.
The PDB format is simple and accessible with very simple software tools. XML pro-
vides great flexibility and is well supported by commercial and public domain software.
Far more important than the details of syntax is the ability of a particular data represen-
tation to precisely define data in a manner that is completely electronically accessible.
The particular strength of the mmCIF approach is that it is based on a data dictionary.
This data dictionary provides the detailed ontology, including precise definitions and
examples combined with a robust metadata model, that can be exploited by software
to perform detailed checks on individual data items as well as checks of the internal
consistency between data items.

ACKNOWLEDGMENTS

The development of the mmCIF dictionary and the associated DDL was an enormous
community task, and any list of contributors to the effort will certainly be incom-
plete. Much of the mmCIF dictionary development was done by the original working
group including: Enrique Abola, Helen Berman, Phil Bourne, Eleanor Dodson, Art
Olson, Wolfgang Steigemann, Lynn Ten Eyck, and Keith Watenpaugh. Evaluation and
critique of the dictionary development process was greatly aided by the input from
COMCIFS, the IUCr committee with oversight over this process (I. David Brown
and Brian McMahon). Many members of the community provided valuable input dur-
ing the public review of the mmCIF dictionary. Frances Bernstein, Herbert Bernstein,
Dale Tronrud, and Peter Keller were particularly active in this review process. Sydney
Hall, Michael Scharf, Peter Grey, Peter Murray-Rust, Dave Stampf, and Jan Zelinka
contributed to defining the requirements for the mmCIF DDL.



REFERENCES 179

REFERENCES

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN,
Bourne PE (2000): The Protein Data Bank. Nucleic Acids Res 28:235–42.

Bernstein FC, Koetzle TF, Williams GJ, Meyer EE, Brice MD, Rodgers JR, Kennard O,
Shimanouchi T, Tasumi M (1977): Protein Data Bank: a computer-based archival file for
macromolecular structures. J Mol Biol 112:535–42.

Bhat TN, Bourne P, Feng Z, Gilliland G, Jain S, Ravichandran V, Schneider B, Schneider K,
Thanki N, Weissig H, Westbrook J, Berman HM (2001): The PDB data uniformity project.
Nucleic Acids Res 29:214–8.

Bourne PE, Berman HM, Watenpaugh K, Westbrook JD, Fitzgerald PMD (1997): The
macromolecular Crystallographic Information File (mmCIF). Methods Enzymol 277:571–90.

Callaway J, Cummings M, Deroski B, Esposito P, Forman A, Langdon P, Libeson M,
McCarthy J, Sikora J, Xue D, Abola E, Bernstein F, Manning N, Shea R, Stampf D, Suss-
man J (1996): Protein Data Bank contents guide: atomic coordinate entry format description.
Brookhaven National Laboratory. http://www.rcsb.org/pdb/docs/format/pdbguide2.2/
guide2.2-frame.html.

Fitzgerald PMD, McKeever BM, VanMiddlesworth JF, Springer JP, Heimbach JC, Leu C-T,
Kerber WK, Dixon RAF, Darke PL (1990): Crystallographic analysis of a complex between
Human Immunodeficiency Virus Type 1 protease and acetyl-pepstatin at 2.0 Å resolution. J
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THE PROTEIN DATA BANK
The PDB Team1

The Protein Data Bank (PDB) was established at Brookhaven National Laboratory
(BNL) (Bernstein et al., 1977) in 1971 as an archive for biological macromolecular
crystal structures. Nobel prizes have been awarded for the determination and analysis
of some of the structures in the PDB. It represents one of the earliest community-driven
molecular biology data collections. In the beginning the archive held seven structures,
and with each passing year a handful more were deposited. In the 1980s, the number
of deposited structures began to increase dramatically. This increase was due to the
improvements in technology for all aspects of the crystallographic process, the addition
of structures determined by nuclear magnetic resonance (NMR) methods, and changes
in community views about data sharing. By the early 1990s, the majority of journals
required a PDBidentification (PDBid) for publication and at least one funding agency,
the National Institute of General Medical Sciences (NIGMS), adopted the guidelines
published by the International Union of Crystallography requiring data deposition for
all structures determined using NIGMS funds. At the beginning of 2002 there were
more than 17,000 entries in the archive.

Accompanying this rapid growth, the mode of access to PDB data has changed
over the years as a result of improved technology. Data distribution is now primarily
via the World Wide Web (www) rather than via magnetic media. Further, the need
to analyze diverse subsets of the data has led to the development of modern data
management systems.

Initial use of the PDB had been limited to a small group of experts involved
in structural biology research. Today depositors to the PDB have expertise in the
techniques of X-ray crystal structure determination, NMR, cryoelectron microscopy,

1For a current list of team members refer to http://www.rcsb.org/pdb/rcsb-group.html.
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and theoretical modeling. PDB users are a very diverse group of researchers in biology
and chemistry, as well as educators and students at all levels. The tremendous influx
of data soon to be fueled by the structural genomics initiative (see Chapter 29), and
the increased recognition of the value of these data toward understanding biological
function, continually demand new ways to collect, organize, and distribute the data
(Berman et al., 2000a).

Since October 1998, the PDB has been managed by the Research Collaboratory
for Structural Bioinformatics (RCSB), which is a consortium consisting of Rutgers, the
State University of New Jersey; the San Diego Supercomputer Center at the University
of California, San Diego; and the National Institute of Standards and Technology. In
this chapter, we describe the current procedures for collecting, validating, annotating
and distributing PDB data. Finally, we describe the plans for further automating and
improving the PDB so it can meet emerging challenges posed by researchers and
educators in the field of structural bioinformatics.

DATA ACQUISITION AND PROCESSING

A key component of the PDB is the efficient capture and curation of the data—data
processing. Data processing consists of data deposition, annotation, and validation.
These steps are part of a fully documented and integrated data processing system
shown in Figure 9.1.

In the present system, data (atomic coordinates, structure factors, and NMR rest-
raints) may be submitted via e-mail or via the Web-based AutoDep Input Tool (ADIT)
(Westbrook, Feng, and Berman, 1998; http://deposit.pdb.org/adit/) developed by the
RCSB PDB. ADIT is built on top of the macromolecular Crystallographic Information
File (mmCIF) dictionary that contains 1700 terms that define the macromolecular struc-
ture and the crystallographic experiment (Bourne et al., 1997; Westbrook and Bourne,
2000; see also Chapter 8). The mmCIF dictionary has been further extended to form
the PDB exchange dictionary, which includes terms needed for tracking and other
information management purposes. ADIT is complemented by MAXIT (MAcromolec-
ular EXchange Input Tool; Feng, et al., 1998a), a program that performs many of the
data-processing tasks and checks. This integrated system helps to ensure that the data
submitted are consistent with the mmCIF dictionary, which defines data types, enumer-
ates ranges of allowable values where possible, and describes allowable relationships
between data values.

Each deposition to the PDB is represented by the PDBid—a four character code
of the form nXYZ, where n is an integer and X, Y, and Z are alphanumeric characters,
for example, 4HHB. The PDBid is assigned arbitrarily and is an immutable reference
to the structure, and indeed is the only absolute way of retrieving a desired structure
from the PDB, although this shortcoming is being addressed (refer to Data Uniformity
below). PDBids are never reused and remain the link between the structure and the
literature reference that describes that structure.

After a structure has been deposited using ADIT, a PDBid is automatically and
immediately sent to the author (Fig. 9.1; Step 1). This procedure is the first stage
in which information about the structure is loaded into the internal core database,
validated, and annotated (see also Database Architecture and Validation and Annotation
below). This step involves using ADIT to help diagnose errors or inconsistencies
in the files. The completely annotated entry as it will appear in the PDB resource,
together with the validation information, is sent back to the depositor (Fig. 9.1; Step 2).
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After reviewing the processed file, the author sends any revisions (Fig. 9.1; Step 3).
Depending on the nature of these revisions, steps 2 and 3 may be repeated. Once
approval is received from the author (Fig. 9.1; Step 4), the entry and the tables in the
internal core database are ready for distribution. The schema of this core database is a
subset of the conceptual schema specified by the mmCIF dictionary.

All aspects of data processing, including communications with the author, are
recorded and stored in the electronic correspondence archive. This record makes it
possible for the PDB staff to retrieve information about any deposited entry. Current
status information, including the entry’s authors, title, and release status, is stored for
each entry in the core database and is made accessible for query via the WWW inter-
face (http://www.rcsb.org/pdb/status.html). Entries before release are categorized as
“in processing” (PROC), “in depositor review” (WAIT), “to be held until publication”
(HPUB) or “on hold until a depositor specified date” (HOLD).

Content of the Data Collected by the PDB

All the data collected from depositors by the PDB are considered primary data. Pri-
mary data contain, in addition to the coordinates, general information required for all
deposited structures and information specific to the method of structure determination.
Table 9.1 contains the general information that the PDB collects for all structures as
well as the information specific to X-ray and NMR experiments.

Historically, NMR data have been placed in a format defined around crystallo-
graphic information. The PDB is currently working with an NMR Task Force and the
BioMagResBank (BMRB; Ulrich, Markley, and Kyogoku, 1989; see also Chapter 5)
to develop an NMR data dictionary as an extension to the mmCIF. This dictionary
includes descriptions of the solution components, the experimental conditions, enu-
merated lists of the instruments used, and information about structure refinement.
This dictionary will be used as deposition and validation tools specifically for NMR
structures. NMR coordinate data are currently deposited with the PDB and other NMR-
specific experimental data are deposited with the BMRB. Plans are in place to have a
single interface for the deposition of data to both the BMRB and the PDB.

The information content of data submitted by the depositor is likely to change
as new methods for data collection, structure determination, and refinement evolve. A
case in point is the need for structural genomics projects to collect all information that
would be in the material and methods section of a paper describing a structure. The
ways in which these data are captured are also changing as the software for structure
determination and refinement evolve to produce the necessary data items as part of
their output. The ontology-driven approach to software development used by the PDB
makes it simple to collect new items of data once they are described in the mmCIF or
extension dictionary.

Validation and Annotation

Validation refers to the procedure for assessing the quality of deposited atomic models
(structure validation) and for assessing how well these models fit the experimental
data (experimental validation). Annotation refers to the process of adding information
resulting from the validation to the entry. The PDB validates structures using accepted
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T A B L E 9.1. Content of Data in the PDB

Content of All Depositions (X-ray and NMR)

Source: Specifications such as genus, species, strain, or variant of gene (cloned or
synthetic); expression vector and host, or description of method of chemical synthesis

Sequence: Full sequence of all macromolecular components
Chemical structure of cofactors and prosthetic groups
Names of all components of the structure
Qualitative description of the characteristics of the structure
Literature citations for the structure submitted
Three-dimensional coordinates

Additional Items for X-ray Structure Determinations

Temperature factors and occupancies assigned to each atom
Crystallization conditions, including pH, temperature, solvents, salts, methods
Crystal data, including the unit cell dimensions and space group
Presence of noncrystallographic symmetry
Data collection information describing the methods used to collect the diffraction data

including instrument, wavelength, temperature, and processing programs
Data collection statistics including data coverage, Rsym, data above 1, 2, 3 sigma levels

and resolution limits
Refinement information including R factor, resolution limits, number of reflections,

method of refinement, sigma cutoff, geometry rmsd, sigma
Structure factors: h, k, l, Fobs, σ Fobs

Additional Items for NMR Structure Determinations

For an ensemble, the model number for each coordinate set that is deposited and an
indication if one should be designated as a representative

Data collection information describing the types of methods used, instrumentation,
magnetic field strength, console, probe head, sample tube

Sample conditions, including solvent, macromolecule concentration ranges, concentration
ranges of buffers, salts, antibacterial agents, other components, isotopic composition

Experimental conditions, including temperature, pH, pressure, and oxidation state of
structure determination and estimates of uncertainties in these values

Noncovalent heterogeneity of sample, including self-aggregation, partial isotope
exchange, conformational heterogeneity resulting in slow chemical exchange

Chemical heterogeneity of the sample (e.g., evidence for deamidation or minor covalent
species)

A list of NMR experiments used to determine the structure including those used to
determine resonance assignments, NOE/ROE data, dynamical data, scalar coupling
constants, and those used to infer hydrogen bonds and bound ligands. The relationship
of these experiments to the constraint files are given explicitly

Constraint files used to derive the structure as described in Task Force recommendations

Source: Reprinted, by permission of the International Union of Crystallography, from Berman HM,
Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2001): The
protein Data Bank, 1999. In: Rossman MG and Arnold E, editors. International Tables for Crystal-
lography. F. Crystallography of Biological Macromolecules. Dordrecht: Kluwer Academic, p. 676
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community standards as part of ADIT’s integrated data-processing system. The fol-
lowing checks are run and are summarized in a letter that is communicated directly to
the depositor:

Covalent Bond Distances and Angles. Proteins are compared against standard val-
ues from Engh and Huber (1991); nucleic acid bases are compared against standard
values from Clowney et al. (1996); sugar and phosphates are compared against standard
values from Gelbin et al. (1996).

Stereochemical Validation. All chiral centers of proteins and nucleic acids are
checked for correct stereochemistry.

Atom Nomenclature. The nomenclature of all atoms is checked for compliance with
International Union of Pure and Applied Chemistry (IUPAC) standards (IUPAC-IUB,
1983) and is adjusted if necessary.

Close Contacts. The distances between all atoms within the asymmetric unit of
crystal structures and the unique molecule of NMR structures are calculated. For crystal
structures, contacts between symmetry-related molecules are checked as well.

Ligand and Atom Nomenclature. Residue and atom nomenclature are compared
against a standard dictionary (ftp://ftp.rcsb.org/pub/pdb/data/monomers/het diction
ary.txt) for all ligands as well as standard residues and bases. Unrecognized ligand
groups are flagged and any discrepancies in known ligands are listed as extra or missing
atoms. New ligands are added to the dictionary as they are deposited.

Sequence Comparison. The sequence provided by the depositor is compared against
the sequence derived from the coordinate records. This information is displayed in a
table where any differences or missing residues are annotated. During the annotation
process the sequence database references provided by the author are checked for accu-
racy. If no reference is given, a BLAST (Zhang et al., 1991) search is used to find the
best match. Any conflict between the depositor’s sequence and the sequence derived
from the coordinate records is further resolved and annotated by comparison with other
sequence databases as needed.

Distant Waters. The distances between all water oxygen atoms and all polar atoms
(oxygen and nitrogen) of the macromolecules, ligands, and solvent in the asymmet-
ric unit are calculated. Distant solvent atoms are repositioned using crystallographic
symmetry such that they fall within the solvation sphere of the macromolecule.

In almost all cases, serious errors detected by these checks have been corrected
through annotation and correspondence with the authors. It is also possible to run
these validation checks against structures before they are deposited. A validation
server (http://deposit.pdb.org/validate/) has been made available for this purpose. In
addition to the summary report letter, the server also provides output from PROCHECK
(Laskowski et al., 1993), NUCheck (Feng, Westbrook, and Berman, 1998b), and
SFCHECK (Vaguine, Richelle, and Wodak, 1999). A summary atlas page and molecular
graphics images are also produced.

The PDB continuously reviews the validation methods used and will continue
to integrate new procedures as they become available and are accepted as commu-
nity standards.
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Data Deposition Sites

Data are deposited to the PDB to one of three sites. Because it is critical that the final
archive is kept uniform, the content and format of the final files as well as the methods
used to check them must be the same.

The RCSB–PDB deposition site (http://deposit.pdb.org/adit/) has developed soft-
ware programs for data deposition, validation, and processing, including ADIT and the
Validation Server. The ADIT system, as described above, is also used to process the
data deposited.

The Institute for Protein Research at Osaka University in Japan has collabo-
rated with the PDB to establish another deposition center (http://pdbdep.protein.osaka-
u.ac.jp/adit/). All data deposited at this center (primarily depositors in Asia) are also
processed by this Osaka group using the ADIT system.

The Macromolecular Structure Database group at the European Bioinformatics
Institute (MSD–EBI) processes data that are submitted to them via AutoDep (http:
//autodep.ebi.ac.uk/). After processing, the data are sent to the RCSB in PDB format
for inclusion in the central archive. A common mmCIF exchange dictionary has been
developed with this group, which will help ensure a higher degree of data uniformity
in the archival data in the future.

The PDB has also ported its data-processing software to a stand-alone system that
does not require Internet access. This system is soon to be released for use by authors
who wish to check data in their home laboratories.

Data Processing Statistics

Production processing of PDB entries by the RCSB began on January 27, 1999. The
median time from deposition to the completion of data processing including author
interactions is less than two weeks. The number of structures with a HOLD release
status remains at about 16% of all submissions; 63% are hold until publication; and
21% are released immediately after processing.

Figure 9.2 shows the growth of PDB data since the archive began. Figure 9.2a
shows the total number of structures available in the archive per year. Figure 9.2b
shows the number of residues released in the PDB each year, indicating how the
complexity of structures released into the archive has increased over time.

The current breakdown of the types of structures in the PDB can be found at
http://www.rcsb.org/pdb/statistics.html. Data at the end of September 2001 are shown
in Table 9.2.

Data Uniformity

A key goal of the PDB is to make the archive as consistent and error-free as possible.
As indicated above, all new depositions are reviewed carefully by annotators before
release. Errors found subsequent to release by authors and PDB users are addressed as
rapidly as possible. Minor errors result in revisions to the entry that are annotated within
the entry; major errors lead to a superceding entry or entry withdrawal. Corrections
and updates to entries are sent to deposit@rcsb.rutgers.edu.

“Legacy data,” that is, data submitted prior to October 1998, comply with several
different PDB formats, and variation exists in how the same features are described for
different structures within each format. The inconsistency of formats and nomenclature
conventions makes it difficult to consistently parse these data and query across the
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Figure 9.2. (A) Growth chart of the PDB showing the total number of structures available

in the PDB archive per year and highlighting example structures from different time peri-

ods: a) myoglobin, b) hemoglobin, c) lysozyme, d) transfer RNA, e) antibodies, f) entire viruses,

g) actin, h) the nucleosome, i) myosin, and j) 30s ribosomal subunits. Images were created by

Dr. David Goodsell, who authors the PDB’s Molecule of the Month series. Figure originally

appeared in the International Union of Crystallography Newsletter (2001). Images, descriptions

and the molecules, and links to related information can be found at http://www.rcsb.org/pdb/

molecules/molecule list.html. (B) Number of residues released in the PDB per year. Figure also

appears in Color Figure section.

archive. As an immediate solution to the query problem, particular records across all
entries in the archive were corrected; these included citation, R factor, and resolution
(Bhat et al., 2001). These corrections were loaded into the database and thus it was pos-
sible to query on these features and obtain accurate results (Table 9.3). However, these
data were not available in the PDB files. To provide uniform data for each structure we
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T A B L E 9.2. Demographics of Data Released in the PDB (as of September 25, 2001)

Molecule Type

Experimental
Technique

Proteins, Peptides,
and Viruses

Protein–Nucleic
Acid Complexes

Nucleic
Acids

Carbohydrates
and Other Total

X-ray Diffraction
and Other

12,083 576 583 14 13,256

NMR 1997 73 399 4 2473
Theoretical

Modeling∗
297 21 23 0 341

Total 14,377 670 1005 18 16,070

∗Theoretical models have subsequently been made available separately.

T A B L E 9.3. Query Results on Uniform Versus Nonuniform Data (from August 29, 2000)

Attribute Query Term Nonuniform Uniform

Resolution 2.1–2.5 Å 3061 3492
Primary Citation J. Mol. Biol. 1953 2331
Journal Name Biochemistry 1919 2522

To be published 2856 760
EC Number 3.2.1.17 264 570
Source (Organism) E. coli 5 1278

Escherichia coli 1103 1278
Mouse 451 477
Mus musculus 444 477
Human 1988 2388
Homo sapiens 2010 2388

Source: Reprinted, by permission of Oxford University Press, from Bhat TN, Bourne P, Feng Z, Gilli-
land G, Jain S, Ravichandran V, Schneider B, Schneider K, Thanki N, Weissig H, Westbrook J, Berman HM
(2001): The PDB data uniformity project. Nucleic Acids Research 29:217.
Note: The attributes listed can be searched by using the SearchFields interface. The numbers given are the
result of entering the query term in the desired field on both nonuniform and uniform data. These data are
currently available as database tables, but not available in the individual PDB data files. They are available
in the mmCIF data files described in the Data Uniformity section of this chapter. Information about the
data uniformity project is archived at http://www.rcsb.org/pdb/uniformity/.

used the software that was developed and tested for primary processing and revalidated
all the data in the archive. Corrections were made to nomenclature and special attention
was made to consistency of the chemical description of the macromolecule and the
ligand. Examples of the types of errors that were found and corrected are shown in
Table 9.4.

The corrected files were released in mmCIF format and can be found at (ftp://
beta.rcsb.org/pub/pdb/uniformity/data/mmCIF/) (Westbrook, et al., 2002). The original
PDB files will continue to be available as they are a historical record and have been
the basis of many research projects. Software is available from the PDB to transform
the mmCIF files to PDB-formatted files. In the future, these mmCIF files will form the
basis of the PDB databases accessible via the Web.
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T A B L E 9.4. Summary of Released Entries Containing Nomenclature and Chemical Represen-
tation Errors

Incorrect
Sequence

Sequence-Coordinate
Mismatch

Atom Nomenclature
Errors

Stereochemical
Labeling Errors

Legacy data
(8368 entries)a

166 90 3311 294

1999 data
(3150 entries)b

0 5 162 3

2000 data
(3569 entries)b

0 0 31 3

apre-October 1998 entries, excluding nucleic acid-containing crystal structures.
bStructures processed and released by the RCSB.

DATA ACCESS

The PDB is presently incremented once per week with new data becoming available on
Wednesday mornings in most parts of the world through a number of mirror sites. The
following describes the database architecture used by the PDB, how users access these
databases via the Web, and how data files can be accessed via the Web and via ftp.

Database Architecture

The current PDB data management system consists of several heterogeneous data
sources that are integrated through Perl CGI scripts (Fig. 9.3). Although this leads to
some redundancy, since parts of the data are stored multiple times, it allows efficient
access. The complete system is currently being reengineered to maintain this efficiency
while providing more manageability with less redundancy. The new system will be
based on the DB2 relational database management system. We consider here the five
core components of the current system.

First, the core relational database (Sybase SQL server release 11.0, Emeryville,
CA) stores the primary experimental and coordinate data as described in Table 9.1.
These data are retrieved by the reporting options available through the Web interface.
Second, the ftp archive (ftp://ftp.rcsb.org/pdb/) provides the data files in PDB and
mmCIF formats as well as the data dictionaries to which they correspond. Third,
the Property Object Model (POM) data management system (Shindyalov and Bourne,
1997) is used for more efficient access to certain structural features, such as sequence.
POM consists of indexed objects containing native data (e.g., atomic coordinates) and
derived properties (e.g., secondary structure calculated according to Kabsch and Sander
(1983)). Fourth, the Netscape LDAP server is used to index the textual content of the
PDB and provides support for keyword searches. Fifth, the Molecular Information
Agent (MIA; http://mia.sdsc.edu) is used to collect and store hyperlinks and limited
other information for approximately 60 external data resources in a separate Sybase
database (see http://www.rcsb.org/pdb/mia.html). MIA formulates a query to each of
these data sources based on the PDBid, and parses the results of the query to provide
the information viewable through the “Other Sources” option of an entry’s Structure
Explorer page. MIA includes housekeeping software, for example, to coordinate the
simultaneous access to these data sources and to timeout if a particular site is down.
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User Interfaces

CGI INTEGRATION LAYER

Query Result
Browser

Structure
Explorer

DATABASE INTEGRATION LAYER

FTP tree

SearchLite SearchFields

LDAP SybasePOM BMCD
(keyword search) (derived data) (core DB) (crystallization) (download)

Figure 9.3. The integrated query interface to the PDB. Figure reprinted with permission from

Berman et al. (2000).

These five components, associated software, and Web pages constitute the system that
is mirrored to a number of sites worldwide (see below).

Finally, there is a close integration to three external resources (i.e., not mirrored
as part of the PDB):

1. The Biological Macromolecule Crystallization Database (BMCD; (Gilliland,
1988)) is organized as a relational database within Sybase and contains three
general categories of literature derived information: macromolecular, crystal,
and summary data.

2. The Nucleic Acid Database (NDB; Berman, et al., 1992; see also Chapter 10)
which contains information pertaining specifically to DNA and RNA.

3. The CE database (Shindyalov and Bourne, 1998; see also Chapter 16) of 3D
protein structure alignments.

The latter raises an important point of PDB policy. As described in Chapter 16, align-
ment of structures depends to some degree on the assumptions of the method being
used. Since there is no agreement in the community at present as to a de facto stan-
dard method for protein structure alignment, the PDB’s policy is to provide access
to a variety of alignments and classification schemes (Murzin et al., 1995; Gibrat,
Madej, and Bryant, 1996; Orengo et al., 1997; Holm and Sander, 1998; Shindyalov
and Bourne, 1998). In short, the PDB’s policy is to provide a portal (entry point)
to relevant information, but to not impose judgment on which methodology should
be used.

In the current implementation, communication among the five PDB components
and these databases has been accomplished using the Common Gateway Interface (CGI)
in such a way as to hide the intricacies of the underlying databases from the user. An
integrated Web interface dispatches a query to the appropriate database(s), which then
execute the query. Each database returns the PDBids that satisfy the query, and the
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CGI program integrates the results. Complex queries are performed by repeating the
process and having the interface program perform the appropriate Boolean operation(s)
on the collection of query results. A variety of output options are then available for
use with the final list of selected structures.

The newly created and uniform mmCIFs will enable the PDB to substantially
improve its underlying database architecture. The mmCIFs are loaded into a new
relational database with a schema that conceptually conforms closely to the mmCIF
dictionary. The results will provide access to data not currently available and do so in
a way that is easier to maintain.

User Web Access

Currently, three distinct query interfaces are available for the query of data within the
PDB: Status Query (http://www.rcsb.org/pdb/status.html); SearchLite (http://www.rcsb.
org/pdb/searchlite.html); and SearchFields (http://www.rcsb.org/pdb/queryForm.cgi).
Table 9.5 summarizes the current query and analysis capabilities of the PDB. Figure 9.4
illustrates how the various query options are organized.

The Status Query allows the user to review information on structures deposited
but not yet released. In addition to an author list, title, and release status, the depositor
may opt to release sequence information for the unreleased entry. This provides a set
of useful targets for structure prediction studies.

SearchLite provides a single form field for keyword searches. Textual information
within the PDB file, such as dates and some experimental data, are searched. Boolean
searching and restriction of keywords can be used to conform to specific attributes.
For example, “green” can be attributed to an author name or a common name for
a protein.

User Query

Single Structure
Explore Page

Multiple Structures
Query Result Browser

Summary Information
View Structure

Download Coordinates
Structure Neighbors

Geometry
Sequence Information

Previous Versions
Crystallization Information

Other Sources

Select Single Structure
Generate a Report
Download Report

Download Structures
Download Sequences

New Query

New or Refined Query

Figure 9.4. The layout of the PDB query system. Figure reprinted from Berman et al. (2001)

with permission from the International Union of Crystallography.
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T A B L E 9.5. Current Query Capabilities of the PDB

Query Options

SearchLite Any word or combination of words in the PDB
SearchFields General information: PDB identifier, citation author, chain type (protein,

DNA etc.), PDB HEADER, experimental technique, deposition/release
date, citation, compound information, EC number, text search

Sequence and secondary structure: chain length, FASTA search, short
sequence pattern, secondary structure content

Crystallographic experimental information: resolution, space group, unit
cell dimensions, parameters

Status PDB identifier, deposition author, title, holding status, deposition date,
release date, prereleased sequences

Result Analysis

Single Structure: Structure Explorer
Summary Compound name, authors, experimental method, classification, source,

primary citation, deposition date, release date, resolution, R-value, space
group, unit cell parameters, polymer chain identifiers, number of
residues, HET groups, number of atoms

View Structure VRML, RasMol, QuickPDB (Java Applet), Chime, still images
Download/Display

file
HTML and text formats for display; PDB and mmCIF formats with

different compression options for download
Structural Neighbors List of sites for finding structural homologues
Geometry Unusual dihedral angles, bond angles and bond lengths
Other Sources Links to other sources of information
Sequence Details Chain Ids, number of residues per chain, molecular weight, chain type,

secondary structure assignment; download sequence only in FASTA
format

Crystallization
Information

Conditions under which the crystals were obtained

Previous versions Versions of the structure replaced by the current version if applicable
Nucleic Acid

Database Atlas
Entry

Detailed information from the NDB (if applicable)

Quick Report Nucleic acid geometry if applicable
Structure Factors Experimental data if available

Multiple Structure: Results Browser
Summary List Deposition date, resolution, experimental method, classification, compound

name
Download Structures

or Sequences
mmCIF and PDB compressed files (gzip, tar, compressed); sequences in

FASTA format
Query Refinement Iterative query over result set using OR, AND or NOT Boolean logic
Tabular Report Cell dimensions, primary citation, structure identifiers, sequence,

experimental details, refinement details
Query Review Summary of queries submitted thus far with the option to return to one of

them

Source: Reprinted, by permission of Oxford University Press, from Berman HM, Westbrook J, Feng Z, Gilli-
land G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000): The Protein Data Bank. Nucleic Acids Res-
earch 28:239.
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SearchFields is for more advanced searches and presents a customizable query
form that can be used to search different data items, including macromolecule type,
citation authors, sequence (via a FASTA search; Pearson and Lipman, 1988), and
release dates. For enzymes it is possible to browse these structures using the Enzyme
Commission hierarchy. The numbers of entries at each level are reported as the user
traverses the hierarchy.

Search results are displayed in the “Query Result Browser,” which can be used
to generate reports, download data, and perform further searches. The “Structure
Explorer” interface provides detailed information on a single structure. On-line tutorials
for accessing PDB data via the Web are available at http://www.rcsb.org/pdb/info.html
#PDB Users Guides.

Application Web Access

Interfaces to both single and multiple structures are accessible to other Web resources
and applications through the simple CGI application programmer interface (API)
described at http://www.rcsb.org/pdb/linking.html. Stated another way, a URL can
be constructed with either single or multiple embedded PDBids and used to return
results on those structures. Many Web sites worldwide use this mechanism to reference
PDB structures.

The PDB Web site is maintained on redundant load balanced servers and receives
in excess of 100,000 page hits per day. On average a structure is downloaded every
second 24 hours per day, 7 days per week.

ftp Access

All structures, in PDB and mmCIF formats, are available for download from the PDB
ftp site. Dictionaries, documentation, and PDB-provided software are also available.
Instructions and software for mirroring the PDB ftp archive as a local copy are available
at http://www.rcsb.org/pdb/ftpproc.final.html.

Distribution

As stated, the PDB distributes coordinate data in PDB and CIF formats, structure
factor files, and NMR constraint files. In addition, it provides derived data, docu-
mentation, and software. New data officially become available at 2:00 A.M. Pacific
standard time each Wednesday. PDB mirrors have been established in Japan (Osaka
University), Singapore (National University Hospital), Brazil (Universidade Federal de
Minas Gerais), and in the UK (Cambridge Crystallographic Data Centre). Addition-
ally, other sources of PDB data exist, but are provided through different interfaces.
See http://www.rcsb.org/pdb/mirrors.html for a partial list. The PDB also distributes
a quarterly CD-ROM set that is essentially a copy of the ftp site. Data are dis-
tributed as compressed files using the compression utility program gzip. Refer to
http://www.rcsb.org/pdb/cdrom.html for details on how to order CD-ROM sets. There
is no charge for this service.

OUTREACH

Active outreach ensures that the community of PDB users is fully informed about our
capabilities and activities and that the PDB receives feedback that allows it to improve
its services. Outlined below are some of the key outreach activities.
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Help Desk. The electronic help desk (info@rcsb.org) addresses questions about
all aspects of the PDB and about general structural biology. Questions are generally
addressed within one or two working days. The list receives an average of 130 inquiries
per month. The PDB also maintains two other addresses: deposit@rcsb.rutgers.edu, for
questions concerning data deposition and help@rcsb.rutgers.edu for questions concern-
ing ADIT.

pdb-l@rcsb.org. A list server at pdb-l@rcsb.org is maintained for use by the com-
munity to make announcements and conduct discussions on activities relating to the
PDB. It is a PDB policy that this list be reserved for open discussion by the community
and not for use by the PDB itself. An archive of the discussions that take place on this
list can be found at http://www.rcsb.org/pdb/lists/pdb-l/.

PDB Web Site. The Web site is updated weekly with news, recent developments,
and improvements to existing documents. The site includes tutorials and user guides
for query, deposition, and file formats.

PDB Publications. The PDB publishes a quarterly newsletter available via e-mail
or postal mail (see http://www.rcsb.org/pdb/newsletter.html). PDF versions of the PDB
newsletter dating back to September 1974 are available at this site. Flyers, tutorials,
and an annual report are accessible from the PDB Web site and by sending mail to
info@rcsb.org.

Scientific Meetings. PDB members attend a wide variety of meetings, presenting
posters, talks, and exhibit booths. Among the meetings attended are the American
Crystallographic Association’s Annual Meeting, Protein Society’s Symposiums, the
Intelligent Systems in Molecular Biology’s annual meeting, and the International Union
of Crystallography’s Congress and General Assembly.

T A B L E 9.6. PDB Mirror Sites

RCSB Partner Sites

SDSC
La Jolla, CA (US)

http://www.pdb.org/
ftp://ftp.rcsb.org/

Rutgers University
Piscataway, NJ (US)

http://rutgers.rcsb.org/

NIST
Gaithersburg, MD (US)

http://nist.rcsb.org/

Other RCSB Mirrors

CCDC
United Kingdom

http://pdb.ccdc.cam.ac.uk/
ftp://pdb.ccdc.cam.ac.uk/rcsb/

National University of
Singapore

Singapore

http://pdb.bic.nus.edu.sg/
ftp://pdb.bic.nus.edu.sg/pub/pdb/

Osaka University
Japan

http://pdb.protein.osaka-u.ac.jp/
ftp://ftp.protein.osaka-u.ac.jp/pub/pdb/

Universidade Federal
de Minas Gerais
Brazil

http://www.pdb.ufmg.br/
ftp://vega.cenapad.ufmg.br/pub/pdb/
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T A B L E 9.7. PDB Sites of Interest

Source Information Content

Deposition

http://deposit.pdb.org/adit/ (RCSB-Rutgers) ADIT Web site
(deposit@rcsb.rutgers.edu)

http://pdbdep.protein.osaka-u.ac.jp/adit/ (Osaka
University)

ADIT Web site
(adit@adit.protein.osaka-u.ac.jp)

http://autodep.ebi.ac.uk/ (MSD-EBI) AutoDep (pdbhelp@ebi.ac.uk)
http://deposit.pdb.org/validate/ ADIT Validation Server
http://deposit.pdb.org/ Deposition, Format, and ADIT

FAQs

Query

http://www.rcsb.org/pdb/status.html PDB Status Search
http://www.rcsb.org/pdb/searchlite.html SearchLite
http://www.rcsb.org/pdb/queryForm.cgi SearchFields
http://www.rcsb.org/pdb/linking.html Information on Linking to the

PDB
http://mia.sdsc.edu/ Molecular Information Agent
http://www.rcsb.org/pdb/mia.html MIA at the PDB FAQ
http://www.rcsb.org/pdb/ftpproc.final.html RCSB PDB Mirror Protocol

PDB Features

http://www.rcsb.org/pdb/strucgen.html Structural Genomics Resources
http://www.rcsb.org/pdb/uniformity/ Information about the PDB Data

Uniformity Project
http://www.rcsb.org/pdb/lists/pdb-l/ PDB Listserv for community

announcements
http://www.rcsb.org/pdb/cdrom.html CD-ROM information
http://www.rcsb.org/pdb/info.html#PDB Users Guides Tutorials for deposition and query
http://www.rcsb.org/pdb/newsletter/index.html PDB Newsletters
http:/www.rcsb.org/pdb/statistics.html Statistics on the PDB archive
http://www.rcsb.org/pdb/ftpproc.final.html FTP mirroring information
http://www.rcsb.org/pdb/cdrom.html CD-ROM ordering information
info@rcsb.org General help desk

FUTURE

Structural biology is a fast-evolving field that poses challenges to the collection,
curation, and distribution of macromolecular structure data. Since 1999 the number
of depositions has averaged approximately 50 per week. However, with the advent
of a number of structure genomics initiatives worldwide this number is likely to
increase. We estimate that the PDB could contain 35,000 structures by 2005. This
growth presents a challenge to timely distribution while maintaining high quality. We
believe our approach to information management should permit us to accommodate
the anticipated large data influx. We are endeavoring to work closely with all structural
genomics projects to automatically collect more data and are redesigning our database
systems to provide a more scalable system. In terms of access, we have worked with
the Object Management Group to define a Corba (Common Object Request Broker)
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standard for macromolecular structure, which is closely aligned with the mmCIF dic-
tionary. Eventually this will provide a fine-grained access to items of PDB data by
users and their applications. This will be achieved by providing a Corba server that is
currently under development.

The maintenance and further development of the PDB are community efforts.
The willingness of others to share ideas, software, and data provides a depth to the
resource not obtainable otherwise. It is important to acknowledge the contribution of
scientists and staff at the BNL, who maintained the archive for many years. New input
is constantly being sought and the PDB invites you to make comments at any time by
sending electronic mail to info@rcsb.org. A summary of all the URLs specified in this
chapter is given in Table 9.6 and Table 9.7 for easy reference.
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THE NUCLEIC ACID DATABASE
Helen M. Berman, John Westbrook, Zukang Feng, Lisa Iype,

Bohdan Schneider, and Christine Zardecki

The Nucleic Acid Database (NDB) (Berman et al., 1992) was established in 1991 as a
resource for specialists in the field of nucleic acid structure. Over the years, the NDB
has developed generalized software for processing, archiving, querying, and distributing
structural data for nucleic acid-containing structures. The core of the NDB has been
its relational database of nucleic acid-containing crystal structures. Recognizing the
importance of a standard data representation in building a database, the NDB became
an active participant in the macromolecular Crystallographic Information File (mmCIF)
project and was the test-bed for this format. With a foundation of well-curated data,
the NDB created a searchable relational database of primary and derivative data with
very rich query and reporting capabilities. This robust database was unique in that it
allowed researchers to do comparative analyses of nucleic acid-containing structures
selected from the NDB according to the many attributes stored in the database.

In 1992, the NDB assumed responsibility for processing all nucleic acid crystal
structures that were deposited into the Protein Data Bank (PDB); it became a direct
deposit site for those structures in 1996. In order to meet data-processing requirements,
the NDB created the first validation software for nucleic acids (Feng et al., 1998b).
Until 1998, protein–nucleic acid crystal structures deposited into the PDB were post-
processed and then incorporated into the NDB. When the Research Collaboratory for
Structural Bioinformatics assumed the management of the PDB in 1998, the tools
developed by the NDB were used to process all macromolecular structures (Berman
et al., 2000; see also Chapter 9). The NDB continues to provide a high level of infor-
mation about nucleic acids and serves as a specialty database for its community of
researchers.

In this chapter, we describe the architecture and capabilities of the NDB and then
present some of the research that has been enabled by this resource.
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INFORMATION CONTENT OF THE NDB

Structures available in the NDB include RNA and DNA oligonucleotides with two
or more bases either alone or complexed with ligands, natural nucleic acids such
as tRNA, and protein–nucleic acid complexes. The archive stores both primary and
derived information about the structures (Table 10.1). The primary data include: crys-
tallographic coordinate data, structure factors, and information about the experiments
used to determine the structures, such as crystallization information, data collection,
and refinement statistics.

Derived information, such as valence geometry, torsion angles, and intermolec-
ular contacts, are calculated and stored in the database. Database entries are further
annotated to include information about the overall structural features, including confor-
mational classes, special structural features, biological functions, and crystal-packing
classifications.

T A B L E 10.1. The Information Content of the NDB

Primary Experimental Information Stored in the NDB

Structure Summary: descriptor; NDB, PDB, and Cambridge Structural Database (CSD) names;
coordinate availability; modifications, mismatches, and drug binding

Structural Description: sequence; structure type; descriptions about modifications, mismatches,
and drugs; description of asymmetric and biological units

Citation: authors, title, journal, volume, pages, year

Crystal Data: cell dimensions; space group

Data Collection Description: radiation source and wavelength; data collection device;
temperature; resolution range; total and unique number of reflections

Crystallization Description: method; temperature; pH value; solution composition

Refinement Information: method; program; number of reflections used for refinement; data
cutoff; resolution range; R-factor; refinement of temperature factors and occupancies

Coordinate Information: atomic coordinates, occupancies, and temperature factors for
asymmetric unit; coordinates for symmetry-related strands; coordinates for unit cell;
symmetry-related coordinates; orthogonal or fractional coordinates

Derivative Information Stored in the NDB

Distances: chemical bond lengths; virtual bonds (involving phosphorus atoms)

Torsions: backbone and side chain torsion angles; pseudorotational parameters

Angles: valence bond angles, virtual angles (involving phosphorus atoms)

Base Morphology: parameters calculated by different algorithms

Nonbonded contacts

Valence geometry RMS deviations from small molecule standards

Sequence pattern statistics

Sources: Reprinted, by permission of the publisher, from H. M. Berman, Z. Feng, B. Schneider, J. West-
brook, and C. Zardecki (2001): The Nucleic Acid Database. In: M. G. Rossman and E. Arnold, editors.
International Tables for Crystallography, F. Crystallography of Biological Macromolecules. Dordrecht:
Kluwer Academic Publishers, p. 657.



DATA VAL IDAT ION AND PROCESS ING 201

Some features are derived by different algorithms, and it can be difficult to provide
the most reliable values. Whenever possible, the NDB has tried to promote standards
that allow structure comparison. An outstanding example of this lack of standards
were the problems associated with different values for base morphology parameters
produced by different programs (Lavery and Sklenar, 1988; Soumpasis and Tung, 1988;
Bhattacharyya and Bansal, 1989; Lavery and Sklenar, 1989; Babcock, Pednault, and
Olson, 1993; Babcock and Olson, 1994; Babcock, Pednault, and Olson, 1994; Tung,
Soumpasis, and Hummer, 1994; Bansal, Bhattacharyya, and Ravi, 1995; El Hassan and
Calladine, 1995; Gorin, Zhurkin, and Olson, 1995; Lu, El Hassan, and Hunter, 1997;
Dickerson, 1998; Kosikov et al., 1999). These different values in base morphology
meant that it was not possible to compare any two structures by using the numbers
in the published literature and that it was necessary to recalculate these values for
any analysis.

To help resolve this problem, the NDB cosponsored the Tsukuba Workshop on
Nucleic Acid Structure and Interactions (January 12–14, 1999, AIST-NIBHT Structural
Biology Centre, Tsukuba, Japan) to which all the key software developers in this field
were invited. It was resolved that a single reference frame would be used to calculate
these values and an agreement was reached about the definition of that reference frame
(Olson et al., 2001). All the programs are being amended so that they will produce very
similar values for the parameters. The NDB has recalculated these values for all the
structures in the repository and will make them available as output from NDB Searches
done over the Web (see The Database and Query Capabilities for more information).

DATA VALIDATION AND PROCESSING

The NDB has created a robust data-processing system that produces high-quality data
that is readily loaded into a database. The full capability of this system was recently
demonstrated by the successful processing of ribosomal subunits, which are very large
and complex structures.

Early on, the NDB adopted mmCIF (Bourne et al., 1997) as its data standard. This
format has three advantages from the point of view of building a database: (1) the def-
initions for the data items are based on a comprehensive dictionary of crystallographic
terminology and molecular structure description; (2) it is self-defining; and (3) the
syntax contains explicit rules that further define the characteristics of the data items,
particularly the relationships between data items (Westbrook and Bourne, 2000). The
latter feature is important because it allows for rigorous checking of the data.

Structures are deposited via the Web with the AutoDep Input Tool (ADIT) (West-
brook, Feng, Berman, 1998) and then annotated using the same tool. ADIT operates
on top of the mmCIF dictionary. In the next stage of data processing, a program
called MAXIT (Macromolecular Exchange and Input Tool; Feng et al., 1998a) checks
and corrects atom numbering and ordering as well as the correspondence between
the SEQRES PDB record and the residue names in the coordinate files. Once these
integrity checks are completed, the structures are validated.

NUCheck (Feng et al., 1998b) verifies valence geometry, torsion angles, inter-
molecular contacts, and the chiral centers of the sugars and phosphates. The dictionaries
used for checking the structures were developed by the NDB Project from analyses
(Clowney et al., 1996; Gelbin et al., 1996) of high-resolution, small-molecule structures
from the CSD (Allen et al., 1979). The torsion angle ranges were derived from an anal-
ysis of well-resolved nucleic acid structures (Schneider, Neidle, and Berman, 1997).
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One important outgrowth of these validation projects was the creation of the force
constants and restraints that are now in common use for crystallographic refinement
of nucleic acid structures (Parkinson et al., 1996a). The program SFCheck (Vaguine,
Richelle, and Wodak, 1999) is used to validate the model against the structure factor
data. The R factor and resolution are verified and the residue-based features are exam-
ined with this program. Once an entry has been processed satisfactorily, it is released
based on its author-defined hold status.

THE DATABASE AND QUERY CAPABILITIES

The core of the NDB project is a relational database in which all of the primary
and derived data items are organized into tables. At present, there are over 90 tables
in the NDB, with each table containing 5 to 20 data items. These tables contain both
experimental and derived information. Example tables include: the citation table, which
contains all the items that are contained in literature references; the cell dimension
table, which contains all items related to crystal data; and the refine parameters table,
which contains the items that describe the refinement statistics.

Interaction with the database is a two-step process (Fig. 10.1). In the first step,
the user defines the selection criteria by combining different database items. As an
example, the user could select all B-DNA structures whose resolution is better or equal
to 2.0 Å, whose R-factor is better than 0.17, and that were determined by the authors
Dickerson, Kennard, or Rich. Once the structures that meet the constraint criteria have

Quick Search
Simple searching

using a form

Quick Report
Automatically

prepared reports

Full Report
Reports built by

selecting table items
to be included

Full Search
Complex queries built by
selecting tables of infor-
mation and limiting items

Search Results
Shows structure ID and descriptor.

User can view Atlas Entry,
retrieve coordinates, or

view structure using RasMol

Report Generation

Structure Selection

Figure 10.1. Flow chart demonstrating the two steps involved in searching the NDB: structure

selection and report generation.
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been selected, reports may be written using a combination of table items. For any set
of chosen structures, a large variety of reports may be created. For the example set
of structures given above, a crystal data report or a backbone torsion angle report can
be easily generated, or the user could write a report that lists the twist values for all
CG steps together with statistics, including mean, median, and range of values. The
constraints used for the reports do not have to be the same as those used to select the
structures. Some examples of the types of reports produced by the NDB are given in
Fig. 10.2.

A Web interface was designed to make the query capabilities of the NDB as
widely accessible as possible. In the Quick Search/Quick Report mode, several items,
including structure ID, author, classification, and special features, can be limited either
by entering text in a box or by selecting an option from the pull-down menu. Any
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combination of these items may be used to constrain the structure selection. If none
are used, the entire database will be selected. After selecting “Execute Selection,”
the user will be presented with a list of structure IDs and descriptors that match the
desired conditions. Several viewing options for each structure in this list are possible.
These include retrieving the coordinate files in either mmCIF or PDB format, retrieving
the coordinates for the biological unit, viewing the structure with RasMol (Sayle and
Milner-White, 1995), or viewing an NDB Atlas page.

Preformatted Quick Reports can then be generated for the structures in this result
list. The user selects a report from a list of 13 report options (Table 10.2), and the
report is created automatically. Multiple reports can be easily generated. These reports
are particularly convenient for quickly producing reports based on derived features,
such as torsion angles and base morphology (Fig. 10.3).

In the Full Search/Full Report mode, it is possible to access most of the tables in
the NDB to build more complex queries. Instead of limiting items that are listed on
a single page, the user builds a search by selecting the tables and then the items that
contain the desired features. These queries can use Boolean and logical operators to
make complex queries.

After selecting structures using the Full Search, a variety of reports can be written.
The report columns are selected from a variety of database tables, and then the full
report is automatically generated. Multiple reports can be generated for the same group
of selected structures; for example, reports on crystallization, base modification, or a
combination of these reports can be generated for a particular group of structures.

T A B L E 10.2. Quick Reports Available for the NDB

Report Name Contains

NDB Status Processing status information
Cell Dimensions Crystallographic cell constants
Primary Citation Primary bibliographic citations
Structure Identifier Identifiers, descriptor, coordinate availability
Sequence Sequence
Nucleic Acid Sequence Nucleic acid sequence only
Protein Sequence Protein sequence only
Refinement Information R-factor, resolution, and number of reflections used

in refinement
NA Backbone Torsions (NDB) Sugar-phosphate backbone torsion angles using NDB

residue numbers
NA Backbone Torsions (PDB) Sugar-phosphate backbone torsion angles using PDB

residue numbers
Base Pair Parameters (global) Global base pair parameters calculated using Curves

5.1 (Lavery, et al., 1989)
Base Pair Step Parameters (local) Local base pair step parameters calculated using

Curves 5.1
Groove Dimensions Groove dimensions using Stoffer & Lavery

definitions from Curves 5.1

Sources: Reprinted, by permission of the publisher, from H. M. Berman, Z. Feng, B. Schneider, J. West-
brook, and C. Zardecki (2001): The Nucleic Acid Database. In: M. G. Rossman and E. Arnold, editors.
International Tables for Crystallography, F. Crystallography of Biological Macromolecules. Dordrecht:
Kluwer Academic Publishers, p. 659.
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(a)

(c) (d)

(b)

Figure 10.3. Examples of Quick Reports: (a) citation report for protein-RNA structures;

(b) nucleic acid sequence report for protein-RNA structures; (c) refinement information for

protein-RNA structures; (d) nucleic acid backbone torsions report for PR0001 (Rowsell et al., 1998).

DATA DISTRIBUTION

Coordinate files, database reports, software programs, and other resources are avail-
able via the ftp server (ftp://ndbserver.rutgers.edu). In addition to links to information
provided from the ftp server, the Web server (http://ndbserver.rutgers.edu/) provides a
variety of methods for querying the NDB (described above). These sites are updated
continually.

The NDB Archives, a section of the Web site, contain a large variety of informa-
tion and tables useful for researchers. Prepared reports about the structure identifiers,
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citations, cell dimensions, and structure summaries are available and are sorted accord-
ing to structure type. The dictionaries of standard geometries of nucleic acids as well as
parameter files for X-PLOR (Brünger, 1992) are available. The NDB Archives section
links to the ftp server, providing coordinates for the asymmetric unit and biological
units in PDB and mmCIF formats, structure factor files, and coordinates for nucleic
acid structures determined by NMR.

A very popular and useful report is the NDB Atlas report page (Fig. 10.4). An atlas
page contains summary, crystallographic, and experimental information, a molecular
view of the biological unit, and a crystal-packing picture for a particular structure.
Atlas pages are created directly from the NDB database. The entries for all structures
in the database are organized by structure type in the NDB Atlas.

Mirrors

The NDB is based at Rutgers University (http://ndbserver.rutgers.edu/) and
is currently mirrored at three other sites: the Institute of Cancer Research
UK (http://www.ndb.icr.ac.uk/), the San Diego Supercomputer Center in San
Diego, California (http://ndb.sdsc.edu/NDB/), and the Structural Biology Centre
(http://ndbserver.nibh.go.jp/NDB/) in Tsukuba, Japan. These mirror sites are updated
daily, are fully synchronous, and contain the ftp directories, the Web site, and the
full database.

Community Outreach

The NDB works closely with the research community to ensure that their needs are
met. A newsletter is published electronically and provides information about the newest
features of the system. To subscribe, send an email to ndbnews@ndbserver.rutgers.edu.
Very complex queries will be done by the staff in response to user requests via e-mail
to ndbadmin@ndbserver.rutgers.edu.

APPLICATIONS OF THE NDB

The NDB has been used to analyze characteristics of nucleic acids alone and complexed
with proteins. The ability to select structures according to many criteria has made it
possible to create appropriate data sets for study. A few examples are given here.

The conformational characteristics of A-, B- and Z-DNA were examined (Schnei-
der, Neidle, and Berman, 1997) by using carefully selected examples of well-resolved
structures in these classes. Conformation wheels (Fig. 10.2a) for each conformation
as well as scattergrams of selected torsion angles (Fig. 10.2b) were created. These
diagrams can now be used to assess and classify new structures. Studies of B-DNA
helices have shown that the base steps have characteristic values that depend on their
sequence (Gorin, Zhurkin, and Olson, 1995). Plots of twist versus roll are different
for purine–purine, purine–pyrimidine, and pyrimidine–purine steps. This particular
analysis has been extended to derive energy parameters for B-DNA sequences (Olson
et al., 1998).

In a series of systematic studies of the hydration patterns of DNA double helices,
it was found that the hydration patterns around the bases are well defined and are
local (Fig. 10.5a–c) (Schneider and Berman, 1995). That is, small changes in the
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(a) (b)

(c) (d)

Figure 10.4. NDB Atlas page for PD0200 (van Roey et al., 2001) that highlights structural

information that is contained in the database. The NDB Atlas also includes images for biological

and asymmetric units, and crystal-packing pictures for nucleic acids.
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conformation of the backbone do not affect the hydration around the bases. It was
also found that there are more diffuse patterns around the phosphate backbone that
are dependent on the conformational class of the DNA. These analyses were used to
attempt to predict the binding sites of protein side chains on the DNA. In a series
of protein–nucleic acid complexes, the hydration sites of the DNA were calculated
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<

Figure 10.5. Water environment of guanine residues in structures in the NDB. (a) Scattergram

of 101 water molecules within 3.4 Å from any atom of 42 guanines found in 14 B-DNA decamer

structures; (b) electron densities of the 101 water molecules plotted at the 4 σ level. Each water

is modeled as an oxygen atom with an occupancy of 1/42; (c) An ORTEP (Johnson, 1976) plot

of the current guanine B-DNA hydration sites after refinement. Plotted are 50% probability

thermal ellipsoids. The key guanine atoms and hydration sites are labeled. All plots are in stereo.

Figure 10.5a–c are reprinted from (Schneider et al., 1995) with permission from the Biophysical

society.

and then compared with the location of the amino acid side chain. The results were
surprisingly good in that in most cases the side-chain site and hydration sites were
very close. This result was true even in the case of a very bent DNA that is bound to
Catabolite Activator Protein (Fig. 10.6) (Woda et al., 1998).

Systematic studies of the interface in protein–nucleic acid complexes have been
done. In one analysis of protein-DNA complexes, 26 complexes were selected in which
the proteins were nonhomologous (Jones et al., 1999). The results showed that there

G5
T4 T6

. Arg169 NH1.. Arg169 N

. Gln170 N

Lys188 NZ>

P4

P6

P5

Figure 10.6. A view of the three residues in the consensus region for the high resolution

CAP-DNAGCE complex (Parkinson et al., 1996b). The predicted phosphate hydration is drawn as

pseudoelectron density in cyan, the interacting protein residues are shown in dark brown, and

the phosphate groups are red. The protein atoms that contact the DNA shown as blue crosses.

The predicted sites are the red crosses. Reprinted from (Woda et al., 1998) with permission from

the Biophysical Society. Figure also appears in Color Figure section.
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are amino acid propensities at the interface that are markedly different than in pro-
tein–protein complexes. It was also possible to place the complexes into three classes:
double-headed, single-headed, and enveloping (Fig. 10.7–8). A similar analysis has
also been done for protein-RNA complexes (Jones et al., 2001). There have also
been detailed analyses of the hydrogen-bonding patterns at the protein DNA interface
and it was found that CH•••O bonds are surprisingly common (Mandel-Gutfreund,
et al., 1998).

Some analyses have been done on the relationships of crystal packing and con-
formation. Although there are more than 30 different crystal forms of B-DNA in the
NDB, the actual number of packing motifs (Fig. 10.9) remains relatively small, with the
most common motifs being minor groove–minor groove, stacking–lateral backbone,
and major groove–backbone (Timsit and Moras, 1992).

Minor groove–minor groove interactions in which the guanines of one duplex
form hydrogen bonds with the guanines of a neighboring duplex are seen not only
in dodecamer structures but in an octamer sequence with three duplexes in the asym-
metric unit (Urpi et al., 1996). The second motif contains duplexes stacked above one
another with the adjoining phosphates forming lateral interactions. A large number of
variations of this motif have been observed in decamer (Grzeskowiak et al., 1991) and
hexamer structures (Cruse et al., 1986; Tari and Secco, 1995). The third type of pack-
ing involves the major groove of one helix interacting with the phosphate backbone of
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Figure 10.7. Histogram of the interface residue propensities calculated for 26 protein–DNA

complexes and compared to those for permanent protein–protein complex (Jones & Thornton,

1996). ‘‘Permanent’’ complexes are those in which the components only exist as part of a complex;

they do not exist in isolation. Generally, they have larger interfaces that are more hydrophobic

and more complementary. A propensity of >1 indicates that a residue occurs more frequently in

the interface than on the protein surface. The amino acid residues have been ordered using the

Faucher & Pliska (Faucher & Pliska, 1983) hydrophobicity scale, with the most hydrophilic residues

on the left-hand side and the most hydrophobic on the right-hand side of the graph. Reprinted

with permission from (Jones et al., 1999).
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Figure 10.8. Simple model diagrams of protein-DNA complexes for double-headed binding

proteins. The diagrams give an indication of the predominant secondary structure of the binding

motif, protein symmetry and the type and relative position of the DNA groove bound. The

secondary structure of the predominant binding motifs are indicated using different symbols

analogous to those used in TOPS diagrams (Westhead & Thornton, 1998). Only one symbol

of each type is indicated in any one groove, hence both a single sheet and two sheets are

indicated by a single colored triangle. The symmetry of each protein is indicated by using a

different color for each symmetry (or pseudo symmetry) related element. A single symbol shaded

in two colors indicates that there are secondary structures of this type contributed by more than

one symmetry-related element. Reprinted with permission from (Jones et al., 1999). Figure also

appears in Color Figure section.

(a) (b) (c)

Figure 10.9. Examples of packing motifs in DNA duplexes in a B- and A-DNA. From left to

right: (a) minor groove-minor groove interactions in BDL042 (Leonard & Hunter, 1993); (b) major

groove-backbone interactions in BDJ060 (Goodsell et al., 1995); (c) stacking interactions in BDJ025

(Grzeskowiak et al., 1991); The bases are colored green for guanine, yellow for cytosine, red for

adenine, and blue for thymine. Reprinted from (Berman et al., 1996) with permission from Elsevier

Science. Figure also appears in Color Figure section.
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another (Timsit et al., 1989). Sequence appears to be a large factor in determining these
motifs, but it is not the only one. For example, the first structures exhibiting the major
groove–phosphate interactions contained a cytosine that formed a hydrogen bond to
the phosphate. However, not all structures that show this motif have this hydrogen
bond (Wood et al., 1997). The particular sequence in this crystal is even more intrigu-
ing because it also crystallizes in another crystal form in which the terminal flips out
to form a minor groove interaction with another duplex (Spink et al., 1995).

The task of trying to determine the relative effects of base sequence and crystal
packing on the values of the base morphology parameters is hampered to some degree
by the uneven distribution of the 16 different base steps among the different crystal
types. Some steps such as CG are very well represented in B structures, whereas
others such as AC have very few representatives in the data set. Nonetheless, there are
a few steps that occur in crystals with different packing motifs. An analysis of the CG
steps across all crystal types shows that its conformation is relatively insensitive to
crystal packing and the distribution is similar to that found for all steps (see (Berman,
Gelbin, and Westbrook, 1996)). However, the variability of the CA step appears to
depend not simply on crystal type but on the packing motif. The values of twist
for CA steps in minor groove–minor groove motifs are smaller than those in the
major groove–backbone motif. Very high values are displayed for CA steps in the
stacking–lateral backbone motif. Plots of twist versus roll for CG steps show the
distribution noted by others (Gorin, Zhurkin, and Olson, 1995) and no clustering that
depends on crystal type. However, the same plot for CA steps shows very distinctive
differences that appear to depend on the packing motifs. It is important to note here that
these motifs encompass several crystal types so that the structural variability observed
is a function of a particular type of structural interaction rather than a particular crystal
form. Before any definitive statements can be made about all the steps it will be
necessary to have much more data.

With the recent increase in the number of RNA structures available there have been
attempts to establish systems whereby it will be possible to systematically analyze these
structures. The result of one of these studies has been the proposal of a classification
scheme for the hydrogen bonds in the base pairs (Westhof and Fritsch, 2000). A new
syntax (RNAML) has also been proposed for representing RNA structural features
(http://www.smi.stanford.edu/projects/helix/rnaml/).

THE CHANGING FACE OF THE NDB

When the NDB began, the world of nucleic acid structures consisted of DNA and
RNA oligonucleotides, a few protein-DNA complexes, and some tRNA structures.
Annotation of structural features was performed manually by visual inspection of
molecular architectures. However, since the early 1990s a whole new universe of
nucleic acid structures has emerged (Fig. 10.10; see also Chapter 3). There are many
ribozyme structures and many different types of protein–nucleic acid complexes rep-
resented in over 500 structures. The newest additions to the archive—ribosomal struc-
tures—have increased the number of residues of RNA resident in the NDB several
fold (Moore, 2001).

One outcome of the systematic studies that have been done with data from the
NDB has been improved classification schemes for understanding nucleic acids. These
classification schemes will be used to automatically annotate structures contained within
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Figure 10.10. (a) the number of nucleic acid residues, and (b) the number of structures released

in the NDB as of September 27, 2001.

the NDB, which will in turn improve the query capability of the NDB. This type of
cycle shows the power of organizing information so that it is more accessible and can
ultimately yield new knowledge.
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OTHER STRUCTURE-BASED DATABASES
Helge Weissig and Philip E. Bourne

The single repository for experimentally derived macromolecular structures is the
Protein Data Bank (PDB; Bernstein et al., 1977; Berman et al., 2000) described in
Chapter 9. The primary data provided by the PDB are the Cartesian coordinates,
occupancies, and temperature factors for the atoms in these structures. Additional
information given includes literature references, author names, details of the exper-
iment, links to the sequence in the sequence databases, and some limited annotation
of the biological function (see Chapter 8). Collated into a single entry or, due to the
PDB format restrictions, into multiple entries for very large X-ray structures and large
NMR ensembles, these data constitute a concise description of the three-dimensional
form of a molecule. The PDB currently releases the primary structure data once per
week as requested by the depositor. Whereupon a number of sites worldwide acquire
these data via the Internet, derive additional information, and constitute a set of sec-
ondary resources. Secondary resources cover features such as stereochemical quality
(Table 11.1), protein structure classification (Table 11.2), protein–protein interaction
data (Table 11.3), structure visualization (Table 11.4) and data on specific protein
families. The secondary resources described in this chapter can be viewed as down-
stream of the PDB in an information flow diagram (Fig. 11.1). The number of these
secondary resources is growing every year and no attempt is made at a complete
overview, but rather to give a synopsis from several classes of resources (Figure 11.1)
of what is available. A current compendium of secondary resources is maintained by
the PDB at http://www.pdb.org/pdb/links.html. More detail on popular, well-established
structure-based databases is available in other chapters. Chapter 5 includes a descrip-
tion of the NMR-specific BioMagResBank resource; the Nucleic Acid Database (NDB)
is described in Chapter 4; the comparative fold classification databases SCOP and
CATH are described in Chapters 12 and 13, respectively; Chapter 14 includes brief
descriptions of stereochemical quality-oriented resources and additional resources are
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T A B L E 11.1. Popular Software and Resources for Protein Structure Validation

Resource Details

PDBSum Summaries for all protein structures including
validation checks
http://www.biochem.ucl.ac.uk/bsm/pdbsum/

Procheck Structure validation suite
http://www.biochem.ucl.ac.uk/∼roman/procheck/
procheck.html Laskowski et al., 1993

What Check Detailed stereochemical quality summaries for all
protein structures. Part of the Whatif package.
http://www.cmbi.kun.nl/gv/whatcheck/

SFCheck Validate the experimental structure factors associated
with an X-ray diffraction experiment. Vaguine,
Richelle, and Wodak, 1999

PDB validation server Validate the format and content of a PDB entry using
the same software procedures as used by the PDB.
Includes those listed above in this table
http://pdb.rutgers.edu/validate/

Protein–protein
interaction server

http://www.biochem.ucl.ac.uk/bsm/PP/server/
server help.html Jones and Thornton, 1996

Protein–DNA interaction
server

http://www.biochem.ucl.ac.uk/bsm/DNA/server/ Jones
et al., 1999

T A B L E 11.2. Resources Classifying Protein Structure

Resource Details

SCOP The Structure Classification of Proteins
http://scop.mrc-lmb.cam.ac.uk/scop/ Murzin et al., 1995

CATH Class(C), Architecture(A), Topology(T) and Homologous
superfamily (H).
http://www.biochem.ucl.ac.uk/bsm/cath new/index.html
Orengo et al., 1997

DALI DALI Domain Dictionary
http://www.embl-ebi.ac.uk/dali/domain/ Dietmann and Holm,
2001

VAST Vector Alignment Search Tool
http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml
Gibrat, Madej, and Bryant, 1997

CE Polypeptide chain comparison http://cl.sdsc.edu/ce.html
Shindyalov and Bourne, 1998

3Dee Protein Domain Definitions
http://jura.ebi.ac.uk:8080/3Dee/help/help intro.html Siddiqui
and Barton, 1995

CAMPASS CAMbridge database of Protein Alignments organized as
Structural Superfamilies
http://www-cryst.bioc.cam.ac.uk/∼campass/ Sowdhamini
et al., 1998
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T A B L E 11.3. Popular Resources of Protein Interactions

Resource Details

DIP Database of Interacting Proteins http://dip.doe-mbi.ucla.edu/
Xenarios et al., 2002

BIND The Biomolecular Interaction Network Database
http://www.bind.ca/ Bader et al., 2001

MINT Molecular Interactions Database
http://tweety.elm.eu.org/mint/index.html

T A B L E 11.4. Popular Resources Visualizing Macromolecular Structures

Resource Details

Jena Image Library Images depicting biological function and useful links to other
resources http://www.imb-jena.de/IMAGE.html Reichert and
Sühnel, (2002).

PDBSum Summaries for all protein structures including protein-ligand
interaction http://www.biochem.ucl.ac.uk/bsm/pdbsum/

NDB Atlas Protein-DNA complexes
http://ndbserver.rutgers.edu/NDB/NDBATLAS/

STING Sequence and property browser http://mirrors.rcsb.org/SMS/
GRASS Static GRASP images of electrostatic and surface properties

http://trantor.bioc.columbia.edu/GRASS/surfserv enter.cgi
General World Index of Molecular Visualization Resources

http://molvis.sdsc.edu/visres/

referenced throughout. The reader is also referred to the annual edition of Nucleic
Acids Research dedicated to molecular biology databases that appears in January and
that includes descriptions of many of the resources outlined here (volume 30(1) in
2002; 29(1) in 2001; 28(1) in 2000).

THE ADDED-VALUE PHILOSOPHY

At the time of the its inception in the early 1970s, the PDB had only a few entries
available and information technology to manage these data was in its infancy. However,
as the number of entries in the PDB grew slowly during the 1980s, comparative analysis
of these entries became possible, supported by new algorithms, faster computers to run
these algorithms on this growing body of data, and the availability of databases to
efficiently access these data.

Attempts at comparative analysis of PDB data revealed deficiencies in both the
content and the format of the data. This subject is discussed in Chapter 8 and is
not considered further here. Today the PDB is committed to provide consistent and
complete information on the macromolecular structure and the experiment used to
determine that structure. These rich and complex biological data provide many with
the opportunity to add value to these data. As a consequence researchers are faced
with a large array of resources from which to choose. This chapter introduces a subset
of these resources that we consider to be important to a large audience.
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Figure 11.1. The flow of macromolecular structure data. Primary Information is derived directly

from experiment. All completed macromolecular structures in the public domain are deposited

with the PDB. It is anticipated that in the future incomplete structures will also be available from

the structural genomics projects. Additional primary information, such as sequences, crystalliza-

tion conditions, and the structure of small molecule ligands, are available in primary resources

other than the PDB. A variety of actions are performed on these primary data and a set of

secondary resources result.

OTHER PRIMARY INFORMATION RESOURCES

Not all primary information on macromolecular structure is located in the PDB (Fig-
ure 11.1). Here we consider three additional sources of primary information. First,
there is information of crystallization conditions which have been extracted from the
literature. Second, there is information on small organic molecules, a number of which
are covalently or non-covalently bound to large biological macromolecules. Third, there
is the growing body of information derived from structural genomics projects.

Biological Macromolecule Crystallization
Database—http://wwwbmcd.nist.gov:8080/bmcd/bmcd.html

The Biological Macromolecule Crystallization Database (BMCD) contains crystal data
and the crystallization conditions, which have been compiled by human annotators
from the literature (Gilliland, Tung, and Ladner, 1996). Currently, BMCD includes
3547 crystal entries for 2526 biological macromolecules. These entries include pro-
teins, protein–protein complexes, nucleic acids, nucleic acid–nucleic acid complexes,
protein–nucleic acid complexes, and viruses. In addition to including crystallization
data reported in the literature, the BMCD holds data from the NASA Protein Crystal
Growth Archive, including data generated from studies carried out in NASA’s micro-
gravity environments as well as results from microgravity experiments conducted by
other international space agencies.
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BMCD addresses what is often the most difficult and time-consuming step in
the determination of a macromolecular structure by X-ray crystallography—the crys-
tallization of the macromolecule (see Chapter 4). The late Max Perutz once said
“crystallization is a little like hunting, requiring knowledge of your prey and a cer-
tain cunning.” Some structure models deposited in the PDB report the conditions used
for the successful crystallization, but many do not. Hennessy and coworkers (Hen-
nessy et al., 2000) have recently documented the usefulness of the information stored
in BMCD for predicting crystallization conditions. The structural genomics projects
(Chapter 29) are in addition now collecting and storing information on failed crystal-
lization experiments, signaling a new era. These negative results can be considered as
useful as those that led to successful diffraction experiments.

Cambridge Structural Database: Small Molecule Organic
Structures—http://www.ccdc.cam.ac.uk/prods/csd/csd.html

The Cambridge Structural Database (CSD) is the small molecule equivalent of the PDB,
that is, a primary resource for crystal structure information of nearly a quarter million
organic and metal organic compounds (Allen and Kennard, 1993). Crystal structures,
deposited directly to the CSD or manually annotated from the literature, are derived
from both X-ray and neutron diffraction. The CSD contains three distinct types of
information for each entry that can be categorized according to their dimensionality:

1. One-dimensional (1D) information. This category includes all of the biblio-
graphic information for the particular entry and a summary of the structural
and experimental data. The text and numerical information include the names
of the authors, compound names, and full journal references, as well as the
crystallographic cell dimensions and space group. Where applicable, descrip-
tions of absolute configuration, polymorphism form, and any drug or biological
activity are also included.

2. Two-dimensional (2D) information. Data encoded as a chemical connection
table including atom and bond properties and a chemical diagram of the
molecule. Atom properties include the element symbol, the number of connected
nonhydrogen atoms, the number of connected hydrogen atoms, and the
net charge.

3. Three-dimensional (3D) information. Data used to generate a 3D representa-
tion of the molecule. These data include the atomic Cartesian coordinates, the
space group symmetry, the covalent radii, and the crystallographic connectivity
established by using those radii.

The data format used by the CSD, CIF or Crystallographic Information File (Hall,
Allen, and Brown, 1991), is a small-molecule version of the macromolecular CIF
(mmCIF, Chapter 8). Both CIF and mmCIF are endorsed and maintained by the Inter-
national Union of Crystallography (IUCr).

CSD is distributed by the Cambridge Crystallographic Data Center (CCDC) as
a commercial product for local installation. Network access to CSD information is
currently made available free of charge to academic users in the United Kingdom and
Europe. In addition, individual entries can be retrieved from the CSD using a simple
form that requires at least a name, an e-mail address, and, for location of the entry,
the CSD accession number and a complete journal reference of the CSD entry. On
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submission of the form, results are returned within three business days via e-mail. It
is anticipated that the access to CSD will change in the near future and readers are
referred to http://www.ccdc.cam.ac.uk/ for current information.

Structures Not Yet Available

It is useful to know what macromolecular structures will likely be available at some
point in the future. Two resources provide this information and both are maintained by
the PDB. The first are those structures already solved and deposited in the PDB, but
not yet available. These can be reviewed at http://www.rcsb.org/pdb/status.html. These
structures are either on hold pending publication of the associated paper, or on hold
for a longer period to permit the depositor to fully exploit his or her data. This period
usually does not exceed one year. The second are those structures being determined
by the structural genomic projects worldwide. These data range from a description of
the target sequence under consideration, to a status of the structure determination, to a
final 3D model. Details can be found at http://targetdb.pdb.org. A brief discussion of
structural genomics concludes this chapter.

SECONDARY RESOURCES

The resources described in this section are presented in no particular order and represent
a cross section of what is available worldwide. Additional resources are listed in
Tables 11.1 through 11.4. Where available, information is provided on current update
frequencies, data formats and the underlying technology used. In most cases, users of
these secondary resources can expect a delay between the release of a structure by the
PDB and the availability of derivative information on the structure through a secondary
resource. As the rate of deposition of structures increases (see Chapter 29), resources
that rely on semiautomated update requiring human annotation will lag behind. As
indicated throughout this book, the future will likely see a concerted effort in new
and improved algorithms to automatically generate and statistically validate secondary
information.

Sequence and Structure Relationships to Provide Nonredundant Data:
The ASTRAL compendium—http://astral.stanford.edu/

The PDB file format does not always provide an explicit relationship between the
SEQRES records of biological sequence information and the ATOM/HETATM records
that contain the Cartesian coordinates for each amino acid or nucleotide. While this
shortcoming has been fully addressed in the mmCIF format, most structural bioinfor-
matics software currently uses PDB files. The ASTRAL compendium (Brenner, Koehl,
and Levitt, 2000) is a collection of data files and tools, providing a partially curated
mapping of these records as produced by the program pdb2cif (Bernstein, Bernstein,
and Bourne, 1998). The mapping is distributed in a text format named Rapid Access
Format (RAF) that can easily be parsed by computer programs. The RAF file includes
mappings for all PDB chains represented in the first seven classes of SCOP (see
Chapter 12). It is used as the definitive sequence-mapping resource for ASTRAL and
SCOP but is also intended as a useful resource for any PDB user.

Using RAF data the primary role of ASTRAL is to maintain nonredundant sequence
sets corresponding to unique protein domains as defined by SCOP (Chapter 12). This
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information is helpful for the analysis of evolutionary relationships between domains
based on sequence alignments. It also serves to reduce the redundancy in the PDB
by filtering out protein sequences with varying degrees of sequence identity, leaving a
representative conforming to the most accurate structure determination. The PDB has
also recently begun to offer a similar capability.

Redundancy arises in the following ways, given a repository that accepts all
structures solved by the worldwide community. First, different groups can deter-
mine the same or very similar structures independently. Second, a point mutation,
occurring naturally or introduced post-translationally to analyze biological function
or structure folding, leads to a very similar structure. For example, approximately
700 lysozyme structures can be found in the PDB where almost every position in
the structure, and combinations thereof, have been modified. The Protein Mutation
Resource (PMR; http://pmr.sdsc.edu) analyzes these data in more detail. Third, struc-
tures are often determined multiple times with different ligands bound to them (e.g.,
HIV-1 proteases with different inhibitors bound), without significant change in the
protein itself.

PDBselect (Hobohm and Sander, 1994) was the first widely used reduced set
of protein structure data. When performing such reduction an important question
becomes, how to choose the representative? All approaches employ an initial ranking
of structures based on the widely used quality parameters for X-ray structures: resolu-
tion and R-factor. ASTRAL uses in addition a Stereochemical Check Score (SCS),
combining scores from PROCHECK (Laskowski et al., 1993) and WHATCHECK
(Hooft et al., 1996), two well-known stereochemical quality assessment programs.
Based on this combined overall “Summary PDB ASTRAL Check Index” (SPACI)
score, structures are chosen as representatives for others at sequence identity cut-
offs at set percentages. ASTRAL also provides access to nonredundant sets filtered
by E-value or SCOP classification, that is, corresponding to class, fold, superfamily,
and family.

Providing Links to Literature, Sequence, and Genome Information:
The MacroMolecular DataBase (MMDB)—
http://www.ncbi.nlm.nih.gov/Structure/

The Macromolecular Database (MMDB) maintained by the National Center for
Biotechnology Information (NCBI) contains all experimentally determined structures
from the PDB (Ohkawa, Ostell, and Bryant, 1995). It is updated on a monthly
basis and provides linkage to structural information from NCBI’s integrated query
interface Entrez. Entries in MMDB are specified using an Abstract Syntax Notation One
(ASN.1; http://asn1.elibel.tm.fr/). MMDB provides access to coordinates, sequences,
all bibliographic information and taxonomy data, as well as the authors and deposition
dates together with the PDB assigned classification and compound information of a
PDB entry.

The assignment of the correct species of origin of a specific PDB chain is based
on a semiautomated procedure in which a human expert validates the automatically
assigned taxonomy annotation based on sequence comparisons with GenBank and
SwissProt. A set of rules ensures the consistency of this approach. Missing annotations
are generated from literature information or using BLAST searches. Artificially gen-
erated protein and nucleic acid chains (excluding trivial modifications such as single
amino acid substitutions or His-tags) are labeled as “synthetic.”
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Beyond enabling the query for structures based on the textual information
described, MMDB also provides structural neighbor assignments produced by the
Vector Alignment Search Tool (VAST; Madej et al., 1995; Gibrat et al., 1996). Each
chain of each entry in MMDB is compared with every other chain to compile a list
of structural neighbors. These are made available for individual chains as well as for
domains. In addition, MMDB can be queried with user-supplied coordinate sets to find
entries based on structural similarity.

The information stored in MMDB and Entrez allows for the seamless exploration
and query of literature references, sequence information, taxonomical and genomic
data associated with macromolecular structures. Other resources, including the PDB,
provide links to some of these data, however, MMDB uniquely combines them into
a single resource. NCBI also provides several graphics tools including the application
CND3 for 3D structure visualization.

Derived Secondary Structure of
Proteins—http://www.sander.ebi.ac.uk/dssp/

The Derived Secondary Structure of Proteins (DSSP) resource provides secondary
structure assignments computed from structure using an algorithm developed in the
early 1980s by Wolfgang Kabsch and Chris Sander (Kabsch and Sander, 1983). This
approach is discussed more fully in Chapter 17.

The DSSP resource consists of the dssp program itself (licensed at no cost to
academic users and available for commercial licensing) and the dssp-generated flat
files, one per PDB entry. Using a standardized representation, the DSSP file contains
the secondary structure assignments, geometric structure, and solvent exposure for
each residue. These data are also available from a variety of Web sites. In contrast, the
PDB files provide annotator-validated secondary structure assignments based on the
PROMOTIF program (Hutchinson and Thornton, 1996).

Protein Quaternary Structure—http://pqs.ebi.ac.uk/

Structure determination does not always provide the functional form of a biological
macromolecule. Rather, it provides the tertiary structure as found in the asymmet-
ric unit of the crystal, whereas it is the quaternary structure—the macromolecu-
lar assembly of two or more copies of tertiary structure elements that form homo-
or hetero-multimers—that infer biological function. Viral protein coats are beauti-
ful examples of biological function inferred by the organization of tertiary structure
into a quaternary biologically active assembly (see VIrus Particle ExploreR; VIPER;
http://mmtsb.scripps.edu/viper/viper.html; Reddy et al., 2001 for examples specific to
viruses). The Protein Quaternary Structure (PQS) resource maintained by the Macro-
molecular Structure Database (MSD) group at the European Bioinformatics Institute
(EBI) provides an automatically derived assessment of the biological unit of a PDB
entry determined by X-ray crystallography (Hendrick and Thornton, 1998).

The Cartesian coordinates found in a PDB entry generally correspond to the asym-
metric unit of the molecule as found in the crystal and represent the unique atomic
positions that are refined against the experimental data. However, these coordinates
do not necessarily correspond to the biologically active molecule. The necessary
crystallographic symmetry operations as defined by the space group and possibly
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noncrystallographic symmetry operations1 must be applied to generate the biologi-
cally active quaternary structure. This is done through the application of rotation and
translation to the individual atoms listed in the PDB entry.

Automating this procedure is nontrivial. The process must distinguish between
an assembly that is a truly biologically active molecule and an assembly that is a
number of discreet biologically active components associated through crystal pack-
ing, but having no physiological relevance. It should be noted that the PDB now
seeks to capture the interpretation of the biologically active molecule from the struc-
tural biologists depositing the structure data rather than attempt to only determine it
automatically.

The PQS procedure is well documented on the Web site and only a synopsis is
given here. For nonvirus structure PQS performs two steps: generate the assembly and
assess the assembly for the likelihood it is a quaternary structure. The first step involves
applying any noncrystallographic symmetry and then recursively adding symmetry-
related contents to the asymmetric unit. If close contacts are found this is considered a
candidate quaternary structure. The second step determines the nature of the contacts
using the solvent-accessible surface. The premise being that components forming a
quaternary complex will have a lower solvent-accessible surface than those that exist
as discreet globular proteins.

PQS provides its results in the form of PDB-formatted files that include the list
of all symmetry operators and all calculated coordinates. In addition, PQS provides a
description of the quaternary structure, for example, “homo dimer” or “hetero tetrade-
camer.” Virus entries are treated differently in that several files are provided that include
the complete virion, and separate, symmetry-related files as well as a file containing
all chains needed to describe all the unique protein–protein interfaces.

Comparisons with literature derived information as well as information provided
by individual researchers was used to determine a rough measure of accuracy for the
PQS procedure (Hendrick and Thornton, 1998). Using 6739 entries available from
the PDB in December 1997, 1398 were determined to be potential homo-dimers. Of
these, 244 were assigned to have nonspecific (crystal-packing) contacts. This could
be confirmed for 31 entries based on the available textual information. The remaining
1154 entries were assigned true homo-dimer status. This status could be confirmed for
385 entries, could not be confirmed for 386 entries, and was found to be false posi-
tive for 383 entries. Of those 383, 190 were lysozymes, which exhibit very strongly
associated crystallographic packing, underscoring the difficulty in automatically deter-
mining the difference between specific and nonspecific macromolecular associations.
Other examples of seemingly incorrect predictions include a prediction of a 24meric
assembly of the transcription repressor protein rop (PDB identifier 1GTO). While the
biologically active molecule in fact is a DNA-associated dimer, the authors of the crys-
tal structure describe a “hyperstable helical bundle” in the crystal structure, possibly
due to artificial solid-state interactions.

In summary, while caution needs to be exercised in using PQS-generated quater-
nary structure predictions, the resource nevertheless provides a valuable starting point
to the determination of the biologically active molecules represented by the asymmetric
units given in the PDB entries.

1If the molecule exhibits its own symmetry, then refinement of the structure may be undertaken only on the
part considered unique, the tertiary structure is then generated from the coordinates present in the PDB and
the application of noncrystallographic symmetry. See PDBids 2HHB and 3HHB for contrasting examples
from the same molecule, deoxy hemoglobin.
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Protein–Ligand Interactions:
ReliBase—http://relibase.ccdc.cam.ac.uk/

The biological function and regulation of proteins often involves the binding of smaller
organic or inorganic molecules that commonly are grouped together under the term
ligands. Metal ions, anions, solvate molecules (except water), cofactors, and inhibitors
are generally all regarded as ligands. ReliBase, developed primarily by Dr. Manfred
Hendlich and now maintained at the Cambridge Crystallographic Data Center (CCDC),
contains experimental PDB structures with ligands and structures where only the ligand-
binding partner was modeled into the structure (Hendlich, 1998). DNA and RNA
strands are visualized in result sets as ligands but cannot be searched. ReliBase provides
access to its entries via text queries over the HEADER, COMPOUND, and SOURCE
records of the PDB files, as well as the names of authors, chemical names of ligands,
and their PDB assigned three letter codes. In addition, ReliBase can be queried using a
protein sequence or SMILES strings (string representations of 2D structural fragments
or molecules; Siani, Weininger, and Blaney, 1994). Finally, it is possible to search
ReliBase using 3D diagrams drawn using a Java applet.

ReliBase results are easy to browse and include 2D diagrams of ligands, bib-
liographic and some additional textual information from the PDB entries as well
as convenient links to searches for similar ligands, binding sites, or protein chains.
Query results can be stored as hitlists, which can be used in SMILES or 2D/3D
searches. In addition, binding sites can be superimposed and visualized in different
ways using static images, graphic applets, or client-side visualization tools such as
Rasmol (Sayle and Milner-White, 1995). Third-party tools integrated into ReliBase
include the sequence search package FASTA (Pearson, 1990) and the computational
chemistry tool kit CACTVS (Ihlenfeldt et al., 2002), which is used to generate 2D
diagrams in ReliBase.

ReliBase is the product of several industrial/academic partnerships and is written in
C++ with a Perl CGI WWW front end. Stand-alone distributions for several platforms
are available from the CCDC on request.

Protein Families

Often macromolecular structure information is only a part of a larger study on a
particular family of proteins that are functionally related. Resources capturing such
comprehensive information are usually developed by individual research laboratories
with interest in specific protein families. The general notion is to be narrow but deep
versus resources such as the PDB, which are broad but shallow with respect to their
information content. Stated in another way, the PDB contains a limited amount of
information on all macromolecular structures; resources such as those described in
this section integrate structure as part of additional information on a specific protein
family. A couple of these resources are highlighted to indicate the kind of content
that is available. Similar resources to those discussed here exist for chaperonins,
the P450 family, cytokines, esterases, G protein-coupled receptors, glucoamylases,
kinesins, thyroid hormone receptors, topoisomerases, and viruses. A more complete
list and associated Web links can be found at the CMS Molecular Biology Resource
at http://restools.sdsc.edu/biotools/biotools25.html.

Protein Kinase Resource—http://pkr.sdsc.edu/. The Protein Kinase Resource
(PKR) includes detailed structure classifications, sequence and structure alignments,
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sequence classifications, motif recognition, and information on relationships to diseases
with the overall goal of providing a comprehensive compendium for an important class
of enzymes involved in cell signaling (Smith et al. 1997). PKR includes expert manual
sequence alignments as well as automated alignments based on specific family pro-
files. Structure alignments are provided using a modified version of the Combinatorial
Extension algorithm (CE; http://cl.sdsc.edu/ce.html; Shindyalov and Bourne, 1998).

PKR can be searched using a simple text form as well as advanced search forms and
by queries based on protein sequences, isoelectric point, and molecular weight. Protein
entries include bibliographic information, functional information, and sequence details,
as well as links to other sequence and structure-based resources such as SwissProt,
InterPro, PDB, and others. Other information includes a collection of experimental
method descriptions such as activity assays or purification protocols, a directory of
researchers, and a list of upcoming meetings, as well as a series of tutorials on kinases
and their functions, including their involvement in cancer. PKR also maintains an
active e-mail list for the discussion of protein kinase-related questions. Details on how
to join the list are provided on the PKR web site.

PKR is maintained at the San Diego Supercomputer Center by Drs. Roland H.
Nieder and Michael Gribskov using the relational database MySQL. PKR currently
contains approximately 9100 protein kinase sequences.

HIV Proteases—http://www.ncifcrf.gov/HIVdb/. The HIV Proteases resource
(HIVpr) archives experimentally determined structures of Human Immunodeficiency
Virus 1 (HIV1), Human Immunodeficiency Virus 2 (HIV2) and Simian Immunodefi-
ciency Virus (SIV) proteases and their complexes (Vondrasek, Buskirk, and Wlodawer,
1997). The structures contained in HIVpr include 63 structures not currently available
through the PDB that were made available by several pharmaceutical companies for
exclusive use by the resource. An additional 120 structures are taken from the PDB.

The information provided by HIVpr includes tabular listings of ligand/enzyme
complexes, enzyme inhibitors, and proteinase mutants. In addition, analytical informa-
tion on volume analysis, interaction energy, surface analysis, subsite occupation, and
structural superpositions are made available in graphic form. The resource is searchable
through a simple text field and results are presented in tabular form including biblio-
graphical information, PDB accession numbers, if applicable, and inhibitor information
including graphic representations.

HIVpr was developed in the group of Dr. Alex Wlodawer and is maintained at the
National Cancer Institute.

Metalloproteins—http://metallo.scripps.edu/. The Metalloprotein Database
and Browser (MDB) is part of the Metalloprotein Structure, Bioinformatics, and Design
Program at The Scripps Research Institute (TSRI). MDB provides quantitative infor-
mation and tools to visualize protein metal-binding sites from structures taken from
the PDB (Castagnetto et al., 2002). Approximately one-third of all structures in the
PDB contain a metal ion.

Entries are extracted from the PDB and added to MDB with a set of automatic
tools that periodically scan newly released PDB structures for the occurrence of metal
ions. An indexing tool extracts first- and second-shell data, recognizes multinuclear
and cluster-containing sites, and classifies metal-binding sites according to criteria
such as the number of metal ions in the site, the types of ions, and metal coordination.
Noncovalent interactions are also determined within and among indexed shells.
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MDB can be queried with a variety of methods ranging from simple text-based
queries to fairly complex SQL queries that fully realize the power of the underlying,
fully documented relational database schema. Real time 3D viewing of binding sites is
provided through a Java applet that enables the user to inspect atom–atom distances,
bond angles, and torsion angles. Structure superpositions, stereo viewing, and selection
of atoms based on distance are also possible.

In addition to the interactive query and analysis interfaces provided to users, MDB
offers noninteractive gateways for incorporation of MDB data into stand-alone pro-
grams. Most notably, MDB supports an XML-RPC-based interface, a remote procedure
calling protocol that uses the hypertext transfer protocol (http) and Extensible Markup
Language (XML) for the exchange of data. XML-RPC is a simple protocol that allows
complex data structures to be transmitted, processed, and returned. The protocol would,
for example, allow a metal-site design program to obtain an up-to-date list of observed
ranges for a certain geometric feature (e.g., torsion angle) to compare a suggested
model value with those found in known metalloproteins.

MDB is built on top of the relational database system MySQL and uses the pow-
erful Web-scripting language PHP as a front end. The Java applet is also used by other
sites such as the IMB Jena Image Library of Biological Macromolecules (Reichert and
Suhnel, 2002) as a gateway to MDB.

Macromolecular Motions Database—http://molmovdb.mbb.yale.edu/
molmovdb/. The Macromolecular Motions Database (MolMovDB) describes and sys-
tematizes known motions that occur in proteins and other macromolecules. Associated
with MolMovDB are a set of free software tools and servers for structural motion
analysis (Gerstein and Krebs, 1998; Krebs and Gerstein, 2000).

MolMovDB addresses an important phenomenon in biochemistry, the precise
movement of many atoms within a macromolecule that often plays a crucial role in its
function. Macromolecular motions are essential in, for example, enzymatic reactions,
allosteric regulation of activity, transporter functionality, and locomotion. Due to the
involved timescales, which range from subnanosecond loop closures to refolding span-
ning several seconds, it is near impossible to study these motions with a single com-
putational approach like molecular dynamics due to the computational intractability.

MolMovDB currently contains more than 4200 entries. Of these, 3800 have been
automatically extracted from the PDB, 230 have been manually curated, and 200
have been submitted by users. Protein motions are categorized first by the informa-
tion available on the motion, its size (distinguished are fragment, domain, and chain
motions) and lastly by type of motion. Motions of proteins involving fragment or
domain motions are primarily characterized as consisting of either a “shear” motion
(sliding of a continuously maintained and tightly packed interface) or as a “hinge”
motion (movement of two domains connected by a flexible linker without a con-
tinuously maintained interface). Motions of subunits are predominantly classified as
“allosteric”, “nonallosteric,” or “complex.” Each individual motion in the database
is assigned a mnemonic accession code and a classification code. For example, the
motion in calmodulin is accessible under the identifier “cm” and is classified as a
“known domain motion, hinge mechanism” (D-h-2). A total of 29 such classifiers
were established and are documented.

MolMovDB is searchable by keyword and/or by PDB identifier. Curated entries are
also listed for easy access. Each entry is accompanied by its classification, links to PDB
structures (via their PartsList entries, see Parts List: Dynamic Fold Comparisons below),
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a description of the motion, and particular values describing the motion. Movies are
associated with each entry and available in several formats. The Morph Server software,
which automatically generates these movies, was developed by Dr. Werner Krebs in
collaboration with Prof. Mark Gerstein at Yale University. The Morph Server produces
2D and 3D animations of plausible pathways between two endpoints of a particular
motion. A typical morph takes a few minutes to compute and results are stored for
later access. Morphing involves an adiabatic-mapping algorithm to interpolate two PDB
input files. A particular pathway is broken up into several equal length steps, at each
step interpolated coordinates are subjected to an energy minimization “refinement” to
correct for bond length, bond angle, and torsion angle aberrations. The Morph Server
is accessible as a stand-alone tool for users wishing to generate their own movies based
on two given structures.

MolMovDB is built on top of the freeware relational database MySQL and a Perl
based CGI front end; some computationally intensive components of the site (Morph
Server) are partially implemented in C/C++, FORTRAN, and Python/MMTK. The
WWW front end is easy to navigate for any user but SQL dumps are also available
for advanced users on request from the maintainers.

Parts List: Dynamic Fold Comparisons—http://bioinfo.mbb.yale.edu/
partslist/. The number of structures in the PDB is expected to increase significantly
in the next few years, specifically with the advent of structural genomics (see also
Chapter 29 and a short perspective at the end of this chapter). However, the number of
protein folds is quite limited and analyses and reanalyses of this finite parts list from
an expanding number of perspectives will probably become more and more informa-
tive as the list reaches completeness. The resource described in this section, PartsList,
allows users to dynamically compare this emerging and linked set of protein folds.

PartsList is based on the Structural Classification of Proteins (SCOP; see
Chapter 12) fold classification and functions as supplemental annotation to SCOP.
Folds in PartsList (represented by domains corresponding to specific folds and/or
superfamilies in SCOP) are ranked on a growing number of currently more than 180
attributes. These attributes include the occurrence in completely sequenced genomes,
the number of occurrences of a fold in the PDB, participation in protein–protein
interactions, the number of known functions associated with a fold, the amino acid
composition, participation in protein motions, and the level of similarity based on
a comprehensive set of structural alignments using the Gerstein/Levitt algorithm.
(Gerstein and Levitt, 1998; Quian et al., 2001).

Three ways of visualizing the fold rankings are provided by PartsList: first a profiler
emphasizing the progression of high and low ranks across many preselected attributes,
next a dynamic comparer for custom comparisons, and finally a numerical rankings
correlator. Traditional single-structure reports are provided to summarize information
related to genome occurrence, expression level, motion, function, and interaction with
additional links to many other resources.

The ranking provided by PartsList allows for a comparison of folds using a unified
approach. The numerical values associated with each rank can be used to compare the
very different attributes of a fold; for example, expression levels and participation
in protein–protein interaction. Access to tabular comparisons is made available for
all individual fold rankings according to individual attributes. For example, users can
readily switch between occurrence, interaction, motion, or alignment information for
a fold identified with the Profiler, Comparer, or Correlator tool. In addition, PartsList
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is searchable by PDB or SCOP accession number and text files (summary tables and
structural alignments) are made available for download.

PartsList is maintained in Prof. Mark Gerstein’s group at Yale University. The
resource provides “extrinsic” information on protein folds, that is, putting a fold into
the context of all other folds according to specific criteria.

Automated Comparative Modeling: Swiss-Model—http://www.expasy.
org/swissmod/. Protein modeling involves the generation of a theoretical model
of a protein structure based on its sequence and one or more known structures
with more or less similar sequences. In recent years, many automated approaches
have been reported in the literature and several servers are available for users to
generate their own structural models (see Chapters 25–28). The Swiss-Model server
(Guex and Peitsch, 1997) is one example of many structure-prediction and modeling
resources and the reader is referred to a more comprehensive listing available at
http://restools.sdsc.edu/biotools/biotools9.html.

Swiss-Model offers several modes in which users can generate and refine their
models. In addition, the structure-viewing program Swiss-PDBViewer has been tightly
integrated with the modeling resource. Swiss-PDBViewer enables the analysis of sev-
eral proteins at the same time. Proteins can be superimposed to generate structural
alignments in order to compare relevant parts, for example, their active sites. Amino
acid mutations, hydrogen bonds, bond angles, and distances between atoms are dis-
played via graphic and menu interfaces. Swiss-PDBViewer can also read electron
density maps for detailed interpretation of structures, various modeling tools are inte-
grated, and command files for use in popular energy minimization packages can be
generated. Although both Swiss-Model and Swiss-PDBViewer can be used indepen-
dently, the combination of both can be used to generate structural models.

Swiss-Model uses structure templates extracted from the PDB, their sequences,
and the ProModII modeling package to generate the actual models. Users are able to
submit their own templates in PDB format for use in ProModII. The automatic template
selection step involves a BLAST query of the Swiss-Model template database given
user definable threshold values. The subsequent modeling procedure employed by Pro-
ModII involves the following eight steps: (1) Superposition of related 3D structures;
(2) Generation of a multiple alignment with the sequence to be modeled; (3) Generation
of a framework for the new sequence; (4) A rebuild lacking loops; (5) Completion and
correction of the structural backbone; (6) Correction and rebuilding of side chains;
(7) Verification of the model structure’s quality and a check of its packing; and
(8) Refinement of the structure by energy minimization and molecular dynamics. Gen-
erated models are sent to users by e-mail and can be imported, analyzed, and manip-
ulated in Swiss-PDBViewer.

Swiss-Model and Swiss-PDBViewer were developed in the group of Dr. Manuel
Peitsch and are maintained at part of the Expert Protein Analysis System (ExPASy)
server of the Swiss Institute of Bioinformatics.

Sources of Targets and Prediction Methods. While the cost of structure
determination is decreasing rapidly, it will probably never become as cheap as the
cost of sequencing. Hence, the ratio of the number of structures to the number of
sequences will remain at several orders of magnitude. Yet, as the number of struc-
tures continues to rise, they provide a rich source of template information for structure
prediction using techniques such as homology modeling and threading. Progress in
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these areas is monitored by the Critical Assessment of Structure Prediction (CASP)
experiments that are conducted every two years (Chapter 24). At the CASP meet-
ings, prediction methods are compared, rated, and hotly debated (Venclovas et al.,
2001). Predictions can be performed in 1D (secondary structure, solvent accessibil-
ity), 2D (inter-residue distances), and 3D (ab initio prediction, homology modeling
such as implemented by Swiss-Model, and threading). Resources even exist to evalu-
ate prediction servers (see, for example, EVA, http://cubic.bioc.columbia.edu/eva/ and
LiveBench, http://bioinfo.pl/LiveBench/). To facilitate these prediction efforts, if the
depositor permits, sequences of solved protein structures are now released ahead of
the structures by the PDB to permit unbiased experiments from a continuous source of
new targets (see http://www.rcsb.org/pdb/status.html). Another source of targets are the
sequences registered by the structural genomics projects in a target database maintained
by the PDB at http://targetdb.pdb.org/.

STRUCTURAL DATABASES OF THE FUTURE

Integration Over Multiple Resources

The world of on-line information available to structural biologists has become
extremely balkanized as the number of resources available as well as the information
content provided by these resources has increased exponentially in the last decade of the
twentieth century (Williams, 1997). Most databases available today on the Web provide
a good number of cross-links to other resources with relevant information. However,
in almost all nontrivial cases (i.e., those cases where the link is not simply based on
an obvious identifier in the remote resource), these cross-links have to be added and
maintained by human curators. In order to create such links automatically, database
maintainers have to first agree on a common nomenclature or provide a comprehensive
ontology of the information available through their resources for interconnection with
other ontologies. Much progress has been made in this area and the PDB curation
efforts of the RCSB are a notable example.

The “following” of links provided to other (internal or external) information is a
common action in browsing the content on any Web site. This process has been auto-
mated early on in the short history of the Web, leading to the creation of so-called “web
crawlers,” which retrieve a start page given by a Uniform Resource Locator (URL)
and follow all links provided on this page. By recursively following all links on sub-
sequently retrieved pages, this approach would theoretically lead to a comprehensive
collection of all interlinked pages. A similar approach, refined for use with molecu-
lar biology-based information resources, is used by the Molecular Information Agent
(MIA, http://mia.sdsc.edu/). MIA, which originates in the laboratory of Prof. Michael
Gribskov at the University of California, San Diego, is an Application Programmer
Interface (API) and program framework built on the notion of resource-specific ref-
erence templates and a set of keys or identifiers. A reference to a specific page can
be generated from a template and a key. For example, taking the reference template
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId= for the Structure Explorer page at the
PDB together with the key 2CPK, a specific structure identifier, will result in the refer-
ence for the PDB Structure Explorer page summarizing data available for the structure
of a cAMP-dependent protein kinase. Similarly, any Medline citations available for
2CPK can be assembled from the PubMed/Macromolecular Database citation tem-
plate at the NCBI http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=t&form=
6&Dopt=m&uid= and the same key 2CPK.
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In a typical application, MIA would retrieve all specific references it can gener-
ate based on the templates it knows of (these are stored in a database) and a given
key. By parsing the retrieved pages, all references to other resources or known keys
can be extracted. The extracted references can then be used to extract additional keys
or can be directly followed for further iterations. To expand on the example above,
MIA parses the PDB Structure Explorer page for any occurrence of an enzyme clas-
sification (EC). Using that EC number (2.7.1.37 in the case of 2CPK) as a new
key, MIA then assembles additional references for pages that are based on a qual-
ified EC number, for example the EcoCyc metabolic pathway information (Karp and
Paley, 1994).

Any reference generated by MIA is stored in a relational database for future
retrieval together with information on the history of how the reference was obtained
and when it was last checked for the availability of information at that URL. This
specific check is important as not all databases are updated synchronously with each
other and often information from a secondary resource will not become available for
a while; for example, whereas the PDB is updated weekly on Tuesdays, the NCBI
PubMed/MMDB references are updated only once a month. In this manner, MIA can
be used to automatically assemble a large number of verified cross-links based on a
single starting point. Since these links can be stored in a relational database, they can
easily be retrieved “on the fly,” a feature that is available on the PDB’s Structure
Explorer’s “Other Resources” pages (Fig. 11.2).

Figure 11.2. Example of the PDB’s ‘‘Other Sources’’ Web page for deoxyhemoglobin

(PDBid 4HHB).
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In principle, the information retrieved by MIA could be stored in the same database
and used for queries. This solution would provide a complement of local information,
but raises issues of copyright.

Database Interoperability Beyond Cross-Links

The approach taken by MIA is a simple mechanism for generating and maintaining
a large number of specific cross-references. However, the approach has three draw-
backs: (1) The assembly of a resource-specific URL based on a specific key relies on
a published template for this URL, the key itself, and the parsing of the resulting page.
If the maintainers of the remote resource decide on a design change, these assump-
tions may no longer be true and the system breaks down. (2) The repeated retrieval
of information is very resource intensive both on the MIA end and on the remote
resource end. A resource newly added to MIA that provides access to information
based on a specific type of key would be queried for all known instances of this key
within a short period of time using the Hypertext Transfer Protocol (http) protocol.
(3) The MIA approach is somewhat wasteful in that very small pieces of informa-
tion (often only the instance of a specific key) are extracted from a large body of
data returned from a remote server. Several recent developments promise to overcome
the limitations of approaches such as the one used by MIA through a much more
closely connected database infrastructure. Most notably, Java based multitier architec-
tures based on J2EE design patterns (www.java.sun.com) or programming-language
independent Common Object Resource Broker (CORBA) provide standard interfaces
not only to their specific data but also to the functionality available at a specific site.
These interfaces allow programmers to incorporate remote procedure calls in their
applications to efficiently retrieve and manipulate specific data items enabling the
direct integration of multiple remote resources without the need for resource-specific
parsers or the batch transfer of a lot of information not actually utilized in the particular
application.

The Impact of Structural Genomics

Structural genomics (Burley et al., 1999; see also Chapter 29) is an effort to develop
and employ high-throughput structure determination for purposes including the filling
in of protein fold space to facilitating comparative modeling, the determination of
as many protein structures from a given genome as possible, or the furthering of
our understanding of specific diseases or biochemical pathways. Although the goals
may differ, the process is the same and will result in a large number of structures,
estimated to reach 35,000 by 2005 (Bourne, 1999). Many of these structures will
be incomplete, having been discarded in a partially completed state, since they were
not deemed useful for the goals of a given project. Others will be complete, but
for the first time functionally unclassified. Although efforts are under way to ensure
the central deposition of all structural genomics results, many of these data might
not be available centrally from the PDB, given the expected lack of annotation or
their level of incompleteness. This situation will likely change, but it may be that
the user will need to visit multiple sources of structure information for a complete
coverage of all available macromolecular structures. The promise of what could come
is given in part by the structural genomics target registration database maintained by
the RCSB at http://targetdb.rcsb.org/. This database currently contains 14,000 entries,
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some of which will be solved and will further enrich the large variety of databases
of derived information described in this chapter. While resource maintainers are faced
with new challenges to judge and automatically handle the quality of the structure
information available as well as to deal with the sheer amount of it, users will shortly
have even richer information resources available from which to study structure function
relationships. The fact that these resources already greatly increase our understanding of
biological systems is a testament not only to those individuals who produce the primary
structure data, but to all those who have developed and maintained the resources
described herein.
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PROTEIN STRUCTURE EVOLUTION
AND THE SCOP DATABASE

Boojala V. B. Reddy and Philip E. Bourne

The structure of a protein can reveal its function and its evolutionary history. Extract-
ing this information requires knowledge of the structure and its relationships with
other proteins. The structure and its relationships require a general knowledge of the
folds that proteins adopt and detailed information about the structure of many proteins.
Nearly all proteins have structural similarities with other proteins and, in many cases,
share a common evolutionary origin. The knowledge of these relationships makes
important contributions to structural bioinformatics and other related areas of science.
Further, these relationships will play an important role in the interpretation of sequences
produced by genome projects. To facilitate the understanding and access to available
information for known protein structures, Murzin and co-workers (1995) have con-
structed a Structural Classification of Proteins (SCOP) database. The SCOP database
is based on evolutionary relationships and on the principles that govern their three-
dimensional structure. It provides for each entry links to coordinates, images of the
structure, interactive viewers, sequence data, and literature references. The database
is freely accessible on the World Wide Web (http://scop.mrc-lmb.cam.ac.uk/scop). To
understand the rationale behind SCOP, we begin with a discussion of protein evolution
from a sequence, structure, and functional perspective.

THE EVOLUTION OF PROTEINS

Proteins that have descended from the same ancestor retain memory of that ancestor
through the sequence, structure, and function. Murzin (1998) discussed various aspects
of the evolution of sequence, structure, fold, and function with specific examples.
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Strong sequence similarity alone is considered to be sufficient evidence for common
ancestry. Close structural and functional similarity together is also accepted as suffi-
cient evidence for distant homology between proteins that lack significant sequence
similarity. But neither structural nor functional similarity alone is considered to be
strong evidence. Proteins of independent origin may well have similar structures due to
physicochemical reasons, and they may also evolve similar functions due to functional
selection referred to as divergent-evolved structures. Although in theory descendents
from the same ancestor may have different functions and even different structures, they
would be very difficult to detect.

The Evolution of Fold

It is generally accepted that in distantly related proteins, structure is more conserved
than sequence. Proteins that have diverged beyond detectable sequence similarity still
retain the architecture and topology of their ancestral fold. The reasons for this struc-
tural conservation are not completely understood. In principle, a protein chain can have
more than one stable fold. One theory states that protein evolution passed through a
stage in which selective pressure from the physical demands on the protein chain
required that it have just one stable and fast-folding conformation. Another theory
states that half way toward the convergence of all protein structures into a set of small,
mostly stable protein folds, this stage was aborted and replaced by the present state of
affairs whereby the most selective pressure comes from functional constraints. Evolu-
tion requires that existing proteins continue to function, which would be interrupted if
the protein’s fold changed significantly. Notwithstanding, a protein fold can change in
a minor way during evolution by keeping all the secondary structure elements the same,
packed and connected exactly the same way, but some of the connecting loops may be
organized differently. The structural similarity between seemingly unrelated proteins
are often explained by convergence to a stable fold as opposed to divergence from a
common ancestor. The convergence implies not only that given proteins are of inde-
pendent origin but also that they had different original folds. With no evidence for their
difference in original fold, they are referred as having undergone parallel evolution.

The Evolution of Enzymatic Catalysis

Proven cases of distantly related enzymes with very different functions are very rare
and therefore are of great value for the understanding of the origin of enzymatic activ-
ity. The precision and complexity of the active sites of modern enzymes did not happen
by chance but evolved from primitive catalytic features of ancestral proteins. Primi-
tive enzymes were probably less efficient, but they also could have had a broader
range of activities. If this were the case, the devolution of these activities would allow
improvements in both efficiency and specificity through customization of the active-
site architectures with additional specificity-determining groups. Within the active site,
the original catalytic features are likely to remain conserved and can be revealed by
structural comparison. When a protein evolves to a new function, the protein fold can
change before freezing again, having developed new functional constraints. A sim-
ple way of altering a protein fold without significant destabilization is to change its
topology while maintaining its architecture. This can be done by the internal swap-
ping of similar α-helices and β-strands or by reversing the direction of some of its
secondary structures. There are many proteins with similar secondary structures and
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architectures but different topologies that could be related in such a way; for example,
an immunoglobulin domain and plastocyanin or an SH3 domain and GroES.

The Comparison of Structures

In current methods for structure comparison the significance of structural similarity is
measured by a score derived from the number of residues in the common structural
core and their root mean square deviation. These values reflect the arrangement of
regular secondary structures, whose packing and topology are determined by stere-
ochemical rules rather than by evolutionary constraints. The common ancestry may
manifest itself in more subtle features, such as the conservation of rare and unusual
topological and packing details and other structural irregularities that are less likely to
occur independently. Within the common structural core, there may also be conserved
turns, α-helical caps, β-bulges, and other small structural elements.

Early work on protein structures showed that there are striking regularities in
the way in which secondary structures are assembled (Levitt and Chothia, 1976;
Chothia, Levitt, and Rachardson, 1977) and in the topologies of the polypeptide chains
(Richardson, 1976, 1977; Sternberg and Thornton, 1976). These regularities arise from
the intrinsic physical and chemical properties of proteins (Chothia, 1984; Finkelstein
and Ptitsyn, 1987) and provide the basis for the classification of protein folds (Levitt
and Chothia, 1976; Richardson, 1981). The structure comparison methods (Holm and
Sander, 1993; Shindyalov and Bourne, 1998) and structure classification (Orengo et al.,
1993; Overington et al., 1993; Yee and Dill, 1993) provide a further systematic rela-
tionship among protein structures. Resources are now available for recognition of the
relationships between protein structures and several are discussed in this book. The
SCOP database hierarchically organizes proteins according to their structures and evo-
lutionary origin (Murzin et al., 1995; Conte et al., 2000). The database forms a resource
that allows researchers to study the nature of protein folds, to focus their investigation,
and to rely on expert-defined relationships. SCOP is the most cited resource for clas-
sifying proteins. In the context of structural bioinformatics it provides a reductionism
that facilitates many of the studies outlined in this book.

SCOP HIERARCHY

The method used to construct the protein classification in SCOP is the visual inspection
and comparison of structures first compared using automatic procedures. The SCOP
database is organized on a number of hierarchical levels, with the principle ones being
family, superfamily, fold, and class. Within this hierarchy, the unit of categorization is
the protein domain since domains are typically the units of protein evolution, structure,
and function. Small- and medium-sized proteins usually have a single domain and are
treated as such. The domains in large proteins are classified individually. Thus, different
regions of a single protein may appear in multiple places in the SCOP hierarchy under
different folds or, in the case of repeated domains, several times under the same fold.

In SCOP, families contain protein domains that share a clear common evolutionary
origin, as evidenced by sequence identity or extremely similar structure and function.
Superfamilies consist of families whose proteins share very common structure and
function, and therefore there is reason to believe that the different families are evo-
lutionarily related. Folds consist of one or more superfamilies that share a common
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Figure 12.1. Major SCOP classes and their fold content as of March 2001.

core structure (i.e., same secondary structure elements in the same arrangement with
the same topological connections). Finally, depending on the type and organization of
secondary structural elements, folds are grouped into four major classes. In addition,
there are several other classes of proteins that are atypical and therefore difficult to
classify (Fig. 12.1).

The following explanation, derived from the work of the authors of the SCOP
database (Brenner et al., 1996), describes how the protein structures at each of the
different levels have been classified.

Classes

Initially a protein structure is classified into domains. A domain is a region of the
protein that has its own hydrophobic core and has relatively little interaction with
the rest of the protein, making it is structurally independent. Typically, domains are
collinear in sequence, which aids in their identification, but occasionally one domain
will involve two or more regions of sequence from one or more polypeptide chains
that are not collinear. Hence, in some cases, automated, or for that matter, manual
identification of domains by an expert is not straightforward (Chapter 18).

Assuming a domain structure, placing it in the appropriate class is a straightforward
task. It should be readily apparent whether a domain consists exclusively of α-helices,
β-sheets, or some mixture thereof. It is possible that an all-β protein can have small
adornments of α or 310 helix. Similarly, all-α structures may actually have several
regions of 310 helix, and in rare cases, small β-sheets outside the α-helical core.

Domains with a mixture of helix and sheet structures are divided into two classes,
α/β (alpha and beta), and α + β (alpha plus beta). The α/β domains consist princi-
pally of a single β-sheet, with α-helices joining the C-terminus of one strand to the
N-terminus of the next. Commonly in α/β proteins we see two subclasses: in one sub-
class, the β-sheet is wrapped to form a barrel surrounded by α-helices; in the other,
the central sheet is more planar and is flanked on either side by the helices. Domains
that have the α and β units largely separated in sequence fall into the α + β class.
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The strands in these structures do not have the intervening helices; they are typically
joined by hairpins, leading to antiparallel sheets such as are found in all-β class folds.
However, α + β structures may have one, and often a small cluster, of helices packing
tightly and integrally against the sheet.

In addition to the four classes of globular protein structures, SCOP contains a few
other classes, namely: multidomain proteins, membrane and cell surface proteins, small
proteins, coiled coil proteins, low-resolution structures, peptides, and designed proteins
(SCOP 1.55 release, March 2001). Multiple-domain proteins have different domains
placed in different classes. However, the different domains of these proteins have never
been seen independently of each other. The small protein class has structures stabilized
by disulfide bridges or by metal ligands rather than by hydrophobic cores. Membrane
proteins frequently have unique structures because of their unusual environment and
are therefore placed in a separate class.

Folds

Identification of the fold of a protein is the most difficult stage of classification. If
the proteins have the same major secondary structures in the same arrangement with
the same topological connections they are classified as one fold. A short description
of the major structural features is used as the name for the fold. Different proteins
with the same fold usually have peripheral elements of secondary structure and turn
regions that differ in size and conformation and, in the more divergent cases, these
differing regions may form half or more of each structure. For proteins placed together
in the same fold category, the structural similarity probably arises from the physics
and chemistry of proteins favoring certain packing arrangements and chain topologies.
There may be cases where a common evolutionary origin is obscured by the extent
of the divergence in sequence, structure, and function. In such cases it is possible that
the discovery of new structures, with folds between those of the previously known
structures, will make clear their common evolutionary relationship.

As of SCOP release 1.55 (March 2001) there are 138 classified folds in all α
proteins, 93 folds in all β proteins, 97 folds in α/β and 184 folds in α + β classes
(Figure 12.1, Table 12.1). The best way to characterize fold is to look first at the major
architectural features and then identify the more subtle characteristics.

T A B L E 12.1. SCOP 1.55 Release Has 13,220 Protein Data Bank entries (March
2001), 31,474 Domains (Excluding Nucleic Acids and Theoretical Models)

Class Folds Superfamilies Families

All alpha proteins 138 224 337
All beta proteins 93 171 276
α/β proteins 97 167 374
α + β proteins 184 263 391
Multidomain proteins 23 28 35
Membrane and cell surface proteins 11 17 28
Small proteins 54 77 116

Total 605 947 1557
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Superfamilies

Protein structures classified in the same superfamily are probably related evolutionarily
and therefore they must share a common fold and usually perform similar functions.
If the functional relationship is sufficiently strong, for example, the conserved inter-
action with substrate or cofactor molecules, the shared fold can be relatively small,
provided it includes the active site(s). Proteins from the superfamily may have low
sequence identity.

Families

Proteins are clustered together into families on the basis of one of two criteria that
imply their having a common evolutionary origin. First, all proteins that have residue
identities of 30% and greater; second, proteins with lower sequence identity but whose
functions and structures are very similar. A small number of SCOP families embrace
a relationship that is above the standard family definition but below the superfamily
level. It is suggested that proteins that have a similar domain organization and share
a common fold in the catalytic domain, such as dihydrodipicolinate reductase and
the glyceraldehyde-3-phosphate and glucose-6-phosphate dehydrogenases, are likely
to be more closely related than those sharing a common fold in their coenzyme
domain only.

Sequence comparison is a simple and reliable way of learning about the struc-
tural and evolutionary relationships of proteins. If a sequence has 30% identity to a
protein of known structure, then an outline of its fold can be reliably deduced. If
there is significant similarity between a sequence and a protein in SCOP, then that
sequence can be put into the appropriate family, which then defines its superfamily,
fold, and class.

The major limitation of sequence comparison is that it fails to identify many of the
structural relationships in SCOP either because the sequence relationship has become
too weak (for evolutionarily related proteins) or never existed (for evolutionarily unre-
lated proteins with similar folds). Structure-structure comparison programs use various
methods to recognize similar arrangements of atomic coordinates and thus identify
domains of similar structure. Although these methods lack complete accuracy, they
can be used to suggest a shared fold between proteins of interest and others in SCOP.
Manual inspection must then be used to verify the choice of fold and to select the
appropriate superfamily. The selection of superfamily is the most challenging step of
protein classification, for it ascribes a biological interpretation to chemical and physi-
cal data. Therefore, the assignment of all proteins of known structure to evolutionarily
related superfamilies is perhaps the single most powerful and important feature of the
SCOP database.

ORGANIZATION AND CAPABILITIES OF THE SCOP RESOURCE

The SCOP database was originally created as a tool for understanding protein evolution
through sequence–structure relationships and determining if new sequences and new
structures are related to previously known protein structures. On a more general level,
the highest levels of classification provide an overview of the diversity of protein
structures. The specific lower levels are helpful for comparing individual structures
with their evolutionary and structurally related counterparts.
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T A B L E 12.2. SCOP Mirror Sites at Different Locations Around the World

Location Site URL

UK SCOP home server in Cambridge http://scop.mrc-lmb.cam.ac.uk/scop/
USA University of California, Berkeley http://scop.berkeley.edu/
Australia Walter and Eliza Hall Institute http://scop.wehi.edu.au/scop/

Australian National Genomics
Information Service (ANGIS)

Japan Biomolecular Engineering Research
Institute (BERI)

http://www.beri.co.jp/scop/

Taiwan National Tsing Hua University http://scop.life.nthu.edu.tw/
Singapore National University of Singapore
India Madurai Kamaraj University http://gene.tn.nic.in/scop/

Indian Institute of Science http://scop.physics.iisc.ernet.in/scop/
Center for DNA Finger Printing and

Diagnostics (CDFD)
http://www.cdfd.org.in:5555/scop/

University of Pune
Russia Institute of Protein Research http://scop.protres.ru/
Israel Wizmann Institute http://pdb.weizmann.ac.il/scop/
China Peking University http://mdl.ipc.pku.edu.cn/scop/
Italy Center for Biomedical Engineering,

Politecnico of Turin
http://loki.polito.it/scop/

The SCOP database is available as a set of tightly coupled hypertext pages on the
Web and can be accessed at the URL http://scop.mrc-lmb.cam.ac.uk/scop/.

For rapid and effective access to SCOP, a number of mirrors have been estab-
lished (Table 12.2). The facilities at various sites may differ with some sites providing
sequence similarities and other sites providing sequence and structure based phylogenic
relationships (Sujatha, Balaji, and Srinivasan, 2001). SCOP can be used for detailed
searching of particular families and browsing of the whole database with a variety of
techniques for navigation. Easy access to data and images makes SCOP a powerful
general-purpose interface, providing a level of classification not present in the Protein
Data Bank (PDB).

Browsing Through the SCOP Hierarchy

SCOP is organized as a tree structure. Entering at the top of the hierarchy, the user
can navigate through the levels of Class, Fold, Superfamily, Family, and Species to
the leaves of the tree, which are the structural domains of individual PDB entries.
The sequence similarity search facility allows any sequence of interest to be searched
against databases of protein sequences classified in SCOP using the algorithms BLAST,
FASTA, or SSEARCH. SCOP can be entered from the list of PDB chains found to
be similar and the similarity can be displayed visually. The keyword search facility
returns a list of SCOP pages containing the word entered or combinations of words
separated by Boolean operators. Pages are provided that order folds, superfamilies, and
families by date of entry into PDB.

In addition to the information on structural and evolutionary relationships contained
within SCOP, each entry has links to images of the structure, interactive molecular
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viewers, the atomic co-ordinates, data on functional conformational changes, sequence
data, homologs, and MEDLINE abstracts.

SCOP Use

SCOP has broad utility with a wide range of users. Experimental structural biolo-
gists may wish to explore the region of structure space near their protein of current
research. Molecular biologists may find the classification helpful because the catego-
rization assists in locating proteins of interest and the links make exploration easy. As
such, two important observations are made from this protein structure classification.
First, strikingly skewed distributions occur at all levels relative to what exists in nature,
based on analysis of complete genomes. This probably reflects the experimentalists’
bias toward particular proteins and protein families, as well as to the bias of nature
toward certain protein superfamilies and folds. Second, a retrospective analysis of the
growth of structural data gives an estimate of the total numbers of protein folds and
superfamilies that exist in nature and has shown them to be very limited indeed. It
seems that we may have already seen the majority of folds and have determined at
least one structure for some half of all superfamilies.

SCOP FROM A USER’S PERSPECTIVE

At the time of writing, the SCOP database has received over 700 direct citations since
it was made available in 1995 (Murzin et al., 1995). Here we summarize some areas of
protein structural bioinformatics where the SCOP database has been used extensively.
References cited in this paragraph are given in Table 12.3 broadly indicate how SCOP
has been used in recent years. First, SCOP classified groups of proteins were used
as a reference set of data to develop several automatic classification methods used
in analyzing families, superfamilies, and folds. These classifications were then exten-
sively used for integrative structural data mining to develop predictive methods and
structure-comparison tools (Pasquier et al., 2001; Bertone and Gerstein, 2001; Stambuk
and Konjevoda, 2001; Bukhman and Skolnick, 2001; Przytycka et al., 1999; Torshin,
2001; Lackner et al., 2000; Chou and Maggiora, 1998) Second, SCOP-classified pro-
teins were extensively used in understanding evolution of protein enzymatic functions
(Babbitt and Gerlt, 2001; Powlowski and Godzik, 2001; Todd et al., 1999; 2001; Konin
et al., 1998; Murzin, 1998), evolutionary change of protein folds (Grishin, 2001; Lupas
et al., 2001; Zhang and DeLisi, 2001; Thronton et al., 1999), and hierarchical struc-
tural evolution (Dokholyan and Shakhnovich, 2001; Paoli, 2001). Third, The SCOP
classification of proteins at the superfamily and fold levels were used to study distantly
related proteins with the same fold (Grigoriev et al., 2001; Teichmann et al., 2001b;
Thornton, 2001; Koehl, 2001). Fourth, SCOP is used to study sequence and structure
variability and its dependence in homologous proteins (D’Alfonso et al., 2001; Balaji
and Srinivasan, 2001). Fifth, SCOP families are used to derive amino acid similarity
matrices and substitution tables useful for sequence comparison and fold recognition
studies (Dosztanyi and Torda, 2001; Shi et al., 2001). Sixth, SCOP is helpful in study-
ing the structural anatomy of folds and domains, to extract structural principles for
use in protein design experiments (Teichmann et al., 2001a; Helling et al., 2001; Tay-
lor et al., 2001; Dengler, 2001). Seventh, SCOP domains have been used to study
combinations of different domains and their decomposition in multidomain proteins
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T A B L E 12.3. Partial List of References Where SCOP Classification
Was Used as the Basis for Analysis

Apic G, et al. (2001) J Mol Biol 310:311–25
Babbitt PC, Gerlt JA. (2001) Adv Protein Chem 55:1–28
Balaji S, Srinivasan N. (2001) Protein Eng 14:219–26
Bertone P, Gerstein, M. (2001) IEEE Eng Med Mag 20:33–40
Bukhman YV, Skolnick J. (2001) Bioinformatics 17:468–78
Chou KC, Maggiora GM. (1998) Protein Eng 11:523–38
D’Alfonso G, et al. (2001) J Struct Biol 134:246–56
Dengler U, et al. (2001) Proteins 42:332–44
Dokholyan NV, Shakhnovich EI. (2001) J Mol Biol 312:289–307
Dosztanyi Z, Torda AE. (2001) Bioinformatics 17:686–99
Govindarajan S, et al. (1999) Proteins 35:408–14
Grigoriev IV, et al. (2001) Protein Eng 14:455–8
Grishin NV. (2001) J Struct Biol 134:167–85
Helling R, et al. (2001) J Mol Graphics & Modeling 19:157–67
Kinoshita K, et al. (1999) Protein Sci 8:1210–7
Koehl P. (2001) Curr Opin Struct Biol 11:348–53
Konin EV, et al. (1998) Curr Opin Struct Biol 8:355–63
Kuroda Y, et al. (2000) Protein Sci 9:2313–21
Lackner P, et al. (2000) Protein Eng 13:745–52
Lupas AN, et al. (2001) J Struct Biol 134:191–203
Mizuguchi K, et al. (1998) Protein Sci 7:2469–71
Murzin AG. (1998) Curr Opin Struct Biol 8:380–387
Paoli M. (2001) Prog Biophys Mol Biol 76:103–30
Pasquier C, et al. (2001) Proteins 44:361–9
Powlowski K, Godzik A. (2001) J Mol Biol 309:793–806
Przytycka T, et al. (1999) Nat Struct Biol 6:672–82
Shi JY, et al. (2001) J Mol Biol 310:243–57
Stambuk N, Konjevoda P. (2001) Int J Quantum Chem 84:13–22
Sowdhamini R, et al. (1998) Acta Crystallogr D 54:1168–77
Sujatha S, et al. (2001) Bioinformatics 17:375–6
Taylor WR, et al. (2001) Rep Prog Physics 64:517–90
Teichmann SA, et al. (2001a) J Mol Biol 311:693–708
Teichmann SA, et al. (2001b) Curr Opin Struct Biol 11:354–63
Thronton M, et al. (1999) J Mol Biol 293:333–42
Thornton M. (2001) Science 292:2095
Todd AE, et al. (2001) J Mol Biol 307:1113–43
Torshin IY. (2001) Frontiers Biosci 6:A1–A12
Vitkup D, et al. (2001) Nat Struct Biol 8:559–66
Wolf YI, et al. (2000) J Mol Biol 299:897–905
Xu Y, et al. (2000) Bioinformatics 16:1091–104
Zhang C, DeLisi C. (2001) Cell Molec Life Sci 58:72–9

(Apic et al., 2001; Xu et al., 2000; Kinoshita et al., 1999; Chou and Maggiora, 1998).
Eighth, Recent structural genome projects have been using SCOP extensively in iden-
tifying new targets and for estimating the total number of protein folds (Vitkup et al.,
2001; Kuroda et al., 2000; Wolf et al., 2000; Govindarajan et al., 1999). Ninth, SCOP
families have been used for developing value-added and more specialized databases
(Sujatha et al., 2001; Sowdhamini et al., 1998; Mizuguchi et al., 1998).
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From this brief synopsis it should be apparent that we owe the SCOP authors a
debt of gratitude for providing a resource that has had great impact on the field of
structural bioinformatics.
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THE CATH DOMAIN STRUCTURE
DATABASE

C. A. Orengo, F. M. G. Pearl, and J. M. Thornton

During evolution protein sequences change due to mutations in their residues and
insertions and deletions of residues. These changes give rise to families of related
proteins and the earliest protein family resources, based solely on sequence data, were
first established in the 1970s by the pioneering work of Dayhoff. Since then many
sequence databases have been established and relationships are often detected using
alignment methods based on powerful dynamic programming algorithms adapted from
the realm of computer science. Such methods handle the residue insertions and deletions
occurring between distant evolutionary relatives very efficiently.

The structural data has always been more sparse than the sequence data due to
the technical challenges of structure determination. There is currently over two orders
of magnitude discrepancy between the sequence and structure resources. Thus, while
the Protein Data Bank (PDB) contains about 16,000 structural entries, the nucleotide
sequence databank at the National Centre for Biotechnology Information (NCBI) (Gen-
Bank) contains over 12 million entries.

Therefore, although the first crystal structures were solved in the early 1970s, it was
not until the mid-1990s that structural classifications began to emerge, primarily with
Structural Classification of Proteins (SCOP) (Murzin et al., 1995; Lo Conte, 2000),
DALI (Holm and Sander, 1996), and CATH (Orengo et al., 1997; Pearl et al., 2001)
databases and data resources (see Table 13.2). Several other classifications have arisen
since (see, for example, DDBASE (Sowdhamini et al., 1998), 3Dee (Dengler, Sid-
diqui, and Barton, 2001), DaliDD (Holm and Sander, 1998; Dietmann and Holm,
2001), reviewed in Holm and Sander, 1994b, and Orengo, 1994. These databases
use a variety of different algorithms for comparing three-dimensional (3D) structures
(see Chapter 16). They also differ in methods for measuring similarity between the
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structures and for clustering them into fold groups or protein superfamilies and fami-
lies. However, comparisons between three of the largest classifications (SCOP, DALI,
CATH) recently revealed a reasonable degree of correspondence (more than 80%)
between protein families generated using different protocols (Hadley and Jones, 1999).

Since structure is much more highly conserved than sequence during evolution, the
discovery of structural alignment algorithms and the development of structural clas-
sifications have made a significant contribution to the understanding of evolutionary
mechanisms as they have enabled much more distant evolutionary relatives to be identi-
fied. Furthermore, knowledge of a protein’s structure can provide important clues to the
functional mechanism and biological role of the protein, for example, protein–substrate
and protein–protein interactions (see Chapter 20). Because a large proportion of the
structural core of the protein (often more than 50%) is conserved even in very distant
relatives, structure alignments are much more accurate than sequence alignments and
this situation improves the identification of conserved structural features or sequence
motifs, which are often associated with protein function.

The largest structure classifications (SCOP, CATH) currently contain between
950–1400 protein superfamilies. However, these superfamilies currently map to nearly
one-third of the nonredundant sequences in the GenBank sequence database (∼25% on
the basis of equivalent residues). Furthermore, current structure genomics initiatives,
described in Chapter 29, will significantly increase the number of structures determined
over the next 10 years. Current estimates predict that there will be between 30,000 and
100,000 new structures before 2010. Because of the manner in which proteins are
being selected for structure determination, these new structures will be predominantly
from protein families currently unrepresented in the structure classifications or very
distantly related to known structural families. Therefore, we may soon have structural
representatives for most of the major protein families and for those of particular medi-
cal and biological interest, although some classes of structures such as transmembrane
proteins may remain difficult to determine. It is also likely that methods for detecting
distant relatives will improve in parallel and as a consequence of the growth in the
sequence and structure databases. Links between the sequence and structure databases
will also be promoted. The InterPro initiative has integrated several sequence databases
(Pfam, PRINTS, PROSITE, SWISS-PROT). There are also plans to integrate the struc-
ture databases SCOP and CATH and the European Macromolecular Structure Database
(EMSD) with the sequence databases InterPro and Pfam.

Structural classifications will therefore play an increasingly important role as rep-
resentatives from more of the protein families are structurally determined and the
mapping between structural families and genomic sequences improves. These resources
will provide key data for understanding function at the molecular level. In this chapter
we describe the CATH structural classification, its development, and the methods used
to update and search the resource. Analysis of the classification has revealed that some
protein families are very highly populated, a finding that has important implications
for understanding evolutionary mechanisms.

HISTORICAL DEVELOPMENT

The CATH domain structure database was established in 1993 when fewer than 3000
protein structures had been determined. Nearly a decade later the database has expanded
considerably and contains ∼13,000 protein structure entries from the PDB compris-
ing 33,000 structural domains. CATH also contains over 200,000 sequence domains
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extracted from GenBank entries and assigned to one of the 1200 CATH homologous
superfamilies using profile-based approaches. Since the domain was considered to
be an important evolutionary unit and also because structural prediction and homol-
ogy modeling methods are often more successful on a domain basis, CATH was
initially established as a domain-based database. However, sequence- and structure-
based relationships are also determined between multidomain proteins, and CATH
now contains families and superfamilies of multidomain proteins with links to their
constituent domains.

Most publicly available structure classifications are derived using sequence-
based and/or structure-based protocols. These range from the completely automated
approaches of DALI and the DALI Domain Database (Holm and Sander, 1998) through
to the largely manual approach used in compiling the SCOP database. In the CATH
database semiautomated protocols are used for clustering structures both phonetically,
that is, purely on the basis of structural similarity, and phylogenetically on the basis of
apparent evolutionary relatedness. Any ambiguities in the assignments from automated
protocols are validated manually and major bottlenecks in the classification correspond
to the detection of domain boundaries and the verification of homologous relationships.

CATH is a hierarchical classification comprising four major levels (see Fig. 13.1).
In fact CATH is an acronym for these levels: Class, Architecture, Topology, and Homol-
ogy. At the top, the protein class is determined by the secondary structure composition

C

A

a a&b b

TIM barrel Sandwich Roll

T

(4fxn) (1mblA1)
b lactamaseFlavodoxin

Figure 13.1. Schematic representation of the class, architecture, and topology/fold levels in the

CATH database.



252 THE CATH DOMAIN STRUCTURE DATABASE

and packing using an automated approach. Architecture describes the orientation of the
secondary structures in 3D space, regardless of their connectivity. For example, a large
number of protein structures adopt alpha–beta barrel architectures, in which a central
barrel of beta strands is enclosed within an outer barrel comprising a layer of alpha
helices (see Figure 13.2). At the next level in the hierarchy, topology, both secondary

a Bundle (2ccy) a Non-Bundle (1eca) a Horseshoe (1lrv)

a Solenoid (1pprM) aa Barrel (1cem) b Roll (1pht)

b Barrel (2por) b Clam (3bcl) b Sandwich (2hlaB)

b Distorted Sandwich (1cdq) b Trefoil (1afcA) b Orthoganol Prism (1msaA)

b Aligned Prism (1vmoA) b 4-Propellor (1hxn) b 6-Propellor (1nscA)

(a)

Figure 13.2. Molscript representations of the 30 major architectures in the CATH hierarchy.
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b 7 Propellor (2bbkH) b 8 Propellor (3aahA) b 2 Solenoid (1tsp)

b 3 Solenoid (2pec) b Complex(1ppkE2) ab Roll(1std)

ab Barrel (4timA) ab 2-Layer Sandwich (1brsD) ab 3-Layer Sandwich(aba) (1ntr)

ab 3-Layer Sandwich(bba) (1pyaB) ab 4-Layer Sandwich (2dnjA) ab Box (1plq)

ab Horseshoe (1bnh) ab Complex (1pyp) ab Propellor (1h70A)

(b)

Figure 13.2. (Continued)

structure orientation and connectivity between the secondary structures is taken into
account in describing the fold of the protein. For the example shown in Figure 13.1,
the three-layer alpha–beta sandwich architecture contains more than 100 different folds
or topologies in which the secondary structures adopt a similar shape in 3D but the
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T A B L E 13.1. Description of the Levels in the Classification at the Architecture Level

Primary Classification
Number Description of Level

1 Mainly α
2 Mainly β
3 αβ

4 Few secondary structures
5 Multidomain proteins
6 Single-domain proteins classified by sequence but not

structure
7 Ambiguous multidomain proteins whose domain

boundary assignment requires manual validation.
Protein chains clustered at the sequence level

8 New proteins classified by sequence methods
9 Chains from multichain domains classified by sequence

connectivities between them can differ considerably as shown by the schematic rep-
resentations in the illustration. At the fourth and perhaps most biologically important
level in the classification, homologous superfamily, proteins are grouped according to
whether there is sufficient evidence (structural, sequence, and/or functional similarity)
to support an evolutionary relationship. Within each homologous superfamily, proteins
are clustered into sequence families at different levels of sequence identity (35%, 60%,
95%, 100%). More recently, protocols have been developed for identifying functional
families within each superfamily.

There are currently three major classes within CATH, corresponding to mainly-
alpha domains, mainly-beta domains, and alpha–beta domains. Other categories
distinguished at the class level are multidomain proteins, domains comprising few
secondary structures, and three groups corresponding to proteins at different stages
in the classification and pending assignment to a particular fold group or superfamily
(see Table 13.1). In the December 2001 release, CATH contained 36 architectures, the
major architectures of which are shown in Figure 13.2, 780 fold groups, and 1390
homologous superfamilies. Further statistics on the database and discussion of the
population of different levels are given later in this chapter.

CURRENT METHODOLOGIES FOR IDENTIFYING STRUCTURAL
AND PHYLOGENETIC RELATIONSHIPS IN CATH

Structural relationships in the CATH database were initially identified using the power-
ful structure-comparison algorithm, SSAP, devised by Taylor and Orengo in 1989 that
incorporated a modified dynamic programming algorithm performing at two levels,
thus enabling comparison of 3D information. More recently, fast graph-based methods
for structure comparison have been implemented to enable the database to keep pace
with the structure genomics initiatives. In fact sequence-based methods are first used
to detect close relatives, as these are much faster than structure comparison and pair-
wise methods are reliable for relatives with 35% or more sequence identity. Sensitive
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profile-based sequence methods are used to detect more distant homologues that can
then be verified by structural similarity.

The strategy used in classifying new structures into the database can thus be
broken down into five major steps: (1) Close relatives are identified first using pairwise
sequence methods. (2) Sequence profiles and structure comparison protocols are used
to detect more distant relatives. (3) Structures unclassified at this stage are then exam-
ined using both automatic and manual procedures to determine domain boundaries.
(4) Unclassified domain structures are recompared using the methods employed in
steps 2 and 3. (5) Finally, any structures remaining unclassified are manually assigned
to architectures within CATH or new architectures are described (see Fig. 13.3). The
algorithms and manual validation protocols, used at different stages of the classification,
are described below.

Sequence-Based Protocols for Identifying Homologous Structures

Several studies have shown that when two proteins share more than 30% identities in
their sequences, they have similar structures and can be assigned to the same super-
family. Furthermore, pairwise sequence alignment methods are reasonably robust at
these levels of sequence identity. In CATH, the global alignment method of Needle-
man and Wunsch (1970) has been implemented and since Schneider and Sander (see
Rost, 1999) have shown that there is a length dependence with small unrelated pro-
teins, <100 residues, sometimes exhibiting sequence identities as high as 30%, a more
cautious threshold of 35% identity is used to detect homologues. To reduce errors
further, we check that at least 80% of the larger protein is aligned against the smaller
protein. Any relatives missed at this stage of the classification are captured later using
structure-comparison methods.

Relatives identified by these pairwise methods are clustered into their respective
families using a single linkage clustering algorithm. Single linkage was chosen because
the structural data is quite sparse in some families and it is known that sequences can
diverge considerably, so it is not reasonable to expect a new relative to share significant
sequence similarity with a large number of other relatives in the family.

Profile-based methods are used to detect more distant homologues. A number of
protocols have been implemented. PSI-BLAST and the related IMPALA algorithms
developed by the Altschul group (1997) have been shown to be among the most sen-
sitive methods available. In these approaches, a sequence is scanned against a large
sequence databank (i.e., GenBank at the NCBI) initially using pairwise methods to find
close homologues, which are then multiply aligned to derive a sequence profile cap-
turing the most specific residue preferences of that sequence and its relatives. Further
iterations can result in highly specific profiles for the family to which the sequence
belongs. Hidden Markov Models can also be applied and the SAMT method of Karplus
and co-workers (Karplus and Hu, 2001) has been used to build profiles for each non-
identical representative in CATH and also for structurally and functionally coherent
families within the database. New structures are therefore scanned against both the
IMPALA and SAMT profiles for representative structures already classified in CATH.
For example, there are currently 7345 SAMT profiles including those built from indi-
vidual single and multidomain proteins and those generated from multiple alignments
of functionally related proteins.

Both methods (IMPALA and SAMT) have been benchmarked using known rel-
atives from CATH and parameters and thresholds optimized to give the maximum
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coverage for a small (<1%) error rate. Any relatives detected using these thresholds
are subsequently validated by structure comparison (see below). The power of these
sequence based approaches has been increased considerably by expanding CATH with
sequence relatives from GenBank. These have been cautiously integrated into CATH
superfamilies giving a 10-fold increase in the size of the database and effectively pro-
viding an intermediate sequence library for each family that broadens the scope of that
family in sequence space, considerably enhancing the detection of distant homologues.
Benchmarking trials using CATH (Pearl et al., 2001) demonstrated that although nearly
51% of distant structural homologues could be recognized by scanning against profiles
derived from CATH structures, this percentage increased to 82% when profiles from
intermediate sequence libraries for CATH were scanned.

Nearly three-quarters of all new structures are currently recognized using sequence-
based methods, and the profile-based methods enable a further 10%, comprising very
distant homologues, to be detected. This percentage will increase as the sequence
databases and therefore the intermediate sequence libraries within CATH continue to
grow with the international genome projects.

Structure-Based Methods for Identifying Structural Homologues
and Related Folds (SSAP and GRATH)

A significant proportion of distant relatives, currently about 15%, can only be recog-
nized by comparing the structures directly. There are now many examples of evo-
lutionary relatives that have diverged to an extent where no significant sequence
similarity can be detected and yet the structural fold adopted by the protein remains
highly similar. For example in the globins, sequence identities of relatives can fall
below 10% but the structures and oxygen-binding functions of the proteins remain
highly conserved. As with sequence alignment, any method for comparing distant
structural relatives must be able to cope with the extensive insertions or deletions
occurring during evolution. Insertions and deletions are usually restricted to the loops
between secondary structures where they are less likely to affect the fold and there-
fore the stability of the protein. However, in some families we have observed that
secondary structures and sometimes quite large supersecondary motifs can be inserted
or deleted.

In addition to residue insertions and deletions, shifts in the secondary structures can
also occur to modulate the effects of volume changes caused by residue substitutions.
Chothia and Lesk demonstrated quite significant movements of up to 40 degrees in
some secondary structure pairs for two large protein families studied (the globins and
the immunoglobulins). Analysis of families in CATH revealed that on average at least
50% of the secondary structures in the core of the protein are structurally well conserved
across a family. However, although the fold of a protein family, comprising the core
structural motif, may be well conserved currently, in about 10% of families there can
be significant structural embellishments to this core and shifts in the orientations of
the secondary structures. Sometimes these evolutionary changes give rise to modified
or diverse functions within the family (see Todd, Orengo, and Thornton, 2001 for
a review).

Sequential Structure Alignment Program (SSAP). In order to address these
problems, Taylor and Orengo adapted the dynamic programming methods used so
successfully in sequence alignment to compare 3D structures (see Orengo, 1996 for a
detailed description and review of applications). Instead of comparing residue identities,
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the method compares the structural environments of residues between two proteins.
Structural environments can be simply encoded as the set of vectors from the C-
beta atom of a particular residue to the C-beta atoms of all other residues within
the same protein. Since there is no prior knowledge of which residues are equivalent
between the proteins, dynamic programming must be applied at two levels: a lower
level in which the structural environments of all residue pairs between the proteins are
compared and an upper summary level in which information from putative equivalent
pairs are accumulated. The method is therefore sometimes described as double dynamic
programming.

SSAP has been benchmarked and optimized using sets of validated structural
homologues. A logarithmic scoring scheme was implemented that was optimized to be
largely independent of the size and class of the proteins, although proteins with large
proportions of alpha helices tend to give slightly higher scores as the local similarity
is so highly conserved. The score is normalized to be in the range of 0 to 100 for
identical proteins, irrespective of size and structures, with similar folds tending to give
scores above 70, while homologous proteins often give higher scores of 80 and above.
When classifying new structures, scores of 70 and above are required before proteins
are assigned to a particular fold group and again single-linkage clustering is used as
some families are too small to ensure that a significant proportion of known relatives
will have clear structural similarity (i.e., SSAP >70) to the new relative. Although
high SSAP scores suggest that the proteins may be homologues, these proteins are not
assigned at the superfamily level unless there is other evidence to support homology;
for example, sequence similarity detectable by PSI-BLAST or functional similarity
(discussed in more detail below).

Proteins are only classified into existing families of fold groups if the struc-
tural similarity detected extends for a significant proportion (more than 60%) of
the larger structure. This preserves the domain-based nature of the classification.
Thus, although new multidomain structures may contain one or more domains that
match existing CATH families, these are not clustered into their families until a later
stage in the classification when their domain boundaries have been reliably identified
(see below).

Graphical Method for Identifying Folds (GRATH). Although SSAP has proven
to be reliable and accurate, it is computationally expensive and large structures such
as TIM barrels with more than 300 residues can take several days to scan against the
database, using the most powerful machines currently available. This has not proved
to be a major bottleneck to date; however, structure genomics initiatives are expected
to increase substantially the numbers of structures determined annually. Currently 50 to
100 new structures are determined weekly and this number may double or treble over
the next decade. Therefore, to keep pace with structure genomics, a fast prefilter for
SSAP has been designed, based on graph theory. Similar approaches have previously
been implemented in the algorithm POSSUM designed by Artymiuk and co-workers
(Mitchell et al., 1990).

The method implemented in CATH–GRATH (graphical representation of CATH
structures) compares secondary structures between proteins, as there are an order of
magnitude fewer of these than residues. These are represented as linear vectors and
are associated with nodes in a protein graph. Edges between the nodes are character-
ized by the orientations of the secondary structures and the distances between their
midpoints. Additional angles are used to describe the tilt and rotations of the vectors.
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Ullmanns subgraph isomorphism algorithm is used to detect corresponding structural
motifs between proteins from comparison of their graphs. Parameters for recognizing
fold similarities have been optimized using validated relatives from CATH. GRATH
recognizes the correct fold within the top 10 matches of a database search 98% of the
time. Of importance, GRATH is 1000 times faster than SSAP for most proteins and
the top 10 matches returned from a search can be validated using the more accurate
SSAP method. Robust statistics (expectation values or E-values) have also been devel-
oped based on the extreme value distribution observed for a typical database scan.
These statistics indicate the significance associated with a match and are important for
determining the order in locating individual domain folds within multidomain proteins
(see below).

Because GRATH is so fast, multidomain proteins can now be structurally compared
to detect potential homologies that are then validated manually (see below).

Methods for Generating Multiple Structure Alignments (CORA)
and Protocols for Using 3D-Templates to Identify Distant
Structural Relationships

Multiple structure alignments are generated for each superfamily in CATH using a
modified version of the SSAP algorithm (consensus residue attributes, CORA). This
algorithm is based on progressive alignment of relatives using a single-linkage tree
derived from the pairwise SSAP similarity scores (see Orengo et al., 1997 for a more
detailed description). The most similar structures are aligned first and the next relative,
most similar to the aligned structures, is then iteratively selected and aligned in the
order dictated by the tree. After addition of each relative, a consensus structure is
derived consisting of average vectors between residue positions and information on
the variability of these vectors. Further relatives are aligned against this consensus
structure, weighting the alignment of conserved positions more highly.

Once all relatives have been aligned, information on the conservation of the
residue structural environment, including residue contacts and various other attributes
(e.g., accessibility, torsional angles), is compiled and encoded in a 3D template rep-
resenting the set of structures. In a manner analogous to the improvements obtained
using sequence profiles, structural templates have been shown to be far more effec-
tive at recognizing distant homologues as they capture the most conserved structural
characteristics of the family or superfamily. New structures can be scanned against
libraries of CORA templates, again using the double dynamic programming algorithm
and the percentage of highly conserved contacts for the superfamily that are present
in the putative relative is calculated (ConA), to determine homology. The pattern of
conserved residue contacts has been shown to be a highly characteristic topological
fingerprint for a particular superfamily.

CORA templates have been generated for each superfamily containing two or more
nonidentical structures, and in the more highly populated superfamilies there are mul-
tiple templates corresponding to clusters of more closely related structures or families
within the superfamily. Scanning against the template library is up to 100 times faster
than performing pairwise searches with SSAP on representative structures from the
superfamilies. The templates also show increased sensitivity and selectivity in recog-
nising structural relatives over the pairwise SSAP and these attributes can be expected
to increase as more in recognising structural relatives structures are determined and
coverage within each superfamily increases.
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Identification of Domain Boundaries

Any proteins unclassified by the sequence-based methods are divided into their con-
stituent domains where relevant, before resubmitting them to the sequence searches
and to the slower structure-comparison protocols, which often facilitates the structure
alignment as a smaller region of the comparison matrix is searched. Identification of
domain boundaries is a difficult process and although numerous automatic algorithms
have been devised (see Jones et al., 1998 for a review), most have an error rate of
between 20% and 30% associated with them. The problem arises from the fact that
no simple quantitative definition of a structural domain exists. Qualitatively, domains
have been described by various authors as compact semi-independent folding units
and many algorithms attempt to locate them by searching for large hydrophobic clus-
ters indicative of domain cores and also by dividing structures so as to maximize
internal residue contacts within putative domains and to minimize external contacts
between them.

In the October 2001 release of CATH, nearly 40% of PDB entries are multidomain
proteins, of which two-thirds comprise only two domains. Furthermore nearly one-
quarter of domains in CATH are discontiguous; that is, the domain is formed from
discontiguous segments of the polypeptide chain, and these cases are particularly dif-
ficult for the algorithms to detect. To improve accuracy, we employ a consensus-based
protocol DBS (Domain Boundary Suite) that applies three independent algorithms
PUU (Holm and Sander, 1994a), Domak (Siddiqui and Barton, 1995) and DETEC-
TIVE (Swindells, 1995) (see Jones et al., 1998 for a description of methods). Where
they agree within a tolerance of 10 residues, domains can be assigned completely
automatically. Otherwise each of the individual assignments is manually checked.

In addition we use a more recently developed protocol, employing GRATH and
based on the concept that domains are known to recur in different multidomain contexts.
It is now well established that domain shuffling is a common evolutionary mechanism,
often responsible for creating new or modified functions within an organism (see Todd,
Orengo, and Thornton, 2001 and Teichmann et al., 2001 for reviews). Recent analysis
of CATH revealed that at least 70% of the domains from multidomain proteins recurred
in different multidomain families or also occurred as single domain proteins. Therefore,
a simple domain-detection protocol is now used to search for known domains within
new multidomain structures. This protocol uses GRATH to compare the secondary
structure graph for each new putative multidomain protein with the library of graphs
from representatives from all the CATH domain families. Domains found within the
multidomain protein can then be extracted in order of decreasing statistical significance.
This approach has led to significant improvements in domain assignment as the E-
values returned by GRATH give a measure of the reliability in boundary prediction.

Any ambiguous assignments can be manually validated by coloring putative
domains in the excellent molecular viewing package, RASMOL (Sayle and Milner-
White, 1995). The majority of errors are found in this way, although in difficult
cases boundary identification is a somewhat subjective process as witnessed by the
fact that about 17% of boundary definitions in the SCOP and CATH databases
disagree. This step is one of the most time-consuming but important stages in the
classification. Although domain-boundary detection from structural data is difficult, it is
considerably easier than assignment from sequence data and many sequence databases
now incorporate the SCOP and CATH boundaries or use them to validate their own
assignments.
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Structural and Functional Validation of Homologues—The Dictionary
of Homologous Superfamilies

Sequence, structural, and functional data for each homologous superfamily in CATH
are stored within a Dictionary of Homologous Superfamilies (DHS), which is also
accessible over the Web. This dictionary was originally established in 1999 by Bray
and now also contains all the sequence relatives for CATH superfamilies identified
in GenBank. Information on pairwise relationships between all nonidentical structures
and sequences is also stored, namely, sequence identities, expectation values from
PSI-BLAST and SAM-T99; SSAP structural similarity scores and expectation values
from GRATH, where appropriate.

Pairwise SSAP alignments between all nonidentical structures in the superfamily
are also stored. Plots of sequence identities versus structural similarity scores can be
used to illustrate the structural plasticity observed within a given superfamily (for
example, see Fig. 13.4 for selected superfamilies), and any obvious outliers may
indicate problems in the alignment. CORA multiple-structure alignments are gen-
erated for each superfamily and can be viewed over the Web. These alignments
are annotated in various ways: by residue identities or physicochemical properties;
by secondary structure; and by PROSITE motifs. RASMOL viewers for multiple
superpositions of relatives allow the 3D location of conserved sequence motifs to
be easily identified.
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Figure 13.4. Structural plasticity plots showing the structural similarity for pairs of relatives in

selected CATH superfamilies, as measured by the SSAP algorithm (Taylor and Orengo, 1989), as

a function of sequence identity measured after structural alignment. To highlight the maximum

deviation for each pairwise sequence identity the minimum SSAP value recorded is shown. Red

dots are mainly-α globin superfamily and blue dots are the mainly-β Immunoglobulin. Figure also

appears in Color Figure Section.
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Of importance, the DHS contains increasing amounts of functional data for each
superfamily. These data are extracted from other public resources, for example,
PDB header records, PDBsum; SWISS-PROT; the Enzyme database; GenProtEC,
and PROSITE. In future releases the DHS will also provide functional annotations
collected from InterPro, Pfam, Gene Ontology, and metabolic pathway data. Summary
tables in the DHS can be used to peruse functional attributes for relatives across
the family. This information can be used diagnostically to determine whether a
new structural relative possesses a similar function to other members of the family
and is therefore clearly a homologue. However, since recent analyses of CATH
have revealed the extent to which function can be modified in some protein
families (see Todd, Orengo, and Thornton, 2001 for a review), the DHS also
contains all the sequence relatives detected for each superfamily, which considerably
expands the functional information available for a particular superfamily, making
it easier to find a relative with related function. It also reveals the extent to
which functional change can occur within the family and this can be taken
into account when assessing whether a protein with a similar fold is in fact
a homologue.

Protocols are currently being devised for automatically comparing functional anno-
tations between proteins in order to speed up the validation of homologues during
classification. However, we do not expect this approach to be viable for more than
about 30% to 50% of new relatives, a result suggested by the performance of sim-
ilar protocols employed by other groups. However, because this validation stage is
time consuming and another major bottleneck in the classification, we expect the new
protocols to significantly improve the frequency of CATH releases.

Recruiting Sequence Relatives into CATH Superfamilies

In order to gain as broad an understanding of function as possible within each protein
family and superfamily, sequence relatives are regularly recruited into CATH from Gen-
Bank. This recruitment is achieved using the profile-based methods described above,
namely, the 1D-profiles (PSI-BLAST) and iterative Hidden Markov Models (SAMT).
Nonidentical representatives from each class within CATH are scanned against Gen-
Bank using both PSI-BLAST and SAM-T99. A consensus method, DomainFinder
(Pearl et al., 2001), which uses conservative thresholds established by benchmarking
against validated structural homologues, is then used to extract those domain regions
from GenBank entries that can safely be assigned to CATH superfamilies. As with
structural entries, pairwise sequence alignment methods are subsequently used to update
sequence relationships within the superfamily and to enable clustering into sequence
families at 35%, 60%, 95%, and 100% identities. CATH currently contains nearly
200,000 sequence relatives identified in this way.

THE GENE3D RESOURCE

A related CATH-based Web resource, Gene3D, uses these assignments of gene
sequences to CATH superfamilies to provide structural annotations for completed
genomes. The June 2001 release of Gene3D contains 36 complete genomes obtained
from GenBank. For each gene within the genome, the location of gene regions that
match individual structural domains from CATH superfamilies are shown, together
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Figure 13.5. Comparison of fold usage in the eukaryotic, archaeal, and bacterial kingdoms

using the November 2000 release of CATH. The majority of frequently recurring folds currently

identified in all three kingdoms are alpha–beta proteins; particularly Rossman folds, TIM barrels.

Structural annotation of 21 bacterial genomes, 8 archaeal genomes and 1 eukaryotic genome

was performed using PSI-BLAST (Alschul et al., 1997) and the DomainFinder protocol (Pearl

et al., 2002).

with a consensus domain region determined by the DomainFinder algorithm. Links to
the relevant CATH superfamily and DHS entries are also provided. Statistics are given
on the distributions of superfamilies and fold groups identified within each genome,
enabling comparison of fold and superfamily usage between genomes (see, for example,
Fig. 13.5).

THE CATH WEB SITE AND SERVER

CATH is available over the Web at the address shown in Table 13.2. The site can be
used for browsing the hierarchy, and there are representative MOLSCRIPT illustrations
at each level together with links to other local resources (DHS, Gene3D, PDBsum
(Laskowski et al., 2001). Each level has its own unique numeric identifier that is never
changed, although some numbers may disappear; for example, if new evidence suggests
two superfamilies should be merged.

CATH data are stored within an Oracle 8i relational database. Special Oracle fea-
tures (e.g., associations, collections, inclusions) are utilized for storing relationships
and family membership and another Oracle feature, materialized views, is used to
create specialized views of the data for efficient searching. The database also con-
tains genome information (e.g., taxonomy, gene locations where available) used by
the Gene3D resource. The schema for CATH is part of a much larger schema for a
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T A B L E 13.2. URLs of the CATH Domain Structure Database and Related Resources

Resource URL

CATH Database: Classification of structural
domains in the PDB. Domains are grouped
by Class, Architecture, Topology (Fold) and
Homologous superfamily. There are links to
PDBsum.

http://www.biochem.ucl.ac.uk/bsm/
cath−new/

SSAP Server: The SSAP server allows users to
compare the structures of two proteins and
view the subsequent structural alignment.

http://www.biochem.ucl.ac.uk/cgi-bin/
cath/GetSsapRasmol.pl

CATH Server: The CATH server allows users
to compare a PDB or novel structure against
a representative library of structures in
CATH.

http://www.biochem.ucl.ac.uk/cgi-bin/
cath/CathServer.pl

Dictionary of Homologous Superfamilies: This
resource displays the structural alignments
for all members of a homologous
superfamily classified in the CATH database.
The alignments are augmented with ligand
information and SWISS-PROT annotations.

http://www.biochem.ucl.ac.uk/
bsm/dhs

Gene3D: Database of precalculated structural
assignments for genes and whole genomes.
The data are derived using PSI-BLAST and
IMPALA.

http://www.biochem.ucl.ac.uk/bsm/
Gene3D

IMPALA Server: This server allows the user to
screen a sequence against the CATH set of
IMPALA sequence profiles for protein
structural domains.

http://www.biochem.ucl.ac.uk/bsm/
cath−new/Impala/

protein family database (PFDB), which also contains sequence-based families identi-
fied using other classification protocols and currently contains data for virus families,
eye proteins, and other biological families being studied locally.

The database has a flexible design that allows proteins to participate in different
structural and functional relationships, that is, alternative methods of clustering can
easily be accommodated. The flexible design also has the benefit of allowing mapping
between families or clusters generated using different protocols or based on different
underlying philosophies, for example, functional versus structural.

Regular Updates of the CATH Web Site

The protocols used for updating CATH have already been described above (see also
Figure 13.3). To keep pace with structure genomics initiatives, sequence-based classifi-
cation (see Figure 13.3) of newly determined structures will be run at weekly intervals
and clearly identified relatives recruited into the database. Monthly releases of the
database are planned to make this data publicly available on a more frequent basis.
The assignment of domain boundaries is more time consuming as some validation
is required where GRATH and DBS results are ambiguous. Structure classification is
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also slower as validation is required to confirm homologues. Therefore, both domain-
boundary identification and structural classification are ongoing processes and those
structures whose boundaries have been determined and classified by sequence- and
structure-based methods will be added to the database to coincide with monthly updates.
In future, we plan to display all newly determined protein structures that meet the cri-
teria for integration in CATH (i.e., well resolved and not model or synthetic proteins)
using additional protein classes to reflect the extent to which the structures have been
classified in the database (see Table 13.1).

THE CATH SERVER

Newly determined structures can be submitted to the CATH server, which scans them
against representatives from the database in order to determine the putative superfamily
or fold group to which the structure belongs or whether the protein comprises one or
more novel folds. Domain boundaries can be supplied by the user or alternatively will
be determined automatically using the consensus approach. GRATH is first used to
identify a probable fold group. Subsequently, the new domain structure(s) is scanned
against 3D templates (Cora, Orengo, 1999) for all the homologous superfamilies within
the top three folds matched to identify the superfamily. Lists of structural neighbors are
provided together with links to the appropriate superfamilies in CATH and the DHS.
The user can also view superpositions of the structure with other relatives from the
superfamily or fold group.

Statistics on the Populations of Different Levels in the CATH Hierarchy

Population of Folds Within Architectures. Although there are currently 36
architectural groups in CATH only 28 can be well defined (see Figure 13.2), and the
remaining groups can be thought of as bins comprising assorted irregular or com-
plex folds or folds containing few secondary structures and often stabilized by a high
proportion of disulphide bridges. Furthermore, among the well-defined architectures,
some are much more highly populated than others with about half of the folds adopt-
ing one of six regular symmetric architectures; the mainly-α bundles, the two-layer
β-sandwiches and β-barrels, and the two-layer and three-layer αβ-sandwiches and the
αβ-barrels.

Recent analysis of structural relationships between fold groups in CATH using the
GRATH algorithm has revealed that some fold groups are particularly “gregarious,”
that is, they have large motifs in common with many other folds within the database.
For example, a high proportion of folds within the mainly-β and the αβ-sandwich
architectures can be categorized as gregarious in this way. This idea conforms with the
idea of a structural continuum between fold groups, first suggested by an early analysis
of CATH. However, the recent analysis also clearly showed that some 15% of folds,
for example the beta trefoil interleukin fold, are much more distinct, representative
more of discrete islands than progressions in a structural continuum.

The idea of a structural continuum is perhaps not surprising as it has long been
known that certain structural motifs are favored and often recur within folds for a
particular class; for example, the mainly-β hairpins, the beta Greek keys, and the αβ
and split αβ motifs (see Richardson, 1981). The TIM barrel fold in the αβ class (see
Figure 13.1 for a representative picture) comprises eight recurring αβ motifs, which
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are also found to recur in the αβ Rossmann folds (see also Figure 13.1), though the
connectivity between two of the motifs differs, giving rise to a different topology for
the fold.

Population of Superfamilies and Families Within Folds. The population of
the different levels in the CATH hierarchy, for the November 2000 release, are shown
in Figures 13.6, 13.7, and 13.8 and it can be seen from Figure 13.7 that the num-
ber of new folds being determined each year is slowly decreasing. Early analysis of
CATH revealed a small number of fold groups (∼10) that were very highly popu-
lated containing many different homologous superfamilies and families. Reexamining
these data six years later, following a nearly 10-fold expansion of the database from
3000 to 33,000 domain structures, it is clear that the trend still applies and it can
be seen from Figure 13.8 that 5 large fold groups contain nearly one-fifth of all the
homologous superfamilies in CATH. These highly populated fold groups have been
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T A B L E 13.3. Names of the Researchers and Advisers
Who Have Contributed to the CATH Database Since It
Was Established in 1993

List of Contributors (alphabetical)

Chris F. Bennett
James E. Bray
Daniel W.A. Buchan
Andrew Harrison
Gail Hutchinson
David T Jones
Susan Jones
Roman Laskowski
David Lee
Loredana Lo Conte
Andrew Martin
Alex D. Michie
Christine A. Orengo
Frances M.G. Pearl
Jane S. Richardson
Gabrielle A. Reeves
Adrian J. Shepherd
Ian Sillitoe
Mark B. Swindells
Willie R. Taylor
Janet M. Thornton
Annabel E. Todd

described as superfolds (Orengo, Jones, and Thornton, 1994) and other classifications
(e.g., SCOP) have reported similar observations of frequently occurring domains within
the database.

The popularity of these folds may be a result of divergent or convergent evolution.
Divergent evolution gives rise to families of proteins in which the structure is gener-
ally well conserved but sequences may have changed to the extent that no significant
similarity remains. In paralogues, which arise from duplication of the gene within an
organism, the function of protein may also have been modified or changed. Thus,
apparently diverse superfamilies within these superfolds may in fact be extremely dis-
tant relatives whose relationships cannot easily be verified from the available sequence
or functional data.

Alternatively, Ptitsyn, Finkelstein, and others have suggested that there may be
a limited number of folds in nature due to physical constraints on the packing of
secondary structures. Chothia (1993) has suggested approximately 1000 folds and other
similar estimates of a few thousand folds have also been made (Orengo, Jones, and
Thornton, 1994). Structures sharing the same fold but arising from different ancestral
proteins have been described as analogues.

The task of determining homology is often complicated by the lack of evolu-
tionary clues. Murzin and others have shown several interesting examples of relatives
possessing similar folds but disparate sequences and functions but where homology
is suggested by the presence of some rare structural characteristic, for example, a
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conserved β-bulge. Detailed knowledge of the structural family can often provide
insights that promote detection of evolutionary fingerprints. However, such practices
are not readily amenable to automated protocols. The TIM barrel fold is one of the
most highly populated, with 18 superfamilies in a recent CATH release. However,
several detailed studies recently have provided evidence of common ligand-binding
motifs or unusual structural characteristics, suggesting that many of these superfamilies
should be merged. In this context, an analysis of functional properties observed within
167 enzyme superfamilies in CATH revealed that when all known relatives for the
superfamily were considered, including sequence relatives identified in the genomes,
more than 25% of the families exhibited functional diversity (see Todd, Orengo, and
Thornton, 2001 for a review and Chapter 19).
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Apic G, Gough J, Teichmann SA (2001): Domain combinations in archaeal, eubacterial and
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combinations observed in different organisms. Proteins from 783 superfamilies are identified
in 40 genomes, making 1307 pairwise combinations. Most superfamilies are observed in
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STRUCTURAL QUALITY ASSURANCE
Roman A. Laskowski

The experimentally determined three-dimensional (3D) structures of proteins and
nucleic acids represent the knowledge base from which so much understanding of
biological processes has been derived over the last three decades of the twentieth cen-
tury. Individual structures have provided explanations of specific biochemical functions
and mechanisms, while comparisons of structures have given insights into general
principles governing these complex molecules, the interactions they make, and their
biological roles.

The 3D structures form the foundation of structural bioinformatics; all structural
analyses depend on them and would be impossible without them. Therefore, it is crucial
to bear in mind two important truths about these structures, both of which result from
the fact that they have been determined experimentally. The first is that the result of
any experiment is merely a model that aims to give as good an explanation for the
experimental data as possible. The term structure is commonly used, but you should
realize that this should be correctly read as model. As such the model may be an
accurate and meaningful representation of the molecule, or it may be a poor one. The
quality of the data and the care with which the experiment has been performed will
determine which it is. Independently performed experiments can arrive at very similar
models of the same molecule; this suggests that both are accurate representations, that
they are good models.

The second important truth is that any experiment, however carefully performed,
will have errors associated with it. These errors come in two distinct varieties: sys-
tematic and random. Systematic errors relate to the accuracy of the model—how well
it corresponds to the true structure of the molecule in question. These often include
errors of interpretation. In X-ray crystallography, for example, the molecule(s) need
to be fitted to the electron density computed from the diffraction data. If the data are
poor and the quality of the electron density map is low, it can be difficult to find the
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correct tracing of the molecule(s) through it. A degree of subjectivity is involved and
errors of mistracing and frame-shift errors, described later, are not uncommon. In NMR
spectroscopy, judgments must be made at the stage of spectral interpretation where the
individual NMR signals are assigned to the atoms in the structure most likely to be
responsible for them.

Random errors, on the other hand, depend on how precisely a given measurement
can be made. All measurements contain errors at some degree of precision. If a model
is essentially correct, the sizes of the random errors will determine how precise the
model is. The distinction between accuracy and precision is an important one. It is of
little use having a very precisely defined model if it is completely inaccurate.

The sizes of the systematic and random errors may limit the types of questions
a given model can answer about the given biomolecule. If the model is essentially
correct, but the data was of such poor quality that its level of precision is low, then
it may be of use for studies of large scale properties—such as protein folds—but
worthless for detailed studies requiring the atomic position to be precisely known; for
example, to help understand a catalytic mechanism.

STRUCTURES AS MODELS

To make the point about 3D structures being merely models it is instructive to con-
sider the subtly different types of model obtained by the two principal experimental
techniques: X-ray crystallography and NMR spectroscopy. Figure 14.1 shows the two
different interpretations of the same protein that are given by the two methods, as
explained below. The models are of the protein rubredoxin with a bound zinc ion held
in place by four cysteines.

Models from X-Ray Crystallography

Figure 14.1a is a representation of the protein model as obtained by X-ray crystallog-
raphy. It is not a standard depiction of a protein structure; rather, its aim is to illustrate
some of the components that go into the model. The components are: the x-, y-, z-
coordinates, the B-factors, and occupancies of all the individual atoms in the structure.
These parameters, together with the theory that explains how X-rays are scattered by
the electron clouds of atoms, aim to account for the observed diffraction pattern. The
x-, y-, z-coordinates define the mean position of each atom, whereas its B-factor and
occupancy aim to model its apparent disorder about that mean. This disorder may be
the result of variations in the atom’s position in time, due to the dynamic motions
of the molecule, or variations in space, corresponding to differences in conformation
from one location in the crystal to another, or both. The higher the atom’s disorder,
the more “smeared out” its electron density. B-factors model this apparent smearing
around the atom’s mean location; at high resolution a better fit to the observations can
often be obtained by assuming the B-factors to be anisotropic, as represented by the
ellipsoids in Figure 14.1a. Occasionally, the data can be explained better by assuming
that certain atoms can be in more than one place, due, say, to alternative conformations
of a particular side chain (indicated by the arrows showing the two alternative positions
of the glutamate sidechain in Figure 14.1a). The atom’s occupancy defines how often
it is found in one conformation and how often in another (for example, in the example
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(a) (b)

Figure 14.1. The different types of model generated by X-ray crystallography and NMR spec-

troscopy. Both are representations of the same protein: rubredoxin. (a) In X-ray crystallography

the model of a protein structure is given in terms of atomic coordinates, occupancies, and

B-factors. The side chain of Glu50 has two alternative conformations, with the change from one

conformation to the other identified by the double-headed arrow. The B-factors on all the atoms

are illustrated by ‘‘thermal ellipsoids,’’ which give an idea of each atom’s anisotropic displacement

about its mean position. The larger the ellipsoid, the more disordered the atom. Note that the

main-chain atoms tend to be better defined than the side-chain atoms, some of which exhibit

particularly large uncertainty of position. The region around the bound zinc ion appears well

ordered. This is in stark contrast with the NMR case in (b). The coordinates and B-factors come

from PDB entry 1irn, which was solved at 1.2Å and refined with anisotropic B-factors. (b) The

result of an NMR structure determination is a whole ensemble of model structures, each of

which is consistent with the experimental data. The ensemble shown here corresponds to 10

of the 20 structures deposited as PDB code 1bfy. In this case the metal ion, is iron. The more

disordered regions represent either regions that are more mobile, or regions with a paucity of

experimental data, or a combination of both. The region around the iron-binding site appears

particularly disordered. Both diagrams were generated with the help of the Raster3D program

(Merritt and Bacon, 1997). Figure also appears in Color Figure section.

given in Figure 14.1a the occupancies of the two alternative conformations are 56%
and 44%).

Models from NMR Spectroscopy

The data obtained from NMR experiments are very different, so the models obtained
differ in their nature, too. The spectra measured by NMR provide a diversity of infor-
mation on the average structure of the molecule, and its dynamics, in solution. The
most numerous, but often least precise, data are from Nuclear Overhauser Effect Spec-
troscopY (NOESY) experiments where the intensities of particular signals correspond
to the separations between spatially close protons (≤6Å) in the structure. The spectra
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from COrrelated SpectroscopY (COSY)-type experiments give more precise informa-
tion on the separations of protons up to three covalent bonds apart, and in some
cases on the presence, or even length, of specific hydrogen bonds. Recently developed
dipolar-coupling experiments give information on the relative orientation of particular
backbone covalent bonds (Clore and Gronenborn, 1998).

For the vast majority of NMR experiments, the sample of protein or nucleic acid
is in solution, rather than in crystal form, which means that molecules that are difficult
to crystallize, and hence impossible to solve by crystallography, can often be solved
by NMR instead. The separations are converted into distance and angular restraints
and models of the structure that are consistent with these restraints are generated using
various techniques, most commonly molecular dynamics-based simulated annealing
procedures similar to those used in X-ray structure refinement. The end result is not a
single model, but rather an ensemble of models that are all consistent with the given
restraints, as illustrated in Figure 14.1b.

The reasons for generating an ensemble of structures from NMR data are twofold.
Firstly, the NMR data are relatively less precise and less numerous than experimen-
tal restraints from X rays so that a diversity of structures are consistent with them.
Secondly, the biomolecules may genuinely possess heterogeneity in solution.

For general use, an ensemble of models is rather more difficult to handle than a
single model. Ensembles deposited in the Protein Data Bank (PDB) can typically com-
prise 20 models. One of these is often designated as representative of the ensemble, or a
separate file containing an average model may be deposited in addition to the ensemble.
The separate average structure is energy minimized to counteract the unphysical bond
lengths and angles that the averaging process introduces. Such a structure tends to have
a separate PDB identifier from that of the ensemble—so the same structure, or rather
the outcome of the same experiment, appears as two separate entries in the PDB. This
is clearly potentially confusing and the use of separate files is now discouraged. The
representative member of an ensemble is usually taken to be the structure that differs
least from all other structures in the ensemble. An algorithmic Web-based tool called
OLDERADO (http://neon.chem.le.ac.uk/olderado) allows you to select such a repre-
sentative from an ensemble (Kelley, Gardner, Sutcliffe, 1996), but no single algorithm
is universally agreed upon.

AIM

The aim of this chapter is to demonstrate that not all structures are of equally high
quality, usually because of the quality of the experimental data from which they were
determined, and that care needs to be taken before using any structure to draw biological
or other conclusions. When selecting data sets for deriving general principles about, say,
protein structures it is important to filter out those that might give misleading results
simply because they are unlikely to be sufficiently accurate or precise to contribute
meaningful or correct data to the analysis.

It does seem slightly churlish to reject structures from consideration given the
amount of time, care, and hard work the experimentalists have put into solving them.
However, if you put unsound data into your analysis, you will get unsound conclusions
out. This chapter hopes to explain the limitations of using 3D structures uncritically
for structural bioinformatics purposes, and to provide some rules of thumb for weeding
out the defective ones: what are the symptoms, what should you look for, and which
structures should you reject?
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ERROR ESTIMATION AND PRECISION

All scientific measurements contain errors. No measurement can be made infinitely
precisely; so, at some point, say after so many decimal places, the value quoted
becomes unreliable. Scientists acknowledge this by estimating and quoting standard
uncertainties on their results. For example, the latest value for Boltzmann’s constant is
1.3806503(24)× 10−23 J K−1, where the two digits in brackets represent the standard
uncertainty (or s.u.) in the last two digits quoted for the constant.

Compare this with the situation we have in relation to the 3D structures of bio-
logical macromolecules. Figure 14.2 shows a typical extract from the atom details
section of a PDB file. It relates to a single amino acid residue (a lysine) and shows
the information deposited about each atom in the protein’s structure.

Looking at only the columns representing the x-, y-, z-coordinates you will notice
that each value is quoted to three decimal places. This suggests a precision of 1 in
105. Similarly, the B-factors (in the final column) are each quoted to two decimal
places. Is it possible that the atomic positions and B-factors were really so precisely
defined? What are the error bounds on these values? What are their s.u.s? Are the
values accurate to the first place of decimals? The second? The third?

In fact, with the exception of a very few PDB structures, no error bounds are given.
As at November 2001 there were 5 such exceptions out of 16,646 structures: one was
a carbohydrate (cycloamylose, PDB code 1c58), three were marginally differing copies
of the same 13-residue enterotoxin (1etl, 1etm and 1etn), and the fifth was the crystal
structure of the 54-residue rubredoxin (4rxn). All had been solved at atomic resolution
(ranging from 0.89Å to 1.2Å) and refined by the full-matrix least-squares method that
is mentioned below.

Thus, in the overwhelming majority of cases one cannot tell how precisely defined
the values are. Why is this so? What kind of scientific measurement is this? And how
are we to judge how much reliance to place on the data given?

Error Estimates in X-Ray Crystallography

Estimation of Standard Uncertainties. In X-ray crystallography it is, in the-
ory, possible to calculate the standard uncertainties of the atomic coordinates and

Atomic coordinates
Atom

number
Atom
name

Residue
number

Residue
name

Occup-
ancyx zy B-factor

ATOM      1  N   LEU     1     -15.159  11.595  27.068  1.00 18.46
ATOM      2  CA  LEU     1     -14.294  10.672  26.323  1.00  9.92
ATOM      3  C   LEU     1     -14.694   9.210  26.499  1.00 12.20
ATOM      4  O   LEU     1     -14.350   8.577  27.502  1.00 13.43
ATOM      5  CB  LEU     1     -12.829  10.836  26.772  1.00 13.48
ATOM      6  CG  LEU     1     -11.745  10.348  25.834  1.00 15.93
ATOM      7  CD1 LEU     1     -11.895  11.027  24.495  1.00 13.12
ATOM      8  CD2 LEU     1     -10.378  10.636  26.402  1.00 15.12

Figure 14.2. An extract from a PDB file of a protein structure showing how the atomic

coordinates and other information on each atom are deposited. The atoms are of a single leucine

residue in the protein. The contents of each column are labeled above the column. It can be seen

that the x-, y-, z-coordinates of each atom are given to three decimal places.



278 STRUCTURAL QUAL ITY ASSURANCE

B-factors. In fact, it is routinely done for the crystal structures of small molecules
such as those deposited in the Cambridge Structural Database (CSD; Allen et al.,
1979). The calculations of the s.u.s are performed during the refinement stage of the
structure determination. As you learned in Chapter 4, refinement involves modifying
the initial model to improve the match between the experimentally determined structure
factors—as obtained from the observed X-ray diffraction pattern—and the calculated
structure factors—as obtained from applying scattering theory to the current model of
the structure. Figure 14.3 illustrates this principle.

In practice refinement is usually a long drawn-out procedure requiring many cycles
of computation interspersed here and there with manual adjustments of the model
using molecular graphics programs to nudge the refinement process out of any local

(b)

Model

Calculated
diffraction pattern

(a)

Film

Observed
reflections

Diffracted
x-rays

X-ray
beam

X-ray
tube

Crystal

Figure 14.3. A schematic diagram illustrating the principle of structure refinement in X-ray

crystallography. (a) X-rays are passed through a crystal of the molecule(s) of interest, generating

a diffraction pattern from which, by one method or another (see Chapter 5), an initial model of

the molecular structure is calculated. (b) Using the model, it is possible to apply scattering theory

to calculate the diffraction pattern we would expect to observe. Usually this will differ from

the experimental pattern. The process of structure refinement involves iteratively modifying the

model of the structure until a better and better fit between the observed and calculated patterns

is obtained. The goodness of fit of the two sets of data is measured by the reliability index, or

R-factor.
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minimum that it may have become trapped in. Furthermore, because in protein crystal-
lography the data-to-parameter ratio is poor (the data being the reflections observed in
the diffraction pattern and the parameters being those defining the model of the protein
structure: the atomic x-, y-, z-coordinates, B-factors, and occupancies) the data need
to be supplemented by additional information. This extra information is applied by
way of geometrical restraints. These are target values for geometrical properties such
as bond lengths and bond angles and are typically obtained from crystallographic stud-
ies of small molecules. The refinement process aims to prevent the bond lengths and
angles in the model from drifting too far from these target values, which is achieved
by applying additional terms to the function being minimized of the form:

Distances∑

k=1

wk(dk0 − dk)
2,

where dk and dk0 are the actual and target distance, and wk is the weight applied to
each restraint.

If the structure is refined using full-matrix least-squares refinement, a by-product
of this method is that the s.u.s of the refined parameters, such as the atomic coordinates
and B-factors, can be obtained. However, their calculation involves inverting a matrix
whose size depends on the number of parameters being refined. The larger the structure,
the more atomic coordinates and B-factors, the larger the matrix. As matrix inversion
is an order n3 process, it has tended to be unfeasible for molecules the size of proteins
and nucleic acids; these have several thousand parameters and consequently a matrix
whose elements number several millions or tens of millions, which is why s.u.s have
been routinely published for small-molecule crystal structures, but not for structures
of biological macromolecules. It is purely a matter of size.

Recently, however, as faster workstations with larger memories have become avail-
able, the situation has started to change, and calculation of atomic errors has become
more practicable (Tickle, Laskowski, and Moss, 1998). Indeed, s.u.s are now frequently
calculated for small proteins using SHELX (Sheldrick and Schneider, 1997), the refine-
ment package originally developed for small molecules, but sadly, the s.u. data are still
not commonly deposited in the PDB file. So this makes us none the wiser about the
precision with which any given atom’s location has been determined.

So what is to be done? What information is there on the reliability of an X-ray
crystal structure? What should one look for?

First of all, there are several parameters relating to the overall quality of the
structure commonly cited in the literature that can be found in the header records of
the PDB file itself, as described in Global Parameters for X-ray Structures.

Global Parameters for X-ray Structures. Figure 14.4 shows an extract from the
header records of a PDB file showing some of the commonly cited global parameters.

RESOLUTION. The resolution at which a structure is determined provides a measure
of the amount of detail that can be discerned in the computed electron density map.
The reflections at larger scattering angles, θ , in the diffraction pattern correspond to
higher resolution information coming as they do from crystal planes with a smaller
interplanar spacing. The high-angle reflections tend to be of a lower intensity and
more difficult to measure and, the greater the disorder in the crystal, the more of
these high-angle reflections will be lost. Resolution is related to how many of these
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REMARK   2 RESOLUTION. 2.20 ANGSTROMS.

REMARK   3   R VALUE            (WORKING SET) : 0.198
REMARK   3   FREE R VALUE                     : 0.255
REMARK   3   FREE R VALUE TEST SET SIZE   (%) : 10.2

REMARK   3  ESTIMATED COORDINATE ERROR.
REMARK   3   ESD FROM LUZZATI PLOT        (A) : 0.23
REMARK   3   ESD FROM SIGMAA              (A) : 0.23
REMARK   3   LOW RESOLUTION CUTOFF        (A) : 5.00
REMARK   3
REMARK   3  CROSS-VALIDATED ESTIMATED COORDINATE ERROR.
REMARK   3   ESD FROM C-V LUZZATI PLOT    (A) : 0.30
REMARK   3   ESD FROM C-V SIGMAA          (A) : 0.27

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

Figure 14.4. Extracts from the header records of a PDB file (1ydv) showing some of the statistics

pertaining to the quality of the structure as a whole. These include the resolution, R-factor, Rfree,

and various estimates of average positional errors (ranging from 0.23–0.30Å). The Rfree has been

calculated on the basis of 10.2% of the reflections removed at the start of refinement and not

used during it.

high-angle reflections can be observed, although the value actually quoted can vary
from crystallographer to crystallographer as there is no clear definition of how it should
be calculated. The higher resolution shells will tend to be less complete and some
crystallographers will quote the highest resolution shell giving a 100% complete data
set, whereas others may simply cite the resolution corresponding to the highest angle
of scatter observed.

The higher the resolution the greater the level of detail, and hence the greater the
accuracy of the final model. The resolution attainable for a given crystal depends on
how well ordered the crystal is—that is, how close the unit cells throughout the crystal
are to being identical copies of one another. A simple rule of thumb is that the larger
the molecule the lower will be the resolution of data collected.

Figure 14.5 shows an example of how the electron density for a single side chain
improves as resolution increases. In general, side chains are difficult to make out at
very low resolution (4Å or lower), and the best that can be obtained is the overall
shape of the molecule and the general locations of the regions of regular secondary
structure. Models at such low resolution are clearly of no use for investigating side-
chain conformations or interactions! At 3Å resolution, the path of a protein’s chain
can be traced through the density and at 2Å the side chains can be confidently fitted.

The most precise structures are the atomic resolution ones (from around 1.2Å
resolution up to around 0.9Å). Here the electron density is so clear that many of the
hydrogen atoms become visible, and alternate occupancies become more easily dis-
tinguishable. These structures require fewer geometrical constraints during refinement
and hence give a better indication of the true geometry of protein structures.

The resolution of structures in the PDB varies from atomic resolution structures to
very low resolution structures at around 4.0Å, with a definite peak at around 2.0Å. The
lowest quoted resolution as of November 2001 was 30.0Å for PDB entry 1qgc—the
structure of the capsid protein of the foot-and-mouth virus, complexed with antibody,
and solved by a combination of cryoelectron microscopy and X-ray crystallography
(Hewat et al., 1997).
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(a)

(b)

(c)

Figure 14.5. The effect of resolution on the quality of the electron density. The three plots show

the electron density, as the wire-frame cage, surrounding a single tyrosine residue. The residue

is Tyr100 from concanavalin A as found in three PDB structures solved at (a) 3.0Å resolution

(PDB code 1val), (b) 2.0Å (1con), and (c) 1.2Å (1jbc). At the lowest resolution the electron density

is merely a shapeless blob, but as the resolution improves the individual atoms come into

clear focus. The electron density maps were taken from the Uppsala Electron Density Server

(http://portray.bmc.uu.se/eds) and rendered using BobScript (Esnouf, 1997) and Raster3D (Merritt

and Bacon, 1997).
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Resolution is probably the clearest measure of the likely quality of the given model.
However, bear in mind that, because there is no single definition of resolution, it tends
not to be used consistently and its value can be overstated (Weissig and Bourne, 1999).

R-FACTOR. The R-factor is a measure of the difference between the structure fac-
tors calculated from the model and those obtained from the experimental data. In
essence, it is a measure of the differences in the observed and computed diffraction
patterns schematically illustrated in Figure 14.3. Higher values correspond to poorer
agreement with the data, whereas lower values correspond to better agreement. Typi-
cally, for protein and nucleic acid structures, values quoted for the R-factor tend to be
around 0.20 (or equivalently, 20%). Values in the range 0.40 to 0.60 can be obtained
from a totally random structure, so structures with such values are unreliable and prob-
ably would never be published. Indeed, 0.20 seems to be something of a magical figure
and many structures are deemed finished once the refinement process has taken the
R-factor to this mystical value.

As a reliability measure, however, the R-factor is itself somewhat unreliable. It
is quite easily susceptible to manipulation, either deliberate or unwary, during the
refinement process, and so models with major errors can still have reasonable-looking
R-factors. For example, one of the early incorrect structures, cited by Brändén and
Jones (1990), was that of ferredoxin I, an electron transport protein. The fully refined
structure was deposited in 1981 as PDB code 2fd1, with a quoted resolution of 2.0Å and
an R-factor of 0.262. Due to the incorrect assignment of the crystal space group during
the analysis of the X-ray diffraction data, this structure turned out to be completely
wrong. The replacement structure, reanalyzed by the original authors and having the
correct fold, was deposited as PDB entry 3df1 in 1988. Its resolution was given as 2.7Å
and its R-factor as 0.35. On the face of it, therefore, mere comparison of the resolution
and R-factor parameters would lead one to believe the first of the two structures to
be the more reliable! The reason that an R-factor as low as 0.262 was achieved for a
totally incorrect structure was that the coordinates included 344 water molecules, many
extending far out from the protein molecule itself. This is a large number of waters
for a protein containing only 107 residues. A rule of thumb suggested by Brändén and
Jones (1990) is that, for high-resolution structures, one water molecule for each residue
is reasonable, and waters should only be added to the structure if they make plausible
hydrogen bonds.

Incidentally, the version of ferredoxin that was 3df1 was itself twice superseded,
first by entry 4df1 in mid-1988 and then by entry 5df1 in 1993. The last of these had
a quoted resolution of 1.9Å and R-factor of 0.215.

The ferredoxin example is one of overfitting; that is, having too many parameters
for the experimental data available. It is always possible to fit a model, however wrong,
to the data if there is an excess of parameters over observations.

RFREE. A more reliable measure is Brünger’s free R-factor, or Rfree (Brünger,
1992). This is less susceptible to manipulation during refinement. It is calculated in
the same way as the standard R-factor and again measures the agreement between the
structure factors as calculated from the model and as obtained from the experimental
data. It differs in that its calculation uses only a small fraction of the experimental data,
typically 5–10%, and, crucially, this fraction is excluded from the structure refinement
procedure. The test set, as it is called, thus provides an independent measure of the
goodness of fit of the model to the data while the refinement proceeds on the remaining
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data, the working set. Unless there are correlations between the data in the test set and
those in the working set, the refinement process should not be able to influence the
Rfree measure.

The value of Rfree will tend to be larger than the R-factor, although it is not clear
what a good value might be. Brünger has suggested that any value above 0.40 should
be treated with caution (Brünger, 1997). There were approximately 20 structures in
this category in the PDB, as of November 2001. Not surprisingly, most are fairly
low-resolution structures (3.0–4.0Å).

AVERAGE POSITIONAL ERROR. Even though atomic coordinate s.u.s are not com-
monly given, it is quite usual for an estimate of the average positional error of a
structure’s coordinates to be cited. There are two principal methods for estimating the
average positional errors: the Luzzati plot (Luzzati, 1952) and the σA plot (Read, 1986).

The Luzzati plot is obtained by partitioning the reflections from the diffraction
pattern into bins according to their value of sin θ , where θ is the reflection’s scattering
angle, and then calculating the R-factor for each bin. The value calculated for each bin
is plotted as a function of sin θ /λ, where λ is the wavelength of radiation used. The
resulting plot is compared against the theoretical curves of Luzzati (1952) to obtain
an estimate of the average positional error. One problem with this method is that the
actual curves do not usually resemble the theoretical ones at all well, and so the error
estimate is somewhat crude and often merely provides an upper limit on the error.
Better results are obtained if the Rfree is used instead of the traditional R-factor.

The σA plot provides a better estimate still. It involves plotting ln σA against
(sin θ /λ)2, where σA is a complicated function that has to be estimated for each
(sin θ /λ)2 bin, as described in Read (1986). The resultant plot should give a straight
line whose slope provides an estimate of the average positional error.

Most refinement programs compute both error estimates from the Luzzati and Read
methods, so these values are commonly cited in the PDB file. You will find them in the
file’s header records under the now unfashionable term “estimated standard deviation”
(or ESD)—see Figure 14.4.

Bear in mind that an average s.u. is exactly what it says: an average over the whole
structure. The s.u.s of the atoms in the core of the molecule, which tends to be more
ordered, will be lower than the average, while those of the atoms in the more mobile
and less well-determined surface—and often more biologically interesting—regions
will be higher than the average.

ATOMIC B-FACTORS. A more direct, albeit merely qualitative, way of determining
the precision of a given atom’s coordinates is to look at its associated B-factor. B-
factors are closely related to the positional errors of the atoms, although the relationship
is not a simple one that can be easily formulated (Tickle, Laskowski, and Moss, 1998).
It is safe to say, however, that atoms in a structure with the largest B-values will
also be those having the largest positional uncertainty. So if high levels of precision
are required in your analysis, leave out the atoms having the highest B-factors. As a
rule of thumb, atoms with B-values in excess of 40.0 are often excluded as being too
unreliable. Similarly, if atoms in your region of interest, such as an active site, are all
cursed with high B-factors then your region of interest is not well determined and you
will need to be careful about the conclusions you draw from it.

Rules of Thumb for Selecting X-Ray Crystal Structures. Many analyses in
structural bioinformatics require the selection of a dataset of 3D structures on which
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to perform one’s analysis. A commonly used rule of thumb for selecting reliable struc-
tures for such analyses, where reasonably accurate models are required, is to choose
those models that have a quoted resolution of 2.0Å or better, and an R-factor of
0.20 or lower. These criteria will give structures that are likely to be reasonably reli-
able down to the conformations of the side chains and local atom–atom interactions.
One example that uses such a dataset is the Atlas of Protein Side-Chain Interac-
tions (http://www.biochem.ucl.ac.uk/bsm/sidechains), which depicts how amino acid
sidechains pack against one another within the known protein structures.

Of course, the selection criteria depend on the type of analysis required. For
some analyses only atomic resolution structures (i.e., 1.2Å or better) will do, as in
the accurate derivation geometrical properties of proteins—for example, side-chain
torsional conformers and their standard deviations (EU 3-D Validation Network, 1998),
or fine details of the peptide geometry in proteins that can reveal subtle information
about their local electronic features (Esposito, et al., 2000). For other types of analysis,
structures solved down to 3Å may be good enough, as in any comparison of protein
folds. One interesting example is that of the lactose operon repressor. Three structures
of this protein were solved to 4.8Å resolution, giving accurate position for only the
protein’s Cα atoms (Lewis et al., 1996). However, because the three structures were
of the protein on its own, of the protein complexed with its inducer, and of the protein
complexed with DNA, the global differences between the three structures showed
how the protein’s conformation changed between its induced and repressed states.
Thus even very low resolution structures were able to help explain how this particular
protein achieves its biological function (Lewis et al., 1996).

Often the above rule of thumb (resolution ≤2.0Å, and R-factor ≤0.20) is supple-
mented by a check on the year when the structure was determined. Structures are more
likely to be less accurate the older they are simply because experimental techniques
have improved markedly since the early pioneering days of the 1960s and 1970s.
Indeed, many of the early structures have been replaced by more recent and accurate
determinations.

Error Estimates in NMR Spectroscopy

The theory of NMR spectroscopy does not provide a means of obtaining s.u.s for atomic
coordinates directly from the experimental data, so estimates of a given structure’s
accuracy and precision have to be obtained by more indirect means.

Global Parameters for NMR Structures. As mentioned above, a number of
models can be derived that are compatible with the NMR experimental data. It is
difficult to distinguish whether this multiplicity of models reflects real motion within
the molecules or simply results from insufficient experimentally derived restraints.
(Compare how the most poorly defined regions of the X-ray model of rubredoxin in
Figure 14.1a do not necessarily correspond to the most poorly defined regions of the
NMR model in Figure 14.1b, although remembering that one structure was in crystal
form and the other in solution). Generally, the agreement of NMR models with the
NMR data is measured by the agreement between the distance and angular restraints
applied during refinement of the models and the corresponding distances and angles in
the final models. Large numbers of severe violations would indicate a serious problem
of data interpretation and model building.

However, the errors associated with the original experimental data are sufficiently
large that it is almost always possible to generate models that do not violate the
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restraints, or do so only slightly. Consequently, it is not possible to distinguish a
merely adequate model from an excellent one by looking for restraint violations alone.

Traditionally, the quality of a structure solved by NMR has also been measured by
the root-mean-squared deviation (rmsd) across the ensemble of solutions. Regions with
high rmsd values are those that are less well defined by the data. In principle, such
rmsd measures could provide a good indicator of uncertainty in the atomic coordinates;
however, the values obtained are rather dependent on the procedure used to generate
and select models for deposition. An experimentalist choosing the best few structures
for deposition from a much larger draft ensemble can result in very misleading statis-
tics for the PDB entry. For example, the best few structures may, in effect, be the same
solution with minor variations—so the rmsd values will be small. Structures further
down the original list may provide alternative solutions, which are slightly less con-
sistent with the data, but that are radically different. The sizes of ensembles deposited
in the PDB range from 1 to 85 models (as of November 2001).

The number of experimentally derived restraints per residue can give an indication
of how effectively the NMR data define the structure in a manner analogous to the
resolution of X-ray structures. Indeed, the number of restraints per residue correlates
with the stereochemical quality of the structures to an extent, but some restraints may
be completely redundant and no consistent method of counting is used by depositors.

None of these measures gives a true indication of the accuracy of the models, that
is, how well they represent the true structure, and few are reported in the PDB file.

In recent years, NMR equivalents of the crystallographic R-factor have been intro-
duced. One method involves the use of dipolar couplings. These provide long-range
structural restraints that are independent of other NMR observables such as the NOEs,
chemical shifts, and couplings constants that result from close spatial proximity of
atoms. Because the expected dipolar couplings can be computed for a given model,
they provide a means of comparing observed with expected, and obtaining an R-factor
that is a measure of the difference between the two (Clore and Garrett, 1999). What
is more, it is also possible to obtain a cross-validated R-factor, equivalent to the crys-
tallographic Rfree, wherein a subset of dipolar couplings are removed prior to the start
of structure refinement and used only for computing the R-factor. This gives an unbi-
ased measure of the quality of the fit to the experimental data. However, in the case
of NMR, one cannot use a single test set of data; one has to perform a complete
cross-validation. The reason for this is that, whereas in crystallography each reflec-
tion contains information about the whole molecule, in NMR each dipolar coupling
does not. So a complete cross-validation is required, which means that a number of
calculations have to be performed, each using a different selection of test sets and
working data sets; the test set, which usually comprises 10% of the whole data set,
being selected at random each time.

Another technique for calculating an NMR R-factor uses the NOEs and involves
back-calculation of the NMR intensities from the models obtained and comparison
with those observed in the experiment. This technique is implemented in the program
RFAC (Gronwald et al., 2000), which calculates not only an overall R-factor for the
entire structure, but also local R-factors, including residue-by-residue R-factors and
individual R-factors for different groups of NOEs (e.g., medium-range NOEs, long-
range NOEs, interresidue NOEs, etc.).

An additional back-calculation method for checking structure quality is to calculate
the expected frequencies (positions) of spectral peaks from the structure and compare
them to those observed. This comparison has the advantage that the frequencies are
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not usually a target of the structure refinement procedure (Williamson, Kikuchi, and
Asakura, 1995).

However, the measures described here are not yet generally included in the depo-
sited PDB files.

Rules of Thumb for Selecting NMR Structures. Historically, the rule of thumb
for selecting NMR structures for inclusion in structural analyses has been the simple
one of excluding them altogether! This early prejudice stems from the fact that they
were viewed as being of generally lower quality than X-ray structures, there was
no easy way of selecting them with a consistent rule as that used for selecting X-
ray structures, and they represented only a minority of the PDB anyway. However,
nowadays NMR structures provide much valuable information about protein and DNA
structures not available from X-ray studies. Indeed, although only about one in eight
PDB structures come from NMR experiments (as at November 2001), in data sets of
representative structures (Hobohm and Sander, 1994) around one in four are NMR
structures. This stems from the fact that many unique and important proteins can only
be solved by NMR.

Nevertheless, it is still not possible to differentiate between reliable and unreliable
NMR structures from the information given in the PDB files. There is no standardized
information provided that is akin to the resolution, R-factor, and estimated s.u.s rou-
tinely quoted for X-ray crystal structures. The only way to get an idea of the quality
of the structure is to read the paper describing it and judge from the statistics provided
there or, more ambitiously, to carry out your own analysis of either the stereochemistry
of the structure (using the programs that will be described later in this chapter) or the
agreement between restraints and structures in those cases where the experimental data
has been deposited along with the structure.

ERRORS IN DEPOSITED STRUCTURES

Serious Errors

There have been a number of serious errors in X-ray and NMR structures documented
in the literature (for references see Brändén and Jones, 1990; Kleywegt, 2000). Many
of the erroneous models have been retracted by their original authors, or replaced by
improved versions. Structures are often re-refined, or solved with better data, and the
models in the PDB are replaced by the improved versions.

The models that are replaced do not completely disappear, though. There is a grow-
ing graveyard of obsolete structures—some very, very incorrect, others merely slightly
mistaken—available at the Archive of Obsolete PDB Entries (http://pdbobs.sdsc.edu).
This Web site provides a graphic history of each structure, some of which have gone
through several incarnations (e.g., 1atc, which has been replaced in turn by 3atc, 5atc,
7atc, and 5at1).

Of all errors, the most serious are those where the model is, essentially, completely
wrong; for example, the trace of the protein chain follows the wrong path through the
electron density and the resultant model has the wrong fold completely. Figures 14.6a
and 14.6b give an example of such a case. There is practically no similarity between
the correct and incorrect models.

The next most serious errors are where all, or most, of the secondary structural
elements have been correctly traced, but the chain connectivity between them is wrong.
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Figure 14.6. Examples of seriously wrong protein models and their corrected counterparts.

(a) Incorrect model of photoactive yellow protein (PDB code, 1phy, an all-Cα atom model), and

(b) the corrected model (2phy, all atoms plus bound ligand). Superposition of the two models gives

an rmsd of 15Å between equivalent Cα atoms. Such a high value is hardly surprising given that

the folds of the two models are so completely different. (c) Incorrect model of D-alanyl-D-alanine

peptidase (1pte, an all-Cα atom model), and (d) corrected model (3pte, all atoms). The initial

model had been solved at low resolution (2.8Å) at a time when the protein’s sequence was

unknown, so tracing the chain had been much more difficult than usual. Many of the secondary

structure elements were correctly detected, but incorrectly connected. The matching secondary

structures are shown as the darker shaded helices and strands. The connectivity between them is

completely different in the two models, with the earlier model having completely wrong parts

of the sequence threaded through the secondary structure elements. Indeed, you can see that

the central strand of the β –sheet runs in the opposite direction in the two models. The N- and

C-termini of all models are indicated. All plots were generated using the MOLSCRIPT program

(Kraulis, 1991).

An example is given in Figures 14.6c and 14.6d. Here the erroneous model has most
of the correct secondary structure elements, and has them arranged in the correct
architecture. However, the protein sequence has been incorrectly traced through them
(in one case going the wrong way down a β –strand). Thus most of the protein’s
residues are in the wrong place in the 3D structure. Such errors arise because the
loop regions that connect the secondary structure elements tend to be more flexible,
and more disordered, so their electron density tends to be more poorly defined and
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difficult to interpret correctly. This situation was particularly true in the case shown
in Figure 14.6c as the primary sequence of the protein was unknown at the time the
structure was being solved and had to be guessed from the limited clues in the electron
density map.

Less serious are frame-shift errors, although they can often result in a significant
part of the model being incorrect. These errors occur where a residue is fitted into
the electron density that belongs to the next residue. The frame shift persists until a
compensating error is made when two residues are fitted into the density belonging
to a single residue. These mistakes often occur at turns in the structure, and almost
exclusively at very low resolution (3Å or lower).

The least serious model-building errors involve the fitting of incorrect main-chain
or side-chain conformations into the density. Of course, even such errors, depending
on where they occur, can have an effect of the biological interpretation of what the
structure does and how it does it.

Typical Errors

Typically, the models deposited in the PDB will be essentially correct. The remaining
errors will be the random errors associated with any experimental measurement. As
mentioned above for X-ray structures, the average s.u.s—estimated on the basis of the
Luzzati and σA plots—can provide an idea of the magnitude of these errors. The values
range from around 0.01Å to 1.27Å. Note that the latter value approaches the length
of some covalent bonds! The median of the quoted s.u.s corresponds to estimated
average coordinate errors of around 0.28Å. It has to be remembered that these values
are estimates, and apply as an average over the whole model.

Figure 14.7 gives a feel of some typical uncertainties in atomic positions.

Stereochemical Parameters

An alternative way of assessing a structure’s quality, which complements the types
of checks described so far, is to examine its geometry, stereochemistry, and other
structural properties. A number of tests can be applied to a protein or nucleic acid
structure that compare it against what is known about these molecules. This knowledge
comes from systematic analyses of the existing structures in the PDB. In other words,
the vast body of structures that have been solved to date provides a knowledge base
of what is normal for proteins and nucleic acids.

The advantage of such tests of normality is that they do not require access to
the original experimental data. Although it is possible to obtain the experimental data
for many PDB entries—structure factors in the case of X-ray structures, and dis-
tance restraints for NMR ones—these entries are still the minority, and deposition of
these data is still at the discretion of the depositors. Furthermore, to make use of the

>

Figure 14.7. Examples of typical uncertainties in atomic positions for (a) an s.u. of 0.2Å, (b) 0.3Å,

and (c) 0.39Å. The protein is the same rubredoxin from Figure 14.1a. Of course, as shown in

Figure 14.1a, the distribution of uncertainties would not normally be so uniform, with higher

variability in the surface side-chain atoms than, say, the buried main-chain atoms. Figure also

appears in Color Figure section.
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(a)

(b)



290 STRUCTURAL QUAL ITY ASSURANCE

(c)

Figure 14.7. (Continued)

data requires appropriate software packages and expert know-how. The stereochemical
tests, however, require no experimental data. So any structure, whether experimentally
determined, or the result of homology modeling, molecular dynamics, threading, or
blind guesswork can be checked. The software is freely available and easy to use and
interpret. What is more, many of the results of such checks made on existing structures
are readily available on the Web, as will be mentioned below.

Most of the tests described here apply exclusively to protein structures. Similar
tests have been developed for DNA and for small molecules (hetero atom groups) that
may be bound to protein or DNA. These will be mentioned later. The stereochemi-
cal tests include bond lengths, bond angles, torsion angles, hydrogen bond energies,
and so on.

Before describing the checks, one crucial point needs to be stressed at the start.
The majority of the checks compare a given structure’s properties against what is the
norm. Yet this norm has been derived from existing structures and could be the result
of biases introduced by different refinement practices. Furthermore, outliers, such as an
excessively long bond length or an unusual torsion angle, should not be construed as
errors. They may be genuine—for example, as a result of strain in the conformation,
say, at the active site. The only way of verifying whether oddities are errors or merely
oddities is by referring back to the original experimental data. Indeed, the experimenters
who solved the structure may already have done this, found the apparent oddity to be
correct and commented to that effect in the literature.
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Having said that, if a single structure exhibits a large number of outliers and oddi-
ties, then it probably does have problems and can safely be excluded from any analyses.

Proteins

The Ramachandran Plot. Perhaps the best-known, and certainly the most pow-
erful, check for the stereochemical quality of a protein structure is the Ramachandran
plot (Ramachandran, Ramakrishnan, and Sasisekharan, 1963). This plot is of the ψ

main-chain torsion angle versus the φ main-chain torsion angle for every amino acid
residue in the protein (except the two terminal residues, because the N-terminal residue
has no φ and the C-terminus has no ψ). In the resulting scatter plot, the points tend to
cluster in certain favorable regions, and tend to be excluded from certain disallowed
regions due to steric hindrance of the side-chain atoms. Glycine and proline, which
have no side chains as such, have slightly different distributions on the plot, although
they too have regions from which they are excluded (Fig. 14.8).
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Figure 14.8. Differences in Ramachandran plots for (a) arginine, representing a fairly standard

amino acid residue, (b) glycine which, due to its lack of a side chain, is able to reach the parts

of the plot that other residue cannot reach, and (c) proline which, due to its restraints on the

movement of the main chain, has a restricted range of φ values. The darker regions correspond to

the more densely populated regions as observed in a representative sample of protein structures.
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The favorable regions correspond to the regular secondary structures: right-handed
helices, extended conformation (as found in β-strands), and left-handed helices. Even
residues in loops tend to lie within these favored regions. Figure 14.9a shows a typical
Ramachandran plot,. The residues show a tight clustering in the most favored regions
with few or none in the disallowed regions. The regions themselves have been deter-
mined from an analysis of torsion angles in existing structures in the PDB (see, for
example, Morris et al., 1992, or Kleywegt and Jones, 1996).

Figure 14.9b, shows a pathological Ramachandran plot. It comes from a structure
that shall remain nameless. Here the majority of the residues lie in the disallowed
regions, and it can be confidently concluded that the model has serious problems.

One caveat concerns proteins containing D-amino acids rather than the more com-
mon L-amino acids. These residues have the opposite chirality so their φ–ψ values
will be negative with respect to their L-amino cousins. The Ramachandran plot for
D-amino acids is the same as for L-amino acids, but with every point reflected through
the origin. Thus, proteins such as gramicidin A (e.g., PDB code 1grm) that have many
D-amino acids, give Ramachandran plots that look particularly troubling but that may
be perfectly correct.

Few models are as extreme as the one in Figure 14.9b. The tightness of clustering
tends to be a function of resolution, with atomic resolution structures exhibiting very
tight clustering (EU 3-D Validation Network, 1998). At lower resolution, as the data
quality declines and the model of the protein structure becomes less accurate, so the
points on the Ramachandran plot tend to disperse and more of them are likely to be
found in the disallowed regions.

One feature that makes the Ramachandran plot such a powerful indicator of protein
structure quality is that it is difficult to fool (unless one does so intentionally by, say,
restraining φ–ψ values during structure refinement as is sometimes done for NMR
structures). This reliability was demonstrated by Gerard Kleywegt in Uppsala who
once attempted to deliberately trace a protein chain backwards through its electron
density to see whether it would refine and give the sorts of quality indicators that
could fool people into believing it to be a reasonable model (Kleywegt and Jones,
1995). Of the parameters that he tried to fool, the two that seemed least gullible were

>

Figure 14.9. Ramachandran plots for (a) a typical protein structure, and (b) a poorly defined

protein structure. Each residue’s φ–ψ combination is represented as a black box, except for

glycine residues, which are shown as black triangles. The most darkly shaded regions of the plot

correspond to the most favorable, or core, regions (labeled A for α–helix, B for β –sheet and L

for left-handed helix) where the majority of residues should be found. The progressively lighter

regions are the less-favored zones, with the white region corresponding to disallowed φ–ψ

combinations for all but glycine residues. Residues falling within these disallowed regions are

shown by the labeled boxes. The plot in a is for PDB code 1ubi, which is of the chromosomal protein

ubiquitin. All but one of the protein’s 66 nonglycine and nonproline residues are in the core

regions of the Ramachandran plot (giving a core percentage of 98.5%). What is more, the points

cluster reasonably well in the core regions. The structure was solved by X-ray crystallography at

a resolution of 1.8Å. The plot in b exhibits many deviations from the core regions. The structure

was solved by NMR, in the early days of the technique, and has a core percentage of 6.8%,

while over a third of its residues lie in the disallowed regions. The plots were obtained using the

PROCHECK program.
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the Rfree factor mentioned above and the Ramachandran plot. The latter looked most
unhealthy, with several residues in disallowed regions and no significant clustering in
the most highly favored regions.

A simple measure of quality that can be derived from the plot is the percentage of
residues in the most favorable or core regions. (Glycines and prolines are excluded from
this percentage because of their unique distributions of available φ–ψ combinations).
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Using the core regions defined by the PROCHECK program (see below), one generally
finds that atomic resolution structures have well over 90% of their residues in these
most favorable regions. For lower and lower resolution structures this percentage drops,
with structures solved to 3.0–4.0Å tending to have a core percentage around 70%.
NMR structures also show increasing core percentage with increasing experimental
information. However, NMR structures can have relatively good side-chain positions
even with a poor core percentage as NMR data restrain side chains more strongly than
the backbone because of the large number of side-chain protons.

Side-Chain Torsion Angles. Protein side chains tend to have preferred con-
formations, known as rotamers, about their rotatable bonds, again as a result of steric
hindrance. The rotamers are defined in terms of the side-chain torsion angles χ1, χ2, χ3,
and so on. The first of these, χ1, is defined as the torsion angle about N—Cα —Cβ —Aγ ,
where Aγ is the next atom along the side chain (for example, in lysine the Aγ atom
is Cγ ). The next, χ2, is defined as Cα —Cβ —Aγ —Aδ , and so on. The χ1 and χ2

distributions are both trimodal with the preferred torsion angle values being termed
gauche-minus (+60◦), trans (+180◦), and gauche-plus (−60◦). A plot of χ2 against
χ1 for each residue has 3× 3 preferred combinations, although the strength of each
depends very much on the residue type. Figure 14.10 shows some examples of the
distributions for different amino acid types.

Like the Ramachandran plot, a plot of the χ1 –χ2 torsion angles can indicate
problems with a protein model as these, like the φ and ψ torsion angles, tend not to be
restrained during refinement. What is more, these torsion angles tend to cluster more
tightly toward their ideal rotameric values as resolution improves (EU 3-D Validation
Network, 1998). For example, the standard deviation of the χ1 torsion angles about
their ideal position tends to be around 8◦ for atomic resolution structures and can go
as high as 25◦ for structures solved at 3.0Å. Similarly, the corresponding standard
deviations for the χ2 torsion angles tend to be 10◦ and 30◦, respectively.

Bad Contacts. Another good check for structures to be wary of is the count of
bad and unfavorable atom–atom contacts that they possess. Too many and the model
may be a poor one.

The simplest checks are those which merely count bad contacts, that is, those where
the distance between any pair of nonbonded atoms is smaller than the sum of their van
der Waals radii. Furthermore, the atoms checked should not merely be those involved
in intraprotein contacts within the given protein structure; for X-ray crystal structures
it is also necessary to consider atoms from molecules related by crystallographic and
noncrystallographic symmetry.

More sophisticated checks consider each atom’s environment and determine how
happy that atom is likely to be in that environment. For example, the ERRAT program

>

Figure 14.10. Examples of χ1 –χ2 distributions for six different amino acid residue types: Arg,

Asn, Asp, His, Ile, and Leu. The darker regions correspond to the more densely populated regions

as observed in a representative sample of protein structures. The dotted lines represent idealized

rotameric torsion angles at 60◦, 180◦, and 300◦ (equivalent to −60◦). It can be seen that the true

rotameric conformations differ slightly from these values and that the different side-chain types

have very different χ1 –χ2 distribution preferences.
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(Colovos and Yeates, 1993) counts the numbers of nonbonded contacts, within a cutoff
distance of 3.5Å, between different pairs of atom types. The atoms are classified as car-
bon (C), nitrogen (N), and oxygen/sulfur (O), so there are six distinct interaction types:
CC, CN, CO, NN, NO, OO. If the frequencies of these interaction types differ signif-
icantly from the norms (as obtained from well-refined high-resolution structures) the
protein model may be somewhat suspect. A similar analysis can be used to locate local
problem regions by using a nine-residue sliding window and obtaining the interaction
frequencies at each window position.

One level up in sophistication is the DACA method (Vriend and Sander, 1993),
which is implemented in the WHAT IF program (Vriend, 1990). DACA stands for
Directional Atomic Contact Analysis and compares the 3D environment surrounding
each residue fragment in the protein with normal environments computed from a high-
quality data set of protein structures. There are 80 different fragment types, including
main-chain fragments as well as side-chain fragments. The environment of each frag-
ment is essentially the count of different nonbonded atoms in each 1Å× 1Å× 1Å cell
of a 16Å× 16Å× 16Å cube surrounding the fragment.

A similar approach is that of the ANOLEA program (Atomic NOn-Local Environ-
ment Assessment), which calculates a nonlocal energy for atom–atom contacts based
on an atomic mean force potential (Melo and Feytmans, 1998).

Other Parameters. Other parameters that can be used to validate protein struc-
tures include counts of unsatisfied hydrogen bond donors and hydrogen-bonding ener-
gies as is done in the WHATCHECK program mentioned below (Hooft et el., 1996).
See also Chapter 15.

C-alpha Only Structures. As of November 2001, there were around 200 struc-
tures in the PDB (out of over 16,000) that contain one or more protein chains for which
only the Cα coordinates have been deposited. The deposition of Cα-only coordinate
sets is usually done where the data quality has been too poor to resolve more of the
structure. It was common in the early days of protein crystallography for only Cαs
to be deposited; nowadays it is still quite common for only Cαs to be deposited for
very large structures, such as the recently determined structure of the ribosome at 5.5Å
(PDB codes 1gix and 1giy).

The standard validation checks are of no use for such models, lacking as
they are in so much of their substance. However, there is an equivalent to the
Ramachandran plot for these structures (Kleywegt, 1997). The parameters plotted are
the Cα —Cα —Cα —Cα torsion angle as a function of the Cα —Cα —Cα angle for
every residue in the protein. As with the Ramachandran plot, there are regions of this
plot that tend to be highly populated, and others that appear forbidden. So a structure
with many outliers in the forbidden zones should be treated with caution. The checks
are incorporated in the program MOLEMAN2 which can be run over the Web (see
Table 14.1).

Nucleic Acids

Finding validation tools for DNA and RNA is trickier than for proteins. The PDB’s
validation tool, ADIT (AutoDep Input Tool), incorporates a program called NuCheck
(Feng, Westbrook, and Berman, 1998) for validating the geometry of DNA and RNA.
Binary versions of the ADIT package can be downloaded for use on SGI and Linux
machines (see Table 14.2).
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T A B L E 14.1. WWW Servers for Checking Structure Coordinates Online

Program Reference Protein/DNA URL

ANOLEA Melo and Feytmans,
1998

Protein www.fundp.ac.be/sciences/
biologie/bms/CGI/test.htm

Biotech Validation:
PROCHECK,

PROVE, WHAT IF
EU 3-D Validation

Network, 1998
Protein biotech.embl-ebi.ac.uk:8400

DACA Vriend and Sander,
1993

Protein www.cmbi.kun.nl/
gv/servers/WIWWWI/
oldqua.html

ERRAT Colovos and Yeates,
1993

Protein www.doe-mbi.ucla.edu/
Services/ERRAT

MC-Annotate Gendron, Lemieux,
and Major, 2001

RNA www-lbit.iro.umontreal.ca/
mcannotate

MOLEMAN2 Kleywegt, 1997 Protein
(C-alpha
only)

xray.bmc.uu.se/cgi-bin/gerard/
rama−server.pl

Verify3D Bowie, Lüthy and
Eisenberg, 1991

Protein www.doe-mbi.ucla.edu/
Services/Verify−3D

T A B L E 14.2. Programs for Checking Structure Coordinates

Program name Reference URL

ADIT PDB pdb.rutgers.edu/mmcif/ADIT
ERRAT Colovos and Yeates, 1993 www.doe-mbi.ucla.edu/People/Yeates/

Gallery/Errat.html
PROCHECK Laskowski et al., 1993 www.biochem.ucl.ac.uk/∼roman/

procheck/procheck.html
PROVE Pontius, Richelle, and Wodak,

1996
www.ucmb.ulb.ac.be/SCMBB/PROVE

SQUID Oldfield, 1992 www.yorvic.york.ac.uk/∼oldfield/
squidmain.html

WHATCHECK Hooft et al., 1996 www.cmbi.kun.nl/gv/whatcheck
WHAT IF Vriend, 1990 www.cmbi.kun.nl/whatif

A program specifically developed for checking the geometry of RNA structures,
but that can also be used for DNA structures, is MC-Annotate (Gendron, Lemieux, and
Berman, 2001). It computes a number of peculiarity factors, based on various metrics
including torsion angles and root-mean-square deviations from standard conformations,
that can highlight irregular regions in the structure that may be in error or merely
under strain.

Hetero Groups

The geometry of hetero compounds, as deposited in structures in the PDB, tends to be
of widely varying quality. The HETZE program (Kleywegt and Jones, 1998) is one of
the few validation methods that checks various geometrical parameters of the hetero
compounds associated with PDB structures. These parameters include bond lengths,
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torsion angles, and some virtual torsion angles, the information principally coming
from the small-molecule structures in the CSD (Allen et al., 1979).

Software for Quality Checks

A large number of programs are freely available that can perform the sorts of quality
checks described above on proteins, nucleic acids, and hetero compounds. Below are
listed the most commonly used programs not requiring any specialist knowledge or
additional specialist software. Details of how to obtain the programs are given in
Table 14.2.

PROCHECK. PROCHECK (Laskowski et al., 1993) computes a number of stereo-
chemical parameters for a given protein model and outputs the results in easy-to-
understand colored plots in PostScript format. Significant deviation in the parameters
from the standards that have been derived from a database of well-refined high-
resolution proteins are highlighted as being unusual. The plots include: Ramachandran
plots, both for the protein as a whole and for each type of amino acid; χ1 –χ2 plots for
each amino acid type; main-chain bond lengths and bond angles; secondary structure
plot; deviations from planarity of planar side chains; and so on.

WHATCHECK and WHAT IF. The WHATCHECK program (Hooft et al., 1996)
is a subset of Gert Vriend’s WHAT IF package (Vriend, 1990). It contains an enormous
number of checks and produces a long and very detailed output of discrepancies of
the given protein structure from the norms. The DACA method, mentioned above, for
analyzing nonbonded contacts, is incorporated into the original WHAT IF program.

PROVE. PROVE compares atomic volumes against a set of precalculated standard
values (Pontius, Richelle, and Wodak, 1996). Volumes are calculated using Voronoi
polyhedra to define the space that each atom occupies by placing dividing planes
between it and its neighbors.

SQUID. The SQUID program (Oldfield, 1992) displays two-dimensional and
three-dimensional data derived from protein structures using many graph types. It
can also be used for validation via ready-to-use scripts.

ERRAT. The ERRAT program has already been described. It analyzes nonbonded
atom contacts in protein structures in terms of CC, CN, CO, and so forth contacts.

QUALITY INFORMATION ON THE WEB

Rather than having to install and run one of the above packages, it is possible to obtain
much of the information they provide from the Web. Several sites provide precomputed
quality criteria for all existing structures in the PDB. Other sites allow you upload your
own PDB file, via your Web browser, and will run their validation programs on it and
provide you with the results of their checks.

PDBsum—PROCHECK Summaries

The first site that provides precomputed quality criteria is the PDBsum Web site
(Laskowski, 2001) at http://www.biochem.ucl.ac.uk/bsm/pdbsum. This Web site spe-
cializes in structural analyses and pictorial representations of all PDB structures. Each
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structure containing one or more protein chains has a PROCHECK and a WHAT
CHECK button. The former gives a Ramachandran plot for all protein chains in the
structure, together with summary statistics calculated by the PROCHECK program.
These results can provide a quick guide to the likely quality of the structure, in addition
to the structure’s resolution, R-factor and, where available, Rfree.

The WHATCHECK button links to the PDBREPORT for the structure, described
below.

Occasionally the model of a protein structure is so bad that one can tell immediately
from merely looking at the secondary structure plot on the PDBsum page. Most proteins
have around 50–60% of their residues in regions of regular secondary structure, that
is, in α-helices and β –strands. However, if a model is really poor, the main-chain
oxygen and nitrogen atoms responsible for the hydrogen-bonding that maintains the
regular secondary structures can lie beyond normal hydrogen-bonding distances; so the
algorithms that assign secondary structure (Chapter 17) may fail to detect some of the
α-helices and β –strands that the correct protein structure contains. Figure 14.11 gives
an example of the secondary structure contents for a typical protein and for the protein
that had the poor Ramachandran plot in Figure 14.9b.
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Figure 14.11. Schematic diagrams of two protein models in the PDB. (a) A typical protein

showing an expected 50–60% of its residues in α–helices (shown schematically by the sawtooth

regions) and β –strands (shown by arrows). (b) A poorly defined model that has hardly any

regions of secondary structure at all. The labels and symbols correspond to various secondary

structure motifs. The β and γ symbols identify β- and γ –turns, while the hairpinlike symbols

correspond to β –hairpins. The helices are labeled H1–H3 in a, and strands are labeled A for

β-sheet A. The Ramachandran plots for both models are shown in Figure 14.7. The sequence of

the protein in b has been removed to hinder identification. The above plots were obtained from

the PDBsum database.
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PDBREPORT—WHATCHECK Results

The WHATCHECK button on the PDBsum page leads to the WHAT IF Check report
on the given protein’s coordinates. This report is a detailed listing (plus an even
more detailed one, called the Full report) of the numerous analyses that have been
precomputed using the WHATCHECK program. These analyses include space group
and symmetry checks, geometrical checks on bond lengths, bond angles, torsion angles,
proline puckers, bad contacts, planarity checks, checks on hydrogen-bonds, and more,
including an overall summary report intended for users of the model. The PDBREPORT
database can be accessed directly at http://www.cmbi.kun.nl/gv/pdbreport.

PDB’s Geometry Analyses

The PDB Web site (http://www.rcsb.org/pdb) also has geometrical analyses on each
entry, consisting of tables of average, minimum, and maximum values for the protein’s
bond lengths, bond angles, and dihedral angles. Unusual values are highlighted. It is
also possible to view a backbone representation of the structure in RasMol, colored
according to the Fold Deviation Score—the redder the coloring the more unusual the
residue’s conformational parameters.

Validation Servers on the Web

In addition to the sites mentioned above, there are a number of validation servers
on the Web that allow you to submit a PDB file for analysis. Table 14.1 lists these
servers. They are mostly for protein structures and most use programs that are freely
available for in-house use (see Table 14.2). However, the servers can often be easier
and more convenient to use, and of course save you having to download and install the
programs, particularly the Biotech Validation server that runs the three most commonly
used validation programs: PROCHECK, PROVE, and WHATCHECK.

CONCLUSION

The main aim of this chapter is to impress on you that the macromolecular structures
that form the very foundation of structural bioinformatics are not all of the same
quality and can undermine that foundation if not carefully selected. All structures
are just models devised to satisfy data obtained experimentally. As such, they will
contain errors, both systematic and random. Some structures have been found to be
seriously incorrect, that is, they are inaccurate models of the molecules they represent
and in many cases have been replaced by more accurate models. Most structures are
reasonably accurate but inevitably contain random errors, as is symptomatic of any
experimental measurement. The quality of structures as a whole has improved over the
past few years and this trend is expected to continue. However, determining which is a
good structure and which is not is still not straightforward. Even traditional measures,
such as the resolution and R-factor for X-ray structures, and number of restraints for
NMR structures, do not always separate the good from the bad. Very often, other
quality measures need to be taken into account when selecting a good data set.

The chapter has surveyed the information available, and some of the additional
tests that can be performed to ensure that the reliability of any structures used is
consistent with the conclusions to be drawn from them.
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ALL-ATOM CONTACTS: A NEW
APPROACH TO STRUCTURE

VALIDATION
Jane S. Richardson

The enormous wealth of macromolecular structure data already available and the
even greater wealth soon to come—from structural genomics, from the push for
atomic-resolution structures, and from the push to solve much larger biological comp-
lexes—provide a treasure trove of functional, interactional, and evolutionary data that
will change how one can do biology. But, in order to make effective use of this great
resource, it is important, among other things, to take into account the very large spread
of accuracy in those data. Relatively low-resolution structures can be among the most
valuable if they are of critical molecules or of large and complex cellular machinery.
These structures show overall fold and relative positioning of their parts and they often
illuminate function in surprising ways, but one should not expect to learn from them
fine details in an active site or critical differences that determine substrate or inhibitor
specificity. At the other extreme, increasing numbers of structures are being solved
at better than 1Å resolution, where one can reliably detect minute changes and dis-
entangle multiple conformations of side chains and waters. Within a given structure
there can be even wider variability in quality. Regardless of resolution, most struc-
tures have some parts disordered enough that they are not visible in a crystallographic
electron-density map (or have no observable NMR constraints). In some cases their
coordinates will actually be missing, but more often disordered areas are indicated by
a high crystallographic B-factor or highly divergent conformations in an NMR ensem-
ble. If a particular part of a structure is important to the question being asked, such
telltale signs should always be heeded.
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Many of the basic quality indicators such as resolution, B-factor, R and free R
residuals (measures of how well the model accounts for the observed data), and model
root-mean-square deviation (rmsd) are directly reported in the Protein Data Bank (PDB)
coordinate file (Chapter 8; Berman et al., 2000). Beyond those indicators, the subject
known as structure validation (Chapter 14) provides further tools for assessing both
overall and local accuracy of structures. Standard validation programs such as ProCheck
and WhatIf provide an excellent set of widely-used tools, centering especially on
ideality of molecular geometry and on whether backbone φ,ψ angles occur outside
the preferred core regions. Of special importance in validation are independent criteria
not explicitly part of the target function optimized by the structure-refinement process,
because their deviations are much more sensitive indicators of problems. The two
classic such indicators are the φ,ψ or Ramachandran plot (Laskowski et al., 1993;
Ramachandran et al., 1963; Lovell et al., 2002), since φ,ψ values are not in the target
function, and the free R factor (Brunger 1992), the agreement with a designated 5–10%
of the data that are deliberately kept out of refinement in order to provide an unbiased
indicator of progress in model quality.

Recently we have discovered, in a surprisingly simple place, a new source of
information for an unbiased and sensitive validation criterion: the hydrogen atoms.
They constitute about half of the atoms, but they usually are ignored for technical
or expediency reasons. H atoms are, of course, important and present in NMR struc-
tures (see Chapter 5), although often not treated with full radius. In macromolecular
crystallography, polar H atoms are typically added to better define H bonds but with
no van der Waals terms, while nonpolar H atoms are added and refined against the
data only at ultra-high (near 1Å) resolution. The main reason for this omission is that
hydrogens diffract X rays very poorly, so that they can be directly detected only under
the best of conditions.1 Another reason is that including hydrogens doubles the number
of parameters if they are treated as fully independent, which is acceptable only when
there is a large enough number of experimental observations. Finally, only recently
has computer speed allowed the extra cost in time, either for structure refinements
or for theoretical calculations. H atom volume is standardly accounted for by using
larger united-atom radii for the other atoms, but the directionality and specificity of
H interactions are not represented. The net result of all this is that the crystallogra-
phers have obligingly ignored half their atoms in refinement, managing to do quite
well without them but now giving us the opportunity to use the correctness of the
hydrogens’ tight and specific packing interactions as both a global, and especially a
local, validation criterion. This new method (Word et al., 1999a) is called all-atom
contact analysis.

As applied to the structural database, all-atom contact analysis has two different
goals. The first, long-term goal is to actually improve the accuracy of the data, by
having structural biologists apply the criteria themselves and fix many errors before
coordinates are deposited (a similar process occurred several years ago with routine
application of free-R and Ramachandran-plot criteria). The second goal is to give users
of the database an easy and effective way to assess local structural accuracy. The first
goal would produce higher-grade ore for data mining, while the second improves the
extraction process.

1The invisibility of hydrogens is actually very fortunate, because it produces the beautifully clear separation
between aliphatic side chains in protein interiors at moderate resolution.
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THE METHOD OF ALL-ATOM CONTACT ANALYSIS

The all-atom method must start off with a reliable way to add H atoms and opti-
mize their positions, which is done by the program Reduce (Word et al., 1999b). A
great many of the hydrogen positions are completely determined by the heavier atoms:
methylene, methine, backbone NH, aromatic H, and so forth. OH rotations and His pro-
tonation, however, must clearly be optimized relative to the surrounding structure. Less
obviously, the 180◦ flip orientation of Asn and Gln side-chain amides (and also flips of
His rings) need to be optimized; they are fairly often incorrect as reported, because the
N and O atoms of the amide are not easily distinguished by the experimental X-ray data.
However, the choice can reliably be made if both H bonding and potential clashes of the
NH2 are considered (Word et al., 1999b). We have found, surprisingly, that most methyl
rotations do not actually need to be optimized because they are remarkably relaxed in
protein structures, with departures from staggered orientation seldom much above 10◦.
NH3 groups and Met side-chain methyls do however need rotational optimization. The
Reduce program handles nucleic acids and small-molecule ligands as well as proteins,
and interactions with individual bound waters are treated by a simplified model. The
reason hydrogen addition is a complex process is that the movable H atoms often occur
in interacting H-bond networks and must be optimized as a group rather than individu-
ally. In practice, such H-bonding cliques are small enough, given our simplified model
for water molecules, that exhaustive evaluation of all possible hydrogen positions is
computationally tractable. A single simple command runs Reduce rapidly and produces
a commented, properly formatted output PDB file with all H atoms present.

All-atom contacts are calculated by the program Probe (Word et al., 1999a) from
a Reduce-modified PDB file that now includes hydrogens. The usual output is contact
surfaces as color-coded dots in the “kinemage” format for display in the Mage graph-
ics program (Richardson and Richardson 1992; Richardson and Richardson 2001) as
shown in the color figures for this chapter, but other display formats, numerical scores,
or lists of serious clashes can also be produced (see Current Facilities and Their Use
below). Typically, Probe is run on an entire PDB file, but it can also calculate the
internal contacts for a small region or just the contacts between two pieces (i.e., a
ligand and a protein), using a flexible syntax of atom selection.

Note: since color is the primary carrier of information in the displays produced by
all atom contact analysis, it is essential that the reader refer to the figure versions in the
Color Section. Figure 15.1 illustrates a simple example of all-atom contact surfaces for
a small region, to show the appearance of favorable van der Waals contacts, favorable
H-bond overlaps, and unfavorable atomic overlap, color-coded by the local gap dis-
tance between the two contacting atoms. The all-atom contact algorithm rolls a small
spherical probe (shown as a gray ball) on the surface of each atom, drawing a colored
dot only when the probe intersects another noncovalently-bonded atom. This method
is a bit like the inverse of solvent-exposed surface (Connolly 1983; Lee and Richards
1971), where here only occluded surface is shown; however, our much smaller probe
means that only atom pairs within 0.5Å of touching will count as contacts. These
contacts are extremely sensitive to fine details of how well the structure fits together.
If a local conformation is in the right energy well but not quite correct, it will usu-
ally produce just yellow and orange overlap dots. However, it is very difficult to fit
anything in a completely wrong conformation without producing red clash overlaps,
even after refinement has done its best at adjustments. Therefore, the primary way of
interpreting the all-atom contact results is simply that lots of soothing green (such as
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Figure 15.1. Slice through a small section of protein structure (stick figure, backbone in white

and side chains in cyan) showing the relation of all-atom contact surfaces (colored dots) to the

atomic van der Waals surfaces (gray dots) and to the 0.25Å-radius probe sphere (gray ball) used

in the calculation. The small probe sphere is rolled over the van der Waals surface of each atom,

leaving a contact dot only when the probe touches another non-covalently-bonded atom. The

dots are colored by the local gap width between the two atoms: blue when nearly maximum

0.5Å separation, shading to bright green near perfect van der Waals contact (0Å) gap. When

suitable H-bond donor and acceptor atoms overlap, the dots are shown in pale green, forming

lens or pillow shapes. When incompatible atoms interpenetrate, their overlap is emphasized with

‘‘spikes’’ instead of dots, and with colors ranging from yellow for negligible overlaps to bright

reds and hot pinks for serious clash overlaps ≥0.4Å. Kinemage-format contact dots also carry

color information about their source atom (e.g., O’s are red, S’s are yellow, etc.); in Mage, one

can toggle between the two color schemes. Figure also appears in Color Figure section.

seen in Fig. 15.2a and 15.2b) means the structure is correct, while an area of red spikes
has some sort of problem. In fact, for an all-atom kinemage interactively displayed in
Mage one can turn off everything but the bad clashes and quickly spot all problem
areas even in a large structure, as shown for the 324-residue dimer in Figure. 15.2c.

In addition to graphic display, several scoring schemes suitable for different pur-
poses produce numerical evaluations of the contact, H-bond, and clash terms (Word
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(a)

(c)

(b)

Figure 15.2. All-atom contact examples from the dimer of 1MJH (Zarembinski et al., 1998), a

well-determined structural-genomics protein at 1.7Å resolution. (a) All contacts for one of the

typically well-packed and well-fit regions of aliphatic side chains, with the green of close van

der Waals contacts predominant. (b) All contacts for an Arg side chain, with all 5 planar H-bonds

(lens-shaped groups of pale green dots) of its guanadinium NH’s formed either to protein O

atoms or to waters (pink balls). (c) An overview of the dimer, with only the Cα backbone and

the serious clashes ≥0.4Å (red spikes) shown. When interactively displayed in Mage, it is easy to

locate and fix the small number of isolated problems, including two flipped-over His rings at the

putative active site and a high-B Lys squeezed into insufficient space between two hydrophobic

sidechains. Figure also appears in Color Figure section.

et al., 1999a). These scores are not energies, however, because the serious clash over-
laps represent model errors, not real strains in the structure. When used to understand
features of molecular architecture, such as side-chain packing, overlaps are treated
simply as tight contacts, but for structure-validation and error-correction purposes, the
clash overlaps are very much the dominant issue. We consider a serious clash (one
that usually indicates some sort of misfitting) to occur where two incompatible atoms
overlap by 0.4Å or more. The overall clash score of a structure is the number of serious
clashes per 1000 atoms.
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RELATIONSHIP TO MORE TRADITIONAL CRITERIA

The well-ordered parts of the very best X-ray and NMR structures fit the all-atom
contact criteria nearly perfectly, with extensive contacts throughout the interior, an
absence of even modest clashes, and most atoms showing the green dot patches of ideal
van der Waals contact as in Figure. 15.2a and 15.2b (and, at even higher resolution,
in Fig. 15.5a below). Such agreement is strong confirmation that our algorithms and
parameters have been chosen correctly. Clash score is strongly correlated with other
indicators of structure quality: overall parameters such as resolution or number of NMR
restraints correlate with overall score (Fig. 15.3a), and local crystallographic B-factor
correlates especially strongly with locally measured clash score (Fig. 15.3b).

If structure factors are available, enabling examination of the electron-density map
in the area of a serious clash, it usually turns out that the density is either weak or
its shape is somewhat ambiguous, making a misfitting more likely than in clearer
areas. For example, electron density for a side chain that branches at the Cβ such
as Thr or Val fairly often has a straight bar shape rather than a tetrahedral junction,
making it possible to misfit the χ1 angle by 180◦. When that happens (as for the
Val in Fig. 15.4a), there are always clashes with the Hβ or Hγ atoms, the side-chain
rotamer will be poor, and the bond-angle geometry around the Cα will almost always
be badly distorted through forcing the Cγ atoms to fit into the bar-shaped electron
density although connected to a Cβ that has been fit on the wrong side of the bar.
Figure. 15.4b shows both the original and the refit side chains, emphasizing the great
difference in their geometry and conformations though occupying nearly the same
space; Figure. 15.4c shows the excellent fit obtainable in a good rotamer with ideal
geometry and no backbone movement. Traditionally, electron-density difference maps
are used as indicators of this kind of problem (for instance, often but not always
showing a pair of positive and negative peaks at the real and the misfit Cβ), but they
are difficult for noncrystallographers to calculate and interpret. The Uppsala Electron
Density Server (http://portray.bmc.uu.se/eds) is a valuable source of viewable electron
density maps and related quality criteria, for those PDB files with available structure
factors that could successfully be processed automatically.

In contrast to the technicalities of electron-density maps, user-friendly validation
tools are available for assessing all-atom contacts, rotamers, geometric ideality, and
whether backbone φ,ψ angles are unfavorable. These tools are best used in concert
with one another, because a given problem usually shows up only in a subset of them.

>

Figure 15.3. Correlation of all-atom clash scores with other indicators of structure quality.

(a) Overall clash score (number of serious overlaps ≥ 0.4Å per 1000 atoms, after correction of

amide flips) as a function of resolution, for 328 protein structures between 0.8Å and 2.5Å

resolution. The relationship is highly significant and is still improving down near 1Å. (b) Serious

clashes per 1000 atoms, grouped into ranges of crystallographic B-factor values, for 100 proteins

at 1.7Å resolution or better. Note that an atom with B > 50 is 10 times as likely to clash as one

with B between 10 and 20. Clashes fall off again at the very highest B range, because those

atoms are exposed at the surface with few neighbors. Note that for high-resolution structures

only about 5% of the atoms have B > 40, so that the ones most prone to error can be omitted

from empirical studies with little loss in sample size. Part b is reproduced from Word et al. (JMB,

1999a) by permission of Academic Press.
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For instance, if the refinement terms for ideal geometry were heavily weighted relative
to agreement with the experimental data, then bond angles will not be distorted but
clashes will show; however, if clashes are between non-H atoms, then refinement may
remove them at the expense of geometry. In our experience, the two most sensitive and
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(a) (b) (c)

Figure 15.4. Diagnosis and correction of a backward-fit valine side chain. (a) All-atom contacts

for the original side chain, with substantial clashes (hotpink) and an eclipsed χ1 angle. (b) Original

and refit side chains, showing how both occupy the same space but in opposite orientations.

Bond-angle distortions in the original put its Cβ 0.48Å from the idealized position. (c) Good

all-atom contacts for the refit Val, which has ideal geometry and staggered χ1 without backbone

movement. Even without deposited structure-factor data, one can be fairly confident that the

electron density must have been ambiguous and that the conformation shown in (c), not (a), is

in the correct local energy well. From the 2SIM neuraminidase at 1.6Å resolution (Crennell et al.,

1996). Figure also appears in Color Figure section.

reliable indicators of local problems in a structure are bond-angle distortions (Lovell
et al., 2002) and all-atom clashes. Nonideal torsion angles or bond distances often tell
more about how the refinement was set up than about the structural accuracy, whereas
a bond angle off by 6–8◦ from ideal or a clash of 0.5Å (or both!) almost always means
that something is seriously misfit.

In drawing conclusions from a structure or comparison, it seldom matters if one
or two parameters are slightly off (e.g., a torsion angle by 15◦), but it is often critical
if the backbone or side chain are actually in the wrong conformation (e.g., a torsion
off by 90–180◦): that will change which atoms are in position to interact, say, with a
ligand. Local problems in polypeptide chain-tracing, such as a sequence out of register
by two within a β strand, are often flanked at each end by clusters of all-atom clashes
and bad bond angles. Neither all-atom contacts nor geometrical ideality are suitable in
general, however, for identifying incorrect chain folds—both are too sensitive and too
local. That task is probably best done by the sort of threading methods used in fold
recognition (Chapter 26) and homology modeling (Chapter 25).

As an extra bonus, we have found that filtering experimental datasets by all-atom
clashes and B-factors as well as by resolution can greatly improve the quality of
Ramachandran-plot criteria (Lovell et al., 2002) and of side-chain rotamer libraries
(Lovell et al., 2000), thus indirectly improving these more traditional validation tools.
The new rotamers have no internal clashes and all occupy valid local energy minima.
The Ramachandran plots are much cleaner, allowing defensible separation of disfavored
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but allowed regions from forbidden regions and the definition of core regions for Pro
and Gly. Separate criteria for glycines are important to validation, because the lack
of a Cβ makes Gly φ,ψ the most error-prone for either X-ray or NMR structures.
These new rotamers and Ramachandran plots are available from the Kinemage Web
site (RichardsonLabWebSite 2001).

CURRENT FACILITIES AND THEIR USE

Probe and Reduce for calculating all-atom contacts and Mage and Prekin for interac-
tive display of molecules and contacts are available as free, open-source software from
our Web site (RichardsonLabWebSite 2001). Probe and Reduce run on Unix, Linux,
MacOSX, or (less conveniently) PC; the Mage/Prekin display runs on Unix, Linux,
Mac, PC, or Java.

The most basic and general function of all-atom contact analysis for structure
validation is to generate a clash report on a particular PDB file, either in graphic form
or in list form. To set up for analysis of a PDB file called 1xyz, first add and optimize
H atoms by running the command:

reduce -build 1xyz > 1xyzH

and make a kinemage file of the structure (including backbone, side chains or bases,
H atoms, small-molecule ligands, and waters) with:

prekin -lots 1xyzH > 1xyzH.kin

Now calculate all-atom contacts and append them to the kinemage file with:

probe 1xyzH� 1xyzH.kin

This graphic contact report is viewed in Mage by typing:

mage 1xyzH.kin

For example, on a small, very high-resolution structure such as the 1BRF thermophilic
rubredoxin in Figure 15.5 the contacts are excellent throughout (green, with some
yellow and blue). In this case if everything is turned off except the bad overlaps,
it is immediately obvious that there is a single serious clash between two surface
side chains. If the crystallographer is looking at this clash report, he or she should
investigate that region to see if it can be corrected; if a bioinformaticist is doing the
evaluation, he or she now knows all of this structure is of extremely high quality except
for the two clashing side chains, whose detailed conformation cannot be trusted. This
example is very small for clarity of presentation in static two dimension (2D), but
in the interactive display it is easy to locate the problem regions even on a large,
lower-resolution structure and to zoom in and examine them.

The two areas in which such clash reports have had the greatest impact are both
for crystal structures: detecting and fixing protein side chains fit in the wrong rotamer,
and finding places where nucleic-acid backbone conformations are incorrect. The most
common side-chain misfittings are for Asn/Gln flips (case below), Thr/Val/Leu tetra-
hedral branches (as in Fig. 15.4), and Met conformations. The reasons for problems
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Figure 15.5. All-atom contacts for the entire structure of 1BRF rubredoxin (Bau et al., 1998), a

highly accurate small protein structure at 0.95Å resolution. The dense green dot patches signifying

well-packed contacts in the molecule and a well-fit model are seen consistently throughout the

structure, except for a single red clash between two surface side chains. 1BRF thus illustrates both

how precisely the all-atom contact criteria are satisfied in atomic-resolution protein structures

and also how occasional local errors can be found even in such extremely high-quality structures.

Figure also appears in Color Figure section.

with Thr/Val and with Leu are discussed in detail in Lovell et al. (2000); for validation
purposes it suffices to know that these problems occur fairly often and that they almost
always produce bad clashes and usually distort Cα–Cβ geometry (Lovell et al., 2002).
Met can be difficult because the heavy Sδ atom produces diffraction ripples in the
electron density that weaken the information for the nearby Cγ and Cε; all-atom clash
and rotamer information can usually make the correct choice clear.

For nucleic-acid crystal structures, the bases are large, rigid, and well determined,
and the P atom density is generally unambiguous, even at the moderate resolution
(often around 2.5Å) typical of the most biologically interesting structures. In those
same structures, however, the rest of the sugar-phosphate backbone has too many free
parameters per observable atom (see Chapter 3 for description of the six backbone
dihedrals per residue) and is quite prone to errors when in conformations less well
understood than standard B-DNA or A-RNA. H atom clashes, however, mark the
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(a) (b)

Figure 15.6. Base and backbone all-atom contacts in the 5S RNA from the 2.4Å ribosome

structure of 1FFK (Ban et al., 2000). (a) A section of the backbone–backbone contacts, mostly

very nicely packed but with one impossible overlap of C 3′ and C 5′ hydrogens (red spikes). (b)

Base–base contacts, showing the long columns of well-fit base stacking. Figure also appears in

Color Figure section.

incorrect conformations extremely clearly. Figure 15.6a shows all-atom contacts for
just the backbone of part of a 5S RNA; most areas show excellent contacts, but
one residue is in a physically impossible conformation. To calculate such a backbone
contact display, use: probe-mc “mc” 1rnaH � 1rnaH.kin. When analyzing nucleic
acid structures, all-atom contacts also provide a quick and pleasing way to visualize
base stacking (see Fig. 15.6b, done with: probe “base” 1rnaH � 1rnaH.kin), and the
NAContacts script (RichardsonLabWebSite 2001) gives a sensitive numerical measure
of stacking quality.

As a clash report for those who prefer working with lists and scores rather than
visual displays, the Clashlistcluster script produces a text file that lists all clashes
≥ 0.4Å, clustered into local groupings in space (often a single problem is responsible
for several nearby clashes). After running Reduce, the command is:

clashlistcluster 1xyzH > 1xyzHclcl.txt

That file gives the total clash score, for an overall evaluation, or one can look to see
whether the residues of interest have any bad clashes. Since all of these programs can
be run and controlled from the command line, they can be combined into shell scripts
that perform a desired sequence of operations on an entire list of structures. For more
information on options, type reduce-help or probe-help.

As explained above, automatic correction of 180◦ flip alternatives for Asn, Gln,
and His is done as part of the H-bond network optimization in Reduce (invoked by
the “-build” flag). In order to see why Reduce made each change and to evaluate its
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(a) (b)

Figure 15.7. Resolving the ambiguity in a pair of doubly H-bonded side-chain amides, which

have equivalent H bonds both to each other and to waters in the two possible flip states. (a) The

correct flip orientation, with only a minor overlap. (b) The next-best, but incorrect, flip state with

a large, physically impossible clash of the Gln Nε H with Hα (red spikes). From the 1.6Å peroxidase

of 1ARU (Fukuyama et al., 1995). Figure also appears in Color Figure section.

level of certainty, a Perl script called Flipkin is used:

flipkin 1xyzH > 1xyzNQflip.kin

This produces an output kinemage file with a preset view for each Asn/Gln in the
structure (or His, if run with the “-h” flag added), with the ones Reduce chose to
flip marked with “*” on the views menu. An animation is set up between the two
possible flip states with display of the contacts, H bonds, and clashes in each state.
Figure 15.7a and 15.7b show the two displays for a doubly interacting Asn-Gln pair
whose H bonds are equally good in either flip state, but where the original choice has
an impossibly bad clash with the Gln CαH, whereas the flipped state fits well. The flip
of a side-chain amide is a small change but can be crucial if it affects an H bond at
an active, allosteric, or binding site.

In addition to assessing the reliability of particular pieces of three-dimensional
structure, all-atom contact analysis can be used in the interactive Mage/Probe system
(Word et al., 2000) to try out the plausibility of a proposed alternative conformation, or
to see whether a modified sequence would be compatible with a known structure. This
methodology was developed to tell whether or not a single-site mutation can be accom-
modated without movement of the original structure around it (essential information
in determining whether observed mutant properties are actually due to the altered side
chain itself); however, it would also be useful in structural bioinformatics for assessing
the degree of structural change between closely related sequences, or deciding whether
or not one protein could assume a different conformation seen for other members of
the related family.

In the interactive Mage/Probe system, the programs are set up to communicate
directly with each other, so that an all-atom contact display changes as you rotate
bonds in the structure. When looking at a stick-figure kinemage of your structure (in
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Unix or Linux), center on the residue of interest and choose “remote update” on the
Tools menu. Ask for Prekin to mutate the residue (edit the three-letter code to what
you want, in the command line proposed by Mage), and the new sidechain will appear
in green, with idealized geometry, along with sliders to change its χ angles. (Note
that the PDB file 1xyzH must be in the directory, for Prekin and Probe to use.) Go
to “remote update” again, and ask for Probe to calculate contacts around the rotatable
side chain. First you see contacts around the present position, and they will be updated
automatically as you change the conformation.

Figure. 15.8a shows unsatisfactory Probe dots around a buried Tyr to Trp mutation
that has been made rotatable, but not yet properly optimized. In the text window is
a list of the rotamers for that amino acid (as defined in Lovell et al., 2000); if you
click on one of the listed rotamers, the side chain will be put in that conformation.
Usually most of the rotamers will have terrible clashes like the one in Figure. 15.8a,
which is actually the second-best rotamer (χ1 trans, χ2 − 105◦). Identify the rotamers
that are most nearly acceptable, such as the good rotamer shown in Figure 15.8b (χ1

trans, χ290◦). Then move the χ angles by modest amounts (up to 20–30◦) to look
for a position with green, blue, and yellow dots, and perhaps the pale green pillows
of H-bond dots, without any appreciable amount of red spikes; in this case, there is a
very well-fitting conformation only 3◦ away from the best rotamer. This Trp mutant
was produced and found to have a stability and folding rate at least as good as, and an

(a) (b)

Figure 15.8. A test of alternative sequence possibilities substituting Trp for Tyr at a buried

position in the N-terminal domain of λ repressor, using the ‘‘remote update’’ function in the

interactive Mage/Probe system. (a) One of the initial rotamer trials, with impossibly bad clashes

on both sides of the Trp ring. (b) The best of the exact rotamers, with only two minor overlaps

in orange, indicating that the Trp side chain can indeed fit without perturbing the structure

significantly. Starting coordinates from 1LMB (Beamer and Pabo, 1992). Figure also appears in

Color Figure section.
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NMR spectrum very close to, that of the parent λ repressor domain (Ghaemmaghami
et al., 1998). In general, if a satisfactory conformation can be found in Mage/Probe
for the mutated side chain, that means that the new amino acid can be accommodated
without changing anything else. If it looks as though moving another side chain would
help, you can make it rotatable as well. If no acceptable conformation can be found,
the mutation might still be stable and functional, but it could not be so without the
structure rearranging. Predicting such rearrangements and their functional consequences
is currently beyond the capabilities even of the most sophisticated modeling tools, and
so this simple method has given you an answer nearly as good as can be done.

In a more systematic or formal context, the conformational search described above
can be done by a function called Autobondrot built into the Probe program. It surveys
all dihedral-angle values on a specified grid (e.g., for the χ angles of a mutated side
chain) and outputs a contoured map of contact score (Word et al., 2000). If there is a
sizable area in the map with score > −1, then it is considered that the mutant can be
accommodated without significant structure change. Autobondrot is somewhat more
complex to set up than the interactive Mage/Probe exploration, but it can then be run
automatically.

For crystallographers solving new structures and wanting to improve database
quality directly, our Web site has the tools and instructions for generating all-atom
clash and H-bond displays interactively while rebuilding models in the commonly
used fitting programs O and XtalView (Jones et al., 1991; McRee, 1999; Richardson
and Richardson, 2001). The improved rotamer library (Lovell et al., 2000) is available
as a drop-in replacement file for either program.

The all-atom contact tools are also valuable for NMR structures, but that use
is less powerful and less straightforward. H atoms are explicitly included already
in NMR refinement, and NMR structures are solved in terms of local distances not
absolute Cartesian coordinates; injudicious application of contact criteria could just
expand the structure undesirably. So far, the most general conclusion from all-atom
contact analysis of NMR structures is that for the best-determined cases the interiors
excellently fit all-atom criteria and the surface regions would then benefit from a final
refinement step with all atoms at 100% radius (rather than the maximum of 75%
radii currently standard). All-atom contact analysis can also be used for validation of
theoretical model structures, but again its interpretation is much less robust than when
applied to crystallographic structures. A serious clash still means that something must
be wrong, but a lack of clashes does not mean the model is necessarily correct. One
must also beware, when using software that may not output completely valid PDB
format, of occasional apparent clashes produced by incorrectly resolved atom-name
ambiguities such as hg for an Hγ hydrogen confused with hg for an Hg++ ion.

FUTURE DIRECTIONS

For the purposes of bioinformatics and structure validation, our most important plans
are to develop service-provision on the kinemage Web site that will run all the functions
described above on client-submitted files, now available in a preliminary form on
the MolProbity subsite. It is always helpful to bypass the necessity for downloading,
installing, and learning new programs, since even for very user-friendly software those
steps are always more of a barrier than one feels they ever should be. It is now
possible, from either specified PDB codes or uploaded files, to run clash reports with
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either visual or numerical output directly on the web, to receive a modified file with
H atoms added and optimized, and to view directly on line in Java Mage an animated
kinemage showing the Asn/Gln/His flips. Along with the all-atom contact functions,
we will also provide visual and numerical evaluations, both in 3D on the structure and
in one dimension on the sequence, of the ideality or favorability of sidechain rotamers,
of φ,ψ values, and of bond-angle geometry, using our updated criteria.

Another important area for development will be further automation of the eval-
uation and correction functions for other side-chain types in the style now provided
for Asn/Gln/His flips, and eventually for some kinds of backbone corrections. More
complete automation is especially vital for use in the structural genomics effort, but
it will help other users as well. We would appreciate feedback, both about patterns of
use and effectiveness and also suggestions about needs and improvements.

RELEVANT WEB SITES

http://kinemage.biochem.duke.edu. The Richardson laboratory Web site and kinemage home
page is the primary source for up-to-date software, information, and other resources
relevant to all-atom contact analysis; it includes documentation, datasets, validation examples
interactively illustrated in JavaMage, and the MolProbity service that runs our software on a
selected or uploaded file.

http://www.sdsc.edu/CCMS/Packages/XTALVIEW/xtalview. The source for XtalView version
4.0 and later, which supports real-time display of all-atom contacts during crystallographic
model rebuilding.

http://origo.imsb.au.dk/∼mok/o. The source for the O crystallographic rebuilding software, with
links to the kinemage site for drop-in rotamer files and macros for updating an all-atom
contact display.
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STRUCTURE COMPARISON
AND ALIGNMENT

Philip E. Bourne and Ilya N. Shindyalov

Structure comparison refers to the analysis of two or more structures looking for
similarities in their three-dimensional (3D) structures. Alignment refers to establishing
equivalences between amino acid residues based on the 3D structure of two or more
protein folds. All commonly used methods do a reasonably good job of recogniz-
ing the more obvious instances of similar 3D folds, but, as we shall see, structure
alignments are much more variable. Most algorithms and resulting Web resources pro-
vide protein structure comparison and alignments at the level of domain or complete
polypeptide chain.

It is important to clear up immediately any confusion between structure compar-
ison and alignment versus structure superposition. These terms are sometimes used
interchangeably in the literature; here, we make a stricter delineation. Structure super-
position assumes that you already know of at least some residues that match between
protein structures A and B. Typically, these C-alpha positions then become anchor
points and the task becomes one of using a minimization technique or analytical pro-
cedure to find a transformation that minimizes the distance between aligned residues.
The best solution is then the one that produces the lowest root mean square deviation
(rmsd) between A and B. In other words, the alignment is already assumed and all
that is required is tweaking to bring the two structures into register. Clearly, this is
a much easier problem (and there is an exact solution to it) than having no a priori
knowledge of what amino acids are equivalent. The latter is known as the structure
alignment problem.

Structure superposition methods and codes have been around for some time, see for
example, Diamond (1976); Kabsch (1976); Hendrickson (1979), and Kearlsey (1989).
Finding proteins that exhibit 3D similarity and then finding the best alignment through
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gap insertions is much more difficult, and forms the basis of this chapter. Clearly
structure superposition could play a role once the alignment is complete and the rela-
tionship between residues in the two structures has been established.

WHY IS 3D STRUCTURE COMPARISON AND ALIGNMENT IMPORTANT?

The first question to ask is why is structure comparison and alignment important? This
question has been answered several times in other chapters in this book; for example:

• Structure classification methods (Chapters 12 and 13) use structure alignments
to help in the assignment of fold classes and can be used subsequently in estab-
lishing libraries of templates for use in proteome annotation.

• Structure alignments of a protein of known fold and function against a pro-
tein of unknown function can provide insight into the function of the unknown
(Chapter 19). Structure alignments are of particular importance in an era of
genomically driven structure determination where no a priori knowledge of the
biological function may exist (Chapter 29).

• Structure prediction methods require that the predicted structure be evaluated
against a variety of template structures (Chapters 25, 26, and 27).

• Structural alignments reveal distant sequence relationships not available from
sequence alignments alone and can be used in protein engineering and protein
modeling (this chapter).

As a general point, it is worth highlighting again here, even though it is intro-
duced elsewhere in this book, that structure alignments provide us with information
not available from current sequence alignment methods. The reason for this is the
result of nature’s ability to reduce complexity to manageable levels yet still main-
tain incredible diversity and adaptability. If you consider that an average protein
consists of 300 amino acids, then there are 20300 possible proteins—more than the
number of atoms in the universe. Nature has selected a very small subset of these—as
few as 30,000 in humans for the functioning of a complex organism. Still greater
reduction exists in three dimensions—all proteins from all species are believed to be
represented by somewhere between 1000 and 5000 protein folds (Chothia, 1992). A
brief discussion of the possible reasons for this limited number of folds is provided
in Chapter 2. This remarkable reduction was first noted in the globins when only
a small number of structures existed (Lesk and Chothia, 1980). It was later mani-
fest in the hssp curve (Sander and Schneider, 1991), which was recently updated by
Rost (1999).

Here, we take a slightly different look at the relationship using data from our
own laboratory (Fig. 16.1). Each point on the graph in Figure 16.1 represents one of
1000 randomly selected polypeptide chains taken from the Protein Data Bank (PDB)
that show a measure of structure similarity measured by CE (described below) with a
z-score greater than 4.5, indicating structure similarity at the level of the protein super-
family. Plotted on the x-axis is the length of the polypeptide chain and on the y-axis
the resulting sequence identity. Thus, while there are a number of matches with very
high sequence identity (90% or greater) indicating post-translational modifications in
the PDB, there are also many chains with low sequence identity. The region between
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Figure 16.1. Structure similarity versus sequence similarity. Each data point represents one of

1000 randomly selected polypeptide chains from the PDB showing structure similarity as measured

by CE with a z-score > 4.5.

30% and 20% sequence identity indicates a twilight zone where this relationship may
be detectable by sequence methods alone. However, below 20% sequence identity is
the so-called midnight zone where only structure comparison reveals the relationship
between these two proteins at the level of the fold. Rost (1999) using an even larger
data set showed that this relationship between sequence and structure, while having a
length dependency, can be represented as a Gaussian distribution with a peak around
the 9% sequence identity level. Certainly the relationship between these proteins, let
alone an accurate sequence alignment, could not be achievable by sequence meth-
ods alone. Thus, structure alignments provide valuable insights not achievable from
sequence alone.

As discussed elsewhere in this book, it is dangerous to consider these findings
as absolute; they most certainly are not. The relationship between primary protein
sequence, 3D structure, and biological function is more complex and still being inter-
preted. As George Bernard Shaw once said, “the golden rule is that there are no
golden rules.” For example, there are cases of structures that contain large regions
of high sequence similarity yet share no structure similarity. The viral capsid pro-
tein (1PIV:1) shares an 80-residue stretch with glycosyltransferase (1HMP:A) where
there is greater than 40% sequence identity, yet the structures within those regions
are completely different (mostly beta versus mostly alpha, respectively). In short we
have guidelines only; nevertheless, guidelines that prove very useful as we shall see
subsequently.
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THE GENERAL APPROACH TO STRUCTURE COMPARISON
AND ALIGNMENT

Structure comparison and alignment is an NP-hard problem that is solved heuristically
by all methods. Although different heuristics employed by different methods tend to
recognize similar folds, they will not provide exactly the same structure alignments.
In fact two structure comparison methods may produce alignments that differ in every
position (Godzik, 1996). We consider the impact of an NP problem and the fact that
even if it were a tractable problem, it may provide the best analytical but not biolog-
ical answer, after discussing the details of the most popular structure comparison and
alignment methods.

There is a significant body of literature on methods of pairwise protein structure
comparison and alignment. Orengo (1994) provided an overview of the field until 1994.
Gibrat et al., (1996) highlighted some surprising results from structure alignment using
different methods and Lemmen and Lengauer (2000) summarized protein structure
alignment in the context of the general problem of structure alignment and superposition
in drug design. In reading these reviews of various methods you will see that each
methodology that has been tried can be boiled down to three or possibly four steps
depending on how you count (steps 2 and 3 can be considered a single step):

1. Represent the proteins A and B (polypeptide chains, domains, or other amino
acid fragments) in some coordinate independent space so that they can be
readily compared

2. Compare A and B
3. Optimize the alignment between A and B
4. Measure the statistical significance of the alignment against some random set

of structure comparisons

This methodology applies to pairwise structure comparison and alignment. Multi-
ple structure alignment involves a somewhat different methodology and is considered
separately later in this chapter.

Given this general approach there are two classes of problem that the defined
algorithms try to solve. The first is to optimize the alignment between any given
pair of proteins; the second is given a new target structure to determine, in some
rank order, which structures in the PDB are most like the target. Pragmatically,
even if a comparison between two proteins takes 30 seconds on a typical proces-
sor, today this still represents a significant computation with approximately 18,000
proteins in the PDB representing approximately 30,000 chains, some multidomain,
resulting in over 428 years of computation. This compute bottleneck is solved in two
ways by several of the resources listed in Table 16.1. First, as structures are released
by the PDB each week, they are added to an all-by-all comparison database and
so the computations are performed incrementally. Notwithstanding, even with 50 to
100 new structures appearing each week this is still a significant computation. Sec-
ond, the known relationship between sequence and structure is employed to reduce
the number of computations to be performed. A rough estimate (see the PDB site
at http://www.rcsb.org/pdb/holdings.html) is that only 1 in 10 new structures repre-
sents a new fold. This ratio is dependant on the method used and how one defines
a fold, but it serves to provide a rough estimate. To establish that ratio of 1 : 10, at
least 5 of the 10 similarities can be inferred from sequence alone without the need
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T A B L E 16.1. Web Resources Associated with Methods for Structure Comparison and
Alignment

Name Description Citationsa URL and Web Resource Reference

CE Combinatorial Extension of
the Optimum Path
(Shindyalov and Bourne,
1998)

76 http://cl.sdsc.edu/ce.html
Shindyalov and Bourne (2001)

DALI Distance Matrix Alignment
(Holm and Sander, 1993a)

890 http://www.ebi.ac.uk/dali/
Deitmann et al., (2001)

HOMSTRAD Homologous Structure
Alignment Database
(Mizuguchi et al., 1998)

47 http://www-cryst.bioc.cam.ac.uk/
∼homstrad/ Sowdhamini et al.,
(1998)

SARF2 Spatial Arrangement of
Backbone Fragments
(Alexandrov, 1996)

66 http://123d.ncifcrf.gov/
sarf2.html

SSAP Sequential Structure
Alignment Program
(Taylor and Orengo,
1989)

248 http://www.biochem.ucl.ac.uk/
∼orengo/-ssap.html

VAST Vector Alignment Search
Tool (Gibrat et al., 1996)

122 http://www.ncbi.nlm.nih.gov/
Structure/-VAST/vast.shtml
Wang et al., (2001)

aCitations of the original paper reporting the method as of May 20, 2002.

for structure comparison. Hence, this reduces the number of targets that need to be
checked. Similarly, PDB structures can be grouped into a set of structural represen-
tatives so that the target is only compared against a subset of the complete PDB. To
better understand the concept of a representative consider the CE algorithm, described
subsequently, which uses the following criteria to define a single representative for a
number of polypeptide chains being represented:

• The rmsd between two chains is less than 2Å
• The length difference between two chains is less than 10%
• The number of gap positions in alignment between two chains is less than 20%

of aligned residue positions
• At least two-thirds of the residue positions in the represented chain are aligned

with the representing chain

Other methods apply similar rules, but at the domain level. This reductionism
somewhat reduces the accuracy of the comparison but provides the necessary gains
in speed.

The discussion here considers steps 1–4 (steps 2 and 3 are discussed together)
for several of the most popular methods of protein structure comparison and align-
ment (Table 16.1). By popular we refer to methods that have been cited a significant
number of times and for which Web resources exist for the reader to immediately
access these methods, and importantly, these resources are kept current. Web resources
are of two types. First, there are those that allow you to compare two proteins using
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the specific method, and, second, there are those that provide a database of precal-
culated comparisons against all or a subset of the PDB. These two types are not
mutually exclusive—you may be able to look up an existing database of comparisons
and alignments and submit your own structure for comparison and alignment to the
same resource.

It is beyond the scope of this chapter to deal with each method in detail. The intent
is to give the reader a sense of the similarities and differences in approaches that have
been employed. The reader is referred to the original papers outlined in Table 16.1 for
a full treatment of the methods and the resulting Web resources.

Protein Structure Representation

As stated, the first step is to suitably represent the two proteins to be compared.
Certainly the methods presented here are not exhaustive for this step. For example,
geometric hashing taken from computer vision is a technique applied by Nussinov and
Wolfson (1991) and later refined by Fischer et al., (1994), but not part of any of the
methodologies discussed.

Also at issue is what is being compared. Since domains are the functional units
of currency for proteins, it makes sense to compare domains. Problems do arise here
since, as described in Chapter 18, there is not always agreement on what constitutes
a domain. However, a method such as CE, which focuses on polypeptide chains, can
miss recognizing a domain if the domain is part of a long chain for which no similarity
is found in other parts. Such a result reduces the significance of the match of those
two domains.

DALI. Pragmatically, in terms of community availability and use (something these
authors rate highly) while significant work had been done beforehand, notably from
Taylor and Orengo (1989), protein structure comparison was popularized by the 1993
paper of Holm and Sander (1993a). This paper describes the use of distance matrices
as embodied in the DALI method. Availability and use is defined by the relative
number of citations presented in Table 16.1. Based on these numbers it is fitting to
start with DALI.

DALI uses distance matrices to represent each structure to be compared. This idea
was not new and dates back to the work of Phillips (1970). Each structure is repre-
sented as a two-dimensional (2D) array of distances between all C-alpha atoms. This
representation has the advantage of placing all structures in a simplified common frame
of reference. Conceptually, the problem is then straightforward, as if one is imagining
each structure’s contact map transparently overlaid. Overlap along the diagonal then
represents similar backbone conformations (secondary structure) and off-diagonal sim-
ilarity tertiary structure similarity. Moving one sheet of paper horizontally or vertically
relative to the other to achieve overlap represents gap insertion into one or other of the
structures. In a later version, a quick look-up was introduced that uses the alignment
of secondary structure elements (SSEs) and is not dissimilar to VAST (see below).

CE. The combinatorial extension (CE) algorithm (Shindyalov and Bourne, 1998)
also uses a distance approach to structure comparison, but at the level of octameric
fragments; that is, a comparison of C-alpha distance matrices is made for every com-
bination of eight residues in each protein chain. Each octameric fragment that aligns
within the two structures being compared, based on a heuristic measure, is referred to
as an aligned fragment pair (AFP).
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COMPARER. COMPARER (Sali and Blundell, 1990) uses the comparison of
residues’ properties, segments (of residues), and relations between residues, and rela-
tions between segments. Examples of residue properties are identity and local confor-
mation. Examples of segment properties are secondary structure type and orientation
relative to the center of gravity. Examples of residues relationships are hydrogen bonds
and hydrophobic clusters. Examples of segments relationships are distances to one or
more nearest neighbors and the relative orientation of two or more segments.

SARF2. SARF2 (Alexandrov, Takahashi, and Go, 1992) operates at the level of
SSEs represented by the C-alpha atoms of each residue. First, SSEs are detected by
comparison with typical helix and strand templates to within 0.4Å and 0.8Å, respec-
tively. Second, compatible pairs of SSEs and larger assembles of SSEs are constructed
and analyzed.

SSAP. SSAP (Taylor and Orengo, 1989) uses the comparison of intraprotein Cβ-
Cβ vectors (calculated using dummy Cβ atoms in the case of glycine) to provide
directionality.

VAST. The Vector Alignment Search Tool (VAST; Gibrat et al., 1996), as the name
suggests, represents structures as a set of SSEs (vectors) whose type, directionality,
and connectivity infer the topology of the structure.

Comparison Algorithm and Optimization

DALI. The distance matrices are collapsed into regions of overlap (submatrices) of
fixed size, which are then stitched together if there is overlap between adjacent frag-
ments. A solution to the branch and bound algorithm for finding the overlap and optimal
superposition is neatly described in Holm and Sander (1996), a later paper than that
describing the original method.

CE. CE uses three thresholds in the alignment-building process. The first threshold
detects AFPs (see above). The second threshold evaluates the suitability of a next can-
didate AFP relative to the current alignment (a single AFP in the beginning). The third
threshold evaluates all alignments to find those that are optimal. The second and third
thresholds define whether new AFPs are added to the alignment. Alignment extension
is sought in a narrow area of the search space limited to a single gap of no longer
than 30 residues in either of the two proteins being compared. This restriction permits
computational tractability, but may miss nontopological alignments and also those with
insertions of more than 30 residues. These thresholds are empirical, being based on
observed comparison of intraresidue distances in structures known to align. If one or
more significant alignments are found (up to 30 top-scoring alignments are retained),
then further optimization is performed using dynamic programming and interprotein
distances calculated based on superposition. The last step is repeated iteratively until
the optimal alignment is found.

COMPARER. Fourteen properties and relationships are selected. For properties
the dynamic programming algorithm is used to find the optimal alignment. For rela-
tionships the dynamic programming is not applicable since there is a dependence of
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scores for a given relationship on the assignment of other relationships. For this rea-
son the so-called combinatorial simulated annealing technique is used for optimization
(Sali and Blundell, 1990).

SARF2. Pairs of SSEs are evaluated for the angle between them, the shortest
distance between their axes, the closest point on the axes, and the minimum and
maximum distances from each SSE to their medium line. Then, searching for the largest
ensembles of the mutually compatible pairs of SSEs is performed using an algorithm
from graph theory used to solve the maximum clique problem. Further refinement and
extension of the alignment by incorporation of additional residues is then performed.

SSAP. SSAP finds the optimal structure alignment by applying dynamic program-
ming to the matrix of scores Sik for every pair of positions i and k from two proteins
A and B, respectively. Sik is obtained from comparison of vectors between Cβ atoms
at pairs of positions i and j to Cβ atoms in selected matching positions. The selected
matching positions are in turn defined by applying dynamic programming to the matrix
of differences of Cβ-Cβ vectors from positions i and k to all other protein positions.
Since dynamic programming is applied at two levels the whole procedure is called
double dynamic programming.

VAST. Given the SSEs, alternative alignments are examined using a Gibbs sam-
pling algorithm, beginning with a seed SSE-pair alignment. The optimal alignment
is defined as that which is most surprising relative to the background distribution of
alpha-carbon superposition residuals obtained by chance.

Statistical Analysis of Results

DALI. The similarity score is derived from an all-against-all comparison of 225 repre-
sentative structures with less than 30% sequence identity (Hobohm et al., 1992). The
DALI score is then expressed as the number of standard deviations (z-score) from the
average score derived from the database background distribution.

CE. Two distributions of rmsds and gaps are built and numerically tabulated for the
25% nonredundant set (Hobohm et al., 1992). The final z-score is calculated by combin-
ing z-scores from two tabulated distributions under the assumption of their normality.

COMPARER. Two scores E and A are introduced to measure residues’ equiva-
lence and gap penalties, respectively. Both scores are calculated based on scores seen
in two unrelated proteins and two random sequences relationships.

SARF2. The similarity score is calculated as a function of rmsd and the number
of matched C-alpha atoms. The significance of a particular comparison is evaluated by
comparison of the score with the score distribution built from the comparison of the
protein leghemoglobin with a set of 426 nonredundant structures (Fischer et al., 1996).

SSAP. So-called raw SSAP scores derived from the comparison are calibrated
against known comparisons in the Classification, Architecture, Topology, Homology
(CATH) database (Orengo et al., 1997). Thus, raw SSAP scores above 70–80 are
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indicative of topology level similarity if 60% of the residues of the larger protein are
included in the alignment.

VAST. The significance of a VAST match is determined in a manner similar to
its sequence counterpart, BLAST. VAST calculates a p-value for the best substructure
superposition as the probability that this score would be seen by chance in drawing
SSE pairs at random, multiplied by the number of alternative substructure alignments
possible, given the SSEs in the protein pair under consideration.

HOW WELL ARE WE DOING?

Using the preceding methods and others, our ability to recognize common folds, not
anticipated from sequence alone, has led to interesting biological findings. A sample
is presented in Sample Results from Structure Comparison and Alignment below.
However, in using structure alignment as a tool in structural bioinformatics the answer
is not so straightforward. Gaining new insights into such areas as structure prediction
and biological function derived from remote homologs through structure alignment and
not decipherable from sequence alignment alone is compelling. However, as Godzik
(1996) has shown with respect to various structure alignment methods, we have shown
(Scheeff, Bourne, and Shindyalov, 2002) in aligning the catalytic subunit of the protein
kinases, and Jones has shown (Hadley and Jones, 1999) with respect to the comparison
of structure classification methods, significant differences in structure alignments exist.

Differences in structure alignments are not surprising given the heuristics that each
methodology applies to make an NP-hard problem computationally tractable. A simple
view of these differences is as follows: Consider a spectrum that at one end maximizes
the geometric relationship between two proteins and at the other provides the maximum
amount of biological significance in the alignment. Depending on the task at hand, you
may wish to be at one end of the spectrum or the other, or in the middle. Favoring the
geometric end of the spectrum will likely lead to a better rmsd but more fragments,
that is, a larger number of gaps and a loss of biological relevance. An example of this
would be the breaking of hydrogen bonds in a beta sheet to better fit fragments of those
sheets to each other in the two proteins being compared. Favoring the biological end of
the spectrum will likely lead to a higher rmsd. Which methods favor which ends of the
spectrum? An easy question, with a not so easy answer, since the answer is dependant
on the parameters used when computing with each method and the particular proteins
under study.

An important consideration when using any structural alignment method is to con-
sider the nature of the problem you are trying to solve and to experiment with a variety
of methods.

To illustrate the importance of the above statement, consider some results from
our own work in comparing expert hand alignments of protein kinases against those
produced by CE (Scheeff, Bourne, and Shindyalov, 2002) where the goal is to achieve
the best functionally relevant alignment. The gold standard was the hand alignment
of 18 protein kinases all with sequence identity below 40%—a substantial challenge
to any sequence alignment method. In comparison to the gold standard, CE failed to
make the best biological alignment in every case, partly because of significant spatial
movements of secondary structural elements (as well as loops) relative to each other
in the various structures.
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However, these observations do not necessarily suggest that methods treating
secondary structures as rigid bodies will yield superior results. In considering the
alignment between cAMP-dependant protein kinase (1CDK:A) and an actin-fragmin
kinase (1CJA:A) where the sequence identity is 13% and there is significant structure
diversity, CE correctly inserted a gap in a beta strand to better preserve the orienta-
tion of side chains. Conversely, in the same structure pair, an aspartic acid residue,
which is functionally critical as the catalytic base in the phosphotransfer reaction, is
misaligned. This misalignment occurs as a result of the residue being adjacent to a
loop region that presents a difficult challenge to CE. The reader is referred to the paper
for further examples. What is clear is that better scoring functions are needed that can
better incorporate what is known about the structures and function(s) of the respective
molecules being fed into the alignment.

SAMPLE RESULTS FROM STRUCTURE COMPARISON AND ALIGNMENT

As methods of structure comparison and alignment were published, they bought
forth many previously unobserved structure comparisons (see, for example, Holm and
Sander, 1993a), that were later captured in such resources as SCOP, CATH, and the
DALI domain dictionary. We consider one such example here. Later, as structure
comparison and alignment methods matured they became a standard experimental
method integral to attempting to understand biological function. Here, we consider
a second example taken from our own work where structure comparison was used in
conjunction with other supporting evidence to provide a putative biological function
subject to further experimental analysis. Together these two examples illustrate the
importance of structure comparison and alignment to biology.

Holm and Sander (1993b) showed that the membrane insertion domain of the
bacterial toxin colicin A (Parker et al., 1992) has the same topology of fold as the
globins and phycocyanins with six helices sequentially aligned (Fig. 16.2). Both in
terms of sequence and function there is no relationship and the original authors missed
this structural similarity. The implication is that this similar fold represents structural
convergence to a stable three-on-three helical sandwich.

An example from our own work illustrates the coming together of information
from different methodologies, including structure comparison and alignment, to define
a putative function. In this case the methodologies employed hidden Markov models
(HMMs), site information from Prosite, and structure comparison found with CE. It
was found that the alpha–beta hydrolase fold family that includes acetylcholinesterases
contain putative Ca2+ binding sites, which in some family members may be critical
for heterologous cell associations (Tsigelny et al., 2000). From a structure or sequence
comparison perspective alone the evidence was not definitive. Structure alignments
between acetylcholinesterases and classic calcium binding EF-hands, as found, for
example, in calmodulin, are apparent but tentative—3Å to 4Å rmsd over approximately
80 residues with 10–20 residue gaps. Nevertheless, the Prosite signature for calcium
binding is present and HMMs reveal potential calcium-binding sites for cholinesterases
as well as neuroligins and gliotactins. It is postulated that with extracellular Ca2+ con-
centrations higher in the extracellular matrix than within the cell, binding associations
could be weaker. While the outcome of this analysis is still in question, it does point
to the need for experiments, for example mutagenensis at the site of calcium binding
and monitoring of subsequent enzyme activity. Such synergy between in silico and in
vivo and in vitro experiment is the future of structural bioinformatics.
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Figure 16.2. Structure alignment as computed by CE for colicin A (1COL:A) (grey) and c-phyco-

cyanin (1CPC:A) (black). The alignment extends over 115 residues with 16 single residue gaps. The

rmsd is 3.2Å with a z-score of 5.5. The sequence identity is 13.9%.

MULTIPLE STRUCTURE ALIGNMENT

Our discussions thus far have involved only pairwise structure comparison and align-
ment, or at best, alignment of multiple structures to a single representative in a pairwise
fashion—progressive structure alignment. True multiple structure alignment attempts
to align all structures simultaneously to provide the best consensus alignment between
all structures, which may not be the best alignment between any pair of structures.
In principle, if it were accurate enough, multiple structure alignment could enhance
the impact that profiles and HMMs have had from a purely sequence perspective by
providing multiple alignments with weak yet definitive sequence relationships. A few
approaches to multiple structure comparison and alignment have been undertaken (see,
for example, Leibowitz, Nussinov, and Wolfson, 2001). Here, we outline one method
to illustrate the principle of multiple structure alignment and compare the results to
accurate hand alignments.

Our approach uses Monte Carlo optimization of an existing set of pairwise align-
ments derived using CE, and hence is referred to as MC-CE (Guda et al., 2001). It can
be accessed at http://cl.sdsc.edu/mc/mc.html. From the starting alignment—a set of
structures all aligned to a master structure—a set of moves were designed to address
different alignment situations in a similar manner to that previously used by Mirny
and Shakhnovich (1998) for sequence–structure alignment. Moves are then applied in
a random manner to a constrained search space to seek the optimal alignment. Each
step is tested against a scoring function and accepted with some level of probability.
This procedure proceeds until convergence, that is, no random steps improve the opti-
mal alignment as based on a distance score for each block of aligned residues across
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the multiple structures. Running MC-CE against 66 protein families produced a 12%
increase in the number of aligned columns and a 22% decrease in total alignment length
when compared to pairwise alignments. When compared to the hand alignments of the
HOMSTRAD database and our own hand alignments for the protein kinase family
there was widespread agreement, particularly in the more rigid C-terminal lobe of the
protein kinase catalytic subunit where substrate recognition and binding take place.
The N-terminal lobe is more flexible and challenging. Consider one specific example
to illustrate the issues, namely, the two beta strands of the N-terminal lobe that con-
tain the glycine-rich loop. This region of the kinase domain is flexible and often in
different conformations depending on the state of the enzyme. However, it contains
the well-conserved GxGxxG motif, which is important for the binding of ATP in the
active site. With the exception of one structure (1CJA:A) it should be aligned with-
out gaps to properly align this motif. Standard CE alignment splits off some of the
sequence leading up to one strand and unnecessarily separates off a row of conserved
glycines in the loop between strands. The MC-CE alignment compresses the sequence
leading up to strand one, and closes the gap, which causes the glycine displacement in
CE. However, MC-CE does not correct the misaligned glycine residues seen in some
structures in the original CE pairwise alignments.

This example illustrates that multiple structure alignment techniques are in their
infancy and that resources such as HOMSTRAD, with their human curation of specific
protein families, are very valuable.

MAPPING PROTEIN FOLD SPACE

Knowing that there are a finite number of folds and that at this time experimen-
tally we have a reasonable percentage of those folds, estimated at 25–50%, and that
structural genomics (Chapter 29) is aimed at giving us as many of the rest as pos-
sible, it is not surprising that we have attempted to establish “maps” of protein fold
space, which we will continue to fill in. Structural Classification of Proteins (SCOP)
and CATH are perhaps the best examples of those maps when other data, for example,
sequence homology are included, but what about considering nothing but structure? The
ultimate and almost certainly unanswerable question is, can we establish a structure-
based phylogenetic tree that evolved from a single common ancestor—the original
protein fold? Problems arise immediately since there are different views on what con-
stitutes a protein fold. This problem is illustrated in Figure 16.3. The vertical axis
is a count of the number of aligned residues broken into different cells of sequence
identity and rmsd across the complete PDB as determine using the CE algorithm
introduced previously. The rectangular slab of cells with greater than 20% sequence
identity and in the 1–2Å rmsd range illustrate why comparative modeling works in
defining a protein structure from sequence. What is surprising is the large number
of residues in the 3–6Å rmsd range with very low (<20%) sequence identity. We
have previously analyzed this information in one interpretation of protein fold space
(Shindyalov and Bourne, 2000). Subsequently, we used the alignments of these regions
that average 80 resides in length and are contained within domains (Reddy et al.,
2001) to determine what specific conserved residue properties exist in these common
substructures. Although some of these substructures are well known (the Rossman
fold, the immunoglobulin fold, etc.), others have not been described explicitly in
the past and yet occur frequently. Perhaps of most importance, these substructures
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Figure 16.3. Structure versus sequence comparison. All residues in the PDB that partake in some

measurable level of structure similarity are plotted on the vertical axis for various measures of

sequence identity (y axis) and rmsd (x axis) as defined over the complete polypeptide chain.

overlap—part of one will be found in another, indicating the continuity of protein fold
space. Thus, one answer to the question of what exactly constitutes a protein fold is
a discrete and discernibly reused element of protein structure as determined system-
atically through comparative structure analysis. The history of characterizing protein
folds has not been so systematic, but very valuable nevertheless. References such as
Greek key motif, the jelly roll, the beta propeller, and so forth are well accepted yet
were not defined systematically. Resources such as SCOP and CATH have undertaken
a more systematic approach. Yet, if protein fold space is a continuum, then many
systematic definitions are possible. The only point to make then to the student of pro-
tein structure space is to carefully define how you have systematically chopped up
that space and be aware of the characterizations of the space that have been made
before you. In short there are great opportunities for original thinking in defining
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and using protein fold space, particularly as that space gets more populated in the
coming years.

For those who have already dabbled in the study of protein structure space, the
challenge is to construct a map of the space at the right resolution to solve the problem
at hand. For example, we continue to work with relatively high resolution maps, where
many would call the discreet units substructures rather than folds, to address problems
in protein engineering (see, for example, Reddy, Li, and Bourne, 2002). Others work
with lower resolution maps—folds and larger structures.

Lower resolution maps often address the evolution of protein folds and must dis-
tinguish between convergent and divergent evolution. For protein engineering this
distinction does not matter; it is the characteristics of the fold, notably its stability
under mutagenesis that is of concern. Distinguishing between convergent and divergent
evolution of protein folds must take into account sequence and/or functional consid-
erations. We consider two characterizations of fold space that consider evolutionary
constraints.

Partslist (Qian et al., 2001b; http://www.partslist.org) has many features, but
includes mapping of folds to fully sequenced genomes by homology modeling, thereby
providing a distribution of folds within a diverse set of species. Partslist reveals
that both families, superfamilies and folds follow a power-law distribution (Qian,
Lustcombe, and Gerstein, 2001a). In short, considering folds, a small number of folds
are used many times and there is a steep fall-off where many folds are used only
occasionally. Simpler organisms share these highly utilized folds.

Conversely, Holm and Sander (1996) have examined all of existing fold
space—which they admit, and we emphasize here, is biased by the current contents of
the PDB—and defined what they refer to as attractors in shape space. They hypothesize
that attractors represent both dominant folding pathways and evolutionary sinks as a
result of physical constraints. The result is five dominant attractors containing 40% of
all known folds in 16 different fold classes.

The charting of protein fold space has strong analogies to the history of global
maps. At present we would seem to be working at the level of Ptolemy’s map (a map
that existed prior to Columbus’s voyage in 1492). This map was designed specifically
for navigation, yet missed many of the vital elements. Structural genomics may well
be the protein structure equivalent of Columbus’s voyage opening a new world to be
explored and utilized.

THE FUTURE

The impetus for improved protein structure comparison, alignment, and characteriza-
tion will be defined quite simply by quantity—the rate of increase in the number of
experimentally determined new folds and the number of structures that conform to
each fold. Hand comparisons and alignments will require automation while still retain-
ing the level of quality provided by experts today, since no expert will be able to
keep up with manual comparisons and alignments. Today we are in a mode where
tools assist in the process with final decisions about comparisons and alignments made
by human experts. This situation will not scale into the future. Quantity implies not
just numbers but variety, complexity, and singularity. We can anticipate the structures
of more membrane proteins, which because of issues of solubility are today under-
represented in the PDB. Complexity implies more structures of biological assemblies



REFERENCES 335

determined by conventional means. Finally, singularity will be defined by the structures
of a large number of single-domain proteins determined by structural genomics from
which protein–protein interactions will be ascertained and that will form pieces of
a puzzle to be fitted to an outline defined by lower resolution techniques such as
cryoelectron microscopy.

Several years ago one of us (Bourne, 1999) estimated that by the end of 2005 the
PDB would contain 35,000 structures, almost double the number present at the time of
writing (June 2002). While this number remains optimistic, structural genomics is mov-
ing from the engineering to the production phase so the number will increase rapidly.

In short the impetus to study and contribute to the field of structure comparison
and alignment is already here. The result will be more structure alignment databases,
either generic or comprised of specific folds, families, and superfamilies that will be
tools for further research. Consider some examples of that research, some of which is
already ongoing:

• Faster and more accurate protein fitting to electron density maps using consen-
sus alignments.

• Improved functional characterization of proteins derived from structural
genomics.

• Use of structure-based profiles and hidden Markov models (HMMs) to enhance
sequence-only methods to find more distant sequence homologs.

• Better understanding of the relationship between sequence and fold in specific
protein families.

• Better protein structure prediction through better fold libraries used in both
homology modeling and fold recognition.

Exciting times indeed.
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SECONDARY STRUCTURE ASSIGNMENT
Claus A. F. Andersen and Burkhard Rost

The task. When we look at a protein three-dimensional (3D) structure,1 we notice
regular macroelements that are repeated in all known structures: helices and strands.
There is no unique physical definition to systematically assign secondary structure
from 3D co-ordinates. Instead, there are many differing definitions, each capturing
some aspects of reality. The relative spatial distances and orientations between two or
more secondary structure segments are typically referred to as supersecondary structure.
Here, we reviewed a number of the existing concepts to assign secondary structure from
co-ordinates, that is, to label the secondary structure state for each residue. The terms
class, state, and regular secondary structure are not used consistently in the literature.
We used the following notation: (1) states are the types of secondary structure defined
by a particular method, for example, G in DSSP; (2) classes are the groups of similar
states, for example, the DSSP states H, G, and I all describing helices, and (3) regular
secondary structure as positively defined state. Note that nonregular is usually defined
as a negation, that is, by the absence of all the other criteria applied by a method to
define the regular states.

The role of secondary structure assignment in structural genomics. Typically, struc-
tural biologists assume the protein fold to be the basic unit for structure classification
(see Chapter 4) (Lesk and Rose, 1981). The fold and other basic structural elements
are classified by automatic systems, such as SCOP, CATH, FSSP, MMDB (Hogue
and Bryant, 1998; Marchler-Bauer et al., 1999; Orengo et al., 1999; Lo Conte et al.,
2000; Yang and Honig, 2000; Pearl et al., 2001). When classified by experts, the par-
ticular features of a given fold are often described by the overall secondary structure
arrangements (Lesk and Rose, 1981; Lesk, 1991; Murzin, 1996), which therefore con-
stitute a substantial step in protein classification. Functional aspects of proteins are

1Abbreviations and notations used in this chapter appear at the end of the chapter.
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also reflected in the secondary structure and occasionally function can be derived from
secondary structure alone (see Chapter 19) (Przytycka, Aurora, and Rose, 1999; Young
et al., 1999; Andersen et al., 2001). There are four main uses of secondary structure:
(1) it is indicative of the fold, (2) it is an intuitive means of visualizing protein struc-
tures, (3) it influences the sequence alignment, and (4) it is related to function. In
the context of structural genomics, these four features are important. One practical
application is to use secondary structure segments to speed up large-scale all-against-
all alignments of 3D structures. Another is the use of secondary structure segments
for comparative modeling (Sternberg et al., 1999; Marti-Renom et al., 2000; Sauder,
Arthur, and Dunbrack, 2000) and threading (Rost, 1995; Sippl, 1995; Fischer and
Eisenberg, 1996; Russell, Copley, and Barton, 1996; Sippl and Floeckner, 1996; Rice
and Eisenberg, 1997; Rost, Schneider, and Sander, 1997; Jaroszewski et al., 1998;
de la Cruz and Thornton, 1999; Di Francesco, Munson, and Garnier, 1999; Jones,
1999a; Jones et al., 1999; Kolinski et al., 1999; Xu et al., 1999b). In turn, compara-
tive modeling techniques and more sensitive sequence searches through threading are
relevant for structural genomics. Firstly, these techniques assure that each experimen-
tal structure has the highest possible impact. Secondly, both methods are important
to determine the areas of protein space that need to be explored as part of the target
selection for structural genomics (Rost, 1998; Sali, 1998; Burley et al., 1999; Blun-
dell and Mizuguchi, 2000; Shapiro and Harris, 2000; Liu and Rost, 2001a; Liu and
Rost, 2001b).

The role of secondary structure in sequence searches and structure prediction. The
relevance of secondary structure also explains why secondary structure prediction from
sequence has become one of the most ardently pursued tasks in bioinformatics (Schulz,
1988; Barton, 1995; Lupas, 1996; Rost and Sander, 1996; Rost and O’Donoghue, 1997;
Rost, 2001b). Various secondary structure assignment schemes exist, which differ con-
siderably (as described below), so how do we evaluate and compare them? One idea
is to use the particular secondary structure assignment that (1) agrees most between
proteins of similar structure, and/or (2) is the most predictable from sequence. Obvi-
ously, the concepts agree most and most predictable have to be put into perspective:
An assignment of X to all residues would be completely conserved and easy to pre-
dict although it would not carry any information. Hence, we would have to account
for the information and relevance contained in an assignment. However, this simple
concept has not been realized, yet. In fact, we have found that secondary structure
prediction methods are reaching a level of accuracy at which the assignment prob-
lem becomes relevant (Andersen et al., 2001). Secondary structure prediction methods
become increasingly important for prediction of general aspects of protein structure
and function (Jones, Orengo, and Thornton, 1996; Rost and Sander, 1996; Finkelstein,
1997; Rost and O’Donoghue, 1997; Rost, 2001b) and for database searches (Fischer
and Eisenberg, 1996; Rost, Schneider, and Sander, 1997; Xu et al., 1999a; Lindahl
and Elofsson, 2000; Fain and Levitt, 2001; Jennings, Edge, and Sternberg, 2001).
Thus, the assignment problem also influences these important fields of bioinformat-
ics indirectly.

History: from expert to automatic assignment of protein secondary structure. Paul-
ing and colleagues correctly predicted the idealized protein secondary structures of
α-helices (Pauling, Corey, and Branson, 1951), π-helices (Pauling, Corey, and Branson,
1951), and of β-sheets (Pauling and Corey, 1951) based on intrabackbone hydrogen
bonds. Five decades later, we know that on average about half of the residues in
proteins participate in helices or sheets (Berman et al., 2000). Pauling and colleagues
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incorrectly predicted that 310-helices would not occur in proteins due to unfavourable
bond angles; however, approximately 4% of the residues are observed in this confor-
mation (Andersen, 2001). Initially, the crystallographers assigned secondary structure
by eye from the 3D structures. At the time this was the only way to assign secondary
structure. However, it lacked consistency, since experts occasionally disagree. This
inconsistency was particularly problematic when comparing secondary structure pre-
dictions and was actually the primary objective for Kabsch and Sander (1983a, 1983b)
to automate the assignment in their DSSP program. Originally developed to improve
secondary structure prediction, DSSP has remained the standard in the field, most pop-
ular for its relatively reliable assignments. Curiously, the prediction method for which
Kabsch and Sander (1983c) originally needed the automatic assignment was never
published.

HYDROGEN BOND MODELS

Since hydrogen bonds are used by many methods as the defining elements for sec-
ondary structure, we introduce both the concept of the hydrogen bond and the ways
to define it. Pauling (1939) established the hydrogen bond as an important principle
in chemistry. The rich network of hydrogen bonds in water creates a very particular
environment in which polar molecules participate, while nonpolar molecules disrupt
the network of hydrogen bonds. This disruption results in missing water–water hydro-
gen bonds and therefore is a relative energy cost compared to the hydrogen-bonded
case (4 kcal/mol for Isoleucine and Leucine when compared to Glycine; Creighton,
1993). This energy cost is in the order of two hydrogen bonds (hydrogen bonds are
in the range of −2 kcal/mol) and can be avoided/minimized by packing/agglomerating
nonpolar molecules, thereby resulting in the hydrophobic effect.

For proteins the packing of nonpolar residues in the core is believed to be the main
driving force in tertiary structure formation of proteins, while the specific secondary
structures are governed by intraprotein hydrogen bonds (Hvidt and Westh, 1998). Pack-
ing the nonpolar residues in the core also means burying the polar backbone atoms and
breaking the water–backbone hydrogen bonds. To avoid this heavy energy cost, the
polarities are paired (forming hydrogen bonds) in the protein core, thereby fixing the
protein conformation. If the protein backbone instead were non polar, the protein core
elements would be free to move around changing the protein structure and thereby
preventing the protein from functioning reliably and efficiently.

Approximately 90% of the backbone C=O and NH groups have hydrogen bonds
(Baker and Hubbard, 1984). Using the Coulomb hydrogen bond definition (see below),
we found that approximately 62% of the backbone C=O and NH groups have intra-
backbone hydrogen bonds (Andersen, 2001). Pauling defined secondary structure by
the intrabackbone hydrogen bonds, which has later become the prevalent means of
assigning secondary structure. Thus, for simplicity we refer to intrabackbone hydrogen
bonds when using the term hydrogen bond.

Angle–Distance Hydrogen Bond Assignment

There are many different angles and distances that can be measured and used to identify
the hydrogen bond. Baker and Hubbard (1984) assigned hydrogen bonds according to
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the angle NHO = θ and to the distance rHO in the hydrogen bond. A hydrogen bond
is assigned when:

θ > 120
◦

and rHO < 2.5 Å (17.1)

This formula is similar to other rigid distance and angle constraints published (Bordo
and Argos, 1994; Jeffrey and Saenger, 1994). Although a rather crude way of assigning
hydrogen bonds, it has sufficed for several decades. In most applications, hydrogen
bonds were only assigned visually for a few proteins, that is, explicit definitions of
hydrogen bond energies were not necessary.

Coulomb Hydrogen Bond Calculation

One way of finding hydrogen bonds is by calculating the Coulomb energy in the bond,
as applied in DSSP (Kabsch and Sander, 1983a) focusing on the electrostatic attraction
(Fig. 17.1). The Coulomb energy for the attraction and repulsion is given by:

E = fδ+δ−
(

1

rNO
+ 1

rHC′
+ 1

rHO
+ 1

rNC′

)
(17.2)

where f = 332 Å kcal/e2 mol is the dimensional factor and δ+ and δ− are the polar
charges given in units of the elementary electron charges e. A cutoff level has been
set for the weakest acceptable hydrogen bond so that the resulting energy is bound
by: E < −0.5 kcal/mol in DSSP. The H-atom position is usually not given in PDB
files requiring an extrapolation, in practice. The H-atom position that is needed to
calculate the two distances rOH and rHC′ in Eq. 17.2 is usually not given in PDB files.
Hence, it must be extrapolated. DSSP uses an approximate position, assuming that the
covalent bond between O=C′ is parallel to the covalent N-H bond adjacent to the same
polypeptide bond. The direction of the O=C′ vector is kept while its length is set to
1 Å, that is, the length of the N-H bond (Creighton, 1993). The position of the H atom is
extrapolated using the direction of the C′=O vector when starting out from the position
of the N atom. These approximations made by DSSP simplify the calculation of the
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Figure 17.1. Distances used to calculate the Coulomb hydrogen bond.
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H-atom position and appear to be rather accurate: Compared to the original bond angles
and distances (Creighton, 1993), we found the DSSP approximation to yield an average
error around 0.07 Å (Andersen, 2001). Both in the DSSP extrapolation and in our test
the transpeptide bond, giving rise to the rigid peptide plane, was assumed. Partitioning
ab initio energy calculations of the hydrogen bond into classical components showed
that about 75% is electrostatic (Coulombic) and less than 5% comes from polarization
and charge-transfer, for moderate strength bonds (Jeffrey and Saenger, 1994). Note
that the Coulomb energy term does not incorporate atom–atom repulsion to penalize
steric clashes and does not give rise to a characteristic hydrogen bond length.

Empirical Hydrogen Bond Calculation

An empirical hydrogen bond energy calculation can be derived from the hydrogen
bond geometry in crystal structures or from polypeptides, peptides, amino acids, and
small organic compounds (Boobbyer et al., 1989; Wade, Clark, and Goodford, 1993)
as applied in STRIDE (see below). The total energy Ehb depends on the NO distance
energy Er, and on three bonding angles through the expressions Ep and Et:

Ehb = Er · Et · Ep (17.3)

The distance dependency is similar to the Lennard-Jones potential for the van der
Waals interaction, but uses powers of 8 and 6 instead of 12 and 6:

Er =
(

4r6
m

r6
− 3r8

m

r8

)
Em (17.4)

where r is the NO distance, rm is the optimal distance, and Em, the optimal energy.
For intrabackbone hydrogen bonds rm = 3.0 Å and Em,= −2.8 kcal/mol is used. The
two angular dependent terms are:

Ep = cos2(θ)

Et =
{ [0.9+ 0.1 sin(2ti)] cos(to) 0◦ < ti ≤ 90◦

K1[K2 − cos2(ti)] cos(to) 90◦ < ti ≤ 110◦
0 110◦ ≤ ti

(17.5)

where the angles θ , ti and t0 are specified in Figure 17.2.
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Figure 17.2. Angles and distances defining the empirical hydrogen bond. Note: figure similar

to the one in Frishman and Argos (1995).



346 SECONDARY STRUCTURE ASS IGNMENT

ASSIGNMENT METHODS

DSSP

The so-called Dictionary of Secondary Structure of Proteins (DSSP) by Kabsch and
Sander (1983a) performs its sheet and helix assignments solely on the basis of back-
bone–backbone hydrogen bonds. The DSSP method defines a hydrogen bond when
the bond energy is below −0.5 kcal/mol from a Coulomb approximation of the hydro-
gen bond energy (Eq. 17.2). The structure assignments are defined such that visually
appealing and unbroken structures result. In case of overlaps, α-helix is given first
priority, followed by β-sheet. This procedure does not effect the Coulomb approxima-
tion, rather the realization of unbroken structures addresses the step from individual
hydrogen bonds to assigning macrostructures to groups of such bonds.

An α-helix assignment (DSSP state H) starts when two consecutive amino acids
have i → i + 4 hydrogen bonds, and ends likewise with two consecutive i − 4 ← i

hydrogen bonds. This definition is also used for 310-helices (state G with i → i + 3
hydrogen bonds) and for π-helices (state I with i → i + 5 hydrogen bonds) as well.
The helix definition does not assign the edge residue having the initial and final hydro-
gen bonds in the helix. A minimal size helix is set to have two consecutive hydrogen
bonds in the helix, leaving out single helix hydrogen bonds, which are assigned as
turns (state T).

β-sheet residues (state E) are defined as either having two hydrogen bonds in the
sheet, or being surrounded by two hydrogen bonds in the sheet. These two alternatives
imply three-sheet residue types: antiparallel and parallel with two hydrogen bonds or
surrounded by hydrogen bonds. The minimal sheet consists of two residues at each
partner segment. Isolated residues fulfilling this hydrogen bond criterion are labeled
as β-bridge (state B). The recurring H-bonding patterns connecting the partnering
strands in a β-sheet are occasionally interrupted by one or more so-called β-bulge
residues. In DSSP these residues are also assigned as β-sheet E and may comprise
up to four residues on one strand and one residue on the partnering strand. These
interruptions in the β-sheet H-bonding pattern are only assigned as sheet if they are
surrounded by H-bond-forming residues of the same type, that is, either parallel or
antiparallel. The remaining two DSSP states S and (space) indicate a bend in the chain
and unassigned/other, respectively.

STRIDE

The secondary STRuctural IDEntification method (STRIDE) by Frishman and Argos
(1995) uses an empirically derived hydrogen bond energy (Eq. 17.3) and phi-psi tor-
sion angle criteria to assign secondary structure. Torsion angles are given α-helix and
β-sheet propensities according to how close they are to their regions in Ramachandran
plots (Ramachandran and Sasisekharan, 1968). The method fixes five internal param-
eters for α-helix and four for β-sheets. The parameters are optimized to mirror visual
assignments made by crystallographers for a set of proteins. However, crystallographers
often disagree in their assignment of secondary structure. This fact may challenge the
concept of STRIDE. The annotations from crystallographers may be more similar to
one another than all of them are to automatic assignments from, for example, DSSP.
However, this remains to be shown. Since the secondary structure categories have dif-
ferent parameters, their assignment thresholds are independent for the hydrogen bond
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and phi-psi torsion angles. By construction, the STRIDE assignments agreed better
with the expert assignments than DSSP, at least for the data set used to optimize the
free parameters. In particular, the authors reported that every 11th β-sheet and every
32nd α-helix were more in register with the expert assignments for the data set used.

Like DSSP, STRIDE assigns the shortest α-helix (H′) if it contains at least two
consecutive i → i + 4 hydrogen bonds. In contrast to DSSP, helices are elongated
to comprise one or both edge residues if they have acceptable phi-psi angles; sim-
ilarly a short helix can be vetoed if the phi-psi angles are unfavorable. Therefore,
hydrogen bond patterns may be ignored if the phi-psi angles are unfavorable. The
sheet category does not distinguish between parallel and antiparallel sheets. The min-
imal sheet (E′) is composed of two residues each in one of five possible hydrogen
bond conformations, that is, two more than for DSSP. The dihedral angles are incor-
porated into the final assignment criterion as was done for the α-helix. Bulges are
accepted applying the same criterion as DSSP. Single residue sheets, that is, β-bridges
are labeled as B for the three DSSP hydrogen bond conformations and as b for the
remaining two. Both 310- (G′) and π-helices (I′) are implemented according to the
DSSP scheme, but with the empirical hydrogen bond criterion. Turns are assigned
according to the phi-psi angles of residue i + 1 and i + 2 as described in Wilmot
and Thornton (1990). The C symbol is used whenever none of the above structure
requirements are met.

DEFINE

The algorithm DEFINE by Richards and Kundrot (1988) assigns secondary structures
by matching Cα-coordinates with a linear distance mask of the ideal secondary struc-
tures. First, strict matches are found, which subsequently are elongated and/or joined,
allowing moderate irregularities or curvature. The algorithm locates the starts and ends
of α- and 310-helices, β-sheets, sharp turns, and omega-loops. With these classifica-
tions the authors are able to assign 90–95% of all residues to at least one of the given
secondary structure classes.

To assign α-helices the linear mask is matched with each row in the distance
matrix of the query protein (Fig. 17.3). If a segment longer than four residues matches
the mask within the allowed cumulative discrepancy limit (ε = 1 Å) it is assigned.
Assigned α-helices are checked whether they start or end with a 310-helix, but indi-
vidual 310-helices and π-helices are not investigated.

In order to assign β-sheets as a single category, the authors have applied a linear
distance mask taken from ideal antiparallel sheets. The problems of the backbone
bendability inside sheets and of the curvature for larger sheets has been solved by
excluding nonrigid sheets from the definition. The minimum length of sheets is set
to be four residues. According to Pauling’s definition of a β-sheet, each strand must
pair to another strand to form a sheet. In contrast, DEFINE may assign unpaired
strands.

P-Curve

Sklenar, Etchebest, and Lavery (1989) based their assignment scheme P-Curve on a
mathematical analysis of protein curvature. Using differential geometry, they calcu-
lated a helicoidal axis on the basis of the fixed-axis systems of a series of peptide
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Figure 17.3. DEFINE. The linear distance mask approach is visualized for an α-helix. The mask

is compared to the distances in the query protein. If the mask fits a certain segment, then this

segment is assigned as α-helix. The allowed root-mean-square difference between the distances

in the mask and the ones observed in the query protein is determined by the cumulative

discrepancy limit.

planes. The secondary structure assignments are performed by motif matching, where
the parameters in the motif are the radius of the helicoidal system along with a series
of tilting, rolling, and twisting measures describing geometrical differences between
two peptide planes. This parameter analysis is achieved mainly by the use of the
Cα-coordinates. The P-Curve assignment differs significantly from those performed
from phi/psi angles or H bonds, since different parameters are used (e.g., helicoidal
radius, tilting, rolling, twisting). Furthermore, the degrees of freedom allowed when
matching a P-Curve motif are quite different from those allowed when matching
a DEFINE linear distance mask. For example, while the linear distance mask of
DEFINE fits poorly to a curved β-strand, the local P-Curve parameters are likely
to fit better.

The assigned secondary structures are recognized by matching known structural
motifs. These motifs are based on standard values for the helicoidal parameters. The
following motifs are used: right- and left-handed α-helix, 310- and π-helix, parallel
and antiparallel β-sheets, and some other structures of little interest here. Note that
like DEFINE, P-Curve may assign the category sheet to unpaired strands.

DSSPcont

Continuous DSSP is a novel secondary structure assignment scheme described below
(Emerging and Future Developments).

PRACTICAL ASPECTS

Programs and Databases

All methods described above have been coded. In some cases these programs are
publicly available (DSSP, STRIDE, and DSSPcont, Table 17.1). For all these pro-
grams there are also available the assignments for all proteins deposited in PDB
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T A B L E 17.1. Availability of Programs and Databases

Program World Wide Web Platforms

DSSP www.cmbi.kun.nl/gv/dssp/ IRIX (SGI)
SOLARIS (SUN)
LINUX

STRIDE www.embl-
heidelberg.de/argos/stride/stride−info.html

IRIX (SGI)

DSSPcont www.cbs.dtu.dk IRIX (SGI)
cubic.bioc.columbia.edu/services/DSSPcont/

LINUX

(Table 17.1). We explained the meaning of the output in Figure 17.4 (DSSP) and
Figure 17.5 (STRIDE). The output of DSSPcont differs from DSSP on which it is
based (see Emerging and Future Developments) only in the addition of eight extra
columns, giving the continuous assignment to each of the eight DSSP states (G, H, I,
T, E, B, S and ‘ ’).

Comparing Automatic Assignments

We used the simple structure of Crambin as an example to point out differences in
three assignment schemes (Fig. 17.6, note that the P-Curve assignment was taken
from the original publication; Sklenar, Etchebest, and Lavery, 1989). The secondary
structure assignments of STRIDE and DSSP are identical except for one residue at
the end of an α-helix. P-Curve largely agrees with the positioning of the secondary
structure elements, but not with their lengths. Looking at the sheet region in detail
(Fig. 17.6b), we see that residues 39 and 40, assigned sheet by P-Curve only, are dis-
tant from any residue on the putatively pairing strand. According to Pauling, such
an assignment would not be valid. The first sheet assignment by P-Curve covers
residues 1–4, where residues 1 and 3 have one and two hydrogen bonds in the
sheet, respectively. The extension of the strands/sheet by both DSSP and STRIDE
appears reasonable.

Are the discrepancies observed for Crambin representative? Colloc’h and col-
leagues have compared DSSP, P-Curve, and DEFINE on a low homology data set
consisting of 28,266 residues in 154 protein chains (Colloc’h, et al., 1993). The allowed
cumulative discrepancy limit for DEFINE was set to ε = 0.75 Å for helix and to
ε = 0.5 Å for sheet, in order to avoid an excess of secondary structure assignment.
The authors found that all three algorithms agreed on the assignments of α-helix,
β-sheet, and nonregular structure for only 63% of all residues. Most disagreements
were found between nonregular and regular (helix and sheet) structure (Fig. 17.7). In
pairwise comparisons, DEFINE and P-curve and likewise DEFINE and DSSP agreed
for 74% of the residues, while P-Curve and DSSP agreed in 79% of all residues. We
have found that DSSP and STRIDE agree in 96% of all residues with 64% of the
disagreements related to the helix assignment (unpublished results derived from a data
set of 707 nonhomologous protein chains).

Not considering any assignment schemes superior, in principle, Colloc’h and
colleagues suggested applying a consensus assignment: if two methods agree, use
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secondary structure synopsis
310-helix hydrogen bonds
a-helix hydrogen bonds

b-bridge 1 label
b-bridge 2 label

b-sheet label

p-helix hydrogen bonds
bend assignments

chirality assignments

Figure 17.4. Explanation of DSSP output. Example: segment from Crambin. The two first

columns contain the unique DSSP residue number and the corresponding PDB residue number.

The third column (here empty) indicates the chain identifier if there are multiple chains. Then

follows the amino acid ‘‘AA’’ in one-letter codes (note: lower case letters are all Cysteines, in order

to mark Cysteine-bridges, e.g., residue 16 has a disulfide bond to residue 26). The ‘‘STRUCTURE’’

section starts with the secondary structure synopsis (HBEGITS listed in order of priority in case of

overlaps) and is followed by helix hydrogen-bond indications for 310-, α-, and π -helix hydrogen

bonds, where ‘>’ indicates an acceptor, ‘<’ a donor, and ‘X’ both. The bend and chirality are each

given a column, followed by the β-bridge label columns (lower case labels are parallel β-bridges

and upper case are antiparallel). The DSSP numbers of their partners are written in the ‘‘BP1’’ and

‘‘BP2’’ columns. Each β-sheet is also given a label (independent of the β-bridge labels) indicated

in the adjacent column. The ‘‘ACC’’ column contains the solvent-accessible surface measured in

Å2 by estimating the number of water molecules in contact with the present residue. The two

strongest backbone–backbone hydrogen bonds are then listed, where ‘‘N− H→ O’’ are donor

hydrogen bonds and ‘‘O→ N− H’’ acceptor hydrogen bonds. The format indicates the relative

position of the hydrogen bond partner followed by the energy in kcal/mol (e.g., ‘‘−5, −0.8’’

means that the partner residue DSSP number is 5 less than the present one and that the hydrogen

bond energy is −0.8 kcal/mol). The remaining columns have been skipped in the figure, but are

all labeled: ‘‘TCO’’ is cosine of the angle between the present C=O vector and that of the previous

residue (close to 1 for helices and −1 for sheets), ‘‘KAPPA’’ is the bend angle Ci−1
α Ci

αCi+1
α (when

above 70◦ ‘‘S’’ is assigned), ‘‘ALPHA’’ is the dihedral angle Ci−1
α Ci

αCi+1
α Ci+2

α used to assign chirality

(‘‘+’’ when positive, ‘‘−’’ when negative), finally the ‘‘PHI’’, ‘‘PSI’’ angles are given followed by

the (x, y, z) Cα-coordinates.
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Figure 17.5. Explanation of STRIDE output. The STRIDE output for Crambin is shown to explain

the format and for comparison to Figure 17.4. The format is simple and easily parsed, with ‘‘ASG’’

as the first word in the lines used for assignment. The residue columns comprise the three-letter

amino acid code, the chain identifier (‘‘−’’ for single chains), the PDB residue number, and the

STRIDE residue number, which starts from one for every new chain. The two structure columns

contain the one-letter structure assignments (HGIEBbTC) and its short description. The columns

with phi psi are followed by the column with solvent accessibility (measured in Å2).

that state, otherwise assign the nonregular state. They noticed several aspects of
interest:

• The last residues of a sheet or a helix are often still in the same conformation,
although they no longer have hydrogen bonds in the structure. This finding trans-
lates to the observation that ends (caps) of regular secondary structure segments
are not well defined.

• It seems that Cα-distance criteria (applied in DEFINE) alone can accommodate
considerable distortion of the backbone, giving an excess of secondary structure
assignments despite having reduced ε considerably.

• DSSP is the only assignment scheme with a large peak for α-helices of four
residues, many of which constitute single helical turns.

• DEFINE assigns more than twice as many sheets of length four than the
other methods.

• P-Curve has a tendency to assign overly long elements of regular secondary
structure.

Converting Secondary Structure States to Three Classes

Although no systematic analysis has attempted to compare secondary structure assign-
ment methods in terms of their consistency, DSSP continues to be the most widely used
method. In fact, most prediction methods are based on DSSP assignments. Typically,
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Ca residue #30

Ca residue #18

(a)

Ca residue #34

Ca residue #1

Ca residue #39

Ca residue #33

(b)

(c)

Figure 17.6. Protein secondary structure for crambin. The structure of the small protein Crambin

(PDB identifier:1crn; Teeter, 1984) is shown from two angles: (a) the image of the two helices, and

(b) the central short sheet. The automatic secondary structure assignment agrees well between

the three methods shown (c).

27%
(c,c,c)

6%
(a,c,c)

0.3%
(a,b,c)

0.01%
(a,b,b)

0.01%
(a,a,b)
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5%
(a,a,c)

14%
(c,c,b)

11%
(c,b,b)

13%
(b,b,b)

c b

a

Figure 17.7. Comparison of three assignment schemes. The occurrences of three assignment

classes (α-helix, β-sheet, and nonregular) by three assignment methods: DSSP, P-Curve, and DEFINE

give the 10 displayed categories, if the order is not regarded. When all schemes assign α-helix,

this is indicated by (α, α, α), when two assign α-helix and one nonregular, this is indicated by (α, α,

c). The distinction between helix and sheet appears clear, since (α, α, β) and (α, β, β) assignments

are rare (<0.01%). Data are taken from (Colloc’h et al., 1993).
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the 8 DSSP states are converted into three classes using the following convention:
[GHI]→ h, [EB]→ e, [TS”]→ c.

Usually, 310-helices and β-bridges constitute short secondary structure segments
that have some structural similarity to α-helix and β-strand, respectively. However, they
do have different sequence characteristics. Prediction methods, in general, are more
precise in the core of regular secondary structure segments than at the termini (Rost
and Sander, 1994; Cuff and Barton, 1999). Thus, 310-helices and β-bridges are more
difficult to predict than α-helices and β-strands. Therefore, an alternative conversion
that has been used more recently yields a seemingly higher level of prediction accuracy:
[H]→ h, [E]→ e, [GITS”]→ c.

Assigning Secondary Structure for NMR Structures

Usually, NMR structures contain more than one model in a PDB file. By default,
the available programs for DSSP and STRIDE read only the first model. Our recent
work on extending secondary structure assignments to “continuous secondary struc-
ture” (DSSPcont, see below), suggested that this simplification throws away important
information.

Sequence Distributions for Secondary Structure

The amino acids typically found in α-helices differ considerably from those found in
β-sheets (Fig. 17.8). Alanine and Leucine often occur in α-helices, whereas Proline
and Glycine are rare. In β-sheets Valine and Isoleucine are over-represented, whereas
Glycine, Aspartic acid, and Proline are under-represented. Shorter structures such as
310-helices and β-bridges have distinct residue distributions. For 310-helices, the Ala-
nine and Leucine signal has disappeared; instead the sequences are dominated by
Proline, which often is observed as a helix initiator and breaker. For β-bridges, we no
longer find a preference for Valine and Isoleucine. This finding indicates the role of
the side chain in defining secondary and tertiary structure, an observation that can be
built into new assignment methods (see below). In general, these preferences have long
been the basis of secondary structure prediction methods (Schulz, 1988; Fasman, 1989;
Richardson and Richardson, 1989; Barton, 1995; Rost and Sander, 2000; Rost, 2001c).

EMERGING AND FUTURE DEVELOPMENTS

Concepts Involving Secondary Structure

Supersecondary structure, such as Greek-key and Zinc-finger motifs (Brändén and
Tooze, 1991), describe the interaction and position of a few secondary structure ele-
ments. The recently developed I-sites library (Bystroff and Baker, 1998) is a collection
of structure motifs for small segments with specific amino acid propensities. The main
idea was to mine the structure database for recurring structural motifs and assign them
as individual I-sites along with an amino acid propensity matrix covering the segment
in question. The I-sites procedure can be viewed as a data-driven assignment process
that classifies segments into structure motifs in the range of secondary and supersec-
ondary structure. It has achieved considerable success in predicting protein structure
(Lesk, Lo Conte, and Hubbard, 2001).
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Figure 17.8. Sequence distributions for secondary structure. The four graphs show alignment

statistics for (a) α-helices, (b) 310-helices, (c) β-sheets, and (d) β-bridges by the Kullback-Leibler

information at positions surrounding the one assigned (position 0). The number of aligned

segments are: (a) 41,803, (b) 4952, (c) 27,320, (d) 1851. These segments were retrieved from a

data set of 707 nonhomologous protein chains using the DSSP assignment. At a given position, we

therefore observed the 20 amino acids with a certain frequency; the Kullback-Leibler information

calculates the information content of the observed frequencies with respect to the background

frequencies (irrespectively of the structure). The more an observed set of frequencies differs from

the background, the higher the respective letter. If an amino acid at a given position is observed

less frequently than in the background, it is drawn upside-down and hollow.

If we could predict helices accurately, it also seems possible to predict their tertiary
arrangement (Fain and Levitt, 2001), that is, the 3D structure. This thought gives rise
to optimism, since secondary structure predictions are presently approaching a level of
correctly predicting almost 80% of all residues in one of three classes: helix, strand,
other (Eyrich et al., 2001; Rost and Eyrich, 2001). Most state-of-the-art prediction
methods perform even better on a per-segment than on a per-residue basis. This fact is
encouraging since the final assembly step on the way from secondary structure to 3D
structure is more sensitive to missing a helix than to getting the ends slightly wrong.

The physical basis for secondary structure formation has not yet been fully
described. The backbone–backbone hydrogen bonds used to assign secondary structure
do not involve the side chains. Nevertheless, we observe strong preferences in the amino
acids forming particular secondary structures. Simulating local interactions, Srinivasan
and Rose (1999) found two competing forces that taken together explain this ostensible
contradiction. These are local attractive interactions—mainly hydrogen bonds—versus
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side-chain conformational restrictions, constituting the enthalpic and entropic energy,
respectively.

STICK: Continuous Assignment Based on Geometry

The standard method used to define line segments is to fit an axis through each sec-
ondary structure element (DSSP, STRIDE, DEFINE). This approach has difficulties,
both with inconsistent definitions of secondary structure and the problem of fitting a
single straight line to a bent structure. STICK avoids these problems by finding a set
of line segments independently of any external secondary structure definition (Taylor,
2001). This independence of explicit assumption allows the segments to be used as a
novel basis for secondary structure definition by taking the average rise/residue along
each axis to characterize the segment. This practice has the advantage that secondary
structures are described by a single (continuous) value that is not restricted to the con-
ventional classes of alpha–helix, 310-helix, and beta-strand. This latter property allows
structures without classic secondary structures to be encoded as line segments that can
be used in comparison algorithms. When compared over a large number of pairs of
homologous proteins, the current method was found to be slightly more consistent than
a widely used method based on hydrogen bonds.

DSSPcont: Continuous DSSP Assignment

Good secondary structure assignments are those that differ only between regions of
protein structure not conserved between different NMR models for the same protein
or between close homologues, and that distinguish between regions of thermal motion
and less flexible regions (Andersen et al., 2001).

This concept led us to develop a continuous extension of DSSP (Andersen et al.,
2001). This continuous assignment is based on multiple runs of DSSP with different
hydrogen-bond thresholds. Then, we compiled a weighted average over the individual
DSSP assignments to assign secondary structure to each residue. We determined the
weights by applying the above criterion for good assignments starting with structural
homologues from the FSSP (Holm and Sander, 1998) database. Inspecting the struc-
tural alignments in detail, we noted seven possible of reasons for observed structural
differences:

1. Different solution composition, spatial grouping and/or environment of the
proteins

2. Uncertainties/errors in the experimental setup
3. Minor thermal fluctuations (even though mostly averaged out)
4. Local amino acid substitutions causing the structural change
5. Insertions/deletions adjacent to the local stretch in question
6. Nonlocal changes forcing a new local conformation
7. Other less likely causes, for example, prionlike switching

Our objective was a secondary structure assignment method de-emphasizing the
effects of 1 through 3 while capturing differences caused by sequence changes. How-
ever, for structural alignments of homologues, we cannot separate these effects as
illustrated by a comparison between two related structures: periplasmic binding protein
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(PDB: 4mbp; Quiocho, Spurlino, and Rodseth, 1997) and putrescine-binding protein
(PDB: 1pot; Suugiyama et al., 1996). The structural alignment was obtained from FSSP
with a Z-score of 23.2 and an root = mean = square deviation (rmsd) of 3.6 Å over
303 residues. We will focus on a small 10-residue segment (Fig. 17.9a) that has a spi-
raling structure (α-helix, 310-helix, or turn) and a β-bridge at the penultimate position
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Figure 17.9. DSSP assignments for similar structures: 4mbp and 1pot. (a) The DSSP assignment

for two segments taken from two structurally similar proteins (periplasmic-binding protein 4mbp

(Quiocho, Spurlino, and Rodseth, 1997) and putrescine-binding protein 1pot (Suugiyama et al.,

1996)) illustrates that the observed differences between these segments may originate from

sequence differences. The boxed letters shown in the column next to the amino acid sequence

give the final DSSP assignment: G = 310-helix, H = α-helix, T = turn,B = β-bridge, and S = bend.

The next column shows the hydrogen bonds (>: hydrogen bond acceptor, <: hydrogen bond

donor, and X: both), with indications of the hydrogen bond length, that is, i→ i + (3,4) for 310

and α-helices, respectively. (b) All the predictions from PSIPRED (Jones, 1999b), SSpro (Baldi et al.,

1999) and PROFphd (Rost, 1996; Rost, 2001a) (See chapter 28) correctly spot the α-helix signal

in 4mbp, while missing this signal for 1pot. This result may indicate that the altered sequence

changed the structure significantly in this region. Here, ‘‘h’’ refers to the DSSP class helix (H or

G) and ‘‘c’’ to the DSSP nonregular class. Note: the predictions are cut out from those for the

entire protein.
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(Fig. 17.9a). Based on the assignment alone one might characterize the differences
as problems in the assignment process, since both segments have 310-helix hydrogen
bonds over the entire stretch. However, 1pot has no α-helix hydrogen bonds, resulting
in the assignment of 310-helix. The results from three high-quality prediction methods
(Fig. 17.9b) suggest that the structural differences resulted from the sequence diver-
gence, which means that the secondary structure assignments of the two segments
should not necessarily be the same. This line of reasoning can be extended from short
helices to short sheets and to the N- or C-terminal ends of helices and strands (caps).
Therefore, we chose to optimize the weights for DSSPcont based on the comparisons
between different NMR models for the same protein.

Our work on DSSPcont is still in progress. We briefly summarized below a few
of the important results (for more details see Andersen et al., 2001). We found that the
single residue rmsd between models of high-quality NMR structures correlated well
with thermal fluctuations in water as independently measured by the order parameter.
The resulting continuous DSSP assignments were constructed to reflect the differences
between NMR models of the same protein, so that the assignments reflect segments
with thermal fluctuations (Fig. 17.10). In other words the more a sequence segment
fluctuates, the lower the probability for the assigned helix/sheet will become. Infor-
mation of this type can also be obtained directly from crystal structures. Overall, we
found that the continuous assignment of secondary structure reflected the average occu-
pancy of secondary structure assignments. In particular, our continuous assignment for
a single NMR structure is similar to the average obtained over all models. This result
may indicate that for short intervals of time the concept of discrete secondary structure
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Figure 17.10. Protein motion and secondary structure. Using one set of coordinates from an

ensemble of NMR models, the continuous DSSP assignment reproduces the segments in proteins

that experimentally had a high degree of motion due to thermal fluctuations in water. Figure

reproduced from (Andersen et al., 2001). Protein motion has been independently measured by the

order parameter 1-S2, by the tumbling of the N−H backbone bond-vector. The order parameter is

low when the amino acid is fixed as in the protein core and it is high when the residue fluctuates.

The figure shows 1-S2 versus the continuous DSSP assignment grouping helices (GHI) and strands

(EB). The points are averages over a window segment of three consecutive residues; the line gives

an average of helix/strand assignments.
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states is appropriate. However, thermal fluctuations change these states slightly. Hence,
the average we actually observe is a continuous secondary structure. Our analysis also
indicated that most secondary structure regions are crystal solid!

CONCLUSION

Assigning secondary structure from 3D co-ordinates is an important problem. Many
successful solutions have been proposed over since the 1980s. One of the oldest solu-
tions is DSSP. There are many reasons why that program has become the standard
in the field. In fact, secondary structure assignment may be one of the exceptional
examples for tools in structural biology and bioinformatics that has not been revo-
lutionized by the recent explosion of data. For most residues, most of the available
methods agree in their assignment. Methods tend to differ mainly in locating the ends
of regular secondary structure segments and in distinguishing between more subtle
differences (e.g., alpha-, 310-, or pi-helix). To oversimplify the data: The residues
for which the assignment methods differ tend to be the residues for which structural
homologues or different NMR models differ, too. This idea has recently led to a num-
ber of new concepts for the assignment task. Two of these new concepts introduce
the idea of continuous secondary structure assignments (STICK and DSSPcont). This
novel interpretation of secondary structure breaks with the early idea that there are
secondary structure states. Since accurate secondary structure assignments are at the
base of accurate comparisons between structures and predictions of protein structure,
the story will continue.

Abbreviations used: 3D, three-dimensional; DEFINE, method assigning sec-
ondary structure from 3D co-ordinates based on linear distance masks to ideal secondary
structure (Richards and Kundrot, 1988); DSSP, program and database assigning sec-
ondary structure and solvent accessibility for proteins of known 3D structure from
hydrogen bonding patterns (Kabsch and Sander, 1983a); DSSPcont, continuous assign-
ment of secondary structure for proteins of known 3D structure (Andersen et al., 2001);
NMR, nuclear magnetic resonance; P-Curve, curvature based assignment of secondary
structure from 3D (Sklenar et al., 1989); PDB, Protein Data Bank of experimen-
tally determined 3D structures of proteins (Berman et al., 2000); rmsd, root-mean-
square deviation; STRIDE, secondary STRuctural IDEntification method to assign
secondary structure from 3D using hydrogen bonds and torsion angles (Frishman and
Argos, 1995);

Notations used: secondary structure assignment, the step from 3D co-ordinates
of residues to secondary structure states of residues (note: that; state, describes one
of the eight DSSP assignments G, H, I, E, B, T, S, L (space in DSSP output); class,
describes a group of states, a typical grouping of the eight DSSP states into three
classes is: h = GHI, e = EB, and c = TSL.
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IDENTIFYING STRUCTURAL
DOMAINS IN PROTEINS

Lorenz Wernisch and Shoshana J. Wodak

The notion of domains in proteins plays a very important role in structural biology,
genetics, biochemistry, and evolutionary biology. Often, however, this notion is defined
differently in each of these subdisciplines. In structural biology, domains were initially
defined as segments of the polypeptide chain that fold into globular units, which may
also carry out specialized molecular functions (Janin and Wodak, 1983; Rose, 1979;
Wetlaufer, 1973). In contrast, geneticists and biochemists define a domain as the mini-
mal fragment of a gene, usually identified in a deletion experiment, that is still capable
of performing a given function.

When the same or a closely similar domain is found in many different proteins, it is
often called a module. Classic examples are the immunoglobulin domain (Go, 1983) or
the SH2 domains (Sadowski, Stone, and Pawson, 1986). While the three-dimensional
structure of the domain/module is conserved in the different contexts, the amino-acid
sequence, and occasionally the function, may differ substantially.

Recent analyses of the fast-growing number of known genomes confirm that organ-
isms as diverse as bacteria and human share many proteins and protein domains. This
finding lends support to the view that the total number of genes/protein modules is
small. The total number of different folds that protein modules can adopt was estimated
to be about 1000, before any complete genome sequence was available (Chothia, 1992).
More recently, these estimates were revised to be in the range of 1000–6000 (Bren-
ner, Chothia, and Hubbard, 1997; Orengo, Jones, and Thornton, 1994). Many of the
modules are thus highly recurrent. They may occur in isolation as small single-domain
proteins, or they may be part of larger polypeptide chains, assembled by successive
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events of gene fusion. Combining a specific set of modules within a single polypep-
tide chain ensures that they are expressed together and localized in the same cells or
cellular compartments (Tsoka and Ouzounis, 2000).

In some cases, the modules may participate in the same cellular process, and some-
times interact physically, forming specific protein–protein complexes, without being
covalently linked. Thus, both the fused and separated arrangements exist in nature.
When one arrangement is observed in some organism, the other is likely to be used
in different ones. This observation was exploited in several methods recently proposed
for detecting protein–protein interactions from the amino acid sequence (Enright et al.,
1999; Marcotte et al., 1999a; Marcotte et al., 1999b). Although it is at present not clear
what fraction of the interactions detected by these methods represent actual physical
interactions between the modules, there is mounting evidence that these methods detect
the module or protein involvement in common functional processes.

Whether the genes are fused or separate, there is thus a very close interplay
between protein modules and their interactions. One major goal of the postgenomic era
is therefore to systematically characterize the repertoire of protein modules and their
interactions in terms of their biological function. This undertaking is a key component
of the large scale proteomics efforts (Fields, 2001) and the related efforts in Struc-
tural Genomics (Montelione and Anderson, 1999, and Chapter 29). The latter aims at
obtaining information about the three-dimensional (3D) structures of proteins and their
complexes, one of the important prerequisites for understanding molecular function and
cellular function. Since proteins can be composed of one or more modules, reliable
methods for parsing protein 3D structures and sequences into their constituent modules
are of great interest.

This chapter presents an overview of computational methods for parsing exper-
imentally determined protein 3D structures, into substructures also termed structural
domains. These domains may correspond to modules or to remnants of modules that
existed in the past. The basic concepts underlying the domain-parsing methods were
developed in the 1970s, and changed little since then. The actual algorithms, however,
have undergone some new developments recently in terms of speed and generality.
But probably more important still, we know much more today about the world of
protein folds and their diversity. These different aspects will be described here, with
illustrations taken from the authors’ own work.

HOW IT ALL STARTED

The first survey of structural domains in proteins was carried in the early 1970s (Wet-
laufer, 1973), using visual inspection of the then available X-ray structures. Wertlaufer
defined domains as regions of the polypeptide chain that form compact globular units,
sometimes loosely connected to one another. At about the same time the first so-called
Cα-Cα distance plots were computed (Ooi and Nishikawa, 1973; Phillips, 1970) and
shown to be useful for identifying structural domains. Domains were identified visually
in these plots by looking for series of short Cα-Cα distances in triangular regions near
the diagonal, separated by regions outside the diagonal where few short distances occur,
as illustrated in Figure 18.1. This approach was used by Rao and Rossmann (1973) to
locate the nucleotide-binding domains of lactate dehydrogenase and flavodoxin. Ooi
and Nishikawa (1973) applied this approach to α-chymotrypsin and myoglobin and
Rossman and Liljas (1974) to many other proteins.
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Figure 18.1. Domain structure of dogfish lactate dehydrogenase, determined using the Cα-Cα

distance map. (a) Ribbon diagram of lactate dehydrogenase, showing the NAD binding (green)

and catalytic domains (red). In gray is part of the helix, spanning residues 164–180, linking the two

domains. (b) Distance map and structural domains in lactate dehydrogenase. Contours represent

Cα-Cα distances of 4Å, 8Å, and 16Å within the subunit of dogfish lactate dehydrogenase.

Elements of secondary structure are identified along the diagonal. Triangles enclose regions

where short Cα-Cα distances are abundant. The NAD-binding domain comprises the first two

triangles (counting from the N-terminus), which are subdomains. The catalytic domain comprises

the last two triangles (the C-terminal domain). From Rossman and Liljas (1974) and reproduced

by permission of Academic Press (London) Ltd. Figure also appears in Color Figure section.

HOW ARE STRUCTURAL DOMAINS DEFINED?

The underlying concept of most if not all domain definition methods, in particular the
earlier ones, has been that atomic interactions within domains are more extensive than
between domains (Richardson, 1981; Wetlaufer, 1973). From this concept it follows that
domains can be identified by looking for groups of residues with a maximum number
of atomic contacts within a group, but a minimum number of contacts between the
groups, as illustrated in Figure 18.2a.

This method was also considered as a way of predicting structural units that are
likely to be stable on their own and possibly fold independently (Conejero-Lara et al.,
1994), an important goal pursued by the initial domain surveys.

A problem, encountered rather frequently when using this definition to locate
structural domain in protein structures, is that groups of residues satisfying the above
criteria sometimes belong to noncontiguous segments of the polypeptide chain. This
situation, which may arise as a result of gene insertion events or domain swapping
(Bennett, Choe, and Eisenberg, 1994), entails that in partitioning the 3D structure, the
polypeptide chain may be cut more than once, yielding noncontinuous domains, as
shown in Figure 18.2b.
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Figure 18.2. Illustration of the problem of parsing the protein 3D structure into structural

domains. (a) The most common definition of structural domains, as groups of residues with

a maximum number of contacts within each group and a minimum number of contacts

between the groups. (b) Domains may be composed of one or more chain segments. Any

domain-assignment procedure must therefore be able cut the polypeptide chains as many times

as necessary. When both domains are composed of contiguous chain segments (continuous

domains), only one chain cut (1-cut) is required. When one domain is continuous and the other
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chain segments. (c) This drawing shows two solutions to the problem of partitioning the pro-

tein 3D structure into substructures. To partition the 3D structure into domains, many such

solutions need to be examined in order to single out the one that satisfies the criterion given

in (a). Figure also appears in Color Figure section.
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A general method for identifying domains must therefore be able to handle this
situation, and hence not use information about the covalent structure of the protein
chain. The problem at hand then becomes an optimization problem, in which the
optimal way of partitioning the 3D structure must be singled out from a large number
of possibilities, as illustrated in Figure 18.2c. This is the challenge that all the methods
for locating structural domains in proteins have to face.

Unfortunately, however, solving the optimization problem adequately and effi-
ciently is often not sufficient, owing to the fact that the landscape of atomic interactions
in proteins is inherently noisy. The optimization procedure therefore needs to be sup-
plemented by additional criteria, which often include a description of some expected
properties of previously characterized domains, as will be discussed below.

FIRST GENERATION ALGORITHMS FOR DOMAIN ASSIGNMENTS

The first systematic survey of domains in a set of protein 3D structures, was performed
by Rossman and Liljas (1974), by analyzing Cα-Cα distance maps. This work was fol-
lowed a few years later, by three other studies by Crippen (1978), Rose (1979), and
Janin and Wodak (1983); Wodak and Janin, (1981b). The methods described in these
studies involved different algorithms and produced different results, but had one major
aspect in common. They were used to partition the protein 3D structure in a hierar-
chic fashion, yielding not only domains but also smaller substructures, as illustrated in
Figure 18.3. Surveys of these smaller substructures in a set of proteins revealed recur-
rent structural motifs comprising two or three secondary structure elements joined by
loops (Wodak and Janin, 1981a). Interestingly, the systematic identification of similarly
defined smaller substructures in proteins was recognized years later as a useful way
to predict regions in proteins that would form first during folding (nucleation sites)
(Moult and Unger, 1991).

Looking back at the early domain assignment studies of Wodak and Janin (1981b)
one can find other valuable information, which could not be exploited at the time
because the number of sequences and 3D structures was insufficient. Their algorithm,
which was designed to detect essentially continuous domains, involved producing a
surface area scan. This scan plotted the interface area B between an N-terminal segment
of i residues and the complementary C-terminal segment, as a function of i. Domain
boundaries were identified as minima of B in the scans.

Such surface area scan obtained for triose phosphate isomerase (TIM) (Janin and
Wodak, 1983) is shown in Figure 18.4. A noteworthy feature of this scan is the mini-
mum in B at residue 125, splitting the structure roughly in the middle (the other two
minima, as 64 and 209, define further substructures). This feature was merely recorded
at the time, but no interpretation was offered. More recently, however, the product
of the HisA gene, also believed to adopt the TIM barrel fold, was found to display
an internal sequence duplication (Fani et al., 1994). Subsequently, evidence of this
duplication was also detected in other TIM barrel proteins of the histidine operon of
T. maritima (Thoma et al., 1998). This finding, together with analysis of the larger
number of available sequences and 3D structures for this ubiquitous fold (Copley and
Bork, 2000), led to the suggestion that present-day barrels might have evolved from
a common ancestor adopting a half-barrel structure, each featuring the glycine-rich
phosphate binding site (Thoma et al., 1998).

This idea seems to suggest that a systematic search of “fault lines” in the protein
3D structure, such as the one enabled by the interface area scan in Figure 18.4, may
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Figure 18.3. Illustration of the hierarchic partitioning of protein 3D structures into substruc-

tures performed by three of the early automatic domain-analysis methods. (a) The partitioning

procedure of Rose (1979) applied to dogfish lactate dehydrogenase. The chain tracing of the

subunit is projected into a ‘disclosing plane’ passing through its principal axes of inertia. A line is

then found that divides the projection into two parts about equal size. The different projections

represent (from left to right and from the bottom down) the whole subunit (residues 1–331) of

the N-terminal domain (1–161), and the subdomain (residues 1–90) and (1–49). From Rose (1979),

and reproduced with permission of Academic Press (London) Ltd. (b) Domain and subdomain hier-

archies in concanavalin A adapted from Crippen (1978). It represents an ascending hierarchy of

clusters, starting from 13 ‘reasonably straight segments’ at the bottom of the hierarchy, and

culminating with the entire concanavalin A subunit. (c) The domain and subdomain hierarchy

in concanavalin A adapted from Wodak and Janin (1981b) describing the descending hierarchy

derived from identifying the minimum interface area between substructures in successive inter-

face area scans. Unlike the hierarchy in (b) this one generates continuous substructures. The

agreement with the hierarchy in (b) is therefore poor.

reveal remnant features of the protein history that cannot be gleaned from the amino
acid sequence alone. This is supported by the observation that many of the automatic
domain assignment procedures, including some very recent ones, also tend to split in
two some of the proteins adopting the TIM barrel structure (see below).

Several other methods were developed in the ten years, or so, following these initial
works. Some of the earlier ones were aimed at identifying substructures, with reference
to stability and folding, much along the original concept of Wetlaufer, whereas the later



F IRST GENERAT ION ALGORITHMS FOR DOMAIN ASS IGNMENTS 371

1 64 125 209 247

B (Å2)

Figure 18.4. The interface area scan for Triose Phosphate Isomerase (TIM) computed as in

Wodak and Janin (1981b). The area B in Å2 of the interface between residues 1 to i and i to

N, with N being the last residue in the chain, is plotted against the position I of the cleavage

point. Residue numbering is as in the original file for the atomic coordinates. The scan has been

produced using a model of the protein, where each residue is represented by a single interaction

center. The arrows shown in the plot indicate the minima of B in the scan. These occur at residue

64, 125, and 209. The minimum at residue 125 splits the TIM barrel into two halves, which

correspond well with the proposals for the common half barrel ancestor (see text).

ones, were aimed at parsing protein 3D structures into domains that can be used as a
basis for structure classification.

We view them all as first-generation methods because they do not consider the
problem of optimally partitioning the protein 3D structure in its full generality. Indeed,
to identify optimal partitions, they invariably use the order of the residues along the
sequence, and systematically (often recursively) split the protein into contiguous seg-
ments along the polypeptide chain, or assemble such segments. The main features of
these methods are summarized next. A discussion of their performance is presented
below in Domain Assignments: Is there a Unique Set of Criteria?

Identifying Domains on the Basis of Physical Criteria

Among the earlier methods that identified domains on the basis of some physical cri-
teria, that of Sander (1981) related domain identification to the motion of rigid bodies
composed of continuous chain segments. Argos (1990) focused on analyzing the com-
position and conformation of linkers between domains, also composed of continuous
chain segments, and used a graphic inspection to identify domain boundaries.

Rashin (1981) combined the method of Wodak and Janin (1981b) with a globularity
measure for each substructure to identify domains that are likely to fold independently,
whereas Zehfus and Rose (1986) used a related compactness measure to identify contin-
uous domains, which Zehfus (1994) later extended to identify discontinuous ones also.
Swindells (1995a, 1995b) with the program DETECTIVE, assigned domains by detect-
ing distinct hydrophobic cores in a protein, using information on secondary structure,
side-chain solvent accessibility and side-chain–side-chain contacts.

A somewhat ad hoc analysis of distance maps was used by Go (1983) to iden-
tify structural units in hen egg white lysozyme, which were correlated with the exon
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structure of the gene. The relation between exons and structural domains in proteins
was actively debated during these years (see Janin and Wodak, 1983), and remains
unconvincing to this day (Doolittle, 1995; Stoltzfus et al., 1994).

Identifying Domains as Units for Protein Structure Classifications

With the significant increase in the number of known protein structures in recent years,
the major incentive has been to devise automatic methods for identifying domains that
can form the basis for a consistent protein structure classification. One of the first
generation methods developed with this goal in mind was that of Islam, Luo, and
Sternberg (1995).1 This method starts with a hierarchy of recursive single cuts along
the chain and subsequently assembles strongly interacting segments, thereby defining
multisegment domains. The method of Siddiqui and Barton (1995), DOMAK,2 involves
partitioning the chain into three or four contiguous segments, but further chain cuts
become prohibitively costly to compute, whereas Sowdhamini and Blundell (1995)3

cluster secondary structure elements.
Several of these procedures are accessible on the Web in their original or updated

versions.

SECOND GENERATION METHODS FOR DOMAIN ASSIGNMENTS

The methods described in this section are those that consider the problem of partitioning
the protein 3D structure in its full generality. The underlying algorithms usually find
their inspiration from procedures developed in other disciplines (statistics, physics,
graph theory), and are hence often computationally more efficient and general than
those of the first generation methods.

The earliest method, in this category is the one by Holm and Sander (1994). This
method uses a principal component analysis of a modified atomic contact matrix to find
a partition with a low number of contacts, independently of the order of the residues
along the sequence. This method, now called PUU,4 is still being used today to assign
domains for the FSSP fold classification (Holm and Sander, 1996).

Domain Assignments Based on Graph Theoretical Methods

Of the more recent second-generation methods for domain assignment, several make
elegant use of graph theoretical methods. The procedure implemented in STRUDL
(STRUctural Domain Limits)5 by Wernisch, Hunting, and Wodak (1999) provides a
good example of such methods and their application to the problem at hand, and is
therefore illustrated here with some detail.

This procedure views the protein as a 3D graph of interacting residues, with no ref-
erence to any covalent structure. The problem of identifying domains then becomes that
of partitioning this graph into sets of residues such that the interactions between the sets

1Domain server: http://www.bmm.icnet.uk/∼domains/
2DOMAK: http://www.compbio.dundee.ac.uk/
3http://www-cryst.bioc.cam.ac.uk/∼mini/; http://www-cryst.bioc.cam.ac.uk/∼ddbase/
(under construction since 1/3/99)

4http://www.es.embnet.org/Services/ftp/databases/puu/s/
5STRUDL: http://www.ucmb.ulb.ac.be/strudl/
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is minimum. Since this problem is NP-hard, efficient heuristic procedures—procedures
capable of approximating the exact solution with reasonable speed—are an attractive
alternative. The algorithm used in this case was a slightly modified version of the
Kernigan-Lin heuristic for graphs (Kernighan, 1970). The application of this heuristic
to domain assignment is summarized in Figure 18.5.

A useful, though not essential aspect of this application is that the interactions
between residue subsets were evaluated using contact areas between atoms. This area
was defined as the area of intersection of the van der Waals sphere around each atom
and the faces of its weighted Voronoi polyhedron. This contact measure is believed by
the authors to be more robust than counting atomic contacts, due to its lower sensitivity
to distance thresholds.

To identify domains for which the limits and size are not known in advance, the
partitioning procedure described in Figure 18.5 is repeated k times, with k representing
all the relevant values of the domain size, ranging from 1 to N/2, and N being the total
number of residues in the protein. The partition with minimum contact area, identified
for each value of k, is recorded. This information is then used to compute a minimum
contact density profile. In this profile, the minimum contact area found for each k is
normalized by the product of the sizes of the corresponding domains, in order to reduce
noise (Holm and Sander, 1994; Islam, Lou, and Sternberg, 1995), and plotted against k.
The domain definition algorithm then searches for the global minimum in this profile.

Figure 18.6a, illustrates the profile obtained for a variant of the p-hydroxy-benzoate
hydroxylase mutant (PDB-RCSB code 1dob), a 394-residue protein composed of two
discontinuous domains. The global minimum in the minimum contact density profile,
although quite shallow, is clearly visible at k = 172, and yields the correct solution. The
corresponding partition cuts the chain in five distinct locations yielding two domains,
comprising six chain segments. The smallest of the two domains contains 172 residues;
the largest contains 222 = 394− 172, residues.

Once the global minimum is identified in the minimum contact density profile, a
decision must be taken to either accept or reject the corresponding partition, with a

>

Figure 18.6. Minimum contact and minimum-contact density profiles computed by the proce-

dure in STRUDL (Wernisch, Hunting, and Wodak, 1999). (a) The minimum contact density profile

for the p-hydroxy-benzoate hydroxylase mutant (PDB-RCSB code 1dob). The Cdens value in Å,

is computed using the formula given in the figure. In this formula c(U,V) is the contact area

between the two residue groups U and V , and |U| and |V | are the number of residues in U and

V , respectively. The plotted values represent the minimum of Cdens computed for a given domain

size k, where k = 1,N/2, with N being the total number of residues in the protein chain. Hence

|U| and |V | equal k and N − k, respectively. The arrow at k = 172, indicates the global minimum

of this profile. The dashed line delimits the value of k = 20 below which splits are not allowed, to

avoid generating domains containing less that 20 residues. (b) The profiles of minimum contact

area c(U,V) in Å computed as a function of k the number of residues in the smallest substructure

U, for the same protein as in (a). Shown are the profile with no constraints on the number of

chain cuts, as in the STRUDL procedure, and four other p-cut profiles, obtained by limiting the

number of allowed chain cuts p (see Wernisch, Hunting, and Wodak, 1999 for details). Those cuts

are 1-cut (- - - - ), 2-cuts (- - - - ) 3-cuts (------- ) and 4-cuts ( . . . . .). The global minimum of the

contact area (arrow) can only be located in the unconstrained profile, illustrating the advantages

of STRUDL over other procedures in which the number of allowed chain cuts is fixed.
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rejection corresponding to classifying the structure as a one-domain protein. An obvious
criterion on which to base such decision is the actual value of the contact area density
in profiles such as that of Figure 18.6a: If this value is below a given threshold, the
partition is accepted, otherwise it is rejected. But this simple criterion is unfortunately
not reliable enough. Following other authors, additional criteria, representing expected
properties of domains and of the interfaces between them (Rashin, 1981; Wodak and
Janin, 1981b), were therefore used to guide the decision. The choice of these criteria
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was carefully optimized on a training set of 192 proteins using a discriminant analysis,
and tested on a different, much larger set of proteins, as summarized in Figure 18.7.

Finally, once a partition is accepted, the entire procedure is repeated recursively
on each of the generated substructures until no further splits are authorized. This
recursive approach was shown to successfully handle proteins composed of any number
of continuous or discontinuous domains.

As always, assessing the performance of the method is a crucial requirement.
Fortunately, the significant increase in the number of different proteins of known
structure presently offers a more extensive testing ground. STRUDL was applied to a
set of 787 representative protein chains from the Protein Data Bank (PDB) (Berman
et al., 2000; Bernstein et al., 1977), and the results were compared with the domain
definitions that were used as the basis for the CATH protein structure classification
(Orengo et al., 1997). This definition was based on a consensus definition produced by
Jones et al. (1998), using three automatic procedures, PUU (Holm and Sander, 1994),
DETECTIVE6 (Swindells, 1995a), and DOMAK (Siddiqui and Barton, 1995), as well
as by manual assignments (see Domain Assignments: Is there a Unique Set of Criteria?
below).
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Figure 18.7. Threshold optimization for a pair of parameters used to evaluate proposed domain

partitions with STRUDL (Wernisch, Hunting, and Wodak, 1999). This figure displays the plot of

the mean burial bmean in Å, versus the contact area ratio cprop. Both quantities are evaluated

for domain partitions corresponding to the global minimum in the contact area density profiles

computed by STRUDL. bmean is the average interresidue contact area of the two substructure.

Cprop Is the ratio of the contact area of the putative domains to the sum of the interresidue

contact areas in the entire protein. The straight line optimally separates the single (filled circles)

from the multidomain proteins (empty triangles). This optimal separation entails, however, 19

errors—proteins classified in the wrong category—out of the total of 192 protein considered in

the set.

6http://www.biochem.ucl.ac.uk/bsm/cath new
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Results showed that domain limits computed by STRUDL coincide closely with
the CATH domain definitions in 81% of the tested proteins, and hence that STRUDL
performs as well as the best of the above-mentioned three methods. In contrast to these
methods however, STRUDL uses no information on secondary structures in order to
prevent splitting β-sheets, for instance. The 19% or so proteins for which the domain
limits did not coincide with the CATH assignments represent interesting cases, which
could for the most part be rationalized either on the basis of the intrinsic differences
between the approaches (in this case, STRUDL versus CATH), or by the variability
and complexity inherent in real proteins.

Several of these cases are illustrated in Figures 18.8–18.10. Figure 18.8 shows
cases where STRUDL splits into two-domain proteins that CATH considers as being
single-domain, single-architecture proteins. Among the shown examples are the DNA
polymerase processivity factor PCNA (1plq), which clearly shows an internal duplica-
tion, and the lant seed protein narbonin (1nar), which adopts a TIM barrel fold, that
many automatic domain-assignment procedures tend to split in two, as already men-
tioned. Differences of this type could be rationalized by the fact that CATH imposes
criteria based on chain architecture and topology, whereas STRUDL does not.

Figure 18.9 illustrates two cases where the results of STRUDL and CATH differ
by the assignment of a single, relatively short protruding chain segment. Such cases
illustrate the inherent noisiness in the backbone chain trace, which invariably affects

1plq

2ace

1nar 1csmA

Figure 18.8. Examples of single-domain, single-architecture proteins in CATH (Jones et al.,

1998), which STRUDL (Wernisch, Hunting, and Wodak, 1999) splits into two domains. Shown

are the domain assignments produced by STRUDL. For the exact domain limits, the reader is

referred to the STRUDL WEB site. The displayed protein ribbons belong to Torpedo californica

acetylcholinesterase monomer (1ace), the plant seed protein narbonin (1nar), the eukaryotic DNA

polymerase processivity factor PCNA (1plq), and Chorismate mutase chain A monomer (1csmA).

Figure also appears in Color Figure section.
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1gph1 1gph1

1pgd 1pgd

STRUDL

STRUDL

CATH

CATH

Figure 18.9. Different assignments by STRUDL (Wernisch, Hunting, and Wodak, 1999) and CATH

(Jones et al., 1998), illustrating the effect of noise or decorations in the protein chain trace. The

STRUDL assignments are displayed on the left-hand side, and the CATH assignments are displayed

on the right. The short chain segments, which CATH assigns to separate domains are shown in

blue. Some of the discrepancies may be due to simple ‘slips’ in the CATH assignments that have

been or will be corrected. Figure also appears in Color Figure section.

1dhx

STRUDL CATH

Figure 18.10. Different assignments by STRUDL (Wernisch, Hunting, and Wodak, 1999) (left)

and CATH (Jones et al., 1998) (right), for the adenovirus hexon protein (1dhx), a protein with

many domains of complex architecture. The different domains assigned by only method are

displayed in different colors. Figure also appears in Color Figure section.

domain assignments. Figure 18.10 illustrates well the problem of treating proteins with
many domains of different sizes and complex architecture. In such cases, often both
the number of domains and their limits differ between CATH and STRUDL.
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Another graph-theoretical procedure for domain assignment was recently proposed
by Xu, Xu, and Grabow (2000) and implemented in the software DomainParser.7 It also
considers the protein 3D structure as a graph with residues as nodes and the contacts
between the residues as the arcs. Parsing this network into domains is performed, as in
Wernisch, Hunting, and Wodak (1999), by partitioning the 3D structure in two parts, in
a recursive manner, but using a network-flow algorithm for finding the optimal cut. A
set of rules for accepting or rejecting a cut, or for refining cuts, was also applied, but
without performing a discriminant analysis. The procedure was tested on the 55 protein
test set of Jones et al. (1998), and applied to all the chains in the FSSP database8 (Holm
and Sander, 1996). It was shown to yield very satisfactory results, which were similar
to those obtained by Wernisch, Hunting, and Wodak (1999). The method is available
on the Web.

Other Methods

Two other methods, by Taylor (1999) and Xuan, Ling, and Chen (2000), have been
reported. The approach proposed by Taylor is of particular interest. His method is
akin to an Ising model. The basic algorithm is very simple. First, each residue in the
chain is assigned numeric labels (the sequential residue number along the sequence).
If a residue is surrounded by neighbors (defined using a distance threshold), with on
average a higher label, its label increases, otherwise it decreases. The procedure is
applied iteratively to all the residues in the chain. Several refinements were added to
this simple scheme in order to circumvent a number of technical problems and to avoid
unphysical situations such as frequent crossings of chain segments between domains,
assigning domains that are too small, or cutting through β-sheets. The method was
shown to yield results in good agreement with domain assignments extracted from the
original literature, and compiled by Islam, Luo, and Sternberg (1995).

Interestingly, the author cites the trypsins, pepsins, lactate dehydrogenase, and a
few TIM barrel structures as not yielding the accepted domain assignments with his
procedure. His method split several of the TIM barrels, but failed to split the other
proteins into their accepted domains. He then makes the appealing suggestion that the
application of the procedure not only to one structure but to multiple structures from
related proteins could be used to avoid such “errors”.

DOMAIN ASSIGNMENTS: IS THERE A UNIQUE SET OF CRITERIA?

To evaluate the performance of a new domain assignment method, its authors usu-
ally apply it to a set of proteins for which domain assignments have been produced
manually, by experts (crystallographers or protein classifiers), or by other automatic
domain-assignment methods, or both.

Today, the most common sources for such reference assignments are the domain-
based protein classifications such as CATH (Orengo et al., 1997) and SCOP (Murzin
et al., 1995), as well as resources such as FSSP (Holm and Sander, 1996). Although
these sources feature very similar domain assignments for the majority of the proteins,

7DomainParser: http://compbio.ornl.gov/structure/domainparser/
8FSSP database: http://www2.embl-ebi.ac.uk/dali/fssp/
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in a fraction of the proteins, which mostly comprises complex multidomain struc-
tures, the assignments do differ. Since the two major protein classifications use manual
domain assignments, either alone or in addition to automatic ones, these discrepan-
cies in domain assignments cannot be readily interpreted, adding to the difficulty of
assessing new domain assignment procedures.

The difficulty in producing consistent assignments with different methods are well
illustrated in two studies. One by Jones et al. (1998), which compares and combines
the results of different domain-assignment methods to produce the domain definitions
used in CATH. The other is by Wernisch, Hunting, and Wodak (1999), in which the
differences between the results of one algorithm (STRUDL) is systematically compared
to the CATH assignments.

Jones et al. (1998) applied four methods, PUU (Holm and Sander, 1994), DETEC-
TIVE (Swindells, 1995b), DOMAK (Siddiqui and Barton, 1995), and the method of
Islam, Luo, and Sternberg (1995) to generate domain assignments for a subset of 55
proteins with published assignments, taken from the repertoire of Islam, Luo, and
Sternberg (1995). For the evaluation, any two assignments were considered as similar
if they had the same number of domains, and at least 85% of the residues were assigned
to the same domain.

Comparison of the domain assignments made by the individual methods with the
published assignments showed a good overlap for 72% of the structures, on average,
with scores of individual methods ranging between 67–76%. Single-domain proteins
were predicted with the highest accuracy (mean 85%). Assignment for two-domain
proteins was also quite accurate with a mean of 75%. The accuracy was seen to drop
sharply as the number of domains increased.

Combining the assignments from several methods led to a clear improvement of the
assignment accuracy. Consensus assignments, defined as those that were the same by
all four methods, yielded the highest level of accuracy (100%), but these assignments
could be made for only 52% of the protein chains. Using consensus assignments from
three methods (DETECTIVE, PUU, and DOMAK) raised this percentage to 67%,
with only a slight drop in accuracy level to 97%. The CATH domain assignments were
then generated using consensus assignments from the three methods for a set of 787
representative proteins from the PDB. For the still sizable fraction of these proteins
for which consensus assignments could not be obtained, mainly complex multidomain
proteins, manual assignments were made.

Analysis of the assignments produced by this composite approach showed that
there was little difference in the performance of the three algorithms, as in general all
three produced good assignments of some structures and poor ones for others. When
PUU and DOMAK made the wrong assignment, they tended to “over cut,” that is, to
divide structure into too many domains, rather than too few. DETECTIVE displayed an
opposite trend. One general conclusion reached from this analysis, was that automatic
procedures could probably be improved through the use of information on known
protein folds, as already suggested (Holm and Sander, 1994). It was also cautioned
(Islam et al. 1995) that the performance of automatic procedures is likely to remain
limited due to the inherent variability in the details of natural protein structures, which
often leads to exceptions.

The analysis of Wernisch, Hunting, and Wodak (1999), in which the assignments
produced by STRUDL for the same set of 787 representative proteins were compared to
those in CATH, reached similar conclusions but presented them in a somewhat different
light. The analysis emphasized the fact that most automatic procedures incorporate a
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“postprocessing” step, which applies criteria based on our knowledge about the physical
or topological parameters of domains. However, the most appropriate set of criteria
may very well depend on the purpose for which the domain assignments are made.
If the goal is to use the assigned domains as the basis for structural classification, as,
for example, in CATH, then our knowledge about domain topologies, architecture, and
function is useful. But if the goal is to identify compact structural domains that might
be stable on their own, or might be remnants of ancient domains, then physical criteria
must be considered in priority.

Note that using criteria based on domain topology or architecture requires proce-
dures for identifying and defining acceptable folding topologies, which are not available
today. In the meantime, a practical alternative, suggested and used by other authors
(Jones et al. 1998; Holm and Sander, 1994) is to verify that a newly assigned domain
corresponds to an already known folding motif. This suggestion may well take care of
the majority of the cases, especially once the structural databases become populated
with enough examples of all the possible folding motifs. Until then, however, it harbors
the potential danger of biasing the domain assignments toward what is already known.

CONCLUSION AND PERSPECTIVES

In this chapter we presented an overview of the principles underlying the detection
of structural domain in proteins, and of the computational procedures that implement
these principles in order to assign domains from the atomic coordinates of complete
proteins. This overview showed that significant progress has been achieved over the
years in the generality and reliability of the algorithms for domain detection. We should
add that progress has also been achieved in calculation speed. The more recent second-
generation methods, which cut the polypeptide chain in many places simultaneously, are
orders of magnitude faster than the older methods that produce these cuts sequentially,
so much so that calculation speed of domain-assignment methods has ceased to be an
issue with present-day computer speeds.

However, we showed that some important limitations remain. All so-called second-
generation algorithms elegantly solve the problem of partitioning the structures into
domains composed of several chain segments, and can detect any number of domains.
But a postprocessing step, or additional criteria, are always needed in order to deal
with the inherent variability of natural protein structures, as well as with the inherent
fuzziness of how we define domains. The latter was illustrated by the conflicts that may
arise between defining domains as compact units with minimum interactions, versus
units displaying a distinct chain topology.

Clearly, the rapid increase in the number of known protein structures expected in
the coming years, should enable the refinement of our criteria for defining domains
and for dealing with their inherent variability. The proposal of performing domain
assignments on multiple structures belonging to related proteins and then averaging
the results (Taylor, 1999), is a promising avenue in this regard. After all, a similar
strategy of averaging the results from related proteins has become the rule for sec-
ondary structure predictions, or for identifying relationships between proteins using
sequence data.

Another interesting direction, not sufficiently explored yet, would be to analyze
domain–domain interfaces. If we believe that a protein containing more than one
structural domain arose by gene duplication and/or gene fusion events followed by
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mutations, then we may expect the properties of interfaces between domains (ratio
of hydrophobic/polar residues, H-bonds, packing, etc.), to resemble more those of
interfaces between subunits than to the protein core. A recent study of Jones, Marin,
and Thornton (2000) provides interesting insights in this regard.

Last but not least, it would be very useful if our knowledge and understand-
ing of structural domains could be applied to identify domains from the amino acid
sequence. This identification has many potential applications for structural genomics
efforts (see Chapter 29) that could, for example, be directed in priority toward novel
protein domains or toward compact domains, which should in principle be easier to
crystallize. Another application would be the analysis of the evolution of protein struc-
ture and function.

Methods for identifying protein domains from the amino acid sequence presently
rely mainly on sequence patterns, which are more directly associated with the domain
function than with their structural properties. Several very valuable resources on the
Web offer a compilation of such patterns and of sequence profiles for known domains
(Bateman et al., 2000; Corpet et al., 2000; Hofmann et al., 1999).

But extremely few methods are presently available for the prediction of structural
domain from the amino acid sequence without reference to function, clearly reflecting
the difficulty of the task. The earliest attempt in this direction was by Kikuchi, Nemethy,
and Scheraga (1988), who used information on average Cα-Cα distances in proteins to
define domain limits from the amino acid sequence. Of the handful of other more recent
studies, those of Gracy and Argos (1998) and Murvai, Vlahovicek, and Ponger (2000)
used information on sequence similarity to define domains from sequence, whereas
that of Wheelan, Marchler-Bauer, and Bryant (2000) shows that information on the
size distribution of structural domain in proteins can be a useful guide in identifying,
or guessing domain boundaries from the amino acid sequence. The predictive capacity
of these methods is still quite low, but will undoubtedly improve, as better ways of
combining structural and sequence information for families of homologous proteins
are devised.
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INFERRING PROTEIN FUNCTION
FROM STRUCTURE

Gail J. Bartlett, Annabel E. Todd, and Janet M. Thornton

THE IMPORTANCE OF PREDICTING FUNCTION FROM STRUCTURE

With the advent of structural genomics, prediction of biological function from structure
has become one of the major goals of structural biology and bioinformatics (Shapiro and
Harris, 2000). Assignment of biological function provides a valuable first step toward
experimental characterization of cellular and physiological roles of gene products.
Ultimately, this assignment would improve genome analysis and annotation, and aid
in the design of proteins with novel or modified functions.

Large-scale genome sequencing projects have provided us with details of all the
genes an organism needs to survive. From this information we can translate the amino
acid sequences of all the proteins that the genome could produce. Structural genomics
projects aim to solve the structures of all these proteins, but their functions will be
unknown. This process is a reversal of the usual experimental investigation of proteins,
which involves taking a protein of interest, carrying out biochemical experiments to
determine functional information about it, and then using the structure to rationalize this
functional information (Thornton, Todd, and Milburn, 1999). For example, the tyrosine
kinases were known to be signaling molecules long before the crystal structure revealed
molecular mechanisms of their function (Hubbard et al., 1991). If structural genomics
projects are to achieve their full scientific potential, it is vital to develop methods for
predicting function from structure, in order that we can annotate the genomes with
functional information.

Traditionally, identification of similar amino acid sequences is used to infer both
the structure and the function of a protein. It is believed that structure and function
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can be transferred between similar sequences because they have been conserved over
long periods of time. This belief has been confirmed for structure (Chothia and Lesk,
1986), but is more difficult to justify for function. It has been shown (Todd, Orego, and
Thornton, 2001) that above 40% sequence identity, homologous proteins tend to have
the same function, but below this threshold, conservation of function falls rapidly. Even
at high levels one must be cautious in inferring function, as some sequence relatives
with 35% or more sequence identity can have differing catalytic activities. Moreover,
structure and function start to diverge at the same percentage sequence identity.

Protein functions (e.g., an enzyme active site) are often conferred by a few con-
served residues, which sequenced-based methods often fail to detect. These residues
will, however, be related in three dimensions, so a comparison of structural similarities
between proteins has the potential to identify functional similarities in nonhomolo-
gous proteins.

PROTEIN FUNCTIONS

What Is the Function of a Protein?

The function of a protein is not always well defined (Skolnick and Fetrow, 2000). The
term function covers a multitude of features a protein may exhibit (Table 19.1). The
functional definitions given in Table 19.1 are different and distinct. Different experi-
mental techniques can elucidate different aspects of function.

Enzyme/Nonenzyme Classification

In this chapter we focus mainly on enzymes. They have a useful and well-established
hierarchical classification (see later in this section) that has provided a useful
starting point in exploring protein structure and function relationships. Additionally,
enzymes are over-represented in the Protein Data Bank (PDB); therefore, several
structure–function analyses have focused on this group of proteins.

It is easier to classify enzymes than to classify nonenzymes, partially because
enzymes catalyze chemical reactions, and it is the reactions that can be classified.

T A B L E 19.1. Different Aspects of Protein Function

Biochemical The chemical interactions occurring in a protein. For example, in an
enzyme, the biochemical function would be the chemical reaction catalyzed
by the enzyme, the substrates it binds, which ligands and/or cofactors are
required to complete the reaction, and which regulators might affect its
action.

Biological The role within the cell of the protein, including cellular and physiological
aspects. This includes the localization of a protein to a particular cell
organelle or cell type. It also tells us which biological pathways the protein
might be involved in, and under which conditions (e.g., heat shock) the
protein may become active.

Phenotypic The role played by the protein in the organism as a whole. This role can be
investigated by deleting or mutating the gene encoding the protein and
observing the effect on the organism.
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It is difficult to classify the nonenzymes as they may take part in many different
protein–protein interactions, in different signaling pathways that may operate indepen-
dently of each other. The Enzyme Commission (EC) scheme (NC-IUBMB, 1992) is
the best developed and most widely used of all the protein functional classification
schemes. It is a four-level hierarchy that classifies different aspects of chemical reac-
tions catalyzed by enzymes (Table 19.2). The first digit denotes the class of the reaction,
and subsequent levels classify the substrate, the type of bond involved, cofactors,
and other specificities. The EC number of glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH) is 1.2.1.12, which has the following detailed classification:

EC 1.-.-.- Oxidoreductases

EC 1.2.-.- Acting on the aldehyde or oxo group of donors

CE 1.2.1.- With NAD(+)or NADP(+) as acceptor

EC 1.2.1.12 Glyceraldehyde 3-phosphate dehydrogenase (phosphorylating)

T A B L E 19.2. Description of the Different Levels in the EC Classification

First figure Second figure Third Figure

A. OXIDOREDUCTASES

Substrate is oxidized-regarded
as the hydrogen or electron
donor

Describes substrate acted on
by enzyme

Type of acceptor

B. TRANSFERASES

Transfer of a group from one
substrate to another

Describes group transferred Further information on the
group transferred

C. HYDROLASES

Hydrolytic cleavage of a bond

Describes type of bond Nature of substrate

D. LYASES

Cleavage of bonds by
elimination

Type of bond Further information on the
group eliminated

E. ISOMERASES Type of reorganization Type of substrate

F. LIGASES

Enzyme catalyzing the joining
of two molecules in concert
with hydrolysis of ATP

Type of bond formed Type of compound formed

Note: An enzyme reaction is assigned a four-digit EC number, where the first digit denotes the class
of reaction. Note that the meaning of subsequent levels depends on the primary number, for example, the
substrate acted on by the enzyme is described at the second level for oxidoreductases, whereas it is described
at the third level for hydrolases. Different enzymes clustered together at the third level are given a unique
fourth number, and these enzymes may differ in substrate/product specificity or cofactor-dependency, for
example. Note that the EC is a classification of overall enzyme reactions and not enzymes. Adapted from
Todd et al., 2001.
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Each of the protein databases discussed in the next section lists an enzyme’s
EC number.

Database Classification of Protein Function

Information about protein function is contained in several different databases. Some
of them mention function in passing, whereas others attempt to classify function.
Some (e.g., SWISS-PROT) cover all organisms, while others (e.g., GenProtEC) are
concerned with just one organism. Many of the functional schemes combine different
aspects of function (Table 19.3). Consequently, functional information is only partially
captured by these databases, which makes it difficult to transfer functional information
from one homologous protein to another. Many functions have only been inferred from
sequence similarities. These inferences may be incorrect and cannot be relied upon until
confirmed by experiment. Indeed, some annotations in the databases are known to be
wrong. These in accuracies and errors reduce the reliability of functional annotations.
Table 19.3 shows the functional information obtained for glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) from four different databases.

Multifunctional Proteins

Multifunctional proteins are even harder to classify in the functional schemes. For
example, methylenetetrahydrofolate dehydrogenase/cyclohydrolase catalyzes the con-
version of methylenetetrahydrofolate to formylfolate in two separate reactions, thought
to proceed using the same or overlapping active sites (Allaire et al., 1998). This enzyme
has two EC numbers associated with it—1.5.1.5 and 3.5.4.9. There are many multi-
functional proteins where the function varies as a consequence of changes in expression
and environment (Jeffery, 1999). Oligomerization and cellular localization are examples
of such changes. Phosphoglucose isomerase acts as a neuroleukin, a cytokine, and a
differentiation and maturation mediator in its monomeric, extracellular form, but as a
dimer inside the cell, it has a role in glucose metabolism, catalyzing the interconver-
sion of glucose-6-phosphate and fructose-6-phosphate. The function of multifunctional
proteins also can vary according to cell type and cellular concentrations of ligand,
substrate, cofactor, or product.

Gene Ontologies

While this chapter is chiefly concerned with protein function, it is relevant to mention
some of the functional classification schemes concerned with genes, as it is the gene
product that will form the protein and carry out the function.

Functional ontology schemes try to organize genes according to the biological
processes they perform—a necessary part of genome annotation. The Gene Ontol-
ogy scheme (http://www.geneontology.org; Ashburner et al., 2000) consists of three
independent functional ontology schemes for genes from different organisms: biologi-
cal process, molecular function, and cellular component (see Table 19.4). The scheme
uses a controlled vocabulary for describing the roles of genes and gene products in
any organism. The relationship between gene product and biological process, molecular
function and cellular component is often one-to-many, and by separating and indepen-
dently assigning these attributes, relationships between gene product and function can
be clarified more easily.

In a comparison of six different functional classification schemes (Rison, Hodg-
man, and Thornton 2000), each was mapped onto an iteratively generated functional
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T A B L E 19.4. Gene Ontology Functional Classifications

Category Description

Biological process A biological objective to which the gene product contributes.
A process (which often involves a chemical or physical
transformation) is accomplished via one or more assemblies of
molecular functions.
A biological process can be high level (or less specific), for
example, cell growth and maintenance, or low level (or more
specific), for example, glycolysis.

Molecular function The biochemical activity of a gene product, describing what it
actually does without alluding to where or when.
A molecular function can be broad (or less specific), for
example, enzyme, or narrow (or more specific), for
example, hexokinase.

Cellular component Refers to the place in the cell where a gene product is active.

ontology scheme in order to compare them. Each scheme fared differently, with some
schemes showing broader functional coverage than others. It is important, therefore,
when using information from the databases, that the features of each database are taken
into consideration. One database may give you more accurate information than another,
depending on how that information has been obtained and classified.

WHAT INFORMATION CAN BE OBTAINED FROM THREE-DIMENSIONAL
PROTEIN STRUCTURES?

Basic Structure

The structure comes in the form of a PDB file (see Chapter 8), which is a list of
three-dimensional (3D) coordinates of all the atoms in the protein. The PDB file itself
contains little, if any, functional data. There is sometimes a “site”record, but this is used
for various purposes, such as ligand-binding sites, metal-binding sites, or active sites
and is not consistent. Some PDB files contain no functional information at all, except
for the name of the protein. However, from the structure we can derive information
relating to biological function; this information is summarized in Figure 19.1.

Looking at a visual representation of a protein structure tells us the overall orga-
nization of the protein chain in three dimensions. We can identify buried residues that
make up the core of the protein, and residues on the surface exposed to the solvent.
We can see the shape and molecular composition of the surface, as well as the juxta-
position of individual groups. We can also see the quaternary structure present in the
crystal, which can tell us the oligomeric state of the protein, and may throw light on
protein—protein interactions.

Protein-Ligand Complexes

Protein-ligand complexes generally yield more functional information than the structure
of the protein alone. The ligand, which is usually constructed with some knowledge of
the function (e.g., a transition-state analogue), can give us clues as to the identity of
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Figure 19.1. From structure to function: A summary of information that can be derived from

3D structure, relating to biological function.

groups binding the substrate, or residues that may be involved in other aspects of protein
function such as catalysis or regulation. From this information, it may be possible to
postulate a catalytic mechanism for an enzyme. In structures from structural genomics
projects, however, the only ligands will tend to be co-enzymes and occasionally natural
ligands picked up from the cell of the organism in which the protein has been cloned.
(see Structural Genomics at work—Prediction of Function in Earnest below).

Essentially, structures provide information about the biochemical function of a
protein, but not other aspects of function. However, if the protein in question is of
unknown function, knowledge of the structure may help guide biochemical experiments
to establish other functional aspects.

RELATIONSHIP BETWEEN STRUCTURE AND FUNCTION

Analysis of the PDB suggests that a limited number of protein folds/families occur
in nature (Chothia, 1992); (Orengo, Jones, and Thornton, 1994). This limitation is
probably due to physicochemical constraints on protein folding that favor particular
packing arrangements, combined with evolutionary selection. We can examine the
relationship between structure and function on different levels—class, fold, homology,
and analogy.
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Protein Structural Class and Enzyme Function

All structural classes of proteins form enzymes (Martin et al., 1998; Hegyi and Ger-
stein, 1999). α/β folds are over-represented in enzymes compared with the normal
distribution. This over-representation is primarily due to the large number of nucleotide-
binding domains in enzymes. The all-α and small folds are generally associated with
nonenzymes. It is thought that the mainly-α class of proteins is under-represented in
enzymes due to the inability of main-chain polar groups to be involved in catalysis,
since their hydrogen-bonding potential is satisfied by other residues in the helix. Edges
of β-sheets are thought to be more accessible.

Martin et al., (1998) found no correlation between protein class/architecture and
enzyme function (according to the EC classification). This is presumably because
enzymic activity is defined by a few amino acids in a precise location and orientation.
However, Hegyi and Gerstein (1999), using additional sequence data, found statisti-
cally significant correlations between class and enzyme type. They found transferases
and hydrolases to be particularly common among the α/β folds, although the origin
of this bias is unclear and probably reflects evolutionary selection. Therefore, when
trying to elucidate enzyme function from structure, the gross structural classification
is unlikely to be of much help.

Protein Fold and Function

As the number of folds in nature is limited, and there are multiple superfamilies within
each fold group, proteins with similar structure can have totally different functions.
The most promiscuous fold (or superfold) is the (β/α)8 barrel, which appears to have
recurred multiple times in evolution and has many diverse functions. It is associ-
ated with 61 different EC numbers, with representatives in EC top-level classifications
1–5 (Nagano et al., 2001), showing a clear lack of correlation between EC number
and topology. The top five most versatile folds in all proteins are summarized in
Figure 19.2. All are α/β or α + β folds, and have many different functions associated
with each.

As the wealth of structural and functional information grows, the number of func-
tions per fold will undoubtedly increase.

Homologous Families and Function

To date, most folds have one homologous family associated with them (Todd, Orengo,
and Thornton, 1999). Within homologous protein families, it is expected that fam-
ily members will have related functions. However, this is not always the case, and
considerable diversity has been seen within homologous superfamilies.

The classic example of divergence of function within a homologous family is
that of lysozyme and α-lactalbumin (Acharya et al., 1991). These two proteins have
high sequence identity between them, but vary in their function (Fig. 19.3). At the
other end of the scale, during evolution, the globin family of proteins has been sub-
jected to multiple amino acid changes, but their function has remained unchanged
(Fig. 19.4).

In a study of conservation of function in 31 diverse enzyme superfamilies (Todd,
Orengo, and Thornton, 2001), it was found that these superfamilies were associated
with over 200 protein functions. On identification of the sequence relatives of all
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TIM barrel fold

NAD binding domain

Alpha/beta hydrolase fold

The structure consists of an eightfold repeat of beta/alpha units. Eight
parallel beta strands on the inside are covered by eight alpha helices on
the outside.  The fold was first seen in triose phosphate isomerase.  All
known TIM barrel structures are enzymes, except for the narbonin family.
Many of these enzymes are glycosyl hydrolases (EC 3.2.x.x).  The fold 
is higly versatile, being found in single-domain monomeric enzymes and
as the catalytic domain of larger enyzmes.  The active site is found at the
C-terminal end of the barrel in a series of loops, hence it is very easy to 
alter the function and/or specificity without altering the core structure.

Number of EC numbers associated with this fold (to the third level): 29

The structure is an eight stranded, mostly parallel alpha/beta structure.
The  fold is tolerant to large insertions and is a very plastic. All proteins 
known so far containing this fold are enzymes.  The enzymatic properties 
of this fold are formed by a catalytic triad of a nucleophile, acid and a 
histidine residue.  The nucleophile is found in a "nucleophilic elbow" turn 
located just after the fifth beta strand.

Number of EC numbers associated with this fold (to the third level): 17

This is a double beta-alpha-beta-alpha-beta motif, and is a common 
structural motif of enzymes binding NAD, NADP and other related cofactors,
for example, NAD is found in dehydrogenases as the hydrogen acceptor.
The domain is found as a common core unit in many structures, with other 
structural units at the periphery.

Number of EC numbers associated with this fold (to the third level): 5

P-loop NTP hydrolase fold

This fold consists of alpha/beta/alpha, parallel or mixed beta sheets of 
variable size. The fold binds the phosphate of ATP or GTP and is found
in ATP and GTP binding proteins such as adenylate kinase.  The P-loop is a
phosphate binding loop that binds the phosphate groups of ATP and 
GTP,and is a glycine-rich sequence with the consensus sequence 
(A,G)xxxxGK(T,S).  The P-loop residues are shown in detail (left) in 
guanylate kinase.
  
Number of EC numbers associated with this fold (to the third level): 5

Ferredoxinlike fold
This fold consists of an alpha/beta sandwich with an antiparallel beta sheet.
The ferredoxinlike fold is associated  predominantly with nonenzymatic
ferredoxins, like the example shown (Ferredoxin ii from D. gigas, left). 
Ferredoxins are iron-sulphur clusters invovled in electron transport, and
often form part of multisubunit assemblies.  An example of an enzyme with
this fold is muconolactone isomerase (EC 5.3.3.4).

Number of EC numbers associated with this fold (to the third level): 5

Figure 19.2. A summary of the top five most versatile folds in all proteins (according to Hegyi

and Gerstein, 1999). EC numbers quoted are from Nagano et al., 2001 (TIM barrels), Todd, 2001

(α/β hydrolases), and Hegyi and Gerstein, 1999 (P-loop NTP hydrolases, NAD binding domains,

ferredoxins).
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(a) Lysozyme EC 3.2.1.17 (b) Alpha-lactalbumin (nonenzyme)

Figure 19.3. Lysozyme (a) and α-lactalbumin (b) have 40% sequence identity between them,

and similar structures, but they have different functions. Lysozyme is an O-glycosyl hydrolase, but

α-lactalbumin does not have this catalytic activity. Instead, it regulates the substrate specificity

of galactosyl transferase through its sugar-binding site, which is common to both α-lactalbumin

and lysozyme. Both the sugar-binding site and catalytic residues have been retained by lysozyme

during evolution, but in α-lactalbumin the catalytic residues have changed and it is no longer

an enzyme.

(a) V. stercoraria hemoglobin (b) P. marinus hemoglobin

Figure 19.4. The globin fold is resilient to amino acid changes. V. stercoraria (bacterial)

hemoglobin (a) and P. marinus (eukaryotic) hemoglobin (b) share just 8% sequence identity,

but their overall fold and function is identical.

the members of these protein families, the number of associated functions more than
tripled. Some families contained proteins with differing numbers of associated enzyme
functions, and some contained proteins that did not function as enzymes at all. This
suggests divergence of function during enzyme evolution, with re-use of the same
molecular architecture again and again. Such economy must have simplified the process
of metabolic evolution.

Analogues

Some functions have different structural solutions; these proteins are analogous to one
another, sharing structural similarity but no sequence similarity. Such analogues are
examples of convergent evolution toward the same function. The classic example is
that of trypsin and subtilisin (Wallace, Laskowski, and Thornton, 1996) (Fig. 19.5).
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(a) Subtilisin EC 3.4.21.62 (b) Chymotrypsin EC 3.4.21.1

Figure 19.5. Subtilisin (a) and chymotrypsin (b) are both serine endopeptidases. They share

no sequence identity, and their folds are unrelated. However, they have an identical,

three-dimensionally conserved Ser-His-Asp catalytic triad, which catalyzes peptide bond hydrolysis.

These two enzymes are a classic example of convergent evolution.

The most promiscuous functions are the glycosidase and carboxylase enzyme fami-
lies, which are associated with seven different structural folds each (Hegyi and Ger-
stein, 1999).

It must be noted that these studies are biased by the content of the databases,
for example, the PDB is biased toward smaller proteins that are easier to crystallize.
They also depend on the accuracy of functional annotation in databases, which, as we
have already shown, has variations. In addition, there is not always a 1 : 1 relation-
ship between gene, protein, and reaction. What is more, the EC classification system
has several limitations. It classifies chemical reactions, not the underlying biological
mechanism, and the reaction direction is chosen arbitrarily, for example, 4.1.1.31 PEP
carboxylase is classified as a lyase, when it catalyzes irreversible carbon–carbon bond
formation. EC numbers also give no details of the reaction chemistry, so two enzymes
sharing a common reaction chemistry and mechanistic strategy may have different
EC numbers.

ASSIGNING FUNCTION FROM STRUCTURE

There are several methods for assigning function from structure. One can make compar-
isons with proteins of known structure from the database, or use local structural motifs
that capture the essence of biochemical function to search for a function in a new struc-
ture. Alternatively, the ab initio method relies on information gained solely from the
solved structure and not on other sources. Each of these methods is discussed below.

Ab initio Prediction

One of the main factors determining how a protein interacts with other molecules
is the size of clefts on the protein surface. Clefts provide an increased surface area
from which the solvent may be excluded, and therefore an increased opportunity for
the protein to form complementary hydrogen bonds and hydrophobic contacts with
small ligands.
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A protein-ligand binding site (active site) is often found to be the largest cleft in
the protein, and this cleft is often significantly larger than other clefts in the protein
(Laskowski et al., 1996). There are two advantages to having an active site in a cleft.
Firstly, it enables precise positioning of the substrate in order to facilitate catalysis.
Secondly, burial of the substrate in such a cleft will seal it off from the bulk solvent,
which effectively decreases the dielectric constant and allows the enzyme to generate
electrostatic forces necessary for catalysis.

Structural Comparisons

We can compare the structure of a protein of unknown function to structures of proteins
of known function in structural databases such as CATH (Orengo et al., 1999) or SCOP
(Lo Conte et al., 2000), and within defined bounds inherit the functional information
from the closest match. This method of assigning function from structure is by far
the most powerful, because proteins with a similar structure and sequence identity
are evolutionarily related and are likely to share a similar function. However, caution
must be exercised in transferring function from one homologous protein to another. If
two proteins share structural similarity, but do not share sequence identity at all, their
structural similarities might be the result of convergent evolution. Although each protein
performs a similar function and has the same structure they may not be evolutionarily
related. Moreover, two structurally homologous, evolutionarily related proteins might
have different functions, (as in the case of the crystallins (Wistow, Mulders, and de
Jong, 1987; Cooper, Isola, Stevenson and Baptist 1993) (Fig. 19.6).

Structural Motifs

In order to use local structural motifs to search a new protein structure, in the case of
enzymes, detailed knowledge of the active site is required. Enzyme active site residues
are often more conserved than the overall fold, (e.g., subtilisin and chymotrypsin,
Fig. 19.5). Structural motifs can be used to identify ancestors with the same global fold

****  **** **** *******: *.:**: :*********.*:****************************** ****:**.******:************************
cryst. I  MASE--GDKLMGGRFVGSTDPIMQMLSTSISTEQRLSEVDIQASIAYAKALEKAGILTKTELEKILSGLEKISEELSKGVIVVTQSDEDIQTANERRLKELIGDIAGKLHTGRSR
cryst. II MASEARGDKLWGGRFSGSTDPIMEKLNSSIAYDQRLSEVDIQGSMAYAKALEKAGILTKTELEKILSGLEKISEEWSKGVFVVKQSDEDIHTANERRLKELIGDIAGKLHTGRSR

*:*****************************************************************************************************************
cryst. I  NEQVVTDLKLFMKNSLSIISTHLLQLIKTLVERAAIEIDVILPGYTHLQKAQPIRWSQFLLSHAVALTRDSERLGEVKKRINVLPLGSGALAGNPLDIDREMLRSELEFASISLN
cryst. II NDQVVTDLKLFMKNSLSIISTHLLQLIKTLVERAAIEIDVILPGYTHLQKAQPIRWSQFLLSHAVALTRDSERLGEVKKRINVLPLGSGALAGNPLDIDREMLRSELEFASISLN

****************.****:**********************************************************************************:**********
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cryst. II SMDAISERDFVVEFLSFATLLMIHLSKMAEDLIIYSTSEFGFLTLSDAFSTGSSLMPQKKNPDSLELIRSKAGRVFGRLASILMVLKGLPSTYNKDLQEDKEAVFDVVDTLTAVL
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Duck crystallin delta-I nonenzyme
Duck crystallin delta-II/arginosuccinate lyase enzyme

Figure 19.6. Sequence alignment of duck crystallins δ-I and δ-II, proteins found in the eye lens

that contribute to its refractive properties. The δ-II crystallin has arginosuccinate lyase enzyme

activity, but the δ-I crystallin has lost this activity, even though it shares 94% sequence identity

with the δ-II crystallin, and the active site residues are conserved.
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and the same activity, as well as proteins with similar functions but different folds. Six
different methods using this general strategy for assigning function are discussed below.

1. SITE and Site-Match. SITE (Zhang et al., 2000), is a database containing
information from the SITE entries of PDB files, as well as SWISS-PROT functional
annotations, and ligand-interacting residues, defined by using a cutoff a certain distance
from the ligand in the PDB file. The program Site-Match correlates this information
with that produced from a sequence alignment, and verifies conservation of func-
tional site residues. Conservation of these residues can be taken as an indicator of
functional conservation. For clearly homologous proteins with significant sequence
identity, approximately 10% did not contain conserved functional site residues. This
percentage rises to 50% in weakly homologous proteins. These results show that care
must be taken when transferring function between seemingly homologous proteins.

2. TESS. TESS stands for Template Search and Superposition, and is a geometric-
hashing algorithm for deriving 3D template coordinates from structures deposited in
the PDB (Wallace, Borkakoti, and Thornton, 1997). The templates contain all the atoms
considered essential for the enzyme to perform its catalytic function. The information
for a template is acquired by mining the primary literature and assessing which residues
form the active site. Given a set of 3D coordinates as a template and a protein structure,
TESS looks for a match between them.

A TESS template for the serine protease active site, containing the vital atoms from
the Ser-His-Asp catalytic triad, was able to describe the active site of all the serine
proteases, acetylcholinesterase and haloalkane dehalogenase. The template could dis-
tinguish between catalytic triads found in enzymes and noncatalytic triads (i.e., atoms
found in that configuration purely by chance) on the basis of the root-mean-square devi-
ation (rmsd) of the atoms from the initial template. This result suggests that convergent
evolution draws functional atoms into their optimal catalytic positions.

3. Fuzzy Functional Forms (FFFs). The FFF method uses 3D structural informa-
tion to identify biologically relevant sites in protein structures (Fetrow et al., 2001). The
resulting active site descriptors are called fuzzy functional forms. An FFF describing
disulphide oxidoreductase function identified 27 sequences in S. cerevisiae as poten-
tial disulphide oxidoreductases. The FFF was based on the common active site of the
glutaredoxin, thioredoxin, and disulphide isomerase protein family, which consists of
two cysteine residues essential for redox activity, and a structurally conserved cis-
proline. The FFF method is similar to that of TESS, except that where TESS uses
3D atom coordinates of functional protein side chains, the FFF method uses the dis-
tances between alpha carbons with a small variance. The FFF method can therefore
be used with inexact models as well as with high resolution structures, unlike TESS,
but is less specific. All previously known thioredoxins, glutaredoxins, and disulphide
isomerases were correctly identified, with just three false positives. Three of the novel
predictions made were subsequently validated:

YERH4C —glutaredoxin 4
YDR098C—glutaredoxin 3
YPL059W—disulphide oxidoreductase
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The FFF also postulated a disulphide oxidoreductase regulatory mechanism for
two subunits of the yeast oligosaccharyltransferase complex. Via homology, this pre-
diction could be extended to a potential tumor-suppressor gene N33 in humans, whose
biochemical function was previously unknown.

4. SPASM, RIGOR. SPASM and RIGOR are tools for studying constellations of
small numbers of residues (Kleywegt, 1999). SPASM stands for Spatial Arrangements
of Side-chains and Main-chain, and can be used to find matches in the structural
database for any user-defined motif. SPASM is similar to the FFF and TESS methods,
using C-alpha and side-chain pseudoatoms as its template, but it has the advantage of
being very easy to use. RIGOR compares a database of predetermined motifs against
a newly determined structure, which could have an unknown function.

A SPASM template of catalytic residues from cellulobiohydrolase I from Tricho-
derma reesei hit four PDBs in the database that were expected to contain a similar set
of residues.

5. Molecular Recognition. This method searches for similar spatial arrange-
ments of atoms around a particular chemical moiety in proteins by superposing them
(Kobayashi and Go, 1997). Arrangements in a pair of proteins are said to be similar
when there are many corresponding overlapping atoms. This method can detect similar
binding sites in proteins unrelated by sequence or overall fold.

A comparison of atoms surrounding adenine moieties in proteins highlighted
structural similarity between protein kinases, cAMP-dependent protein kinase, casein
kinase-1, and D-Ala-D-Ala ligase at their adenine-binding sites, in spite of the fact that
these enzymes showed a lack of similarity in overall fold and sequence.

The same method was applied to phosphate-binding sites (Kinoshita et al., 1999),
and found four frequently occurring structural motifs of protein atoms interacting with
phosphate groups. Each motif appeared in different protein superfamilies with different
folds. The most common motif is the P-loop GXXX, which interacts with the phosphate
group via the backbone atoms, and is shared by 13 superfamilies (including the P-loop
NTP hydrolases discussed previously (see Fig. 19.2)).

6. Protein Side Chain Patterns. Another method similar to the TESS, FFF, and
SPASM templates detects active sites in proteins via recurring amino acid side-chain
patterns (Russell, 1998). However, this method requires only protein structural data
and associated multiple sequence alignments. The search is constrained by distance
constraints and amino acid conservation, and amino acids unlikely to be involved
in protein active sites (i.e., hydrophobic residues) are ignored. Matches are scored
by rmsd, which is itself assessed by statistical significance, unlike the other methods
listed above.

An all-against-all comparison of representatives of the PDB revealed previously
unknown, convergently evolved (i.e., sequence independent) similarities, which
point to possible functional similarities. These include a di-zinc binding pattern
(Asp/Asp/His/His/Ser) common to alkaline phosphatase and bacterial aminopeptidase,
and an Asp/Glu/His/His/Asn/Asn pattern common to the active sites of DNAse I
and endocellulase E1. These functional similarities can now be investigated by
experimental means.
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STRUCTURAL GENOMICS AT WORK—PREDICTION OF FUNCTION
IN EARNEST

Large scale genome sequencing projects have led to the concept of structural genomics,
which is the idea that one can determine 3D protein structures on a genomewide scale.
In July 2001, there were 49 complete genomes sequenced (according to the Institute
for Genomic Research, http://www.tigr.org/). Additionally, technological advances in
PCR-based recombinant DNA technology, high-level protein expression systems, and
structural characterization methods have increased the rapidity with which protein
structures can be solved. Taken together, this suggests that high-throughput expres-
sion, crystallization, and subsequent structure determination should be possible on a
genomewide scale (Burley et al., 1999). It is possible to envisage structure becoming
an early part of biological analysis, to determine the function of a protein encoded by
a particular gene, or at least guide biochemical experiments in elucidating its function.

A study of 424 nonmembrane proteins (excluding proteins with a clear sequence
homologue in the PDB) cloned from Methanobacterium thermoautotrophicum (M.th),
was carried out to test the feasibility of structural genomics projects (Christendat
et al., 2000). These 424 proteins represent approximately one-third of all the proteins
produced by M.th. Of these proteins, 20% were found to be suitable for either X-ray
crystallographic or NMR spectroscopic analysis. Of the first 10 structures determined,
several provided a model for interpretation of existing functional data, while some of
the structures, including those containing protein-ligand complexes, provided enough
functional hints to generate hypotheses for biochemical function that could be tested
in the laboratory. This study showed that high-throughput structure determination is
indeed feasible. However, the percentage of proteins suitable for structural analysis was
low, indicating that improvements still need to be made in expression and crystallization
techniques if projects such as these are to achieve their full potential.

A review of 15 hypothetical proteins of known structure and their functional
assignment (Teichmann, Murzin, and chothia, 2001) gives some idea of the quality
of functional assignments that can be made from structure. For each of the proteins,
functional information was inferred by researchers from structural similarity to pro-
teins of known structure and function. The extent of functional similarity was assessed
by the extent of conservation of functional site residues. The structure and sequences
of homologues of known function was used to find surface cavities/grooves in which
conserved residues indicated an active site. Bound cofactors in the structure also pro-
vided functional information. This information, combined with experimental work, was
assessed according to the depth of functional information that could be obtained. For
the 15 proteins, detailed functional information was obtained for a quarter of them.
For another half, some functional information was obtained, and for another quarter,
no functional information could be obtained. This suggests that analysis of proteins of
known structure but unknown function is often able to yield basic functional informa-
tion, which can then be verified and built on using experimental techniques. It is much
more difficult to assign detailed function to a hypothetical protein of known structure.

Specific Examples of Functional Assignment from Structure

Mj0577—Putative Atp Molecular Switch. Mj0577 is an open reading frame
(ORF) of previously unknown function from Methanococcus jannaschii. Its structure
was determined at 1.7 Å (Fig. 19.7a) (Zarembinski et al., 1998). The structure contains
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(a) M. jannaschii Mj0577 ATPase

(b) E. coli YcaC gene product-putative hydrolase

(c) Archaeal inositol -monophosphatase with
fructose-1,6-bisphosphatase activity

Figure 19.7. Prediction of function in earnest: Three structures solved in the absence of func-

tional information. (a) Putative archaeal ATPase molecular switch; (b) putative bacterial hydrolase;

(c) bifunctional archaeal inositol monophosphatase/fructose-1,6-bisphosphatase.

a bound ATP molecule, picked up from the E. coli host. The presence of bound ATP
led to the proposition that Mj0577 is either an ATPase, or an ATP-binding molecular
switch. Further experimental work showed that Mj0577 cannot hydrolyze ATP by itself,
and can only do so in the presence of M. jannaschii crude cell extract. Therefore, it is
more likely to act as a molecular switch, in a process analogous to ras-GTP hydrolysis
in the presence of GTPase activating protein.

YcaC—A Bacterial Hydrolase. YcaC is a 621bp ORF found in E. coli. Its gene
product was previously uncharacterized and had no assigned function. The structure
of the YcaC gene product (YcaCgp) was determined at 1.8 Å (Fig. 19.7b) and was
shown to form an octameric complex (Colovos, Casico, and Yeates, 1998). Structural
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comparisons showed it to be closely homologous to carbamoylsarcosine aminohydro-
lase (CSHase), a bacterial hydrolase. However, the sequence identity between the two
proteins was only 20%. The catalytic residues of YcaCgp were predicted by homology
to those of CSHase. However, other aspects of its function are unknown and remain
to be elucidated.

IMPase—A Bifunctional Protein. Fructose-1,6-bisphosphatase (FBPase) was
not found in the gene sequence of M. jannaschii, in spite of the fact that experi-
ments show FBPase activity in crude cell extracts of this organism. However, inositol
monophosphotase (IMPase) is present. IMPase is a distant relative of FBPase. Struc-
tural determination and analysis of this enzyme (Fig. 19.7c), showed that one of
its loops has the same conformation as the catalytic metal-binding loop of FBPase
(Johnson et al., 2001), and it has been shown that IMPase exhibits both IMPase and
FBPase activity.

CONCLUSION

We have seen in this chapter that structure–function relationships are key to under-
standing in molecular terms how a protein works. Structural data can complement
experimental work, for example, if it is known from biochemical experiments that a
particular protein of interest binds ATP, the structure of the protein complexed with
an analogue of ATP will reveal exactly where ATP binds. It will also identify the
residues on the protein that might stabilize the interaction between ligand and pro-
tein, and the potential structural consequences of ligand binding. Structural data can
also guide experimental work in eliciting the function of a protein. For example, if
one can infer from structural homology that a particular protein is a hydrolase with a
nucleotide-binding domain, one can carry out experiments to confirm this and identify
possible substrates with some idea of in which direction to proceed.

As structural genomics projects progress, determining protein function from struc-
ture with no prior knowledge of the function will become increasingly important, as
will the development of new methods to implement this determination. At the moment,
one can readily obtain basic functional information using the methods described in this
chapter. It is rare to obtain detailed functional information, but this may become more
common as the wealth of information in the databases is increased.

Care must be taken in functionally annotating proteins that are distantly related,
in order to maintain accuracy in the databases. Ultimately, experiments will be needed
to knock out or inhibit the protein function to be sure of its biological role.
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PREDICTION OF PROTEIN–PROTEIN
INTERACTIONS FROM EVOLUTIONARY

INFORMATION
Alfonso Valencia and Florencio Pazos

The more we know about the molecular biology of the cell, the more we see genes
and proteins as part of networks or pathways instead of as isolated entities, and their
function as a variable dependent of the cellular context and not only of the individ-
ual properties.

Genomic information can be seen as the first catalog of building blocks for the
challenging task of understanding the functions of the genes and proteins within their
situation in networks and pathways. Protein interactions are a first key step in this
direction, even if other complex genetic regulatory mechanisms and issues related
with the genetic specificity (cell-type specificity, individual differences, etc.) also will
have to be addressed in the future.

The theoretical study of protein interactions has two aspects: the prediction of the
residues or regions implicated in the interaction and the prediction of interaction part-
ners (which protein interacts with which one). These two problems typically have been
addressed by biophysical and biochemical techniques, such as binding studies (chro-
matographic isolation of complexes, co-immunoprecipitation, protection, cross-linking
studies, etc.) and indirect genetic methods (gene suppression studies, systematic muta-
genesis and interspecies exchanges). The development of genomic and postgenomic
technologies has changed the panorama considerably, with the possibility of obtaining
a massive amount of data about protein interactions faster and more systematically.
Progress has been done in the automation of experimental approaches such as yeast-
two-hybrid based methods, and mass spectrometry determination of components of
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macromolecular complexes. At the same time a number of new bioinformatics tech-
niques have been developed based on the considerable amount of information about
sequences and genomes that is being accumulated in databases. In this chapter we
review the status of the bioinformatics approaches to the study of protein interactions.

EVOLUTIONARY FEATURES RELATED WITH STRUCTURE
AND FUNCTION

Multiple sequence alignments are rich sources of evolutionary information. Looking
at the mutational behavior of the positions, a lot of information about protein structure
and function can be extracted (Fig. 20.1).

Conservation

The information most widely extracted from multiple sequence alignments are the
conserved positions (Zuckerandl and Pauling, 1963). These invariable positions are
interpreted as important residues for the structure or function of the protein since
no changes where allowed on them during evolution. Conserved positions usually
are located in structural cores (structural importance) and active sites (functional
importance). Some authors have studied the relation between binding sites, conserved
positions, and type of amino acid in those positions (Ouzounis et al., 1998; Villar and
Kauvar, 1994).

Conserved

Tree Determinant

Correlated Mutation

Figure 20.1. Sequence features related with structure and function extracted from multiple

sequence alignments.
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Family-Dependent Conservation (Tree Determinants)

There is a more subtle kind of conservation, the family-dependent conservation. These
type of residues are called tree determinants. These positions are conserved in the
subfamilies that form well-defined branches of the phylogenetic tree and are different
in the chemical type of the amino acids that characterize each subfamilies, hence, they
would contain key information for determining the structure of the phylogenetic tree
of the family, and would be most likely be related with the specific features of each
subfamily, that is, differential binding to other proteins and substrates.

One of the first approaches to the prediction of these kinds of functional residues,
implemented in the sequencespace program was developed by Casari, Sander, and
Valencia (1995) and was later followed by other similar methods (Lichtarge, Bourne,
and Cohen, 1996; Andrade et al., 1997). The underlying principle in all these meth-
ods is the detection of positions in multiple sequence alignments characteristic of
the different groups of sequences that form part of a larger protein family. In those
works, the relation between the tree-determinant residues and functional residues is
discussed for some protein families. Only recently, with the availability of more pro-
tein sequences and structures, has it been possible to test systemically the implication
of tree-determinant residues in the formation of functional sites in a large enough
collection of known protein structures (del Sol, Pazos, and Valencia, 2002).

Coevolution (Correlated Mutations)

Another sequence-based approach for the prediction of protein structure and molecular
complexes is based on the detection of correlated mutations in multiple sequence align-
ments and their use as distance constraints between residues belonging to the same or
different proteins. Correlated mutations correspond to pairs of positions with a clear
pattern of covariation. The underlying evolutionary model for explaining their relation
with space neighboring is related with the covarion model, and assumes that part of
the detected correlated pairs correspond to compensatory mutations, where in partic-
ular sequences of the multiple sequence alignments the mutation of one residue was
compensated along the evolution by a mutation of a neighbor residue (Fig. 20.2), most
likely to keep proteins (or protein complexes) in permissible limits of protein stability.

The method proposed in 1994 (Göbel et al., 1994) was a weak predictor of proxim-
ity between residues in protein structures. Later this accuracy of correlated mutations in
predicting residue contacts was improved, combining them with other sequence-based
features, such as conservation or hydrophobicity (Olmea and Valencia, 1997; Pazos,
Olmea, and Valencia, 1997b). In spite of the low accuracy, these predicted contacts
have been demonstrated to be very useful, for example, in filtering structural models
(Olmea, Rost, and Valencia, 1999) or driving ab initio simulations (Ortiz et al., 1999).

PREDICTION OF INTERACTING REGIONS

Structure-Based Methods (Physical Docking)

The problem of determining the physical structure of protein complexes when the
structure of the members is known is part of the problem of docking molecules, such as
proteins with small molecules (Chapter 22). Despite the considerable efforts that have
gone into solving this problem, directed at the design of new drugs, the solutions in the
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Figure 20.2. Hypothesis for explaining the relation found between correlated mutations and

space neighboring.

case of protein–protein interaction are still far from optimal. The basic problem is that
the interaction surfaces have few differential characteristics that can be captured with
statistical methods, and are almost statistically indistinguishable from other surfaces
(see Lo Conte, Chothia, and Janin, 1999; Jones and Thornton, 1997).

Despite these difficulties various groups have achieved considerable progress in the
development of physical docking programs. Most of the current approaches consider
proteins as rigid bodies and have the physical matching of the surfaces as their main
guide. Only a few packages integrate conformational flexibility, allowing the interacting
surfaces to adapt one to the other, normally at the expenses of reducing the search space
for possible interacting surfaces. Some programs take into account other features for
predicting regions of interaction, such as hydrophobicity or electrostatics (Chapter 21).

For reviews about docking see Lengaguer and Rarey (1996), Halperin, Ma, Wolf-
son, Nussinov (2002), Smith, Sternberg (2002), where different programs are com-
pared, and Chapters 21 and 22. An interesting effort to compare the various protein
docking approaches in a blind test is organized by J. Janin and colleagues (CAPRI:
http://capri.ebi.ac.uk/). The results of this experiment, if enough structures of protein
complexes become available for the comparison, will be important for updating our
view of the capability of current docking methods, a pressing question now that the
structural genomics efforts are on the way to solve a substantially larger number of
isolated proteins and protein domains (Chapter 29).
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Sequence-Based Methods

Tree-Determinant Residues. The relation between tree-determinant residues
(see Family-Dependent Conservation above) and interacting surfaces has been ana-
lyzed in detail in a few well-characterized systems (Casari, Sander, and Valencia, 1995;
Lichtarge, Bourne, and Cohen, 1996; Pazos et al., 1997c; Atrian et al., 1997; Caffrey,
O’Neill, and Shields, 2000; Pereira-Leal and Seabra, 2001). Of more importance, it
has been demonstrated by direct experiments how exchanging tree-determinant residues
between protein subfamilies switch the specificity of interaction of the corresponding
proteins. This has been the case of two separate studies on different proteins of the ras
family of small GTPases (Stenmark et al., 1994; Azuma et al., 1999). In Figure 20.3,
the tree-determinant residues extracted from the multiple sequence alignments of Ran
and Rcc1 are marked in the structure of the complex formed by these two proteins. It
can be seem that many of these residues, predicted from sequence information alone
and before the structure of the complex was solved, map in the interaction surface,
especially in Rcc1.

Correlated Mutations. Interprotein correlated mutations can point to the
residues and regions implicated in the interaction between the two proteins. In spite
of the weak power of correlated mutations in predicting residue neighboring, it was
demonstrated (Pazos et al., 1997a) that it is enough to predict the tendency of pairs of
residues to be part of the interacting surface in interacting proteins.

The advantage of correlated mutations is their independence of the structural infor-
mation, which opens the possibility of predicting interprotein neighbor residues when
only the protein sequences are known. A related advantage is their independence
of structural features such as conformational changes between the free and bound
forms, a problem for physical docking programs. Figure 20.4 shows how correlated
mutations were used to predict the interaction between the two structural domains
of the chaperon DnaK in the absence of structural information. The structure of the
two domains of the protein DnaK has now been solved independently. In this case
correlated mutations were used to predict pairs of residues of both domains with a
tendency to be closer in the structure of the complex (continuous lines). Most of the
predicted pairs correspond to possible contacts between the upper subdomain of the
Nt domain and two loops of the Ct domain. These two loops, far apart in sequence,
are close in the three-dimensional (3D) structure of the Ct domain (Fig. 20.4, right).
Even if this way of interaction is still a model which has not been confirmed yet,
a number of experimental details fit well with it, including the close interaction
between the ATP-binding sites on the Nt domain and the peptide-binding cleft on
the Ct domain.

Hybrid Methods

Some methods use both structure and sequence information to predict interaction sur-
faces. Correlated mutations can be used to predict interaction regions in combination
with structural information, although they can work without that information as dis-
cussed previously (Correlated Mutations) and that is their real advantage. In the case of
protein complexes where the structure of the two members is known, the information
about correlated mutations can be interpreted as distance restraints used for filtering a
set of complexes looking for the real one. This set of complexes can be obtained from
a docking program, or generated by moving and rotating the two molecules to get all
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Figure 20.3. Complex between Ran (upper chain) and Rcc1 (lower chain) marking the

tree-determinant residues (in spacefill) for the two proteins. Protein Data Bank code of the

complex: 1i2m. Tree-determinant residues were calculated with the sequencespace algorithm

(Casari, Sander, and Valencia, 1995). Figure courtesy of J. A. Garcı́a-Ranea.

possible arrangements between them. In Figure 20.5 a number of artificial complexes
between the two chains of hemoglobin are constructed and plotted according with their
structural similarity with the real complex (rms: root mean square), and the closeness
of interprotein correlated mutations (Xd ) in that conformation. It can be seen that most
of the artificial complexes have Xd values lower than the real one, that is, the correlated
pairs tend to be closer in the real complex than in any other one.
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Figure 20.4. Prediction of a the interaction between two domains of DnaK with information

about correlated mutations without using structural information. Left panel: 3D structure of the

Nt domain, supersecondary structure of the Ct domain, and interdomain correlated mutations

predicting the interaction regions. Right panel: 3D structure of the Ct domain, solved later,

marking the two loops predicted to interact with the Nt domain.

Recent publications (Zhou and Shan, 2001; Fariselli et al., 2002) have shown
that it is possible to train neural networks with structural and sequence information
to predict protein–protein binding surfaces. These two methods use the structure of
a protein to define surface patches of neighbor residues and the multiple sequence
alignment to obtain the sequence profile for the members of the patch. A neural
network is trained with that information coming from proteins with known inter-
action surfaces. After the training process, surface patches (plus sequence profiles)
of proteins with known structure but unknown interaction surface are presented to
the network, and it predicts whether or not that patch is implicated in the interac-
tion. The accuracy of these methods is higher than 70% (two-state, interaction surface
or not).
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Figure 20.5. Selection among docking models using interprotein correlated mutations as dis-

tance constraints. Each dot represents a different structural complex between the two chains

of hemoglobin (α and β) produced by a docking program. The rms value (X axis) represents

the structural difference between that complex and the real structure (right). The Xd value (Y

axis; Pazos et al., 1997a) represents the closeness between the interprotein correlated pairs in

that complex. The Xd value of the real complex (rms = 0) is marked with a horizontal line. The

structure of the real hemoglobin α/β complex is represented on the right showing the correlated

residues between the two chains.

PREDICTION OF INTERACTION PARTNERS

Experimental Approaches and High-Throughput Applications

The experimental approaches for the determination of interaction partners has under-
gone dramatic improvement since the late 1980s, particularly through the systematic
application of different strategies based on the yeast-two-hybrid protocol (Fields and
Song, 1989) scanning for all the interacting pairs of proteins in the complete proteome
of an organism, like in yeast (Ito et al., 2000; Uetz et al., 2000) or H. pylori (Rain et al.,
2001). Other proteomic techniques, such as mass spectrometry (Gavin et al., 2002) or
surface plasmon resonance, are also being used for obtaining the full “interactome”
(see Supplement to Trends in Biotechnology, Vol. 19, 2001 for a review). Even if the
accuracy of the different experimental approaches is still controversial, and there is a
surprising lack of overlap of some of the interacting maps produced (Legrain, Wojcik,
and Gauthier, 2001), it is also obvious that in a very short time we will have available
large collections of pair-wise interactions with attached confidence values.

Databases and Collections of Interacting Proteins

To reduce the problem posed by the lack of standard large collections of interacting pro-
teins, a number of initiatives are underway for the construction of interaction databases.

• SPIN-PP collects complexes of proteins of known structure, and the analy-
sis of the physicochemical characteristics of their interfaces (http://trantor.bioc.
columbia.edu./cgi-bin/SPIN/).
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• MIPS contains a large collection of loosely annotated interactions between yeast
proteins (http://www.mips.biochem.mpg.de/proj/yeast/tables/interaction/).

• ProNet stores interactions between human proteins (http://pronet.doubletwist.
com).

• DIP contains different types of interacting proteins annotated and linked to orig-
inal references (http://www.ampere.doe-mbi.ucla.edu:8801/dip.html).

• BIND contains interactions involving not only proteins but nucleic acids and
small molecules as well. A lot of information about the interaction is included,
such as conformational changes, pathway where the interaction is included, and
so forth (http://www.bind.ca).

Complementary to these efforts some groups are developing data-mining
approaches directed at the automatic extraction of known interactions from literature
sources (Blaschke et al., 1999; Frieman et al., 2001; Thomas et al., 2000).

For example, the Suiseki system (Blaschke et al., 1999) is designed to first auto-
matically extract protein and gene names and use them to search for typical grammatical
constructions indicating interactions (e.g., “proteinA binds proteinB”). Even if prob-
lems such as the detection of protein names, the implicit information used in the
construction of sentences, and the directionality of the interactions are still far from
solved, the current implementation of Suiseki is able to extract highly scoring inter-
actions (well represented in the text corpus and phrased in grammatical construction
well characterized by the system) with less than 20% errors. An error rate that makes
the results of practical utility for researchers in the field, but not yet for the completely
automatic construction of interaction databases.

Computational Methods Based on Genomic Information

In parallel to the exciting experimental approaches for the detection of interacting
pairs of proteins, a number of bioinformatic techniques are also being developed. This
first generation of methods has focused on the more general problem of predicting
sets of functionally related proteins, instead of predicting physically interacting pro-
teins; for example, predicting proteins that form part of a signaling pathway but not
the order of the interactions in the pathway. The three main genomic approaches in
the direction of predicting functional interactions are shown in the upper panel of
Figure 20.6.

Phylogenetic Profiles. This method is based on the detection of genes that
have a similar specie distribution, that is, they are present/absent in the same species
(Fig. 20.6a; Pellegrini et al., 1999; Gaasterland and Ragan, 1998). The hypothesis
behind this approach is that the corresponding proteins are functionally related since
their distribution seems to indicate that one protein cannot work without the other.
Even if there are a number of complex cases that would not fit with this schema, for
example, multidomain proteins, the idea is powerful enough for detecting an interesting
number of potential functional relations.

Conservation of Gene Neighboring. These methods are based on the conser-
vation of the proximity of genes along the genome between distantly related species to
predict interaction (Fig. 20.6b; Dandekar et al., 1998; Overbeek et al., 1999). A typi-
cal example would be proteins coded by genes of a conserved operon that, if present
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together in different bacteria, would be proposed as components of a functional mecha-
nism related with the activity of that operon. In a previous publication, Tamames et al.
(1997) demonstrated that pairs of genes belonging to the same functional class tend to
be neighbors in genomes.

Gene Fusion. A third group of methods is related to the presence of fused genes
in various genomes (Marcotte et al., 1999; Enright et al., 1999). In this case, if two
proteins are coded by two independent genes in some organisms, and by a single
gene in other organisms (Fig. 20.6c), it is logical to conclude that the two proteins, as
independent entities or as domains of the same protein, would be functionally related.
Tsoka and Ouzounis (2000) have extended this observation to demonstrate that this is
the case for many metabolic proteins.

Computational Methods Based on Sequence Information

The methods discussed above do not use the information contained in the sequences
of the proteins to predict interaction partners; they use just genomic features (gene
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presence/absence, gene position). Recently, two independent bioinformatics methods
have emerged that address the problem of predicting interactions based on evolutionary
information derived from sequence (Fig. 20.6, lower panel).

Correlated Mutations (i2h). The first method is based on the idea of correlated
mutations, which were discussed earlier. In this case, the prediction of interacting
regions is extended to the detection of interacting partners in large collections of
alternatives (Pazos and Valencia, 2002).

The multiple sequence alignments of two proteins are reduced, leaving only com-
mon species (Fig. 20.6d) and correlated mutations are calculated for three types of
pairs: internal to one of the proteins, internal to the other, and interprotein pairs. Based
on the distribution of correlation values for these three sets of pairs, an interaction index
is calculated for these two proteins (Fig. 20.6d). A clear relation was found between
high values of that interaction index and real interacting pairs of proteins (Pazos and
Valencia, 2002).

Similarity of Phylogenetic Trees (mirrortree). The second method is based
on the similarity of phylogenetic trees of interacting or functionally related proteins.
That similarity was qualitatively observed in sporadic cases such as insulin and insulin-
receptors (Fryxell, 1996) or dockerins/cohesins (Pages et al., 1997) and first quantified
for two proteins by Goh et al. (2000). Pazos and Valencia (2001) statistically demon-
strated the relation between the similarity of phylogenetic trees and interaction in large
sets of interacting proteins. The hypothesis behind this relationship is that interacting
proteins would be subject to a process of coevolution that would be translated into a
stronger than expected similarity between their phylogenetic trees.

The fist step in the mirrortree method is the same as in i2h, that is, the reduction
of the alignments of the two proteins, leaving only common species. Then, a matrix
containing the distances between all the proteins in the alignment is constructed for
both proteins (Fig. 20.6e). These matrices can be considered as representations of the
phylogenetic trees of these two proteins. The similarity between the phylogenetic trees
is indirectly evaluated as the similarity between the two data sets of these matrices,
using a correlation formulation (Pazos and Valencia, 2001).

This method goes one step beyond the phylogenetic profiles method described
above, although both are based on coevolution of interacting proteins. In this case, the
length of the branches and the structure of the trees are taken into account, whereas in
the phylogenetic profiles method, only the pattern of presence/absence (leaves of the
trees) is considered.

These two sequence-based approaches were tested in different systems including
a large set of two domain proteins, in which the domains are treated as indepen-
dent proteins, various collections of proteins previously published to interact, and in a
genome-wise collections of alignments. In all the cases both methods were able to pre-
dict a relevant number of interactions with a clear concentration of known interactions
among the top scoring pairs.

As an example, Figure 20.7 shows the results obtained applying the mirrortree
system to a set of proteins reported to interact by Dandekar et al. (1998). It was
possible to calculate 244 pairs where 8 pairs of known interaction and 8 pairs of
possible interaction (pairs of ribosomal proteins) were included. True and possible
interactions are clustered at high mirrortree scores, whereas the bulk of noninteracting
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pairs falls at low scores. There are some false positives and negatives. The pair of
noninteracting proteins with highest score is the one formed by the chaperonin GroEl
and the ribosomal protein S12.

The disadvantage of both methods is the need of big multiple sequence alignments
for the two proteins to evaluate, since only sequences from common species can be
used for the calculations (Fig. 20.6d and 20.6e). This problem can be alleviated in the
future with the continuous stream of complete genome sequences.

THE FUTURE

In the near future we will see a combination of results from the new powerful exper-
imental techniques (yeast two hybrid, mass spectrometry and others), the new bioin-
formatics approaches for the prediction of interacting partners, the systematic docking
studies applied to the structures obtained from structural genomics projects, perhaps
with the help of the sequence-based approaches (correlated mutations and tree determi-
nants), the relations established between genes with similar expression patterns in DNA
array experiments, and the systematic mining of available information about protein
interactions in databases and literature repositories (Fig. 20.8). With all this informa-
tion in hand we will quickly approach a situation in which, for simple model systems
(yeast and bacteria), it will be possible for the first time to glimpse the structure of the
complex network of protein interactions that govern cell life.
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We have already seen how many new interactions will point to unknown func-
tional and structural relations far beyond what we know from current biochemistry and
molecular biology. The promise is that this information will lead not only to a better
understanding of cell function, but also to better ways of manipulating cell function
with new and more specialized drugs designed specifically for that purpose.
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ELECTROSTATIC INTERACTIONS
Nathan A. Baker and J. Andrew McCammon

An understanding of electrostatic interactions is essential for the full development of
structural bioinformatics. The structures of proteins and other biopolymers are being
determined at an increasing rate through structural genomics and other efforts. Specific
linkages of these biopolymers in cellular pathways or supramolecular assemblages are
being detected by genetic and other experimental efforts. To integrate this informa-
tion in physical models for drug discovery or other applications requires the ability to
evaluate the energetic interactions within and among biopolymers. Among the various
components of molecular energetics, the electrostatic interactions are of special impor-
tance due to the long range of these interactions and the substantial charges of typical
components of biopolymers. Indeed, electrostatics can be used to help assign biopoly-
mers such as proteins to functional families, since particular kinds of ligand-binding
sites may be indicated by the spatial distribution of the charges in the proteins.

We provide a brief overview of the role of electrostatics in biopolymers and
supramolecular assemblages, and then outline some of the methods that have been
developed for analyzing electrostatic interactions.

OVERVIEW OF FUNCTIONAL ROLES OF ELECTROSTATICS

Electrostatic interactions help to determine the structure and flexibility of biopolymers,
and the strength and kinetics of their associations with small molecules, other biopoly-
mers, and biological membranes. Such interactions are of key importance for nucleic
acids, since each nucleotide subunit carries a negative charge on its phosphate group.
But proteins are also rich in charged groups, and the cumulative contributions to the
electrostatic potential of a protein from its dipolar groups (such as the peptide linkages)
can be substantial.
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In physiological settings, biopolymers are typically immersed in a solution com-
prising water and small, diffusible ions. The high dielectric coefficient of water, together
with the tendency of diffusible ions to move toward biopolymer charges of opposite
sign, reduces the effective interactions among the biopolymer charges. Nevertheless,
these “solvent-screened” interactions strongly influence biopolymer behavior, espe-
cially within the physiological Debye length of about 1 nm. For biopolymers such
as DNA that have high charge densities, counterions condense near the surface of the
biopolymer. The resulting effective charge of DNA, for example, is about 25% of what
it would be in the absence of condensation.

The general tendencies of charges to prefer a high dielectric environment (due to
favorable free energy of solvation), and of opposite charges to attract, are reflected
in the structures of most globular proteins: charged side chains are typically at the
surface of the protein, and the relatively few buried charges often are salt-bridged
with opposite charges. Similar principles influence the structure and thermodynamics
of protein–protein complex formation. Although the advantage of ion-pairing in the
formation of protein folds or complexes is substantially offset by the disadvantage of
loss of aqueous solvation, the thermodynamic penalty of charge desolvation dictates
that ion-pairing and other favorable electrostatic interactions within or between proteins
are common features of protein structure.

As for kinetics, it has been firmly established that the rates of association of
many biopolymers with one another or with small ligands are greatly increased by
electrostatic steering of the diffusional encounters. This phenomenon is commonly
observed in situations where an evolutionary advantage has likely been conferred by
great speed. Even with the combined dielectric and ionic screening expected in a typical
physiologic (150 mM ionic strength) solution, electrostatic-steering effects can lead to
increases in the rate constant of association by two orders of magnitude.

BRIEF HISTORY

The importance of electrostatic interactions in protein behavior was recognized early in
the twentieth century by Linderstrom-Lang, who introduced a simple spherical model
for protein titration in 1924. In this model, the protein was regarded as impenetra-
ble, and the charges of the acidic and basic groups were treated as being uniformly
distributed on the surface of the protein sphere. Thus, substantial cancellation of
charge occurred, and the work of charging the protein sphere was approximated as
the self-interaction energy of the net charge on the spherical surface. During sub-
sequent decades, more detailed models that retained the approximation of spherical
symmetry were developed. The first model that included discrete locations for the
interacting charges, still located within a spherical body, but now including such fea-
tures as dielectric heterogeneity and a nonzero ionic strength, was presented by Tanford
and Kirkwood in 1957. Such models were used to account for the titration properties
of proteins, the effects of pH and ionic strength on the activity of enzymes, and, as late
as 1981, in work by Flanagan et al., the electrostatic contributions to the energetics of
dimer-tetramer assembly in hemoglobin.

A new era of electrostatic models was ushered in by a 1982 paper in the Journal
of Molecular Biology by Warwicker and Watson. Drawing on the increased knowledge
of the three-dimensional structure of proteins, and especially on increased computer
power, Warwicker and Watson introduced a grid-based, finite-difference approach for
calculating the electrostatic potential of a nonspherical protein. The interior of the
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protein had a dielectric coefficient of 2, and the surrounding solvent had a dielectric
coefficient of 80. This work provided the first hints concerning the possible func-
tional importance of the shaping of the electrostatic potential and its gradient by
the topography of the protein. Zauhar and Morgan introduced a boundary element
approach for the analysis of this model in 1985. An important advance was described
by Klapper et al. in 1986, who allowed for the inclusion of ionic strength effects by
finite-difference solution of the linearized Poisson–Boltzmann equation.

A much simpler approximate model for describing electrostatic contributions to
solvation energies and forces was introduced by Still et al. in 1990. This method is
based on the Born ion, a canonical electrostatics model problem describing the electro-
static potential and solvation energy of a spherical ion (Born, 1920). The generalized
Born method of Still et al. (1990) uses an analytical expression based on the Born
ion model to approximate the electrostatic potential and solvation energy of small
molecules. Although it fails to capture all the details of molecular structure and ion dis-
tributions provided by more rigorous models, such as the Poisson–Boltzmann equation,
it has gained popularity as a very rapid method for evaluating approximate forces and
energies for solvated molecules and continues to be vigorously developed.

The kinetic effects of electrostatics in steering biomolecular encounters are usu-
ally studied in the context of the diffusion equation, since the motions of the solutes
are overdamped. The most detailed such studies make use of the Brownian dynamics
simulation method of Ermak and McCammon (1978), which allows for structure and
flexibility of the biomolecules, and hydrodynamic as well as potential-derived interac-
tions. Rate constants for diffusion-controlled encounters of a protein with other small or
large molecules can be determined by simulating their Brownian motion and analyzing
their trajectories using a procedure introduced by Northrup et al. in 1984.

NEED FOR FASTER METHODS, FOR HIGH-THROUGHPUT,
AND LARGER STRUCTURES

The era of structural bioinformatics has created an urgent need for faster methods
to solve problems in biomolecular electrostatics. As the structures of more proteins
and other biopolymers become available through structural genomics and other initia-
tives, there will be a corresponding need to calculate the physical properties of these
molecules to help assign them to families and functions. The need is even greater
when one considers that any given biopolymer typically acts in concert with many
others. Thus, there are combinatorial factors that increase the number of calculations
that must be done, either to assess the thermodynamics of association of biopolymers,
or—even more dramatically—to model the dynamics of association of such molecules,
for example, with frequent updates of the electrostatic forces in the course of Brownian
dynamics simulations.

An excellent example of the functional analysis of proteins aided by electrostatic
calculations is provided in recent work by Murray and Honig (2002). This work focused
on C2 domains, a large group of sequentially varied but structurally conserved modules
that target the binding of proteins involved in signal transduction, membrane traffick-
ing and fusion, and other cellular activities. Murray and Honig demonstrated that the
targeting of C2 modules is determined in large part by electrostatics. For example,
the membrane-binding face of C2 modules from protein kinase C become positively
charged when the modules coordinate calcium ions, causing a calcium-triggered binding
to negatively charged patches of membrane. By contrast, the corresponding face of C2
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modules from cytosolic phospholipase A2 switch from a negative to neutral character
on coordination of calcium ions; the binding of these ions triggers binding to neutral
membranes, by reducing the unfavorable free energy of dehydration of the charged
face on contact with the membrane. Murry and Honig (2002) show how these princi-
ples can be used to rationalize or predict the binding properties of other C2 modules,
including ones whose structures are based on homology modeling.

The thermodynamics and kinetics of protein–protein association and larger-scale
supramolecular assembly can be analyzed and predicted in many cases with the aid
of electrostatic calculations, supplemented in the kinetics area by simulations of the
diffusional motion of the proteins. Recent reviews of work in this area have been
provided by Elcock, Sept, and McCammon (2001) and by Gabdoulline and Wade
(2001). It has been possible with such calculations to replicate the experimentally
observed rates of association of such protein pairs as barnase–barstar and fasciculin 2-
acetylcholinesterase, including the variations in the rates as functions of ionic strength
and protein mutagenesis. Similar calculations, by Sept and McCammon (2001), have
provided a basis for understanding the nucleation and growth of polar actin filaments.

To handle very large numbers of binding partners or large supramolecular systems
and to improve on the current diffusional encounter simulations by frequent updat-
ing of the electrostatic forces will require faster methods for solving the electrostatic
equations. The remainder of this chapter outlines the corresponding theory and methods
used, and illustrates recent progress in this area.

POISSON–BOLTZMANN THEORY

Although methods such as generalized Born have found uses in several aspects of
structural bioinformatics, we will confine the remainder of this discussion to Pois-
son–Boltzmann types of methods because of their relatively rigorous framework for
inclusion of biomolecular topology and ionic strength effects.

Introduction to the Equation

The canonical expression for the electrostatic potential in a continuum setting is the
Poisson equation

−∇ · ε(x)∇φ(x) = �(x), (21.1)

where ε(x) is a spatially varying dielectric coefficient, φ(x) is the electrostatic poten-
tial, and �(x) is the charge distribution that generates φ(x). The dielectric coefficient
ε(x) typically assumes different values inside the solute and in the bulk solvent to
reflect the relative polarizabilities of the two media. For biomolecules in an aqueous
environment, ε generally is given a value of 2–20 inside the solute and a value of 80
in the solvent. Figure 21.1a shows the traditional definition of ε(x), which includes a
jump discontinuity across the molecular surface while ε(x) changes between the pro-
tein and solvent dielectric values. However, more recent work (see, for example, Im,
Beglov, and Roux, 1988) has proposed smoother definitions for ε(x) to reduce artifacts
arising from the rapidly changing coefficient.

Likewise, the charge distribution �(x) has typically been given a very discon-
tinuous definition, which can pose numerical difficulties for solution of the Poisson
equation. In the absence of mobile counterions, �(x) is often treated as a collection of
Dirac delta functions that model the Nf atomic partial charges of the solute:
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(a) (b)

Figure 21.1. Popular definitions of the PBE coefficients. (a) The molecular surface (solid black

line) often used to define the dielectric coefficient ε(x). This surface can be constructed by rolling

solvent probes (small hatched circles) over the macromolecule (large white spheres). Gray regions

show areas outside the atomic volume that are treated as inside the molecular surface. (b) The

ion-accessible volume is the region outside the solid black line. This volume is defined as the

region of space accessible to ion probe spheres (hashed circles).

�(x) = �f (x) = 4πe2
c β

Nf∑

i

ziδ(x− xi ), (21.2)

where ec is the electron charge, β = 1/(kBT ) is the inverse thermal energy, kB is the
Boltzmann constant, T is the temperature, zi are the magnitudes of the atomic partial
charges (in units of ec), and xi are the partial charge positions. The Dirac delta func-
tion is a point distribution function with the property

∫
f (x)δ(y − x) dx = f (y). The

collection of constants scaling the delta functions implicitly assumes a dimensionless
φ(x) = ecβ�(x), where �(x) is the electrostatic potential with the desired units.

The Poisson–Boltzmann equation (PBE) is a variant of the Poisson equation where
mobile counterion charges are introduced to the charge distribution function in a mean
field fashion, �(x) = �f (x)+ �m(x), where �m(x) denotes the mobile charge distri-
bution. Mean field, or Debye–Hückel, electrolyte theory describes the distribution of
each counterion species i as ρi(x) = ρie

−ziφ(x)−Vi(x), where ρi is the bulk concentra-
tion of species i, ziφ(x) is the (dimensionless) energy of placing a counterion with
partial charge zi at position x in the potential φ(x), and Vi(x) is a (dimensionless) steric
energy function that prevents mobile charges from entering the interior of the solute.
This representation allows the mobile charge distribution function for Nm counterion
species to be written as

�m(x) = 4πe2
c β

Nm∑

i

ziρi(x) = 4πe2
c β

Nm∑

i

ziρie
−ziφ(x)−Vi(x). (21.3)
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In the case of a 1 : 1 monovalent ion distribution where V1 = V2, equation (21.3) can
be simplified to �m(x) = −κ2(x) sinhφ(x), where sinh x = (ex − e−x)/2 was used
and the coefficient is defined as κ2(x) = εse−V (x)κ2. Here κ is the Debye–Hückel
parameter, defined for a general Nm-component electrolyte solution as κ =(

4πe2
c β/εs

∑Nm

i ρiz
2
i

)1/2
, where εs is the dielectric constant of the bulk solvent. As

illustrated in Figure 21.1b, the function e−Vi(x) is usually treated as a discontinuous
characteristic function that is unity within a ion-accessible volume (typically slightly
larger than the protein volume) and zero otherwise. The PBE for a 1 : 1 monovalent
electrolyte is therefore

−∇ · ε(x)∇φ(x) + κ2 sinhφ(x) = 4πe2
c β

Nf∑

i

ziδ(x− xi ). (21.4)

For sufficiently small values of φ(x), the approximation sinhφ(x) ∼ φ(x) is often
applied to this equation to give the linearized PBE:

−∇ · ε(x)∇φ(x) + κ2(x)φ(x) = 4πe2
c β

Nf∑

i

ziδ(x− xi ). (21.5)

All of these equations are solved in conjunction with a Dirichlet condition, which
specifies the value of potential at the boundary of some domain. For a sufficiently
large domain, this condition is typically zero or some asymptotic form of the solution,
such as the Debye–Hückel potential.

The PBE can also be derived from statistical mechanics using a continuum repre-
sentation of the solvent dielectric properties (see, for example, Netz and Orland, 2000).
While such treatments are too complicated to present here, one important aspect of
these derivations is the development of a free energy expression for electrostatic inter-
actions and the construction of the PBE as the “saddle-point” equation for the potential
that minimizes this free energy.

Energies

As discussed above, the PBE defines an electrostatic energy that can be derived from
physical chemistry arguments (Sharp and Honig, 1990) or field theory saddle-point
approximations. The free energy is a function of the electrostatic potential as well as
the atomic positions, charges, and radii. For a 1 : 1 monovalent electrolyte, this function
has the form

G =
∫ [

�f φ − ε

2
(∇φ)2 − κ2(coshφ − 1)

]
dx. (21.6)

The first term
∫
�f φ dx is the energy of inserting the protein charges into the electro-

static potential and can be interpreted as the energy of interaction for the fixed charges.
The second term −∫ ε(∇φ)2/2 dx represents electrostatic stresses in the dielectric
medium. Finally, the third term includes the effects of the mobile charge configuration
and can be interpreted in terms of the excess osmotic pressure of the system. The
subtraction of unity from the exponential in this term makes this an excess osmotic
pressure and is necessary to cause the energy to vanish in the absence of a poten-
tial. Like the PBE, this energy expression can be linearized (see 21.5) for sufficiently
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small φ by assuming coshφ ∼ 1+ φ2/2. This linearized form of the energy leads
to an additional simplification; Gauss’ Law allows the second term to be rewritten
−∫ ε(∇φ)2/2 dx = ∫ φ/2∇ · ε∇φ dx and gives two equivalent free energy expressions

G = 1

2

∫
�f φ dx = 1

2

∫
[ε(∇φ)2 + κ2φ2] dx. (21.7)

These free energy expressions can be used for a variety of static calculations
on biomolecules, including the determination of binding constants, pKas, and
solvation energies. These calculations are typically performed from a series of
Poisson–Boltzmann energy evaluations that are then analyzed by free energy cycles.
Figure 21.2 shows the specific case of pKa calculations, where the energy of
protonating a functional group in a biomolecule is calculated in a stepwise fashion
by determining the energies of the isolated biomolecule without the functional group,
the isolated functional group in its protonated and unprotonated state, the biomolecule
with the protonated functional group, and the biomolecules with the unprotonated
functional group. These energies are then combined (as shown in Fig. 21.2) to give
the free energy of protonating the functional group in the biomolecular environment,
which can be converted to a pKa value. Similar cycles are used to calculate binding
and solvation energies.

Forces

Poisson–Boltzmann calculations have also found an increasingly important role in force
evaluation for implicit solvent dynamics simulations. In such simulations, the dynamic

HH

13

4

2

Figure 21.2. Titration calculation for a biomolecular functional group. The free energy of

protonating a functional group (ball and stick moiety) in the presence of a biomolecule (gray

object) is calculated by a thermodynamic cycle. Specifically the free energy of interest �G1 is

calculated in terms of the other steps in the cycle:�G1 = �G4 +�G2 −�G3, where�G4 and−�G2

are the energies of inserting the unprotonated and protonated groups into the biomolecule,

respectively, and �G3 is the energy of protonating the isolated functional group.
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trajectory of a solute is calculated without the inclusion of the numerous explicit
solvent molecules required for traditional molecular dynamics simulations. Instead, the
solvent effects are modeled by stochastic forces applied to the biomolecule to mimic
solvent buffeting, damping forces to provide the effect of solvent viscosity, continuum
approximations of apolar interactions, and continuum electrostatics calculations (such
as PBE) to include the effects of implicit solvent and salt on electrostatic forces in
the solute.

To derive forces from the PBE, we simply differentiate the free energy with respect
to atomic positions. As mentioned previously, a potential φ that solves the PBE is a
saddle point of G, that is, ∂G/∂φ = 0. Therefore, the force Fi on atom i can be written
solely in terms of variations in the coefficients with respect to atomic displacements ∂yi

Fi = −
∫ [

φ

(
∂�f

∂yi

)
− 1

2
(∇φ)2

(
∂ε

∂yi

)
− (coshφ − 1)

(
∂κ2

∂yi

)]
dx. (21.8)

The terms of the integrand in this force expression have the same interpretation as
for the free energy. The first term is the force density for atomic displacements in the
potential φ, the second is the dielectric boundary pressure on atom i, and the third is
osmotic pressure on atom i.

The mechanics of evaluating atomic forces from equation (21.8) have been dis-
cussed in detail by Gilson et al. (1993) and Im, Beglov, and Roux (1998). These
authors present excellent reviews of this topic, including the effects of discontinu-
ities in the PBE coefficients ε and κ2 on the methods for force evaluation and the
accuracy of the numerical results.

NUMERICAL SOLUTION OF THE POISSON–BOLTZMANN EQUATION

Very few analytical solutions of the PBE exist for realistic biomolecular geometries
and charge distributions. Therefore, this equation is usually solved numerically by
a variety of computational methods (Table 21.1). These methods typically rely on a
discretization to project the continuous solution down onto a finite-dimensional set of
basis functions. In the case of the linearized PBE (21.5), the resulting equations are
the usual linear matrix-vector equation, which can be solved directly. However, the
nonlinear equations obtained from the full PBE require more specialized techniques,
such as Newton methods, to determine the solution to the discretized algebraic equation.
Specifically, Newton methods start with an initial solution guess and iteratively improve
this guess by solving related linear equations for corrections to the current solution.
Newton methods, as well as other popular methods for solution of nonlinear equations,
have been reviewed by Holst and Saied (1995).

Finite Difference Discretization

Some of the most popular discretization techniques employ Cartesian meshes to subdi-
vide the domain in which the PBE is to be solved. Of these, the finite difference method
has been at the forefront of PBE solvers. In its most general form, the finite difference
method solves the PBE on a nonuniform Cartesian mesh, as shown in Figure 21.3a
for a two-dimensional domain. While Cartesian meshes offer relatively simple prob-
lem setup, they provide little control over how unknowns are placed in the solution
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T A B L E 21.1. Some of the Software That Implements the Concepts Described in This Chapter

Program Description URL

DelPhi Solves the PBE using highly optimized
finite difference methods.

http://trantor.bioc.columbia.edu/
delphi/

APBS Solves the PBE using parallel multigrid
and parallel adaptive finite element
methods.

http://agave.wustl.edu/apbs

MEAD Solves the PBE using finite difference
methods and determines pKa values
while incorporating conformational
flexibility of the macromolecule.

http://www.scripps.edu/bashford/

UHBD Solves the PBE using finite difference
methods, calculates binding and
solvation energies, determines pKa’s,
and performs Brownian dynamics
simulations.

http://mccammon.ucsd.edu/uhbd.html

MacroDox Solves the PBE using finite difference
methods, determines pKa’s, and
performs Brownian dynamics
simulations.

http://pirn.chem.tntech.edu/macrodox.
html

AMBER In addition to providing explicit solvent
simulation tools, this package
implements generalized Born and
PBE-based implicit solvent methods
in both dynamics and free energy
evaluation simulations.

http://www.amber.ucsf.edu/
amber/amber.html

CHARMM In addition to providing explicit solvent
simulation tools, this package
implements generalized Born and
PBE-based implicit solvent methods
in both dynamics and free energy
evaluation simulations.

http://yuri.harvard.edu/

domain. Specifically, as shown by Figure 21.3a, the Cartesian nature of the mesh makes
it impossible to locally increase the accuracy of the solution in a specific region without
increasing the number of unknowns across the entire grid.

Differential operators for problems discretized by finite difference methods are
typically approximated using Taylor expansions. For example, a discretized one-
dimensional Laplacian operator has the form

−∇2u(xi) ≈ −u(xi+1)+ 2u(xi)− u(xi−1)

h2
, (21.9)

where xj denotes the grid point coordinates and h is the mesh spacing. Given vectors
u and f representing the values of the solution and source terms at the grid points, it is
straightforward to develop a matrix form of the problem Au = f, where A is a sparse
symmetric matrix with 2 on the main diagonal, −1 on the first off-diagonal elements,
and 0 elsewhere in the matrix. Discretization of the differential operator for the PBE
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(a) (b)

(d) (e)(c)

Figure 21.3. Meshes and hierarchies used in Poisson–Boltzmann solvers. (a) Cartesian mesh

suitable for finite difference calculations; nonuniform mesh spacing can be used to provide a

limited degree of adaptivity. (b) Finite element mesh exhibiting adaptive refinement. (c) Examples

of typical piecewise linear basis functions used to construct the solution in finite element methods.

(d) The multilevel hierarchy used to solve the PBE for a finite difference discretization; red lines

denote the additional unknowns added at each level of the hierarchy. (e) The multilevel hierarchy

used to solve the PBE for a finite element discretization; red lines denote simplex the subdivisions

used to introduce additional unknowns at each level of the hierarchy.

yields a matrix with a similar sparse symmetric structure, but with more nonzeros
per row.

Adaptive Finite Element Discretization

Unlike finite difference methods, adaptive finite element discretizations offer the ability
to place computational effort in specific regions of the problem domain. Finite element
meshes (see Fig. 21.3b) are composed of simplices that are joined at edges and vertices.
The solution is constructed from piecewise polynomial basis functions (see Fig. 21.3c)
that are associated with mesh vertices and typically are nonzero only over a small set of
neighboring simplices. Solution accuracy can be increased in specific areas by locally
increasing the number of vertices through simplex refinement (subdivision). As shown
in Figure 21.3b, the number of unknowns (vertices) is generally increased only in the
immediate vicinity of the simplex refinement and not throughout the entire problem
domain, as in finite difference methods. This ability to locally increase the solution
resolution is called adaptivity and is the major strength of finite element methods
applied to the PBE (see Holst, Baker, and Wang, 2000).

Typically, the algebraic system is assembled using a Galerkin discretization, where
a weak form of the PBE is imposed for each basis function in the system. Specifically,
the original differential form of the PBE is transformed by integration with a basis
function v to give an integral equation

∫
(ε∇φ · ∇v + κ2v sinhφ − �f v) dx = 0. (21.10)

The algebraic system is implicitly assembled by representing the solution as a linear
combination of finite element basis functions φ =∑i uiψi and imposing the weak PBE
(21.10) using every basis function ψj as test functions. As with the finite difference
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method, this discretization scheme leads to sparse symmetric matrices with a small
number of nonzero entries in each row.

Multilevel Solvers

Multilevel solvers, in conjunction with the Newton methods described above, have
been shown to provide most efficient solution of the algebraic equations obtained by
discretization of the PBE with either finite difference or finite element techniques. Most
sizable algebraic equations are solved by iterative methods that repeatedly apply a set
of operations to improve an initial guess until a solution of the desired accuracy is
reached. However, the speed of traditional iterative methods has been limited by their
inability to quickly reduce low-frequency (long-range) error in the solution. Multilevel
methods overcome this problem by projecting the discretized system onto meshes
(or grids) at multiple resolutions (see Fig. 21.3). The advantage of this multiscale
representation is that the slowly converging low-frequency components of the solution
on the finest mesh are quickly resolved on coarser levels of the system. This gives rise
to a multilevel solver algorithm, where the algebraic system is solved directly on the
coarsest level then used to accelerate solutions on finer levels of the mesh.

As shown in Figure 21.3, the assembly of the multiscale representation, or multi-
level hierarchy, depends on the method used to discretize the PBE. For finite difference
types of methods, the nature of the grid lends itself to the assembly of a hierarchy with
little additional work. In the case of adaptive finite element discretizations, the most
natural multiscale representation is constructed by refinement of an initial mesh that
typically constitutes the coarsest level of the hierarchy.

FUTURE DIRECTIONS

Recent developments in Poisson–Boltzmann solver technology (Baker et al., 2000,
2001; Holst et al., 2000 and Wang, 2000) have extended the applicability of continuum
electrostatics methods to biomolecular systems consisting of hundreds of thousands of
atoms by facilitating solution of the PBE on massively parallel computers. For example,
Figure 21.4 shows the electrostatic potential of a 1.2-million atom microtubule
fragment roughly 400 Å in length. Such large-scale calculations on microtubules and
other cellular components are the starting point for computational investigation into
the molecular aspects of cellular function.

In the future, it should be possible to apply these techniques to help determine
and investigate macromolecular interactions at the cellular scale. Additional research
is likely to focus on the computational evaluation of protein–protein interactions on
a genomewide scale. As increasingly larger numbers of biomolecular structures are
being determined, high-throughput continuum electrostatics methods will facilitate the
development of computational proteomics to determine the network of biomolecular
reactions in living organisms.
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(a)

(b)

(c)

(d)

Figure 21.4. Electrostatic properties of a 1.2-million atom, 400× 300× 300 Å microtubule frag-

ment illustrating the current state of the art for continuum electrostatics calculations. The

potential was calculated using APBS to solve the PBE at 150 mM ionic strength. (a) The backbone

atoms of the microtubule. (b) Electrostatic potential isocontours for microtubule shown at +1.0

and−1.0 kT/e. (c) Potential isocontours (as in B) for so-called ‘‘−’’ end of microtubule. (d) Potential

isocontours (as in B) for so-called ‘‘+’’ end of microtubule. Figure also appears in Color Figure

section.
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PRINCIPLES AND METHODS
OF DOCKING AND LIGAND DESIGN

J. Krumrine, F. Raubacher, N. Brooijmans, and I. Kuntz

Structural bioinformatics can facilitate the discovery, design, and optimization of new
chemical entities. These new chemicals can range from drugs and biological probes
to biomaterials, catalysts, and new macromolecules. Molecular design is important
in fields as diverse as organic chemistry, physical chemistry, chemical engineering,
chemical physics, bioengineering, and molecular biology. No single strategy or method
has come forward that provides an optimum solution to the many different challenges
involved in designing materials with new properties. Our goal in this chapter is to set
forth the general principles that are likely to be of greatest influence in the next several
years and then to focus on structure-based drug design as an example where there has
been enough experience to make a critical evaluation.

What are the essential concepts needed to embark on ligand design? “Ligand”
comes from “ligare” meaning a “band” or “tie.” It is currently used to mean a molecule
(of any size) that binds or interacts with another molecule through noncovalent
forces—that is, the interaction (usually) does not involve chemical bond formation.
The second molecule—the “target” or “receptor”—is typically the larger species.
The resulting molecular complex may contain multiple copies of the ligand and/or
the receptor. There are many physical, chemical, and biological properties of the
complex that will be influenced by changes in the ligand. The nature of the interaction
between ligand and receptor depends on a balance in the chemical/physical forces
between them and the forces between each of these molecules and the solvent or
environment. These forces basically arise from the interaction of electrons and are
studied at the most fundamental level using quantum mechanics (QM). However,
the direct application of quantum theory to molecules of biological interest remains
limited by computational resources for systems larger than a few amino acids. Thus,
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most computational approaches involve significant empirical adjustments and may
lack generality. Nevertheless, a firm comparison between theory and experiment is
possible. Much of the focus of ligand design deals with properties directly connected
to thermodynamics—free energy of binding, solubility in aqueous and nonaqueous
environments, and so forth. Kinetic issues are less often considered, being more
complicated to measure and to calculate, but kinetics clearly plays a major role in many
systems of pharmacological interest such as enzyme catalysis, signaling cascades, and
molecular rearrangements.

Of particular interest to us in this chapter is the free energy of binding, �Gbind,
with its associated components the enthalpy and entropy of binding. The free energy
of binding is defined as:

�Gbind = �Gcomplex − (�Gligand +�Greceptor) (22.1)

�Gbind, defined in this way (for further discussion, see Atkins, 1997), is a function
of the temperature, pressure, ionic strength, pH, solvent, and concentrations of all the
chemical species present. The �G terms on the right hand side of Eq. 22.1 remind us
that absolute free energies are not available experimentally. Instead, the free energy of
a substance under a particular set of conditions is defined as its free energy difference
from a reference state. Ideally, one should carry out both experiments and calculations
under the same reference conditions so that work in different laboratories can be
readily compared. This is rarely done, with consequences that we return to later. For
a review of thermodynamics for chemical and biophysical applications see Atkins
(1997). For direct application of thermodynamic measurements to complex systems
see Plum and Breslauer (1995). The most common measurement for �Gbind is through
the equilibrium constant for the complex:

�Gbind = −RT ln Keq = RT ln Kd (22.2)

where R is the gas constant and T is the absolute temperature in Kelvin. Of course,
this is of great interest in drug design because prediction of Keq is a direct prediction
of ligand affinity. The pharmacological literature frequently reports the dissociation
constant, Kd, which is simply the reciprocal of the equilibrium constant, or the IC50,
the concentration of ligand that achieves a 50% change in the normal activity. The
relationship between IC50 and Ki must be worked out for each system. Simple formulas
are available for enzyme inhibition (Winzor and Sawyer, 1995).

Our goal for this chapter is to summarize the current computational approaches in
the field of structure-based drug design. The object of such efforts is to identify/design
a molecule that will bind with high affinity and specificity to a biological target of
known (or predictable) three-dimensional (3D) structure. Such molecules may need to
be further modified to have other desirable properties such as the appropriate solubility,
the appropriate molecular weight, and proper metabolic characteristics, and so forth (see
ADME below) before one would consider them true “clinical candidates.” The primary
reason for interest in structure-based strategies is the appreciation that knowledge of
the receptor (and ligand) tertiary structures can be tapped either to speed the discovery
process or to enhance the qualities of the ligands. However, it should be clear at the
onset that such knowledge is neither necessary (many drugs have been discovered
with no information about the receptor) nor sufficient (structures of HIV-integrase, for
example, have not yet led to useful drug candidates). Nevertheless, we anticipate that
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the role of structural information and the use of computational tools will become ever
more important in the molecular design process.

METHODS AND TOOLS IN COMPUTER-AIDED MOLECULAR DESIGN

The first challenge for computer-aided design is to identify one or more lead com-
pounds—compounds that show activity in an appropriate assay. Until recently, most
drugs on the market came from lead compounds discovered from the screening of nat-
ural products, insight into fundamental biochemistry, or exploring analogs of known
substrates or ligands. Only in the last few years has it been feasible to expect struc-
tures of the drug target to be available during a drug discovery project. Structures of
many targets, especially membrane-bound proteins, are still in very short supply. Once
discovered, leads must be modified in an iterative cycle (see Figure 22.1) in order to
enhance their potency and selectivity. Moreover, the compound and its metabolites
must be non-toxic and be available at the site of action for a sufficient amount of time.

Computational methods are beginning to play a major role in the process of drug
design involving areas such as virtual screening of combinatorial libraries, 3D structure
determination of target macromolecules and computational design of new or improved
lead compounds.

Virtual Screening of Corporate and
Virtual Libraries-Docking

Lead Compound
Generation

Structure of the
Macromolecular Target

Structure of Lead Compound
Bound to Target

Synthesis of New Compounds
and Combinatorial Libraries

Biochemical Assays to
Evaluate Hits

Computational Design of
Improved Lead Compounds

Computational de novo Design of New Lead Compounds

X-ray, NMR, MS
Protein Biochemistry

Figure 22.1. Docking and de novo drug design cycles.
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Computer-Aided Drug Design

Computational ligand design can be divided into two different strategies: ligand-based
(analog-based) or target-based (structure-based) design that can be used together or
independently. Analog-based design relies on a set of known ligands and is particu-
larly valuable if no structural information about the receptor is available. Hence, it is
generally applicable to all classes of drugs. Target-based design usually starts with the
structure of a receptor site, such as the active site in a protein. This structure can be
generated from direct experimentation or can be deduced from experimental structures
through homology modeling (Al-Lazikani et al., 2001).

Computer-aided drug design (CADD) can call on a broad range of molecular
computational techniques (Leach, 2001). One important approach uses the laws of
classical mechanics to calculate molecular geometries, energies, and motion. Typically,
interactions are described on an atomic level using force fields. Molecular mechanics is
often used to optimize the energy of a molecule by finding the molecular conformation
that gives a minimum energy on the potential energy hypersurface. Molecular dynamics
allows the evolution of the simulated system in time. Newton’s first law is solved
numerically, yielding a trajectory—that is, a collection of closely related “snap shots”
of the simulated molecules. Solvent and counter ions can be considered explicitly. In
a Monte Carlo simulation, the system evolves from one state to another in a stochastic
process satisfying the Boltzmann distribution.

Analog-Based Design. The analog-based approach mainly uses pharmacophore
maps and quantitative structure-activity relationships (QSAR) to identify or modify
a lead in the absence of a known three-dimensional structure of the receptor. It is
necessary to have experimental affinities and molecular properties of a set of active
compounds, for which the chemical structures are known.

PHARMACOPHORES. A pharmacophore is an explicit geometric hypothesis of the
critical features of a ligand (Guener, 2000). Standard features include hydrogen-bond
donors and acceptors, charged groups, and hydrophobic patterns. The hypothesis can
be used to screen databases for compounds and to refine existing leads. For a geo-
metric alignment of the functional groups of the leads, it is necessary to specify the
conformations that individual compounds adopt in their bound state. To construct this
consensus arrangement of pharmacophoric points, a constrained systematic search is
performed with the most rigid molecule first.

Since the simple presence of a pharmacophoric fingerprint is not sufficient for pre-
dicting activity, inactive compounds possessing the required pharmacophoric features
must also be considered. By comparing the volume of the active and the inactive com-
pounds, a common volume can be constructed in order to approximate the shape of the
(unknown) receptor site to further refine the pharmacophore model and to screen out
additional compounds. Each binding mode might require a different pharmacophore
model.

QSAR. The goal of QSAR studies is to predict the activity of new compounds
based solely on their chemical structure. The underlying assumption is that the biolog-
ical activity can be attributed to incremental contributions of the molecular fragments
determining the biological activity. This assumption is called the linear free energy prin-
ciple. Information about the strength of interactions is captured for each compound by,
for example, steric, electronic, and hydrophobic descriptors. One of the earliest QSAR
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linear free energy approaches defined the effect of substituent properties on the ioniza-
tion of benzoic acids leading to the well-known Hammet equation (Hammet, 1970).
These ideas were applied to drug activities by Hansch, Leo, and Hoekman (1995). An
extension of QSAR is the use of additional conformational information for a 3D-QSAR
study Oprea and Waller (1991). The predictive nature of a QSAR approach is limited
to new compounds that are similar to the compounds from the training set. There is
also a risk of chance correlations.

Structure-Based Design. The first step in site-directed drug design (Fig. 22.2) is
the determination of the 3D structure of the target macromolecule, primarily by X-ray
crystallography and NMR spectroscopy or computational methods such as homology
modeling or ab initio methods (see Chapters 25 and 27 in this book).

The negative image of the receptor defines the space available for ligand binding.
There may be many potential binding sites. The actual binding site can be located
by comparison with known protein–ligand complexes or through homology to related
complexes. Mutational data are evaluated, as is simple geometry: the binding site is
often the largest cavity in the protein.

A critical issue is conformational analysis. All except the simplest ligands explore
different geometries as their atoms move under thermal forces. Of interest are the
lowest energy conformations for a particular ligand when it is free in solution and
when it is bound to the receptor. Differences in internal energy enter directly into
the computation of net binding energies. Further, the selection of a small number of
bound conformations from a larger set of available conformations in solution causes
an entropy loss on binding. Finally, conformational analysis is important because the
geometric differences and physical properties can be large for different conformations
of a specific ligand. To obtain 3D structures of multiple low-energy conformations, a
variety of conformational search strategies have been developed (Leach, 1997).

Docking

Scoring

Structure-based Drug Design

3D Structure Determination

Site Representation

Site Identification / Characterization

Ligand Generation

De Novo Design

Figure 22.2. Flow chart of the docking procedure.
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Site-directed ligand generation branches into two main approaches: docking and
building (de novo design). Docking methods search available databases for matches
to an active site, whereas de novo design seeks to generate new ligands by connect-
ing atoms or molecular fragments uniquely chosen for a particular receptor. Docking
is the computational equivalent of high-throughput screening. Given an appropriate
database, compounds are retrieved and are often immediately available for testing. De
novo design can suggest chemically novel ligand classes that are not limited to previ-
ously synthesized compounds. However, one must deal with the question of synthetic
feasibility of the generated compounds.

DOCKING. The aim of molecular docking is to evaluate the feasible binding geome-
tries of a putative ligand with a target whose 3D structure is known. The binding
geometries, often called binding modes or poses include, in principle, both the position-
ing of the ligand relative to the receptor (ligand configuration) and the conformational
state(s) of the ligand and the receptor. The exploration of the configurational and con-
formational space (the sampling) and the energetic evaluation of each discrete geometry
(the scoring) are separable tasks. Docking methods can therefore be evaluated by their
ability to rapidly and accurately dock large numbers of small molecules into the binding
site of a receptor, allowing for a rank ordering in terms of strength of interaction with
a particular receptor. Another concern is the prediction of selectivity toward various
receptors. Therefore, the essential feature of any treatment of ligand-receptor interaction
is the correct estimation of free energy of binding.

There are three basic tasks any docking procedure must accomplish: (1) charac-
terization of the binding site; (2) positioning of the ligand into the binding site (ori-
enting); and (3) evaluating the strength of interaction for a specific ligand-receptor
complex (“scoring”) (see Fig. 22.2). The first two tasks will be discussed in this section;
scoring will be discussed in Flow Charts and Fundamental Problems below. In order
to screen large databases, automated docking is required. Automated searching meth-
ods can be classified into two general approaches: geometric search methods, which
include systematic search grids as well as descriptor matching, and energy search meth-
ods. Matching methods apply heuristic rules for pruning the combinatorial search tree
of matches between ligand and receptor descriptors. An energy search accomplishes
the alignment of the ligands by minimizing the ligand-receptor interaction energy using
Monte Carlo or molecular dynamics simulations or genetic algorithms.

Site Characterization. To characterize the binding site, the DOCK suite of pro-
grams (Ewing et al., 2001; Meng, Shoichet, and Kuntz, 1992) derives a negative image
of the binding site defined by a set of overlapping spheres. Using the sphere centers as
matching points, the ligands are oriented in the binding site. Steric complementarity is
then improved by minimizing the ligand-receptor interaction energy.

FlexX also uses a matching procedure for the placement of an initial ligand
fragment. Triangles of interaction centers in the base fragment are mapped onto tri-
angles of interaction points lying on the surface of the receptor (Rarey, Wefing, and
Lengauer, 1996a).

CLIX (Lawrence and Davis, 1992) utilizes chemical descriptors for receptor site
features. The matching points are energetically favorable sites for certain functional
groups, resulting in a good ligand score when a matching ligand is placed in this region.

For protein–protein docking, improved computational efficiency is obtained by
concentrating on the molecular surfaces for the description of the interacting sites
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between the two proteins. The computational requirements can be further reduced
by using a low-resolution presentation of the surfaces (Vakser, 1995). The atomic
details are then evaluated in a later step. Like chemical descriptors, it is also possi-
ble to map physicochemical properties on these surfaces, such as hydrophobicity or
electrostatic potentials.

Orientation Procedures. If the ligand (or part of the ligand) is assumed to be rigid,
a systematic grid search of the six-dimensional space of the mutual ligand-receptor
orientations is possible. Accuracy is limited by the step size of the search grid and
the time available for the search. To speed up the search process the Fast Fourier
Transform (FFT) can be used (Katchalski-Katzir et al., 1992). The FFT replaces the
convolution of the grids by a much faster multiplication in Fourier space to rapidly
search the orientation space. This method (implemented for instance in FTDock (Gabb,
Jackson, and Sternberg, 1997) is mostly used to dock large structures with significant
geometric complementarity such as two proteins. The protein–protein docking pro-
gram DOT additionally uses convolution products for evaluating the electrostatic and
van der Waals interaction energies of a complex (Mandell et al., 2001). Other meth-
ods for macromolecular docking rely on methods derived from Computer Vision for
discovering known objects in a scene (Sandak, Nussiniov, and Wolfson, 1995).

For efficiency, most methods for docking small molecules adopt a descriptor-
matching approach. Descriptors (points in space that may have properties assigned to
them) of the ligand are superimposed with some tolerance to descriptors (points) of the
binding pocket. Initial matches are then used to orient the whole molecule in the pocket
to generate a reasonable ligand configuration, which may be subsequently refined by
optimization of a suitable scoring function. The ligand and receptor descriptors not only
have to match geometrically but also chemically. Due to the combinatorial character
of matching the search is rarely exhaustive, but is usually sufficient for recovering the
binding geometry.

Energy search methods employ complete molecular force fields for exploring the
configurational energy surface of a ligand interacting with a receptor. By locating
minima on the surface, possible binding configurations are evaluated. The multiple
minima problem often requires long simulation times, limiting energy-based methods
to a small number of ligands per search. Often, ligand flexibility is explored directly
in the search procedure.

Genetic algorithms as implemented in AUTODOCK (Morris et al., 1998) or HAM-
MERHEAD (Welch, Ruppert, and Jain, 1996) allow for a very thorough conformational
search. Limited flexibility can also be included. During each iteration, selective pressure
is applied to encourage high-scoring conformational features to be carried over from the
current to the next generation. Random mutations introduce new microconformations
while crossover steps allow for an exchange of conformational subsets.

In Monte Carlo searches (implemented in FLO98 (Bohacek and McMartin, 1994)
or MCDOCK (Liu and Wang, 1999) either the internal conformation of the ligand
is changed by a random rotation about a bond or the entire molecule is randomly
translated and rotated. The energy of this new configuration is then either accepted or
rejected using the standard Metropolis criterion for accepting or rejecting a move. In
a Tabu search, such as used by PRO LEADS (Baxter et al., 1998), records are kept
of the visited regions in search space, which focus the next moves to a less explored
region in search space. The Mining Minima (David, Luo, and Gilson, 2001) approach
combines a Tabu search with a genetic algorithm. Low-energy conformations of the
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ligand-receptor system are located; subsequently, the minima are locally explored by
gradually narrowing down a random search that is centered around the lowest minima
found so far.

DOCKING FLEXIBLE LIGANDS. In addition to the implicit treatment of ligand flex-
ibility by energy search methods, four basic schemes have been developed to explore
ligand flexibility: pregeneration of rigid conformers, docking rigid fragments, either
independently or interconnected, and incremental growth from a rigid anchor.

The first approach carries out a conformational search of the ligand and then
rigidly docks this pregenerated ensemble of conformers into the receptor. In the sec-
ond method, fragments are docked and later joined to reassemble the ligand. Thirdly,
joined fragments are docked allowing hinge-bending structural movement (Sandak,
Wolfson, and Nussinov, 1998). The last method, using incremental construction (Ewing
and Kuntz, 1997; Kramer et al., 1999), starts with a rigidly docked anchor fragment
followed by a depth-first or breadth-first conformational search inside the binding site
(anchor-and-grow). Such a search can be heavily constrained by the geometry of the
receptor. A concern, however, is that the ligand conformations during the search may
have relatively high internal energies compared with the lowest energy conformers.
Neither approach guarantees complete sampling of the ligand conformational space.
Some implementations of the last two methods have significant overlap with de novo
design strategies. They are also slower than the conformational pregeneration methods.

DE NOVO DESIGN. The central concept of de novo design is the construction of
molecules that have not, necessarily, been synthesized previously. There are three basic
classes of de novo design methods: fragment-positioning methods, fragment-connecting
methods, and sequential-grow methods.

Fragment Placement. Instead of completely building up a new ligand, these meth-
ods determine favorable binding positions for single atoms or small fragments (see
GRID [Goodford, 1985] or MCSS [Miranker and Karplus, 1991] for implementa-
tion). The underlying assumption is that a small number of well-placed fragments will
account for significant binding interaction, while the rest of the molecule serves as a
scaffold that links active fragments together. A clustering of the generated fragment
orientations is usually performed.

The fragments are chosen to capture the basic molecular interactions such as
hydrogen bonding (donor/acceptor) and hydrophobicity, and to optimally represent
the functional groups and structural subunits present in a larger diverse library. The
placement procedure uses either a molecular mechanics force field or a rule-based
approach derived from an analysis of structural databases. Both the fragment connection
method and the anchor-and-grow approach rely on a set of previously placed fragments
as starting points.

Connection Methods. Site point connection methods (as implemented in CLIX
[Lawrence and Davis, 1992] or LUDI [Bohm, 1994]) attempt to place small molecules
in the binding pocket to match site points that provide favorable interactions. The
site points are either derived directly by rules or by previous fragment placement, as
described above.

Fragment connection methods (such as used by CAVEAT [Lauri and Bartlett,
1994], HOOK [Eisen, Wiley, and Karplus, 1994], or PRO LEADS [Baxter et al., 1998])
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retrieve scaffolds from a database in order to connect isolated fragments by overlaying
corresponding bond vectors. A suitable linker provides a compatible geometry for
connecting the critical fragments. The linker itself may be either rigid or flexible. In a
final step, the linker has to be tested for overlap with the receptor.

The large number of available programs using connection strategies reflects the
fact that molecular fragments are a standard tool of chemists.

Sequential Grow. The step-by-step construction of a putative ligand within a bind-
ing pocket is another useful approach for generating new potential leads or optimizing
the functionality of a known inhibitor. First, a seed atom or fragment is placed in the
binding site and then the new ligand is successively built up by bonding additional
structural elements (see LEAPFROG (2001) or GROW [Moon and Howe, 1991]).
Flexibility is introduced by conformational searching and minimization or by random
orientations accepted by Monte Carlo criteria. The building procedure is guided by
scoring the growing ligand at each step. The final results often depend on the selection
of the initial position. Since the selection of each added unit is based on its binding
score, smaller binding ligands are generated compared to fragment joining methods.
A problem is the inherent liability of the growing procedure to combinatorial explo-
sion. Another, less obvious, difficulty is the vastness of chemical space compared with
the (relatively) small number of compounds that are feasible from the standpoint of
synthetic chemistry (Clark, Murray, and Li, 1997).

An extension to the sequential-grow procedures is the connecting/disconnecting
approach (used by DLD [Miranker and Karplus, 1995]). By accounting for bond break-
ing and bond formation, it allows a fine-tuning of the generated ligands beyond the
supplied building units. Chemical mutations can create a more diverse ligand set that
is optimized to fit the particular binding site.

All the de novo methods face a common set of problems. Since the overall shape
of the generated compounds is imposed by the binding site, it is not guaranteed that the
generated conformations of the ligands are energetically optimal. Point charges (used
in force fields) are constantly changing during the building process. Also, as noted,
the synthetic accessibility has to be addressed. Often, the first-generation molecules
tend to have extensive interlinked ring systems, multiple chiral centers, and chemical
instability due to the complexity of incorporating organic chemistry principles into the
generation process. Linking methods have not yet been thoroughly explored.

At present, docking approaches are the methods of choice for new lead discovery
due to the ability to rapidly screen readily available molecules from a database. De
novo methods are suitable to suggest ligand modifications for lead optimization. The
two strategies can be combined in various library design protocols (Murray et al., 1997;
Waszkowycz, Perkin, and Sykes, 2001).

Virtual Library Design. The advent of combinatorial chemistry (Gallop et al.,
1994; Gordon et al., 1994) has stimulated the development of computational screening
of libraries of compounds that, themselves, might either be real or assembled on the
computer. It is possible to make many more compounds computationally than can be
synthesized or screened experimentally. Virtual screening and the use of library design
principles are thus being used to prioritize experimental efforts to make the best use
of chemical and screening resources.

Library design incorporates different strategies depending on the project at hand.
One goal is to provide a diverse set of compounds. Various measures of chemical
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diversity are available (Blaney and Martin, 1997). Alternatively, one can design or
identify molecules that test one or more pharmacophore hypotheses. These methods
often involve an extensive conformational search for each ligand. A third approach is
to use geometrical and chemical features of a known target site to generate putative
scaffolds and substituents. Programs such as CombiDock and CAVEAT are used for
these purposes (Lauri and Bartlett, 1994; Sun et al., 1998). These so-called virtual
combinatorial libraries (Bohm and Stahl, 2000; Leach and Hann, 2000) achieve their
tremendous diversity by attaching all possible combinations from a selected basis set of
substituents to connecting sites on a central scaffold. The substituents are selected from
readily available starting molecules subject to their ability of undergoing a molecular
reaction connecting them to the scaffold.

The advantage of virtual screening over random high-throughput screening is
the generation of directed libraries considering molecular properties that meet cri-
teria required for drug-likeness (see ADME section below) and exhibit specificity for
the selected target. The limiting aspect in designing virtual libraries is the synthetic
accessibility of the products by combinatorial library synthesis techniques.

FLOW CHARTS AND FUNDAMENTAL ISSUES

Complex Basis for Free Energies of Binding

Free Energies and ‘‘Energies’’. The key to successful evaluation of ligand
placement is an accurate (free) energy calculation. The calculation must be compared
to an accurate experiment, ideally under the same conditions.

Experimentally the strength of the interactions between two species can be quanti-
fied by measuring the equilibrium association constant, Ka or the dissociation constant,
Kd (Eq. 22.2). These thermodynamic parameters can be connected to chemical kinetics
through Eq. 22.3,

Ka = kon/koff (22.3)

where kon is the forward rate of the reaction between R and L, at equilibrium, and koff

is the off rate or dissociation rate, at equilibrium.
Computationally, the goal is to estimate the binding free energy, �Gbind, which

is directly related to the experimentally measured Ka as shown in Eqs. 22.2 and 22.4
(below). It is important to note that �Gbind is the difference in the free energy of the
complex and the free energy of its components, the receptor and the ligand. Thus, we
will need to do more than just compute the free energy of the complex in solution as
is illustrated in Figure 22.3.

Physical Principles of Complex Formation. A useful way to consider the
binding free energy is in terms of the changes in enthalpy and entropy on formation
of the complex, as expressed in Eq. 22.4,

�Gbind = �H− T�S (22.4)

Changes in enthalpy arise from alterations in Van der Waals interactions and Coulombic
interactions as the atoms of the complex replace atoms from the solvent on complex
formation. The effects of changes in the internal energy of the receptor and ligand as
their conformational preferences alter on complexation must also be considered. The
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Figure 22.3. Receptor-ligand binding process.

change in entropy on binding reflects differences in translational and rotational degrees
of freedom for the ligand, receptor, and solvent molecules (configurational entropy)
and the loss of conformational and vibrational entropy on binding for the receptor
and ligand.

We now describe the thermodynamics of the binding process in more detail. As is
illustrated in Figure 22.3, before complex formation, the ligand and the active site of
the receptor both make interactions with the solute molecules. The polar and charged
groups on the surface of the unbound receptor and the unbound ligand form hydrogen
bonds with the water molecules in the solvent, and all groups interact through Van
der Waals interactions (see Table 22.1). On complex formation, the receptor binding
site and the ligand become at least partially desolvated and the hydrogen bonds with
the solvent are replaced with hydrogen bonds between the receptor and the ligand, as
illustrated in Figure 22.3. It has been shown that burying a hydrogen bond donor or
acceptor group (either neutral or charged) in the protein or complex interior without
formation of a hydrogen bond can be detrimental to stability (Bogan and Thorn, 1998;
Hendsch et al., 1996). Polar and nonpolar groups of the receptor and the ligand form
Van der Waals interactions on complex formation, and charged groups interact strongly
through Coulomb interactions. The release of the ordered water molecules around the
ligand and in the receptor active site on complex formation and the resulting increase in
entropy of these water molecules favors binding and is what underlies the hydrophobic
effect. Entropy losses that occur on complex formation are partially due to the reduction
in translational and rotational degrees of freedom of the ligand. The translational and
rotational degrees of freedom of the complex are also slightly different from those of
the receptor in isolation. Another source of entropy loss is due to the freezing out of the
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T A B L E 22.1. Noncovalent Interactions and Their Distance Dependence

Force Distance

Short-range repulsion ∼1/r12 − 1/r10

Electrostatic interactions
Coulombic interactions:

charge-charge ∼1/r
Charge-dipole ∼1/r2

Charge-induced dipole ∼1/r4

Nonelectrostatic interactions
Van der Waals interactions:

dipole-induced dipole ∼1/r6

induced dipole-induced dipole (London or dispersion force) ∼1/r6

dipole-dipole ∼1/r6

Hydrogen bonds
−D−H. . .A− <2.0E-10 m(H-A)

side chains on the surface of the ligand and the receptor on interaction with each other.
Overall, there is a delicate balance between exchange of hydrogen bonds, establishment
of Van der Waals and Coulomb interactions, entropy losses of the receptor and ligand,
and gain in entropy of the solvent.

There are a number of ways to calculate directly the binding free energy, �Gbind.
A classical approach is through the partition function. Promising efforts are underway,
although the computer time required to reach convergence is quite large (Head, Given,
and Gilson, 1997). For special systems, the use of thermodynamic integration and/or
free energy perturbation can be employed (Kollman, 1993). Alternatively, one can use
Eq. 22.4 and calculate the enthalpic and the entropic changes on complex formation.
The enthalpy can be calculated using a molecular mechanics force field (Table 22.2),
and the entropy can be obtained using Boltzmann’s law

S = −k
∑

j

Pj ln Pj (22.5)

where k is the Boltzmann constant and Pj is defined as

Pj = e−Ej /kT

∑

j

e−Ej /kT
(22.6)

These equations show that in order to estimate the entropy, all the states accessi-
ble to the system and the energy E of each state need to be known. Unfortunately,
molecules of biological interest have a large number of degrees of freedom mak-
ing it impossible to sample all the conformations using molecular dynamics (MD) or
Monte Carlo (MC) simulations. Because of the large number of accessible states, the
entropy of the solvent is also hard to obtain, which is one reason why a continuum
solvent model that treats the degrees of freedom of the solvent implicitly is often used
(see below).
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T A B L E 22.2. Functional Form of Different Scoring Functions

Name of function Function

Molecular Mechanics FF

EMM =
∑

bonds

Kr(r − req)
2 +

∑

angles

Kϑ(ϑ − ϑeq)
2

+
∑

dihedrals

Vn

2

[
1+ cos(nφ − γ )

]

+
∑

i<j

[
Aij

R12
ij

− Bij

R6
ij

+ qiqj

εRij

]

LIE

�Gbind = β〈�VCoul〉 + α〈�VvdW〉

Extended LIE

�Gbind = β〈�VCoul〉 + α〈�VvdW〉 + γ 〈�SASA〉

LUDI

�Gbind = �G0 +�Grot ×Nrot

+�Ghb

∑

neutr.H-bonds

f (�R,�α)

+�Gio

∑

ionic int.

f (�R,�α)

+�Garo

∑

aro int.

f (�R,�α)+�Glipo

∑

lipo

f ∗(�R)

MM/PBSA or IS/ES

G = EMM +GPBSA − T Ssolute

The total entropy change can be split into four terms:

�Stotal = �Strans +�Srot +�Sconf +�Svibr (22.7)

where �Strans and �Srot are the translational and rotational entropy changes on complex
formation, �Sconf is the change in conformational entropy, and �Svibr is the change in
vibrational entropy. The translational and rotational entropy changes can be calculated
from statistical thermodynamics (Hill, 1986). The conformational entropy change can
be estimated with an empirical scale developed by Pickett and Sternberg (1993), where
the entropy loss of a particular amino acid side chain is related to the loss of accessible
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surface area (ASA) on complex formation. The most time-consuming computation is
the change in vibrational entropy calculation (Case, 1994).

A major omission in the above analysis is direct consideration of the entropy
changes in the solvent. This important issue is only roughly approximated through the
use of the empirical buried surface area term. It is quite possible that the uncer-
tainty in the entropy terms is currently limiting our ability to predict equilibrium
constants.

Experimental Conditions. We now turn to a discussion of the experimental
conditions that can influence the measured binding constants. Both the entropy con-
tribution and the enthalpy change on complex formation are strongly temperature
dependent (Murphy, 1999). Other conditions that can influence the measured Ka are pH,
ionic strength, and water activity. Table 22.3 shows binding data from a well-studied
protein–ligand interaction, namely, methotrexate binding to dihydrofolate reductase
(DHFR), from different references in the literature. The biggest difference in measured
Keq is the difference between the bacterial and eukaryotic enzymes. The factor of 104-
fold difference in Keq corresponds to ca. 5 kcal/mol in �Gbind. The pH differences also
influence the measured Keq significantly, which is not surprising since methotrexate
contains several polar groups that will change ionization state. The presence or absence
of NADPH can change the measured K about 100-fold.

The problem for the modeler is how to take these experimental variables into
account. Rarely is a crystal structure available that has been obtained under similar
conditions to those used to measure binding. The pH can be taken into account by
determining the ionization state of the ionizable side chains of the amino acids and
ligand groups. Modeling the temperature dependence of the enthalpic contributions to
the binding free energy is impossible with most methods used in drug design, although
molecular dynamics simulations can be performed at different temperatures.

Generally, the precise experimental conditions under which the binding constant
was measured are ignored when binding free energies are being calculated. This neglect
comes about for two reasons. First, through well-known compensation effects, the
binding free energy is relatively less affected by changing some experimental conditions
(Tame, 1999). Second, to carry out simulations as a function of temperature is laborious,
and to model pH effects, except at the simplest level of fixing the charge states of
ionizable groups, is difficult to do accurately (Borjesson and Hunenberger, 2001; Mertz
and Pettitt, 1994).

Solvation/Hydration Effects. Biomolecular interactions generally take place in
aqueous environments; and, in order to calculate binding free energies, the influence
of the solvent on the binding process needs to be included (Honig and Nicholls, 1995).
There are two ways in which solvent influences biomolecular interaction processes. The
first way is a short-range effect and arises through local solute–solvent interactions.
The nonpolar solvation free energies, which account for transferring a nonpolar solute
from the gas phase to the solvent, are often assumed to be proportional to the solvent
accessible surface area (SASA). The second part of solvent effects is due to long-
range electrostatic interactions. Water molecules are highly polarizable, that is, the
orientation and electronic distribution of a water molecule readily fluctuates in the
presence of the electrostatic field generated by the distributed charges on the protein and
ligand. As a result, the Coulomb interactions between solvated charges is attenuated, or
“screened,” dramatically. This screening, represented most simply by a macroscopic
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dielectric constant, reduces electrostatic interactions in water by 80-fold from their
vacuum values (see Solvent Representation below).

Scoring Functions

Earlier, we considered how the binding constant, Ka, can be related to a theoretically
obtainable binding free energy and what the fundamental forces are underlying the
binding process. The only practical and rigorous way to calculate the binding free
energy is the free energy perturbation (FEP) method (see Kollman, 1993 for a review),
which calculates relative binding free energies by slowly mutating a ligand from one
state to another. Although it is theoretically possible to calculate absolute binding free
energies (Helms and Wade, 1998), the methodology is generally only used to calculate
the relative binding free energy of two very similar ligands. The major hurdle is the
amount of computer time required for the system to adjust to even minor mutations.

The need for methods that can be used in high-throughput settings dealing with
hundreds of thousands of diverse compounds has led to the development of a wide
variety of methods, which can be subdivided in four major approaches.

First Principles Methods. These methods generally use a molecular mechanics
force field (Table 22.2), which contains intramolecular forces between the atoms that
are bonded to each other (bond, angle, and dihedral terms), and intermolecular forces,
which describe the forces between nonbonded atoms (Van der Waals and Coulomb
terms). Application of a molecular mechanics force field to the calculation of complex
stability will only result in an energy prediction, since no entropic contributions are
included in the force field. Further, most applications of a molecular mechanics force
field do not explicitly consider the interaction of the unbound ligand and receptor
with the solvent. Despite the omission of entropic terms, the evaluation of molecular
mechanics force fields is time consuming. The original DOCK force field (Gschwend,
Good, and Kuntz, 1996a) for example, only evaluates the intermolecular Van der Waals
and Coulomb interaction energies.

Different groups have implemented methods to estimate the contribution of the
solvent to the binding process to obtain a more complete energy evaluation. We
discuss these implementations below in the Solvent Representation and Better Scor-
ing Functions.

Semiempirical Methods. The linear interaction energy (LIE) method (Aqvist,
Medina, and Samuelsson, 1994) was developed to calculate absolute binding free
energies without the need for sampling nonphysical transitional states such as those
generated in FEP (Table 22.2). The basis of this method lies in the linear response
approximation for electrostatic forces, which was shown to give β = 1/2 (Table 22.2).
The coefficient α is then empirically derived from known binding data, making the
method semiempirical (Aqvist, Medina, and Samuelsson, 1994). Later it was found
that β = 1/2 is only valid for ligands containing charged groups, while for dipolar
molecules β is dependent on the system under consideration (Aqvist and Hansson,
1996). Though less time-consuming than FEP, it still requires either a MD or a MC
simulation for both the inhibitor free in solution and in the complex to obtain the aver-
age electrostatic and Coulombic responses. Jorgenson’s group has extended the LIE
method and made it more empirical by adding a surface area (SA) term (Pierce and
Jorgensen, 2001; Rizzo, Tirado-Rives, and Jorgensen, 2001); β is derived empirically
as well.



Empirical Methods. There are numerous other empirically derived scoring func-
tions, of which the LUDI scoring function (Bohm, 1994) is probably the most well
known. Empirical scoring functions have been developed to be able to score ligands
very rapidly. First, a number of structural descriptors, which represent the physical
principles underlying complex formation, are selected (see Table 22.2). Next, weights
are derived for each of the descriptors by regression methods, using standard statistical
methods, with a training set. For the receptor-ligand complexes present in the training
set, both structural data and experimental binding data are available. Although these
scoring functions can still be interpreted in terms of the physical principles underlying
complex formation, much of the atomic detail is lost.

While empirical scoring functions with sufficient parameters can fit training data
as precisely as desired, it has proven difficult to derive functions that are general
enough to describe the full range of organic diversity and to yield transferable param-
eters as new data become available. The central assumption that each occurrence of
a certain interaction always gives the same contribution has been recently challenged
(Tame, 1999). Another problem is the relatively sparse experimental binding data that
is available for protein–ligand complexes of known structure.

Knowledge-Based Potentials. To avoid deriving weights from experimental
binding data, several groups have used so-called knowledge-based potentials based
on interatomic contact preferences between atoms (Gohlke and Klebe, 2001; Muegge
et al., 1999; Verkhivker et al., 1995; Wallqvist, Jernigan, and Covell, 1995). The poten-
tials are obtained by statistical analysis of atom-pairing frequencies observed in crystal
structures of protein–ligand complexes. This approach is closely related to a classical
statistical physics method, which uses potentials of mean force (PMF) to account for
all the physical forces in radially averaged representations.

Parametrization of Molecular Mechanics Scoring Functions

First principles scoring functions require parameterization of the atomic charges and
van der Waals radii. Also some choice must be made for solvent representation.

Charge Representation. In general, atoms and molecules can be characterized
by their charge distributions, which are most accurately calculated using ab initio tech-
niques. The electrostatic force between atoms or molecules is given by the integration
of Coulomb’s law over the total charge distribution. Electrostatic forces are necessarily
present even for interactions involving neutral atoms.

For convenience, the nuclear and electronic charge distributions are often approxi-
mated as point charges; that is, the charge is assumed to be located at the nuclear center
and to occupy no volume. In this way, atoms, molecules, molecular fragments, even
amino and nucleic acids are described by a configuration of point charges that, ideally,
reproduce the electrostatic properties of the atom or molecule. The point charges are
usually placed at atom centers and are called partial atomic charges. The electrostatic
interaction between molecules then reduces to a simple pairwise sum of Coulomb
interactions over all atomic charges. Point charge models are also convenient for simu-
lations that require the calculation of forces, such as MD, because in this approximation
electrostatic forces act directly on nuclei.

A number of methods have been developed to construct partial atomic charges or
charge models to represent small organic molecules, amino acids and nucleic acids. 459
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Two well-known charge models are those of Mulliken (1955) and Bader (1994).
Bader developed the theory of atoms in molecules (AIM), which can be applied to
partitioning electron density. Mulliken assumes that each basis function in an ab initio
calculation is centered on a nucleus, then assigns the electrons in each orbital to the
appropriate center. Electron density associated with an overlap integral is assigned half
to each nuclear center. Mulliken charges are sometimes problematic in that the derived
charges can depend on the choice of the basis set in the ab initio calculation. Bader par-
titions electron density based on the topology of the charge distribution. For example,
the points of minimum charge density along a bond are defined as critical points. By
using critical points and other topological features to define atomic regions and then
numerically integrating the charge density within a region, a population is assigned to
each atom. AIM charges are more reliable than Mulliken charges in the sense that they
have been found to be invariant to the basis set used to derive them. Further, AIM
charges reproduce electronegativity trends and give appropriate dipole moments.

Another approach is based on the idea that the electrostatic potential (ESP) pro-
duced by an atom or molecule determines how it will interact with the particles around
it. The ESP-fitting scheme, in which charges are subjected to a least-squares fit to
reproduce the ESP at a number of grid points outside the van der Waals surface of the
molecule, has produced two widely used charge models for amino acids and nucleic
acids, the restrained electrostatic potential (RESP) (Bayly et al., 1993) and CHELPG
(Breneman and Wiberg, 1990) models. An inherent problem with ESP-fitting models
is that charges on buried atoms can vary widely without significantly affecting the
quality of the ESP fit. This numerical instability is partially alleviated by restraining
the magnitude of unstable charges in the RESP model. RESP and CHELPG charges
can be thought of as a set of empirical quantities designed to represent an electrostatic
potential rather than as charges in the usual sense. The RESP charge model is used to
parametrize the AMBER force field (Cornell et al., 1995).

The methods described above have focused on amino acids, nucleic acids, and
a few ligands of particular interest. A general quantum mechanical treatment of the
widely diversified molecules found, for example, in the Available Chemical Direc-
tory (ACD), would be very time consuming. Instead, empirical methods for rapidly
assigning charges to molecules have been developed. One example is the Gasteiger
and Marsili (1980) method, which derives charges based on the atom types and atom
connectivities. Gasteiger–Marsili and other quick methods are often used to assign
charges for ligands in docking studies because they are rapidly calculated, but they per-
form poorly in condensed-phase systems. Recently, a more accurate alternative to the
quickest methods has been proposed. The AM1–BCC model (Jakalian et al., 2000) is
reported to provide atomic charges of comparable quality to HF/6-31G* RESP charges.
The AM1–BCC method captures the underlying features of the electron distribution
and formal charge by taking Mulliken charges as a starting point. Bond charge correc-
tions are then calculated, which are parameterized against the HF/6-31G* electrostatic
potential of a training set of compounds containing the functional groups of interest.

An inherent source of error in using charge models is that they do not consider
that charges are dependent on the conformation of the molecule. This issue is related
to the more general problem of incorporating polarizability, the tendency of electrons
to redistribute in response to surrounding electric fields. Polarizability has generally
been ignored in the past, but considerable efforts are under way to develop nonadditive
force fields that treat polarizability (Banks et al., 1999; Cieplak, Caldwell, and Kollman,
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2001). Because polarizability is a fundamental concern in solvated systems, we return
to a discussion of polarizability below in Solvent Representation.

Van der Waals Radii. In addition to the charge representations, van der Waals
parameters representing the effective size of atoms must also be determined. The Pauli
exclusion principle mandates strong repulsion as two atoms approach each other. The
interaction energy between a pair of atoms often passes through a minimum due to
attractive dispersion forces and becomes zero at infinite distance (Fig. 22.4).

The attractive and repulsive interactions are combined to give the van der Waals
potential function that appears in Table 22.1. The function, called the Lennard–Jones
potential or 6–12 potential, contains adjustable parameters representing the separation
of minimum energy, rm, and the well depth, ε, shown in Figure 22.4. While powers
other than 6–12 have been used in other force fields for the attractive and repulsive
terms (Veith et al., 1998), the repulsive exponent is often taken to be twice the attrac-
tive exponent so that the repulsive term can be rapidly calculated as the square of
attractive term.

Van der Waals interactions depend on atom type. For a polyatomic system con-
taining N different atom types, a total of N(N-1)/2 parameters would be required. To
eliminate the need for extensive parameterization when calculating Lennard–Jones
functions, mixing rules have been devised. In the Lorentz–Berthelot scheme, for
example, the separation of minimum energy is taken to be the arithmetic mean of
the two species and the well depth is taken to be the geometric mean (Leach, 2001).

Solvent Representation. The most accurate and physically realistic simulations
of solvated ligand-receptor complexes (e.g., FEP or MD simulations) represent the
solvent by an explicit collection of individual water molecules where each molecule
is treated as a configuration of point charges. The simplest water models comprise
three, four, or five charge sites with a rigid geometry. Some examples include TIP3P
and SPC (Berendsen et al., 1981; Jorgensen et al., 1983). More sophisticated models
include polarization effects.

Generally, explicit water models work well for charge densities found in pro-
tein–ligand complexes, although there are occasionally difficulties in simulations of
highly charged nucleic acid–ligand complexes, most likely due to the neglect of
polarization effects. Another limitation occurs in systems where quantum mechanical
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Figure 22.4. The Lennard-Jones (6–12) potential describing van der Waals interactions.
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interactions of the water molecules and, say, a multivalent metal ion, would be poorly
represented by point charge descriptions. The most profound drawback of explicit water
models is the computational expense, due to the large number of pairwise interactions.

Continuum water models are based on the observation that, in most cases, water
molecules do not play a direct role in ligand–complex binding. Thus, in general, the
intramolecular solvent potential, the solute–solvent potential, and the solvent–solvent
potential can be described by potentials of mean force that are independent of the
solvent degrees of freedom (Roux and Simonson, 1999; Roux, Yu, and Karplus, 1990).
Obvious exceptions include metalloproteases that contain a zinc atom in the active site,
which sometimes coordinates an essential water molecule that plays a structural role in
ligand binding. In this case, a reasonably accurate solvation model might incorporate
one explicit water molecule, while using a continuum solvation model to treat the
effects of all other water molecules.

A simple approximation to take into account the screening effects of the solvent is
by using a distance-dependent dielectric constant, for which there is no real physical
basis (Leach, 2001). A more sophisticated approach begins with scaling the permittivity
constant. A solvated receptor-ligand system can be characterized by two regions with
permittivity constants εwater and εcomplex. An appropriate value for εwater is simply
the bulk dielectric constant for water, which varies from 88 at 0 ◦C to 55 at 100 ◦C.
The usual choice is 80. Amino acids and organic molecules are less polarizable than
water because the motion of atoms in a protein, particularly in the core, are largely
constrained, and the charge distributions of biological and organic molecules are far
less susceptible to perturbation than water. Therefore, εcomplex is taken to be between
1, the dielectric constant of vacuum, and 4, the dielectric constant of many nonpolar
organic liquids.

Using this construct, the screening effects of solvated systems can be calculated.
The most widely used approaches are the Generalized–Born model (Still et al., 1990)
and the Poisson–Boltzmann method (Davis et al., 1991: Sitkoff, Sharp, and Honig,
1994; Warwicker and Watson, 1982; CAPRI, 2001; Grant, Pickup, and Nicholls, 2001),
which reduces to the Poisson equation when there is no salt present in the solvent (see
Chapter 21). Of importance, these methods include reaction field energies, which are
the electrostatic contributions of induced surface charge at the solute–solvent boundary
due to the high polarizability of water.

Methods have been developed to take into account the short-range, nonpolar,
solvent effects. The nonpolar solvation free energy term is often assumed to be propor-
tional to the SASA, and is intended to account for the free energy of cavity formation
in the solvent and for the solute–solvent dispersion interactions. One of these methods
uses atomic solvation parameters (ASP) for either amino acid side chains or chemi-
cal groups, which have been derived from experimental free energies of transfer from
water to octanol. This free energy of transfer is related to the SASA of each amino acid
side chain or chemical group (see Juffer et al., 1995 for a review). By using the SASA
as a measure of the nonpolar solvation term, the assumption is made that the interior
of the molecule does not contribute to the favorable dispersion interactions with the
solvent. Recently, Pitera and Van Gunsteren (2001) showed that this assumption is not
necessarily correct for large biomolecules.

A potential of mean force approach, based on residue–residue contacts, has also
been used to account for nonpolar solvation effects (Miyazawa and Jernigan, 1985;
Miyazawa and Jernigan, 1996). The described methods for estimating solvation effects
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are often used in combination with first-principles methods to get a more reliable
energy prediction (Kuhn and Kollman, 2000; Wang et al., 2001).

Combinatorial Nature of Calculation

The Sampling Problem. An important issue in all structure-based methods is
the compromise between speed and exploration of the search space, either the con-
figurational/conformational space in docking or the combinatorial chemical space in
de novo design. At a minimum, for rigid docking, three degrees of translational free-
dom and three degrees of rotational freedom must be sampled. In addition, there are
many conformational degrees of freedom of the ligand and the receptor that may be
explored in flexible docking. A priori, bond lengths, bond angles, and torsional angles
are internal degrees of freedom of a molecule. While bond lengths and bond angles
are generally held constant, torsional angles can vary significantly. Currently, most
methods can handle molecular flexibility of the ligand and limited, if any, flexibility
of the receptor.

Receptor Flexibility. Ideally, the conformational degrees of freedom for both
the ligand and the receptor are explored, since many complexes show induced fit. To
incorporate the flexibility of the binding site or even large scale conformational rear-
rangements of the protein by domain motions, several approaches have been reported.
The simplest models use soft scoring functions (Gschwend and Kuntz, 1996b), allowing
for some overlap between the ligand and the receptor. This possible overlap permitted
accounts for structural uncertainties or small side-chain movements of the receptor.
Receptor flexibility can also be addressed by searching a tree of possible side-chain
rotamer libraries for complementing a docked ligand. The conformational sampling of
side-chain rotamers can by improved by incorporating minimization of the receptor
side chains in the ligand-receptor complex (Schaffer and Verkhivker, 1998). Switch-
ing techniques (Apostolakis, Pluckthun, and Caflisch, 1998), first apply soft interaction
potentials to smooth the energy surface. Then, the full interaction potential is gradually
introduced. This soft potential facilitates the initial matching and the overcoming of
conformational barriers. Alternatively, a composite receptor structure can be generated
by the overlay of multiple crystal structures from different complexes of the same
receptor (Knegtel, Kuntz, and Oshiro, 1997). This structure is used to capture the dif-
ferent configurations of an ensemble of receptor structures accessible on ligand binding.
The most sophisticated methods generate an expanded ensemble of substates using MD
or MC simulations of a docked complex (Lamb and Jorgensen, 1997). Additionally, by
extracting different conformations from a MD trajectory, multiple docking targets or a
composite structure can be generated even in the lack of appropriate crystal structures.

Loop flexibility and domain motions are accounted for by hinge-bending (Sandak,
Nussiniov, and Wolfson, 1995) of larger rigid protein regions. Other models incor-
porate low frequency harmonic modes (Bahar et al., 1999) to describe large-scale
protein movements.

While we often picture ligand-receptor complexes as single geometry snapshots,
the real situation is much more complex. The ligand may adopt dozens or even hun-
dreds of conformations; the receptor has many more thermally accessible geometries
available. Thus, even a tightly bound complex would be more accurately thought of as
an ensemble of microstates (Kumar et al., 2000). The more completely this ensemble
can be described and incorporated into searching and scoring procedures, the more
accurate the final results are likely to be.
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TESTS OF METHODS

What Are the Proper Tests of These Theories?

Docking consists of two parts: searching and scoring. In this section we discuss how
each has been evaluated for most programs developed, explain how to assess whether
they are working correctly, give some docking results obtained using different pro-
grams, and outline what tests for these methods are most appropriate for applications
such as high-throughput screening.

Reassembling Complexes. One traditional test of docking programs is the ret-
rospective generation of the experimental structure of the complex as the best scoring
geometry. Such a test examines both the sampling procedures and the scoring functions.

GEOMETRY ISSUES. To assess how close the predicted binding mode is to the
experimental binding mode, most laboratories use the root-mean-square distance
(Rmsd) between the calculated and observed complexes.

Rmsd =
√∑Natoms

i=1 d2
i

Natoms

(22.8)

where di is the distance between the coordinates of atoms i in the two structures
when overlaid. An Rmsd for the top-scoring binding mode of <2.0Å is generally
considered to be acceptable for small ligands (Ewing et al., 2001; Vieth et al., 1998;
Rarey, Kramer, and Lengauer, 1999). This measure can be readily generalized to Rmsd
for the predicted and observed geometry of the receptor as well if the receptor is treated
as flexible.

The reassembly of a specific ligand-receptor complex is much easier than the gen-
eral problem of how conformations of ligand and receptor adapt to each other. Several
algorithms have been proposed for incorporating flexible receptor information (Apos-
tolakis, Pluckthun and Caflisch, 1998; Jones, Willett, and Glen, 1995; Leach, 1994).

The Rmsd may not be the best metric for systems that exhibit conformational
changes. Reporting the differences between observed and calculated structures in terms
of a translation of center-of-mass, a rigid rotation, and internal dihedral angle changes
has the advantage of providing much more information about the nature of the differ-
ences, especially the generation of higher energy conformational states of ligand and
receptor (Lee and Levitt, 1997).

A deeper question is what the real purpose of the calculation is. That is, the
scientific issue in drug design is rarely, if ever, the reproduction of a known structure.
Rather, one is normally asked how to modify a ligand or receptor, or how to generate
a totally new motif. Thus, one often wants to know not only the best scoring mode, but
how robust the geometry is to changes in ligand or changes (mutations) in the receptor.
It is often helpful to have a list of alternative binding modes for these purposes. One of
the encouraging aspects of the earliest applications of DOCK to heme binding in globins
was the identification of alternate heme geometries that were, in fact, experimentally
accessible (Kuntz et al., 1982). An interesting start to examining the robustness of
the predicted geometry is the selectivity measure introduced by the Brooks group
at Scripps (Vieth et al., 1998) in which Z-scores of the lowest-energy docked and
misdocked structures are compared. The bigger the energy gap between the docked
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and misdocked structure, the more selective the energy function (Vieth et al., 1998)
and the more robust the prediction of the docking mode.

DOCKING SUCCESSES AND FAILURES. Several docking programs have been tested
on numerous complexes; the Rmsd compared to the crystal structure is often reported
both for the best-scoring binding mode, as well as for the closest docked configura-
tion. The top-scoring configuration is found to be within 2Å in 45% (Ewing et al.,
2001; Diller and Mertz, 2001), 65% (Jones et al., 1997), and 73% (Rarey, Wefing, and
Lengauer, 1996) of the test cases for the different programs. Both FlexX and DOCK
find configurations within 2Å for all test cases (19 and 15, respectively) and Diller and
Merz achieve this for 85% of their test cases (103 in total). These results show that
retrieving the correct binding mode can be accomplished in most cases, but assigning
the lowest energy score to the correct binding is more difficult.

RANK ORDERING OF ENERGIES. An important capability of a docking program is to
rank order different ligands that (potentially) bind to the same receptor. Rank ordering is
used in both library screening and lead optimization. While any scoring protocol should
limit the number of false positives and minimize the false negatives, these applications
place different requirements on the scoring function. In library screening, one expects
a wide diversity of compounds. The scoring function must deal with large differences
in net charge, hydrogen bonding potential, and hydrophobic interactions. Small errors
in any component can weight an interaction disproportionately, swapping out the true
positives. The challenge in lead optimization is to rank correctly ligands that are very
similar to each other. Muegge’s group at Bayer has performed an interesting study in
which they compared three different scoring functions in ranking 61 inhibitors against
stromelysin (Ha et al., 2000). They found that the in-house developed PMF scoring
function performed not only better in ranking the compounds than both the DOCK score
and the LUDI score, but also that the PMF scoring function did not give rise to any
false negatives for this target (Ha et al., 2000). Bissantz, Folkers, and Rognan (2000)
show that the success of a docking program and a scoring function is highly dependent
on the target. Further, a number of scoring functions have been recently compared with
a new method that attempts to bridge the gulf between high-accuracy, low-throughput
free energy simulations and empirical approaches. This method, OWFEG (one-window
free energy grid), generates from a single MD simulation a grid surrounding a molecule
of interest that represents the free energy for insertion of a probe group at any point
on that grid, and it was shown to be superior to each of the scoring functions to which
it was compared (Pearlman, 1999; Pearlman, and Charifson, 2001).

A relatively straightforward way to limit the number of false positives is by using
consensus scoring. In consensus scoring several different scoring functions are applied
and the intersection of all low-scoring hits is taken, which improves the hit rates
significantly (Charifson et al., 1999).

At present, there does not appear to be one scoring function that is significantly
better over a wide range of targets (Bissantz, Folkers, and Rognan, 2000). There is
a true dichotomy in opinions on the merits of scoring formulas based on molecular
theory versus those developed on empirical, statistical grounds. While this difference
will not be easily resolved in the near future, what is clear is that to be success-
ful in library screening and most optimization tasks, a free energy-based approach
is required.

FREE ENERGIES OF BINDING. As discussed earlier, to calculate or predict �Gbind

both the enthalpic and entropic contributions need to be taken into account.
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The DOCK scoring function (Gschwend and Kuntz, 1996), which is a simpli-
fication of the AMBER force field (Cornell et al., 1995) calculates only enthalpic
contributions to binding, which means that the DOCK score would not be expected
to correlate strongly with experimental binding data. The same can be said about
knowledge-based potentials, which also do not contain entropy information directly.
The weights in empirical scoring functions can be optimized to reproduce experimen-
tal binding constants. Depending on the generality of the training set and the validity
of the underlying assumptions, these functions should be able to predict binding free
energies.

The LUDI (Bohm, 1994) scoring function has been implemented in FlexX Rarey
et al., 1996b and predicted binding free energies have been compared to experimental
values. It was found that for some of the complexes, the predicted binding free energy
deviated substantially from the experimental value, indicating that certain energetic
contributions are not modeled (correctly) by the scoring function (Rarey et al., 1996b).

Virtual Screening. To evaluate virtual screening, two metrics are used: the hit
rate—that is, the recovery of true positives, and the enrichment factor—the number
of true positives divided by the number of true positives plus false positives. A major
difficulty in most situations is to set up a proper control experiment to measure the
amount of productive information used in the library design process. In an experi-
ment from our laboratory, in collaboration with Jonathan Ellman, structure-based and
diversity-based designed libraries against an aspartyl protease, Cathepsin D, were syn-
thesized and assayed. The experiments showed that the structure-based method yields
higher hit rates (three- to sevenfold) and more potent affinities (three- to fourfold) as
well (Kick et al., 1997).

The enrichment factor (EF ) is defined as

EF = a/n

A/N
(22.9)

where a is the number of active compounds in the top n compounds, N is the num-
ber of compounds in the library, and A is the number of active compounds in the
library. The EF can be used only if the activities of all the compounds in the library
are known.

Knegtel and Wagener (1999) used this metric to assess the success of virtual
screening with two different targets. They screened more than 1000 compounds for
each target using two scoring functions and different amounts of conformational sam-
pling during docking. Their results suggest that less conformational sampling yields
higher enrichment, because scoring for both actives and inactives improves with more
sampling. This is an indication that the scoring function cannot distinguish between true
positives and chemically similar false positives. Diller and Merz (2001) found maxi-
mal enrichments of threefold using different scoring functions and statistical analysis
in examining a set of known activities against a particular target.

Common Docking Failures. Because most of the docking protocols are deter-
ministic, it is possible to ask why the programs do not return the experimental test
result. If we exclude experimental errors, the two major computational failure modes
are incomplete searching and inaccurate scoring functions. A search-algorithm failure,
sometimes called a “soft failure” (Verkhivker et al., 2000), occurs when the search
algorithm is unable to find the native binding mode. A search-algorithm failure can
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be identified by comparing the energy of the minimized experimental structure with
the energy of the lowest-energy binding mode that was found. If the energy of the
minimized crystal structure is lower than the energy of the most favorable binding
mode, the search algorithm did not explore the binding energy landscape thoroughly
enough (Ewing et al., 2001; Verkhivker et al., 2000). The most likely cause of a search
failure is the rugged, multiminima character of the binding energy landscapes, arising
from the geometric complexity of docking and the short-range and (in some cases)
discontinuous nature of the scoring functions.

A scoring-function failure, or hard failure (Verkhivker et al., 2000), is indicated
when the minimized crystal structure has a higher energy than the predicted lowest-
energy binding mode (Ewing et al., 2001; Verkhivker et al., 2000). It has generally
proven difficult to identify which term(s) of the scoring function are responsible for
hard failures. One approach to understand better the nature of hard failures is to use a
simple energy function to generate potential binding modes, followed by rescoring of
the binding modes with a more elaborate energy function. The simple energy function
makes the binding energy landscape less rugged, allowing for a more exhaustive search,
while the second scoring function is a better representation of the physical principles
of molecular recognition (Verkhivker et al., 2000).

Ligand Design Successes. It is no longer possible to provide a complete list of
successful efforts to design ligands. A reasonably comprehensive review through 1996
is available (Charifson and Kuntz, 1997). Suffice it to say that dozens of clinical can-
didates (Charifson and Kuntz, 1997), a variety of mutant proteins (Marshall and Mayo,
2001), and several libraries of ligands (Kick et al., 1997) have been reported. While
none of the methods used in these studies can be viewed as universally applicable, the
number of structure-based results now in the literature can certainly be taken as an
indication of the practical utility of molecular design.

FUTURE

In this section we give examples of how the current force field-based scoring functions
can be improved and illustrate recent developments in library design. Also, we address
some further applications of theoretical methods, which will become more important
in the future due to our rapidly increasing knowledge of protein structures and the
human genome.

Better Scoring Functions

The most obvious approximation made in most force field-based scoring functions is
the neglect of solvent polarization and screening effects and the hydrophobic effect.
Physics-based methods that model solvent effects are the Generalized-Born (GB)
method and the Poisson-Boltzmann (PB) equation, both of which calculate the screened
Coulombic interaction directly (by different methods). Further, both use a surface area
term to estimate the hydrophobic effect. The GB model has recently been imple-
mented in DOCK and has been used during the postprocessing of the top-ranked
compounds (Zou, Sun, and Kuntz, 1999). ICM (Totrov and Abagyan, 1997) uses both
a modified image electrostatic approximation (MIMEL) and a boundary element solu-
tion of the Poisson equation in a two-step energy calculation. PB calculations have
been found to be sensitive to small changes in atomic positions (Schapira, Totrov,
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and Abagyan, 1999), which suggests a need for sampling and averaging the calcu-
lated energies.

Both the Hermans group and the Kollman group have recently published papers
describing free energy calculations using molecular mechanics in combination with
continuum solvent models (ES/IS or MM/PBSA) (Kollman et al., 2000; Vorobjev,
Almagro, and Hermans, 1998). These methods both use an explicit water molecular
dynamics trajectory of the protein or complex of interest. This trajectory is subsequently
postprocessed with a continuum solvent model. The free energy is then calculated by
estimating the terms contributing to the free energy (Table 22.2). This method thus
takes into account enthalpic contributions through the MM force field terms, screen-
ing of the Coulomb interactions due to the solvent by solving the PB equation, and
the hydrophobic effect using an SA term. Finally, the entropy of the solute is taken
into account by performing normal mode or quasi-harmonic analysis. Averaging over
the trajectory is necessary because the fluctuations in particularly the Coulomb term
and the solvation term from PB can be quite large. This methodology has been suc-
cessfully used in a wide variety of interesting applications, underscoring the potential
and general applicability of first-principles approaches. Unfortunately, the amount of
computer time required to obtain an MD trajectory prohibits use of this method in
early-stage, structure-based drug design, when hundreds of thousands of compounds
are screened. It is certainly feasible, however, to use this methodology when opti-
mizing lead compounds or to investigate different binding modes found by docking
more thoroughly.

David, Lou, and Gilson (2000) compared GB, PB, and the distance-dependent
dielectric approach. They suggest that the PB equation is the method of choice, time
permitting, but under time constraints GB is certainly preferable over a distance-
dependent dielectric constant approach.

Better Database Organization

The structural genomics and functional genomics projects will significantly increase
the availability of structures, the knowledge of their functions, and the knowledge of
functions of genes for which the structure might not yet have been solved. Homology
models can be used to generate structures for proteins for which a crystal or NMR
structure is not yet available. These developments will lead to a rapid increase in
available drug targets with which computational drug design methods will be used
to screen databases and design targeted libraries. This overflow of information will
require the intelligent use of resources.

Organization of Receptors/Targets. The availability of structures of both the
drug target and its closest homologues will allow screening against several structures
in order to increase the selectivity of the hits. Only one study has been published so
far showing the promise of screening against multiple proteins at a time (Lamb et al.,
2001), which was discussed in the Library Design section.

Organization of Ligands. The number of available compounds in both real
libraries and virtual libraries and the number of available libraries is increasing rapidly.
To be able to screen as many compounds as possible in a short period of time, we are
forced to screen the databases differently.

Shoichet’s group has developed an approach to organize ligand databases into fam-
ilies (Su et al., 2001). They identify the largest rigid fragment in each compound and
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group compounds sharing common fragments into families, followed by overlaying the
rigid fragments. Their docking strategy starts with generating poses for the rigid frag-
ment of each family, followed by scoring each molecule and orientation separately. The
best scoring compound of each family is the representative molecule and is included in
the hit list. Their results show that docking in families increases the number of known
ligands and analogs between 45% and 500%, depending on the target (three different
targets were used), compared to docking and ranking each molecule independently. The
diversity of the hits was also significantly higher (between 20–300%) (Su et al., 2001).
They also suggest that family-based docking can reduce dependence on the accuracy
of the scoring function since related hits are presented together. One can subsequently
choose to just screen the representative molecule of each family or multiple ligands in
the same family (Su et al., 2001).

Macromolecular Docking

Reproducing protein–protein complexes by docking methods has been shown to be
difficult when separately crystallized proteins are used, due to the flexibility of surface
side-chains (Betts and Sternberg, 1999) and the difficulty of taking flexibility into
account. But the expected impact of the current structural and functional genomic
efforts will lead to an increased importance of macromolecular docking for evaluating
protein–protein interactions to investigate cellular pathways.

In order to test prediction methods and to assess their validity, the Critical Assess-
ment of Predicted Interactions (CAPRI) experiment was initiated (CAPRI, 2001).
It aims for a comparative evaluation of protein–protein docking algorithms in the
field of structure prediction. Organized as a blind test, macromolecular docking is
used to predict the binding mode of two proteins based on their 3D structure in the
unbound state.

Landscape Models

Molecular recognition and protein folding share several common aspects, such as the
existence of a thermodynamically stable native structure, a large number of accessible
conformational states and the complex nature of interactions. It has been found that
a critical factor in determining the success of predicting the structure of a binding
complex is the shape of the binding energy landscape, which can be compared to the
folding funnel of the protein folding problem (Betts and Sternberg, 1999).

Using simplified, short-range interaction functions in docking experiments, energy
funnels near the conformation of the native binding site could be revealed (Zhang,
Chen, and DeLisi, 1999). The energy decreases as the degree of similarity between the
native and the docked near native structures increases. Funnels dominated by short-
range interactions can fine tune long-range electrostatic steering forces to determine
protein association rates. Landscape models exploring the whole binding landscape
will allow for a better understanding of the mechanism of molecular recognition in
ligand-receptor interactions.

ADME

An optimized lead structure binding to a target with high affinity still has a long way
to undergo in order to become an effective drug. The compound has to pass animal
and clinical trials during which factors such as toxicity, bioavailability, and resistance
are considered. In order to preclude a later failure of a possible drug candidate in this
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time- and cost-intensive process, recent efforts try to incorporate some of these factors
in the initial drug-design process.

In addition to pharmacodynamics issues (biological effects of the drug), the
pharmacokinetic profile constituted by the so-called ADME (absorption, distribution,
metabolism and excretion) properties of the compound have to be considered (van
de Waterbeemd et al., 2001). This incorporates substructural filters or the evaluation
on molecular properties accounting for drug-likeness. The employed methods include
rather simple models such as the Lipinski’s rule of five for oral bioavailability (Lipinski
et al., 1997) or, alternatively, rely on sophisticated filters intended to capture a more
detailed ADME behavior by calculating relevant properties from the two- or three-
dimensional molecular structure using, for instance, neural networks Sadowski and
Kubinyi (1998).

Pharmacogenetics

Pharmacogenetics can be defined as the study of differences in drug response of indi-
viduals as a result of differences in their genetic makeup. One of the most well-studied
examples of drug response related to genetic variations is due to polymorphisms occur-
ring in the drug-metabolizing enzymes cytochrome P450s (CYPs).

The individual genotype can influence the daily dose required for certain drugs
and the kind and severity of adverse drug reactions, or determine whether there will be
a drug response at all. Knowledge of how different genotypes influence drug response
will change the future of drug development at all stages and the practice of medicine as
well. More knowledge of genotype-related drug responses can lead to more effective
drugs with fewer side effects.
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STRUCTURAL BIOINFORMATICS
IN DRUG DISCOVERY

Eric B. Fauman, Andrew L. Hopkins, and Colin R. Groom

Modern pharmaceutical discovery has benefited from both the rigor of scientific discov-
ery and the acceleration of technological advancements. The pharmaceutical industry
had its origins at the beginning of the twentieth century. Scientific advancement over
the past 100 years has seen the discovery of DNA, the understanding of proteins as
specific molecular entities, and the harnessing of X-rays to understand proteins at the
atomic level. Structural bioinformatics now is poised to do its part to accelerate the
drug discovery process. This chapter follows the historic development of the current
paradigm for pharmaceutical drug discovery, and highlights how structural bioinfor-
matics is influencing this process.

HISTORICAL DEVELOPMENT OF DRUG DISCOVERY

The current dominant paradigm in pharmaceutical drug discovery seeks to find a par-
ticular small molecule inhibitor to bind to a specific receptor, a macromolecular target.
Our ability to pursue this paradigm rests on scientific and technological achievements
in the twentieth century, particularly with regard to our ability to manipulate organic
small molecules on the one hand, and to study the biological targets on the other
(Sneader, 1985; Drews, 2000).

Humanity has, of course, been looking for remedies for its ailments long before
there was a drug discovery industry. The use of willow bark as a treatment for pain
relief, for example, can be traced back to Hippocrates and earlier. Such use is entirely
empiric—a certain recipe gave relief to certain symptoms. Many such folk remedies
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were known, the progeny of some of which, such as willow bark, have found their
place in our modern medicine chests.

The first step toward our modern approach to drug discovery was the suggestion
that these remedies generally contained an active ingredient that could be isolated and
purified. This idea can be traced back to 1530 to Paracelsus, a Swiss physician. It
would be nearly another 300 years, in 1829, however, before the active ingredient in
willow bark, salicin, was purified.

The synthesis the year before of urea by Fredrich Wöhler ushered in organic syn-
thesis, which gave chemists the ability to manipulate these small organic compounds.
Salicylic acid itself was first synthesized in 1852.

Along with the power to create a specific molecule came the ability to create
many closely related compounds. These techniques were first put to profitable use in
the dye industry in the mid 1800s, creating for the first time numerous low-cost dye
compounds. Using such dyes for histological staining, Paul Ehrlich recognized that
related molecules often exhibit related biological effects, a concept referred to today
as SAR or structure-activity relationships. This concept was applied to derivatives of
salicylic acid to try to discover forms of the drug that were less unpleasant for the
patient. This research eventually led to the development of acetylsalicylic acid in 1897
by Felix Hoffmann at Bayer. Bayer named this compound Aspirin: “a” for acetyl,
“spir” from Spiraea ulmaria, the meadowsweet plant, and “in,” a common suffix for
medicines at the time.

In noticing how some compounds more readily stained bacterial cells than human
cells, Paul Ehrlich eventually developed another major cornerstone of modern drug
discovery, the concept of a therapeutic index. All drugs have a minimal dose at which
they demonstrate beneficial effects, and a minimal dose at which they demonstrate
harmful effects. The therapeutic index is simply the ratio of these two doses. The
interplay between trying to make compounds more effective and trying to make them
safer is one that continues be at the center of pharmaceutical discovery to this day.

The recognition of activity being associated with specific molecular entities was
paralleled (much later) by John Langley’s suggestion in 1878 that there must be spe-
cific “receptors” for such compounds in the host, which bind to these entities. Knowing
that there is a host receptor however is not the same as knowing what that receptor
is. It would be another 100 years, for example, before John Vane and his colleagues
discovered the link between aspirin and prostaglandin synthesis, establishing cyclooxy-
genase (COX) as aspirin’s site of action. This work earned John Vane the 1982 Nobel
Prize in Physiology or Medicine.

Cyclooxygenase was first given a structural face by Michael Garavito and col-
leagues in 1994 (Picot Loll Garavito et al., 1994). This structure, and that of the
inducible COX-2 (Luong et al., 1996; Kurumbail et al., 1996), has made possible
the first forays into structure-based design against this venerated target (Marnett and
Kalgutkar, 1999).

MODERN DRUG DISCOVERY

Presently, most pharmaceutical drug discovery programs begin with a known macro-
molecular target, and seek to identify a suitable small molecule modulator (Ratti and
Trist, 2001; Dean, Zanders, and Bailey, 2001). The advent of the postgenomic era has
started to point the way to novel targets, about which more will be said later. Typically,
however, the target (usually a protein) has already been identified through biological
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or genetic investigations to be important in the disease of interest. The approach of
modern drug discovery is rational and reductionist with a defined hypothesis of how
the chosen mechanism of action could be beneficial against disease.

Following the identification of the target of interest, confidence in the approach is
built with a variety of genetic and chemical target validation experiments. The process
to discover a lead molecule begins with the development of an assay to look for
modulators (either inhibitors, antagonists, or agonists) of the target’s activity, followed
by a high-throughput screen (HTS) of a large number of small molecules, in some
cases up to a million or more (Landro et al., 2000). In the best cases, this method
identifies one or more small molecule “hits” in the micromolar range, that is, having
binding constants from 10 micromolar to the low nanomolar range.

Elaboration of the initial small molecule hit through medicinal chemistry is next
used to try to improve the potency, ideally lowering the Ki to the low nanomolar
range to produce a potent lead molecule (Foye, 1989). There are an estimated 1062

possible small molecules, of which obviously only a tiny fraction can be created and
tested. Recently, the techniques of combinatorial chemistry have been developed to
rapidly generate hundreds and thousands of derivative compounds from a common
scaffold in the hit-to-lead optimization stage. Recent years have seen the success-
ful use of a variety of computational techniques, from quantitative structure activity
relationships (QSAR) to computer-aided drug design (CADD) and structure-based
drug design.

The process of optimizing the lead molecule into a “candidate” drug is usually
the longest and most expensive stage in the drug discovery process (although this is
still a fraction of the costs of drug development). Although the candidate is usually
an analog of the original lead, it is still considered an art to successfully synthesize
and select the exact compound that fulfills all the required properties of potency,
absorption, bioavailability, metabolism, and safety. In many ways the lead-to-candidate
stage of drug discovery is a multidimensional optimization problem searching within
the relatively limited chemical space of analogs of the lead compound.

Following the selection of the candidate molecule, the drug development scien-
tists develop large-scale production methods, and conduct the preclinical animal safety
studies. Investigational new drugs (INDs) must pass through a set of three clinical
trials: Phase I, a small study on healthy subjects to confirm safety; Phase II, a slightly
larger study on a patient population to confirm efficacy; and Phase III, a large study of
patients to gather additional information about safety and efficacy (CDER Handbook,
1998). However, even after the medicinal chemist has carefully crafted and balanced
the properties of potency, bioavailability, and metabolism, over 90% of the compounds
entering clinical trials fail to make it to market, most often due to poor biopharmaceu-
tical properties, toxicity, or lack of efficacy (Venkatesh and Lipper, 1999). Due to the
attrition of so many potential pharmaceuticals and the rising costs of drug discovery,
the average cost to bring each new chemical entity (NCE) to market is estimated to be
$770 million (Kettler, 1999).

THE IMPACT OF STRUCTURAL BIOINFORMATICS ON DRUG DISCOVERY

Structural Bioinformatics in a Pharmaceutical Context

Informatics and knowledge-based methods play an important role in the framework
of the postgenomic drug discovery paradigm, in support of the traditional roles of
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screening and medicinal chemistry (Fig. 23.1). Genomics and bioinformatics support
genetic methods of target identification and validation (Cunningham, 2000). The abil-
ity of chemoinformatics to process the properties of millions of virtual compounds
for selection for synthesis and screening is an enabling technology for combinatorial
chemistry and HTS. Biological structural information can be usefully exploited from
the identification of the target protein all the way to the design of a bioavailable drug
via structure-based drug design with suitable drug metabolism properties aided by
ADMET (absorption, distribution, metabolism, excretion, and toxicology) modeling.

The techniques of structural bioinformatics are particularly valuable in the area
from target identification to lead discovery. As depicted in Figure 23.2, a structural
bioinformatics group in a pharmaceutical company can serve to link resources and
results among bioinformatics, structural biology, and structure-based drug design
(SBDD) groups.

Genome  Gene Protein  HTS Hit  Lead Candidate Drug  

Genomics 

Bioinformatics  

Chemoinformatics  

ADMET Modelling 

Structural  Bioinformatics 

Structure-Based Drug Design 

Figure 23.1. The roles informatics plays in the postgenomic drug discovery.

Bioinformatics

Structure-Based
Drug Design

Structural
Biology

SBI

Figure 23.2. The relationship between structural bioinformatics (SBI) and other disciplines in

drug discovery.
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As will be seen, the most powerful effective strategies involve a tight integration
of the computational and experimental techniques at each stage of drug discovery.

Target Assessment

As structural inferences become available at the very earliest stages of a drug discovery
program, structural bioinformatics can provide an a priori assessment of the ability of
a target to be inhibited by a druglike molecule.

Designing compounds with appropriate biopharmaceutical properties that are still
able to bind to their targets with an appropriate affinity is the challenge for the medic-
inal chemist. As detailed below, the challenge for structural bioinformaticians is to
determine the magnitude of the medicinal chemists’ task.

Assessing Target Druggability. Not all small molecules can be drugs, and
not all proteins can be drug targets. A small molecule must have certain properties,
and a protein must contain a binding site that is complementary or compatible with
these properties.

Binding sites on proteins usually exist out of functional necessity. Due to hydropho-
bic forces, the energetically optimal protein would be spherical, with all its hydrophobic
residues pointing inward (see Chapter 2). The majority of successful drugs achieve
their activity by competing for a binding site on a protein with an endogenous small
molecule. Drugs exploiting allosteric binding sites, with no known natural endoge-
nous ligand, are relatively rare (e.g., the nonnucleoside binding site on HIV-1 reverse
transcriptase), and these binding sites are usually not exposed since this is energeti-
cally expensive.

EXAMPLE: KINASES AND OTHER ATPASES. Examination of the natural ligands of
a protein can be valuable in assessing the capacity of a binding site to bind a druglike
molecule. The numerous types of ATPases present an interesting example. ATP is a
common cofactor for many enzymes. It is recognized by a number of protein folds in
a variety of ways. The adenosine portion of ATP (the adenine and ribose rings) has
properties one would expect to be able to mimic in a drug. In contrast, it would be
difficult to mimic the three charged phosphate groups in a druglike molecule, because
charged compounds typically cannot penetrate cell membranes. Thus, when one is
considering an ATPase as a potential target it is helpful to determine the way in which
the ATP is recognized.

In protein kinases, the adenine ring of ATP fits into a well-defined, relatively
hydrophobic pocket, forming a number of important hydrogen bonds. The phosphate
groups play a relatively minor role in this recognition (Johnson et al., 1998). It has
proven to be relatively straightforward to generate potent, druglike inhibitors of protein
kinases that are competitive for ATP, making use of this attractive binding pocket
(Bridges, 2001; Dumas, 2001). In ATPases that rely on coordination of the phosphate
group, for example, those containing a so-called Walker A or B motif (Walker et al.,
1982), inhibition by druglike molecules has proven difficult (except in exceptional
cases where, for example, inhibitors bind to two such motifs) (Wigley et al., 1991). In
addition, it may also be considerably more difficult to achieve selectivity if the drug
predominately exploits main-chain interactions.

In many cases, the exact structure of the ATPase may not be known. Even when
the structural motif used to recognize ATP is not known one can gain clues as to the
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attractiveness of the ATP site by reference to the binding affinities for ATP, ADP, AMP,
adenosine, and adenine as gleaned from biochemical studies or from the literature.
Differences in dissociation constants in this series may allow one to predict which
regions of ATP are important recognition features.

EXAMPLE: PROTEASES. The proteases present additional subtleties involved in
assessing the tractability of individual molecular targets. The substrates of proteases,
that is peptides, represent reasonable chemical leads for a drug discovery process. Cru-
cial to success, however, is the ability to “depeptidize” these leads, that is, remove
the peptide bonds in order to avoid absorption and metabolic stability issues. For
some proteases, this is relatively straightforward. One example is the serine pro-
tease thrombin, where many druglike inhibitors, barely resembling peptides, have
been developed (Steinmetzer, Hauptmann, and Sturzebecher, 2001). In the case of
the aspartyl protease renin, it has proven much more challenging to develop nonpep-
tidic inhibitors.

This difference in druggability can be explained by analyzing the way in which
substrate is recognized by these two types of proteases. Serine proteases typically
recognize both main-chain and side-chain features in their substrates, forming hydro-
gen bonds to relatively few main-chain groups on only one side of the scissile bond.
Aspartyl proteases are typically tolerant of side-chain substitutions in their substrates
and rely on main-chain hydrogen bonds to bind their substrates. In this case, it has
proven difficult to retain potency in an inhibitor while reducing the peptidic character
of leads. This has also been the case for many viral proteases, where substrate peptides
are often weakly bound in shallow surface depressions on the enzyme surface (Chen
et al., 1996).

Quantitative Assessment of Target Druggability. The foregoing discussion
assumes the opportunity to perform an in depth individual analysis of the relevant
protein structures. For a quick assessment of a large number of potential targets, a
more quantitative approach may be more appropriate.

Such a quantitative approach is already well established for assessing the druglike
properties of a small molecule. The rule-of-five (Table 23.1) is a set of properties to
suggest which compounds are likely to show poor absorption or permeation, since
such compounds are unlikely to show good oral bioavailability (Lipinski et al., 1997).
More recent work has further refined what distinguishes drugs from other compounds
(Walters and Murcko, 2002; Lipinski, 2000; Sadowski and Kubinyi, 1998; Gillet et al.,
1999; Blake, 2000, Clark and Pickett, 2000).

As a receptor binding site must be complementary to a drug, it is reasonable to
assume that equivalent rules could be developed to describe physicochemical properties

T A B L E 23.1. The Rule-of-Five

A compound is likely to show poor absorption or permeation if:

1. It has more than five hydrogen bond donors

2. The molecular weight is over 500

3. The Clog P (calculated octanol/water partition coefficient) is over five

4. The sum of nitrogens and oxygens is over 10

5. Weak inhibition (<100 nM) is observed
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of binding sites with the potential to bind rule-of-five compliant inhibitors with a
potent binding constant (e.g., Ki < 100 nM). A number of properties complementary
to the rule of five can be calculated; for example, the surface area and volume of
the pocket, hydrophobic and hydrophilic character, and the curvature and shape of the
pocket. Programs such as SURFACE (Lee and Richards, 1971; CCP4), CAST (Liang,
Edelsbrunner, and Woodward, 1998), ms (Connolly, 1993), and GRASP (Nicholls,
Sharp, and Honig, 1991) can be used to calculate these and other parameters. Fol-
lowing the assumption that properties of the drug are complementary to those of
the binding site, analysis of the calculated physicochemical properties of the putative
drug-binding pocket on the target protein can provide an important guide to the medic-
inal chemist in predicting the likelihood of discovering a drug against the particular
target site.

The logarithmic relationship between the free energy of binding (�G) and the
binding constant (Ki) (23.1) means every 10-fold increase in potency is due to a
−1.363 kcal/mol change in binding energy

�G = −RT ln(Ki) (23.1)

Thus a drug with a typical dissociation constant of 10 nM binds with a free energy
of −11 kcal/mol and a 1 µM HTS hit binds with −8.4 kcal/mol.

The strength of binding is predominately driven by burying of hydrophobic sur-
faces (van der Waals and entropy). The free energy gained from burying hydrophobic
surfaces is estimated at around 0.03 kcal/mol/Å2, with buried polar surfaces giving
up about 0.1 kcal/mol/Å2. A drug with a 10 nM dissociation constant needs to bury
370 Å2 of hydrophobic surface area. Therefore, every 46 Å2 of buried hydrophobic
surface (the surface area of a methyl group) buys a 10-fold increase in potency,
approximately equivalent to the maximal affinity per nonhydrogen atom defined by
Kuntz et al. (1999). Encapsulated cavities are capable of binding low molecular weight
compounds with high affinities since they maximize the ratio of the surface area to
the volume.

In addition to the predominantly hydrophobic contribution to the binding of many
drugs, ionic interactions, such as those found in zinc proteases (for example, ACE
inhibitors) allow low molecule weight molecules to bind strongly.

The Druggable Genome. Biological systems contain only four types of macro-
molecules with which we can interfere using small molecule therapeutic agents: pro-
teins, polysaccharides, lipids, and nucleic acids. Toxicity, specificity, and the inability
to obtain potent compounds against the latter three types means that the majority of
successful drugs achieve their activity by modifying the activity of a protein by com-
peting for a binding site on a protein with an endogenous small molecule. Thus, there
is a limited number of molecular targets for which commercially viable compounds
can currently be developed, leading to the concept of the “druggable genome.” The
druggable genome is the subset of the genes in the human genome that express proteins
that are capable of binding small druglike (i.e., rule-of-five compatible) molecules.

In a comprehensive review of the accumulated portfolio of targets in the phar-
maceutical industry, Drews identified 483 proteins that have been exploited to date
(Drews, 1996; Drews and Ryser, 1997). In a critical review of Drews’s estimates we
have analyzed the sequences of all targets of marketed and investigational drugs or
leads (Investigational drugs database (IDdb), Current Drugs Ltd.) that are rule-of-five
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compatible. These 400 targets fall into a few gene families, as shown in Figure 23.3.
Interestingly, only about 120 InterPro domains define all the ligand-binding domains
for all proteins for which rule-of-five compliant inhibitors are available (Hopkins and
Groom, 2002). This distribution of exploited targets actually changes rather slowly.
On average, new drugs are launched against only about four novel targets each year
(see Fig. 23.4).
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Figure 23.3. Gene family distribution of the molecular targets of current investigational and

marketed drugs (data derived from a combination of sources including the literature and

Investigational drugs database (IDdb), Current Drugs Ltd. (Hopkins and Groom).).
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Existing targets are at the intersection of two necessary attributes: an ability to bind
compounds with acceptable properties (druggability), and a link to disease (relevance).
The total number of targets that possess both of these attributes can be estimated in a
number of ways.

The druggable genome is a subset of the total human genome. The completion of
the draft human genome sets the total number of human genes at about 30,000 (Venter
et al., 2001; Genome International Sequencing Consortium, 2001). Estimates of the
number of druggable targets in the genome based on the idea of assessing the total
number of ligand-binding domains have produced figures in excess of 10,000 (Bailey,
Zanders, and Dean, 2001). Using a more conservative gene family approach, focused
on proteins that share greater than 30% sequence identity to a known target in the 120
druggable gene family domains, suggests around 3000 presumed druggable targets in
the human genome. Gene families are not equally populated, with genes distributed
among a few very large gene families, and many sparsely populated gene families.
This distribution suggests that there may be very few large druggable gene families
left to discover.

Separately, one can assess how many genes are likely to affect some disease
process. Considering about 100 major human diseases, and assuming there are 10 genes
directly involved in any given disease process, with another 5 to 10 genes influencing
the activity of those genes, yields an estimated 5000–10,000 disease-related genes
(Drews, 2000).

The universe of exploitable small molecule targets for drugs is the intersection
between the druggable genome and those genes related to diseases (see Fig. 23.5).
Structural bioinformatics has a great role to play in identifying all the druggable proteins
coded for in genomes of interest.

Target Triage

The availability of the sequences from complete genomes has revealed many more
potential targets than could possibly be prosecuted using current experimental tech-
nologies. As such it is sometimes necessary to prioritize targets from a large potential
subset. Such a subset may arise, for example, from a gene expression study (Sallinen
et al., 2000) or by analyzing the genomes of disease-causing organisms (McDevitt and

Human genome
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~3K

disease
genes
~5K

drug
targets

Figure 23.5. The effective number of exploitable drug targets can be determined by the inter-

section of the number of genes linked to disease and the druggable subset of the human genome.
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Rosenberg, 2001). Properties of interest when considering large numbers of targets go
beyond the assessment of the active site described above and include those summarized
in Table 23.2.

Computational Approaches to Target Triage. A number of these factors
can be analyzed computationally. One of the first examples of this is the work of
Bruccoleri and others at Bristol-Myers Squibb (Bruccoleri, Dougherty, and Davison,
1998). In this work, described as congenomics, those genes common to a number of
bacterial species but absent from higher organisms were identified as potential targets
for antibacterial agents.

This work was taken further at Bayer (Spaltmann, Blunck, Ziegelbauer, 1999),
where an automated procedure for target prioritization was applied to the recently
completed genome of the yeast S. cerevisiae, which served as a model for related
pathogenic species of fungi. The system developed, CATS (computer-aided target
selection), scored targets based on the importance of a gene for the organism, the
occurrence of the gene in multiple target species, whether specificity of inhibition
could be achieved by reference to sequence similarity with vertebrates, and whether
assay development was facile. Of note is that a number of proteins that are the tar-
get of antifungal agents scored very highly in this approach, thereby validating this
computational approach.

T A B L E 23.2. Considerations When Selecting Molecular Targets

Property Consideration

Confidence in rational How strong is the evidence to indicate that modulating the
activity of the target will produce the desired response?

Sense of modulation Is inhibition or agonism necessary to correctly modulate
disease process? Note that while GPCRs can effectively be
turned on by agonists this is difficult with most enzymes.

Ability to bind druglike
molecules

Does the target have the potential to recognize compounds
with appropriate properties to a reasonable affinity?

Ease of screening Can the target protein be obtained in quantities sufficient to
facilitate high-throughput screening?

Are reagents such as substrates and cofactors known and
available?

Availability of functional
assays

Can the activity of compounds against the protein targets be
followed up in a disease-relevant functional assay?

Availability of protein
structure

Is an X-ray or NMR structure of the protein available to allow
structure-assisted drug design? Is the protein amenable to
structural biology?

Pathway Is the target protein in a redundant signaling or metabolic
pathway where it can be bypassed?

Potential for resistance Do pathogens contain mutant isoforms of the target protein?
What level of modulation is required for therapeutic activity?

Availability of chemical
leads

Are there chemical leads available with suitable properties?

Selectivity Are there related proteins (in the host) that might be affected
by inhibitors against the target?
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SELECTIVITY. Most potential target have related host proteins whose function must
not be affected by a successful therapeutic. This is true, for example, for proteins from
the identified gene families, discussed above.

In considering selectivity issues, certainly one must first look at related sequences
in the same protein family. However, there is not necessarily a direct correlation
between the similarities one would infer from homology and those one would infer
from compound action. This discrepancy exists because only a small fraction of the
residues in a protein interact directly with any one ligand. Although long-range inter-
actions and conformational changes can play a role in inhibitor binding, in general it
is those residues lining a ligand-binding site that are of most importance.

The ATP cleft of the protein kinases serves as a good example of this situation.
Although all protein kinases bind ATP in the same region and conformation, only a
few of the residues facing the cleft are highly conserved (see Fig. 23.6). The remaining
residues are subject to random drift, and thus distantly related kinases can actually end
up having more similar clefts than more closely related kinases. This is depicted graph-
ically in Figure 23.7. The tree on the left was constructed using sequence identities
calculated across the entire kinase domain for a diverse set of kinase structures. The
tree on the right used identities across only the 16 residues lining the ATP-binding site
(as deduced from the CDK2 structure, 1FIN; Jeffrey et al., 1995). Note for example
that the Zea mays CK2 kinase, 1A6O, which is grouped with the cyclin-dependent and
MAP kinases on the basis of overall sequence identity, is actually seen to be relatively
isolated on the basis of its active site alone. This distinction reflects the remarkable
ability of this enzyme to hydrolyze either ATP or GTP, due to a number of unique
features at the ATP-binding cleft (Niefind et al., 1998).

Figure 23.6. ATP (light gray sticks) bound to the active site of CDK2 (PDB code 1FIN). Residue

positions highly conserved across all protein kinase domains are shown in dark gray; variable

positions shown in white.
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Figure 23.7. Comparison of phylogenetic trees based either on the entire sequence of the

kinase domain (left) or of just the 16 side chains that interact with the ATP (right).

This use of noncontiguous regions of sequences to establish relationships was first
introduced by Sandberg et al. (1998) and has recently been described as structure-
activity relationship homology (SARAH; Frye, 1999). In SARAH, protein targets are
grouped both by their sequence similarities and by their ability to bind an array of
compounds, such as may be determined from pharmaceutical HTS. SARAH builds on
earlier ideas around affinity fingerprinting (Kuvar et al., 1995). As Frye points out,
protein targets were often grouped according to their response to ligands before we
had sequence information at our disposal (Lefkowitz, Hoffman, and Taylor, 1990).

Target Validation

Once a target has been selected for a drug discovery program, it must be experimentally
validated. A validated target is one where the premise that modulating the activity of
the target has been proven to affect the disease process.

A genetic approach to target validation can use a knock-out of the gene of interest,
or use RNA antisense technology to inactivate the gene (McClurg and Keenan, 1999).

The most rigorous way to validate a target is to use a compound, for example,
a known small-molecule inhibitor. Clearly at the start of a drug discovery program
such compounds may not be available. For some targets the techniques of chemical
genetics give us another route. Here, site-directed mutants of the target protein are
made in order to make that target sensitive to an existing compound. Essentially this
technique uses protein engineering to do what a medicinal chemist would normally
be tasked with. Structural bioinformatics clearly plays a central part in this approach,
which relies on successfully predicting a match between an existing compound and
engineered binding site.

The origins of chemical genetics lie in work by Cohen and others (Eyers et al.,
1998), in which members of the MAP kinase family were mutated in order to make
them sensitive to the well-understood inhibitor SB-203580. Others have since used
these techniques on other members of the kinase family (Bishop et al., 2000). The
most attractive aspect of this approach is that the modified gene can be put back into
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the organism and the activity of compound compared between wild-type and mutant
organisms or cell lines. Thus, it allows us to answer questions such as, “If I generated
a selective inhibitor of protein X, would it have the desired effect?”

Lead Identification

After a target has been identified and validated, chemical leads (of low or medium
potency) must be identified to supply a starting point for the medicinal chemistry
efforts. Such leads can come from knowledge of the natural ligands or from de novo
design, but most often are found through high-throughput screening.

Assay Design. In order to design an assay for a particular target, one obviously
needs to know what function that target performs and what ligands it recognizes. In
the case of novel targets, structural bioinformatics can be used for function and ligand
prediction. As described in Chapter 19, a variety of techniques exist to help deduce the
function of a protein given knowledge of its structure. Although such methods seldom
pinpoint the exact biochemical activity, they can help define what sorts of experiments
should be tried (Bugl et al., 2000).

As discussed earlier, the function of a protein can be dictated by just a hand-
ful of residues in a binding pocket. For example, if we were to try to determine
the endogenous ligand that might be recognized by a G-protein coupled receptor we
may wish to focus on a selection of residues based on mutagenesis data or struc-
ture prediction.

Counter-screens can also be used at this point in the drug discovery program
as an experimental means to address selectivity concerns. A structural bioinformatics
approach can be used to help select those host proteins that are most likely to bind to
inhibitors of the primary target. For example, if the primary target were a kinase, hits
identified through HTS might be subsequently tested against a panel of related kinases
(Davies et al., 2000). As described earlier, the proteins most likely to bind the identified
inhibitors may not be those most closely related by homology since ligand binding can
be dominated by just those residues in the binding cleft. A structural bioinformatics
approach, identifying first the obvious and remote homologs and then comparing the
presumed ligand-binding residues, can help guide the selection of appropriate counter
screen targets.

Using Structural Similarity to Find Chemical Leads. In general, if two
gene products have similar structures, they may bind similar ligands. This relation-
ship enables one to use chemical leads for one protein target against another Even
a drug discovery program against a relatively well-understood target can be “jump-
started” by recognizing a relationship between the current target and other targets
studied in the company (see Chapter 16, Structure-Structure Comparison and Align-
ment and Chapter 26, Fold Recognition Methods). Discovering such a connection can
facilitate the transfer of institutional knowledge across the traditional therapeutic area
divisions. For example the early work on the antiviral target HIV protease, benefited
from the body of knowledge derived from the search for inhibitors of renin, a distantly
related aspartyl protease important in cardiovascular disease (Appelt, 1997).

Many other examples of such situations can be found among the targets of
known drugs, such as angiotensin-converting enzyme, neutral endopeptidase, and
thermolysin. In these cases there is no detectable similarity at the sequence level.
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However all three proteases bind similar substrates and have been shown to bind similar
inhibitors (Roques, 1985). The structural similarity between two of these enzymes has
recently been confirmed by the structure determination of neutral endopeptidase (Oefner
et al., 2000).

Using structural similarity to find chemical leads typically causes concern regarding
the potential selectivity resultant compounds will have. In practice, however, where the
proteins share less than 30% sequence identity the active sites are usually nonidentical
and leads can be optimized toward one particular target through computational and
medicinal chemistry approaches.

Virtual Screening. Due to the high costs of HTS in terms of staffing and com-
pound stock depletion it is highly desirable to attempt to find leads for a protein target
computationally. Protein structure can be used in two distinct ways to search databases
of compound structures.

The first is to derive a pharmacophore describing the functionally important sites
in a ligand-binding site. These sites can be determined by reference to the protein
structures, using software such as GRID (Goodford, 1985), X-site (Laskowki et al.,
1996), and hotspots (Mills, Perkins, and Dean, 1997). Structures of compounds in
chemical libraries (whether existing or not) can then be computationally assessed as
to whether they have the ability to adopt a conformation that matches the pharma-
cophore.

The second method is docking and scoring (Chapter 22; Gohlke and Klebe, 2001).
Here problems are still encountered in correctly docking a small molecule structure
to a protein and calculating the binding energy. Current methods can often enrich a
set of compounds by identifying a subset of compounds that are more likely to bind.
Although showing much promise, the most reliable methods are slow and challenges
still exist in being able to distinguish between compounds that do and do not bind to
the target protein.

Chemical Library Design. Chemical libraries, consisting of hundreds to thou-
sands of related compounds, can be generated through combinatorial chemistry by
starting with a scaffold or template and decorating it with a variety of functional
groups or monomers. A chemical library designed around an early chemical lead can
help establish the SAR for that series, pointing the way to more potent compounds.
Protein structure can play a great role in the design of such chemical libraries (Bone
and Salemme, 1997; Caflisch and Ehrhardt, 1997).

Chemical libraries can be designed by reference simply to binding data for small
molecule hits. However, if a known or predicted three-dimensional structure for the
target is available, or, even better, the structure of a representative compound cor-
rectly bound to the protein, such information can be used to design more efficient
chemical libraries. In general far more compounds can be designed or enumerated
than can actually be produced and tested. Knowledge of the structure of the active
site can focus the design and synthesis toward a collection of compounds more likely
to bind. In practice, a pharmacophore is usually first defined from the ligand-binding
site as is done in virtual screening. Such a pharmacophore can then be applied either
to the selection of monomers from which to build the chemical library or to deter-
mine which compounds to actually synthesize from an enumerated list of poten-
tial compounds.
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Lead Optimization

The longest phase in preclinical drug discovery is the process of deriving a high-potency
inhibitor from the chemical lead, while optimizing its physicochemical properties to
maximize its chances for success as a drug. By bridging and building on resources in
bioinformatics, structural biology, and structure-based drug design, structural bioinfor-
matics can accelerate the quest for a potential drug.

Structural Biology for Structure-Based Drug Design. The most relevant
structure-based drug design programs involve repeated cycles of determining the struc-
ture of the target in complex with a number of lead compounds and their analogs. One
hurdle in establishing a rapid cycle of crystallography and structure-based design is in
actually obtaining crystals of the target protein of sufficient quality.

A genetic construct encoding the exact full-length sequence of a protein is not
necessarily the ideal one to use in order to obtain material for screening or struc-
tural studies. Firstly, the full-length protein may be large and contain protein domains
that are not of relevance to the studies being performed. The protein may express
poorly, be insoluble, or fail to crystallize, at least in a time frame compatible with the
discovery process.

In order to avoid such problems, structural bioinformatics should be used to design
suitable constructs at the outset of the project. As described in Chapter 18 (domain
assignments), proteins are frequently composed of discrete domains. The computational
techniques of domain detection can be combined with experimental techniques of
domain assignment (for example, limited proteolysis followed by mass spectroscopy
analysis). The designed constructs can be evaluated on the basis of their expression
levels, solubility, activity, and, of course, crystallizability.

The selection of an appropriate domain for structural studies often begins by align-
ing the sequence of the target protein with that of a protein of known structure. One
can then determine where it may be possible to truncate the protein at the amino- and
carboxy-termini. Where structures are not available, secondary structure prediction can
be used. Combining secondary structure prediction based on multiple sequence align-
ments with analysis of sequence conservation can be particularly successful. One can
often express a protein from a construct designed to start and finish where sequence
conservation is high and at the end of predicted elements of secondary structure

It should be noted that the same process can be used to guide construct design for
the production of the target protein for HTS assays. In fact, in the best cases the same
construct can be designed for both screening and structural biology.

As described in Chapter 4 (crystallography), a second hurdle in structure determi-
nation by crystallography is the so-called “phase problem.” One common solution to
this problem is molecular replacement. In molecular replacement, a model representing
some or all of the new protein is rotated and translated into the new unit cell in an
attempt to find a solution. Originally molecular replacement was only used for cases
of a specific protein in different space groups, or in cases of high sequence identity.
Greater computational power, as well as the greater wealth of known folds, has resulted
in molecular replacement being successfully applied even in cases where the starting
model exhibited only 20% sequence identity or less (Storici et al., 1999; Hong et al.,
2000). The extent to which the core of a protein is distorted with greater sequence
divergence (Chothia and Lesk, 1986) presumably will place a limit on when molecular
replacement can be used. However, even when phases are determined experimentally
(for example, through heavy atoms or selenomethionine techniques), identification of
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a suitable structural homolog at even 10% sequence identity can greatly accelerate
the interpretation of the electron density maps and of the protein structure (Bugl
et al., 2000).

Use of Protein Surrogates. Structural bioinformatics can play a key role in
structure-based drug design approaches even when the structure of the target protein
is not available; for example through the generation of a homology model or the use
of a surrogate protein. Clearly the more similar the sequences of the target protein the
better the homology model is likely to be (see Chapter 25). However, these models
are of more value if there is experimental evidence to validate their use.

When a particular target is inaccessible to structural biology, a project may rely
on the use of a related protein for structure determinations. In many cases, a surrogate
may simply be an orthologous protein from another species or a similar member of
the same gene family. Sometimes a surrogate may exhibit similarity at the structural
and functional level that does not extend to sequence, for example in the case of
thermolysin and NEP (Barclay et al., 1994).

ADMET Modeling

Potency and simple property filters such as the rule-of-five are often the main criteria
in the lead discovery stage of a drug. To design a candidate medicine from the initial
lead, however, one needs to consider a host of additional parameters that can affect
the biopharmaceutical and safety properties of the drug such as the in vivo absorption,
distribution, metabolism, excretion, and toxicology (ADMET). The tools of structural
bioinformatics, namely sequence-structure relationships and protein homology model-
ing, can be employed in the field of ADMET modeling.

The most developed work in this field is in the area of cytochrome P450 modeling
to predict drug metabolism (Ekins, de Groot, and Jones, 2001). The metabolism of a
drug by various cytochrome P450 enzymes is an important factor in the development
of a drug. The route of metabolism can affect the drug’s half-life, dose, and even
safety, since P450 polymorphisms result in differential metabolism. In the absence of
a structure of a human P450 enzyme, homology models can be employed to model the
P450 active sites. Combining structure-activity relationships with P450 protein homol-
ogy modeling enables the production of pharmacophores that are capable of predicting
compound metabolism with success (de Groot et al., 1999a; de Groot et al., 1999b).

Although the structure of no human cytochrome P450 is known, the crystal struc-
ture of the rabbit CYP2C5 was recently determined. (Williams et al., 2000). The
availability of a mammalian P450 has considerably improved many of the models
and sequence alignments of the human P450s and thus should enable the constructions
of more predictive pharmacophores for a range of metabolizing enzymes (de Groot,
Alex, and Jones).

CONCLUSION AND FUTURE DIRECTIONS

With the advent of the genome era and the expected increase in the availability of
protein structures from the introduction of structural genomics (see Chapter 29), it is
likely that in the next few years most drug discovery programs against a soluble protein
will begin with a structure or model of the target protein.

The early use of structural information in a drug discovery project can provide
a great deal of insight for the lead discovery program. Quantitative target assessment
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can play a great role in the investment decision of whether or not to pursue a project.
Many medicinal chemistry projects have floundered for the simple reason that the
binding pocket of the target did not have the required physicochemical properties
complementary to binding a potent small molecule. Thus, initial analysis of binding site
can provide a significant guide to the ultimate success of the target. A robust equivalent
to the rule-of-five for molecular targets will enable automatic target assessment for the
large number of novel structures expected from the structural genomics initiatives.

In additional to assessing targets, comparative structural bioinformatics holds
promise in identifying new drug targets from combined study of pathogen and
human genomes. In comparing active sites, computational target triaging methods
can simultaneously assess target druggability and species selectivity. Identifying
interspecies differences in the binding sites of drug targets can also be exploited in
either the choice of in vivo models or by specifically engineering animal receptors by
site directed mutagenesis to mimic the human receptor binding pocket.

Knowledge-based approaches, combined with the current explosion in sequence
and structure data, may move us to a new prospective paradigm in which it may be
possible to discover a suitable drug against a given target long before any application
is known. Combined with advances in single-nucleotide polymorphism detection, this
may make possible individualized medicines in which each patient gets a drug designed
against his or her particular form of the target (Pfost, Boyce-Jacino, and Grant, 2000).

As we move toward a situation where drug discovery projects are bathed in struc-
tural and sequence information, it is the role of the structural bioinformatician to
integrate this wealth of data accelerating drug discovery.
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CASP AND CAFASP EXPERIMENTS
AND THEIR FINDINGS

Philip E. Bourne

The prediction of the three-dimensional (3D) structure of a protein from its one-
dimensional (1D) protein sequence is a much published and debated area of structural
bioinformatics. This prediction involves the kind of fold that the given amino acid
sequence may adopt; in other words, whether it takes a new fold or one of the existing
folds. If the sequence takes one of the existing folds, which is the most suitable fold
among the known folds (fold recognition)? When fold recognition is apparent because
of good sequence similarity to one of the known structures, then the question is how
best can one model the structure of the given sequence, taking the relevant informa-
tion from existing homologous structures in the Protein Data Bank (PDB) (comparative
modeling). Alternatively, what if none of this information is available and the structure
is modeled from first principles (ab initio)?

What makes structure prediction (at least to this author’s knowledge) unique among
scientific endeavors is the manner in which progress in the field is measured. The
Critical Assessment of Structure Prediction (CASP) and the Critical Assessment of
Fully Automated Structure Prediction (CAFASP) experiments provide a measure of
this progress by attempting to measure in a quantitative way the success of many
research groups on a predefined set of structures. Beyond a measure of progress, as is
true of all good experiments, these experiments suggest new ways of addressing the
problem, and influence the results presented as subsequent CASPs and CAFASPs.

The approach is for an independent group to solicit protein targets for use in CASP
and CAFASP months in advance on their availability. The targets are NMR and X-ray
protein structures comprising one or more domains either determined and not published
or anticipated to be determined in time for review and to provide the sequence of those
targets to the groups competing in CASP and CAFASP. These groups then make a
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series of blind predictions of the 3D structure based on the protein sequence and submit
those results to a server for independent and comparative review. CAFASP predictions
are collected from prediction servers registered with CAFASP in an automated manner
within a very short (48 hours) period following the release of the target and may also
be used for subsequent CASP experiments by some groups (all CAFASP predictions
are available from the CAFASP site). CASP predictions take longer and the results of
both are ranked by a number of criteria that depend on the rules decided by the official
CASP organizers and then members of the groups gather at the biannual Asilomar
meeting to review their results and hear from members of the groups who did best or
came up with a significantly new methodology and those who assessed the different
classes of predictions.

I do not know another scientific endeavor that is so open and, from a predic-
tor’s perspective, so blatantly competitive. I see it as a testament to the character of
those scientists in the field of structural bioinformatics who are willing to share their
formative ideas and, data and have them all openly reviewed. Having a laboratory
that has competed in a minor way in two past CASPs I can tell you that it becomes
a compelling exercise and, when arriving at Asilomar and getting the proceedings
containing the results, many different emotions—surprise, joy, disappointment—all
bubble to the surface. My laboratory is not alone in participating in this endeavor.
Figure 24.1 indicates the number of groups participating in the four CASPs held since
1994. Clearly structure prediction is considered a compelling area of study by many,
who are affectionally known as “CASPers.” It is human nature to at least in some
measure regard this as an individual or at least a team effort against stiff competition.
However, to the organizers, assessors, and the U.S. federal agencies (National Institutes
of Health, National Library of Medicine and Department of Energy) that fund these
efforts, it provides a measure of global improvement and an indication of what spe-
cific areas of protein structure prediction need to be improved. Consider an example.
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Figure 24.1. Number of groups participating in CASP in 1994, 1996, 1998, and 2000.
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CASP4 reports that the protein’s structure prediction community has been unable to
significantly improve the ability to derive a model structure from a target recognized
by comparative modeling that is significantly closer to the real structure than the tar-
get from which it was derived. This conclusion is an example of a bottleneck in our
progress and will likely receive significant attention in CASP5. Other bottlenecks are
outlined below.

Much has been written about CASP and CAFASP results. There is no intent here to
repeat or even review what has already been written. Here I provide a synopsis of what
CASP and CAFASP mean to the field of structural bioinformatics and as such serves
as a forward to the three chapters that follow; chapters that review the three key areas
of protein structure prediction: comparative (also known as homology) modeling, fold
recognition (also known as threading) and ab initio, the latter having been reclassified
as “new fold methods” in CASP4 in recognition of the fact that existing structure
information is used in some way even by these methods.

The CASP experiments were run in 1994, 1996, 1998, and 2000, and CASP5
will be run in the summer of 2002. CASPs 2–4 have been extensively documented in
supplements to the journal Proteins: Structure Function and Genetics (CASP2 29(S1);
CASP3 37(S3); CASP4 45(S5)). CAFASP arose in part through recognition of the
emergence of high-throughput structure prediction techniques. Although a better pre-
diction of a single structure might be made by an expert with reference to the literature,
this manual approach takes time and does not scale to, for example, predicting struc-
ture of all genes or open reading frames in the genome of a higher organism. Fully
automated procedures are practical for large-scale predictions and they too should be
assessed, hence the emergence of CAFASP run independently for the same set of targets
as available as CASP4. In 2002 CAFASP will be more fully integrated with CASP.

WHAT PROGRESS HAS BEEN MADE?

Progress over all CASPs is summarized by Venclovas et al. (2001). In summary, some
areas have advanced and some have remained almost static. We explore this further
below for each major methodology. At CASP3 the question was posed, “When will we
be able to reliably predict a protein structure?” The answer returned at that time was
when we have determined all structures experimentally or at least have a representative
of each fold. A statement that in part led to the emergence of the structure genomics
initiative (Chapter 29), which has as one objective the filling in of protein fold space
so that comparative modeling can be more useful. As we see below, the situation is not
quite that simple. Then, as if in some form of retort, the quality of new fold predictions
improved in CASP4 with some of the contact predictions approaching a useful level
of accuracy. Detection of homologous folds at lower levels of sequence identity has
also improved. Nevertheless, the best models are still not good enough for defining
function. In part this relates to the follow-on steps of homology modeling, which are
discussed in detail in Chapter 25. For example, both comparative modeling and fold
recognition alignment of the proposed structure with the template remain a problem,
as well as subsequent improvement of the model with the template as a starting point.

Asking what progress has been made is a problem in itself, since some would say it
depends on how you measure success or failure. The CASP organizers have been inno-
vative in their evolving approach to this problem. Nevertheless, a quantitative answer
is hard to come by. Consider a couple of crude examples. First, for a multidomain
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protein, a group might do very well on predicting a single domain, but when measured
over the whole protein the rmsd is poor. The assessors have attempted to address this
situation with a variety of measures relating to, for example, the percentage of correctly
aligned residues, measurement by domain, correct positioning of biologically impor-
tant residues, positions of side chains in the core and overall, and so forth. Second,
a complete genome analysis done in batch mode identifies the structure of a protein
by matching it to a template using comparative modeling. A group spends all summer
on a single prediction of the same protein using manual techniques and all available
biological knowledge. When superimposed the two models differ by approximately
1 Å rmsd overall. However, the “summer” group were able to detect features of the
active site that led to some functional predictions of value to biologists. Meanwhile,
the “high-throughput” group missed the functional prediction, but they made useful
discoveries by modeling easier proteins located elsewhere in the genome. How do you
measure which approach is better in such a context? The simple answer is that both
approaches have merit and eventually each will contribute to progress in the other.

COMPARATIVE MODELING

As described in Chapter 25 comparative modeling can be used when there is a clear
relationship between the sequence of a protein of unknown structure to that of a
sequence of a known structure, most likely found in the Protein Data Bank (PDB;
Chapter 9). The most recent discussion on the results of comparative modeling comes
from the CASP4 experiment by Tramontano, Leplae, and Morea (2001) who undertook
a detailed analysis of those predictions in this category. While they rightly took great
pains to emphasize the difficulties in making assessments, they concluded:

• Overall little progress was made since CASP3.
• Alignment of target to template remains a problem and more importantly the

quality of the alignment does not correlate well with the level of sequence iden-
tity between template and target even at levels of sequence identity approaching
50%. The best methods rarely achieve over an 80% correct alignment with
sequence identities below 50%.

• On average biologically important regions are predicted better than the protein
as a whole. However, this finding has more to do with the spatial conservation
of key residues important to function than a testament of the methods applied.
Better prediction of biologically important regions assumes of course that the
best template is chosen on which to model.

• Loop modeling remains a significant problem.
• Improvements could occur as the database of available targets continues to grow.

The plus side is that a better template may be devised from multiple experimental
structures; the negative side is that there is more opportunity to select a com-
pletely incorrect template. Thus, correct template(s) selection becomes a greater
challenge as the databases of experimental structures increase.

• Some automated servers perform as well as individual efforts.
• Prediction of the relative orientation of domains relative to those seen in the

templates remains elusive.

In summary, we have a way to go before comparative models prove consistently
useful surrogates for experimental structures. At this time it would appear impossible
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to consistently use such models in rational drug design experiments or mutagenesis
experiments other than in active site regions, especially when the sequence identity to
the template is low.

FOLD RECOGNITION

As described in Chapter 26, fold recognition techniques deal with finding relationships
between sequence and structure that do exist, but are not immediately obvious, that
is, a successful model will be proven to have structural similarity to a known fold,
but no immediately obvious sequence similarity. Targets in this category generally
fall within the twilight and midnight zones of sequence–structure relationships (Rost,
1999). Thus, fold recognition depends on advanced sequence comparison methods,
comparisons of secondary structure, and the threading of sequences onto a variety of
templates looking for a favorable hit. One measure of the popularity of the approach
is that from CASP3 to CASP4 the number of predictions in this category rose from
3807 to 11,136. Conclusions from CASP4 in the fold recognition category are:

• Several groups submitted models that were much closer to the true structure
than any of the existing templates within the PDB. But at the same time some
of the same groups made completely incorrect predictions. Nevertheless, there
was a qualitative assessment that the top scoring groups had made significant
progress since CASP3.

• As is true for comparative modeling, prediction of multidomain proteins is more
difficult than that for single-domain proteins.

• Predictions varied widely, with a large number of poor predictions. Several of the
public servers performed better than more than one-half of the predicting groups.
As the assessors pointed out, this result would seem to indicate some groups are
less interested in their relative performance than the low probability that they
will achieve a valuable prediction. Taking this inference further, there would
seem to be a relatively small number of predictors with significant experience in
both the process and the techniques for good prediction. Or even further, the best
predictors use or have been able to provide their own methodologies, at least to
some extent, in automated servers for the benefit of the whole community.

NOVEL FOLD RECOGNITION

This class of prediction was known in earlier CASPs as ab initio fold prediction,
but was renamed in CASP4 to better define the current methodologies that are being
applied, particularly, to separate methodologies that are using sequence homology from
those that are not, by simply testing the latter ones on targets where no sequence
homology is actually known. Now ab initio is reserved for those methods that rely
only on physical principles and not on any existing structure on sequence data. Clearly
this is a fine line since those physical principles are themselves derived from known
structure and sequence, but it is meant to imply that they are used to define general
principles, rather than used directly. Chapter 28 discusses this further. The results
from CASP4 for novel fold recognition can be found in Lesk, Lo Conte, and Hubbard
(2001). Success in this category was measured in terms of tertiary structure prediction,
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secondary structure prediction, and residue-residue contacts. The conclusions in this
category from CASP4 are:

• Progress has been made in the areas of tertiary structure prediction and in contact
prediction, both using ab initio methods and knowledge-based methods.

• Secondary structure prediction still breaks down with the appearance of unusual
secondary structures, for example, very long helices that were broken into frag-
ments by all participating groups.

• Assessment should be performed with some consideration for the difficulty of
the target even though this difficulty is hard to measure. Specifically, with the
continuity in fold space there is ambiguity in what can be considered a new fold,
but if a fold is believed to be truly new that should be weighted higher than a
fold that at least has partial similarity to a known fold.

CAFASP

In recognition of the value of automated prediction servers—which in part reflect
progress in structure prediction influenced by previous CASPs—the results of
CAFASP2 were published along with the CASP4 results (Fischer et al., 2001). Overall,
according to the CAFASP assessors, only 11 groups in CASP performed better that the
automated servers and a number of those groups clearly used the automated servers
as part of their prediction strategy. However, the best human predictions do much
better than the best automated predictions. Moreover, perhaps stating the obvious,
difficult targets for humans are also difficult targets for automated methods, and there
is much room for improvement in both categories. This comparison between CASP and
CAFASP results is useful in a number of ways; most notably, it indicates to structure
predictors what elements of the expert contribution need still to be added to automated
approaches—clearly a nontrivial exercise—and for a biologist how valuable are the
predictions compared to the best expert opinion and which Internet-accessible servers
perform best.

CAFASP2 characterized five classes of server: fold recognition (19), secondary
structure prediction (8), contacts prediction (2), ab initio (2), and homology modeling
(3). The numbers in parentheses indicate how many servers were in each category.
Some general observations are:

• Targets were divided into two classes: homology modeling (15) and fold recog-
nition (26). The top ranking servers produced correct models for all homology
modeling targets, but for only 5 of the 26 fold recognition targets (of the 21 not
well predicted, 4 had new folds).

• In the fold recognition server group, the servers combined found approximately
twice the number of targets than did any server alone, speaking to the value of
a well-evaluated consensus approach.

• Secondary structure prediction accuracy was measured at 76% overall, but there
was insufficient data to provide a detailed comparative analysis.

SUMMARY

This short introductory chapter is intended simply to introduce a sense of the progress,
limitations, challenges, and likely future developments in the field of protein structure
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prediction through what seems to be a unique scientific process. CASP and CAFASP
represent a direct challenge and careful assessment of a field of study that has cap-
tured the interest of many scientists. Three of the best scientists in the field and their
colleagues provide a more detailed description of the field and how it is developing in
Chapters 25, 26, and 27.

As prediction methods have advanced the distinction between comparative mod-
eling, fold recognition, and novel fold recognition have blurred somewhat. It is a
testament to the community that as the knowledge of the algorithms evolved, World
Wide Web servers providing access to these algorithms appeared. Thus, making it
relatively straightforward for any investigator to apply a melting pot of methods to
the prediction process. What all approaches need are more targets and a continued
refinement to the evaluation process. The first need is being met in part by the PDB,
which is, with depositors’ approval, releasing sequences ahead of structure release
(see http://www.rcsb.org/pdb/status.html). Further, the structural genomics projects are
reporting their progress for all targets on a weekly basis (see http://targetdb.pdb.org/).
While there is no indication that the sequences of the latter will lead to a structure, it
is a rich source of targets (17,000 in October 2002).

Not only do CASP and CAFASP measure progress, they help define where efforts
should be directed to move the field forward. It is a testament to how far the field
has come that investigators are now turning to the unknown. Although attempting to
predict a structure that will appear experimentally helps improve the methods applied
to structure prediction, it does not further our understanding of living systems directly.
Attempts at defining the “The Most Wanted” (Abbott, 2001)—the structures most in
need of prediction to help further our understanding of the biology, and the efforts
to make those predictions, speak to a healthy future for the field of protein structure
prediction. To the many individuals who help define the CASP and CAFASP processes,
serve the community as assesors and compete in the experiments this is a tribute.
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HOMOLOGY MODELING
Elmar Krieger, Sander B. Nabuurs, and Gert Vriend

The ultimate goal of protein modeling is to predict a structure from its sequence with
an accuracy that is comparable to the best results achieved experimentally. This would
allow users to safely use rapidly generated in silico protein models in all the contexts
where today only experimental structures provide a solid basis: structure-based drug
design, analysis of protein function, interactions, antigenic behavior, and rational design
of proteins with increased stability or novel functions. In addition, protein modeling
is the only way to obtain structural information if experimental techniques fail. Many
proteins are simply too large for NMR analysis and cannot be crystallized for X-ray
diffraction.

Among the three major approaches to three-dimensional (3D) structure prediction
described in this and the following two chapters, homology modeling is the easiest
one. It is based on two major observations:

1. The structure of a protein is uniquely determined by its amino acid sequence
(Epstein, Goldberger, and Anfinsen, 1963). Knowing the sequence should, at
least in theory, suffice to obtain the structure.

2. During evolution, the structure is more stable and changes much slower than
the associated sequence, so that similar sequences adopt practically identical
structures, and distantly related sequences still fold into similar structures. This
relationship was first identified by Chothia and Lesk (1986) and later quantified
by Sander and Schneider (1991). Thanks to the exponential growth of the
Protein Data Bank (PDB), Rost (1999) could recently derive an accurate limit
for this rule, shown in Figure 25.1. As long as the length of two sequences and
the percentage of identical residues fall in the region marked as “safe,” the two
sequences are practically guaranteed to adopt a similar structure.
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Figure 25.1. The two zones of sequence alignments. Two sequences are practically guaranteed

to fold into the same structure if their length and percentage sequence identity fall into the

region marked as ‘‘safe.’’ An example of two sequences with 150 amino acids, 50% of which are

identical, is shown (gray cross).

Imagine that we want to know the structure of sequence A (150 amino acids
long, Figure 25.2, steps 1 and 2). We compare sequence A to all the sequences of
known structures stored in the PDB (using, for example, BLAST), and luckily find
a sequence B (300 amino acids long) containing a region of 150 amino acids that
match sequence A with 50% identical residues. As this match (alignment) clearly falls
in the safe zone (Fig. 25.1), we can simply take the known structure of sequence B
(the template), cut out the fragment corresponding to the aligned region, mutate those
amino acids that differ between sequences A and B, and finally arrive at our model
for structure A. Structure A is called the target and is of course not known at the
time of modeling. In practice, homology modeling is a multistep process that can be
summarized in seven steps:

1. Template recognition and initial alignment
2. Alignment correction
3. Backbone generation
4. Loop modeling
5. Side-chain modeling
6. Model optimization
7. Model validation

At almost all the steps choices have to be made. The modeler can never be sure to
make the best ones, and thus a large part of the modeling process consists of serious
thought about how to gamble between multiple seemingly similar choices. A lot of
research has been spent on teaching the computer how to make these decisions, so
that homology models can be built fully automatically. Currently, this allows mod-
elers to construct models for about 25% of the amino acids in a genome, thereby
supplementing the efforts of structural genomics projects (Sanchez and Šali, 1999,
Peitsch, Schwede, and Guex, 2000). This average value of 25% differs significantly
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Step 1 and 2: Template identification
      and alignment

Target sequence A (150 residues)

Template sequence B (arabinose-binding protein, 300 residues)

Step 3 - Backbone generationStep 4 and 5 - Loop and side chain modeling

Step 6 - Model optimization

Aligned region

Figure 25.2. The steps to homology modeling. The fragment of the template (arabinose-binding

protein) corresponding to the region aligned with the target sequence forms the basis of the

model (including conserved side chains). Loops and missing side chains are predicted, then the

model is optimized (in this case together with surrounding water molecules). Images created with

Yasara (www.yasara.com). Figure also appears in Color Figure section.
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between individual genomes, ranging from 16% (Mycoplasma pneumoniae) to 30%
(Haemophilus influenzae) and increasing steadily thanks to the continuous growth of
the PDB. For the remaining ∼75% of a genome, no template with a known structure
is available (or cannot be detected with a simple BLAST run), and one must use fold
recognition (Chapter 26), ab initio folding techniques (Chapter 27), or simply an exper-
iment to obtain structural data (Chapters 4, 5, and 6). While automated model building
provides high throughput, the evaluation of these methods during CASP (Chapter 24)
indicated that human expertise is still helpful, especially if the alignment is close to
the twilight zone (Fischer et al., 1999).

THE SEVEN STEPS TO HOMOLOGY MODELING

Step 1: Template Recognition and Initial Alignment

In the safe homology modeling zone (Fig. 25.1), the percentage identity between the
sequence of interest and a possible template is high enough to be detected with sim-
ple sequence alignment programs such as BLAST (Altschul et al., 1990) or FASTA
(Pearson, 1990).

To identify these hits, the program compares the query sequence to all the sequences
of known structures in the PDB using mainly two matrices:

1. A residue exchange matrix (Fig. 25.3). The elements of this 20 ∗ 20 matrix
define the likelihood that any two of the 20 amino acids ought to be aligned. It is
clearly seen that the values along the diagonal (representing conserved residues)
are highest, but one can also observe that exchanges between residue types with
similar physicochemical properties (for example F→ Y) get a better score than
exchanges between residue types that widely differ in their properties.

2. An alignment matrix (Fig. 25.4). The axes of this matrix correspond to the two
sequences to align, and the matrix elements are simply the values from the

Figure 25.3. A typical residue exchange or scoring matrix used by alignment algorithms. Because

the score for aligning residues A and B is normally the same as for B and A, this matrix is symmetric.
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Figure 25.4. The alignment matrix for the sequences VATTPDKSWLTV and ASTPERASWLGTA,

using the scores from Figure 25.3. The optimum path corresponding to the alignment on the right

side is shown in gray. Residues with similar properties are marked with a star (*). The dashed line

marks an alternative alignment that scores more points but requires opening a second gap.

residue exchange matrix (Fig. 25.3) for a given pair of residues. During the
alignment process, one tries to find the best path through this matrix, start-
ing from a point near the top left, and going down to the bottom right. To
make sure that no residue is used twice, one must always take at least one
step to the right and one step down. A typical alignment path is shown in
Figure 25.4. At first sight, the dashed path in the bottom right corner would
have led to a higher score. However, it requires the opening of an additional
gap in sequence A (Gly of sequence B is skipped). By comparing thousands
of sequences and sequence families, it became clear that the opening of gaps
is about as unlikely as at least a couple of nonidentical residues in a row. The
jump roughly in the middle of the matrix, however, is justified, because after
the jump we earn lots of points (5,6,5), which would have been (1,0,0) without
the jump. The alignment algorithm therefore subtracts an “opening penalty” for
every new gap and a much smaller “gap extension penalty” for every residue
that is skipped in the alignment. The gap extension penalty is smaller simply
because one gap of three residues is much more likely than three gaps of one
residue each.

In practice, one just feeds the query sequence to one of the countless BLAST
servers on the web, selects a search of the PDB, and obtains a list of hits—the modeling
templates and corresponding alignments (Fig. 25.2).

Step 2: Alignment Correction

Having identified one or more possible modeling templates using the fast methods
described above, it is time to consider more sophisticated methods to arrive at a bet-
ter alignment.

Sometimes it may be difficult to align two sequences in a region where the percent-
age sequence identity is very low. One can then use other sequences from homologous
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Sequence A:
LTLTLTLT

Sequence B:
YAYAYAYAY

−LTLTLTLT
YAYAYAYAY

LTLTLTLT−
YAYAYAYAY

or

Sequence C:
TYTYTYTYT

−LTLTLTLT−

TYTYTYTYT−

−YAYAYAYAY

Figure 25.5. A pathological alignment problem. Sequences A and B are impossible to align,

unless one considers a third sequence C from a homologous protein.

proteins to find a solution. A pathological example is shown in Figure 25.5: Suppose
you want to align the sequence LTLTLTLT with YAYAYAYAY. There are two equally
poor possibilities, and only a third sequence, TYTYTYTYT, that aligns easily to both
of them can solve the issue.

The example above introduced a very powerful concept called “multiple sequence
alignment.” Many programs are available to align a number of related sequences,
for example CLUSTALW (Thompson, Higgins, and Gibson, 1994), and the resulting
alignment contains a lot of additional information. Think about an Ala→ Glu mutation.
Relying on the matrix in Figure 25.3, this exchange always gets a score of 1. In the
3D structure of the protein, it is however very unlikely to see such an Ala→ Glu
exchange in the hydrophobic core, but on the surface this mutation is perfectly normal.
The multiple sequence alignment implicitly contains information about this structural
context. If at a certain position only exchanges between hydrophobic residues are
observed, it is highly likely that this residue is buried. To consider this knowledge
during the alignment, one uses the multiple sequence alignment to derive position-
specific scoring matrices, also called profiles (Taylor, 1986, Dodge, Schneider, and
Sander, 1998).

When building a homology model, we are in the fortunate situation of having an
almost perfect profile—the known structure of the template. We simply know that a
certain alanine sits in the protein core and must therefore not be aligned with a gluta-
mate. Multiple sequence alignments are nevertheless useful in homology modeling, for
example, to place deletions (missing residues in the model) or insertions (additional
residues in the model) only in areas where the sequences are strongly divergent. A
typical example for correcting an alignment with the help of the template is shown in
Figures 25.6 and 25.7. Although a simple sequence alignment gives the highest score
for the wrong answer (alignment 1 in Fig. 25.6), a simple look at the structure of the
template reveals that alignment 2 is correct, because it leads to a small gap, compared
to a huge hole associated with alignment 1.

Figure 25.6. Example of a sequence alignment where a three-residue deletion must be modeled.

While the first alignment appears better when considering just the sequences (a matching proline

at position 7), a look at the structure of the template leads to a different conclusion (Figure 25.7).
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Figure 25.7. Correcting an alignment based on the structure of the modeling template (Cα-trace

shown in black). While the alignment with the highest score (dark gray, also in Figure 25.6) leads

to a gap of 7.5 Å between residues 7 and 11, the second option (white) creates only a tiny hole of

1.3 Å between residues 5 and 9. This can easily be accommodated by small backbone shifts. (The

normal Cα−Cα distance of 3.8 Å has been subtracted).

Step 3: Backbone Generation

When the alignment is ready, the actual model building can start. Creating the backbone
is trivial for most of the model: One simply copies the coordinates of those template
residues that show up in the alignment with the model sequence (Fig. 25.2). If two
aligned residues differ, only the backbone coordinates (N,Cα,C and O) can be copied.
If they are the same, one can also include the side chain (at least the more rigid side
chains, since rotamers tend to be conserved).

Experimentally determined protein structures are not perfect (but still better than
models in most cases). There are countless sources of errors, ranging from poor electron
density in the X-ray diffraction map to simple human errors when preparing the PDB
file for submission. A lot of work has been spent on writing software to detect these
errors (correcting them is even more difficult), and the current count is at more than
10,000,000 problems in the 17,000 structures deposited in the PDB by the end of
2001. It is obvious that a straightforward way to build a good model is to choose
the template with the fewest errors (the PDBREPORT database [Hooft et al., 1996]
at www.cmbi.nl/gv/pdbreport can be very helpful). But what if two templates are
available, and each has a poorly determined region, but these regions are not the
same? One should clearly combine the good parts of both templates in one model—an
approach known as multiple template modeling. (The same applies if the alignments
between the model sequence and possible templates show good matches in different
regions). Although in principle multiple template modeling is a nice idea (and done
by automated modeling servers such as Swiss-Model [Peitsch, Schwede, and Guex,
2000]), it is difficult in practice to achieve results that are really closer to the true
structure than all the templates. Nevertheless, it is possible, as has been shown by
AndrejŠalis’ group in CASP4.

Step 4: Loop Modeling

In the majority of cases, the alignment between model and template sequence contains
gaps. Either gaps in the model sequence (deletions as shown in Figs. 25.6 and 25.7)
or in the template sequence (insertions). In the first case, one simply omits residues
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from the template, creating a hole in the model that must be closed. In the second
case, one takes the continuous backbone from the template, cuts it, and inserts the
missing residues. Both cases imply a conformational change of the backbone. The good
news is that conformational changes cannot happen within regular secondary structure
elements. It is therefore safe to shift all insertions or deletions in the alignment out of
helices and strands, placing them in loops and turns. The bad news is that these changes
in loop conformation are notoriously difficult to predict (one big unsolved problem in
homology modeling). To make things worse, even without insertions or deletions we
often find quite different loop conformations in template and target. Three main reasons
can be identified (Rodriguez, http://www.cmbi.kun.nl/gv/articles/text/gambling.html):

1. Surface loops tend to be involved in crystal contacts, leading to a significant
conformational change between template and target.

2. The exchange of small to bulky side chains underneath the loop pushes it
aside.

3. The mutation of a loop residue to proline or from glycine to any other residue. In
both cases, the new residue must fit into a more restricted area in the Ramachan-
dran plot, which most of the time requires conformational changes of the loop.

There are two main approaches to loop modeling:

1. Knowledge based: one searches the PDB for known loops with endpoints that
match the residues between which the loop has to be inserted, and simply
copies the loop conformation. All major molecular modeling programs and
servers support this approach (e.g., 3D-Jigsaw [Bates and Sternberg, 1999],
Insight [Dayringer, Tramontano, and Fletterick, 1986], Modeller [Šali and Blun-
dell, 1993], Swiss-Model [Peitsch, Schwede, and Guex, 2000], or WHAT IF
[Vriend, 1990]).

2. Energy based: as in true ab initio fold prediction, an energy function is used
to judge the quality of a loop. Then this function is minimized, using Monte
Carlo (Simons et al., 1999) or molecular dynamics techniques (Fiser, Do, and
Šali, 2000) to arrive at the best loop conformation. Often the energy function
is modified (e.g., smoothed) to facilitate the search (Tappura, 2001).

At least for short loops (up to 5–8 residues), the various methods have a reasonable
chance of predicting a loop conformation that superimposes well on the true structure.
As mentioned above, surface loops tend to change their conformation due to crystal
contacts. So if the prediction is made for an isolated protein and then found to differ
from the crystal structure, it might still be correct.

Step 5: Side-Chain Modeling

When we compare the side-chain conformations (rotamers) of residues that are con-
served in structurally similar proteins, we find that they often have similar χ1-angles
(i.e., the torsion angle about the Cα−Cβ bond). It is therefore possible to simply
copy conserved residues entirely from the template to the model (see also Step 3) and
achieve a higher accuracy than by copying just the backbone and repredicting the side
chains. In practice, this rule of thumb holds only at high levels of sequence identity,
when the conserved residues form networks of contacts. When they get isolated (<35%
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sequence identity), the rotamers of conserved residues may differ in up to 45% of the
cases (Sanchez and Šali, 1997).

Practically all successful approaches to side-chain placement are at least partly
knowledge based. They use libraries of common rotamers extracted from high-
resolution X-ray structures. The various rotamers are tried successively and scored
with a variety of energy functions. Intuitively, one might expect rotamer prediction to
be computationally demanding due to the combinatorial explosion—the choice of a
certain rotamer automatically affects the rotamers of all neighboring residues, which in
turn affect their neighbors and so on. With 100 residues and on average ∼5 rotamers
per residue, one would already end up at 5100 different combinations to score. A lot of
research has been spent on the development of methods to make this enormous search
space tractable (Desmet et al., 1992). The number of combinations is in fact so large,
that even nature could not try all of them during the folding process, which indicates
that there must exist mechanisms to shrink down the search space.

Beside the trivial fact that copying conserved rotamers from the template often
splits up the protein into distinct regions where rotamers can be predicted indepen-
dently, the key to handling the combinatorial explosion lies in the protein backbone.
Certain backbone conformations strongly favor certain rotamers (allowing, for example,
a hydrogen bond between side chain and backbone) and thus greatly reduce the search
space. For a given backbone conformation, there may be only one strongly populated
rotamer that can be modeled right away, thereby providing an anchor for surrounding,
more flexible side chains. An example for a backbone conformation that favors two
different tyrosine rotamers is shown in Figure 25.8. These position-specific rotamer
libraries are widely used today (de Filippis, Sander, and Vriend, 1994, Stites, Meeker,
and Shortle, 1994, Dunbrack and Karplus, 1994). To build such a library, one takes
high-resolution structures and collects all stretches of three to seven residues (depending
on the method) with a given amino acid at the center. To predict a rotamer, the corre-
sponding backbone stretch in the template is superposed on all the collected examples,

Figure 25.8. Example of a backbone-dependent rotamer library. The current backbone confor-

mation (space-filling display) favors two different rotamers for Tyrosine (sticks), which appear

about equally often in the database.
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and the possible side-chain conformations are selected from the best backbone matches
(Chinea et al., 1995).

Further evidence that the combinatorial problem of rotamer prediction is far smaller
than originally believed was found recently. Xiang and Honig (2001) first removed
one single side chain from known structures and repredicted it. In a second step,
they removed all the side chains and added them again using the same simple search
strategy. Surprisingly, it turned out that the accuracy was only marginally higher in
the much easier first case.

The prediction accuracy is usually quite high for residues in the hydrophobic core
where more than 90% of all χ1-angles fall within ±20◦ from the experimental values,
but much lower for residues on the surface where the percentage is often even below
50%. There are two reasons for this:

1. Experimental reasons: flexible side chains on the surface tend to adopt multiple
conformations, which are additionally influenced by crystal contacts. So even
experiment cannot provide one single correct answer.

2. Theoretical reasons: the energy functions used to score rotamers can easily
handle the hydrophobic packing in the core (mainly Van der Waals interactions),
but are not accurate enough to get the complicated electrostatic interactions on
the surface right, including hydrogen bonds with water molecules and associated
entropic effects.

It is important to note that the prediction accuracies given in most publications
cannot be reached in real-life applications. The reason is that the methods are evaluated
by taking a known structure, removing the side chains and repredicting them. The
algorithms thus rely on the correct backbone, which is not available in homology
modeling. The backbone of the template often differs significantly from the target.
The rotamers must thus be predicted based on an incorrect backbone and prediction
accuracies tend to be lower in this case.

Step 6: Model Optimization

The problem just mentioned above leads to a classical chicken-and-egg situation. To
predict the side-chain rotamers with high accuracy, we need the correct backbone,
which in turn depends on the rotamers and their packing. The common approach to
such a problem is an iterative one: predict the rotamers, then the resulting shifts in the
backbone, then the rotamers for the new backbone, and so on, until the procedure con-
verges. This boils down to a sequence of rotamer prediction and energy minimization
steps. The latter use the methods from the loop-modeling step above, but this time they
must be applied to the entire protein structure, not just an isolated loop. Optimizing a
complete protein requires an enormous accuracy in the energy function, because there
are many more paths leading away from the answer (the target structure) than toward
it, which is why energy minimization must be used carefully. At every minimization
step, a few big errors (like bumps, i.e., too short atomic distances) are removed while
many small errors are introduced. When the big errors are gone, the small ones start
accumulating and the model moves away from the target (Fig. 25.9). As a rule of
thumb, today’s modeling programs therefore either restrain the atom positions and/or
apply only a few hundred steps of energy minimization. In short, model optimization
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Figure 25.9. The average rmsd between models and targets during an extensive energy min-

imization of 14 homology models with two different force fields. Both force fields improve the

models during the first ∼500 energy minimization steps but then the small errors sum up in the

classic force field and guide the minimization in the wrong direction, away from the target while

the self-parameterizing force field goes in the right direction. To reach experimental accuracy,

the minimization would have to proceed all the way down to ∼0.5 Å, which is the uncertainty in

experimentally determined coordinates.

does not work until energy functions (force fields) get more accurate. Two ways to
achieve that accuracy are currently being pursued:

1. Quantum force fields: protein force fields must be fast to handle these large
molecules efficiently, energies are therefore normally expressed as a func-
tion of the positions of the atomic nuclei only. The continuous increase of
computer power has now finally made it possible to apply methods of quan-
tum chemistry to entire proteins, arriving at more accurate descriptions of the
charge distribution (Liu et al., 2001). It is however still difficult to overcome
the inherent approximations of today’s quantum chemical calculations. Attrac-
tive Van der Waals forces are, for example, so difficult to treat, that they
must often be completely omitted. While providing more accurate electrostat-
ics, the overall accuracy achieved is still about the same as in the classical
force fields.

2. Self-parameterizing force fields: the accuracy of a force field depends to a
large extent on its parameters (e.g., Van der Waals radii, atomic charges).
These parameters are usually obtained from quantum chemical calculations
on small molecules and fitting to experimental data, following elaborate rules
(Wang, Cieplak, and Kollman, 2000). By applying the force field to proteins,
one implicitly assumes that a peptide chain is just the sum of its individ-
ual small molecule building blocks—the amino acids. Alternatively, one can
just state a goal, for example, improve the models during an energy mini-
mization, and then let the force field parameterize itself while trying to opti-
mally fulfill this goal (Krieger, Koraimann, and Vriend, 2002). This method
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leads to a computationally rather expensive procedure. Take initial parame-
ters (for example, from an existing force field), change a parameter randomly,
energy minimize models, see if the result improved, keep the new force field
if yes, otherwise go back to the previous force field. With this procedure,
the force field accuracy increases enough to go in the right direction during
an energy minimization (Fig. 25.9), but experimental accuracy is still far out
of reach.

The most straightforward approach to model optimization is simply to run a molec-
ular dynamics simulation of the model. Such a simulation follows the motions of the
protein on a femtosecond (10−15 s) timescale and mimics the true folding process. One
thus hopes that the model will complete its folding and “home in” to the true structure
during the simulation. The advantage is that a molecular dynamics simulation implic-
itly contains entropic effects that are otherwise difficult to treat; the disadvantage is
that the force fields are again not accurate enough to make it work. (One must in
fact be happy if the model is not messed up during the simulation). Nevertheless, one
of the main tasks of Blue Gene, the forthcoming fastest computer in the world, will
be to run exactly this type of molecular dynamics simulations (IBM Blue Gene team,
2001). More accurate force fields will have to be available when Blue Gene goes online
in 2005.

Step 7: Model Validation

Every homology model contains errors. The number of errors (for a given method)
mainly depends on two values:

1. The percentage sequence identity between template and target. If it is greater
than 90%, the accuracy of the model can be compared to crystallographically
determined structures, except for a few individual side chains (Chothia and
Lesk, 1986; Sippl, 1993). From 50% to 90% identity, the rms error in the mod-
eled coordinates can be as large as 1.5 Å, with considerably larger local errors.
If the sequence identity drops to 25%, the alignment turns out to be the main
bottleneck for homology modeling, often leading to very large errors.

2. The number of errors in the template.

Errors in a model become less of a problem if they can be localized. It is, for
example, hardly important that a loop far away from an enzyme’s active site is placed
incorrectly. An essential step in the homology modeling process is therefore the ver-
ification of the model. There are two principally different ways to estimate errors in
a structure:

1. Calculating the model’s energy based on a force field: This method checks if
the bond lengths and bond angles are within normal ranges, and if there are
lots of bumps in the model (corresponding to a high Van der Waals energy).
Essential questions such as “Is the model folded correctly?” cannot yet be
answered this way, because completely misfolded but well-minimized models
often reach the same force field energy as the target structure (Novotny, Rashin,
and Bruccoleri, 1988). This surprising finding is mainly due to the fact that
molecular dynamics force fields do not explicitly contain entropic terms (such as
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the hydrophobic effect), but rely on the simulation to generate them. Although
this problem can be addressed by extending the force field and adding, for
example, a solvation term the major drawback is that one always obtains a
single number for the entire protein and cannot easily trace problems down to
individual residues.

2. Determination of normality indices that describe how well a given characteristic
of the model resembles the same characteristic in real structures. Many features
of protein structures are well suited for normality analysis. Most of them are
directly or indirectly based on the analysis of interatomic distances and contacts.
Some published examples are:

• General checks for the normality of bond lengths, bond and torsion angles
(Morris et al., 1992; Czaplewski et al., 2000) are good checks for the quality
of experimentally determined structures, but are less suitable for the evalu-
ation of models because the better model-building programs simply do not
make this kind of error.

• Inside/outside distributions of polar and apolar residues can be used to detect
completely misfolded models (Baumann, Frommel, and Sander, 1989).

• The radial distribution function for a given type of atom (i.e., the probability
to find certain other atoms at a given distance) can be extracted from the
library of known structures and converted into an energylike quantity, called a
“potential of mean force” (Sippl, 1990). Such a potential can easily distinguish
good contacts (e.g., between a Cγ of valine and a Cδ of isoleucine) from bad
ones (e.g., between the same Cγ of valine and the positively charged amino
group of lysine).

• If not only the distance, but also the direction of atomic contacts is taken into
account, one arrives at 3D distribution functions that can also easily identify
misfolded proteins and are good indicators of local model building problems
(Vriend and Sander, 1993).

Most methods used for the verification of models can also be applied to exper-
imental structures (and hence to the templates used for model building). A detailed
verification is essential when trying to derive new information from the model, either
to interpret or predict experimental results or plan new experiments.

In summary, it is safe to say that homology modeling is unfortunately not as easy
as stated in the beginning. Ideally, homology modeling uses threading (Chapter 26)
to improve the alignment, and ab initio folding (Chapter 27) to predict the loops
and molecular dynamics simulations with a perfect force field to home in to the true
structure. Taking these steps correctly will keep researchers busy for a long time,
leaving lots of fascinating discoveries to good old experiment.
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Sanchez R, Šali A (1999): ModBase: a database of comparative protein structure models.
Bioinformatics 15:1060–1.

Sander C, Schneider R (1991): Database of homology-derived protein structures and the
structural meaning of sequence alignment. Proteins 9:56–68.

Simons KT, Bonneau R, Ruczinski I, Baker D (1999): Ab initio structure prediction of CASP
III targets using ROSETTA. Proteins (Suppl. 3):171–6.

Sippl MJ (1990): Calculation of conformational ensembles from potentials of mean force. J Mol
Biol 213:859–83.

Sippl MJ (1993): Recognition of errors in three dimensional structures of proteins. Proteins
17:355–62.

Stites WE, Meeker AK, Shortle D (1994): Evidence for strained interactions between side-chains
and the polypeptide backbone. J Mol Biol 235:27–32.

Tappura K (2001): Influence of rotational energy barriers to the conformational search of protein
loops in molecular dynamics and ranking the conformations. Proteins 44:167–79.

Taylor WR (1986): Identification of protein sequence homology by consensus template
alignment. J Mol Biol 188:233–58.

Thompson JD, Higgins DG, Gibson TJ (1994): ClustalW: improving the sensitivity of
progressive multiple sequence alignments through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res 22:4673–80.

Vriend G (1990): WHAT IF—A molecular modeling and drug design program. J Molec
Graphics 8:52–6.

Vriend G, Sander C (1993): Quality control of protein models: directional atomic contact
analysis. J Applied Crystallogr 26:47–60.

Wang J, Cieplak P, Kollman PA (2000): How well does a restrained electrostatic potential
(RESP) model perform in calculating conformational energies of organic and biological
molecules? J Comput Chem 21:1049–74.

Xiang Z, Honig B (2001): Extending the accuracy limits of prediction for side-chain
conformations. J Mol Biol 311:421–30.



26

FOLD RECOGNITION METHODS
Adam Godzik

Despite a good qualitative understanding of the forces that shape the folding process,
present knowledge is not enough to be used for direct prediction of protein structure
from first principles, such as the fundamental equations of physics. A related but easier
problem is to recognize which of the known protein folds is likely to be similar to
the (unknown) fold of a new protein when only its amino acid sequence is known.
This has been variously called an inverse folding problem (find a sequence fitting a
structure), threading (since a sequence is being threaded through a known structure),
and finally a fold recognition problem. Solution of the fold recognition problem is a
necessary prerequisite to the solution of the general folding problem. If we are unable
to recognize a structure similar to the correct one, how could we possibly arrive at the
correct structure starting for a random one? At the same time, even the partial solution
to the fold recognition problem offers the immediate advantage of an efficient and fast
structure prediction tool.

Such considerations lead to the development of methods that attempt to recognize
possible structural similarities even in the absence of recognizable sequence similarity.
Of course, advances in sequence analysis are constantly changing the threshold between
fold recognition and sequence-based homology recognition. Therefore, in this chapter,
(example, see Figure 26.2) both sequence and structure/energy-based fold recognition
methods are discussed together.

The practical importance of the fold recognition approach to protein structure
prediction stems from the fact that very often apparently unrelated proteins adopt
similar folds. As discussed elsewhere in this volume, more than half of the newly
solved proteins thought to be unrelated to any of the known proteins turn out to have
a well-known fold. Only a few years ago, such cases were viewed as a curiosity, but
now they become almost a rule. Some folds such as a beta barrel triose phosphate
isomerase (TIM) fold, were discovered in over 20 protein superfamilies thought to be
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unrelated. Other popular folds often found in apparently unrelated protein families are
greek-key beta barrels, which are found in immunoglobulins, copper binding proteins,
several families of receptors, adhesion molecules, and so forth. Similarly, the ferrodoxin
fold is present in 36 superfamilies (SCOP, 1995). Overall, only 100 folds account for
about half of all protein superfamilies in one of the more popular protein structure
classifications, the structural classification of proteins (SCOP) database (discussed in
detail in Chapter 12 in this volume). There are several possible explanations for this
phenomenon, and it is almost certain that some examples may be found for each:

• Divergent evolution. Proteins with similar folds are actually related, but our cur-
rent sequence analysis tools are not sensitive enough to recognize very distant
homologies. Several new algorithms, such as PSI-BLAST (Altschul et al., 1997),
Hidden Markow Models (Bateman et al., 2000), and profile–profile alignment
tools (Rychlewski et al., 2000) redefined sequence similarity. Many protein fam-
ilies that were thought to be unrelated a few years ago are now firmly in the
distant homology class. With the continuous improvement of such algorithms,
we can expect that a majority of cases of “unexplained structural similarity” will
eventually be included in this class.

• Convergent evolution. Common functional requirements, such as binding to the
same classes of substrates, lead to similar structural solutions. There are very
few undisputed examples of convergent evolution and most involve similarities
of small subfragments, such as active site residues (serine proteases) or binding
patterns (DNA-binding proteins).

• Limited number of folds. Unrelated proteins end up having similar folds because
the space of possible folds is small and nature is simply running out of solu-
tions. Despite strong theoretical arguments (Ptitsyn and Finkelstein, 1980), there
are not many examples for such “accidentally” similar structures except for
very small proteins, such as three and four helical bundles. In fact, many the-
oretically predicted arrangements of secondary structure elements (Chothia and
Finkelstein, 1990) are still not seen in nature despite rapid growth of known
protein structures.

• Misguided analysis. Apparent structural similarity may result from deficien-
cies in our analysis tools and not from any actual similarity between protein
structures. For instance, SCOP (Structured Classifications of Proteins), CATH
(Class, Architecture, Topology in Homologous super family), and FSSP (Fold
classification based on Structure–Structure alignments of Proteins) structure clas-
sifications agree in only about 60% of cases (Hadley and Jones, 1999). Detection
of structural similarity is usually based on empirical criteria, most often on fitting
similarity score to an empirical distribution of random similarity scores. There-
fore, a false positive is possible when two structures are very different from all
other structures, but not really similar. Of course, predicting such similarities is
not really feasible, and also not particularly useful.

A correct choice between these possibilities is fundamental because it not only
influences our thinking about the protein sequence/structure/function relationship, but
also indicates the most efficient structure prediction strategies. Even more important,
the first two possibilities suggest that there could be functional similarities between
proteins with similar structures, either due to the evolutionary relationship between
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proteins or due to convergent evolution. This, in turn, increases the practical importance
of fold recognition that can be now viewed not only as a structure prediction, but also
a function prediction tool.

Closer analysis suggests that the first mechanism is responsible for most of the
known examples of “unexpected” structural similarity. Often the homology was pos-
tulated only after a structural similarity was discovered (Taylor, 1986; Russell and
Barton, 1992), but later accepted based on other similarities, including similarities in
function. The case of the “enolase superfamily” (Babbitt et al., 1995) is particularly
interesting because it illustrates the practical importance of establishing a homology
relationship between protein families. In this case, distant homology between eno-
lase and mandelate racemase was postulated based on extensive structural similarities
between both enzymes, and despite the lack of (then) recognizable sequence similarity
and significant differences between their biochemical function. This hypothesis led to
the reevaluation of the enzymatic mechanisms of both proteins and the discovery that a
crucial step in two different reactions catalyzed by these two proteins is highly similar,
involving the abstraction of the α-proton of a carboxylic acid to form an enolic inter-
mediate. This discovery firmly established the homology of both enzymes and added
to our understanding of two different enzymatic reactions, opening a new venue in
designing inhibitors for both enzymes. At the same time, it made possible the structure
and function prediction for several newly discovered enzymes. At the time of this dis-
covery, fold recognition was in its infancy and none of the then available algorithms
was able to recognize a homology that distant; now this would be considered a medium
difficulty problem.

Our current understanding of the evolution at the molecular level is good enough to
describe the process of small changes and adaptations in proteins. This understanding
allows us to reliably assess relationships between proteins when their sequences are
similar. It also means that in proteins for which reliable evolutionary relationships can
be established, functions and structures had no time to diverge dramatically. At the
same time, there is no general consensus about how new protein folds and completely
new functions have emerged. Consequently, it is not clear how to study relations
between proteins when there is no clear similarity between their sequences and only
other arguments suggest that they might be related. The confusion extends to the
nomenclature used to describe specific cases. Terms such as superfamily, fold family,
and so on are used by different groups in different contexts (Doolittle, 1994). Authors
variously claim distant evolutionary relationships (Farber and Petsko, 1990), convergent
structural evolution (Lesk, 1995), or random similarities (Ptitsyn and Finkelstein, 1980)
in seemingly similar cases.

Fold recognition can be successful in each of the first three scenarios discussed
above, but it is the first one that makes it particularly useful. Protein structure prediction
is rarely a goal in itself and the real questions usually concern possible functions of
new proteins. If the predicted fold comes from a homologous (even distant) protein,
there is a good chance that some aspects of function could also be conserved. More
recent analyses of fold families suggest that usually the arrangement of active site
residues, identity of cofactors, and general features of the reaction being catalyzed
are often conserved for enzymes sharing the same fold (Todd, Orengo, and Thornton,
2001). The possibility of predicting even some aspects of function for new proteins
adds practical importance to fold recognition, despite its humble origins as a poor man
version of the protein-folding problem.
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THEORETICAL BACKGROUND FOR FOLD RECOGNITION

Two different perspectives dominate theoretical studies of proteins and as a result, there
are two different classes of fold recognition algorithms. Roughly, these algorithms
could be called biological and physical because to some extent they embody the
research philosophies of these two disciplines. A biologist strives to explain the nat-
ural world in terms of patterns of evolution. In a tradition that reaches to Aristotle
and Carolus Linnaeus, biologists identify, describe and classify the diversity of life
to reveal the patterns of evolution. Following in this spirit, molecular biologists study
proteins very much like eighteenth and nineteenth century naturalists studied plant and
animal species. Proteins are described and classified into families and analyzed for
patterns of mutations at various positions along the sequence. The sequence similarity
between proteins from different species forms the basis of molecular phylogenetics,
which now rivals traditional morphological phylogenetics in terms of analysis of the
relationships between species. It is often extended to study relations between entire
processes, such as regulatory networks and metabolic pathways or between subpop-
ulations within species. In contrast, a physicist seeks to explain nature in terms of
fundamental laws, with similarities between systems being just manifestations of the
same laws at work. In this spirit, protein structure is seen as a complex shape defined by
specific interactions between amino acids along the chain. Different sequences adopt-
ing similar folds are viewed as multiple solutions to the same minimization problem
and fold recognition problem can be formulated as a constrained minimization where
only some points in conformational space are being considered.

There are many problems that are easily understood and studied within one app-
roach. For closely related proteins, it is possible to build reliable evolutionary trees and
analyze the relationships between the organisms from which they came without any
reference to the fact that these proteins fold to the same structure adopting a free energy
minimum in solution. For studying the short-time dynamics of side-chain movements
in proteins or for predicting the results of a point mutation we may not care about how
this enzyme evolved. But many problems require insights from both perspectives. Why
do some proteins have very similar structures and yet perform very different functions?
Why do others have similar functions but their structures are different? How can we
design a good drug that would bind to the target even if the target would undergo a
mutation? How can we predict when and how function would diverge between distantly
related proteins?

In this chapter, we show how these two views of the protein led to the development
of two distinct classes of fold recognition algorithms. We discuss how the further
progress of this and other areas of protein structure prediction relies on successfully
merging these two approaches. The first part discusses the molecular evolution of
proteins and how understanding of this process led to the development of more sensitive
algorithms for comparison of protein sequences. The second part presents a physicist’s
view of the protein world, concentrating on ideas of energy, potentials of mean force,
and free energy and describes prediction methods that use this language to recognize
a possible fold of a new sequence.

In most of this chapter, we study questions of similarities and differences between
proteins and the question of relations between them. Therefore, the term homology
will be used only to denote an implied evolutionary relationship between proteins. In
contrast, the terms analogy or similarity will be used to describe the similarity between
two sequences or structures without implying any relationship between them.
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PROTEINS AS SEEN BY A BIOLOGIST

Molecular Evolution, Sequence Similarity, and Protein Homology

Since protein sequences first became available, researchers realized that sequences of
homologous proteins from related organisms are very similar. The difference grows
with an increasing evolutionary distance between species, which corresponds very
well to the known mechanisms of DNA replication and repair. This observation led
to the development of sequence alignment methods (Doolittle, 1996), which attempt
to find an optimal alignment between the sequences of two (or more) proteins being
compared. Since homologous proteins by definition evolved from a common ancestor,
we expect that a series of mutations, deletions, and insertions led from the common
ancestor to both modern sequences. A list of such elementary steps is equivalent to a
unique alignment. When possible homology between two proteins is considered, the
null hypothesis is that the two sequences do not come from the common ancestor.
The comparison of their sequences should be similar to that of a comparison between
two random strings of letters. Therefore, if a larger than random similarity is found, it
is generally assumed that such proteins are homologous. This connection is so strong
that sequence similarity is de facto used as a synonym of homology, despite the fact
that homology is a much stronger concept and the two are not equivalent. At the same
time, two proteins may be homologous despite lack of an easily recognizable sequence
similarity.

Once the homology is established, we can predict the structure and function of
new proteins reasoning by analogy, assuming that in evolution at least some aspects of
function are conserved. The rule that strong sequence similarity is equivalent to strong
structure and function similarity is the only reliable prediction rule discovered so far.
Homology modeling discussed in Chapter 25 in this volume turned this general rule into
a powerful prediction method. Since the 1960s, the efforts of X-ray crystallographers
and, more recently, NMR spectroscopists yielded thousands of protein structures, and
biochemists have characterized tens of thousands of proteins. These proteins, with
their sequences and/or structures available in public databases, form a rich source of
knowledge that can be used to identify newly sequenced proteins. To apply analogy
reasoning, two problems must be solved. First, the similarity must be recognized,
which for distant homologs may not be trivial. Second, the detailed alignment, that
is, residue-by-residue equivalence table between the two proteins must be constructed.
Interestingly, the former problem turns out to be much more difficult that the first
(Jaroszewski, Rychlewski, and Godzik, 2000).

Protein Sequence Analysis

Sequence comparison is a well-developed scientific field (Doolittle, 1996; Waterman,
1995; Gribskov and Dereveux, 1991). With rigorous mathematical techniques similar
to those in telecommunication signal analysis, two protein sequences are treated as
two strings of characters and the similarity between them is compared to that expected
by chance between random strings. If the similarity is larger than that expected by
chance, common ancestry is assumed and both proteins are identified as homologous,
with subsequent assertions concerning their structure and function.

The similarity between two sequence strings is usually defined as the sum of
similarities between residues in both proteins at equivalent positions. In the example
illustrated in Figure 26.1, identical residues are denoted by vertical bars. A scoring
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1 : PLGEAALKGPMMKKEQAYSLTFTEAGTYDYHITPHP--EFMRGKVVV
         |         | || |  | |   ||||          |

2 : GAEK--FKSKINE---NYVLTVTQPGAYLVKITPHYAMGMIALIAVG

Figure 26.1. An example of a sequence alignment between two proteins.

matrix, giving a numerical score for aligning any two amino acids, defines a similarity.
The similarity score ranges from large and positive (for the same residue in both
positions), to smaller and positive (for residues with similar features, such as valine
and leucine) to large and negative (for very different residues). Scoring based on
minimizing the difference between two protein sequences is also possible.

S =
n∑

i

MM (Ai,BAB(i)), (26.1)

where MM is the mutation matrix and AB(i) is the residue equivalent to i in sequence B.
Many different similarity matrices are used in literature with several of the best quite
similar to each other despite different assumptions used in their derivation (Tomii
and Kanehisa, 1996; Frishman and Argos, 1996). An important feature of the scoring
function such as in Eq. (26.1) is that it is additive or local; in other words, score for
one position does not depend on the alignment (or on residues) in another position.

Gaps and insertions in both sequences, such as seen in Figure 26.1, are necessary
for the optimal alignment. This is in full agreement with our knowledge of evolution
at the molecular level, where mutations as well as deletions and insertions in DNA
sequences are possible. The optimal alignment with gaps can be found by dynamic
programming (Needelman and Wunsch, 1970; Smith and Waterman, 1981). Alterna-
tively, similar sequences can be identified by searching for high scoring fragments
(HSF) (Altschul et al., 1990), the uninterrupted alignment fragments, presented as
highlighted boxes in Figure 26.1. Software tools, such as BLAST (Altschul et al.,
1990 (now updated to PSI-BLAST [Altschul et al., 1997]) or FASTA (Pearson and
Miller, 1992) became standards in searching for similar sequences in protein databases
and are easily available as software packages (GCG, 1991) or WEB servers. Other sets
of tools, such as CLUSTALW (Higgins and Gibson, 1995) or PileUp (GCG, 1991),
address questions of organizing a family of homologous proteins into a family tree.

Unfortunately, despite their solid theoretical foundations, all methods and algo-
rithms used in sequence analysis face the same problem. With increasing evolutionary
distance, sequence similarity between homologous proteins fades. Using simple align-
ment tools and mutation matrix scoring, it is increasingly difficult to distinguish the
homology from the null hypothesis of random similarity. This is referred to as the
“twilight zone” of sequence similarities and corresponds to about 25% of identical
amino acids in an optimal alignment between protein pairs. In other words, at the level
of about 25% sequence identity it is equally likely to find a spurious homology as it
is to find a true homology. This value strongly depends on the length of the align-
ment, as illustrated by well-known examples of identical pentapeptides with different
structures (Kabsch and Sander, 1985; Argos, 1987) and analyzed in detail for pairs
of similar structures (Sander and Schneider, 1991). Even for whole proteins, there are
spurious sequence similarities at such levels. For instance, hypoxantine guanine phos-
phosibosyltransferase (Protein Data Bank [PDB] code 1 hmp) and the coat protein of a



PROTE INS AS SEEN BY A BIOLOGIST 531

poliovirus (1 piv) share an 80-amino acid fragment with over 40% sequence identity,
despite the lack of any structure or function similarity. This and many other examples
of spurious similarities around 25% sequence identity illustrate how dangerous it is to
assume homology using sequence similarity as the only argument.

In general, homologous proteins that can be reliably identified using simple
sequence similarity searches are usually closely related, with little or no variation
in function and generally very similar structures.

Protein Families and Multiple Alignments

The diversity of sequences in a family of homologous proteins captures successful
biological experiments in mutating a protein coding sequence without destroying its
function, and what follows, its structure. We can assume that with very few excep-
tions of pseudogenes or dramatic changes of function between paralogous proteins, the
mutations destroying a structure of a protein would not be represented among proteins
existing in nature. Therefore, the analysis of a pattern of mutations in homologous
families can provide us with information about the importance of various positions
along the sequence and, indirectly, of types of restrictions placed on a given position
by the protein function and structure. For instance, we can expect that positions that
are easily mutated are not important either for function or for structure and are most
likely located in exposed loops or turns. In contrast, a position in the hydrophobic
core of a protein would easily accommodate only some types of mutations (hydrophob
to hydrophob) but not others (hydrophob to hydrophil). In the same way, residues in
active sites, on the surface, on the interface between protein domains—all have their
own rules, stemming from the fact that similar mutations at different positions would
lead to different effects for the entire protein and some would be easily accepted, while
others will not. For this reason, a uniform mutation matrix, the same at every position
along the sequence, does not provide a good description of the evolutionary process
under strong pressure of preserving the structure and function of a protein. A set of
position-specific mutation rules can be derived from the analysis of a multiple align-

T0116 - X-ray structure Submitted model

Figure 26.2. A successful example of a fold prediction using a profile–profile alignment pro-

gram FFAS. A comparison of the predicted and experimental structure of CASP4 target 116 (see

the text for the discussion of the CASP experiment). The score of the alignment was statistically

significant with the e.value of e-2, despite the very low sequence similarity between the target

and the template of 10% identical residues.
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LRRLLPDDTHIMAVVKANAYGHGDVQVARTALEAGASRLAVAFLDEALALREKGIEAP pdb|1SFT|A
FRQYVGPKTNLMAVVKADAYGHGAVRVAQTALQAGADWLAIATLGEGIELREAGITAP ALR_SYNY3

MKKHIGEHVHLMAVEKANAYGHGDAETAKAALDAGASCLAMAILDEAISLRKKGLKAP ALR_BACSU
LRE-LAPASKLVAVVKANAYGHGLLETART-LPD-ADAFGVARLEEALRLRAGGITQP ALR1_SALTY

LRE-LAPASKMVAVVKANAYGHGLLETART-LPD-ADAFGVARLEEALRLRAGGITKP ALR1_ECOLI

Figure 26.3. An example of a multiple alignment: the small part of the family of alanine

racemase.

ment of a homologous family and subsequently used to align new sequences in this
family. This idea, in various forms and under different names introduced by several
groups (profile, position-specific mutation matrix, or Hidden Markov Models of pro-
tein families), allowed sequence analysis methods to break through the twilight zone
and reliably recognize distant homologs even when their sequence identity was much
below the 25% identity and comparison of single sequences appeared random.

An entire class of distant homology recognition methods evolved from the analysis
of mutation patterns in homologous families (see Figure 26.3 for an example of a
multiple alignment). A pattern of sequence variation along the sequence can be used to
identify positions where some specific structural and/or functional requirements restrict
variation, even without a full understanding of these restrictions. It is important to note
that techniques used to recognize protein folds by comparing sequences (or sequence
profiles), while often treated as part of fold recognition field, also can be used for more
general distant homology recognition problem whether or not the distant homologs have
known structure. When applied to fold recognition, these methods explicitly search
for proteins from the first of the groups discussed above, the diverging homologous
proteins. Distant homology recognition methods closely compete with threading, that
is, energy-based fold recognition and in recent years seems to be gaining the upper
hand (see later in the chapter).

From the time this idea was introduced in 1987 (Gribskov, McLachlan, and Eisen-
berg, 1987), it remained on the forefront of the sequence analysis field. For instance,
several top algorithms in the last Critical Assessment of Structure Prediction (CASP4)
meeting belong to this category. In recent years, it gained even more popularity as
it was implemented in PSI-BLAST, the newest variant of the most popular sequence
alignment program BLAST (Altschul et al., 1997). There are many variants and specific
implementations of this basic idea (see Table 26.2) with most differences occurring in
the following areas:

• Multiple alignment construction. Simultaneous alignment of several sequences is
an NP-hard computational problem (Just, 2001), so most algorithms use heuristic
approaches, ranging from hierarchical build-up procedures (PSI-BLAST, Pile-
Up) through constructing an approximate phylogenetic tree and using it as a
guide in alignment calculation (clustalw Higgins and Gibson, 1995; Jeanmougin
et al., 1998) to stochastic minimization techniques, such as simulated annealing
(Godzik and Skolnick, 1994) or Hidden Markov Models (Karplus et al., 1997).

• How to analyze the multiple alignment? How to extract the most relevant infor-
mation from the multiple alignment? For instance, there are large groups of
closely related proteins that do not add much information. Some algorithms
simply average the composition at the aligned positions (GCG-Profile) or try to
maximize the information content at each position (PSI-BLAST), whereas others
calculate sequence weights from the matrix of interfamily similarities (FFAS).
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• How is the similarity between a representation of a family and a sequence (or a
second family) calculated? Some methods compare a representation of a family
(profile, position-specific mutation matrix, Hidden Markov Model) to a sequence
(GCG-Profile or PSI-BLAST), others compare two families (BLOCKS, FFAS).
Also specifics of the scoring methods vary between methods.

Table 26.1 summarizes differences between several leading profile alignment algo-
rithms. It is interesting to note that despite very different mathematical formulation
(profile methods, position-specific mutation matrix methods, or Hidden Markov Model
based methods), methods are essentially equivalent and use very similar concepts
despite very different mathematical notation.

PROTEINS AS SEEN BY A PHYSICIST

All the fold recognition methods discussed so far are based on homology recognition,
that is, they assume that structural similarity results from the distant relation between
the two proteins. Thus the hypothesis being tested was whether or not a new protein
sequence belongs to a given family of proteins with a specific set of mutation rules.
The structure was not used directly and entered the picture only by restricting accepted
mutations in different ways at different positions. At the same time, most proteins fold
on their own (sometimes with the help of chaperones acting as catalysts of folding),
without checking what the structure of their homologs is in databases but following
physical laws governing their behavior.

According to the widely accepted “thermodynamic hypothesis,” the native confor-
mation of a protein corresponds to a global free energy minimum of the protein/solvent
system (Anfinsen, 1973; Privalov and Gill, 1988). Therefore, having a correct energy
function, one could use the tools of computational physics to search for the native
structure in conformational space. Despite many important advances (Bonneau et al.,
2001), this approach is still unable to reliably predict a previously unknown structure
of a protein for which only a sequence is known. Two principal problems facing the
ab initio prediction of protein structure are the lack of adequate molecular potentials
and the enormous size of the conformational space of even the smallest protein. Com-
paring the energy of the same system in two (or more) conformations, as done in fold
recognition methods, avoids the latter problem, but unfortunately, as will be discussed
later, introduces many new complications.

Energy-based fold recognition methods can be compared to minimization by a
grid search, where the grid points where the energy is being calculated are based
on known protein structures. Because of the visual analogy of energy calculations
using a sequence of one protein forced (threaded through) to adopt a structure of
another, energy-based fold recognition was called threading (Bryant and Lawrence,
1993; Godzik and Skolnick, 1992a). Since large structural databases must be scanned,
energy calculations in threading algorithms by necessity must be optimized for speed.
Many different threading algorithms have been developed (Bryant and Lawrence, 1993;
Finkelstein and Reva, 1990; Bowie, Luethy, and Eisenberg, 1991; Sippl and Weitckus,
1992; Jones, Taylor, and Thornton, 1992; Godzik, Skolnick, and Kolinski, 1992b;
Maiorov and Crippen, 1992; Ouzounis et al., 1993; Matsuo and Nishikawa, 1994; Yi
and Lander, 1994; Wilmanns and Eisenberg, 1995; Thiele, Zimmer, and Lengauer,
1995; Selbig, 1995; Lathrop and Smith, 1996; Alexandrov, Nussinov, and Zimmer,
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1996; Tropsha et al., 1996; Koretke, Luthey-Shulten, and Wolynes, 1996; Russell,
Copley, and Barton, 1996; Jaroszewski et al., 1998). In all cases, threading algorithms
followed the paradigm of sequence alignment with its basic steps of identifying the
possible template and building the alignment. As a result, the threading approach to
structure prediction has limitations similar to sequence-based fold recognition. First
and foremost, an example of the correct structure must exist in the structural database
that is being screened. If not, the method will fail. Then, the quality of the model is
limited by the extent of actual structural similarity between the template and the probe
structure.

Force Fields for Simulations and Threading

To speed up energy calculations, the full three-dimensional structure of a protein is
usually simplified. Each level of simplification effects the way the energy of the system
is calculated. There are less possible interaction centers and more degrees of freedom
are averaged. The interaction energy between generalized centers becomes a potential
of mean force (Hill, 1960). By averaging over fast changing degrees of freedom, such
as bond vibrations and positions of solvent molecules, potentials of mean force are more
adequate to describe long time processes such as folding, despite some loss of accuracy
because of the loss of many details. For instance, it can be shown that potentials
of mean force can easily distinguish grossly misfolded proteins from their correctly
folded counterparts, something that atom–atom molecular potentials are unable to do
(Novotny, Brucolleri, and Karplus, 1984).

In principle, it is possible to derive potentials of mean force from simulation
by explicitly averaging fast degrees of freedom. This averaging is done routinely in
simulations for simple molecular liquids where accurate potentials of mean force can
be obtained by averaging vibrational degrees of freedom. However, for complicated
systems such as proteins, averaging is not possible and parameters are usually obtained
from the analysis of regularities in experimentally determined protein structures. There
have been many derivations of empirical interaction parameter sets, starting from 1976
(Tanaka and Scheraga, 1976) and continuing until today. Several detailed reviews were
published recently (Rooman and Wodak, 1995; Godzik, Kolinski, and Skolnick, 1995;
Tobi et al., 2000) and a compilation of existing parameter sets is available through the
author’s Web page at bioinformatics.burnham.org. There are still many unanswered
questions lingering over the theoretical foundations of derivations of knowledge-based
interaction parameters and we can expect significant progress in this area.

Despite the lack of complete success as measured by the ability to predict protein
structures from their amino acid sequence alone, existing energy parameters adequately
capture many features of interactions within proteins. Potentials of mean force derived
from the statistical analysis of interaction regularities in proteins can reliably recog-
nize grossly misfolded structures or wrong crystallographic models (Luethy, Bowie,
and Eisenberg, 1992), assess the quality of models prepared in homology modeling
(Jaroszewski, Pawlowski, and Godzik, 1998), and capture subtle changes to protein
structure models introduced during refinement of crystallographic structures (Szczesny
et al., 2002). And of course, the same potentials can be used in fold recognition.

Threading Approximations

Using energy to recognize similarity between distant homologs leads to several unique
challenges. One of the most important ones is that the energy stabilizing a protein
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structure comes from interactions between side chains distant in sequence. Scoring
of alignments in a sequence-based comparison is based on Eq. (26.1) or its variants,
where all contributions to the total score come from comparing residues (or PSMMs
or single steps in HMM) at single positions and do not depend on gaps or deletions
introduced elsewhere in the alignment. In other words, the score is local, allowing the
fast and powerful dynamic programming algorithm to be used for alignments. Energy-
based scores are not local and alignment with nonlocal functions is an NP-complete
problem, that is, it has the same level of computational complexity as the traveling
salesman problem and other famous minimization problems (Lathrop, 1994). From the
early days of threading the non-lower nature of energy based scores forced the use of
many approximations.

The most obvious approach is to use an alignment technique that could work
with nonlocal scoring functions. This solution was used by a few groups (Bryant and
Lawrence, 1993) because of the enormous computational cost and slow convergence.
Even then it was necessary to limit the space of possible alignments by eliminating
deletions and insertions inside secondary structure elements and restricting lengths.
By making these approximations a little stronger, it was possible to use combinato-
rial brand-and-bound minimization algorithms to find a global alignment minimum
(Lathrop and Smith, 1996).

Another solution was to use two-level dynamic programming to optimize interac-
tion partners for each possible pair of aligned residues (Jones, Taylor, and Thornton,
1992). By explicitly considering only the most important interactions between strongly
interacting residues, the computational overhead was manageable and the Threader
algorithm, which used this approach, was one of the most successful early threading
algorithms.

Most other groups used approximations to energy calculations that allowed them
to use it in dynamic programming. The most common approximation was a “frozen
approximation” (Godzik, Skolnick, and Kolinski, 1992b) where interaction partners for
energy calculations were “frozen” to be the same as in the template and were updated
only after the alignment was made. Several other groups adopted this approach, which
could be iterated (interaction partners updated after alignment is calculated used to
calculate the alignment, etc. [Godzik, Skolnick, and Kolinski, 1992b; Wilmanns and
Eisenberg, 1995] or relaxed for some interactions [Thiele, Zimmer, and Lengauer,
1995]). This allowed fast alignment calculations but for a price of introducing yet
another simplification to the energy calculations. A detailed analysis of various approx-
imations and errors made in a specific threading algorithm is discussed below.

Differences between various threading algorithms are usually found in three
areas:

1. Protein model and interaction description. To speed up energy calculations, the
full three-dimensional structure of a protein is usually simplified, which pro-
foundly effects the way the energy of the system is calculated. Side chains are
described by interaction points, which could be located at Cα or Cβ positions,
special interaction points, or can encompass the entire side chain. The interac-
tion energy can be distant dependent or not, and only some parts of the protein
molecule can be included in the energy calculations.

2. Energy parameterization. There are many variants of the empirical energy
parameters derivation, that mostly differ in the assumptions about the reference
state (Godzik, 1996).
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3. Alignment algorithms. Threading energy is a nonlocal function of the alignment
between the prediction target sequence and the template structure. Dynamic pro-
gramming with frozen approximation (Godzik, Skolnick, and Kolinski, 1992b),
two-dimensional dynamic programming (Jones, Taylor, and Thornton, 1992).
Monte Carlo minimization (Bryant and Lawrence, 1993), branch-and-bound
algorithm (Lathrop and Smith, 1996), and various hybrid approaches can be
used for the alignment.

Table 26.2 brings together a short summary and comparison of various threading
algorithms, with emphasis on “pure threading” algorithms. However, in practice many
of these algorithms still rely heavily on sequence information mixing elements of clas-
sical threading and homology recognition algorithms. Most of the recently developed
algorithms or most recent updates of old algorithms, such as 3D-PSSM (Kelley, Mac-
Callum, and Sternberg, 2000), GenThreader (Jones, 1998), Bioinbgu (Fischer, 2000),
and others can be characterized a hybrid threading/homology recognition algorithms.
Also many other technical choices influence relative performance of different algo-
rithms, which are compared as “package deals” and it is difficult to establish relative
importance of various specific choices. Therefore, despite significant success of many
of these algorithms in fold prediction competitions (CASP meetings) and in provid-
ing structural insights in many specific biological problems, they have not contributed
significantly to our understanding of folding and forces that influence protein structures.

What Are the Major Sources of Errors in Threading?

In an attempt to study the limits of the topology fingerprint threading we studied
in detail the effects of various approximations on the threading results for the small
benchmark of 68 pairs (Zhang et al., 1997). Structural alignments of all pairs were
prepared using the combinatorial extension algorithm (Shindyalov and Bourne, 1998);
an example of a structural alignment is presented on Figure 26.4, with some interactions
identified by lines above and below the sequence.

The correct energy of the target protein within its own structure is the reference
point used to compare all other values. Figure 26.4 is used to illustrate the discus-
sion consisting of five approximations with the target protein residues identified by
underlined bold:

1. The correct self-threading energy, but calculated only for structure fragments
that do have corresponding fragments in the template protein with their entire
interaction environment. Only interactions that are entirely within nonaligned
fragments will be omitted.

2. The same as number 1 but only interactions with structure fragments that were
aligned to the template protein were used. Therefore, the interaction IA from
Figure 26.4 is now omitted. To contrast it with the following approximations,
we call it the “correct partners–correct interactions” (CC) approximation.

3. Interactions from the target protein and the interaction partners from the tem-
plate protein according to the structural alignment are used to calculate the
energy. Therefore, pair interactions contributing to the energy would be FL+
VL, TL+ DT and IE+ FR. This approximation is the “wrong partners–correct
interactions” (WC) approximation.
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     __   ____________   ______             _____
    |I’| |     I      | |  II  |           | III |

Template :  PLGEAALKGPMMKKEQAYSLTFTEAGTYLYSITPHP—-FMRGKVVVE
target :  GAEK--FKSKINE---NYVVTVTQPGAYDVKITPHYAMGMIALIAVF

         |____________|  |_____|  |____|   |_____|
I   II      II’       III

Figure 26.4. An example of a structural alignment between two proteins. Some specific inter-

actions, discussed in the text, are identified in each structure.

4. Interactions from the template protein and the interaction partners from the
target protein according to the structural alignment are used to calculate the
energy. In this calculation, interactions contributing to the energy would be FV,
VD and IF. This approximation is the “correct partners–wrong interactions”
(CW) approximation.

5. Finally, both interactions and interaction partners from the template protein were
used, that is, interactions FL+ VL, VL+ DF and IE+ FR. This approximation
is the “wrong partners–wrong interactions” (WW) approximation.

The correct energy, as well as approximations 1 through 3, could only be calculated
if the experimental structure of the target is known. Approximations 4 and 5 require
the correct structural alignment, so indirectly they also rely on knowing the target
structure. Therefore, all these energies are unknown for genuine predictions and again
can only be estimated using models of the target structure obtained by comparative
modeling. In practice, both the comparative modeling and the alignment procedure
based only on the target sequence are likely to introduce errors of their own.

Approximations 1 and 2 are introduced to analyze the extent of target–template
structural similarity. Approximation 3 is not particularly interesting (once we know the
correct structure, what is the point in using wrong partners). All three approximations
are included here only for the sake of completeness, and would not be used much in
the subsequent analysis.

At first the energy of one of the proteins in the pair was calculated using its own
structure and, in several steps, interaction information as supplemented by information
derived from the structure of the other protein with the same fold. The last step was
equivalent to the energy as calculated in threading. The goal of this experiment was
to identify the source of errors made in threading energy calculations. The important
point is that approximations 1–4 can be calculated only in the context of a benchmark.
Specific residue names are used in examples below to identify and differentiate different
approximations.

Approx 1: All interactions and amino acid partners from the target protein sequence
and structure FV, TD, IA, and IF were used. This is the correct self-threading energy.

Approx 2: Interactions and interaction partners from the prediction target protein
were used. However, now only interactions with structural fragments aligned to the
template protein are allowed. Therefore, the interaction IA from Figure 26.2 is now
omitted. This is the “correct amino acid partners–correct interactions” approximation.

Approx 3: Interactions from the target protein are used, but the amino acid partners
are taken from the template protein according to the structural alignment. Therefore,
interactions contributing to the energy would be FL+ VL, TL+ DT, and IE+ FR.
This is the “wrong amino acid partners–correct interactions” approximation.
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Approx 4: Interactions present in the target protein are used, but the amino acid
partners from the probe protein were used according to the structural alignment. In
this calculation, interactions contributing to the energy would be FV, VD, and IF. This
is the “correct amino acid partners–wrong interactions” approximation. Note that the
“wrong” interaction II from the template is used.

Approx 5: Finally, interactions and interaction partners from the target protein
were used, that is, interactions FL+ VL, VL+ DF and IE+ FR. Note that the “wrong”
interaction II from the template is used. This is the “wrong amino acid partners–wrong
interactions” approximation.

Approximation 5 is equivalent to the “frozen approximation” introduced to elimi-
nate the nonlocal character of the scoring function in threading (Godzik, Skolnick, and
Kolinski, 1992b). “Thawing” the interactions (updating the interaction environment)
can bring the energy calculation resulting from 5 into 4, but only if the alignment is
correct. Approximation 2 could be used if the correct alignment was known and the
structure correctly repacked to allow for changes in the interaction patterns along with
changes in sequence. Finally, the self-threading energy (approximation 1) corresponds
to the stability test of a complete, correct structure of the probe sequence. Our cur-
rent generation of the topology fingerprint threading algorithm calculates the energy
according to approximation 5. It is possible to iteratively converge to 4.

The results for the 68 pairs are presented in Figure 26.5. Of crucial importance
is the observation that the use of the correct partners–wrong interactions (approxi-
mation 4), gives a very good approximation of the correct energy. It differs, on the
average, by only 1.2 energy units per alignment fragment and 0.25 energy units per
residue. Clearly, the interaction patterns in the conserved structural fragments are close

0.05

−0.05

−0.15
0 5 10 15 20 25 30

Number of protein pair

E
ne

rg
y

35 40 45 50 55 60 65

Figure 26.5. Differences between various approximations for energy calculations. Open circles

correspond to the real energy, triangles to approximation 4, and crosses to approximation 5 (see

text for details).
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enough to be used for energy calculations. Finally, the approximation used as a first
step in the topology fingerprint threading algorithm (approximation 5) is clearly the
worst, resulting in errors that are about 6 energy units per aligned fragment on average.
In other words, the frozen approximation introduced for computational speed in the
context of the current interaction definition is terrible. Basically, the pair contribution
to the interaction energy using the frozen approximation is wrong, and the error is of
same the magnitude as the pair interaction itself.

These results suggest at least two possible ways of improving the sensitivity of
threading. One is to move beyond the “frozen approximation” to at least the “cor-
rect partners–wrong interactions” approximation. Unfortunately, the scoring function
becomes nonlocal, prohibiting the use of dynamic programming alignment (Lathrop,
1994). Another possibility is to change the interaction definition so that the energy
differences resulting from approximations 2–5 are smaller. The set of aligned proteins
can be used to select the protein representation and associated interaction scheme that
minimizes this difference.

Comparing and Assessing Various Fold Recognition Algorithms

The ultimate test of fold recognition methods is the prediction of the folds of new
proteins when only their sequences are known and before any structural information
is available. Dedicated meetings, such as the Critical Assessment Structure Predic-
tion (CASP) meeting in Asilomar, California, bring together almost all groups actively
developing fold recognition algorithms. In these meetings, structure prediction groups
are provided with sequences of proteins, which structures are about to be solved,
but are not yet publicly available. Therefore, all structure predictions are done blind,
without any knowledge of the actual structure. This scenario provides a perfect oppor-
tunity to compare the performance of various structure prediction algorithms. The last
CASP meeting took place on December 2000, and the most interesting result from that
meeting was that methods based only on the sequence information, such as Hidden
Markov Model methods (Karplus et al., 1997) or profile–profile alignment methods
(Rychlewski et al., 2000) compete with energy-only threading methods (Bryant and
Lawrence, 1993; Sippl and Weitkus, 1992) as well as with hybrid methods combin-
ing contributions both from sequence and structure (Koretke et al., 1999; Jones et al.,
1999). In the regular CASP meeting the predictions are submitted by research groups
that are free to combine results from fold prediction algorithms with other approaches,
their own intuition, biochemical knowledge, and so forth. To focus on direct com-
parison of algorithms, an automated comparison of fold prediction servers (Critical
Assessment of Fully Automated Structure Prediction [CAFASP] experiment) was ini-
tiated at CASP3 (Kelley et al., 1999; Fischer et al., 2001). To avoid comparison based
on a small number of examples, an ongoing test and comparison of fold prediction
algorithms LiveBench (Bujnicki et al., 2001) was initiated and is now in its fourth year.

However, for development of new methods, another choice is to use benchmarks,
or sets of proteins, whose structure is predicted and is known. We call them prediction
targets. For each target, its sequence is matched against a large number of proteins
with known structures (templates). The goal is to identify the most appropriate template
protein. In a benchmark, the quality of a given prediction method can be measured
by the number of targets for which the template chosen by the algorithm was indeed
similar to its real structure. One of the early benchmarks was based on 68 proteins
identified by Fisher et al. (1995) and was used to evaluate several variants of three-
dimensional profile methods developed at UCLA (1986), the RFSRV method (Fischer,
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Figure 26.6. Sensitivity plot for several sequence only fold recognition algorithms on a bench-

mark of 929 proteins identified by SCOP and DALI as being structurally similar. Number of correct

predictions for every method is shown as a function false prediction with the same level of

significance. PDB BLAST is a specific strategy of using PSI-BLAST for fold recognition, FFAS is

a profile–profile alignment described previously (Rychlewski et al., 2000), FFAS+ is the newest

algorithm developed in our group.

2000), and the GeneFold algorithm (Jaroszewski et al., 1998). Progress in automated
structure comparison and easy availability of fold classification databases make it pos-
sible to develop larger benchmarks—most popular benchmarks are based on existing
classifications of protein structures, such as SCOP.

An example of such a comprehensive benchmark of over 900 protein pairs was
built using structure clustering from DALI (1995) and SCOP (1995) databases (see
Figure 26.6). The DALI database was used for selection of protein pairs of significant
structural similarity but low sequence similarity and SCOP was used to verify the
structural similarity of the pair and to assess the level of similarity (fold, superfamily,
family). The full benchmark list (as well as a full list of results for all methods discussed
here) is available from our Web server at bioinformatics.burnham-inst.org/benchmarks
on the Fold and Function Assignment System (FFAS) page.

SUMMARY

We are still missing a basic understanding of sequence/structure/function relationships
in proteins. Analogy-based prediction algorithms remain the only reliable fold pre-
diction tools. New methods, such as threading and hybrid threading/sequence fold
recognition, can often recognize even the most distant homologues and, in some cases,
even unrelated proteins with similar overall structures. This knowledge pushed the
envelope of analogy-based function analysis to the point that the majority of newly
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sequenced genomes can be tentatively assigned to already characterized protein super-
families. However, at this evolutionary distance, fold prediction is no longer equivalent
to function prediction. Instead of having the same exact function, distantly related pro-
teins might share some functional analogy that is not obvious to the casual observer.
The main challenge facing the fold recognition field is to develop tools to follow the
structure prediction with function prediction and analysis.
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AB INITIO METHODS
Dylan Chivian, Timothy Robertson, Richard Bonneau, and David Baker

Ab initio structure prediction seeks to predict the native conformation of a protein
from the amino acid sequence alone. Such attempts are both a fundamental test of our
understanding of protein folding, and an important practical challenge in this era of
large scale genome sequencing projects, which are producing large numbers of protein
sequences for which no three-dimensional structural information is available.

Anfinsen showed forty years ago that all of the information necessary for a protein
to fold to the native state resides in the protein’s amino acid sequence (Anfinsen et al.,
1961; Anfinsen, 1973). In the absence of large kinetic barriers in the free energy land-
scape, Anfinsen’s results and those of large numbers of researchers in the intervening
years suggest that the native conformations of most proteins are the lowest free energy
conformations for their sequences (for a description of some notable exceptions, see
Baker and Agard, 1994).

Successful structure prediction requires a free energy function sufficiently close to
the true potential for the native state to be at one of the lowest free energy minima,
as well as a method for searching conformational space for low energy minima. Ab
initio structure prediction is challenging because current potential functions have lim-
ited accuracy, and the conformational space to be searched is vast. Many methods use
reduced representations, simplified potentials, and coarse search strategies in recogni-
tion of this resolution limit (Simons et al., 1997; Samudrala et al., 1999; Ortiz et al.,
1999; Pillardy et al., 2001). Encouragingly, these simplified methods are starting to
show some success in protein structure prediction (Murzin, 2001; Lesk, Lo Conte, and
Hubbard, 2001) and have advanced to the point where genome scale modeling may
become useful.
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REPRESENTATIONS OF THE POLYPEPTIDE CHAIN

The most detailed representations include all atoms of the protein and the surrounding
solvent molecules. However, representing this large number of atoms and the interac-
tions between them is quite computationally expensive, and it is not clear that this level
of detail is necessary during the phase of the search far from the native conformation.

To streamline the calculations, representations can be simplified in a variety of
ways. The use of explicit solvent molecules is usually replaced by employing implicit
solvent models. United atom representations are frequently used in which hydrogens
are drawn into their base carbon, oxygen, and nitrogen atoms. Side chains can be
represented using a limited set of conformations (Dunbrack and Karplus, 1994) that are
found to be prevalent in structures from the Protein Data Bank (PDB; see Chapter 9),
without any great loss in predictive ability. Alternatively, side-chain atoms can be
replaced entirely by locating the side-chain properties at either the centroid of the side
chain or at the beta carbon (Simons et al., 1997), which amounts to averaging over the
side-chain degrees of freedom and permits a significant performance enhancement at
the loss of some degree of specificity.

The size of the conformational space to be searched can be further reduced by
restricting the conformations available to the polypeptide backbone. Certain torsion
angle pairs are preferred by amino acids in particular local structures (Marqusee, Rob-
bins, and Baldwin, 1989; Blanco, Rivas, and Serrano, 1994; Callihan and Logan, 1999).
One may restrict the torsion angles to discrete values commonly seen in known struc-
tures, either by utilization of a small set of phi–psi pairs (Park and Levitt, 1995), by
selecting pairs from an ideal set based on predicted regular secondary structure, or by
the use of fragments from known protein structures (Sippl, Hendlich, and Lackner,
1992; Bowie and Eisenberg, 1994; Jones, 1997; Simons et al., 1997).

A method developed by our group that builds structures from protein fragments,
called Rosetta (examples of Rosetta predictions in Critical Assessment of Structure
Prediction 4 (CASP4) are shown in Figure 27.1), is based on a model of folding in
which short segments of the protein chain flicker between different local structures,
consistent with their local sequence, and folding to the native state occurs when these
local segments are oriented such that low free energy interactions are made throughout
the protein (Simons et al., 1997). In simulating this process, it is assumed that the
ensemble of local structures sampled by a given sequence segment during folding is
roughly approximated by the distribution of local structures sampled by that sequence
segment in native protein structures. A list of possible conformations is extracted
from experimental structures for each nine residue segments of the chain, and protein
tertiary structures are assembled by searching through the combinations of these short
fragments for conformations that have buried hydrophobic residues, paired beta strands,
and other low free energy features of native proteins. This strategy resolves some of the
typical problems with both the conformational search and the free energy function: The
search is greatly accelerated as switching between different possible local structures
can occur in a single Monte Carlo step, and less demands are placed on the free energy
function since local interactions are accounted for in the fragment libraries.

In the most simplified models, entire segments of contiguous regular secondary
structure are represented as rigid bodies, allowing only freedom at the junctions (Eyrich,
Standley, and Friesner, 1999). Such methods perform searches of probable arrange-
ments of the elements, thus significantly decreasing the conformational search. How-
ever, such representations lack enough detail to allow for more subtle features such as
strand twist and do not accommodate packing issues well.
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 Secreted frizzled protein 3 (1IJX)

 PPase (1I74), domain 2 MutS (1EWQ), domain 1

native                       prediction                              native                 prediction

13.8                                                              11.1

Ribosome Binding Factor A (1KKG)

native                        prediction                    native                  prediction

10.1                                                                       11.0

 Hypothetical Protein HI0442 (1J8B)

6.9                                                7.2

 ERp29 C-terminal domain (1G7D)

prediction

prediction
nativenative

Figure 27.1. Examples of ROSETTA structure predictions from CASP4 (see Chapter 24).

Native/prediction pairs are shown left-to-right, except for 1J8B and 1IJX, which are displayed

as a superposition of native and predicted structures. Values indicate Calpha root-mean-square

(rms) deviations between native and predicted structures, in angstroms. Colors represent position

along the chain from blue (N terminus) to red (C terminus). Figure also appears in Color Figure

section.

An alternative model with a long history is that of the lattice representation, in
which residues are restricted to points on a regular three-dimensional lattice, with
residues proximal in sequence occupying adjacent lattice points (Skolnick and Kolinski,
1991; Hinds and Levitt, 1994; Dill et al. 1995; Ishikawa, Yue, and Dill, 1999). Such
methods allow for very fast sampling of conformational space, but are limited in
their ability to represent some of the finer details of backbone conformations (Reva
et al., 1996).

POTENTIAL FUNCTIONS

There are two categories of potentials that may be employed in evaluating the free
energy of the peptide chain and the surrounding solvent. Molecular mechanics poten-
tials seek to model the forces that determine protein conformation using physically
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based functional forms parameterized from small molecule data or in vacuo quantum
mechanical (QM) calculations. For example, van der Waals interactions are usually
represented using a standard 6–12 potential with parameters derived from simple
liquids, whereas electrostatic interactions are modeled using Coulomb’s law with par-
tial charges derived from QM calculations on peptide substructures or from chemical
intuition. In contrast, protein structure-derived potentials or scoring functions are empir-
ically derived from experimental structures from the PDB (Sippl, 1995; Koppensteiner
and Sippl, 1998). Usually a functional form is not specified and instead pseudoener-
gies are obtained by taking the logarithm of probability distribution functions. Such
structure-derived potentials are particularly useful in conjunction with reduced com-
plexity models, where they may be viewed as representing the interactions between, for
example, side-chain centroids after averaging over all plausible positions of the atoms
not represented (Kocher, Rooman, and Wodak, 1994). Such potentials are also useful
in treating aspects of protein thermodynamics, particularly the hydrophobic effect, that
are not completely understood.

Both classes of potentials must represent the forces that determine macromolecular
conformation: solvation, electrostatic interactions including hydrogen bonds and ion
pairs, Van der Waals interactions, and, in certain cases, covalent bonds (Park, Huang,
and Levitt, 1997). Additionally, they must be applicable at a granularity that is in
keeping with that of the representation selected and the target resolution of the method.

SEARCH METHODS

In searching, as in selecting the appropriate level of detail in the representation and
in the potential, one must choose the granularity of the search based on the resolution
desired from the method. Molecular dynamics directly integrates Newton’s equations
of motion to derive the motion of a molecule in a given potential. However, the
very small step size required for numerical stability makes molecular dynamics with
full atom representation of protein and solvent impractical for de novo generation of
low-resolution models.

To accelerate conformational searching, one must employ techniques that permit
coarse sampling of the energy landscape. A variety of methods may be used in con-
junction with reduced complexity models and simplified potentials to perform broad
searches through low-resolution structures, including Metropolis Monte Carlo simu-
lated annealing (Simons et al., 1997), simulated tempering (Hansmann and Okamoto,
1997), evolutionary algorithms (Bowie and Eisenberg, 1994), and genetic algorithms
(Pedersen and Moult, 1997). Individual moves in these procedures can involve quite
large perturbations, and allow much more rapid (and more coarse) sampling of con-
formational space in a relatively short time. For example, simple torsion space Monte
Carlo procedures involve changing the backbone torsion angles of one or a small
number of residues by several degrees, which can produce quite large changes in
the Cartesian coordinates of the protein. Fragment insertion-based procedures (see
above) can speed sampling by allowing jumps between different local structures in a
single step.

A single search is unlikely to find the global minimum of the free energy land-
scape, and may instead yield a structure that has become trapped in a local minimum.
In an effort to correct for this possibility, many current methods perform numerous
conformational searches, generating an ensemble of candidate structures. Numerous
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techniques have been used to select those structures most likely to be close to the
native from the ensemble (Park and Levitt, 1996; Huang et al., 1996; Samudrala and
Moult, 1998), and future insights into features of native protein structures and prop-
erties of near-native ensembles will undoubtedly add to the arsenal of methods of
selecting the most nativelike structures. Ultimately, improvements in potential func-
tions may make identification of the most accurate models a straightforward procedure
of selecting those conformations possessing the lowest free energy (Vorobjev, Almagro,
and Hermans, 1998; Lazaridis and Karplus, 1999; Rapp and Friesner, 1999; Petrey and
Honig, 2000; Lee et al., 2001). It is possible that improved energy functions for dis-
crimination will ultimately involve a fusion of molecular mechanics-based and protein
database-derived potentials.

APPLICATIONS

Genome functional annotation and structural genomics initiatives are two areas
of research where ab initio protein structure prediction could make important
contributions.

Genome Annotation

While traditionally genome annotation has been accomplished using sequence-similarity
search tools, many factors reduce the ability of sequence homology to identify dis-
tant homologs (Russell and Pontig, 1998). Domain insertions, circular permutations,
exchange of secondary structure elements, and genetic drift all contribute to the diver-
gence of functionally related proteins over time. Thus, the annotation of open reading
frames lacking detectable sequence homology to proteins of known function represents
a promising application for ab initio models. Low-resolution ab initio predicted struc-
tures may be able to reveal structural and functional relationships between proteins
not apparent from sequence similarity alone. This concept is well illustrated by some
examples of predictions from CASP4. In the first examples (Figs. 27.2a and 27.2b), the
predicted structures were each found to be structurally related to a protein with a sim-
ilar function, but no significant sequence similarity. In the second example (Fig. 27.3),
functionally important residues were found clustered in the predicted structures. In
both cases, some of the most important insights into these proteins’ function could
have been obtained from the predicted structures alone.

Structural similarities like these may be detected using several different meth-
ods. First, predicted structures may be compared against the PDB, using a general
structure–structure comparison tool (Chapter 16). Recent experiments have found sig-
nificant matches of ab initio predictions to structural homologs of the native structures
for a variety of sequences, suggesting that current techniques may be sufficient to
detect evolutionarily distant functional homologies in this manner (Simons, Strauss,
and Baker, 2001; Bonneau et al., 2002, see also Chapter 20).

Second, ab initio structures could be probed for the presence of residues adopt-
ing conserved geometric motifs (e.g., serine protease catalytic triads). While this
approach has been applied to ab initio models with some success (Fetrow and Skol-
nick, 1998a, Fetrow, et al., 1998b), it remains unclear how to best apply the tech-
nique to low-resolution structures. In particular, some question remains as to how
ambiguous structural motifs must be in order to detect homologies in low-resolution
models.
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native prediction homolog (1NKL)

(a)

native prediction homolog (1B7E)

(b)

Figure 27.2. Potential of ab initio predcitions to detect distant protein homologies. (a) The

native structure of bacterial-lysis protein Bacteriocin AS-48 (left, PDB id 1E68) is compared to the

best ROSETTA prediction for the structure (center), and the native structure of NK-Lysin (right,

PDB id 1NKL), a functionally similar protein. (b) The native structure of domain 2 of the DNA

mismatch repair protein MutS (left, PDB id 1EWQ), is compared to the best ROSETTA prediction

for the domain (center), and a domain from the native structure of the Tn5 transposase inhibitor

(right, PDB id 1B7E). In both (a) and (b) the ab initio models of the proteins were of sufficient

quality to detect these functional homologs by the similarity of the folds in the absence of

significant sequence similarity. Figure also appears in Color Figure section.

Third, predicted structures could be used to improve the sensitivity and reliablity
of matches to sequence-based motif libraries, such as the PROSITE database (Bucher
and Bairoch, 1994). Previous work has shown that weak matches to functional motif
patterns may be filtered effectively by requiring similarity between the structures of
pattern matches and the known structural environments of particular motifs (Jonassen
et al., 2000). Therefore, it seems possible that ab initio models could provide this
structural information when high-resolution structures are unavailable.

Structural Genomics Initiatives

Structural genomics initiatives present a second opportunity for the application of ab
initio methods in several ways. First, ab initio structure prediction can help guide target
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native                                             prediction

Figure 27.3. An example of active-site conservation in ab initio models. The ROSETTA predicted

structure of domain 1 from an inorganic pyrophosphatase from Streptococcus mutans is compared

to the corresponding domain in the native structure (PDB id 1I74). Strongly conserved active site

residues are rendered as spheres along the backbone. Note the similar relative orientation of

these residues in the native and predicted structures, implying that ab initio models may be

sufficient to detect functional homologies using methods that search for functionally significant

residue arrangements. Figure also appears in Color Figure section.

selection by focusing experimental structure determination on those proteins likely to
adopt novel folds or to be of particular biological importance.

Second, although homology modeling methods have been applied on a genomic
scale (Sanchez and Sali, 1998, Sanchez and Sali, 1999), these approaches are inherently
limited by their need for at least one homolog of known structure with good coverage
and sufficient sequence similarity to be structurally equivalent (Marti-Renom et al.;
see also Chapter 25). Homologs of this quality are not always available, and therefore
homology methods tend to leave significant fractions of both sequences and genomes
improperly modeled. Ab initio techniques do not face this limitation, and thus may be
a valuable adjunct to homology methods, filling in structural gaps and producing much
more complete sets of models than could be obtained by either technique alone.

Third, even small amounts of experimental data can dramatically improve the
quality and reliability of ab initio structure prediction with the application of spatial
constraints. For example, the Rosetta method can produce moderate- to high-resolution
structures when combined with limited NMR constraints (Standley et al., 1999; Bow-
ers, Strauss, and Baker, 2000; Rohl and Baker, 2002). In addition, other sources of
experimental data such as chemical cross-linking experiments could be used, allow-
ing rapid structure determination for proteins not readily amenable to X-ray or NMR
analysis (e.g., membrane-bound proteins). Ab initio structure prediction may therefore
be useful for increasing the speed of structure determination, which is particularly
important for structural genomics.

FUTURE WORK

What are the prospects for improvement in ab initio protein structure prediction meth-
ods? Improvement in potential functions should permit the generation of more precise
and accurate structures. All atom potentials in particular seem promising for the refine-
ment of low-resolution models. Additionally, more detailed structures may require
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better fine search strategies. Even for coarse models, the sampling rate of protein
conformational space has been a limitation, as demonstrated by the tendency of ab
initio models to adopt low contact order conformations (Plaxco, Simons, and Baker,
1998). Correcting for this contact order bias through focused sampling of higher-order
conformations will require significantly more computational resources, but is likely to
improve the prediction of larger, more complicated proteins. Ideally, the development
of search strategies that do not face this local-contact bias would provide a boost to
ab initio methods.

Ab initio protein structure prediction has traditionally been an area of primarily
academic interest, attaining only slow progress. Recently, however, there have been
significant advancements in the field. There is hope that ab initio methods will con-
tinue to improve, and that this improvement will provide both fundamental insights
into the physics underlying protein folding and a valuable, practical resource for
genome analysis.
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PREDICTION IN 1D: SECONDARY
STRUCTURE, MEMBRANE HELICES,

AND ACCESSIBILITY
Burkhard Rost

No general prediction of three-dimensional (3D) structure from sequence yet. The
hypothesis that the 3D structure1 of a protein (the fold) is uniquely determined by
the specificity of the sequence has been verified for many proteins (Anfinsen, 1973).
While it is now known that particular proteins (chaperones) often play an important
role in folding (Corrales and Fersht, 1996; Martin and Hartl, 1997; Ellis, Dobson,
and Hartl, 1998), it is still generally assumed that the final structure is at the free-
energy minimum (Dobson and Karplus, 1999). Thus, all information about the native
structure of a protein is coded in the amino acid sequence, plus its native solution
environment. Can we decipher the code? Hence, can we predict 3D structure from
sequence? In principle, the code could by deciphered from physicochemical principles
(Levitt and Warshel, 1975; Hagler and Honig, 1978). In practice, the inaccuracy in
experimentally determining the basic parameters and the limited computing resources
prevent prediction of protein structure from first principles (van Gunsteren, 1993).
Therefore, the only successful structure prediction tools are knowledge-based, using
a combination of statistical theory and empirical rules. The field of protein structure
prediction advanced significantly during the 1990s (see Chapter 27). However, we can
still not predict structure from sequence. Rather, the best methods now get the basic
characteristics about a fold right some of the time (CASP4, 2000; Lesk, Lo Conte, and
Hubbard, 2001).

1Abbreviations and symbols used in this chapter appear at the end of the chapter.
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Structure prediction in 1D becomes increasingly accurate and important. An
extreme simplification of the prediction problem is to project 3D structure onto
strings of structural assignments. For example, we can assign a secondary structure
state—marked by one symbol—for each residue, or we can assign a number
for the accessibility of that residue. Such strings of per-residue assignments are
essentially one-dimensional (1D). In fact, arguably the most surprising improvements
in bioinformatics since the early 1990s may have been achieved by methods predicting
protein structure in 1D. The key to this breakthrough came through the wealth of
information about evolution contained in ever-growing databases. Moreover, prediction
accuracy continues to rise (Rost, 2001b)! This success is crucial for target selection
in structural genomics, for using structure prediction to get clues about function, and
for using simplified predictions for more sensitive database searches and predictions
of higher-dimensional aspects of protein structure (see below).

Apologies to developers! This brief synopsis of methods predicting protein struc-
ture in 1D has no chance of being fair to all developing methods for 1D protein structure
prediction. Even a restricted MEDLINE search revealed over 200 publications in the
last 12 months. Consequently, the review will be somewhat unfair to the majority of
developers. Instead, the focus lies on the small subset of most accurate or most widely
used methods.

METHODS

Secondary Structure Prediction Methods

Basic concept. The principal idea underlying most secondary structure prediction meth-
ods is the fact that segments of consecutive residues have preferences for certain
secondary structure states (Brändén and Tooze, 1991; Rost, 1996). Thus, the predic-
tion problem becomes a pattern classification problem tractable by pattern recognition
algorithms. The goal is to predict whether a residue is in a helix, strand, or in nei-
ther of the two (no regular secondary structure, often referred to as the coil or loop
state). The first generation prediction methods in the 1960s and 1970s were all based
on single amino acid propensities (Chou and Fasman, 1974; Robson, 1976; Garnier,
Osguthorpe, and Robson, 1978; Schulz and Schirmer, 1979; Fasman, 1989). Basically,
these methods compiled the probability of a particular amino acid for a particular sec-
ondary structure state. The second-generation methods dominating the scene until the
early 1990s extended the principle concept to compiling propensities for segments of
adjacent residues, that is, taking the local environment of the residues into consid-
eration. Typically methods used segments of 3–51 adjacent residues (Nishikawa and
Ooi, 1982; Nishikawa and Ooi, 1986; Deleage and Roux, 1987; Biou et al., 1988;
Bohr et al., 1988; Gascuel and Golmard, 1988; Levin and Garnier, 1988; Qian and
Sejnowski, 1988; Garnier and Robson, 1989). Basically any imaginable theoretical
algorithm had been applied to the problem of predicting secondary structure from
sequence: physicochemical principles, rule-based devices, expert systems, graph the-
ory, linear and multilinear statistics, nearest-neighbor algorithms, molecular dynamics,
and neural networks (Schulz and Schirmer, 1979; Fasman, 1989; Rost and Sander,
1996b; Rost and Sander, 2000). However, it seemed that prediction accuracy stalled at
levels around 60% of all residues correctly predicted in either of the three states: helix,
strand, or other. It was argued that the limited accuracy resulted from the fact that
all methods used only information local in sequence (input: about 3–51 consecutive
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residues). Local information was estimated to account for roughly 65% of the secondary
structure formation. Two additional problems were common to most methods developed
from 1957 to 1993a. First, predicted secondary structure segments were, on average,
only half as long as observed segments. Historically, this problem was solved for the
first time through a particular combination of neural networks (Rost and Sander, 1992;
Rost and Sander, 1993a). Second, strands were predicted at levels of accuracy only
slightly superior to random predictions. Again, the argument for this deficiency was
that the hydrogen bonds determining the formation of sheets (note: paired strands form
a sheet) are less local in sequence than the bonds responsible for helices (Chapter 17).
Again, this problem was first solved through neural networks (Rost and Sander, 1992;
Rost and Sander, 1993a). The solution was rather simple: we realized that about 20%
of the correctly predicted residues were in strands, about 30% in helices, and about
50% in nonregular secondary structure. These values are similar to the percentage of
the respective classes in proteins. This observation prompted us to simply bias the
database used for training neural networks by presenting each class equally often.
The result was a prediction well balanced between the three classes, that is, about
60% of the strand residues were predicted correctly. In practice, this was an impor-
tant advance. However, it also cast an important spotlight onto the explanation that
secondary structure formation is partially determined by nonlocal interactions. Clearly,
sheets are nonlocal structures. Nevertheless, the preferences for a segment to form a
strand or a helix appear similarly strong because both can be predicted at similar levels
of accuracy designing the appropriate prediction method (Rost and Sander, 1993a; Rost
and Sander, 1994a; Rost, 1996).

Evolutionary information key to significantly improved predictions. On the one
hand, about 67 out of 100 residues can be exchanged in a protein without changing
structure (Rost, 1999b). On the other hand, exchanges of very few residues often desta-
bilize a protein structure. The explanation for this ostensible contradiction is simple:
evolution has realized the unlikely by exploring all “neutral” mutations that do not
prevent structure formation.2 Thus, the residue exchange patterns extracted from an
aligned protein family are highly indicative of specific structural details. Furthermore,
also implies that a profile of N consecutive residues taken from alignments implicitly
contains nonlocal information since the evolutionary selection on the level of pro-
teins work on a 3D object, rather than on sequence. Early on it was realized that
this information can improve predictions (Dickerson, Timkovich, and Almassy, 1976;
Maxfield and Scheraga, 1979; Zvelebil et al., 1987). However, the breakthrough of
the third-generation methods to levels above 70% accuracy required a combination
of larger databases with more advanced algorithms (Rost and Sander, 1993a; Rost
and Sander, 2000). It was also recognized very early on that information from the
position-specific evolutionary exchange profile of a particular protein family facilitates
discovering more distant members of that family (Dickerson, Timkovich, and Almassy,
1976). Automatic database search methods successfully used position-specific profiles

2Russell Doolittle coined the term “twilight zone” for the region in which sequence similarity ceases to imply
similarity in 3D structure (Doolittle, 1986). Typically, this region begins around 33% pairwise sequence
identity for proteins that align over 100 residues (Rost, 1999b). However, the vast majority of all proteins
of similar structure have levels of sequence identity far below this mark; they populate the “midnight zone”
in which sequences diverged to random levels of similarity (Rost, 1997; Yang and Honig, 2000). This
observation may indicate that evolution had enough time to reach an equilibrium at which we can in fact
not distinguish between two different events, namely, the convergence of two different sequences to the
same structure and the divergence of sequences while maintaining structure (Rost, 1997; Rost, 1999b).
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for searching (Barton, 1996). However, the breakthrough to large-scale routine searches
has been achieved by the development of PSI-BLAST (Altschul et al., 1997) and Hid-
den Markov models (Eddy, 1998; Karplus, Barrett, and Hughey, 1998). Since the
improvement of secondary structure prediction relies significantly on the information
content of the family profile used, today’s larger databases and better search techniques
resulted in pushing prediction accuracy even higher. The current top-of-the-line sec-
ondary structure prediction methods are all based on extended profiles (Rost, 2001b;
Przybylski and Rost, 2002).

The key players. PHD was the program that surpassed the level of 70% accuracy
first (Rost and Sander, 1993a; Rost and Sander, 1994a). It uses a system of neu-
ral networks to achieve a performance well balanced between all secondary structure
classes (Fig. 28.1). Although still widely used, PHD is no longer the most accurate
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method (Rost and Eyrich, 2001; Przybylski and Rost, 2002). Similar in performance is
JPred2 (Cuff and Barton, 2000); it combines the results from various prediction meth-
ods, in particular from JNet (Cuff and Barton, 2000), NSSP (Salamov and Solovyev,
1997), PREDATOR (Frishman and Argos, 1996) and PHD (Rost, 1996). David Jones
pioneered using automated, iterative PSI-BLAST searches (Jones, 1999b). The most
important step climbed by the resulting method PSIPRED has been the detailed strat-
egy to avoid polluting the profile through unrelated proteins. To avoid this trap, the
database searched has to be filtered first (Jones, 1999b). Other than the advanced use of
PSI-BLAST, PSIPRED achieves its success through a neural network system similar to
that implemented in PHD. At the Critical Assessment for Structural Prediction (CASP)
meeting at which David Jones introduced PSIPRED, Kevin Karplus and colleagues pre-
sented their prediction method (SAM-T99sec) finding more diverged profiles through
Hidden Markov models (Karplus et al., 1999). The most important prediction method
used by SAM-T99sec is a simple neural network with two layers of hidden units.
However, the major strength of the method appears to be the quality of the alignment
used. The only method published recently that improves prediction accuracy signif-
icantly not through more divergent profiles but through the particular algorithm is
SSpro. Instead, SSpro1 is successful through the particular algorithmic improvement
implemented (Baldi et al., 1999). The principle idea of the method is to overcome the
limitations of feed-forward neural networks with an input window of relatively small
and fixed size with bidirectional recurrent neural networks (BRNN) capable of taking
the entire protein chain as input (Baldi et al., 1999; Baldi and Brunak, 2001). The
most recent improvement realized in SSpro2 resulted from combining the advanced
network architectures with PSI-BLAST profiles (Pollastri et al., 2001). Quite a different
route toward secondary structure prediction is taken by the HMMSTR/I-sites programs
(Bystroff, Thorsson, and Baker, 2000, described in more detail in Chapter 27).

Specialized method: coiled-coil predictions. A coiled coil is a bundle of several
helices assuming a side-chain packing geometry often referred to as “knobs-into-holes”
(Crick, 1953). The knobs are the side chains of one helix that pack into the hole
created by four side chains surrounding the facing helix. This supercoil slightly alters
the helix periodicity from 3.6 to 3.5 and results in the coiled-coil specific symmetry in
which every seventh residue occupies a similar position on the helix surface. The first
and fourth of the seven residues are typically hydrophobic, the other four hydrophilic,
frequently exposing the helix to solvent. These specific sequence features are at the base
of accurate predictions for coiled-coil helices (Lupas, 1996; Lupas, 1997). The most
widely used program is COILS that bases on amino acid preferences compiled for the
few coiled-coil proteins that were known at high resolution a decade ago (Lupas, Van
Dyke, and Stock, 1991). The program detects coiled-coil preferences in windows of 14,
21, and 28 residues. The longer the window the better the distinction between proteins
that have coiled-coil regions and those that do not (Lupas, 1996). If we know the precise
location of the coiled-coil regions and the multimeric state, we can predict 3D structure
for coiled-coil regions at levels of accuracy that resemble experimentally determined
structures (below 2.5Å; Nilges and Brünger, 1993; O’Donoghue and Nilges, 1997).
O’Donoghue and Nilges used the experimentally known boundaries of the coiled-coil
regions and their known multimeric state for prediction. It remains to be tested how
sensitive that 3D prediction is with respect to errors in predicting the coiled-coil regions.
Recently, Wolf, Kim, and Berger (1997) developed a method to predict the multimeric
state of a coiled-coil region. When labeling all likely coiled-coil proteins in entire
proteomes, we found that about 8–10% of all eukaryotic proteins and 2–10% of all
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proteins in archae and prokaryotes contain at least one coiled-coil region (Liu and
Rost, B. 2001b).

Solvent Accessibility Prediction Methods

Basic concept. It has long been argued that if the segments of secondary structure could
be accurately predicted, the 3D structure could be predicted by simply trying different
arrangements of the segments in space (Cohen, Sternberg, and Taylor, 1981; Monge,
Friesner, and Honig, 1994; Mumenthaler and Braun, 1995; Cohen and Presnell, 1996).
One criterion for assessing each arrangement could be to use predictions of residue
solvent accessibility (Lee and Richards, 1971; Chothia, 1976; Connolly, 1983). The
principal goal is to predict the extent to which a residue embedded in a protein structure
is accessible to solvent. Solvent accessibility can be described in several ways (Lee
and Richards, 1971; Chothia, 1976; Connolly, 1983). The most detailed fast method
compiles solvent accessibility by estimating the volume of a residue embedded in a
structure that is exposed to solvent (Fig. 28.2; note: this method was developed by
[Connolly, 1983] and later implemented in DSSP [Kabsch and Sander, 1983]). Differ-
ent residues have a different possible accessible area. The most extreme simplification
for accessibility accounts for this difference by normalizing (dividing observed value by
maximally possible value) to a two-state description, distinguishing between residues
that are buried (relative solvent accessibility <16%) and exposed (relative solvent
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between the accessibility of long extended and spherical amino acids, typically relative values

are compiled (actual area as percentage of maximally accessible area). A more simplified descrip-

tions distinguishes two states: buried (here residues numbered 1–3 and 10–12) and exposed

(here residues 4–9) residues. Since the packing density of native proteins resembles that of

crystals, values for solvent accessibility provide upper and lower limits to the number of possible

inter-residue contacts.



M ETHODS 565

accessibility 16%). The precise choice of the threshold is not well defined (Hubbard
and Blundell, 1987; Rost and Sander, 1994b). The classical method to predict acces-
sibility is to assign either of the two states, buried or exposed, according to residue
hydrophobicity, that is, very hydrophobic stretches are predicted to be buried (Richards,
1977; Tanford, 1978; Kyte and Doolittle, 1982; Sweet and Eisenberg, 1983). However,
more advanced methods have been shown to be superior to simple hydrophobicity
analyses (Holbrook, Muskal, and Kim, 1990; Mucchielli-Giorgi, Hazout, and Tuffery,
1999; Carugo, 2000; Li and Pan, 2001; Naderi-Manesh et al., 2001). Typically, these
methods use similar ways of compiling propensities of single residues or segments of
residues to be solvent accessible, as secondary structure prediction methods. For partic-
ular applications, such as using predicted solvent accessibility to predict glycosylation
sites, it seems beneficial to train neural networks on different definitions of accessibility
(Hansen et al., 1998; Gupta et al., 1999). In particular, Hansen et al. (1998) realized
alternative compilations by changing the size of the water molecule used in DSSP
(Fig. 28.2). In contrast to the situation for secondary structure, most of the information
needed to predict accessibility is contained in the preference of single residues (Rost
and Sander, 1994b). Nevertheless, using windows of adjacent residues also improves
solvent accessibility prediction significantly (Rost and Sander, 1994b; Thompson and
Goldstein, 1996).

Evolutionary information improves accessibility prediction. Solvent accessibility
at each position of the protein structure is evolutionarily conserved within sequence
families. This fact has been used to develop methods for predicting accessibility using
multiple alignment information (Rost and Sander, 1994b; Wako and Blundell, 1994;
Rost, 1996; Thompson and Goldstein, 1996; Cuff and Barton, 2000; Rost, 2001a). The
two-state (buried, exposed) prediction accuracy is above 75%, that is, more than four
percentage points higher than for methods not using alignment information. Predictions
of solvent accessibility have also been used successfully for prediction-based threading,
as a second criterion toward 3D prediction by packing secondary structure segments
according to upper and lower bounds provided by accessibility predictions, and as basis
for predicting functional sites (Rost and O’Donoghue, 1997).

Available key players. It is possible, that the exclusion of methods predicting sol-
vent accessibility from the CASP meetings (see Practical Aspects) slowed down the
progress of the field. In particular, few of the methods developed are readily available
through public servers. Prominent exceptions are the solvent accessibility predictions
by PHD (Rost and Sander, 1994b) and PROFphd (Rost, 2001a) available through
the PredictProtein server (Rost, 1996; Rost, 2000). Both use systems of neural net-
works with alignment information. The improvement of PROFphd over PHD was
achieved by (1) training the neural networks only on high-resolution structures and by
(2) using predicted secondary structure as additional input (Rost, 2001a). Technically,
both PROFphd and PHD are the only available methods predicting real values for
relative solvent accessibility on a grid of 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 (percentage
relative accessibility). Another method that improved prediction accuracy considerably
over older programs is embedded in the JPred2 server (Cuff and Barton, 2000). It uses
PSI-BLAST profiles as input to neural networks predicting accessibility in two states
(buried/exposed).

Transmembrane Helix Prediction Methods

The task. Even in the optimistic scenario that in the near future most protein structures
will be experimentally determined, one class of proteins will still represent a challenge
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for experimental determination of 3D structure: transmembrane proteins. The major
obstacle with these proteins is that they do not crystallize, and are hardly tractable
by NMR spectroscopy. Consequently, for this class of proteins structure prediction
methods are even more needed than for globular water-soluble proteins. Fortunately,
the prediction task is simplified by strong environmental constraints on transmem-
brane proteins: the lipid bilayer of the membrane reduces the degrees of freedom
making the prediction almost a 2D problem (Taylor, Jones, and Green, 1994). Two
major classes of membrane proteins are known: proteins that insert helices into the
lipid bilayer (Fig. 28.3), and proteins that form pores by β-strand barrels (von Heijne,
1996; Seshadri et al., 1998; Buchanan, 1999). Since there is not much experimental
information available on different porinlike (beta-strand barrel) membrane proteins, we
can hardly estimate prediction accuracy for this class. The situation is quite different
for helical membrane proteins. Knowing the precise location of transmembrane helices,
we can predict 3D structure by simply exploring all possible conformations (Taylor,
Jones, and Green, 1994). Although predicting transmembrane helices is simpler than
predicting globular helices, there is ample evidence that prediction accuracy has been
significantly overestimated (Möller, Croning, and Apweiler, 2001; Chen, Kerngtsky,
and Rost, 2002a).
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by the orientation of the first N-terminal residues with respect to the cell. Topology is defined

as out when the protein N-term (first residue) starts on the extracytoplasmic region (protein A),

and as in if the N-term starts on the intracytoplasmic side (proteins B and C). The lower part

explains the inside-out-rule. The differences between the positive charges are compiled for all

even and odd nonmembrane regions. If the even loops have more positive charges, the N-term

of the protein is predicted outside. This rule holds for most proteins of known topology.
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Basic concept. We can use a number of observations that constrain the problem
of predicting membrane helices: (1) TM helices are predominantly apolar and between
12 and 35 residues long (Chen and Rost, 2002b). (2) Globular regions between mem-
brane helices are typically shorter than 60 residues (Wallin and von Heijne, 1998; Liu
and Rost, 2001). (3) Most TMH proteins have a specific distribution of the positively
charged amino acids Arginine and Lysine coined the “positive-inside-rule” by Gun-
nar von Heijne (von Heijne, 1986; von Heijne, 1989). Connecting loop regions at the
inside of the membrane have more positive charges than loop regions at the outside
(Fig. 28.3). (4) Long globular regions (>60 residues) differ in their composition from
those globular regions subject to the “inside-out-rule”. Most methods simply compile
the hydrophobicity along the sequence and predict a segment to be a transmembrane
helix if the respective hydrophobicity exceeds some given threshold (Tanford, 1980;
Eisenberg et al., 1984; Klein, Kanehisa, and De Lisi, 1985; Engelman, Steitz, and
Goldman, 1986; Jones, Taylor, and Thornton, 1994; von Heijne, 1994; Hirokawa,
Boon-Chieng, and Mitaku, 1998; Phoenix, Stanworth, and Harris, 1998; Tusnady and
Simon, 1998; Harris, Wallace, and Phoenix, 2000; Lio and Vannucci, 2000). Addi-
tionally, some methods also explore the hydrophobic moment (Eisenberg et al., 1984;
von Heijne, 1996; Liu and Deber, 1999), or other membrane-specific amino acid pref-
erences (Ben-Tal et al., 1997; Monne, Hermannson, and von Heijne, 1999; Pasquier
et al., 1999; Pilpel, Ben-Tal, and Lancet, 1999). The most important step is to ade-
quately average hydrophobicity values over windows of adjacent residues (von Heijne,
1992; von Heijne, 1994). One of the major problems of hydrophobicity-based meth-
ods appears to be the poor distinction between membrane and globular proteins (Rost
et al., 1995; Möller, Croning, and Apweiler, 2001). A number of methods use the
positive-inside-rule to also predict the orientation of membrane helices (Sipos and von
Heijne, 1993; Jones, Taylor, and Thornton, 1994; Persson and Argos, 1997; Sonnham-
mer, von Heijne, and Krogh, 1998; Harris, Wallace, and Phoenix, 2000; Tusnady and
Simon, 2001).

Evolutionary information improves prediction accuracy. Using evolutionary infor-
mation also improves TMH predictions significantly (Neuwald, Liu, and Lawrences,
1995; Rost et al., 1995; Rost, Casadio, and Fariselli, 1996a; Persson and Argos, 1997).
However, the growth of the sequence databases seems to have reversed the advantage
of using evolutionary information (Chen, Kernytsky, and Rost, 2002a). Until around
1997, most membrane helices were conserved in the following sense. Assume protein
A has a TMH at positions N1–N2. Since the number of membrane helices is impor-
tant for the function of the protein, we expect that all proteins A’ that are found to be
similar to A in a database search will also have a membrane helix at the corresponding
positions N1–N2. However, precisely this assumption no longer proves correct (Chen
and Rost, 2002b). The practical result is that alignment-based predictions are much
less accurate when based on the large merger of SWISS-PROT and TrEMBL (Bairoch
and Apweiler, 2000) than when based on the smaller SWISS-PROT, only (Chen and
Rost, 2002b). Interestingly, we can explore the power of using evolutionary informa-
tion by carefully filtering the results from PSI-BLAST searches (Chen, Kernytsky, and
Rost, 2002a).

Available key players. TopPred2 is one of the classics in the field. It averages the
GES-scale of hydrophobicity (Engelman, Steitz, and Goldman, 1986) using a trapezoid
window (von Heijne, 1992; Sipos and von Heijne, 1993). MEMSAT (Jones, Taylor,
and Thornton, 1994) introduced a dynamic programming optimization to find the most
likely prediction based on statistical preferences. TMAP (Persson and Argos, 1996) uses
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statistical preferences averaged over aligned profiles. PHD combines a neural network
using evolutionary information with a dynamic programming optimization of the final
prediction (Rost et al., 1995; Rost, Casadio, and Fariselli, 1996a). DAS optimizes the
use of hydrophobicity plots (Cserzö et al., 1997). SOSUI (Hirokawa, Boon-Chieng, and
Mitaku, 1998) uses a combination of hydrophobicity and amphiphilicity preferences
to predict membrane helices. TMHMM is the most advanced—and seemingly most
accurate—current method to predict membrane helices (Sonnhammer, von Heijne, and
Krogh, 1998). It embeds a number of statistical preferences and rules into a Hidden
Markov model to optimize the prediction of the localization of membrane helices
and their orientation (note: similar concepts are used for HMMTOP [Tusnady and
Simon, 1998]).

PROGRAMS AND PUBLIC SERVERS

All methods described are available through public servers. A list of URLs and the
contact addresses are summarized in Table 28.1. Most programs listed in Table 28.1
(except HMMSTR and PSIPRE) are also available by single-click: META-PP allows
you to fill out a form with the sequence and your e-mail address once and to simultane-
ously submit your protein to a number of high-quality servers (Eyrich and Rost, 2000).
This concept of accessing many servers through one has been pioneered by the BCM-
Launcher (Smith et al., 1996), supposedly accessing the largest number of different
methods. Other combinations are given by NPSA (Combet et al., 2000), META-Poland
(Rychlewski, 2000), and ProSAL (Kleywegt, 2001). In contrast to all others, META-PP
attempts (1) to return as few results as possible by filtering out technical messages and
(2) to combine only high-quality methods. Note that both the BCM launcher and the
current GCG package (Devereux, Haeberli, and Smithies, 1984) return predictions of
secondary structure from methods that are neither state-of-the-art nor competitive with
the best method from a decade ago without indicating this to the user. A generalization
of the common interface idea is implemented in the sequence retrieval system SRS
(Etzold and Argos, 1993; Etzold, Ulyanov, and Argos, 1996), enabling simultaneous
access of most existing databases. Successively SRS starts to also incorporate the direct
access to prediction methods.

PRACTICAL ASPECTS

Evaluation of Prediction Methods

Correctly evaluating protein structure prediction is difficult. Developers of prediction
methods in bioinformatics may significantly overestimate their performance because
of the following reasons. First, it is difficult and time-consuming to correctly sepa-
rate data sets used for developing and testing. Second, estimates of performance of
the different methods are often based on different data sets. This problem frequently
originates from the rapid growth of the sequence and structure databases. Third, sin-
gle scores are usually not sufficient to describe the performance of a method. The
lack of clarity is particularly unfortunate at a time when an increasing number of
tools are made easily available through the Internet and many of the users are not
experts in the field of protein structure prediction. Two prominent examples illus-
trate this problem: (1) Transmembrane helix predictions have been estimated to yield
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T A B L E 28.1. Availability of Prediction Methods

Method Type Server Program

JPred2 jura.ebi.ac.uk:8888 James Cuff james@ebi.ac.uk
PHD acc cubic.bioc.columbia.edu/predictprotein Burkhard Rost rost@columbia.edu
PROFphd acc cubic.bioc.columbia.edu/predictprotein Burkhard Rost rost@columbia.edu

ASP sec+ cubic.bioc.columbia.edu/predictprotein Malin Young
mmyoung@sandia.gov

COILS sec cubic.bioc.columbia.edu/predictprotein Andrei Lupas
andrei.lupas@tuebingen.mpg.de

HMMSTR sec+ Chris Bystroff bystrc@rpi.edu
JPred2 sec jura.ebi.ac.uk:8888 James Cuff james@ebi.ac.uk
PHDpsi sec cubic.bioc.columbia.edu/predictprotein Burkhard Rost rost@columbia.edu
PHD sec cubic.bioc.columbia.edu/predictprotein Burkhard Rost rost@columbia.edu
PROFking sec www.aber.ac.uk/∼phiwww/prof Ross King rdk@aber.ac.uk
PROFphd sec cubic.bioc.columbia.edu/predictprotein Burkhard Rost rost@columbia.edu
PSIPRED sec insulin.brunel.ac.uk/psiform.html David Jones d.jones@cs.ucl.ac.uk
SAM-

T99sec
sec www.cse.ucsc.edu/research/compbio/

HMM-apps/T99-query.html
Kevin Karplus

karplus@cse.ucsc.edu
SSpro2 sec promoter.ics.uci.edu/BRNN-PRED Pierre Baldi pfbaldi@ics.uci.edu

DAS tmh www.sbc.su.se/∼miklos/DAS
HMMTOP tmh www.enzim.hu/hmmtop Gábor E. Tusnády tusi@enzim.hu
MEMSAT tmh insulin.brunel.ac.uk/psipred David Jones d.jones@cs.ucl.ac.uk
PHD tmh cubic.bioc.columbia.edu/predictprotein Burkhard Rost rost@columbia.edu
SOSUI tmh sosui.proteome.bio.tuat.ac.jp/

sosuiframe0.html
Takatsugu Hirokawa
sosui@biophys.bio.tuat.ac.jp

SPLIT tmh www.mbb.ki.se/tmap/index.html Davor Juretic
juretic@mapmf.pmfst.hr

TMAP tmh www.mbb.ki.se/tmap/index.html Bengt Persson
Bengt.Persson@ibp.vxu.se

TMHMM tmh www.cbs.dtu.dk/services/TMHMM-
1.0

Anders Krogh krogh@cbs.dtu.dk

Tmpred tmh www.ch.embnet.org/software/
TMPRED−form.html

Philipp Bucher
pbucher@isrecsun1.unil.ch

TopPred2 tmh www.sbc.su.se/∼erikw/TopPred22 Gunnar von Heijne
gunnar@dbb.su.se

levels above 95% per-residue accuracy more than 18 percentage points more than
seems to hold up (Chen and Rost, 2002b). (2) Many publications on predicting the
secondary structural class from amino acid composition allowed correlations between
training and testing sets. Consequently, levels of prediction accuracy published—close
to 100%—exceeded by far the theoretical possible margins—around 60% (Wang and
Yuan, 2000).

CASP: how well do experts predict protein structure? The CASP experiments
attempt to address the problem of overestimated performance (Moult et al., 1995;
Moult et al., 1997; Moult et al., 1999; Zemla, Venclovas, and Fidelis, 2001). The pro-
cedure used by CASP is: (1) Experimentalists who are about to determine the structure
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of a protein send the sequence to the CASP organizers (Zemla, Venclovas, and Fidelis,
2001). (2) Sequences are distributed to the predictors. The deadline for returning results
is given by the date that the structure will be published. (3) All predictions are evaluated
in a meeting at Asilomar. CASP resolves the bias resulting from using known protein
structures as targets. However, it often cannot provide statistically significant evalua-
tions since the number of proteins tested is too small (Marti-Renom et al., 2001; Rost
and Eyrich, 2001a). Nevertheless, CASP provides valuable insights into the perfor-
mance of prediction methods, and has become the major source of development in the
field of protein structure prediction. Due to the fact that “failing at CASP is bad for
the CV,” most predictions are submitted only after experts have studied the data in
detail. Thus, CASP intrinsically evaluates how well the best experts in the field can
predict structure.

CAFASP: how well do computers predict structure? Critical Assessment of Fully
Automated Structure Prediction (CAFASP) has recently extended CASP by testing
automatic prediction servers on the CASP proteins (Fischer et al., 1999). Although
CAFASP aims at evaluating programs rather than experts, it is still limited to a small
number of test proteins (Fischer et al., 2001; Zemla, Vanclovas, and Fidelis, 2001).
In fact, in most categories (comparative modeling, fold recognition, novel folds) did
not suffice to distinguish between the top 10 methods in a statistically significant way
(see also Chapter 27). Furthermore, for most categories, we could not even conclude
whether the field had improved over a period of two years.

EVA and LiveBench: automatic, large-scale evaluation of performance. The limi-
tations of CASP and CAFASP prompted two efforts at creating large-scale and con-
tinuously running tools that automatically assesses protein structure prediction servers:
EVA (Eyrich et al., 2001a; Eyrich et al., 2001b) and LiveBench (Bujnicki et al., 2001).
LiveBench specializes in the evaluation of fold recognition, whereas EVA analyzes
comparative modeling, contact prediction, fold recognition, and secondary structure
prediction. The EVA results for secondary structure prediction methods were essential
to conclude that these methods have improved significantly and to isolate the particular
reasons for the improvements (mostly due to growing databases) (Rost, 2001b; Rost
and Eyrich, 2001a; Przybylski and Rost, 2002).

Secondary Structure Prediction in Practice

77% right means 23% wrong! The best current methods (PSIPRED, PROFphd, SSpro)
reach levels of around 77% accuracy (percentage of residues predicted correctly in
one of the three states helix, strand, or other) (Eyrich et al., 2001b; Rost, 2001b; Rost
and Eyrich, 2001a).3 Five observations are important for using prediction methods:
(1) Levels of accuracy are averages over many proteins (Fig. 28.4a). Hence, the accu-
racy for the prediction of your protein may be much lower—or much higher—than
77%. (2) Stronger predictions are usually more accurate (Fig. 28.4b). This allows
you—to some extent—to find out whether or not the prediction for your protein is
more likely to be above or below average. (3) Often predictions go badly wrong, that
is, helices are incorrectly predicted as strands and vice versa. In fact, the best current
methods confuse helices and strands for about 3% on average of all residues (Eyrich
et al., 2001b). Encouragingly, some of these “bad errors” are in fact not so severe after

3By the time you read this methods may have already been improved. Thus, consult the EVA Web pages
at cubic.bioc.columbia.edu for the latest statistics.
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Figure 28.4. Prediction accuracy varies but stronger predictions are better! All results are

based on 150 novel protein structures not used to develop any of the method shown (Eyrich

et al., 2001b; Rost, 2001b). For all methods shown, the three-state per-residue accuracy varies

significantly between these proteins, with one standard deviation on the order of 10% (A). This

implies that it is difficult for users to estimate the actual accuracy for their protein. However,

most methods now provide an index measuring the reliability of the prediction for each residue.

Shown is the accuracy versus the cumulative percentages of residues predicted at a given level

of reliability (coverage versus accuracy). For example, PSIPRED and PROFphd reach a level above

88% for about 60% of all residues (dashed line). This particular line is chosen since secondary

structure assignments by DSSP agree to about 88% for proteins of similar structure. Although

JPred2 is only marginally less accurate than PSIPRED and PROFphd, it reaches this level of accuracy

for less than half of all residues.

all, since some of them are due to regions that can switch structural conformations in
response to environmental changes (see below). (4) Prediction accuracy is rather sen-
sitive to the information contained in the alignment used for the prediction: differences
between single-sequence-based predictions and optimal alignment-based predictions
can exceed more than 25 percentage points (Przybylski and Rost, 2002). (5) If on
average 77% of the residues are correctly predicted, this trivially implies that 33% are
wrong. Often it is extremely instructive to form an expert opinion about where these
wrong predictions are (Hubbard et al., 1996).

Sources of latest improvement: four parts database growth, three extended search,
two other. Jones solicited two causes for the improved accuracy of PSIPRED:
(1) training and (2) testing the method on PSI-BLAST profiles. Cuff and Barton (2000)
examined in detail how different alignment methods improve. However, which fraction
of the improvement results from the mere growth of the database, which from using
more diverged profiles, and which from training on larger profiles? Using the PHD
version from 1994 to separate the effects (Przybylski and Rost, 2002), we first compared
a noniterative standard BLAST (Altschul and Gish, 1996) search against SWISS-PROT
(Bairoch and Apweiler, 2000) with one against SWISS-PROT + TrEMBL (Bairoch
and Apweiler, 2000) + PDB (Berman et al., 2000). The larger database improves
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performance by about two percentage points (Przybylski and Rost, 2002). Secondly, we
compared the standard BLAST against the big database with an iterative PSI-BLAST
search. This search yielded less than two percentage points additional improvement
(Przybylski and Rost, 2002). Thus, overall, the more divergent profile search against
today’s databases supposedly improves any method using alignment information by
almost four percentage points. The improvement through using PSI-BLAST profiles to
develop the method are relatively small: PHDpsi was trained on a small database of
not very divergent profiles in 1994; for example, PROFphd was trained on PSI-BLAST
profiles of a 20 times larger database in 2000. The two differ by only one percentage
point, and part of this difference resulted from implementing new concepts into PROF
(Rost, B. 2001b).

Averaging over many methods may help. All methods predict some proteins at
lower levels of accuracy than others (Rost, Sander, and Schneider, 1993b; Lesk, Lo
Conte, and Hubbard, 2001; Rost and Eyrich, 2001a). Nevertheless, for most proteins
there is a method that predicts secondary structure at a level higher than average (Rost
and Eyrich, 2001a). The latter is applied when averaging over prediction methods. In
fact, such averages are helpful as long as compiled over good methods (Rost et al.,
2001b). Thus, using ALL available programs is a rather bad idea!

Solvent Accessibility Prediction in Practice

Very few of the seemingly more accurate methods predicting solvent accessibility are
publicly available. Furthermore, there is no EVA-like evaluation of methods based on
large sets and identical conditions. The first case scenario in which methods are com-
pared based on different data sets and different ways to define accessibility is the rule
rather than the exception. Thus, it is important to view values published with caution.
Most methods predict accessibility in two states (exposed and buried). Levels of pre-
diction accuracy vary significantly according to choice of the thresholds to distinguish
between the two states (Cuff and Barton, 2000). If we define all residues that are less
than 16% solvent accessible as exposed, the best current methods reach levels around
75%± 10% accuracy (Rost and Sander, 1994a; Lesk, 1997; Cuff and Barton, 2000;
Przybylski and Rost, 2002). Using alignment information improves prediction accuracy
significantly. However, accessibility predictions are more sensitive to alignment errors
than are secondary structure predictions (Rost and Sander, 1994a; Przybylski and Rost,
2002). A reason for this may be that accessibility is evolutionarily less well conserved
than is secondary structure (Przybylski and Rost, 2002).

Transmembrane Helix Prediction in Practice

Caution: no appropriate estimate of performance available! The appropriate evalua-
tion of methods predicting membrane helices is even more difficult than the evaluation
of other categories of structure prediction. Three major problems prevent adequate
analyses: (1) We do not have enough high-resolution structures to allow a statistically
significant analysis (Chen and Rost, 2002b). (2) Low-resolution experiments (gene
fusion) differ from high-resolution experiments (crystallography) almost as much as
prediction methods do (Chen and Rost, 2002b). Thus, low-resolution experiments do
not suffice to evaluate prediction accuracy. (3) All methods optimize some parame-
ters. Since there are so few high-resolution structures, all methods use as many of
the known ones as possible. However, that methods perform much better on proteins
for which they were developed than on new proteins was impressively demonstrated
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and overlooked in a recent analysis of prediction methods (Möller, Croning, and
Apweiler, 2001).

Crude estimates for where we are at in the field. The best current methods (HMM-
TOP2, PHDhtm, and TMHMM2) predict all helices correct for about 70% of all
proteins (Chen and Rost, 2002b). For more than 60% of the proteins, the topology is
also predicted correctly (Möller, Croning, and Apweiler, 2001; Chen and Rost, 2002b).
The most accurate per-residue prediction is achieved by PHDhtm, getting about 70%
of the observed TMH residues right (Chen and Rost, 2002b). All methods based on
advanced algorithms tend to underestimate transmembrane helices; thus, about 86%
of the TMH residues predicted by the best methods in this category PHD and DAS
are correct (Chen and Rost, 2002b). Most method tend to confuse signal peptides with
membrane helices; the best separation is achieved by a system predicting subcellu-
lar localization ALOM2 (Nakai and Kanehisa, 1992). Almost as accurate are PHD
and TopPred2 (followed by TMHMM) (Möller, Croning, and Apweiler, 2001). Sur-
prisingly, most methods have also been overestimated in their ability to distinguish
between globular and helical membrane proteins; particularly, most methods based
only on hydrophobicity scales incorrectly predict membrane helices in over 90% of a
representative set of globular proteins (Chen, Kernytsky, and Rost, 2002a). TMHMM,
SOSUI, and PHDhtm appear to yield the most accurate distinction between membrane
and globular proteins (<2% false positives) (Chen and Rost, 2002b). The most accu-
rate hydrophobicity index appears to be the one recently developed in the Ben-Tal
group (Kessel and Ben-Tal, 2002). All methods fail to distinguish membrane helices
from signal peptides to the extent that the best methods still falsely predict membrane
helices for 25% (PHDhtm) to 34% (TMHMM2) of all signal peptides tested. The good
news for the practical application is that we have an accurate method to detect signal
peptides (Nielsen et al., 1997), and that most incorrectly predicted membrane helices
start closer than 10 residues to N-terminal Methionine residues, that is, they could be
corrected by experts.

Genome analysis: many proteins contain membrane helices. Despite the overesti-
mated performance, predictions of transmembrane helices are valuable tools to quickly
scan entire genomes for membrane proteins. A few groups base their results only on
hydrophobicity scales, known to have extremely high error rates in distinguishing glob-
ular and membrane proteins. Nevertheless, the averages published for entire genomes
are surprisingly similar between different authors (Goffeau et al., 1993; Rost, Casa-
dio, and Fariselli, 1996a; Arkin, Brünger, and Engelman, 1997; Frishman and Mewes,
1997; Jones, 1998; Wallin and von Heijne, 1998; Liu and Rost, 2001). About 10–30%
of all proteins appear to contain membrane helices. One crucial difference, however,
is that more cautious estimates do not perceive a statistically significant difference in
the percentage of TMH proteins across the three kingdoms: eukaryotes, prokaryotes,
and archae (Liu, Tan, and Rost, 2002b). However, the preferences between particular
types of membrane proteins differs; in particular, eukaryotes have more 7TM proteins
(receptors), whereas prokaryotes have more 6- and 12TM proteins (ABC transporters)
(Wallin and von Heijne, 1998; Liu and Rost, 2001).

EMERGING AND FUTURE DEVELOPMENTS

Regions likely to undergo structural change predicted successfully. Young, Kirshen-
baum, Dill, and Highsmith (Young et al., 1999) have unravelled an impressive correla-
tion between local secondary structure predictions and global conditions. The authors
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monitor regions for which secondary structure prediction methods give equally strong
preferences for two different states. Such regions are processed combining simple
statistics and expert rules. The final method is tested on 16 proteins known to undergo
structural rearrangements, and on a number of other proteins. The authors report no
false positives, and identify most known structural switches. Subsequently, the group
applied the method to the myosin family identifying putative switching regions that
were not known before, but that appeared to be reasonable candidates (Kirshenbaum,
Young, and Highsmith, 1999). I find this method most remarkable in two ways: (1) it is
the most general method using predictions of protein structure to predict some aspects
of function, and (2) it illustrates that predictions may be useful even when structures
are known (as in the case of the myosin family).

Classifying proteins based on secondary structure predictions in the context of
genome analysis. Proteins can be classified into families based on predicted and
observed secondary structure (Gerstein and Levitt, 1997; Przytycka, Aurora, and
Rose, 1999). However, such procedures have been limited to a very coarse-grained
grouping only exceptionally useful to infer function (Rost B, 2002). Nevertheless,
in particular, predictions of membrane helices and coiled-coil regions are crucial for
genome analysis. Recently, we came across an observation that may have important
implications for structural genomics in particular: More than one fifth of all eukaryotic
proteins appeared to have regions longer than 60 residues, apparently lacking any
regular secondary structure (Liu, Tan, and Rost, 2002b). Most of these regions were
not of low complexity, that is, not composition biased (Dunker and Obradovic,
2001b; Romero et al., 2001; Liu, Tan, and Rost, 2002b). Surprisingly, these regions
appeared evolutionarily as conserved as all other regions in the respective proteins.
This application of secondary structure prediction may aid in classifying proteins, and
in separating domains, possibly even in identifying particular functional motifs.

Aspects of protein function predicted based on expert-analysis of secondary struc-
ture. The typical scenario in which secondary structure predictions help us to learn more
about function come from experts combining predictions and their intuition, most often
to find similarities to proteins of known function but insignificant sequence similarity
(Brautigam et al., 1999; Davies et al., 1999; de Fays et al., 1999; Di Stasio et al., 1999;
Gerloff et al., 1999; Juan et al., 1999; Laval et al., 1999; Seto et al., 1999; Xu et al.,
1999; Jackson and Russell, 2000; Paquet et al., 2000; Shah et al., 2000; Stawiski et al.,
2000). Usually, such applications are based on very specific details about predicted sec-
ondary structure (Rost, 2002). Thus, successful correlations of secondary structure and
function appear difficult to incorporate into automatic methods.

Exploring secondary structure predictions to improve database searches. Initially,
three groups independently applied secondary structure predictions to fold recognition,
that is, the detection of structural similarities between proteins of unrelated sequences
(Rost, 1995; Fischer and Eisenberg, 1996; Russell, Copley, and Barton, 1996). A few
years later, almost every other fold recognition/threading method has adopted this
concept (Ayers, et al., 1999; de la Cruz and Thornton, 1999; Di Francesco, Mun-
son, and Garnier, 1999; Hargbo and Elofsson, 1999; Jones, 1999a; Jones et al., 1999;
Koretke et al., 1999; Ota et al., 1999; Panchenko, Marchler-Bauer, and Bryant, 1999;
Kelley, MacCallum, and Sternberg, 2000). Two recent methods extended the con-
cept by not only refining the database search, but by actually refining the quality of
the alignment through an iterative procedure (Heringa, 1999; Jennings, Edge, and
Sternberg, 2001). A related strategy has been implored by Ng and the Henikoffs
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to improve predictions and alignments for membrane proteins (Ng, Henikoff, and
Henikoff, 2000).

From 1D predictions to 2D and 3D structure. Are secondary structure predictions
accurate enough to help in predicting higher order aspects of protein structure automat-
ically? Two-dimensional (interresidue contacts) predictions: Baldi, Pollastri, Andersen,
and Brunak (Baldi et al., 2000) have recently improved the level of accuracy in pre-
dicting beta-strand pairings over earlier work (Hubbard and Park, 1995) through using
another elaborate neural network system. Three-dimensional predictions: the follow-
ing list of five groups exemplifies that secondary structure predictions have now a
popular first step toward predicting 3D structure. (1) Ortiz et al. (1999) successfully
use secondary structure predictions as one component of their 3D structure prediction
method. (2) Eyrich et al. 1999a; Eyrich, Standley, and Friesner, 1999b) minimizes
the energy of arranging predicted rigid secondary structure segments. (3) Lomize et al.
(Lomize, Pogozheva, and Mosberg, 1999) also start from secondary structure segments.
(4) Chen et al. (Chen, Singh, and Altman, 1999) suggest using secondary structure pre-
dictions to reduce the complexity of molecular dynamics simulations. (5) Levitt et al.
(Samudrala et al., 1999; Samudrala, et al., 2000) combine secondary structure-based
simplified presentations with a particular lattice simulation attempting to enumerate all
possible folds.

Using accessibility to predict aspects of function. Features of multiple alignments
can reveal aspects of protein function (Casari, Sander, and Valencia, 1995; Lichtarge,
Bourne, and Cohen, 1996; Lichtarge, Yamamoto, and Cohen, 1997; Pazos et al., 1997;
Marcotte et al., 1999; Irving et al., 2000). To simplify the story: Residues can be
conserved because of structural and functional reasons. If we could distinguish between
the two, we could predict the functional residues. Obviously, residues that are exposed
and conserved are likely to reveal functional constraints. This result suggests using
predicted accessibility and combination with alignments to predict functional residues
(Rost, 2002 unpublished). Another possible application of predicted accessibility is
the prediction of subcellular localization: the surface compositions differ significantly
between extracellular, cytoplasmic, and nuclear proteins (Andrade, O’Donoghue, and
Rost, 1998). Currently, we use predicted accessibility to improve the prediction of
subcellular localization (Nair and Rost, 2002 unpublished).

Using 1D predictions for target selection in structural genomics. Structural
genomics proposes to experimentally determine one high-resolution structure for every
known protein (Gaasterland, 1998; Rost, 1998; Sali, 1998; Burley et al., 1999; Shapiro
and Harris, 2000; Thornton, 2001). Obviously, this goal could be reached faster if we
could avoid all proteins of known structure, which is relatively straightforward (Sali,
1998; Liu and Rost, 2002; Liu, Tan, and Rost, 2002b). More difficult is the task of
avoiding proteins that do not express, do not purify, or are longer than 200 residues
and do not crystallize (or do not diffract well enough). One way toward this goal is
to exclude all proteins with membrane helices (Liu and Rost, 2001; Liu and Rost,
2002a). Can bioinformatics do more than that? In a preliminary analysis, we used
predicted accessibility to predict the globularity of a protein (Rost, 1999a). Although
prediction accuracy is rather low, we observe some correlation between the percentage
of surface residues and the globularity of a protein. One important task to choose
structural genomics targets most effectively is the prediction of structural domains
from sequence. Currently, we are exploring ways of using predicted accessibility and
secondary structure toward this end (Liu and Rost, 2002 unpublished).



576 PREDICT ION IN 1D: SECONDARY STRUCTURE, M EMBRANE HEL ICES, AND ACCESS IB I L ITY

Eukaryotes full of floppy proteins? Recently it has been shown that regions of low
complexity—as predicted by the program SEG (Wootton and Federhen, 1996)—are
the rule rather than the exception in the protein universe (Saqi, 1995; Garner et al.,
1998; Romero et al., 1998; Wright and Dyson, 1999; Dunker et al., 2001a; Dunker
and Obradovic, 2001b; Romero et al., 2001). Using predictions of secondary structure,
we found that there are many proteins that do not have low-complexity regions but
nevertheless appear to have long (>70 residues) regions without regular secondary
structure (helix/strand, dubbed NORS). Such NORS proteins appear to be significantly
more abundant in the eukaryotes than in all other kingdoms, reaching levels around
25% of the entire genome (Liu, Tan, and Rost, 2002b). We found many of the NORS to
be evolutionarily conserved, suggesting that these may in fact be proteins with induced
structure rather than without structure.

NOTATIONS

Abbreviations used: 1D structure, one-dimensional, for example, sequence, or strings
of secondary structure or solvent accessibility; 2D structure, two-dimensional (e.g.,
interresidue distances); 3D structure, three-dimensional co-ordinates of protein struc-
ture; ASP, method identifying regions of structure ambivalent in response to global
changes (Kirshenbaum, Young, and Highsmith, 1999; Young et al., 1999); BLAST, fast
sequence alignment method (Altschul and Gish, 1996); CASP, Critical Assessment of
Protein Structure Prediction (Zemla, Venclovas, and Fidelis, 2001); COILS, coiled-coil
prediction (Lupas, Van Dyck, and Stock, 1991); DSSP, program and database assign-
ing secondary structure and solvent accessibility for proteins of known 3D structure
(Kabsch and Sander, 1983); EVA, server automatically evaluating structure predic-
tion methods (Eyrich et al., 2001a; Eyrich et al., 2001b); HMM, Hidden Markov
Model; HMMSTR, Hidden Markov model-based prediction of secondary structure
(Bystroff, Thorsson, and Baker, 2000); HMMTOP, Hidden Markov model predict-
ing transmembrane helices (Tusnady and Simon, 1998); JPred2, divergent profile
(PSI-BLAST) based neural network prediction of secondary structure and solvent
accessibility (Cuff and Barton, 2000); MEMSAT, dynamic-programming based pre-
diction of transmembrane helices (Jones, Taylor, and Thornton, 1994); META-PP,
internet service allowing access to a variety of bioinformatics tools through one sin-
gle interface (Eyrich and Rost, 2000); PHD, Profile-based neural network prediction
of secondary structure, solvent accessibility, and transmembrane helices (Rost, 1996);
PHDpsi, divergent profile-(PSI-BLAST) based neural network prediction (Przybyl-
ski and Rost, 2002); PSI-BLAST, position specific iterated database search (Altschul
et al., 1997); PROFphd, Advanced profile-based neural network prediction of sec-
ondary structure (Rost, 2001a); PSIPRED, divergent profile-(PSI-Blast) based neural
network prediction (Jones, 1999b); SAM-T99sec, neural network prediction, using
hidden Markov models as input (Karplus et al., 1999); SOSUI, hydrophobicity and
amphiphilicity based transmembrane helix prediction (Hirokawa, Boon-Chieng, and
Mitaku, 1998); SPLIT, transmembrane helix prediction (Juretic et al., 1998); SSpro,
profile-based advanced neural network prediction method (Baldi et al., 1999); SSpro2,
divergent profile-based advanced neural network prediction method (Pollastri et al.,
2001); TM, transmembrane; TMAP, alignment-based prediction of transmembrane
helices (Persson and Argos, 1996); TMH, transmembrane helix; TMHMM, Trans-
membrane prediction using cyclic hidden Markov models (Sonnhammer, von Hei-
jne, and Krogh, 1998); TMpred, prediction of transmembrane helices (Hofmann and
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Stoffel, 1993); TopPred2, hydrophobicity-based membrane helix prediction (von Hei-
jne, 1992; Cserzö et al., 1997);

Symbols used: secondary structure: H = helix, E = strand, L = other;
transmembrane helices: T = transmembrane, N = globular; solvent accessibility:
e = exposed (16% relative accessible surface), b = buried (<16%);
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Arkin IT, Brünger AT, Engelman DM (1997): Are there dominant membrane protein families
with a given number of helices? Proteins 28:465–6.

Ayers DJ, Gooley PR, Widmer-Cooper A, Torda AE (1999): Enhanced protein fold recognition
using secondary structure information from NMR. Protein Sci 8:1127–33.

Bairoch A, Apweiler R (2000): The SWISS-PROT protein sequence database and its supplement
TrEMBL in 2000. Nucleic Acids Res 28:45–8.

Baldi P, Brunak S, Frasconi P, Soda G, Pollastri G (1999): Exploiting the past and the future
in protein secondary structure prediction. Bioinformatics 15:937–46. [The most complicated
and seemingly most successful architecture for using neural networks predicting secondary
structure is presented.]

Baldi P, Pollastri G, Andersen CA, Brunak S (2000): Matching protein beta-sheet partners by
feedforward and recurrent neural networks. ISMB 8:25–36.

Baldi P, Brunak S (2001): Bioinformatics: The Machine Learning Approach. Cambridge: MIT
Press.

Barton GJ (1996): Protein sequence alignment and database scanning. In: Sternberg MJE, editor.
Protein Structure Prediction. Oxford: Oxford University Press, pp 31–64.

Ben-Tal N, Honig B, Miller C, McLaughlin S (1997): Electrostatic binding of proteins to
membranes. Theoretical predictions and experimental results with charybdotoxin and
phospholipid vesicles. Biophys J 73:1717–27.

Berman HM, Westbrook J, Feng Z, Gillliland G, Bhat TN, Weissig H, Shindyalov IN,
Bourne PE (2000): The Protein Data Bank. Nucleic Acids Res 28:235–42.

Biou V, Gibrat JF, Levin JM, Robson B, Garnier J (1988): Secondary structure prediction:
combination of three different methods. Protein Eng 2:185–91.



578 PREDICT ION IN 1D: SECONDARY STRUCTURE, M EMBRANE HEL ICES, AND ACCESS IB I L ITY

Bohr H, Bohr J, Brunak S, Cotterill RMJ, Lautrup B, Nørskov L, Olsen OH, Petersen SB
(1988): Protein secondary structure and homology by neural networks. FEBS Lett 241:223–8.

Brändén C, Tooze J (1991): Introduction to Protein Structure. New York: Garland Publishing.

Brautigam C, Steenbergen-Spanjers GC, Hoffmann GF, Dionisi-Vici C, van den Heuvel LP,
Smeitink JA, Wevers RA (1999): Biochemical and molecular genetic characteristics of the
severe form of tyrosine hydroxylase deficiency. Clin Chem 45:2073–8.

Buchanan SK (1999): β-Barrel proteins from bacterial outer membranes: structure, function and
refolding. Curr Opin Struct Biol 9:455–61.

Bujnicki JM, Elofsson A, Fischer D, Rychlewski L (2001): LiveBench-1: continuous
benchmarking of protein structure prediction servers. Protein Sci 10:352–361.

Burley SK, Almo SC, Bonanno JB, Capel M, Chance MR, Gaasterland T, Lin D, Sali A,
Studier FW, Swaminathan S (1999): Structural genomics: beyond the human genome project.
Nat Genet 23:151–7.

Bystroff C, Thorsson V, Baker D (2000): HMMSTR: a hidden Markov model for local
sequence-structure correlations in proteins. J Mol Biol 301:173–90.

Carugo O (2000): Predicting residue solvent accessibility from protein sequence by considering
the sequence environment. Protein Eng 13:607–9.

Casari G, Sander C, Valencia A (1995): A method to predict functional residues in proteins. Nat
Struct Biol 2:171–8.

CASP4 (2000): Fourth meeting on the critical assessment of techniques for protein structure
prediction. Prediction Center, Lawrence Livermore National Lab WWW document:
http://PredictionCenter.llnl.gov/casp4/Casp4.html.

Chen CC, Singh JP, Altman RB (1999): Using imperfect secondary structure predictions to
improve molecular structure computations. Bioinformatics 15:53–65.

Chen CP, Kernytsky A, Rost B (2002): Transmembrane helix predictions revisited. Prot Sci, in
press.

Chen CP, Rost B (2002b): Long membrane helices and short loops predicted less accurately.
Prot Sci, in press.

Chen CP, Rost B (2002a): State-of-the-art in membrane prediction. Appl Bioinf 1:21–35.

Chothia C (1976): The nature of the accessible and buried surfaces in proteins. J Mol Biol
105:1–12.

Chou PY, Fasman GD (1974): Prediction of protein conformation. Biochemistry 13:211–5.

Cohen FE, Sternberg MJE, Taylor WR (1981): Analysis of the tertiary structure of protein β-
sheet sandwiches. J Mol Biol 148:253–72.

Cohen FE, Presnell SR (1996): The combinatorial approach. In: Sternberg MJE, editor. Protein
Structure Prediction. Oxford: Oxford University Press, pp 207–28.
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STRUCTURAL GENOMICS
Stephen K. Burley and Jeffrey B. Bonanno

With access to sequences from the entire human genome plus those of the mouse, the
fruit fly, the round worm, fungi, archaea, and a host of important bacterial pathogens,
the relatively young discipline of structural biology is on the verge of a dramatic trans-
formation. This wealth of genomic sequence information is the foundation for an impor-
tant new “big science” initiative in biology. X-ray crystallographers, solution NMR
spectroscopists, and computational biologists have embarked on a systematic program
of high-throughput structure determination aimed at developing a comprehensive view
of the protein structure universe. Structural genomics promises to yield a large number
of experimental protein structures (tens of thousands) and an even larger number of
calculated models of related proteins (millions). Well before this ambitious program is
complete, the technological benefits of automated protein expression and purification,
robotic crystallization, and NMR and X-ray data measurement/analysis should have a
substantial impact on the pace of all structural biology research. Once development of
the high-throughput structure determination pipeline is complete, the flood of publicly
available structural information promises to accelerate discoveries in the biomedical
sciences. In addition, it should revolutionize our understanding of protein evolution
and the way we think about relationships between three-dimensional (3D) structure
and macromolecular function. A comprehensive guide to structural genomics has been
published in a Supplement to Volume 7 of Nature Structure Biology published in 2000.

STRUCTURAL INFORMATION FOR EVERY PROTEIN SEQUENCE
IN NATURE: THE PRIMARY GOAL

The benefits of combining 3D structural information with whole genome sequences are
well documented. To paraphrase influential architects of the early 20th century, “func-
tion follows form” in biology. Virtually every one of the 15,500 plus experimentally
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determined protein structures in the Protein Data Bank (PDB; http://www.rcsb.org/pdb/;
Chapter 9; Berman et al., 2000) has been of some benefit to biological and biochem-
ical researchers. On the computational front, comparative protein structure modeling
(also known as homology modeling, Chapter 25), protein fold assignment (Chapter 26),
and ab initio protein structure prediction (Chapter 27) represent important bioinfor-
matic tools, which bring mechanistic insights to biology, chemistry, and medicine
(Chapters 19 and 23; Moult and Melamud, 2000; Skolnick, Fetrow, and Kolinski,
2000; Teichmann, Murzin, and Chothia, 2001). For a general review on protein struc-
ture prediction and structural genomics see Baker and Sali (2001).

Protein Structure Space

The impact of combining experimental structure determinations with comparative pro-
tein structure modeling comes in no small part from the rather low complexity of
protein fold space, which is quite unlike the Byzantine character of the estimated
40,000 human genes and more than 400,000 human gene products. Although there is
still some uncertainty regarding the precise numerology, we now appreciate that the
universe of compact globular protein folds or domains is small (Chapter 18; Zhang
and DeLisi, 2001). Current estimates suggest that there are only 1000–5000 distinct,
stable polypeptide chain folds in nature (Brenner, Chothia, and Hubbard, 1997; Liu and
Rost, 2001). At present, we have experimental structures of less than 700 of these dis-
tinct protein folds (Orengo et al., 1999), with some popular folds such as the eightfold
αβ barrel of the triose phosphate isomerase type represented by more than 23 pro-
tein sequence families. In eukaryotes, most genes encode proteins that are comprised
of multiple globular domains, with the average domain size = 153+ /− 87 residues
(Orengo et al., 1999), giving larger proteins the appearance of beads on a string. Typ-
ically, a single bead is responsible for carrying out a specialized biochemical task.

Evolutionary Considerations

A significant evolutionary change in gene sequence often manifests itself at the level
of an individual protein functional unit or domain, which may be regarded as the
focus of natural selection. Changes destabilizing the structure of a critical domain
within an essential gene product cannot endure; whereas benign alterations in structure,
many of which are found on domain surfaces or within linkers between domains,
can persist. In some cases, gene duplication followed by mutation(s) of the gene can
provide the host organism with a new biochemical capability that confers a selective
advantage. For example, a mutation leading to a change in the surface properties of an
enzyme active site (Chapters 20 and 21) might give rise to a new catalytic function that
allows the organism to metabolize an environmental toxin or synthesize an essential
substrate/cofactor/precursor (Ritz et al., 2001; Sheehan et al., 2001; Todd, Orengo,
and Thornton, 2001). Beneficiaries of such genetic enhancements can proliferate at the
expense of less fortunate neighbors, thereby ensuring that the newly created gene and
its protein product are maintained on an evolutionary time scale.

Homology Modeling

Computational biologists exploit the same features of protein evolution to leverage the
work product of X-ray crystallographers and solution NMR spectroscopists. Each newly
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determined experimental structure typically provides useful structural information for
many additional protein sequences (Chapter 25). In practice, however, homology mod-
eling is currently restricted to protein sequences for which a nearby experimental
template is available (amino acid sequence identity >30% over the entire length of the
protein or domain). The coverage of the PDB currently limits the scope of homology
modeling to about 50% of the open reading frames of the Saccharomyces cerevisiae
genome. If one considers that only a portion of a given protein can be modeled in
most cases, the situation looks decidedly worse (18% of all residues in yeast proteins;
Sanchez and Sali, 1998). A recent study by Rost (Liu and Rost, 2001) of 29 fully
sequenced genomes suggests that 20–40% of all proteins have a homologue with an
experimentally determined structure, representing structural homology for 20–30% of
all residues.

Structural biologists can contribute enormously to our understanding of biology
and to biomedical research by providing full coverage of the protein structure universe
(Hol, 2000). Determination of at least one experimental structure for every protein
sequence family, defined at the level of 30% identity, would bring all globular proteins
within the radius of convergence of current homology modeling tools. Analyses by
Vitkup et al. (2001) have suggested that determination of as few as 16,000 carefully
selected target structures will enable production of “accurate” homology models for
90% of all proteins found in nature.

Homology modeling can be distinguished from all other methods for analyzing
relationships among protein sequences because it yields atomic coordinates suitable
for direct comparisons with X-ray and solution NMR structures. Acceptable models
can be divided into three accuracy classes, characterized with blind tests using known
structures (Marti-Renom et al., 2000). Models based on >50% sequence identity with
the template are comparable in accuracy to 3Å resolution X-ray structures or medium-
resolution solution NMR structures (10 long-range restraints/residue). Models obtained
with less similar templates (30–50% identity) typically have >85% of their α-carbon
atoms within 3.5Å of the correct position. When sequence identities fall below 30%,
models with acceptable model scores (>0.7) may contain significant errors arising from
ambiguities in the sequence alignment of the modeling candidate with the template,
but can nevertheless be used for protein fold identification.

Protein Data Bank

The PDB (http://www.rcsb.org/pdb/; Chapter 9; Berman et al., 2000) serves as the
central repository for X-ray and solution NMR structures of proteins and other macro-
molecular complexes. Atomic coordinates for more than 15,500 experimentally deter-
mined structures of proteins and peptides can be freely downloaded from this single,
publicly accessible archive, which is maintained by teams working at three centers (Rut-
gers University; Center for Advanced Research in Biotechnology; San Diego Super-
computer Center) with funding from U.S. government agencies. International access is
enhanced by additional data deposition sites in Europe (http://pdb.ccdc.cam.ac.uk/pdb)
and Japan (http://pdb.protein.osaka-u.ac.jp/pdb) and various PDB mirror sites located
worldwide (see http://www.rcsb.org/pdb/mirrors.html).

Homology Modeling Databases

As a general rule, the PDB does not include calculated models of protein structures.
Instead, two major publicly accessible Web sites with search options offer access to the
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results of comparative protein structure modeling: MODBASE (http://pipe.rockefeller.
edu/modbase-cgi/index.cgi) and SWISS-MODEL (http://www.expasy.org/swissmod/
SM 3DCrunch Search.html). In addition, researchers can submit protein sequences to
MODWEB (http://pipe.rockefeller.edu/mwtest-cgi/main.cgi), SWISS-MODEL (http://
www.expasy.ch/swissmod), FAMS (http://physchem.pharm.kitasatou.ac.jp/FAMS/
fams.html), 3-D JIGSAW (http://www.bmm.icnet.uk/servers/3djigsaw/), CPHmodels
(http://www.cbs.dtu.dk/services/CPHmodels/index.html), and the San Diego Supercom-
puting Center server (http://cl.sdsc.edu/hm.html) which are Web servers that return one
or more homology models for the protein sequence in question. Structural biologists
can also submit an atomic coordinate file to MODWEB and SWISS-MODEL and
obtain homology models for all sequences that are within modeling distance of their
structure. This feature will be particularly important for assessing the impact of each
newly determined experimental structure produced by structural genomics centers.

Strategic Considerations

Before describing how pilot programs in structural genomics are approaching the goal
of providing structural information for every protein sequence found in nature, it is
worth considering whether or not an organized, genome project scale effort is, in fact,
necessary. Eventual success of existing experimental approaches was never in doubt.
At issue is the timescale for substantial completion of the target list and the cost per
structure determination.

Protein crystallographers and NMR spectroscopists currently deposit more than
2000 to 3000 structures per year into the PDB. An exhaustive analysis (Brenner,
Chothia, and Hubbard, 1997) of all PDB submissions in 1994 revealed the following
breakdown: 70% had essentially the same sequence as an existing PDB entry, 21% were
closely related to an existing PDB entry, and 9% had no obvious homologue within the
PDB (see at http://www.rcsb.org/pdb/holdings.html for up-to-date PDB growth statis-
tics). Thus, even at the current rate of nearly 3000 PDB depositions per year, structural
biology research as a whole will only make a modest annual impact on the estimated
16,000 protein structures required for the comprehensive homology modeling effort
posited by Vitkup et al. (2001). No criticism of our colleagues is intended. Hypothesis-
driven research in structural biology is directed toward understanding protein function,
and not studying protein architecture per se.

The success of the Human Genome Project suggests that a systematic effort in
high-throughput structural genomics may have a shorter timescale and lower cost per
structure than “business as usual” structural biology. Although there are no hard num-
bers for the cost of each new structure determined in a structural biology laboratory,
an estimate of $100,000 each has gained general acceptance. If this figure is accurate,
completion of the minimal number of targets discussed by Vitkup et al. (2001) will
cost no more than $1.6 billion. With efficiencies coming from economies of scale, the
total cost of determining 16,000 structures should fall considerably.

The analogy with high-throughput sequencing is far from perfect. As a general
rule, proteins do not behave like one another during the course of expression and
purification, not to mention the vagaries inherent in crystallization and solution NMR
spectroscopy. Some members of the structural biology community are, however, suffi-
ciently encouraged by the impact of automation in genome sequencing to attempt the
development of structural genomics pipelines.
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STRUCTURAL GENOMICS PILOT PROGRAMS

The feasibility of a large-scale, high-throughput program of structure determination
is being explored by pilot studies underway in North America (Terwilliger, 2000)
and South America (http://watson.fapesp.br/structur/menu.htm), Europe (Heinemann,
2000), and Asia (Yokoyama et al., 2000). Efforts involve both X-ray crystallography
and solution NMR spectroscopy, with target lists derived from the genome sequences
of archaea, eubacteria, and eukaryotes.

Nine pilot studies have been funded under the auspices of the National Institutes of
Health (NIH) National Institute of General Medical Sciences (NIGMS) Protein Struc-
ture Initiative (PSI) (Norvell and Machalek, 2000). These NIH-funded groups have
been charged with development and implementation of all high-throughput technolo-
gies required for going from gene sequences to disseminated protein structures. Some
of the U.S. pilot studies are taking sequence family-based approaches with structure
determination targets obtained from various bacterial and eukaryotic genomes. Oth-
ers are targeting as many gene products as possible from particular model organisms
or human pathogens (see Table 29.1). Among those groups studying protein fami-
lies, some have elected to focus on targets involved in medically important biological
processes such as signal transduction, antibiotic resistance, and human malignancies.

All nine NIGMS-funded centers maintain laboratory information management
systems (LIMS) (Bertone et al., 2001), and publicly available Web sites that pro-
vide a full account of their targets and progress toward structure determination (see
Table 29.1 for URLs). In addition, the U.S. government requires that this informa-
tion be made available to the PDB, which is acting as a central repository for these
data (http://targetdb.pdb.org/). As the structural genomics projects enter the produc-
tion phase, the PDB will also capture interim results pertaining to protein expression,
purification, and biophysical characterization. Selected reagents produced by the pilot
studies, including expression plasmids/clones, purified proteins, and possibly crystals,
will be archived and freely distributed by the NIGMS.

The methodological approach of one such NIGMS-funded pilot study, the New
York Structural Genomics Research Consortium (NYSGRC, Table 29.1), is depicted
schematically in Figure 29.1. The process involves modular automation of (1) target
selection; (2) PCR amplification of the coding sequence from genomic or cDNA;
(3) cloning the coding sequence into an appropriate expression vector; (4) expressing
the protein at a sufficiently high level; (5) sequencing the cloned gene to verify that the
coding sequence was correctly amplified; (6) confirming the identity of the expressed
protein and characterizing it as a prelude to crystallographic studies; (7) obtaining the
protein in sufficient amounts and purity; (8) defining suitable crystallization conditions;
(9) X-ray diffraction measurements; (10) determining and refining the experimental
structure; (11) calculating homology models using this new template; and (12) making
functional inferences from the structure plus derived models and disseminating the
findings. Failures are anticipated at every experimental step. Feedback loops provide
for the possibility of both sample and process optimization.

Considerable efforts are now underway at a number of centers to automate protein
production and crystallization, and useful reviews of the state of the art have been
published by Edwards et al. (2000) and Stevens (2000). Once a statistically significant
number of interim results are accumulated within the pilot study LIMS databases, we
can look forward to a better understanding of correlations among amino acid sequence,
resistance to proteolysis, globular domain structure, solubility, and crystallizability,
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Figure 29.1. Flowchart depicting the processes involved in high-throughput structural genomics

using X-ray crystallography. MIR denotes multiple isomorphous replacement, an alternative to

MAD for structure determination. Reprinted with permission from Burley et al., (1999).
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which should aid target selection and help increase the efficiency of structural genomics
pipelines. In this context, it is imperative that negative information (i.e., susceptibility
to proteases, conformational heterogeneity, poor solubility, and failure to crystallize)
is captured with high fidelity.

Attempts to automate both X-ray diffraction experiments (Abola et al., 2000) and
interpretation of experimental electron density maps (Lamzin and Perrakis, 2000; Ter-
williger, 2001) have already shown considerable promise. Current estimates suggest
that the total time required for data acquisition and structure determination/refinement
could be reduced to no more than a few hours in many cases with little if any manual
intervention (Walsh et al., 1999b; Walsh et al., 1999a). Similarly, developments in high
field magnets and cryoprobe hardware, computational methods (automated resonance
assignment [Moseley and Montelione, 1999; Duggan et al., 2001], TROSY [Pervushin
et al., 1997], “direct methods” [Atkinson and Saudek, 2002]), chemical shift/sequence
homology databases (Cornilescu, 1999; Meiler, Peti, and Griesinger, 2000), and protein
biochemical labeling (Goto and Kay, 2000; Medek et al., 2000; Cowburn and Muir,
2001; Wider and Wuthrich, 1999) have advanced the pace of experimental structure
determination via NMR spectroscopy.

A substantial number of reviews describing various aspects of structural genomics
have been published over the last several years, including (Blundell and Mizuguchi,
2000; Brenner and Levitt, 2000; Burley et al., 1999; Chance et al., 2001; Erlandsen,
Abola, and Stevens, 2000; Heinemann et al., 2000; Kim, 2000; Linial and Yona, 2000;
Mittl and Grutter, 2001).

NYSGRC CASE STUDY: YEAST MEVALONATE-5-DIPHOSPHATE
DECARBOXYLASE

Target Selection

Early NYSGRC structure determinations focused on proteins from the baker’s yeast,
Saccharomyces cerevisiae, an intensively studied eukaryotic organism with a fully
sequenced genome containing numerous human gene homologues. Target selection was
aided by the results of automated comparative protein structure modeling using the S.
cerevisiae genome (Sanchez and Sali, 1998). In addition to providing homology models
for all yeast proteins within “modeling distance” of an experimental structure already
present in the PDB, the procedure identified yeast proteins for which no structural
information was available. Initial targets were chosen with an emphasis on members
of large protein families that would maximize the leverage of homology modeling.

The NYSGRC experience with mevalonate-5-diphosphate decarboxylase provides
an informative case study for the development of a structural genomics
pipeline. Mevalonate-5-diphosphate decarboxylase (MDD) is an enzyme from the
sterol/isoprenoid biosynthesis pathway (Goldstein and Brown, 1990) (Figs. 29.2
and 29.3). MDD catalyzes the last of three sequential ATP-dependent reactions that
convert mevalonate to isopentenyl diphosphate. A full account of the determination
and bioinformatic analyses of the structure of MDD has been published by Bonanno
et al. (2001) with Supplementary Materials available at http://www.pnas.org/.

Sample Preparation and Characterization

The gene encoding yeast MDD (396 residues in length) was expressed in
Escherichia coli, yielding a fusion protein with an N-terminal hexa-histidine tag
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Figure 29.2. MDD sequence alignments. Proteins similar to S. cerevisiae MDD (E-value <10−4)

were identified using PSI-BLAST (Altschul et al., 1997), and aligned with CLUSTAL (Higgins,

Bleasby, and Fuchs, 1992). Secondary structural elements of S. cerevisiae MDD are shown with

cylinders (α-helices) and arrows (β-strands). Grey dots denote poorly resolved residues in the final

electron density map. Color coding denotes sequence conservation among MDDs (white→ green

ramp, 30→ 100% identity). Red box denotes the ATP-binding P-loop. Adapted from (Bonanno

et al., 2001). Figure also appears in Color Figure section.
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Figure 29.3. Pathways for biosynthesis of isopentenyl diphosphate. Isopentenyl diphosphate,

the central intermediate in sterol/isoprenoid biosynthesis, is produced by two independent

pathways, which have different evolutionary distributions (Eisenreich, Rohdich, and Bacher, 2001;

Lange et al., 2000). Reprinted with permission from (Bonanno et al., 2001).

that facilitated purification to homogeneity using standard affinity and ion-exchange
chromatographic methods.

Preliminary biophysical characterization of recombinant yeast MDD documented
that the protein represented an ideal candidate for crystallization. Dynamic light scat-
tering demonstrated that the purified protein is a highly soluble monodisperse dimer
in aqueous solution (Ferre-D’Amare and Burley, 1995). Matrix-assisted laser desorp-
tion ionization mass spectrometry showed that the purified protein was neither post-
translationally modified nor proteolyzed during expression and purification, and limited
proteolysis revealed no evidence of conformational heterogeneity (Cohen, 1996).

Diffraction-quality crystals were obtained using incomplete factorial screens
(Carter and Carter, 1979; Jancarik and Kim, 1991), which survey a large number
of crystallization conditions (typically a few hundred) that have produced crystals of
other proteins. Seleno-methionine substituted protein was produced and crystallized
using similar procedures.
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X-Ray Structure Determination

X-ray diffraction data were recorded under cryogenic conditions at Beamline X25
at the National Synchrotron Light Source (Brookhaven National Laboratory). The
structure of MDD was determined using the multiwavelength anomalous dispersion
or MAD method (Hendrickson, 1991), from diffraction data recorded at three X-ray
wavelengths in the vicinity of the selenium absorption edge. Following experimental
electron density map fitting and structure refinement, structure quality/validation pro-
cedures (Chapter 14; Brünger et al., 1998; Laskowski et al., 1993; Vaguine, Richelle,
and Wodak, 1999) were used to verify the accuracy of the refined atomic coordinates
(publicly available at http://www.rcsb.org/pdb via PDB ID Code 1FI4).

Structural Overview

MDD is a single α/β domain (Figure 29.4a) with a deep cleft. The structure consists
of three antiparallel β-sheets and three sets of α-helices. The crystallographic twofold

Figure 29.4. S. cerevisiae MDD and M. jannaschii HSK. Ribbon drawings of MDD (a) and HSK (d)

in the same orientation. Figure also appears in Color Figure section.
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symmetry axis parallel to the c-axis generates a symmetric dimer. MDD sequence
alignments (Figure 29.2) show that conserved segments surround the deep cleft
(Figure 29.4b). A putative ATP-binding site or P-loop (outlined in red in Fig. 29.2
and colored red in Figs. 29.4a and 29.4b) lies within this surface concavity. Surface
electrostatic calculations revealed a surface patch with positive electrostatic potential in
the cleft (Fig. 29.4c), which represents an excellent candidate for binding the negatively
charged substrate, mevalonate-5-diphosphate.

Homology Modeling with MDD

Comparison of the structure of S. cerevisiae MDD with the PDB in November 2000
revealed no similar structures, as judged by the DALI protein structure similarity server
(Holm and Sander, 1993a; Dietmann and Holm, 2001a). Put more succinctly, the struc-
ture of MDD represented a new protein fold. Homology modeling using MODPIPE
(Sanchez et al., 2000) and the MDD template gave models for all known or putative
MDDs plus various GHMP small-molecule kinases (Bork et al., 1993), including the
galactokinases (GK), homoserine kinases (HSK), mevalonate kinases (MK; Fig. 29.3),
and phosphomevalonate kinases (PMK; Fig. 29.3), plus diphosphocytidyl-2-C-methyl-
D-erythritol kinases (CMK, an enzyme in the 1-deoxy-D-xylulose-5-phosphate pathway
to isopentenyl diphosphate; Fig. 29.3), other enzymes, and some hypothetical proteins.

Subsequently, publication of a bona fide GHMP kinase structure (Zhou et al.,
2000) (Methanococcus jannaschii HSK, PDB Code 1FWL) provided direct experi-
mental confirmation that MDD is a member of the GHMP kinase superfamily. The
only significant secondary structural differences between S. cerevisiae MDD and M.
jannaschii HSK are two insertions within MDD (compare Figs. 29.4a and 29.4d).

Mechanistic/Evolutionary Implications

A kinase-type mechanism of action for MDD is not unexpected, because MDD phos-
phorylates the substrate C-3 hydroxyl group, followed by elimination of both the added
phosphate and carboxylate groups to give the product isopentenyl diphosphate, ADP,
and PI. Surprisingly, however, all three enzymes responsible for sequential conversion
of mevalonate to isopentenyl diphosphate (MK, PMK, and MDD; Fig. 29.3) have the
same fold.

It is almost certain that the genes encoding MDD, MK, and PMK arose from a com-
mon precursor, and active site mutations created three enzymes that bind structurally
similar substrates and catalyze chemically similar reactions. The mevalonate-dependent
pathway (Fig. 29.3) can be thought of as an example of retrograde evolution (Horowitz,
1945). It is also remarkable that CMK, which is part of the mevalonate independent
pathway for sterol/isoprenoid biosynthesis in plastids and bacteria (Fig. 29.3), appears
to have evolved from the same ancestral small molecule kinase.

Homology Modeling with MDD and HSK

Using both experimental structures, MODPIPE produced models for 181 GHMP kinase
superfamily members (113 with both templates, 60 with HSK only, and 8 with
MDD only), including 22 MDDs, 31 GKs, 33 HSKs, 25 MKs, 9 PMKs, 25 CMKs,
7 archael shikimate kinases (Daugherty et al., 2001), and 8 D-glycero-D-manno-
heptose 7-phosphate kinases (Kneidinger et al., 2001). In addition, 21 models fell
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into 3 sequence similarity groups, suggesting that additional enzyme activities are
encompassed within the GHMP kinase superfamily.

Implications for Target Selection

MDD was chosen for structure determination to provide a modeling template for
a biomedically important family of enzymes. Greater coverage of protein sequence
space was possible, because MDD proved to be a member of a protein superfamily
encompassing both enzymes that catalyze chemically distinct reactions and proteins of
unknown biochemical function. The availability of a second modeling template, HSK,
gave yet wider modeling coverage of the GHMP kinase superfamily, because archaeal
HSK and yeast MDD are only very distantly related to one another (16% identity for
272 structurally equivalent α-carbon atomic pairs).

The modeling coverage of the GHMP kinase superfamily also provided some
insights into the problem of target selection for structural genomics. The structure of
S. cerevisiae MDD produced medium or high accuracy models for 80% of the modeled
sequences thought to have MDD activity, but coverage of the HSK family provided
by the M. jannaschii HSK template was not as broad (only 41% of HSK models are
medium or high accuracy).

GHMP kinase superfamily members cluster into 19 discrete subfamilies (Fig. 29.5),
encompassing one cluster of MDDs, three clusters of GKs, four clusters of HSKs, three
clusters of MKs, one cluster of PMKs, one cluster of D-glycero-D-manno-heptose
7-phosphate kinases (DGMPKs), three clusters of CMKs, one cluster of archael shiki-
mate kinases (aSKs), and two distinct clusters of hypothetical proteins. From this
analysis, it was estimated that an additional 17 carefully chosen experimental struc-
tures will be needed to produce medium or high accuracy models for (≥80%) of

20 HP

7 SK

31 GK
8 DGMPK

9 PMK

25 MK

25 CMK

33 HSK

11 GHMPK

22 MDD

Figure 29.5. GHMP kinase superfamily clustering. Schematic dendrogram showing clusters

within 181 GHMP kinase superfamily members.
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each GHMP kinase subfamily. (The analyses of Vitkup et al. (2001) discussed earlier
represents a generalization of this target selection procedure for all protein sequences
in nature.)

The efficacy of this approach to target selection was explored by studying a
representative PMK from Streptococcus pneumoniae. As expected, S. pneumoniae
PMK is structurally similar to S. cerevisiae MDD and M. jannaschii HSK (Fig. 29.6)
(Romanowski, Bonanno, and Burley, 2002). Homology modeling with the PMK struc-
ture yielded medium or high accuracy models for eight PMKs from eubacteria. Seven
other models in the lower accuracy class were obtained for either bona fide or putative
PMKs from four eubacteria, one archaebacterium, and two fungi (S. cerevisiae and
Schistosaccharomyces pombe). It is not surprising that PMKs from higher eukaryotes
were not modeled by MODPIPE, because these proteins constitute a distinct enzyme
family that is not encompassed by the GHMP kinases.

yeast MDD
M.j. HSK

S.p. PMK

r.m.s.d. = 3.0 Å, 13% seq. ID

r.m.s.d. = 3.4 Å, 8% seq. ID

r.m.s.d. = 2.8 Å, 16% seq. ID

Figure 29.6. Structural comparison of three GHMP kinase superfamily members. Ribbon draw-

ings of MDD, HSK, and PMK in the same orientation with root-mean-square deviations (rmsd’s)

and sequence identities.
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The target selection exercise performed with the aid of models produced by the
MDD and HSK templates was successful for the PMK subfamily. The structure of
S. pneumoniae PMK produced much improved models (medium or high accuracy) for
all of the PMKs that were previously modeled at low accuracy with the structures of
MDD and HSK. In addition, the work on S. pneumoniae PMK provided a useful tem-
plate for calculating models of other PMKs that were not within “modeling distance”
of either HSK or MDD. These encouraging results underscore the value of a families-
based approach to structural genomics and the importance of establishing rigorous
target selection procedures before high-throughput production of proteins structures
begins in earnest.

Implications for Biomedical Research

Structures of GHMP kinase superfamily members and resulting homology models can
guide experiments aimed at defining enzymatic function, cofactor requirements, and
mechanism(s) of action, which should allow us to better understand how this family of
structurally similar, yet functionally diverse enzymes evolved from a common ancestor.

The GHMP kinase models may also be of some medical relevance in understand-
ing the structural bases of diseases associated with single nucleotide polymorphisms
(SNPs) in coding regions. Figure 29.7 illustrates a homology model of human GK
calculated with the archael HSK template. This schematic view shows the locations
of disease-causing SNPs. Impairment of human GK function by missense mutations
(Val32→ Met, Gly36→ Arg, His44→ Tyr, Gly346→ Ser, Gly349→ Ser) leads to
galactosemia and cataract formation in newborns (Novelli and Reichardt, 2000), which
can be reversed by restricting dietary galactose. The first three of these mutations map

Hydrophobic core
P-loop

Active site

Figure 29.7. Understanding disease-causing SNPs with the homology model of human galac-

tokinase. Ribbon drawing of GK in the same orientation as MDD and HSK in Figures 29.4a and

29.4d, respectively. Mutations due to disease-causing SNPs are labeled.
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to the hydrophobic core of the protein, where they probably destabilize the structure of
the enzyme, leading to complete loss of function. The remaining two mutations map
to the conserved active site cleft (green in Fig 29.4b for MDD), where they almost
certainly interfere with either galactose or ATP binding rendering the enzyme inactive.

NYSGRC PROGRESS SUMMARY

The MDD case study provides an encouraging look at the potential impact of a
program of high-throughput structure determination by X-ray crystallography and
solution NMR spectroscopy. A review the overall progress of the NYSGRC during
its first year of NIH funding also merits a brief discussion. As of August 31, 2001,
the NYSGRC completed 27 X-ray crystal structures of recombinant proteins from
eukaryotes, archaea, and eubacteria (Chance et al., 2001). Homology modeling with
these 27 experimentally determined structures produced additional structural infor-
mation for thousands of protein sequences. The NYSGRC structures and resulting
models are publicly available via the PDB (http:/www.rcsb.org/pdb) and MODBASE
(http://pipe.rockefeller.edu/modbase), respectively. These raw statistics show that the
NYSGRC pilot study is off to an encouraging start. Other NIH-funded consortia
reported similar outcomes for the first year of funding, and there is every reason
to believe that the NIH-NIGMS PSI will succeed in demonstrating the feasibility of
Structural Genomics. More important, perhaps, is the need to demonstrate the impact
of the PSI on our knowledge of protein structure/sequence space.

With the results of quantitative structure–structure comparisons (DALI; Holm and
Sander, 1993b; Dietmann et al., 2001b, SCOP; Chapter 12; Lo Conte et al., 2002;
CATH; Chapter 13; Orengo et al., 1997; Orengo et al., 2002; and PRESAGE; Brenner,
Barken, and Levitt, 1999) and automated homology modeling structures (Marti-Renom
et al., 2000), the NYSGRC structures can be subdivided into the following five cat-
egories (the number of structures and the NYSGRC target identifier are shown in
parentheses):

1. Structures such as MDD that represented new protein folds at the time of
structure determination and thereby provide entirely new information about
protein sequence/structure space (4/25, P008, P018, P100, T130).

2. Structures that are distantly related to previously known protein structures
and thereby provide a considerable amount of new information about protein
sequence superfamilies, despite the fact that they do not represent a new fold
(10/25, P007, P097, P109, P111, P111a, T27, T127, T136, T139, T140).

3. Structures that are more closely related to previously known protein structures
than class 2 proteins, and thereby provide incremental information about sub-
families within protein sequence superfamilies (6/25, P044a, P068, P102, T35,
T45, T135).

4. Structures that are very closely related to previously known protein struc-
tures, and thereby provide little, if any, incremental information about protein
sequence/structure space (5/25, P003, P048a, T129, T138, MHP).

5. Unclassified (2, P096, T132).

Of the first 27 NYSGRC structures, over half were distantly or entirely unrelated
to known folds. Eighty percent of the structures satisfy the pragmatic target selection
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criterion based on the current limitations of homology modeling (i.e., <30% identical
in amino acid sequence to a protein of known structure). The remaining 20% represent
protein structure determination projects that were continued despite the fact that a
closely related structure appeared in the PDB while work was in progress. As the
NYSGRC moves beyond the pilot stage, redundant structure determination attempts
will be abandoned once they have been superseded by PDB deposition of a closely
related structure.

LONG-TERM PROSPECTS AND CAVEATS

Although the early results from structural genomics pilot studies are encouraging, to
say the least, there are some regions of protein structure space that will not succumb
quickly to either solution NMR or X-ray methods. Membrane protein crystallization
continues to represent a considerable technical challenge, but advances in robotic pro-
tein solubilization/purification and crystallization may ease these difficulties. Alterna-
tively, the TROSY technology developed by Kurt Wuthrich and coworkers (Pervushin
et al., 1997) may offer an approach to solution NMR spectroscopic studies of protein-
detergent micelles.

There have also been predictions that many of the proteins normally found in
macromolecular complexes can never be studied in isolation (Ban et al., 2000). This
contention may be true, but misses the point of the genomewide philosophy of struc-
tural genomics. Somewhere in biology, the same fold will almost certainly be used in
a context where it is not inextricably bound up in a large complex. The balance of pro-
tein sequence space is occupied by so-called low complexity regions, which may never
adopt stable conformations or remain unstructured until they interact with their respec-
tive targets. Clearly, these cases are beyond the initial scope of structural genomics.

Finally, some discussion of what structural genomic programs are not designed to
do is required. It would be most unfortunate if the perception that Structural Genomics
Centers should become the only source of single domain protein structures were to
arise. The technologies developed for structural genomics should accelerate the work
of all structural biologists, but there is no expectation that these advances are going to
put X-ray crystallographers and solution NMR spectroscopists out of business.

Structural genomics projects will not, at least in most cases, attempt to acquire
data at atomic resolution or determine extremely accurate structures. Detailed stud-
ies of biochemical mechanism(s), protein-ligand complex structures, mutant proteins,
and protein–protein interactions aimed at understanding biochemical function are also
beyond the scope of structural genomics. Moreover, the families-based approach means
that there will be no premium placed on obtaining a structure for the protein of inter-
est from one particular organism. A homology model of a protein from an important
pathogen calculated with a remotely related template may not suffice to understand
virulence, and the structure of that particular virulence factor will have to be deter-
mined independent of any high-throughput effort. Similar considerations will almost
certainly apply to human proteins that are targets of drug discovery efforts.

Structural genomics projects promise to deliver a very large number of experi-
mental structures of protein domains, which will in turn yield a staggering number
of homology models covering virtually all of protein sequence space. These data
will be invaluable to chemists and biologists, providing a 3D view of the protein
sequence universe and giving insights into biochemical and cellular function. With
time, this enormous wealth of structures and homology models should permeate all
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of biomedical research, bringing more and more biologists into the structural “fold.”
In planning for this structured future, structural biologists should prepare themselves
to satisfy an ever-increasing demand for X-ray or solution NMR structures of pro-
teins and their complexes with small molecules, nucleic acids, carbohydrates, and their
interaction partners.
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Figure 3.10. Conformational wheel (Schneider, Neidle, and Berman, 1997) showing the torsion

angles for BDL001 (Drew et al., 1981). Black lines show actual values of torsion angles, cyan

background their allowed range in the B-type DNA conformation (Schneider, Neidle, and Berman,

1997). The grey shades in the outer rings show the average value(s) of the torsions in dark grey

flanked by values of one and two estimated standard deviations in lighter grey.

(a) (b) (z)

Figure 3.11. Canonical helical types of A-, B-, and Z-DNA from (Berman, Gelbin, and Westbrook,

1996) with permission from Elsevier Science.

Structural Bioinformatics. Edited by Philip E. Bourne and Helge Weissig
Copyright  2003 John Wiley & Sons, Inc. ISBN: 0-471-20200-2



COLOR F IGURES

(a) (b)

(c) (d)

Figure 3.12. Examples of B-DNA. (a) The Dickerson dodecamer (Drew et al., 1981); (b) B-DNA

daunomycin (Frederick et al., 1990). The drug is intercalated in between the CG base pairs;

(c) Netropsin-DNA complex (Goodsell, Kopka, and Dickerson, 1995). The drug is bound in the

minor groove; (d) DNA tetraplex (Phillips et al., 1997). Images are colored by strand.
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Figure 3.13. Examples of RNA. (a) RNA duplex with mismatches r(GGACUUCGGUCC) (Holbrook

et al., 1991); (b) A-RNA duplex (Dock-Bregeon et al., 1989); (c) Hammerhead ribozyme (Pley,

Flaherty, and McKay, 1994); (d) tRNA (Sussman et al., 1978). Backbone is colored blue (for

structures with one strand) and blue and gold (for structures with two strands). Bases are colored

green for guanine, yellow for cytosine, red for adenine, and cyan for uracil. Modified bases follow

the same color scheme.
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Figure 3.14. Group I intron ribozyme (Cate et al., 1996). Backbone is colored blue; bases are

colored green for guanine, yellow for cytosine, red for adenine, and cyan for uracil.
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(a)

(b)

Figure 3.15. The (a) 30s and (b) 50s ribosome structure (Ban et al., 2000; Schluenzen et al., 2000;

Wimberly et al., 2000). Image created by David Goodsell for the Protein Data Bank’s Molecule of

the Month series at http://www.pdb.org/.

Figure 6.4. Example for a hybrid study that combines elements of electron crystallography and

helical reconstruction with homology modeling and molecular docking approaches to elucidate

the structure of an actin-fimbrin crosslink (Volkmann et al., 2001b). Fimbrin is a member of a large

superfamily of actin-binding proteins and is responsible for cross-linking of actin filaments into

ordered, tightly packed networks such as actin bundles in microvilli or stereocilia of the inner ear.

The diffraction patterns of ordered paracrystalline actin-fimbrin arrays (background) were used

to deduce the spatial relationship between the actin filaments (white surface representation)

and the various domains of the crosslinker (the two actin-binding domains of fimbrin are

pink and blue, the regulatory domain cyan). Combination of this data with homology modeling

and data from docking the crystal structure of fimbrin’s N-terminal actin-binding domain into

helical reconstructions (Hanein et al., 1998), allowed us to build a complete atomic model of the

cross-linking molecule (foreground, color scheme as in surface representation of the array).
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Figure 6.5. Example of a combination of high-resolution structural information from X-ray

crystallography and medium-resolution information from electron cryomicroscopy (here 2.1 nm).

Actin and myosin were docked into helical reconstructions of actin decorated with smooth-muscle

myosin (Volkmann et al., 2000). Interaction of myosin with filamentous actin has been implicated

in a variety of biological activities, including muscle contraction, cytokinesis, cell movement,

membrane transport, and certain signal transduction pathways. Attempts to crystallize actomyosin

failed due to the tendency of actin to polymerize. Docking was performed using a global search

with a density correlation measure (Volkmann and Hanein, 1999). The estimated accuracy of

the fit is 0.22 nm in the myosin portion and 0.18 nm in the actin portion. One actin molecule

is shown on the left as a molecular surface representation. The yellow area denotes the largest

hydrophobic patch on the exposed surface of the filament, a region expected to participate in

actomyosin interactions. The fitted atomic model of myosin is shown on the right. The transparent

envelope represents the density corresponding to myosin in the 3D reconstruction. The solution

set concept (see text) was used to evaluate the results and to assign probabilities for residues

to take part in the interaction. The tone of red on the myosin model is proportional to this

statistically evaluated probability (the more red, the higher the probability).
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Figure 7.2. A typical fragment of electron density and a section of atomic model from the

structure of the CuA domain from cytochrome BC3 (Williams et al., 1999) (PDB ID code 2CUA),

displayed using XFit from the XtalView package. Bonds are colored according to the atoms that

they join, in this case with carbon atoms colored yellow, oxygen atoms red, and nitrogen atoms

blue. Also represented are putative hydrogen bonds, which are drawn as dashed white lines. The

electron density map is shown here with two active contour levels, in salmon and purple.
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Figure 7.3. A region of human rhinovirus 1A (HRV-1A), including a bound drug molecule (Kim

et al., 1993) (PDB ID code 2HWD). The virus proteins are shown as a simple backbone trace, with

the drug represented as space-filling spheres and colored according to atom type.
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Figure 7.4. The structure of the reduced form of human thioredoxin (Weichsel et al., 1996)

(PDB ID code 1ERT), drawn in the Richardson-style schematic secondary structure representation.

The protein chain is colored smoothly from blue at the N-terminus to red at the C-terminus, with

β-strands represented by arrows pointing from the N- to the C-terminus, and α-helices are drawn

as spiral ribbons. Regions without defined secondary structure are shown as a simple, smooth

tube. The four β-strands form a β-sheet at the center of the structure, which is easily visible in

this kind of schematic representation. The image was generated using MolScript and render.

Figure 7.5. A molecular surface drawn as a mesh, overlaid on a secondary structure representa-

tion of the toxin LQ2 from Leiurus Quinquestriatus (Renisio et al., 1999) (PDB ID code 1LIR). The

image was prepared entirely within PyMol.
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(a)

Figure 7.6. (a) The structure of c-AMP-Dependent protein kinase (Knighton et al., 1991) (PDB

ID code 2CPK) displayed using WebMol.

Figure 7.7. The structure of reverse transcriptase (RT) from the human immunodeficiency

virus (HIV) (Hopkins et al., 1996) (PDB ID code 1RT1), displayed using MICE. This particular RT

structure includes a drug molecule, just visible at the base of the cleft between the ‘‘finger’’ and

‘‘thumb’’ domains.
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Figure 9.2. Growth chart of the PDB showing the total number of structures available

in the PDB archive per year and highlighting example structures from different time peri-

ods: a) myoglobin, b) hemoglobin, c) lysozyme, d) transfer RNA, e) antibodies, f) entire viruses,

g) actin, h) the nucleosome, i) myosin, and j) 30s ribosomal subunits. Images were created by

Dr. David Goodsell, who authors the PDB’s Molecule of the Month series. Figure originally

appeared in the International Union of Crystallography Newsletter (2001). Images, descriptions

and the molecules, and links to related information can be found at http://www.rcsb.org/pdb/

molecules/molecule list.html.
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BII BI

BDL001 over expected ranges for B-DNA.

Figure 10.2. Examples of torsion angle reports generated from the NDB: (a) conformation

wheel showing the torsion angles for structure BDL001 (Drew et al., 1981) over the average

values for all B-DNA; (b) scattergram graph showing the relationship of χ vs. ζ for all B-DNA.

Two clusters, BI and BII, are labeled; (c) histogram for ε (C4′-C3′-O3′-P) for all B-DNA; (d) a torsion

angle report for BDL001.
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Figure 10.6. A view of the three residues in the consensus region for the high resolution

CAP-DNAGCE complex (Parkinson et al., 1996b). The predicted phosphate hydration is drawn as

pseudoelectron density in cyan, the interacting protein residues are shown in dark brown, and

the phosphate groups are red. The protein atoms that contact the DNA shown as blue crosses.

The predicted sites are the red crosses. Reprinted from (Woda et al., 1998) with permission from

the Biophysical Society.
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Figure 10.8. Simple model diagrams of protein-DNA complexes for double-headed binding

proteins. The diagrams give an indication of the predominant secondary structure of the binding

motif, protein symmetry and the type and relative position of the DNA groove bound. The

secondary structure of the predominant binding motifs are indicated using different symbols

analogous to those used in TOPS diagrams (Westhead & Thornton, 1998). Only one symbol of

each type is indicated in any one groove, hence both a single sheet and two sheets are indicated

by a single colored triangle. The symmetry of each protein is indicated by using a different

color for each symmetry (or pseudo symmetry) related element. A single symbol shaded in two

colors indicates that there are secondary structures of this type contributed by more than one

symmetry-related element. Reprinted with permission from (Jones et al., 1999).

(a) (b) (c)

Figure 10.9. Examples of packing motifs in DNA duplexes in a B- and A-DNA. From left to

right: (a) minor groove-minor groove interactions in BDL042 (Leonard & Hunter, 1993); (b) major

groove-backbone interactions in BDJ060 (Goodsell et al., 1995); (c) stacking interactions in BDJ025

(Grzeskowiak et al., 1991); The bases are colored green for guanine, yellow for cytosine, red for

adenine, and blue for thymine. Reprinted from (Berman et al., 1996) with permission from Elsevier

Science.
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Figure 13.4. Structural plasticity plots showing the structural similarity for pairs of relatives in

selected CATH superfamilies, as measured by the SSAP algorithm (Taylor and Orengo, 1989), as

a function of sequence identity measured after structural alignment. To highlight the maximum

deviation for each pairwise sequence identity the minimum SSAP value recorded is shown. Red

dots are mainly-α globin superfamily and blue dots are the mainly-β Immunoglobulin.
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(a) (b)

Figure 14.1. The different types of model generated by X-ray crystallography and NMR spec-

troscopy. Both are representations of the same protein: rubredoxin. (a) In X-ray crystallography

the model of a protein structure is given in terms of atomic coordinates, occupancies, and

B-factors. The side chain of Glu50 has two alternative conformations, shown in the paler colors,

with the change from one conformation to the other identified by the double-headed arrow.

The B-factors on all the atoms are illustrated by ‘‘thermal ellipsoids,’’ which give an idea of

each atom’s anisotropic displacement about its mean position. The larger the ellipsoid, the more

disordered the atom. Note that the main chain atoms tend to be better defined than the side

chain atoms, some of which exhibit particularly large uncertainty of position. Carbons are shown

in green, oxygens in red, nitrogens blue, sulfur yellow, and the bound zinc ion in deep pink.

The region around the bound zinc ion appears well ordered. This is in stark contrast with the

NMR case in (b). The coordinates and B-factors come from PDB entry 1irn, which was solved at

1.2Å and refined with anisotropic B-factors. (b) The result of an NMR structure determination is

a whole ensemble of model structures, each of which is consistent with the experimental data.

The ensemble shown here corresponds to 10 of the 20 structures deposited for as PDB code

1bfy. In this case the metal ion, shown in pink, is iron. Hydrogens are colored white. The more

disordered regions represent either regions that are more mobile, or regions with a paucity of

experimental data, or a combination of both. The region around the iron-binding site appears

particularly disordered. Both diagrams were generated with the help of the Raster3D program

(Merritt and Bacon,1997).
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Figure 14.7. Examples of typical uncertainties in atomic positions for (a) an s.u. of 0.2Å, (b) 0.3Å,

and (c) 0.39Å. The protein is the same rubredoxin from Figure 14.1a. Of course, as shown in

Figure 14.1a, the distribution of uncertainties would not normally be so uniform, with higher

variability in the surface side-chain atoms than, say, the buried main-chain atoms.
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Figure 15.1. Slice through a small section of protein structure (stick figure, backbone in white,

and side chains in cyan) showing the relation of all-atom contact surfaces (colored dots) to the

atomic van der Waals surfaces (gray dots) and to the 0.25Å-radius probe sphere (gray ball) used

in the calculation. The small probe sphere is rolled over the van der Waals surface of each atom,

leaving a contact dot only when the probe touches another noncovalently-bonded atom. The

dots are colored by the local gap width between the two atoms: blue when nearly maximum

0.5Å separation, shading to bright green near perfect van der Waals contact (0Å) gap. When

suitable H-bond donor and acceptor atoms overlap, the dots are shown in pale green, forming

lens or pillow shapes. When incompatible atoms interpenetrate, their overlap is emphasized with

spikes instead of dots, and with colors ranging from yellow for negligible overlaps to bright reds

and hot pinks for serious clash overlaps ≥0.4Å. Kinemage-format contact dots also carry color

information about their source atom (e.g., Os are red, Ss are yellow, etc.); in Mage, one can

toggle between the two color schemes.
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Figure 15.2. All-atom contact examples from the dimer of 1MJH (Zarembinski et al., 1998), a

well-determined structural-genomics protein at 1.7Å resolution. (a) All contacts for one of the

typically well-packed and well-fit regions of aliphatic side chains, with the green of close van

der Waals contacts predominant. (b) All contacts for an Arg side chain, with all 5 planar H-bonds

(lens-shaped groups of pale green dots) of its guanadinium NHs formed either to protein O atoms

or to waters (pink balls). (c) An overview of the dimer, with only the Cα backbone and the serious

clashes ≥0.4Å (red spikes) shown. When interactively displayed in Mage, it is easy to locate and fix

the small number of isolated problems, including two flipped-over His rings at the putative active

site and a high-B Lys squeezed into insufficient space between two hydrophobic side chains.
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(a) (b) (c)

Figure 15.4. Diagnosis and correction of a backward-fit valine side chain. (a) All-atom contacts

for the original side chain, with substantial clashes and an eclipsed χ1 angle. (b) Original and refit

side chains, showing how both occupy the same space but in opposite orientations. Bond-angle

distortions in the original put its Cβ 0.48Å from the idealized position. (c) Good all-atom contacts

for the refit Val, which has ideal geometry and staggered χ1 without backbone movement. Even

without deposited structure-factor data, one can be fairly confident that the electron density

must have been ambiguous and that the conformation shown in (c), not (a), is in the correct local

energy well. From the 2SIM neuraminidase at 1.6Å resolution Crennell, 1996 #672.
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Figure 15.5. All-atom contacts for the entire structure of 1BRF rubredoxin (Bau et al., 1998), a

highly accurate small protein structure at 0.95Å resolution. The dense green dot patches signifying

well-packed contacts in the molecule and a well-fit model are seen consistently throughout the

structure, except for a single red clash between two surface side chains. 1BRF thus illustrates both

how precisely the all-atom contact criteria are satisfied in atomic-resolution protein structures

and also how occasional local errors can be found even in such extremely high-quality structures.
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(a) (b)

Figure 15.6. Base and backbone all-atom contacts in the 5S RNA from the 2.4Å ribosome

structure of 1FFK (Ban et al., 2000). (a) A section of the backbone–backbone contacts, mostly very

nicely packed but with one impossible overlap of C3′ and C5′ hydrogens (red spikes). (b) Base–base

contacts, showing the long columns of well-fit base stacking.

(a) (b)

Figure 15.7. Resolving the ambiguity in a pair of doubly H-bonded side-chain amides, which

have equivalent H-bonds both to each other and to waters in the two possible flip states. (a) The

correct flip orientation, with only a minor overlap. (b) The next-best, but incorrect, flip state with

a large, physically impossible clash of the Gln Nε H with Hα (red spikes). From the 1.6Å peroxidase

of 1ARU (Fukuyama et al., 1995).
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(a) (b)

Figure 15.8. A test of alternative sequence possibilities substituting Trp for Tyr at a buried

position in the N-terminal domain of λ repressor, using the ‘‘remote update’’ function in the

interactive Mage/Probe system. (a) One of the initial rotamer trials, with impossibly bad clashes

on both sides of the Trp ring. (b) The best of the exact rotamers, with only two minor overlaps

in orange, indicating that the Trp side chain can indeed fit without perturbing the structure

significantly. Starting coordinates from 1LMB (Beamer and Pabo, 1992).
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Figure 18.1. Domain structure of dogfish lactate dehydrogenase, determined using the Cα-Cα

distance map. (a) Ribbon diagram of lactate dehydrogenase, showing the NAD binding (green)

and catalytic domains (red). In gray is part of the helix, spanning residues 164–180, linking the two

domains. (b) Distance map and structural domains in lactate dehydrogenase. Contours represent

Cα-Cα distances of 4Å, 8Å, and 16Å within the subunit of dogfish lactate dehydrogenase.

Elements of secondary structure are identified along the diagonal. Triangles enclose regions

where short Cα-Cα distances are abundant. The NAD-binding domain comprises the first two

triangles (counting from the N-terminus), which are subdomains. The catalytic domain comprises

the last two triangles (the C-terminal domain). From Rossman and Liljas (1974) and reproduced

by permission of Academic Press (London) Ltd.
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Figure 18.2. Illustration of the problem of parsing the protein 3D structure into structural

domains. (a) The most common definition of structural domains, as groups of residues with

a maximum number of contacts within each group and a minimum number of contacts

between the groups. (b) Domains may be composed of one or more chain segments. Any

domain-assignment procedure must therefore be able cut the polypeptide chains as many times

as necessary. When both domains are composed of contiguous chain segments (continuous

domains), only one chain cut (1-cut) is required. When one domain is continuous and the other

discontinuous, a situation that may arise as a result of gene insertion, then the chain has to be

cut in two places (2-cuts). When both domains are discontinuous, additional chain cuts may be

required. In the example shown, the chain is cut in four places (4-cuts), and thus the domain

on the left-hand side contains three chain segments, whereas that on the right contains two

chain segments. (c) This drawing shows two solutions to the problem of partitioning the pro-

tein 3D structure into substructures. To partition the 3D structure into domains, many such

solutions need to be examined in order to single out the one that satisfies the criterion given

in (a).
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Figure 18.8. Examples of single-domain, single-architecture proteins in CATH (Jones et al.,

1998), which STRUDL (Wernisch, Hunting, and Wodak, 1999) splits into two domains. Shown

are the domain assignments produced by STRUDL. For the exact domain limits, the reader is

referred to the STRUDL WEB site. The displayed protein ribbons belong to Torpedo californica

acetylcholinesterase monomer (1ace), the plant seed protein narbonin (1nar), the eukaryotic DNA

polymerase processivity factor PCNA (1plq), and Chorismate mutase chain A monomer (1csmA).
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Figure 18.9. Different assignments by STRUDL (Wernisch, Hunting, and Wodak, 1999) and CATH

(Jones et al., 1998), illustrating the effect of noise or decorations in the protein chain trace. The

STRUDL assignments are displayed on the left-hand side, and the CATH assignments are displayed

on the right. The short chain segments, which CATH assigns to separate domains are shown in

blue. Some of the discrepancies may be due to simple ‘slips’ in the CATH assignments that have

been or will be corrected.
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Figure 18.10. Different assignments by STRUDL (Wernisch, Hunting, and Wodak, 1999) (left)

and CATH (Jones et al., 1998) (right), for the adenovirus hexon protein (1dhx), a protein with

many domains of complex architecture.
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Figure 21.4. Electrostatic properties of a 1.2-million atom, 400× 300× 300 Å microtubule frag-

ment illustrating the current state of the art for continuum electrostatics calculations. The

potential was calculated using APBS to solve the PBE at 150 mM ionic strength. (a) The backbone

atoms of the microtubule. (b) Electrostatic potential isocontours for microtubule shown at +1.0

(blue) and −1.0 (red) kT/e. (c) Potential isocontours (as in B) for so-called ‘‘−’’ end of microtubule.

(d) Potential isocontours (as in B) for so-called ‘‘+’’ end of microtubule.



COLOR F IGURES

Step 1 and 2: Template identification
      and alignment

Target sequence A (150 residues)

Template sequence B (arabinose-binding protein, 300 residues)

Step 3 - Backbone generationStep 4 and 5 - Loop and side chain modeling

Step 6 - Model optimization

Aligned region

Figure 25.2. The steps to homology modeling. The fragment of the template (arabinose-binding

protein) corresponding to the region aligned with the target sequence forms the basis of the

model (including conserved side chains). Loops and missing side chains are predicted, then the

model is optimized (in this case together with surrounding water molecules). Images created with

Yasara (www.yasara.com).
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 Secreted frizzled protein 3 (1IJX)

 PPase (1I74), domain 2 MutS (1EWQ), domain 1

native                       prediction                              native                 prediction

13.8                                                              11.1

Ribosome Binding Factor A (1KKG)

native                        prediction                    native                  prediction

10.1                                                                       11.0

 Hypothetical Protein HI0442 (1J8B)

6.9                                                7.2

 ERp29 C-terminal domain (1G7D)

prediction

prediction
nativenative

Figure 27.1. Examples of ROSETTA structure predictions from CASP4 (see Chapter 24). Native/

prediction pairs are shown left-to-right, except for 1J8B and 1IJX, which are displayed as a

superposition of native and predicted structures. Values indicate Calpha root-mean-square (rms)

deviations between native and predicted structures, in angstroms. Colors represent position along

the chain from blue (N terminus) to red (C terminus).
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native prediction homolog (1NKL)

(a)

native prediction homolog (1B7E)

(b)

Figure 27.2. Potential of ab initio predcitions to detect distant protein homologies. (a) The

native structure of bacterial-lysis protein Bacteriocin AS-48 (left, PDB id 1E68) is compared to the

best ROSETTA prediction for the structure (center), and the native structure of NK-Lysin (right,

PDB id 1NKL), a functionally similar protein. (b) The native structure of domain 2 of the DNA

mismatch repair protein MutS (left, PDB id 1EWQ), is compared to the best ROSETTA prediction

for the domain (center), and a domain from the native structure of the Tn5 transposase inhibitor

(right, PDB id 1B7E). In both (a) and (b) the ab initio models of the proteins were of sufficient

quality to detect these functional homologs by the similarity of the folds in the absence of

significant sequence similarity.

native                                             prediction

Figure 27.3. An example of active-site conservation in ab initio models. The ROSETTA predicted

structure of domain 1 from an inorganic pyrophosphatase from Streptococcus mutans is compared

to the corresponding domain in the native structure (PDB id 1I74). Strongly conserved active site

residues are rendered as spheres along the backbone. Note the similar relative orientation of

these residues in the native and predicted structures, implying that ab initio models may be

sufficient to detect functional homologies using methods that search for functionally significant

residue arrangements.
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Figure 29.2. MDD sequence alignments. Proteins similar to S. cerevisiae MDD (E-value <10−4)

were identified using PSI-BLAST (Altschul et al., 1997), and aligned with CLUSTAL (Higgins,

Bleasby, and Fuchs, 1992). Secondary structural elements of S. cerevisiae MDD are shown with

cylinders (α-helices) and arrows (β-strands). Grey dots denote poorly resolved residues in the final

electron density map. Color coding denotes sequence conservation among MDDs (white→ green

ramp, 30→ 100% identity). Red box denotes the ATP-binding P-loop. Adapted from (Bonanno

et al., 2001).
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(a) (b)

(d) (c)

Figure 29.4. S. cerevisiae MDD and M. jannaschii HSK. Ribbon drawings of MDD (a) and

HSK (d) in the same orientation. P-loops are colored red. Surface representations of MDD color

coded for (b) sequence conservation using the white→ green color ramp from Figure 29.2

and (c) calculated surface electrostatic potential (red← 10 to blue > +10kBT, where kB is the

Boltzmann constant and T is the temperature (Gilson, Sharp, and Honig, 1988).
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charge representation, 457–459
solvent representation, 459–461
van der Waals radii, 459

pharmacogenetics, 468
research background, 441–443
scoring functions, 456–457

empirical methods, 457
first principles methods, 456
knowledge-based potentials, 457
semiempirical methods, 456

solvation/hydration effects, 454, 456
testing procedures, 462–465

complex reassembly, 462–464
failure testing, 464–465
virtual screening, 464

electron cryomicroscopy/x-ray
crystallography procedures, 126–127

macromolecular docking, 467
protein interaction region predictions,

411–412
future research, 421–422
hybrid prediction techniques, 413–416

DOCK software
docking and ligand design

reassembly complexes, 462–463
scoring techniques, 456
success/failure testing, 463

docking molecule site characterization,
445–446

Document Type Definition (DTD), format
and protocols, 176–178
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Domain-domain interfaces, domain
identification, 379–380

DomainFinder algorithm, CATH domain
structure database, GENE3D resource,
261

DomainParser, domain identification, second
generation assignment algorithm, 377

Domain structures
CATH domain structure database

boundary identification, 258
comparison with SCOP and DALI,

247–248
GENE3D resource, 260–261
historical development, 248–252
homologous structures

sequence-based protocols, 253–255
structure-based methods, 255–257
superfamily dictionaries, 259–260
superfamily sequence relatives, 260

multiple structure alignments, 3D
templates, 257

population statistics
folds in architectures, 263–264
superfamily/family folds, 264–267

server applications, 263–267
structural/phylogenetic identification,

249–260
web site and server protocols,

261–263
electrostatic interactions, 427–428
identification techniques

assignment criteria, 377–379
first generation assignment algorithms,

367–370
physical criteria, 369–370
protein structure classifications, 370

future research problems, 379–380
methodological overview, 365–367
research background, 363–365
second generation assignment

algorithms, 370–377
graph theoretical methods, 370–377
Ising models, 377
TIM barrel structures, 377

SCOP hierarchical classification,
240–241

structural genomics, yeast
mevalonate-5-diphosphate
decarboxylase (MDD) case study,
599–600

tertiary protein structure, 29
DOMAK system, domain identification

assignment criteria, 378–379
protein structure classification, 370

second generation assignment algorithm,
374–377

Double dynamic programming, Sequence
Structure Alignment Program (SSAP),
326

Double helix
base pair geometry, 45–49
DNA structure, 41–42
Nucleic Acid Database (NDB) data,

207–210
Drug complexes

computer-aided drug design (CADD),
444–450

analog-based design, 444–445
structure-based design, 445–449
virtual library design, 449–450

nucleic acid structure and, 59–60
pharmacogenetics, 468
structural bioinformatics

ADMET modeling, 490
current research, 476–477
future applications, 490–491
historical development, 475–476
lead identification, 487–488
lead optimization, 489–490
pharmaceutical applications, 477–479
target assessment, 479–483
target triage, 483–486
target validation, 486–487

Duplex DNA, structural properties, 55–59
Duplex RNA, structural properties, 60–62
DYANA program, protein structure

NMR spectroscopy, 100–102
NOE assignment and structure

calculation, 102
validation, 103

Electron cryomicroscopy
development, 115–116
electron optics and image formation,

116–119
future research, 128–129
pattern recognition, 127–128
research background, 115–116
three-dimensional reconstruction,

119–125
crystalline arrays, 119–121
electron tomography, 123
helical assemblies, 121
hybrid techniques, 122–123
protein dynamics imaging, 123–124
single-particle analysis, 122

x-ray crystallography and, 125–127
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Electron density map interpretation
all-atom contact analysis, 308–311
electron cryomicroscopy, 116–119
error estimation and precision, resolution

parameters, 278–280
high-throughput crystallographic analysis,

macromolecular structure, 79–81
macromolecular visualization, 137

Electron optics, electron cryomicroscopy,
116–119

Electron tomography, electron
cryomicroscopy, three-dimensional
reconstruction, 123

Electrostatic interactions
functions, 425–426
future applications, 435
high-throughput structures, 427–428
historical evolution, 426–427
Poisson-Boltzmann theory, 428–435

energy derivations, 430–431
equation elements, 428–430
force elements, 431–432
multilevel solvers, 435
numerical solution, 432–435

adaptive finite element
discretization, 433–435

finite difference discretization,
432–433

research background, 426
Electrostatic potential (ESP), docking and

ligand design, molecular mechanics
scoring functions, 458–459

Empirical hydrogen bond calculation,
secondary protein structures, 343

Empirical scoring functions, docking and
ligand design, 457

Endo atoms, sugar phosphate backbone
conformation, 50–55

Energy-based analysis
fold recognition, threading algorithms,

534–535
homology modeling, loop regions, 514

Enolase superfamily, fold recognition, 525
Enrichment factor (EF), docking and ligand

design, virtual screening, 464
Enthalpy reactions, docking and ligand

design, 450–454
Entropy reactions, docking and ligand

design, 450–454
Enzymatic catalysis, evolution of, 238–239
Enzyme classification, protein function

identification, 386–388, 393
Enzyme Commission (EC) system

multifunctional protein identification, 388

protein function identification
analogue structures, 395–396
enzyme function and structural class,

393
enzyme/nonenzyme classification,

387–388
protein folding and, 393–394

ERRAT program, error estimation and
precision, 296

atom-atom contacts, 292–294
Error detection and estimation

docking and ligand design, 464–465
fold recognition, threading

approximations, 535, 537–539
homology modeling

backbone generation, 513
validation procedures, 518–519

one-dimensional secondary structure
prediction, 568–570

Protein Data Bank (PDB) data validation
and annotation, 186

three-dimensional models, 275–296
deposited structures, 284–296

hetero groups, 295–296
nucleic acids, 294–295
proteins, 289–294
serious errors, 284–286
stereochemical parameters,

286–289
typical errors, 286

NMR spectroscopic errors, 282–284
x-ray crystallographic errors, 275–282

atomic B-factors, 281
average positional error, 281
Brünger’s free R-factor, 280–281
global parameters, 277–281
resolution, 277–280
R-factor, 280
selection criteria, 281–282
uncertainty estimation, 275–277

Eukaryote structures, one-dimensional
secondary structure prediction, 573

EVA server, one-dimensional secondary
structure prediction, evaluation of
programs, 568

Evolutionary mechanisms
ab initio fold prediction, 548–549
convergent evolution, fold recognition,

524
divergent evolution, fold recognition, 524
enzymatic catalysis, 238–239
fold recognition, molecular evolution,

527
homology modeling, 507–510



624 INDEX

Evolutionary mechanisms (Continued )
one-dimensional secondary structure

prediction
solvent accessibility models, 563
theoretical background, 559–562
transmembrane helix prediction,

565–566
protein-protein interaction prediction

coevolution, 411
conservation of positions, 410
family-dependent conservation, 411
future applications, 421–422
interaction partners, 416–421

genomic-based computation,
417–418

high-throughput applications, 416
protein databases and collections,

416–417
sequence-based computation,

418–421
interaction regions, 411–416

hybrid methods, 413–416
sequence-based methods, 413
structure-based methods, 411–412

research background, 409–410
protein structure, 237–239

fold evolution, 238
structural genomics

basic concepts, 590
yeast mevalonate-5-diphosphate

decarboxylase (MDD) case study,
601

tertiary protein structure, 30–31
Exo atoms, sugar phosphate backbone

conformation, 50–55
Extensible markup language (XML)

format and protocols, 176–178
Metalloprotein Database and Browser

(MDB), 226

Failure detection, docking and ligand
design, 464–465

Family classifications
CATH domain structure database,

superfamily and family population
statistics, 264–267

fold recognition, multiple alignments,
529–531

SCOP hierarchical classification, 239, 242
Family-dependent conservation,

protein-protein interaction prediction,
411

FASTA algorithm
fold recognition, protein sequence

analysis, 528–529
homology modeling, template

identification and alignment,
510–511

SCOP organization and capabilities,
242–244

Fast Fourier transform (FFT)
high-throughput crystallographic analysis

electron density map interpretation, 80
refinement techniques, 82

ligand orientation, 447–448
Ferredoxinlike fold, protein function

identification, 393–394
Fibrous proteins

biochemical classification, 33
structural bioinformatics, 7
tertiary protein structure, 30

Field emission gun (FEG) electron source,
electron cryomicroscopy, optical
resolution, 118–119

File transfer protocol (ftp), Protein Data
Bank (PDB)

access protocols, 194
architecture, 190–191

Finite difference discretization, electrostatic
interactions, Poisson-Boltzmann
equation (PBE), 432–433

First generation assignment algorithms,
domain identification, 367–370

physical criteria, 369–370
protein structure classifications, 370

First principles methods, docking and ligand
design, scoring functions, 456

Flexible ligands, docking procedures, 448
FlexX

docking and ligand design,
success/failure testing, 463

ligand site characterization, 445–446
Flipkin script, all-atom contact analysis,

313–316
Floppy proteins, one-dimensional secondary

structure prediction, 573
Fold recognition. See also Protein folding

algorithm comparison and assessment,
539–540

Critical Assessment for Structure
Prediction (CASP), 503

novel recognition, 503–504
error detection in threading, 535,

537–539
homology modeling, 510
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sequence-only distant homology
algorithms, 531–532

theoretical background, 527
modeling applications, 523–525
molecular evolution, 527
protein families and multiple alignments,

529–531
protein sequence analysis, 527–529
sequence-only algorithms, 531–532
sequence similarity, 527
simulation and threading force fields, 533
theoretical background, 526
threading approximations, 533–535

algorithms, 536
Fold space

structural genomics, 590
structure comparison and alignment,

330–332
tertiary protein structure, 30–31

Force field evaluation. See also Potentials
of mean force (PMF)

electrostatic interactions,
Poisson-Boltzmann equation (PBE),
431–432

fold recognition, threading algorithms,
533

homology model optimization, 516–518
validation procedures, 518–519

Fourier transform (FT)
electron cryomicroscopy

optics and image formation, 116–119
three-dimensional crystalline arrays,

119–121
structural bioinformatics, crystallographic

data, 8
Fragment placement

ab initio fold prediction, polypeptide
chains, 546–547

de novo design, 448
Free energy

docking and ligand design
binding sites, 463–464
complex formation principles,

450–454
energy interactions, 450–451
molecular mechanics/continuous

solvent models, 466
rank ordering, 463
research background, 442

drug bioinformatics, target druggability,
481

electrostatic interactions,
Poisson-Boltzmann equation (PBE),
430–431

Free energy perturbation (FEP), docking
and ligand design, scoring techniques,
456–457

FRODO software, macromolecular
visualization, 136, 138

“Frozen approximation,” fold recognition
threading algorithms, 534–535
threading errors, 538–539

FSSP database
continuous Dictionary of Secondary

Structure of Proteins (DSSPcont),
353–356

domain identification
assignment criteria, 377–379
second generation assignment

algorithms, 370–377
fold recognition, limitations,

524–525
FTDock, ligand orientation, 447–448
Function derivation, protein structure

ab initio prediction, 396–397
analogues, 395–396
assignment protocols, 396–402
database classification, 388–390
definitions, 386
enzyme function, 393
enzyme/nonenzyme classification,

386–388
Fuzzy Functional Forms (FFF) algorithm,

398–399
gene ontologies, 388, 391
genomic applications, 400–402

IMPase, 402
Mj0577-putative Atp molecular switch,

400–401
YcaC-bacterial hydrolase,

401–402
homologous families, 393, 395
molecular recognition, 399
multifunctional proteins, 388
protein fold and, 393–394
protein-ligand complexes, 391–392
research background, 385–386
RIGOR tool, 399
side chain patterns, 399
SITE and Site-Match, 398
SPASM tool, 399
structural comparisons, 397
structural motifs, 397–399
TESS algorithm, 398
three-dimensional structures, 391–392

Fuzzy Functional Forms (FFFs), protein
function identification, 398–399
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Galerkin discretization, electrostatic
interactions, Poisson-Boltzmann
equation (PBE), 434–435

γ perturbation method, high-throughput
crystallographic analysis, density
modification, 78

Gaps, fold recognition, protein sequence
analysis, 528–529

GARANT, protein structure, NMR
spectroscopy, 100–102

Gauche values, sugar phosphate backbone
conformation, 55

GenBank program
CATH domain structure database,

247–248
MacroMolecular Database (MMDB),

221–222
GENE3D resource, CATH domain structure

database, 260–261
GeneFold algorithm, fold recognition, 540
Gene fusion, protein-protein interaction

prediction, 418
Gene neighboring conservation,

protein-protein interaction prediction,
417–418

Gene ontology, protein function
identification, 388, 391

Generalized Born model, docking and
ligand design, solvent representation,
460–461

Genetic algorithms, ab initio fold
prediction, 548–549

Genome sequencing. See also Structural
genomics

ab initio fold prediction, 549–550
MacroMolecular Database (MMDB),

221–222
one-dimensional secondary structure

prediction, 571–572
structural bioinformatics, 5

Genomics. See also Structural genomics
drug bioinformatics, druggability studies,

481–483
protein-protein interaction prediction

computational methods, 417–418
research background, 409–410

secondary protein structure, structure
assignment, 339–340

Geometric analysis
ab initio fold prediction, genome

annotation, 549–550
docking and ligand design, reassembly

complexes, 462–463
PDB quality information, 298

GHMP kinases
homology modeling, yeast

mevalonate-5-diphosphate
decarboxylase (MDD) case study,
600–601

structural genomics
biomedical applications, 604
target selection, 602–604

Global alignment method, CATH domain
structure database, sequence-based
protocols, 253–255

Globular proteins, biochemical
classification, 31–32

Glycine
peptide bond structure, 19–20
side chain sequence, 17

Glycosidic bond
nucleic acid chemical structure, 43–45
sugar phosphate backbone conformation,

50–55
Graphical Method for Identifying Folds

(GRATH), CATH domain structure
database

domain boundary identification, 258
homologous structural analysis, 256–257

Graph theoretical techniques, domain
identification, second generation
assignment algorithms, 370–377

Greek-key motifs, secondary structure
assignment, 351–353

GRID software, drug bioinformatics,
chemical lead identification, 488

Groove interactions
DNA-drug interactions, 59–60
DNA duplexes, 56–59
Nucleic Acid Database (NDB) data,

208–210

Hairpin loops, secondary protein structure,
24–28

Hammerhead ribozymes, 61, 64
HAMMERHEAD software, ligand

orientation, 447–448
Handedness, α-helices, 22–24
Heavy atoms

all-atom contacts
Met conformations, 312–316
structure validation, 305–307

high-throughput crystallographic analysis,
macromolecular structures, 77–78

Helical twist, base pair geometry, 48
Helices

DNA structure, 41–42
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duplex RNA, 60–62
electron cryomicroscopy

hybrid techniques, 123–124
pattern recognition, 128
three-dimensional reconstruction, 121

Nucleic Acid Database (NDB) data,
207–210

one-dimensional secondary structure
prediction

evalution of techniques, 570–571
transmembrane helix prediction,

563–566
rare structures, secondary protein

structure, 24
ribosomal RNA, 64–67 (See also

α-helices)
Hershey-Chase experiments, DNA structure,

41
Hetero compounds, error estimation and

precision, 295–296
HETZE program, error estimation and

precision, hetero compounds, 295–296
Hidden Markov models (HMMs)

fold recognition
divergent evolution, 524
protein families, multiple alignments,

530–532
one-dimensional secondary structure

prediction, 561–562
evaluation of techniques, 571
transmembrane helix prediction, 566

structural comparison and alignment,
328–329

High-resolution techniques, biological
structures, 5–6

High scoring fragments (HSF), fold
recognition, protein sequence analysis,
528–529

High-throughput crystallographic analysis
drug bioinformatics, 477

pharmaceutical models, 478–479
electrostatic interactions, 427–428
macromolecular structure

automation issues, 82–83
data analysis techniques, 76–77
density modification, 78
disorder, 83
heavy atom location and computation,

77–78
map interpretation, 79–81
molecular replacement, 78–79
noncrystallographic symmetry, 82–83
principles, 76
refinement methods, 81–82

research background, 75
validation, 82

protein-protein interaction partners,
416

structural genomics, 592
HIV Proteases resource (HIVpr), data

content, 225
Homology modeling

alignment correction, 511–513
backbone generation, 513
CATH domain structure database

sequence-based protocols, 253–255
Sequence Structure Alignment Program

(SSAP) protocols, 255–256
superfamily dictionaries, 259–260

design principles, 507–510
fold recognition

comparisons, 523–525
molecular evolution and sequence

similarity, 527
protein families and multiple

alignments, 529–531
protein sequence analysis, 528–529

loop modeling, 513–514
optimization, 516–518
protein function identification, 393, 395
side-chain modeling, 514–516
structural genomics

basic concepts, 590–591
databases, 591–592
MDD/HSK structures, 601
yeast mevalonate-5-diphosphate

decarboxylase (MDD) case study,
600–601

template recognition and initial
alignment, 510–511

validation procedures, 518–519
Homoserine kinases (HSK), structural

genomics
homology modeling, 600–601
target selection, 602–604

HOMSTRAD data base, multiple structure
alignments, 330

HSQC techniques, macromolecular
structure, NMR screening, 94–96

Human Genome Project, structural
genomics, 592

Human immunodeficiency virus, HIV
Proteases resource (HIVpr), 225

Hybrid microscopic techniques, electron
cryomicroscopy, 123–124

Hybrid prediction techniques,
protein-protein interactions,
413–416
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Hydration
B-DNA structure, 57–58
docking and ligand design, 444, 446
Nucleic Acid Database (NDB) data,

207–210
Z-DNA, 59

Hydrogen atoms, all-atom contacts,
structure validation, 304–317

Hydrogen bond models
base pair geometry, 45–49
secondary protein structures

assignment, 341–343
angle-distance assignment, 341–342
Coulomb calculation, 342–343
future research, 352–353

Dictionary of Secondary Structure of
Proteins (DSSP) techniques, 344

α-helices, 22–23
Hydrophic amino acids, side chain

sequence, 17
Hydrophobic effect

one-dimensional secondary structure
prediction

solvent accessibility models, 563
transmembrane helix prediction, 566

tertiary protein structure, 29–30

i2h prediction method, protein-protein
interaction prediction, sequence-based
computation, 419

Image formation, electron cryomicroscopy
optical resolution, 116–119
protein dynamics, 124–125
three-dimensional reconstruction,

119–125
ImgCIF dictionary, format and content,

175
IMPALA algorithm, CATH domain

structure database, sequence-based
homologue protocols, 253–255

IMPase structure, protein function
identification, 402

Inclination, base pair geometry, 47
Inelastic scattering, electron

cryomicroscopy, 117–119
Insertions, fold recognition, protein

sequence analysis, 528–529
Inside/outside residue distribution,

homology modeling validation, 519
Intercalation complexes, DNA-drug

interactions, 59–60

Interface definition language (IDL),
Common Object Request Broker
Architecture (CORBA), 178

InterPro initiative, CATH domain structure
database, 248

Introns, ribozyme structure, 63–64
Investigational new drugs (INDs),

bioinformatics, 477
Ion pairing, tertiary protein structure, 30
Ising models, domain identification, 377
I-sites, secondary structure assignment,

351–353
Isomorphous substitution, high-throughput

crystallographic analysis,
macromolecular structures, 77

IUCr review, macromolecular
Crystallographic Information File
(mmCIF), 164–165

JPred2 server, one-dimensional secondary
structure prediction, solvent
accessibility models, 563

Kernigan-Lin heuristic, domain
identification, second generation
assignment algorithms, 372–377

Kinases, drug bioinformatics, target
druggability, 479–480

KINEMAGE software, macromolecular
visualization, 138

“Kissing-loop” structure,
mismatched/bulged RNA, 62–63

“Knobs-into-holes” geometry,
one-dimensional secondary structure
prediction, 561–562

Knowledge-based potentials
docking and ligand design, scoring

functions, 457
homology modeling

loop regions, 514
side-chain conformations, 515–516

L-amino acids, protein structure, error
estimation and precision, 290–292

Landscape models, docking and ligand
design, 467

Laplacian operator, electrostatic interactions,
Poisson-Boltzmann equation (PBE),
finite difference discretization, 433
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Lattice representation, ab initio fold
prediction, polypeptide chains, 547

Legacy data, Protein Data Bank (PDB)
uniformity protocols, 187–189

Lennard-Jones functions, docking and
ligand design, Van der Waals radii, 459

Ligand nomenclature, Protein Data Bank
(PDB) data validation and annotation,
186

Ligand-protein interactions
protein function identification, 391–392
ReliBase data source, 224

Ligands, design principles
ADME properties, 468
combinatorial calculation, 461
complex formation flow chart, 450–454
computer-aided drug design (CADD),

444–450
analog-based design, 444–445
structure-based design, 445–449
virtual library design, 449–450

database organization, 466–467
de novo design cycles, 443
experimental conditions, 454–455
free energies and energy binding, 450
future scoring techniques, 465–466
landscape models, 467
macromolecular docking, 467
molecular mechanics scoring

parametrization, 457–461
charge representation, 457–459
solvent representation, 459–461
van der Waals radii, 459

pharmacogenetics, 468
research background, 441–443
scoring functions, 456–457

empirical methods, 457
first principles methods, 456
knowledge-based potentials, 457
semiempirical methods, 456

solvation/hydration effects, 454, 456
success rates, 465
testing procedures, 462–465

complex reassembly, 462–464
failure testing, 464–465
virtual screening, 464

Linear interaction energy (LIE), docking
and ligand design, semiempirical
scoring functions, 456

Linear polymer theory, amino acid
sequence, 16–17

Line Drawing System 1 (LDS1),
macromolecular visualization, 137

Lipid modification, tertiary protein
structure, 30

List server, Protein Data Bank (PDB), 194
LiveBench server, one-dimensional

secondary structure prediction,
evaluation of programs, 568

Loop directive, macromolecular
Crystallographic Information File
(mmCIF), 166–167

Loop regions
homology modeling, 508–510, 513–514

model optimization, 516–518
mismatched/bulged RNA, 62–63
secondary protein structure, 24–28

Lorentz-Berthelot model, docking and
ligand design, Van der Waals radii, 459

LUDI scoring function, docking and ligand
design, 457

Luzzati plot
deposited structures, errors in, 286
x-ray crystallography models, average

positional error, 281

Macromolecular Crystallographic
Information File (mmCIF)

alternative data dictionaries, 175
dictionary-based data management,

164–175
atomic positions, 173–175
dictionary content, 170–175
molecular entitites, 171
polymer and non-polymer entities,

172–173
semantic elements, 169–170
syntax structure, 165–169

Nucleic Acid Database (NDB), 199
validation procedures, 201–202

Protein Data Bank (PDB) data
acquisition, 182–184

uniformity protocols, 188–189
MacroMolecular Database (MMDB),

sequence, literature and genome
information, 221–222

MAcromolecular Exchange Input Tool
(MAXIT)

Nucleic Acid Database (NDB) validation,
201–202

Protein Data Bank (PDB) data
acquisition, 182

Macromolecular Motions Database
(MolMovDB), content and protocol,
226–227
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Macromolecular structure
data flow, 215, 218
electrostatic interactions,

Poisson-Boltzmann equation (PBE),
435–436

high-throughput crystallographic analysis
automation issues, 82–83
data analysis techniques, 76–77
density modification, 78
disorder, 83
heavy atom location and computation,

77–78
map interpretation, 79–81
molecular replacement, 78–79
noncrystallographic symmetry, 82–83
principles, 76
refinement methods, 81–82
research background, 75
validation, 82

macromolecular docking, 467
nuclear magnetic resonance (NMR)

spectroscopy
bioinformatics applications, 91–94
cell-free protein production, 104–105
concerted approaches, 106
experimental protocols, 91
future research issues, 104–106
model validation, 102–103
molecular dynamics, 104
physical principles, 90–91
protein sampling, 96–97
protein structure, 97–102

protocols, 99–102
research background, 89
screening methods, 94–96
stereo array isotope labeling (SAIL),

105–106
vs. x-ray crystallography, 90

primary data sources, 215, 218
Biological Macromolecule

Crystallization Database (BMCD),
218–219

Cambridge Structural Database (CSD),
219–220

future structure information, 220
visualization techniques

historical background, 135–144
software characteristics, 135–144
sources for, 215, 217
table of software options, 150–156
tool kits, 148–149
web-based software, 145–148

Macromolecular Structure
Database/European Bioinformatics
Institute (MSD-EBI)

Protein Data Bank (PDB) data deposition,
187

Protein Quaternary Structure (PQS)
resource, 222–223

Mage/Probe system, all-atom contact
analysis, 314–316

MAID program, high-throughput
crystallographic analysis, electron
density map interpretation, 80

Manual fitting techniques, electron
cryomicroscopy/x-ray crystallography
procedures, 126–127

MAP kinases, drug bioinformatics, target
validation, 486–487

Maximum-likelihood estimates,
high-throughput crystallographic
analysis

heavy atom location, 78
molecular replacement, 79
refinement techniques, 81–82

MC-Annotate, nucleic acid structures, error
estimation and precision, 295

MDB dictionary, format and content, 175
MDD. See Yeast mevalonate-5-diphosphate

decarboxylase (MDD)
Membrane-bound proteins

biochemical classification, 32–33
electron cryomicroscopy,

three-dimensional crystalline arrays,
121

one-dimensional secondary structure
prediction

evalution of techniques, 571
transmembrane helix prediction,

563–566
structural bioinformatics, 7
structural comparison and alignment,

328–329
structural genomics, 606–607

MEMSAT program, one-dimensional
secondary structure prediction,
transmembrane helix prediction,
565–566

Merohedral twinning, high-throughput
crystallographic analysis,
macromolecular structures, 77

Metalloprotein Database and Browser
(MDB), data content, 225–226

Metalloproteins, data sources, 225–226
Met conformations, all-atom contact

analysis, 311–316
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Metropolis criterion, docking and ligand
orientation, 447–448

Metropolis Monte Carlo simulated
annealing, ab initio fold prediction,
548–549

Minimized protein density, stereo array
isotope labeling (SAIL), 105–106

Minimum contact density profile, domain
identification, second generation
assignment algorithms, 372–377

Mining Minima, docking and ligand
orientation, 447–448

MIPS database, protein-protein interaction
prediction, 417

Mirror sites
Nucleic Acid Database (NDB),

205–206
Protein Data Bank (PDB), 194–195

Mirrortree method, protein-protein
interaction prediction, sequence-based
computation, 419–421

Mismatched RNA, structural characteristics,
62–63

Mjo577 genome, protein function
identification, 400–401

MLPHARE program, high-throughput
crystallographic analysis, heavy atom
location, 78

Modified image electrostatic approximation
(MIMEL), docking and ligand design,
465–466

MODPIPE system, homology modeling,
yeast mevalonate-5-diphosphate
decarboxylase (MDD) case study,
600–601

Molecular Biology Toolkit (MBT),
macromolecular visualization, 149

Molecular dynamics
docking and ligand orientation, complex

formation, 452–454
homology model optimization, 518
NMR spectroscopy, 104

Molecular entities, macromolecular
Crystallographic Information File
(mmCIF), 171

Molecular Information Agent (MIA)
multiple resource integration, 229–231
Protein Data Bank (PDB) architecture,

190–191
Molecular interactions, tertiary protein

structure, 29–30
Molecular Interactive Collaborative

Environment (MICE), macromolecular
visualization, 145–148

Molecular mechanics scoring functions
ab initio fold prediction, potentials

categories, 547–548
docking and ligand design, 457–461

charge representation, 457–459
solvent representation, 459–461
van der Waals radii, 459

Molecular modeling, structural
bioinformatics, 4–6

Molecular Modeling Toolkit (MMTK),
macromolecular visualization, 149

Molecular recognition, protein function
identification, 399

Molecular replacement, high-throughput
crystallographic analysis, 78–79

Molecular structures, structural
bioinformatics, database storage, 9

MolProbity subsite, all-atom contact
analysis, 316–317

MolScript software
CATH domain structure database,

250–252
macromolecular visualization, 143

Monte Carlo optimization
ab initio fold prediction, 548–549
docking and ligand orientation,

447–448
complex formation, 452–454

multiple structure alignments, 329–330
Morph Server software, Macromolecular

Motions Database (MolMovDB), 227
Motifs

protein function identification, 397–399
tertiary protein structure, 29

Motor proteins, electron cryomicroscopy,
protein dynamics, 124–125

mRNA sequencing, bioinformatics and, 3
Multifunctional proteins, identification, 388
Multilevel solvers, electrostatic interactions,

Poisson-Boltzmann equation (PBE),
435

Multiple sequence alignment
fold recognition, protein families,

529–531
homology modeling, 512–513

backbone generation, 513
Multiple structure alignments

CATH domain structure database, 257
domain identification, 379–380
evolutionary information, protein-protein

interaction prediction, 410–411
Monte Carlo optimization, 329–330
tree determinant residues, 413
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Multiwavelength Anomalous Diffraction
(MAD)

high-throughput crystallographic analysis,
macromolecular structures, 77

structural bioinformatics, 8
Multiple polypeptide chains, quaternary

protein structure, 33–36
MySQL database system, Metalloprotein

Database and Browser (MDB), 226

NAContacts script, all-atom contacts,
313–316

NAD binding domain, protein function
identification, 393–394

NASA, Protein Crystal Growth Archive,
218–219

National Center for Biotechnology
Information (NCBI), MacroMolecular
Database (MMDB), 221–222

National Institute of General Medical
Sciences (NIGMS) Protein Structure
Initiative (PSI), structural genomics
pilot programs, 593–597

Netscape LDAP server, Protein Data Bank
(PDB) architecture, 190–191

Neural networks
one-dimensional secondary structure

prediction, 559–562
solvent accessibility models, 563

protein-protein interaction prediction,
415–416

Newton techniques, electrostatic
interactions, Poisson-Boltzmann
equation (PBE), 432–435

New York Structural Genomics Research
Consortium (NYSGRC), structural
genomics pilot program, 597–604

biomedical implications, 604
evolutionary mechanisms, 601
homology modeling, 600–601

MDD/HSK structures, 601
progress summary, 604–605
sample preparation and characterization,

597–599
structural overview, 599–600
target selection, 597, 601–604
x-ray structure determination, 599

Nitrogen-15, macromolecular structure
NMR spectroscopy, 90–91
screening methods, 94–96

NMRPipe program, protein structure, NMR
spectroscopy, 100–102

NMR-STAR, macromolecular structure,
93–94

Noise issues, structural bioinformatics, 7
Noncovalent interactions, docking and

ligand design, 451–454
Noncrystallographic symmetry,

high-throughput crystallographic
analysis, 82–83

Nonenzyme classification, protein function
identification, 386–388

Nonlinearity, structural bioinformatics, 6
Non-polymer entities, macromolecular

Crystallographic Information File
(mmCIF), 172–173

Nonredundant data sources, ASTRAL
compendium, 220–221

Normality indices, homology modeling
validation, 519

NP problems, structure comparison and
alignment, 322–327

NSSP system, one-dimensional secondary
structure prediction, 561–562

NuCheck software
Nucleic Acid Database (NDB) validation,

201–202
nucleic acid structures, error estimation

and precision, 294–295
Nuclear magnetic resonance (NMR)

spectroscopy
all-atom contact analysis, 316
electron cryomicroscopy and,

125–127
error estimates, 282–284
macromolecular structure

bioinformatics applications, 91–94
cell-free protein production,

104–105
concerted approaches, 106
experimental protocols, 91
future research issues, 104–106
model validation, 102–103
molecular dynamics, 104
physical principles, 90–91
protein sampling, 96–97
protein structure, 97–102

protocols, 99–102
research background, 89
screening methods, 94–96
stereo array isotope labeling (SAIL),

105–106
vs. x-ray crystallography, 90

Protein Data Bank (PDB) data
acquisition, 184

quality assurance, 273–274
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secondary structure assignment for,
351

continuous Dictionary of Secondary
Structure of Proteins (DSSPcont),
355–356

structural bioinformatics, 8–9
Nuclear Overhouser Effect spectroscopy

(NOESY)
error estimation and precision, NMR

models, 283–284
macromolecular structure

NMR spectroscopy, 91
protein structural analysis, 97–98

protein structure
assignment and structure calculation,

101–102
NMR spectroscopy, 100–102
validation, 103

quality assurance, 273–274
Nucleic-acid crystal structures, all-atom

contacts, 311–316
Nucleic Acid Database (NDB)

applications, 206–210
Archives page, 205–206
Atlas reports, 205–206
data distribution, 204–206

mirror sites, 205–206
outreach programs, 206

data validation and processing,
201–202

future research issues, 210–211
historical background, 199
information content, 200–201
macromolecular structure, validation,

102–103
Protein Data Bank (PDB) architecture,

191
query capabilities, 202–204

Nucleic acid structures
chemical structure, 42–45
DNA duplexes, 55–59
DNA quadruplexes, 60
drug complexes, 59–60
error estimation and precision, 294–295
ribosome, 64–67
ribozymes, 63–64
RNA duplexes, 60–62
RNA mismatches and bulges, 62–63
structural bioinformatics, 7
transfer RNA (tRNA), 63

Nucleosides, nucleic acid chemical
structure, 42–45

Nucleotides, nucleic acid chemical
structure, 42–45

Object Management Group (OMG)
application program interface (API)

protocols, 178
XML format and protocols, 176–178

Oligonucleotides
DNA structure, 41–42
Nucleic Acid Database (NDB)

information, 200–201
One-dimensional models

Cambridge Structural Database (CSD)
sources, 219

secondary structures
emerging and future technologies,

571–574
evaluation of prediction techniques,

566–568
practical applications, 568–571
prediction techniques, 558–562
programs and public servers, 566
solvent accessibility prediction,

562–563
theoretical background, 557–558
transmembrane helix prediction,

563–566
One-window free energy grid (OWFEG),

docking and ligand design, rank
ordering, 463

Open reading frame (ORF), protein function
identification, genomic structure,
400–401

Optical resolution, electron cryomicroscopy,
116–119

Oracle 8i relational database, CATH domain
structure data, 261–263

Orientation
docking molecule design, 445
ligand design, 447–448

O software
high-throughput crystallographic analysis,

electron density map interpretation,
80

macromolecular visualization, 136, 141
Outreach activities

Nucleic Acid Database (NDB), 206
Protein Data Bank (PDB), 194–195

Overlaps, all-atom contact analysis,
305–307

Pairwise structure comparison and
alignment

high-throughput crystallographic analysis,
416

protocols and methods, 322–327
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Parallel computing
electron cryomicroscopy, 128–129
electrostatic interactions,

Poisson-Boltzmann equation (PBE),
435–436

Parallel structures, β sheets, secondary
protein structure, 24

PartsList database, content and protocol,
227–228

Pattern recognition
electron cryomicroscopy and, 127–128
one-dimensional secondary structure

models, theoretical background,
558–562

Patterson-based techniques, high-throughput
crystallographic analysis, heavy atom
location, 77–78

Patterson-Correlation (PC) refinement,
high-throughput crystallographic
analysis, molecular replacement, 79

P-Curve assignment scheme
automatic assignment comparisons,

347–349
secondary protein structure, 345–346

PDB. See Protein Data Bank (PDB)
PDBidentification (PDBid)

establishment of, 181
Protein Data Bank (PDB) data

acquisition, 182
PDBREPORT database

homology modeling, backbone
generation, 513

WHATCHECK results, 298
PDBselect, ASTRAL compendium, 221
PDBsum website, quality assurance

information, 296–297
Peak assignment, protein structure, NMR

spectroscopy, 101
Peptides

bonds, amino acid sequence, 17–20
structural studies, validation, 102–103

Perl CGI scripts, Protein Data Bank (PDB),
190–191

Pharmaceutical models, drug
bioinformatics, 477–479

Pharmacogenetics, docking and ligand
design, 468

Pharmacophores, analog-based design, 444
Phase problem, structure-based drug design

(SBDD), 489–490
PHD program, one-dimensional secondary

structure prediction
error detection, 570
limits of, 560–562

solvent accessibility models, 563
transmembrane helix prediction, 566

Phosphomevalonate kinases (PMK),
structural genomics

homology modeling, 601
target selection, 602–604

Phosphorus-31, macromolecular structure,
NMR spectroscopy, 90–91

Phylogenetic profiles
fold recognition, theoretical background,

526
protein-protein interaction prediction

genomic-based computation, 417
sequence-based computation, 419–421

Physics principles
fold recognition

algorithm comparison and assessment,
539–540

force field simulation and threading,
533

theoretical background, 526
threading approximation, 533–536
threading errors, 535, 537–539

structural bioinformatics, 7
P-loop NTP hydrolase fold, protein function

identification, 393–394
Point charge models, docking and ligand

design
molecular mechanics scoring functions,

457–459
solvent representation, 459–461

Poisson-Boltzmann equation (PBE)
docking and ligand design, solvent

representation, 460–461
electrostatic interactions, 428–435

energy derivations, 430–431
equation elements, 428–430
force elements, 431–432
multilevel solvers, 435
numerical solution, 432–435

adaptive finite element
discretization, 433–435

finite difference discretization,
432–433

Poisson equation, electrostatic interactions,
428–430

Polar amino acids
side chain sequence, 17
tertiary protein structure, hydrophobic

effect, 29–30
Polymer entities, macromolecular

Crystallographic Information File
(mmCIF), 172–173
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Polynucleotide chains, nucleic acid
chemical structure, 43–45

Polypeptide chains
ab initio fold prediction, 546–547
domain identification, 365–367
evolutionary mechanisms, 239
quaternary protein structure, 33–36

Population statistics, CATH domain
structure database

fold architectures, 263–264
superfamilies and families, 264–267

POSSUM algorithm, CATH domain
structure database, Graphical Method
for Identifying Folds (GRATH),
256–257

Potentials categories, ab initio fold
prediction, 547–548

Potentials of mean force (PMF). See also
Force field evaluation

docking and ligand design
rank ordering of energies, 463
scoring functions, 457
solvent representation, 460–461

fold recognition, force fields and
threading simulation, 533

PREDATOR system, one-dimensional
secondary structure prediction,
561–562

Prediction techniques
ab initio fold prediction

applications, 549–551
genome annotation, 549–550
structural genomics, 550–551

future research, 551–552
polypeptide chain representations,

546–547
potentials categories, 547–548
search methods, 548–549

data sources, 228–229
fold recognition, 525
one-dimensional secondary structure

models
emerging and future technologies,

571–574
evaluation of prediction techniques,

566–568
practical applications, 568–571
prediction techniques, 558–562
programs and public servers, 566
solvent accessibility prediction,

562–563
theoretical background, 557–558
transmembrane helix prediction,

563–566

protein function identification, ab initio
methods, 396–397

protein-protein interaction, evolutionary
information

coevolution, 411
conservation of positions, 410
family-dependent conservation, 411
future applications, 421–422
interaction partners, 416–421

genomic-based computation,
417–418

high-throughput applications, 416
protein databases and collections,

416–417
sequence-based computation,

418–421
interaction regions, 411–416

hybrid methods, 413–416
sequence-based methods, 413
structure-based methods, 411–412

research background, 409–410
secondary protein structure, structure

assignment, 340
structural bioinformatics, 10

Probabilistic modeling, structural
bioinformatics, 4–6

Probe software, all-atom contact analysis,
305–307

PROCHECK program
ASTRAL compendium, 221
error estimation and precision, 296
PDBsum website summaries, 296–297
Protein Data Bank (PDB) data validation

and annotation, 186
protein structure

error estimation and precision,
291–292

validation, 102–103
Profile-based techniques, CATH domain

structure database, sequence-based
homologue protocols, 253–255

Profile-profile alignment tools, fold
recognition, divergent evolution, 524

PROFphd, one-dimensional secondary
structure prediction, solvent
accessibility models, 563

Proline
cyclic side chain sequence, 17
peptide bond structure, 19–20

ProNet database, protein-protein interaction
prediction, 417

Propeller twist
base pair geometry, 46–47
DNA duplexes, 56–59
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Property Object Model (POM) data
management system, Protein Data
Bank (PDB) architecture, 190–191

PROSITE motifs, CATH domain structure
database, Dictionary of Homologous
Superfamilies (DHS), 259–260

Proteases, drug bioinformatics, target
druggability, 480

Protein Data Bank (PDB)
added-value philosophy, 217
all-atom contact analysis, 311–316
data access issues, 189–194

application web access, 193–194
database architecture, 190–191
ftp access, 194
user web access, 191–193

data acquisition and processing, 182–189
content characteristics, 184
deposition sites, 187
statistics, 187
uniformity protocols, 187–189
validation and annotation, 184–186

error estimation and precision, Archive of
Obsolete PDB entries, 284–286

exchange dictionary, 175
format, 161–164
future applications, 195–196
Help desk, 194
high-resolution techniques, 6
high-throughput crystallographic analysis,

76
historical background, 181–182
interoperability beyond cross-links, 231
macromolecular structure

NMR spectroscopy, 92–94
validation, 102–103

multiple resource integration, 229–231
outreach activities, 194–195
primary data sources, 215, 218

Biological Macromolecule
Crystallization Database (BMCD),
218–219

Cambridge Structural Database (CSD),
219–220

future structure information, 220
protein function identification, 391–392
quality assurance, NMR modeling, 274
secondary data sources, 215–216, 218

ASTRAL compendium, sequence and
structure relationships, 220–221

Derived Secondary Structure of
Proteins (DSSP), 222

HIV Proteases resource (HIVpr), 225

MacroMolecular DataBase (MMDB),
221–222

Macromolecular Motions Database
(MolMovDB), 226–227

Metalloprotein Database and Browser
(MDB), 225–226

PartsList dynamic fold comparisons,
227–228

Protein Kinase Resource (PKR),
224–225

Protein Quaternary Structure (PQS),
222–223

ReliBase, protein-ligand interaction,
224

Swiss-Model automated comparative
modeling, 228

targets and prediction methods,
228–229

structural bioinformatics, 5
structural genomics, 231–232, 501
tertiary protein structure, 31

Protein dynamics, electron cryomicroscopy,
124–125

Protein Explorer, web-based visualization
techniques, 147–148

Protein families, data resources, 224–229
HIV proteases resource (HIVpr), 225
Macromolecular Motions Database

(MolMvDB), 226–227
Metalloprotein Database and Browser

(MDB), 225–226
PartsList, 227–228
Protein Kinase Resource (PKR), 224–225
Swiss-Model, 226
targets and prediction methods, 226–227

Protein folding. See also Fold recognition
biochemical classification, 31–33
CATH domain structure database

Graphical Method for Identifying Folds
(GRATH), 256–257

population statistics, 263–264
Sequence Structure Alignment Program

(SSAP) protocols, 255–256
superfamily and family population

statistics, 264–267
Critical Assessment for Structure

Prediction (CASP)
comparative modeling, 502–503
fold recognition, 503
novel fold recognition, 503–504
research background, 499–501
summary of progress, 501–502

data sources, PartsList database, 227–228
evolutionary mechanisms, 238
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protein function identification, 392
enzyme function and, 393–394

quaternary protein structure, 34–36
SCOP hierarchical classification, 239, 241
space mapping, structure comparison and

alignment, 330–332
structural classification, 33
tertiary protein structure, 29

Protein Kinase Resource (PKR), data
content, 224–225

Protein kinases, structural comparison and
alignment, 327–328

Protein-ligand interactions
protein function identification, 391–392
ReliBase data source, 224

Protein-nucleic acid complexes, Nucleic
Acid Database (NDB) data, 208–210

Protein production and labeling,
macromolecular structure, NMR
spectroscopy, 96–97

Protein-protein interaction
data resources, 215, 217
docking and ligand site characterization,

445–446
electrostatic interactions, 427–428
evolutionary prediction methods

coevolution, 411
conservation of positions, 410
family-dependent conservation, 411
future applications, 421–422
interaction partners, 416–421

genomic-based computation,
417–418

high-throughput applications,
416

protein databases and collections,
416–417

sequence-based computation,
418–421

interaction regions, 411–416
hybrid methods, 413–416
sequence-based methods, 413
structure-based methods, 411–412

research background, 409–410
fold recognition, threading errors, 535,

537–539
Protein Quaternary Structure (PQS)

database, secondary data sources,
222–223

Protein structure. See also Domains;
Homology modeling

amino acid sequence, 16–20
amino acid structures, 16–17
peptide bond, 17–20

classification resources, 215–216
domain identification, 370

comparison and alignment, 324–325
electrostatic interactions, 426–427
error estimation and precision, 289–294

C-alpha only structures, 294
Ramachandran plot, 289–292
side-chain torsion angles, 292–294

evolution, 237–239
coevolution, 411
conservation of positions, 410
enzymatic catalysis, 238–239
family-dependent conservation, 411
fold evolution, 238
structural comparisons, 239

fold recognition
current applications, 523–525
threading algorithms, 534–535

function derivation
ab initio prediction, 396–397
analogues, 395–396
assignment protocols, 396–402
database classification, 388–390
definitions, 386
enzyme function, 393
enzyme/nonenzyme classification,

386–388
Fuzzy Functional Forms (FFF)

algorithm, 398–399
gene ontologies, 388, 391
genomic applications, 400–402

IMPase, 402
Mj0577-putative Atp molecular

switch, 400–401
YcaC-bacterial hydrolase, 401–402

homologous families, 393, 395
molecular recognition, 399
multifunctional proteins, 388
protein fold and, 393–394
protein-ligand complexes, 391–392
research background, 385–386
RIGOR tool, 399
side chain patterns, 399
SITE and Site-Match, 398
SPASM tool, 399
structural comparisons, 397
structural motifs, 397–399
TESS algorithm, 398
three-dimensional structures, 391–392

internet sources, 36
NMR spectroscopy, protocols for,

99–102
quality assurance
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Protein structure. See also Domains;
Homology modeling (Continued )
error estimation and precision,

275–296
deposited structures, 284–296
NMR spectroscopic errors, 282–284
x-ray crystallographic errors,

275–282
NMR spectroscopy models, 273–274
research background, 271–272
software, 296
web information sources, 296–298
x-ray crystallography models,

272–273
quaternary structure, multiple polypeptide

chains, 33–36
research applications, 15–16
SCOP database

applications, 237
classification, 240–241
families classification, 242
fold classification, 241
hierarchies, 239–240, 243–244
organization and capabilities, 242–244
superfamilies classification, 242
user interface, 244–246

secondary structure
β sheets, 24
α-helices, 22–24
local three-dimensional model, 20–28
loops and coils, 24–28

structural bioinformatics, 7
tertiary structure

biological fold classification, 31–33
domains and motifs, 29
fold space and evolution, 30–31
fold structure classification, 33
global three-dimensional structure,

28–33
modifications, 30
molecular interaction, 29–30
protein fold, 29
side chains, 28

validation software and resources,
215–216

Protein surrogates, structure-based drug
design (SBDD), 490

Proton NMR (1H NMR), macromolecular
structure, 90–91

bioinformatics, 93–94
screening methods, 94–96

PROVE software, error estimation and
precision, 296

Pseudorotation, sugar phosphate backbone
conformation, 49–55

PSI-BLAST algorithm
CATH domain structure database

sequence-based homologue protocols,
253–255

superfamily relative recruitment, 260
fold recognition

divergent evolution, 524
protein families, multiple alignments,

530–531
protein sequence analysis, 528–529

one-dimensional secondary structure
prediction, 560–562

error detection, 569–570
PSIPRED system, one-dimensional

secondary structure prediction,
561–562

error rates, 568–569
Puckering process, sugar phosphate

backbone conformation, 49–55
PUU algorithm, domain identification

assignment criteria, 378–379
CATH domain structure database, 258
second generation assignment algorithms,

370–377
PyMol software, macromolecular

visualization, 144

Quality assurance
all-atom contacts, structure validation,

303–304
current facilities and applications,

311–317
protocols, 305–307
vs. traditional criteria, 308–311

three-dimensional models
error estimation and precision,

275–296
deposited structures, 284–296
NMR spectroscopic errors, 282–284
x-ray crystallographic errors,

275–282
NMR spectroscopy models, 273–274
research background, 271–272
software, 296
web information sources, 296–298
x-ray crystallography models,

272–273
QUANTA program, high-throughput

crystallographic analysis, electron
density map interpretation, 80
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Quantitative structure-activity relationships
(QSAR)

computer-aided drug design (CADD),
analog-based design, 444–445

drug bioinformatics, 477
Quantum force fields, homology model

optimization, 517–518
Quantum mechanics

ab initio fold prediction, potentials
categories, 548

docking and ligand design, 441–442
Quaternary protein structure

functional relevance, 35–36
multiple polypeptide chains, 33–36
Protein Quaternary Structure (PQS)

database, 222–223
Query/analysis capabilities

Nucleic Acid Database (NDB), 202–204
Protein Data Bank (PDB), 191–193

QuickPDB, macromolecular visualization,
145–148

Radial distribution function, homology
modeling validation, 519

Ramachandran Plot
peptide bond structure, 19–20
protein structure, error estimation and

precision, 289–292
secondary protein structure, 21
web-based visualization techniques,

145–148
Random conical tilt, electron

cryomicroscopy, single-particle
analysis, 122

Rank ordering, docking and ligand design,
energies, 463

Rapid Access Format (RAF), ASTRAL
compendium, 220–221

RasMol software
CATH domain structure database

Dictionary of Homologous
Superfamilies (DHS), 259–260

domain boundary identification, 258
macromolecular visualization, 138,

141–142
web-based visualization techniques,

146–148
ras protein family, tree determinants, 413
Raster3D software, macromolecular

visualization, 143
Raw data management, protein structure,

NMR spectroscopy, 100–101

Real-space refinement algorithms,
high-throughput crystallographic
analysis, macromolecular structures,
82

Reassembly issues, docking and ligand
design, 462–464

free energies of binding, 463–464
geometric issues, 462–463
ranker energy ordering, 463
success/failure ratios, 463

Receptor-ligand binding, docking and
ligand design

combinatorial calculation, 461
database organization, 466
free energy, 450–451

Reduce program, all-atom contact analysis,
305–307

clashlistcluster script, 313–316
Refinement techniques

all-atom contact analysis, 309–311
high-throughput crystallographic analysis,

macromolecular structure, 81–82
protein structure, NMR spectroscopy, 102
X-ray crystallography, three-dimensional

models, uncertainty estimation,
275–277

REFMAC program, high-throughput
crystallographic analysis,
macromolecular structures, 82

ReliBase data source, protein-ligand
interactions, 224

REMARK records, Protein Data Bank
(PDB) protocols, 162–164

Remote Procedure Calling (RCP) protocol,
Metalloprotein Database and Browser
(MDB), 226

Research Collaboratory for Structural
Bioinformatics (RCSB)

Protein Data Bank (PDB)
cooperation with, 182
data deposition, 187

unavailable macromolecular structures,
220

Residue exchange matrix, homology
modeling

multiple sequence alignment, 512–513
template identification and alignment,

510–511
Residues

fold recognition, threading
approximations, 534–535

protein-protein interaction prediction, tree
determinants, 413

quaternary protein structure, 34–36
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Residues (Continued )
tertiary protein structure, hydrophobic

effect, 29–30
Resolution parameters, X-ray

crystallography, error estimation and
precision, 277–280

RESOLVE program, high-throughput
crystallographic analysis

density modification, 78
future applications, 83–84

Restrained electrostatic potential (RESP),
docking and ligand design, molecular
mechanics scoring functions, 458–459

Reverse transcriptase, web-based
visualization, 145–148

R-factor. See also Brünger’s free R-factor
error estimation and precision

NMR models, 283–284
x-ray crystallography, 280

RFSRV method, fold recognition, algorithm
comparison and assessment, 539–540

Ribosome
Nucleic Acid Database (NDB), ribosomal

subunit structures, 210–211
structural characteristics, 64–67

RiboWEB knowledge base, structural
bioinformatics, 9

Ribozymes, structural characteristics, 63–64
Richards Box, macromolecular

visualization, 137
Rigid body structures, domain identification,

first generation assignment algorithms,
369–370

RIGOR database, protein function
identification, 399

RIKEN protocol, cell-free protein
production, 104–105

Ring pucker geometry, sugar phosphate
backbone conformation, 50–55

RNA
Nucleic Acid Database (NDB)

information, 200–201
structural analysis, 209–210

structural characteristics, 41–42
base pair geometry, 45–49
duplexes, 60–62
mismatches and bulges, 62–63
sugar phosphate backbone, 49–55

RNAML syntax, Nucleic Acid Database
(NDB) RNA structures, 209–210

RNase P, ribozyme structure, 63
Roll

base pair geometry, 48
DNA duplexes, 56–59

Root-mean-squared deviation
docking and ligand design, reassembly

complexes, 462–463
NMR structures, error estimates,

283–284
Rosetta structure prediction, ab initio fold

prediction
polypeptide chains, 546–547
structural genomics, 551

Rotamer library, homology modeling
model optimization, 516–518
side-chain conformations, 515–516

Rule-of-five quantitative assessment, drug
bioinformatics

genomic druggability, 481–483
target druggability, 480–481

Saddle-point construction,
Poisson-Boltzmann equation (PBE),
electrostatic interactions, 430

Salt bridge, tertiary protein structure, 30
Sampling techniques

docking and ligand design, combinatorial
calculation, 461

macromolecular structure, NMR
spectroscopy, 96–97

structural genomics, yeast
mevalonate-5-diphosphate
decarboxylase (MDD) case study,
597–599

SAMT profiles, CATH domain structure
database

sequence-based homologue protocols,
253–255

superfamily relative recruitment, 260
SAM-T99sec system, one-dimensional

secondary structure prediction,
561–562

SARF2
comparison algorithm optimization, 326
protein structure representation, 325
statistical testing, 326

Save frames, macromolecular
Crystallographic Information File
(mmCIF), 167–168

Scattering techniques, electron
cryomicroscopy, 116–119

Scientific method, bioinformatics and, 3–4
Scoring functions

docking and ligand design
background, 445
empirical methods, 457
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first principles methods, 456
future research, 465–466
knowledge-based potentials, 457
molecular mechanics, 457–461

charge representation, 457–459
solvent representation, 459–461
van der Waals radii, 459

semiempirical methods, 456
fold recognition

protein sequence analysis, 527–529
threading approximations, 534–535

homology modeling, multiple sequence
alignment, 512–513

Screening techniques, macromolecular
structure, NMR spectroscopy, 94–96

SearchFields interface, Protein Data Bank
(PDB), user web access, 191–193

SearchLite interface, Protein Data Bank
(PDB), user web access, 191–193

Search space, structural bioinformatics, 6–7
Search techniques, ab initio fold prediction,

548–549
Secondary protein structure
β sheets, 24
data sources, 215–216, 218

ASTRAL compendium, sequence and
structure relationships, 220–221

Derived Secondary Structure of
Proteins (DSSP), 222

HIV Proteases resource (HIVpr), 225
MacroMolecular DataBase (MMDB),

221–222
Macromolecular Motions Database

(MolMovDB), 226–227
Metalloprotein Database and Browser

(MDB), 225–226
PartsList dynamic fold comparisons,

227–228
Protein Kinase Resource (PKR),

224–225
Protein Quaternary Structure (PQS),

222–223
ReliBase, protein-ligand interaction,

224
Swiss-Model automated comparative

modeling, 228
targets and prediction methods,

228–229
evolutionary mechanisms, 239
fold recognition, 524
α-helices, 22–24
local three-dimensional model, 20–28
loops and coils, 24–28
one-dimensional models

emerging and future technologies,
571–574

evaluation of prediction techniques,
566–568

practical applications, 568–571
prediction techniques, 558–562
programs and public servers, 566
solvent accessibility prediction,

562–563
theoretical background, 557–558
transmembrane helix prediction,

563–566
structure assignment

assignment techniques, 344–346
DEFINE algorithm, 345
DSSP, 344
DSSPcont, 346, 353–356
P-curve, 345–346
STRIDE, 344–345

automatic comparisons, 347–349
empirical calculation, 343
future research issues, 351–356
hydrogen bond models, 341–343

angle-distance assignment, 341–342
Coulomb calculation, 342–343

NMR structures, 351
programs and databases, 346–347
research background, 339–341
sequence distributions, 351
STICK geometric-based continuous

assignment, 353
supersecondary structures, 351–353
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