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Preface

Assisted by the rapid and steady growth of available low-cost computer power, the use of
computers for discovering and designing new drugs is becoming a central topic in modern
molecular biology and medicinal chemistry. New effective methods provide access to an
always-increasing level of complexity in biomolecular recognition, thus expanding the
variety and the predictive power of approaches for drug development based on computa-
tional chemistry (Fig. 1).

Fig. 1. From medicinal alchemy to modern medicinal chemistry. Left: the Liber de Arte Distillandi de Compositis by
Hieronymus Brunschwig described emerging methods to extract drugs through alchemical distillation (Johann Gr€uninger
Publisher & Printer, 1512 circa; courtesy of the National Academy of Medicine, U.S.A.). Right: five hundred years later the
same long-standing problem is attacked by in silico distillation of large compound databases. Computers help
experiments along all phases of the extraction funnel: from preliminary molecule screening, trough drug discovery
and refinement, to inhibitor design based on statistical mechanics

In this volume ofMethods in Molecular Biology we present robust methods for Compu-
tational Drug Discovery and Design, with a particular emphasis on method development
for biomedical applications. The goal is to offer an overview of highly promising themes
and tools in this highly interdisciplinary research field, together with the challenges calling
for new solutions in future research: from binding sites prediction to the accurate inclusion
of solvent and entropic effects, from high-throughput screening of large compound
databases to the expanding area of protein–protein inhibition, toward quantitative free-
energy approaches in ensemble-based drug design using distributed computing.
The application of physics-based methodologies—strongly coupled to molecular dynamics
simulation—is leading to a novel, dynamic view of receptor-drug recognition.
These concepts are progressively modifying the old dogma of single-structure-based
drug design into the concept of ensemble-based drug design, where conformational
diversity and selection play key roles. In this scenario, the current scientific literature is

v



often highlighting success stories and happy-end examples. However, the basis of this
success is often the back-stage, everyday research filled with ingenious and creative strate-
gies to bypass critical obstacles. Thus, this volume has the goal of presenting as well such
obstacles and practical guidance for the use of computational resources for researchers new
to these topics. Finally, this volume includes recent, successful examples of applications in
the description of receptor-drug interactions and computer-based discovery of new drugs
against human-lethal diseases, opening to future computer-based drug patents.

The reader will hopefully use this volume as an introductorymanual for state-of-the-art
concepts and methodologies, as well as an advanced, specialized tool to design novel and
original research for public health.

Salt Lake City, UT, USA Riccardo Baron
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Chantal Prévost, and Martin Zacharias

16 Prediction of Interacting Protein Residues
Using Sequence and Structure Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
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18 A Case Study of Scoring and Rescoring in Peptide Docking. . . . . . . . . . . . . . . . . . . . 269
Zunnan Huang and Chung F. Wong

19 The Solvated Interaction Energy Method for Scoring Binding Affinities . . . . . . . . . 295
Traian Sulea and Enrico O. Purisima

20 Linear Interaction Energy: Method and Applications in Drug Design . . . . . . . . . . . 305
Hugo Guitiérrez-de-Terán and Johan Åqvist
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Part I

Drug Binding Site Prediction, Design, and Descriptors





Chapter 1

A Molecular Dynamics Ensemble-Based Approach
for the Mapping of Druggable Binding Sites

Anthony Ivetac and J. Andrew McCammon

Abstract

An expanding repertoire of “allosteric” drugs is revealing that structure-based drug design (SBDD) is not
restricted to the “active site” of the target protein. Such compounds have been shown to bind distant
regions of the protein topography, potentially providing higher levels of target specificity, reduced toxicity
and access to new regions of chemical space. Unfortunately, the location of such allosteric pockets is not
obvious in the absence of a bound crystal structure and the ability to predict their presence would be useful
in the discovery of novel therapies. Here, we describe a method for the prediction of “druggable” binding
sites that takes protein flexibility into account through the use of molecular dynamics (MD) simulation.
By using a dynamic representation of the target, we are able to sample multiple protein conformations that
may expose new drug-binding surfaces. We perform a fragment-based mapping analysis of individual
structures in the MD ensemble using the FTMAP algorithm and then rank the most prolific probe-
binding protein residues to determine potential “hot-spots” for further examination. This approach has
recently been applied to a pair of human G-protein-coupled receptors (GPCRs), resulting in the detection
of five potential allosteric sites.

Key words: Allosteric, Molecular dynamics simulation, Docking, Binding site, Drug design

1. Introduction

Structure-based drug design (SBDD) efforts are typically initiated
when a high-resolution crystal structure of the target protein
complexed with a small molecule is available. The co-crystallized
ligand is usually some form of the endogenous substrate/agonist
or a synthetic drug compound with affinity for the same binding
site. This region of the protein surface is referred to as the “active”
or “orthosteric” site and is highly conserved among closely related
proteins. Relatively recently however, it has emerged that there
are other “druggable” sites on the protein surface, which may be
bound by therapeutic small molecules and which are spatially
distinct from known active sites (1, 2). Such pockets are known

Riccardo Baron (ed.), Computational Drug Discovery and Design, Methods in Molecular Biology, vol. 819,
DOI 10.1007/978-1-61779-465-0_1, # Springer Science+Business Media, LLC 2012
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as “allosteric” sites, the binding of which can modulate function
through a variety of proposed mechanisms that perturb protein
dynamics (3). Some well-known FDA-approved allosteric drugs
include the protein kinase inhibitor Gleevec, the calcium-sensing
receptor modulator Cinacalcet, and the HIV-1 reverse transcrip-
tase inhibitor Etravirine. Allosteric drugs are attractive for numer-
ous reasons, perhaps the most powerful of which is their potential
for enhanced target specificity. The ability to better discriminate
between binding sites belonging to related targets is crucial in
reducing “off-target” activity related to certain harmful side
effects and is thought to be possible because allosteric sites are
less well conserved than orthosteric sites (4). It has also been
observed that hitherto identified allosteric compounds are struc-
turally more diverse than their orthosteric counterparts, suggest-
ing larger regions of chemical space are available for their design
and optimization (2).

Despite progress in the screening and identification of allosteric
drugs, the structural biology of their binding sites is still poorly
understood and there has consequently been a lack of SBDD
for such compounds. Considering advances in high-resolution
structure determination, the ability to computationally predict
potential allosteric sites from an unbound protein structure
would clearly facilitate the discovery of novel therapeutic com-
pounds and elucidate the binding of existing drugs.

A number of algorithms have been reported for the detection
of druggable binding pockets, given an atomic protein structure as
input (5, 6). These vary in complexity, ranging from a simple
shape-based representation of the protein surface, to the addition
of energy-based calculations, and to molecular dynamics (MD)
simulations performed in the presence of small molecules. In this
work, we elected to use the FTMAP algorithm (7), whereby a
panel of probe molecules is docked to the surface of a static
protein structure in order to expose potential high-affinity sites
for drug molecules. FTMAP combines extensive probe sampling
with an energy-based scoring function and has performed
very well in the reproduction of experimentally determined
protein–ligand complexes (7–9).

Perhaps one of the best recognized weaknesses in current small
molecule docking programmes is the static representation of the
target protein (10, 11), giving rise to the term “rigid-protein flexi-
ble-ligand.” While this compromise has been convenient for often
time-consuming docking calculations, it is a poor reflection of the
highly dynamic process of molecular recognition and our under-
standing that proteins exist in an ensemble of conformational sub-
states (12, 13). Furthermore, it has been noted previously thatmany
novel allosteric siteswere not obvious from theunbound formof the
protein (1), suggesting that such pockets may have a transient
character whichmay therefore elude predictions using experimental
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structures alone. A number of techniques have been proposed for
the introduction of flexibility into a static protein model for the
enhancement of molecular docking, varying from simple sidechain
modifications to full backbone mobility (14, 15). Here, we employ
all-atomMDsimulation (16) of the target protein in explicit solvent
in order to sample new conformations that may reveal druggable
cavities. MD simulation offers full protein flexibility in a realistic
solvent environment, such that dramatic rearrangements, which can
alter the topography, are possible. MD simulation has become a
popular method in the investigation of protein dynamics and has
successfully been integrated into virtual screening efforts to opti-
mize lead discovery (17).

In this work, we present a method for the discovery of poten-
tial novel drug binding sites, whereby the computational mapping
tool FTMAP is coupled with an MD-based ensemble of target
protein conformations. This approach has recently been used to
map a series of five potential allosteric sites on the surface of the
human b1 and b2 adrenergic receptors (bARs) (18) and was
inspired by the work of Landon et al. (19), who used a similar
technique with the influenza neuraminidase target. To illustrate
the method, we use the human b2AR and the retroviral HIV-1
reverse transcriptase (RT) as membrane-bound and water-soluble
examples of targets, describing how the ensembles are generated
and how the mapping results are combined.

2. Methods

In the following section, we describe the four main procedures
involved in our flexible-target mapping protocol, which have been
illustrated in Fig. 1. Acknowledging there is significant scope for
variation in the specific algorithms used to complete each step, we
describe one strategy and suggest alternatives in Notes 4.

2.1. Ensemble

Generation

The first step involves sampling the target protein’s conformational
landscape to obtain novel structures that are distinct from the initial,
experimental structure, and may expose novel druggable sites.
While many methods are available for biomolecular conformational
sampling (see Note 1), we have opted to use the widespread MD
simulation technique, which has been described elsewhere (20).
An MD simulation charts the time evolution of a protein structure
from its experimental starting conformation, essentially producing a
trajectory, or “movie” of protein motion with thousands of frames,
or “snapshots” that can be extracted for analysis. This is the
most time-consuming step in our protocol; however, the resulting
trajectory can have many applications in addition to the one

1 A Molecular Dynamics Ensemble‐Based Approach for the Mapping. . . 5



described here and theremay already existMDdata for the target of
interest. In our work, we used the popular GromacsMD simulation
package (21) together with the Gromos-96 biomolecular force-
field (22). Tomitigate the well-known issue of incomplete sampling
of larger proteins, we have used a multi-copy approach (23),
whereby a series of simulations with different initial velocities are
carried out in preference to a single longer trajectory. For the RT
system we performed a series of four 30 ns simulations, and for the
b2AR system we performed a series of four 60 ns simulations
(for details on the MD setup protocol, please see ref. (18, 24)).
All simulations were performed in atomic detail and in the presence
of explicit water molecules, with the b2AR system including a phos-
pholipid bilayer. Both proteins were simulated in the absence of co-
crystallized ligands.

2.2. Conformer

Selection

Perhaps one of the biggest challenges in the use of large structural
ensembles for protein–ligand docking is the selection of a subset
of the MD frames for analysis, given the intractability of using

Fig. 1. Overview of the four main stages of the flexible mapping procedure, with HIV-1 RT as an example. Input to the
procedure is a single experimental structure of the target and output is a ranked list of residues which may form
druggable binding sites.
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every single conformer. There is a wide variety of selection criteria
that can be used to categorize each frame, the choice depending
on the goal of the subsequent analysis (see Note 2). In our
protocol, we sought to dramatically reduce the size of each ensem-
ble and select a representative set of conformers that capture
diverse protein topographies. Inspired by techniques to eliminate
redundancy in large structural datasets used in virtual screening
(as discussed in (17)), we used the RMSD-based clustering
method provided by the “g_cluster” tool in the Gromacs package
(using the “gromos” method; see Note 3). By adjusting the cutoff
value for membership of each cluster, we were able to divide each
ensemble into approximately 20 clusters, the top 15 of which were
used in the subsequent mapping step. For each cluster, we took
the centroid member as the representative structure for mapping.
To illustrate the diversity of the MD-generated structures, the
15 representative conformers from the b2AR system are shown
in Fig. 2.

Fig. 2. Conformational diversity of the MD ensemble. Fifteen representative structures of the b2AR, after RMSD-based
clustering.

1 A Molecular Dynamics Ensemble‐Based Approach for the Mapping. . . 7



2.3. Site Mapping Given the reducedMD ensemble of 15 conformers, the next step is
to perform a search of druggable pockets on the surface of each.
While a number of algorithms are available for binding site predic-
tion (see Note 4), we elected to use the FTMAP algorithm (7),
inspired by encouraging correlations with experimentally solved
protein–ligand complex structures and previous work from our
group which used its predecessor, CS-Map (19). The FTMAP
software is provided as a web-based service (http://ftmap.bu.edu),
whereby a typical protein can be mapped overnight, by simply
uploading the protein coordinates. The results of the mapping are
made available on the web server and include a PDB file which
contains the input protein structure, along with a series of probe
molecules which represent favorable binding sites for that probe
type. The probemolecules are locally divided into “consensus sites”
(assigned in the output PDBfile by a unique chain identifier), which
can be considered clusters wheremultiple probe types bind well and
whichmay be indicative of a druggable site. Figure 3 shows example
FTMAP output structures, with a range of consensus sites distri-
buted over the protein surface, each containing varying types of
probemolecules. Another useful output file from theFTMAP server
contains the number of non-bonded interactions between protein
residues and probe molecules. We use this data to rank the protein
residues and determine which are the most popular probe interac-
tion sites over the entire ensemble.

Fig. 3. Examples of FTMAP output for individual conformations of the HIV-1 RT (a) and
b2AR (b). Bound probe molecules belonging to consensus sites are shown in black stick
representation.
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2.4. Hot-Spot

Identification

With FTMAP analysis performed on eachmember of the ensemble,
the next step is to combine the results and define local “hot-spots”
of interest, for further investigation. To achieve this, we simply rank
the protein residues by the average number of non-bonded interac-
tions they make with probe molecules across the entire ensemble.
Thus, residues that bind probe molecules in multiple different
protein conformations will be scored highly and those binding
only occasionally will score poorly. While residues binding probe
molecules infrequently in the dynamics of the protein may still be of
interest, we have decided to prioritize the most common sites
(see Note 5). In our previous work (18), we arbitrarily decided to
focus on the top 40 probe-interacting residues of b2AR, which
included a mixture of residues known to bind orthosteric ligands,
in addition to residues in new regions of the protein surface. By
analyzing the distribution of the residues, we were able to define a
series of five potential allosteric sites, whichwe then examined in the
context of existing experimental and structural data to support
a potential allosteric role. In Fig. 4, we show the top 40 probe-
interacting residues for both our example proteins, illustrating the
existence of clusters that may constitute new binding sites. For both
systems,we see that the knowndrugbinding site is well identified, in
addition to a range of new, potentially druggable locations that are
not known to be currently targeted by drugs. Work to identify small
molecules binding at some of these sites is currently in progress.

Fig. 4. Hot-spot identification for the HIV-1 RT (a) and b2AR (b) systems. The top 40
probe-interacting protein residues are shown in black stick representation. For HIV-1 RT
we indicate the known binding site for the NNRTI class of allosteric inhibitors, while for
b2AR we indicate the known binding site for drugs targeting the orthosteric site. For
each protein, clusters of residues are found in novel regions of the protein surface,
which may be able to modulate activity of the protein and may therefore be amenable to
drug design.
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3. Conclusions

We have presented a method for the identification of potential
druggable sites on a protein of interest, which takes structural
flexibility into account through MD simulation. We have shown
in previous work that such flexibility exposes fragment binding
sites which were not visible in the experimental structure alone
and may thus lead to the discovery of new therapeutic com-
pounds. Given a series of sites detected by this method and
supporting evidence to fortify their candidacy as drug targets,
we suggest that virtual screening could next be used to identify
small molecules that bind at those sites. Compounds identified
with affinity for the sites could then be experimentally validated
using an appropriate assaying technique. In addition, a fragment-
based approach could be adopted, whereby bound probe mole-
cules could be “grown” or “linked” to form completely novel
high-affinity compounds.

4. Notes

1. A number of alternative techniques are available for the
computational modeling of protein dynamics and generation
of a diverse structural ensemble. In this work we have used
traditional all-atom MD simulation; however, we could have
equally used a Monte Carlo approach for conformational
sampling. Alternatively, a number of adaptations of classical
MD simulation have recently been proposed, which aim to
address sampling deficiencies and promise to generate more
diverse ensembles—these include accelerated MD (25), con-
formational flooding (26), and replica exchange (27).

2. The selection of representative protein conformers from the
MD ensemble is another area with scope for many different
methods and which could have substantial impact on the
results. Here, we have clustered MD snapshots by global
structural similarity, in order to extract a small set of diverse
topographies; however, other criteria could equally be used,
depending on the target. For example, snapshots could be
selected based on some measure of conformational energy or
based on certain known conformational changes that may be
important to protein function.

3. We clustered trajectory frames according to the RMSD of the
Ca atoms of the core protein structure, so as to categorize
the conformers by global structural diversity and not bias the
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segregation to any local region. If there is a particular area of
interest targeted for druggability (e.g., a specific portion of
the protein surface), the subset of residues comprising this
region may be used in the clustering step instead.

4. There are also a number of alternative algorithms to FTMAP
for the mapping of druggable sites on each protein conformer.
Many suggestions can be found in (6). It may be advantageous
to use a range of algorithms and define consensus sites that are
identified across different prediction methods.

5. The hot-spot identification step is another area where different
approaches can be taken. Here, we have suggested the ranking
of probe-interacting residues by their mean performance
across the whole ensemble. However, there may be sites of
interest which are exposed relatively rarely in the dynamics
of the protein and which may therefore only be discovered
in one or a few representative conformers. We therefore rec-
ommend that the results from individual FTMAP runs are
examined for such “cryptic” sites.
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Chapter 2

Analysis of Protein Binding Sites by Computational
Solvent Mapping

David R. Hall, Dima Kozakov, and Sandor Vajda

Abstract

Computational solventmappingglobally samples the surface of target proteins usingmolecular probes—small
molecules or functional groups—to identify potentially favorable binding positions. Themethod is based on
X-ray and NMR screening studies showing that the binding sites of proteins also bind a large variety of
fragment-sizedmolecules.Wehavedeveloped themultistagemapping algorithmFTMap (available as a server
athttp://ftmap.bu.edu/)basedon the fastFourier transform(FFT)correlation approach. Identifying regions
of low free energy rather than individual low energy conformations, FTMap reproduces the available experi-
mental mapping results. Applications to a variety of proteins show that the probes always cluster in important
subsites of the binding site, and the amino acid residues that interact with many probes also bind the specific
ligands of the protein. The “consensus” sites at which a number of different probes cluster are likely to be
“druggable” sites, capable of binding drug-size ligands with high affinity. Due to its sensitivity to conforma-
tional changes, themethodcan alsobeused for comparing thebinding sites indifferent structuresof a protein.

Key words: Protein structure, Protein–ligand interactions, Binding site, Binding hot spots,
Fragment-based ligand design, Druggability, Binding site comparison, Docking

1. Introduction

The binding sites of proteins generally include smaller regions called
hot spots that aremajor contributors to the binding free energy, and
hence are crucial to the binding of any ligand at that particular
site (1). In drug design applications such hot spots can be identified
by screening for the binding of fragment-sized organic molecules
(2–4). Since the binding of the small compounds is very weak, it
is usually detected by Nuclear Magnetic Resonance (SAR by NMR
(3, 4)) or by X-ray crystallography (2, 5–8) methods. Results
confirm that the hot spots of proteins bind a variety of small mole-
cules, and that the fraction of the “probe” molecules binding to a
particular site predicts the potential importance of the site and can
be considered a measure of druggability (3, 4).

Riccardo Baron (ed.), Computational Drug Discovery and Design, Methods in Molecular Biology, vol. 819,
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Solvent mapping has been developed as a computational
analogue of the NMR and X-ray based screening experiments (9).
The method places molecular probes—small organic molecules
containing various functional groups—on a dense grid defined
around the protein, finds favorable positions using empirical free
energy functions, further refines the selected poses by free energy
minimization, clusters the low energy conformations, and ranks the
clusters on the basis of the average free energy (10). To determine
the hot spots, we find consensus sites, i.e., regions on the protein
where clusters of different probes overlap, and rank these sites in
terms of the number of overlapping probe clusters (10). This prin-
ciple is illustrated by the schematic figure (Fig. 1) for the case of
mapping a protein with only two probes (represented as circles
and hexagons, respectively), each forming a few clusters on the
protein surface. While the clusters overlap in the main consensus
site, the distributions of different probes may slightly differ, result-
ing in the arrangement shown in Fig. 1c. Thus, in principle the
mapping can identify both the “hot spots” of the binding site
and the functional groups that tend to bind at specific locations
within it. The consensus site, binding the largest number of probe
clusters, is considered the main hot spot (10, 11). The number
of probe clusters at a particular consensus site (CS) correlates with
the importance of that site for binding (12). The main hot spot
and other hot spots within a 7 Å radius predict a site that can
potentially bind drug-size ligands. These results can be used for

Fig. 1. Schematic figure of computational solvent mapping using two probes. Each circle and hexagon represents one of
the two probes. (a) Each probe is sampled around the surface of the protein to (b) find the minima where a probe clusters.
(c) The consensus site where two probe clusters overlap, but occupy slightly different positions.
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the prediction of binding sites, and helped to better understand the
principles that govern the weakly specific binding of small molecules
to functional sites of proteins (13–17). We have developed the
multistagemapping algorithmFTMap (10), based on the fast Four-
ier transform (FFT) correlation approach. FTMap performs all steps
of the mapping algorithm, and is available as a server at http://
ftmap.bu.edu/.

2. Software
Requirements

This method requires a molecular viewer for preparation of crystal
structures for mapping and analysis of results. This chapter
assumes that PyMol (http://pymol.org), an Open Source molec-
ular viewer available on Windows, Mac OS X, and Linux, will be
used. Additionally, an Internet connection and web browser are
required to use the various servers throughout the method.

3. Methods

3.1. Finding a Protein

Structure

Computational solvent mapping techniques rely on the user to
provide the 3D structure of the protein. The vast majority of
published structures of proteins can be found in the Protein
Data Bank (PDB) in the PDB format. The simplest way to find a
structure is by searching the PDB website (http://www.pdb.org)
for the name of the protein. The PDB also provides an “Advanced
Search,” where a sequence can be searched against the PDB using
BLAST (Fig. 2). The search by name relies on authors titling their
structure, paper, or chains in the protein with the same name a

Fig. 2. Advanced search interface for searching the Protein Data Bank (PDB) by sequence.
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user uses in their search. Thus, it can often be advantageous to use
the sequence-based search.

For many proteins, there will be more than one structure in the
PDB. In general, the FTMap server produces better results from a
high-resolution unbound crystal structure. Having ligands in the
binding site often influences the shape of the site, sometimes dis-
turbing the ability to detect hot spots. An initial search on the PDB
website can be refined by whether the structure has ligands along
with the experimental method (Fig. 3). Additionally, the query
results can be sorted by resolution. Note though that the PDB
classifiesmany structures as having ligands even if they are unbound.
If a structure has an innate metal ion, or if cryoprotectants such as
glycerol are seen, the structure will be labeled as having a ligand,
despite not having a ligand in the binding site of interest.

3.2. Server

Submission

The FTMap server is available for free use by academics at http://
ftmap.bu.edu. After creating an account, you can submit jobs as
shown in Fig. 4. If you are using a structure from the pdb, you can
specify the pdb id and the chains. Note that HETATM records
within the pdb file are automatically stripped out. There are no
parameters for the majority of HETATMs from the PDB on the
server. The server does contain parameters for many common
metals though, such as iron, magnesium, and zinc. If you want to
include these, you should specify them as a chain by the letter “H”
forHETATM, followed by the residue name, and then by the chain
id. In Fig. 4,HZNA stands for the zinc from chainA of the protein.
If using an NMR protein, the model can be specified (see Note 1).

If a protein has been prepared as a pdb file for mapping, as in
preparing a single domain of a multidomain protein (see Note 2),

Fig. 3. Refining a query in the PDB by presence of ligands and experimental method.
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this file can be uploaded by clicking on Upload PDB in the
interface. The chains can be specified as described above.

If you created a masking file (see Note 3), it may be uploaded
under Advanced Options.

Lastly, to look for binding sites in a protein–protein interaction
site, a specialPPImodehasbeen incorporated into theFTMap server.

After submitting a protein through the server, you should
wait for an e-mail informing you of job completion. Depending
on the load on the server, a job can take from 2 h to a full day.

3.3. Analysis

of Results

After a job completes, three files will be available for download, a
pdb file containing the mapping, and two text files with counts of
nonbonded and hydrogen-bonded interactions to each residue on
the protein (Fig. 5).

Fig. 4. FTMap job submission interface.

Fig. 5. FTMap job download interface.
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3.3.1. Analysis of Mapping The pdb containing the mapping is specially formatted to be split
into multiple objects when loaded into PyMol. Additionally, it is
recommended to place the following code into a pymol startup
file. This code should be placed file named pymolrc.py in your
home directory on Windows (C:\Users\USERNAME\) or a file
named .pymolrc in your home directory on Mac OS X (/Users/
USERNAME/) or Linux (/home/USERNAME/). These func-
tions allow you to easily color clusters by rank, disable and enable
clusters, and rename the objects loaded in from an FTMap job.
This last task is especially important if loading multiple FTMap
jobs into a single PyMol Session as the object names may
overwrite each other.

from pymol import cmd, util

def colorClusters():
util.cbac('*.000.*')
util.cbap('*.001.*')
util.cbay('*.002.*')
util.cbas('*.003.*')
util.cbaw('*.004.*')
util.cbab('*.005.*')
util.cbao('*.006.*')
util.cbag('*.007.*')
util.cbam('*.008.*')
util.cbak('*.009.*')

def disableClusters(rank='all'):
if (rank == 'all'):

cmd.disable('*.*.*')
else:

select = "*.%03d.*" % int(rank)
cmd.disable(select)

def enableClusters(rank='all'):
if (rank == 'all'):

cmd.enable('*.*.*')
else:

select = "*.%03d.*" % int(rank)
cmd.enable(select)

def renameFTMap(protname):
stored.clusters=[]
cmd.iterate('crosscluster* and index 1', 

'stored.clusters.append(model)')

for cluster in stored.clusters:
namepieces = cluster.split('.')
namepieces[0] = protname #set first element to protname
if (namepieces[-1] == "pdb"):

namepieces.pop()
name = '.'.join(namepieces)
cmd.set_name(cluster, name)

cmd.group(protname+'_clusters', protname+'.*')

cmd.set_name('protein', protname)

cmd.extend('cc', colorClusters)
cmd.extend('colorClusters', colorClusters)
cmd.extend('dc', disableClusters)
cmd.extend('disableClusters', disableClusters)
cmd.extend('ec', enableClusters)
cmd.extend('enableClusters', enableClusters)
cmd.extend('rf', renameFTMap)
cmd.extend('renameFTMap', renameFTMap)
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When the mapping is opened in PyMol, several objects are
created. The protein submitted for mapping is labeled “protein.”
The individual crossclusters frommapping are labeled “crosscluster.
rank.population.pdb.”Each crosscluster represents a locationwhere
multiple different probe types clustered with a 4 Å radius. These
locations are the hot spots for binding. In looking for a druggable
pocket, there should be a large population crosscluster (population
greater than 10) with several nearby crossclusters of lower popula-
tion. An example in Fig. 6a is the mapping of PDB 1w50, an apo
structure of b-secretase. The largest crosscluster, with population
19, is seen in a pocket surrounded by a variety of other crossclusters.
Drug-like molecules have been developed for b-secretase, such as
the one shown in Fig. 6b, a submicromolar inhibitor (18) that uses
the hot spots defined by mapping.

If in analyzing the mapping, the majority of the results are
going into an area between two structural domains rather than a
well-defined pocket; the protein should be separated into the
individual structural domains to be mapped independently (see
Note 2). If the consensus site is in the location of a tightly bound
coenzyme, but other druggable sites are desired, a masking file
should be created to eliminate results in the region around the
coenzyme (see Note 3).

3.3.2. Analysis of Contacts While visual examination of themapping provides a large amount of
information that can be used for structural design of a molecule,
analysis of the provided lists of hydrogen-bonded and nonbonded
contacts made by probes in mapping can provide additional infor-
mation on specific residues to target. These files have four columns,
with the first three columns identifying the residue index, chain, and
residue type. The fourth column contains the number of hydrogen-
bond or nonbonded contacts, the top 2,000 results for each of the
probes in mapping formed with a particular residue. The file can be
sorted on this columnusingUNIX tools, as shown in Fig. 7, onMac
OSXorLinux, ormay be imported into a spreadsheet program such
as Microsoft Excel to be sorted. In Fig. 7, the results for the
mapping of PDB 1w50, an apo b-secretase, are shown. The top
two residues for hydrogen bonds are ASP 228 and ASP 32. These
residues were found to form hydrogen bonds to a large number of
fragments by Astex Therapeutics (19). The top two residues for
nonbonded contacts are Phe108 and Leu30, which are used
by the bulk of the submicromolar inhibitor shown in Fig. 6b.
The top hydrogen-bond and nonbonded contacts can provide
information of use in structure-based drug design.
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Fig. 6. Mapping of apo b-secretase (1w50) showing a pocket that (a) contains a large crosscluster with smaller cluster
neighbors which (b) agree well with the binding of a submicromolar inhibitor (2ohu).
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4. Notes

1. Many structures in the PDB have multiple copies of a protein
in a structure. Frequently crystals will have multiple copies of
a protein in an asymmetric unit, resulting in multiple chains
with the same sequence. If using a structure solved by NMR, a
number of models will be reported. In either case, there are
multiple different structures of the same protein. All these
structures submitted to the server, and the structure with
the largest consensus site population, that is the sum of the
populations of crossclusters in the binding site, should be
chosen for analysis after mapping.

2. The FTMap algorithm works best on single domains of
proteins. If a protein has multiple domains, each domain
should be mapped and analyzed independently. The PDB
website provides access to three different methods for
determination of protein domains, SCOP, CATH, and
PFAM, on the “Derived Data” tab for a structure. This data
relies on outside groups to update the data, so it frequently is
not available for the newest PDB structures, but both CATH
and PFAM can be searched by sequence to assign domains by
similarity to previously evaluated PDB structures.

Figure 8 shows the derived data for PDB 1efv. Each
method assigned two domains to chain A of the structure
and a single domain to chain B. If you are interested in
mapping chain B, then you can proceed with the mapping,
but if you are interested in chain A, the structure should be
split into separate domains. The PDB does not provide infor-
mation on where the breaks between these domains occur.
This information must be obtained from the domain assign-
ment servers. CATH and PFAM have pages for each PDB on
their servers, showing the boundaries in the sequence
between the domains as shown in Fig. 9b, c. SCOP provides
this information in their “SCOP parseable file” named dir.des.
scop.txt. This file can be searched using your favorite text
editor, or using grep on UNIX-like systems as shown in
Fig. 9a. While the three domain assignments disagree on the
exact domain boundary, they agree to within a couple

Fig. 7. Analysis of the top hydrogen-bonded and nonbonded contacts onMac OS X or Linux.
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Fig. 9. Mapping of domains to sequences from (a) SCOP, (b) CATH, (c) PFAM.

Fig. 8. Derived data for PDB 1efv, showing that each method assigns two domains to
chain A and a single domain to chain B.
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residues. FTMap will not be sensitive to which exact assign-
ment you use give or take a couple residues.

To submit the domains of chain A separately to FTMap,
PDB files of the individual domains must be prepared. The
simplest method for this is using PyMol. Once PyMol has
been launched, a specific protein from the PDB can be loaded
via Plugin->PDB Loader Service (Fig. 10a). To see the
sequence of this protein, the user should click on the S in
the lower right hand corner of the viewer (Fig. 10b). Portions
of the sequence can then be “selected” by clicking on the
sequence above the protein. In Fig. 10c, residues 20–204 of
1efv have been selected, creating a selection object called
“sele.” This is shown on the protein as a large number of
dots, which can be seen to cover one structural domain of
the protein. Finally, the structure of the selected sequence can

Fig. 10. Preparation of a protein domain for mapping in PyMol by (a) loading of the PDB, (b) showing the sequence,
(c) selection of the domain, and (d) saving of the selection object.
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be saved by going to File->Save Molecule. . . and then select-
ing “sele” in the dialog (Fig. 10d). This can be repeated for
each structural domain.

3. Many proteins have strong binding sites that bind coenzymes,
but developers of molecules would rather their molecule bind
elsewhere. This is the case, for example, with kinase inhibitors
that bind outside the ATP-binding site. FTMap is able to
mask a region of a protein from mapping. That is, it will
prevent probes from going into that region of the protein.
FTMap uses a masking file in the PDB format of the

Fig. 10. (continued)
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Fig. 11. Creation of a mask in the ATP-binding region of a protein by (a) selection of the ATP analogue and (b) expansion
of the selection into the site.
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coordinates of residues on the protein where you do not want
the probes to bind. These files can be prepared using PyMol.
First, load your protein via the PDB Loader Service as shown
in Fig. 10a. In Fig. 11, we develop a mask for the ATP-
binding site of PDB 3A99. Right clicking on the ATP ana-
logue in the site brings up a menu where the analogue can be
selected by choosing residue->select (Fig. 11a). Once the
selection has been created, the selection can be expanded to
the atoms near the analogue by right clicking on the selection
and choosing actions->around->atoms within 8A (Fig. 11b).
This selection can then be saved by File->Save Molecule. . . as
shown in Fig. 10d.
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Chapter 3

Evolutionary Trace for Prediction and Redesign
of Protein Functional Sites

Angela Wilkins, Serkan Erdin, Rhonald Lua,
and Olivier Lichtarge

Abstract

The evolutionary trace (ET) is the singlemost validated approach to identify protein functional determinants
and to target mutational analysis, protein engineering and drug design to themost relevant sites of a protein.
It applies to the entire proteome; its predictions come with a reliability score; and its results typically reach
significance in most protein families with 20 or more sequence homologs. In order to identify functional hot
spots, ET scans a multiple sequence alignment for residue variations that correlate with major evolutionary
divergences. In case studies this enables the selective separation, recoding, or mimicry of functional sites and,
on a large scale, this enables specific function predictions based on motifs built from select ET-identified
residues. ET is therefore an accurate, scalable and efficient method to identify the molecular determinants of
protein function and to direct their rational perturbation for therapeutic purposes. Public ET servers are
located at: http://mammoth.bcm.tmc.edu/.

Key words: Evolutionary trace, Protein design, Protein engineering, Function annotation,
Phylogenomics, Protein–protein interaction

1. Introduction

1.1. Basics

of Evolutionary Trace:

Phylogenetic Residue

Variation

The evolutionary trace (ET) is a phylogenomic method to identify
important amino acids in protein sequences. The approach con-
ceptually mimics experimental mutational scanning: Whereas in
the laboratory a sequence residue is deemed important when its
mutation changes the response of an assay, ET infers that a residue
is important when its variations during evolution correlate with
major divergences (1, 2). Thus, ET aims to measure the impact of
a residue not by its conservation or through its co-variations, but
rather by its associated evolutionary changes and the functional
perturbations and adaptation that they presumably represent.

The ET approach to measure the correlation between residue
and phylogenetic variations is still under refinement. But the basic
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hypothesis is that residues that vary among widely divergent
branches of evolution are more likely to have a larger functional
impact than other residues that vary even among closely related
species (see Fig. 1). Taking initially an absolute view of variation
patterns (1), the ET rank ri of sequence residue i in a query
protein was:

ri ¼ 1þ
XN�1

n¼1

dn; (1)

where the summation is over the phylogenetic tree nodes (total of
N � 1 branches); N is the number of homologs in the multiple
sequence alignment. The value of dn is equal to 0 if residue position
i is invariant within the sequences making up node n, while dn is
equal 1 otherwise. The exact magnitude of ri is less important than
its relative percentile rank compared to all residues in the protein:
those with smaller percentile ranks being considered more impor-
tant. In practice, (1) ranks best the sequence positions that vary
among the most evolutionary divergent branches and that are also
invariant within small branches of closely related species.

Following this scheme, top-ranked ET residues (or ET residues
for short, usually defined as those residues ranked in the top 30th
percentile) can be singled out in a sequence or structure. As
expected, completely invariant residues are the most important
and highly variable one tend to be least so. However, top-ranked
residues can be surprisingly variable as long as these variations
are between rather than within large branches. Conversely, some
relatively invariant amino acids can be ranked poorly if the variations
they do exhibit are within small evolutionary branches. The phylo-
genetic tree therefore allows ET to infer which patterns of variations

Fig. 1. The Evolutionary Trace method. The proteins making up the multiple sequence
alignment are divided into groups based on the phylogenic tree. Each group has a
representative sequence with the invariant residues. The ET method extracts the relative
evolutionary importance of the residues in example where the top ranked residues are
marked 1, 2 and 3. These residues are then mapped onto the protein structure in order
to visualize functional site.
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are more or less important. Moreover, the use of the tree also
naturally takes into account the bias due to overrepresentation of
some branches, a difficult aspect for conservation or co-variation
approaches.

In practice, ET residues have remarkable structural and func-
tional properties:

l They cluster together spatially in the protein structure (3)

l These clustersmap out on the protein surface possible functional
sites for catalysis or ligand binding (4)

l Internal clusters of ET residues presumably form the folding
core of the protein, and, in some cases, play a critical role in
allosteric regulation and specificity (5)

l Mutations directed to ET residues will alter function in a
variety of ways (6–8)

l Mimicry of ET residues leads to peptides with functional
properties (9)

l And in silico mimicry of top-ranked ET residues identifies
functional similarity (10, 11)

For example, this early version of ET detected functional resi-
dues and directed mutational studies into the molecular basis of
G protein signaling (12–14). One hundred mutations of the
Galpha-protein confirmed prior ET predictions of binding sites
to the G beta gamma subunits and to the G protein-coupled recep-
tor (15). Likewise, ET clusters of evolutionary important residues
in the regulators of G protein signaling (RGS) were subsequently
confirmed—one at an RGS-Galpha binding interface and another
that mediates cGMP phosphodiesterase (PDE) interactions
(13, 14).Moreover, these early studies ETalso guided the successful
transfer of function between RGS7 and RGS9 by mutationally
swapping a few, select ETresidues. These results suggested therefore
that ET could identify a protein’s binding sites and its key residues.

1.2. ET Refinements:

Phylogenetic-Entropy

Hybrid and Clustering

z-Score

A number of refinements were added to the basic ET algorithm to
increase its robustness. One issue addressed was the fact that (1)
leads to ET ranks that are over-sensitive to errors, gaps, insertions,
deletions and polymorphisms or natural variations among sequence.
Each of these may break the perfect patterns that ET searches for,
namely, variations between branches but invariance within them.

First, the Shannon Entropy (16) was introduced to measure
invariance within the individual branches. This led to a hybrid
entropy-phylogenetic method (17) called the real-value ET
(rvET) because it produces absolute ranks that are not whole
integers. By contrast, the original ET method and (1) yields
integer ranks and is now referred to as integer-value ET (ivET).
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To be clear, the Shannon Entropy, si, for a given residue
position i is:

si ¼ �
X20
a¼1

fia ln fia; (2)

where fia is the frequency that an amino acid type, a, appears in the
column containing residue position i. This Shannon Entropy is
first calculated for the entire alignment, and then for every
subsequent node defined by the phylogenetic tree. Finally, the
rank ri of residue i is:

ri ¼ 1þ
XN�1

n¼1

1

n

Xn
g¼1

�
X20
a¼1

f
g
ia ln f

g
ia

( )
; (3)

where fia is the frequency of the amino acid of type a within the
sub-alignment of group g. The number of possible nodes in the
evolutionary tree is (N � 1) where N is the number of sequences
in the alignment. The nodes in the phylogenetic tree are num-
bered in the order of increasing distance from the root. A key
achievement of rvET (thereafter simply ET) is that it requires little
manual curation, and thus lends itself to large-scale automation
and allows for web server application.

A second important improvement quantified the notion of ET
residue clusters (1, 2). Studies on numerous proteins showed that
ET clusters were common and statistically significant (3), then
that they significantly overlapped functional sites (4), and finally,
that the extent of clustering was predictively correlated with the
extent of overlap (18). In other words, the clustering z-score is a
measure of ET quality such that it can be maximized in order to
optimize functional site predictions (19–21).

To derive the clustering z-score, the structure provides an
adjacency matrix between residues: A matrix element Aij is equal
to 1 if two amino acids (labeled i and j) are within 4 Å of each other
and equal to zero otherwise. If a residue meets a given ET thresh-
old of importance, the parameter Si ¼ 1. If that residue i does not
meet this importance cut-off, then Si ¼ 0. With these definitions,
the cluster weight at a particular importance threshold is

w ¼
XL
i<j

SiSjAij ðj � iÞ; (4)

where ( j � i ) is a weighting function that favors residues that are
near in structure but far in sequence. Finally, the clustering z-score
is determined, as usual:

z ¼ w � hwi
s

: (5)
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The average, hwi, and standard deviation, s, in the ensemble
of random residue choices are found through repeated sampling
or analytically (18).

These improvements were experimentally tested in different
proteins through a number of protein engineering studies
that included: rewiring functional specificity (22), separating
functions (6), designing of peptide inhibitors and redesigning allo-
steric specificity (5) (see Notes 1–4).

1.3. ET Optimization

and Future Directions

A third generation of improvements originates from the fact that
the clustering among top-ranked residues can be treated as a
measure of ET quality. The greater the clustering z-scores the
better the “fitness” among the selection of sequences making up
the alignment, the phylogenetic tree and the 3D structure of the
protein. This held true when extended for selecting structures
among a set of decoy models of protein folds where the structures
closer to native (18) were more likely to be chosen. This idea was
also extended in order to select themost relevant sequences for ET
analysis. Specifically, a Metropolis Monte Carlo algorithm was
tested in 50 diverse proteins to choose sequences that maximized
the clustering z-scores. The greater these z-scores, the better the
clusters predicted functional sites (19). Another and structure-free
quality measure, Rank Information, can likewise identify problem-
atic “misfit” sequences during analysis (23). More recently,
multiple ET quality measures were formally defined, such that
maximizing their value optimizes the prediction of functional
sites and annotations (21). Together these studies further confirm
a quantitative relationship among evolutionary pressure (the ET
rank), the protein fold and functional site locations; and they point
to a common feature of ET quality: the rank distribution that best
reflects evolutionary history and functional pressures appear to
maximize “rank continuity,” namely the similarity of ET ranks
among structurally neighboring residues within the structure (21).

1.4. Large Scale

Validation: Protein

Function Annotation

ET was also validated on a large scale in the context of protein
function prediction. This application is motivated by Structural
Genomics (SG) which solves many protein structures that cannot
be annotated by homology-based annotation transfer (24).
Since typically a few residues are essential for binding or catalytic
activities it may be possible instead to rely on local structural
similarities (25): different structures may perform similar bio-
chemical function if they share a common spatial organization of
experimentally verified functional motifs (26) or, lacking those,
key functional residues as defined by ET.

A series of technical studies developed these ideas into an
Evolutionary Trace Annotation (ETA) pipeline to predict the
function of novel protein structures. ET rankings proved useful
to define small structure-function motifs called 3D-templates (27),
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to identify meaningful geometric and evolutionary matches of
these templates to other protein structures based on reciprocity
(10), and voting plurality (28) in order to infer function in enzymes
andnon-enzymes alike (10, 11). ETAwas extensively benchmarked;
for example, its positive predictive value was 93% (10) in 1218 SG
enzymes (whose functionswere described the first three digits of the
Enzyme Commission classification, EC numbers). ETA matches
further create a network of local structural and evolutionary simila-
rities among the entire structural proteome, inwhich edges between
protein nodes indicate reciprocal ETAmatches (11), and such that a
diffusion algorithm can then transfer annotations globally over the
entire network. Every combination of protein and function receives
a confidence score, and the highest one defines the functional
prediction. This competitive annotation diffusion strategy yields
predictions at the most detailed (fourth) EC level. For example,
false positives fell fourfold, at 97% sensitivity, against a recent
method (29). On a large-scale SG set, accuracy rose 6% and false
positives fell twofold at 65% coverage, compared to ETA.

In practice, ETA predictions are being validated experimentally
(30). For example, ETA suggested carboxylesterase activity
(EC3.1.1.1) for a bacterial protein of unknown function (Uniprot
accession Q99WQ5, gene name SAV0321, PDB 3h04 chain A)
found in a vancomycin resistant strain of the bacteria Staphylococ-
cus aureus (31). The ETA annotation was based on template
matches to three other carboxylesterases with only 10% to 13%
sequence identity to the query. In vitro biochemical assays then
showed that SAV0321 has carboxylesterase activity at a level similar
to the positive control.

This work is notable for two reasons. First, it improves function
discovery in proteins of known structure by formulating reliable
hypothesis for efficient experimental validation. This supports the
general aimof SG,which is to informon function through structural
knowledge. Second, since ET ranks, the 3D templates and matches
they define are at the heart of ETA, it provides a direct and proteomic
scale test of ET identification of key functional residues.

2. Methods

2.1. Functional Site

and Functional

Residue Predictions

by Evolutionary Trace

1. To ensure that only the most relevant proteins are analyzed, a
custom database of sequences removes from NCBI’s non-
redundant protein sequence database any sequence with
“synthetic construct,” “artificial,” “fragment” and “partial”
in the sequence header.

2. To identify homologs to the protein being traced, a BLAST
(BLAST Local Alignment Search Tool) (32) search is done
on the custom database. Typically, the default number of
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homologs is limited to 500 sequences and the maximum
E-value threshold is set to 0.05 (see Note 5).

3. Sequences with less than half the length of the query protein
are eliminated, as are those with greater then 98% or less than
28% sequence identity (see Note 6).

4. A ClustalW alignment is generated (www.clustal.org) with
default parameters set at gap open penalty (10) and gap exten-
sion penalty (0.05). For the ET web servers (see Note 7). The
current ET code accepts MSF format.

5. The alignment is rescanned for sequences that are too short.
After these are removed, the remaining sequences are then
aligned again.

6. To generate an evolutionary tree, a pairwise sequence similarity
matrix is constructed and the UPGMAmethod is applied. Any
phylogenetic tree that represents the family of proteins can be
used as input into the ET code.

7. Integer or rvET ranks are computed as described above:
sub-alignments that correspond to nodes in the evolutionary
tree are formed and (1), or (2) and (3) are applied (see Note 8).

8. If a structure is provided: structural clusters of highly ranked
residues in the query structure are identified and their statisti-
cal significance is measured as described in Subheading 3.2.
These clusters indicate likely functional hot spots and provide
a suitable hypothesis to direct mutational studies in order to
identify functional regions and determinants and drug target
sites.

9. Direct visualization of ET results can be obtained via two
programs: the ET Viewer and the PyETV application (33).
ET servers and viewers are available at http://mammoth.bcm.
tmc.edu/ETserver.html.

2.2. Protein Function

Prediction

by Evolutionary Trace

Annotation

1. rvET is applied to a query protein structure of unknown
function to rank the evolutionary importance of its residues.

2. The first cluster with ten evolutionarily important surface
residues is identified. A residue is defined to be on the surface
if its solvent accessibility is at least 2 Å (2) as calculated by
DSSP (34).

3. The six most evolutionarily important residues in that cluster
define the query template. Their alpha carbon coordinates
define the template geometry. If ties arise between candidate
residues, those closest to a point halfway between the center
of mass of the growing template are chosen.

4. The template is allowed to vary in keeping with the side chain
variations found in multiple sequence alignment used by ET,
provided an amino acid appears at least twice.
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5. The templates are matched to target proteins of known struc-
ture and function (the current target set is 2008PDB90 (24)).
Functions are described by the Enzyme Commission (EC)
numbers (35) or Gene Ontology (GO) molecular terms (36).
Geometric matches are obtained hierarchically, employing a
distance cutoff of 2.5Å (28). Finally, a root-mean-square-
distance (RMSD) is calculated.

6. It is important to filter nonspecific geometric matches. First,
only those with RMSD below 2Å are considered for further
analysis. Second, a support vector machine (SVM) chooses
matches that are both geometrically and evolutionarily signif-
icant (it combines RMSD and evolutionary similarity between
the template and the matched sites in the target structures).
Third, these steps are repeated by reversing the role of the
query and of the target structure in order to assess reciprocity:
reciprocal ETA matches between two protein structures are
much less likely to be due to chance. Fourth, all-against-all
matches enable to tally how often a query matches to different
proteins with the same function. A plurality rule is then
applied to transfer to the query the one function annotation
that is matched the most often. In the case of a tie, no
prediction is suggested.

7. For GO annotations, ETA takes into account all known GO
terms and their parent terms for each match. ETA votes at
each GO depth in such a way that the most voted or tied terms
are considered to be predictions. Voting continues until a GO
term has no more child terms. Once a term or terms are
considered to be predictions, their child terms are also sug-
gested as predictions. In the voting procedure, self-matches
are excluded.

8. An ETA server is available at http://mammoth.bcm.tmc.edu/
ETA

3. Tools

3.1. ET Servers A summary of ET tools is reported in Table 1. There are a number
of servers that provide ET results:

1. The first server (http://mammoth.bcm.tmc.edu/ETserver.
html) requires the users to enter a PDB ID (e.g., 2phy).
The web output includes links that launch ETV and PyMOL
with which to view a structural mapping of every trace. This
output also packages zipped versions of all the files used or
generated by ET.
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2. The Evolutionary Trace Report Maker is a second server (37),
which produces a fully automated ET report in a pdf document
(http://mammoth.bcm.tmc.edu/report_maker). It pools data
on protein sequence, structure and elementary annotation from
several sources, and adds to that background inference on
functional sites and residues obtained from rvET. It requires
either a Protein Data Bank (PDB) identifier or a UniProt
accession number for a sequence. Report Maker utilizes HSSP
alignments when available.

3. The “ET Wizard” server is accessible directly through the
evolutionary trace viewer (ETV), launched separately in the
“Utils” menu, and useful for generating user-controlled traces
(see below).

Table 1
Available ET tools

Name/URL Type Purpose Input Output

Evolutionary Trace Results
http://mammoth.bcm.tmc.
edu/ETserver.html

Web server Functional site
prediction

PDB ID ET analyses files

Evolutionary Trace Report
maker http://mammoth.
bcm.tmc.edu/
report_maker

Web server Functional site
prediction

PDB ID or
Uniprot
accession
number

PDF report, ET
analyses files

Evolutionary Trace Viewer
(ETV) http://mammoth.
bcm.tmc.edu/traceview

Molecular
viewer, Web
application,
Web server

Functional site
prediction,
visualization

ET analyses
(.etvx file),
PDB ID

3D molecular
graphics, ET
analyses files,
multiple
sequence
alignment,
evolutionary
tree

PyMOL ETV http://
mammoth.bcm.tmc.edu/
traceview/HelpDocs/
PyETVHelp/
pyInstructions.html

Molecular
viewer

Functional site
prediction,
visualization

ET rank data,
PDB,
PyMOL
scripts

3D molecular
graphics

Evolutionary Trace
Annotation (ETA) server
http://mammoth.bcm.tmc.
edu/eta

Web server Functional
annotation

PDB ID EC and GO
annotations,
3D
templates,
PDB matches
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3.2. Evolutionary

Trace Viewer:

A Tool to Run ET

and View Results

The ETV (38) (http://mammoth.bcm.tmc.edu/traceview) is a
one-stop environment to run, visualize and interpret ET predic-
tions of functional sites in protein structures. It is implemented in
Java and runs across different operating systems utilizing Java Web
Start Technology for self-installation.

1. A key ETV feature is an interactive molecular graphics display
that reads in the results of an ETanalysis in the form of an .etvx
file. This file is selected in the “File” menu command: “Open
ETV Results.” It produces a colored structural map of the ET
rank of every protein residue. Evolutionary and functional hot
spots become readily apparent in the formof structural clusters
of top-ranked residues, and the statistical z-score of these
clusters is shown. The threshold of percentile rank to color
top-ranked residues can be adjusted by moving a slider (hori-
zontal scrollbar) prominently shown on top of the graphics
window, or a rainbow coloring over all residues is also available
to display at once a heatmap of evolutionary importance.

2. A second feature of ETV is that the evolutionary tree used to
compute the ET rank of every residue can be viewed: select
“ET Tree” under the “View” menu.

3. Critically, an ET Wizard is integrated into ETV (under the
“Utils” menu”) to let users launch customized ET analyses.
The ET Wizard accepts either a PDB ID, or a PDB formatted
file provided directly by the user as input. Users may then also
choose to provide their own custom alignments or set of input
sequences. Alternately, they can allow the ET Wizard to build
its own alignments (see Note 9).

4. A database of pre-generated ET analysis results for all unique
chains in the PDB is maintained and regularly updated.

3.3. PyMOL ETV:

A High-Resolution

ET Viewer for Protein

Chains and Complexes

TheETViewer (ETV) displays just one single chain at a time. Since
protein–protein interactions are an emerging target for design and
therapeutics, an alternative system was developed to trace multi-
protein interfaces. This PyETV (for PyMOL Evolutionary Trace
Viewer) (33) provides a high graphics quality interface to map
evolutionary forces and identify functional sites in complexes.

1. The PyETV is a plug-in that builds on the popular and exten-
sible PyMOL molecular graphics package (39). Information
for its installation, and instructional videos, are available
at http://mammoth.bcm.tmc.edu/traceview/HelpDocs/
PyETVHelp/pyInstructions.html. PyETV is also integrated
into the web server http://mammoth.bcm.tmc.edu/
ETserver.html through web links to PyMOL scripts.

2. PyMOL (39) (www.pymol.org) is a versatile molecular
graphics package developed by Bill DeLano to view, select,
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label, and perturb any number of structures or substructures
(such as groups of atoms or residues) in many ways (e.g.,
cartoon, surface, stereo etc.). Moreover, it is easily extended
with plug-ins—scripts that can add to PyMOL’s user interface
and can overlay complementary information to a protein
structure, such as electrostatics maps.

3. Through the PyETV plug-in, any number of user-generated
and pre-generated ET analysis results can be mapped to any
number of structures and displayed in PyMOL. In particular,
predicted biological assemblies from PISA (40) and ET analy-
sis for each component in the assembly can be loaded directly
through PyETV using the “Assembly” tab. As with ETV,
PyETV provides a colored structural map of the importance
of each residue in a protein.

3.4. Evolutionary

Trace Annotation

Server: Automated

Function Prediction

in Protein Structures

Using 3D Templates

1. ETA analysis starts with the PDB code of the protein structure
of unknown function, including a 1-digit chain identifier.
Click “Submit.” An ET analysis then provides information
on the evolutionary importance of each residue. If this ET
analysis is cached, the server goes to step 2. If not, it launches
automatically a new trace with default parameters. One may
gain control over this process by uploading a custom ET
analysis that was run before through the ET Wizard. Clicking
“Browse” to locate such an ET file and “Upload” to submit it
to the ETA server (http://mammoth.bcm.tmc.edu/ETA).

2. Next, the server predicts a functional site template by identifying
a cluster of evolutionarily important residues on the surface of
the protein, picking the six most important ones. It renders an
image of the template. This template canbe explored in depthby
clicking on the image to download a PyMOL session file. The
templatemaybe customized if alternate choices of residues are of
interest. Click “Submit Template” to continue with the analysis.

3. The server next identifies possible amino acid types for each
template residue based on the multiple sequence alignment
used by ET. Each unique combination is listed, along with the
number of times it occurs in the alignment. Combinations
may be turned on or off using their check boxes. Custom
amino acid labels can also be added. Click “Find Matches” to
begin the template search.

4. The results page contains GO and EC predictions based on
reciprocal matches (highly reliable) and non-reciprocal
matches (less reliable). The GO terms and EC numbers are
hyperlinked to web pages containing more information about
that GO term or EC number.
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4. Notes

1. Rewiring functional specificity: Top-ranked residues were
exchanged to rewire transcriptional specificity in evolutionary
divergent helix-loop-helix proneural transcription factors
from the frog and the fly, and vice versa (22).

2. Separating functions: Alanine mutations of ET-predicted
functional residues confirmed predictions of new functional
sites and led to selective loss of function in the Ku70/80
heterodimer. One site was found to be responsible for
telomere maintenance and another site, that was structurally
diametrically opposite and facing the centromere, was respon-
sible for end-joining of double-strand DNA break repair (6).

3. Design of peptide inhibitors: Helical peptides were engineered
to mimic ET-predicted sites composed mostly of solvent
exposed helices. The top-ranked residues were left intact
while the lesser-ranked amino acids were chosen to favor
helix formation. These peptides disrupted in vitro binding
among nuclear receptors (41) and, in another case, G protein-
coupled receptor phosphorylation by G protein receptor
kinase (9).

4. Redesigning allosteric specificity: ET residues in the transmem-
brane domain of Class A GPCRs (42) were targeted for muta-
tions. Some selectively uncoupled beta-arrestin-mediated
signaling from G protein-mediated signaling (43). Others
rewired a dopamine receptor to become serotonin responsive
not by altering ligand binding specificity, but rather by altering
the response of the allosteric pathway to either ligands (5).

5. ET analysis can be done for any reasonable set of sequences.
Typically 15–20 sequences are needed but this depends on the
validity and diversity of the set. When structural information is
known, HSSP alignments can also be an option.

6. The parameters for filtering sequences were optimized for
better functional site prediction. They are often adjusted on
a case-by-case basis, for example, when studying an entire
family, it is important to ignore cut-offs like sequence identity.

7. For cases where homologues are close, the quicktree option in
ClustalW dramatically decreases computational time.

8. In sequence analysis, gaps are treated as a 21st amino acid.
This is simply a computational tool and has no relevance.

9. In the ET Wizard tool, the user can control the number of
sequences to be included in the alignment, after a BLAST
search, and the thresholds for acceptable sequence identity
and sequence length.
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Chapter 4

Information Entropic Functions for Molecular
Descriptor Profiling

Anne Mai Wassermann, Britta Nisius, Martin Vogt,
and J€urgen Bajorath

Abstract

The identification of molecular descriptors that are able to distinguish between different compound
classes is of paramount importance in chemoinformatics. To aid in the identification of such discrimina-
tory descriptors, concepts from information theory have been adapted. In an earlier study, an approach
termed Differential Shannon Entropy (DSE) has been introduced for descriptor profiling to detect and
quantify compound database-dependent differences in the information content and value range distribu-
tion of descriptors. Because the DSE approach was intrinsically limited in its ability to select compound
class-specific descriptors by comparing data sets of very different size, this approach has recently been
extended to Mutual Information-DSE (MI-DSE). Herein, DSE, MI-DSE, and the Shannon entropy
concept underlying both information theoretic approaches are introduced and compared, and differences
between their application areas are discussed.

Key words: Descriptor selection, Information theory, Mutual information, Shannon entropy,
Structure-activity relationships

1. Introduction

Literally thousands of computational descriptors of different
complexity and design are currently available to represent molecular
structures and properties (1, 2). Popular among these descriptors
are numerical property descriptors that express physicochemical
properties of molecules by means of scalar values. Such descriptors
are suitable as input for statistical and data mining methods.
Accordingly, property descriptors are frequently employed in diver-
sity analysis, representative compound subset selection, combina-
torial library design, and quantitative structure-activity relationship
(QSAR) investigations. However, the selection of a preferred set
of descriptors for a specific chemoinformatics application is usually
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a challenging task. Often descriptors are selected on the basis of
experience or chemical intuition, rather than systematic analysis.

A direct comparison ofmolecular descriptors of different design
and the information they contain is complicated by the fact that
these descriptors usually have different units and value ranges.
Therefore, for database profiling, descriptor selection approaches
that make use of the Shannon Entropy (SE) concept (3) have been
developed that quantify the information content of different
descriptors, regardless of their value ranges (4, 5). In order to
quantitatively compare descriptors for different data sets, an
extension of the SE approach termedDifferential Shannon Entropy
(DSE) (6) was also introduced that detects intrinsic differences
between descriptor settings in compound databases by taking into
account both differences in the variability and value range distribu-
tion of descriptors. In previously reported DSE applications (6, 7),
descriptors were always compared for large data sets of comparable
size. However, the exploration of structure-activity relationships
and the identification of descriptors that capture compound-class
specific and biological activity-relevant information typically require
the comparison of a given compound activity class containing only a
few dozen or hundred molecules and a large database comprising
thousands or even millions of compounds. The DSE formalism
was shown to be insufficient for the comparison of data sets that
dramatically differ in size and hence it was further transformed into
mutual information analysis, termed Mutual Information-DSE
(MI-DSE), to reliably assess the class-specific information content
of descriptors (8). Herein, methodological details and applications
of SE, DSE, and MI-DSE are presented.

2. Methods

In the following, we describe the SE concept, report details of the
DSE approach, and explain its transformation into the MI-DSE
approach. Furthermore, for all approaches, exemplary applica-
tions are presented. Values of all descriptors were calculated with
the molecular operating environment (MOE) (9).

2.1. Shannon Entropy Introduced in a landmark paper by Claude Shannon in 1948 and
originally developed for applications in digital communication,
Shannon entropy (3) is a concept from information theory to
quantify the average information contained in a “message.” In
the context of molecular descriptor analysis, the “message” is
simply the value of a descriptor calculated for a compound and
the SE is given by the average information content of all values of
this descriptor for a compound set. The information content of a
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certain descriptor value depends on the frequency with which this
value occurs in a set of compounds and is calculated as the nega-
tive base 2 logarithm of its frequency of occurrence (or probabil-
ity) pi (i.e., � log2pi). Hence, the information content increases
with decreasing frequency of occurrence, which is rather intuitive
because a rare descriptor value obviously conveys more informa-
tion about a compound than a frequently occurring value. SE
defines the average information contained in a descriptor D and
is given by

H ðDÞ ¼ �
Xn
i¼1

pi log2pi; (1)

where n corresponds to the number of possible values the descriptor
adopts. The higher H(D) becomes, the more information is
captured by the descriptorD (see Note 1).

To quantitatively compare the average information content of
different descriptors, a consistent data representation format for
their value distributions must be applied. Therefore, all descriptor
distributions are represented as histograms where the complete
data range of a descriptor is divided into the same number of
equally sized data intervals. Exemplary histogram representations
of value distributions and the corresponding SE are shown
in Fig. 1. For 100,000 compounds randomly taken from the
ZINC (10) database, value distributions of the descriptors
“molecular weight” and “number of iodine atoms” are reduced

Fig. 1. Descriptor histograms and corresponding Shannon entropies. Exemplary descriptor histograms based on 100,000
compounds randomly collected from the ZINC database are shown. Each descriptor value range is divided into ten
equally-sized bins. The value distribution for the descriptor “molecular weight” is shown in (a), the distribution for the
descriptor “number of iodine atoms” in (b). The “molecular weight” is an example of a high-entropy descriptor, whereas
the “number of iodine atoms” is an example of a low-entropy descriptor, as indicated by the reported Shannon entropy
(SE) values.
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to a discrete set of possible values by partitioning the range
between the minimum and maximum value into ten evenly spaced
data intervals. As can be seen, the descriptor “molecular weight”
varies greatly among the database compounds, whereas the
descriptor “number of iodine atoms” adopts the value of zero
for the vast majority of compounds such that they mostly fall into
a single bin. The differences between these distributions and their
information content are reflected by the calculated SE values of
2.48 for “molecular weight” and 0.05 for the “number of iodine
atoms.”

It is important to note that the value distribution of a descrip-
tor D usually depends on the set of compounds for which it is
calculated. Hence, in addition to comparing SE for different
descriptors, the information content of a descriptor for two dif-
ferent compound sets A and B can also be compared. For this
purpose, exactly the same bin definitions (i.e., partitions) must be
used to represent the value distribution for the two data sets.
Therefore, the range of values the descriptor adopts for the
union of sets A and B is determined and then divided into a
predefined number of equally sized bins. For example, the infor-
mation content of 92 molecular descriptors was systematically
compared for two databases containing synthetic or drug-like
compounds (4). Although, the most variable descriptors were
generally similar for the two databases, a number of descriptors
showed significant differences in entropy implying that their value
distributions differed between the two databases. However, the
comparison of SE for two databases only accounts for differences
in the variability of the corresponding distributions, but does not
provide information about the distribution overlap. However,
quantifying the overlap of descriptor value distributions for differ-
ent data sets is of high relevance for many applications in che-
moinformatics because descriptors with little overlap can be
utilized to distinguish between compounds from different
sources. In order to provide a rational basis for the identification
of such discriminatory descriptors that capture compound set-
specific information, the DSE formalism was introduced.

2.2. Differential

Shannon Entropy

The DSE approach was designed as an extension of the SE
concept specifically for comparative analysis of molecular descrip-
tors in two different compound data sets in order to determine
how much compound set-specific information is contained in a
descriptor.

A descriptor value contains set-specific information if the
value distributions of the descriptor significantly differ for the
two compound data sets. By contrast, if value distributions for a
descriptor are very similar for two data sets, i.e., if each descriptor
value occurs with roughly the same frequency for both sets, then
the descriptor provides only very little set-specific information.
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Examples for descriptors with different discriminatory potential
are shown in Fig. 2 where descriptor value distributions binned into
16 data intervals are compared for 10,000 ZINC and 10,000
MDDR (11) compounds. For all ZINC compounds, values for
the shape descriptor (topological index) “kierA1” fall into the six
lowest bins, with more than 60% of all values accumulating in the
third bin, such that the distribution becomes rather narrow.
Although this descriptor also preferably adopts low values for
MDDR compounds, the right tail of the MDDR distribution
shows that high descriptor values are obtained for a compound
subset. Because high descriptor values are exclusively detected for
MDDR compounds, the descriptor carries some set-specific infor-
mation. By contrast, for the adjacency matrix descriptor
“GCUT_SMR_2,” the distributions for ZINC and MDDR com-
pounds are almost identical. Accordingly, the descriptor is not dis-
criminatory with respect to the two datasets. This example
emphasizes an important point, namely that descriptors that are
information-rich for single data sets are not necessarily suitable to
distinguish between different sets.

Fig. 2. Descriptors with different discriminatory power. Descriptor histograms are shown for 10,000 compounds
randomly taken from the ZINC (light gray) or MDDR database (dark gray). Furthermore, for each descriptor, value
distributions for the two different data sets are overlaid. (a) Because histograms for the descriptor “kierA1” are distinct,
this descriptor contains class-specific information. (b) By contrast, histograms for the descriptor “GCUT_SMR_2” are
highly similar and hence this descriptor is unable to discriminate between these two data sets.
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DSE was introduced in (6) to numerically quantify the
discriminatory potential of a descriptor. Figure 3 reports the
steps that are involved in the DSE calculation for a descriptor
D and two compound sets A and B. First, for both sets, the
descriptor value distributions are represented as histograms
using a consistent binning scheme. From these two histograms,
the set-specific Shannon entropies HAðDÞ and HBðDÞ are calcu-
lated. Then, a single histogram accounting for the distribution of
the entire population of compounds from both sets is generated.

Fig. 3. Steps in DSE calculation. All steps involved in the DSE calculation are shown for
two hypothetical classes of same size, classes A and B. In this example, the value range
of descriptor D is divided into six bins. The figure was adapted from ref. (8).

48 A.M. Wassermann et al.



For this combined histogram, the frequency for a bin i is calcu-
lated according to the following equation:

fABðiÞ ¼ n � fAðiÞ þm � fBðiÞ
n þm

: (2)

Here, n corresponds to the number of molecules in set A and
m to the number of molecules in set B. In addition, fAðiÞ and fBðiÞ
report bin frequencies for sets A and B. Based on the combined
histogram, HABðDÞ is calculated. Finally, DSE is defined as

DSEðDÞ ¼ HABðDÞ �HAðDÞ þHBðDÞ
2

: (3)

In Fig. 4, the combined histograms for the descriptor distri-
butions shown in Fig. 2 are reported. With its highly populated
third bin and right tail, the shape of the combined histogram for
the descriptor “kierA1” clearly reflects distinct characteristics of
the two underlying distributions. Since the MDDR and ZINC
distributions for the descriptor “GCUT_SMR_2” were highly
similar, it is not surprising that the combined histogram is also

Fig. 4. Assessment of discriminatory power by DSE. For the descriptor value distributions shown in Fig. 2, combined
histograms for MDDR and ZINC compounds are shown and corresponding DSE values are reported.
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hardly distinguishable from the distributions of the individual data
sets. As reported in Fig. 4, “kierA1” and “GCUT_SMR_2” obtain
DSE values of 0.157 and 0.006, respectively. Hence, in this exam-
ple, DSE successfully quantifies howmuch set-specific information
is captured by the two descriptors. Previous applications of the
DSE measure include, for example, the identification of descrip-
tors that distinguished drug-like molecules from natural products
and syntheticmolecules (6). Furthermore, DSEwas also employed
to rank descriptors according to their ability to distinguish com-
pounds with different levels of aqueous solubility, and the
top-ranked descriptors were utilized to build a binary classifier
(7). In these DSE applications, compound data sets for descriptor
comparison were always of comparable size.

Recently, it has been demonstrated that the DSE concept is
insufficient to reliably select discriminatory descriptors for two
compound sets or classes of significantly different size (8).
In this case, the combined histogram is dominated by the value
distribution of the larger compound set, as illustrated in Fig. 5a,
where descriptor distributions for an activity class (AC) com-
prising 400 molecules (class A) and a ZINC subset of 100,000
compounds (class B) are shown. This situation is typical for the
identification of descriptors that capture activity class-specific fea-
tures, which generally requires the comparison of only a few dozen

Fig. 5. Combined histograms for DSE and MI-DSE. Histograms for value distributions of the descriptor “GCUT_SLOGP_1”
are shown for the ZINC subset and an exemplary activity class, AC. The combined DSE histogram is shown in (a) and the
combined MI-DSE histogram in (b).
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or hundred active compounds and a large database comprising
many thousands or even more “background” molecules (thought
to be inactive). Although the adjacency matrix descriptor
“GCUT_SLOGP_1” shows distinct descriptor value distributions
for the activity class and the ZINC subset, the combined histo-
gram largely resembles the descriptor distribution of the ZINC
compounds. Therefore, the SE calculated for the union of the two
compound classes (HABðDÞ) is essentially equal to the SE calcu-
lated for the larger database (HBðDÞ) such that eq. (3) can be
simplified to

DSEðDÞ � HBðDÞ �HAðDÞ
2

: (4)

Hence, the DSE for a descriptor D is now essentially deter-
mined by the difference between its SE values calculated for the
two compound data sets of different size. High DSE values are
obtained by descriptors that show much variability (high SE) in
the large data set, but only little variability (low SE) in the activity
class. Thus, for comparing descriptor values for compound data
sets of very different size, the original DSE concept is not applica-
ble in a meaningful way.

2.3. Mutual

Information-DSE

Therefore, MI-DSE (8) has been introduced as a descriptor selec-
tion method that is not influenced by the size of the compared
compound classes. Importantly, the combined histogram for sets
or classes A and B should not be dominated by the value distribu-
tion of the larger set. Therefore, bin frequencies are calculated as
follows:

fABðiÞ ¼ fAðiÞ þ fBðiÞ
2

: (5)

Here, the departure from eq. (2) should be noted where com-
pound classes were weighted according to their size. In this case, the
combined histogram is calculated based on normalized histograms
A andB. In the followingwe use the term normalized to distinguish
the combined histogram based on eq. (5) from the combined
histogram calculated according to eq. (2). A normalized combined
histogram for the descriptor “GCUT_SLOGP_1” is shown in
Fig. 5b. In contrast to the histogram in Fig. 5a, it is an unbiased
union of the descriptor distributions in both classes. Calculating
H ðDÞ from thenormalized histograms yields amodifiedDSE score:

MI-DSEðDÞ ¼ H ðDÞ �HAðDÞ þHBðDÞ
2

: (6)

The approach is termed MI-DSE because of its conceptual
relatedness to the mutual information concept (see Note 2).
This extension of DSE has the added advantage of yielding
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normalized scores within the range 0 to 1. A score of 0 indicates
that the descriptor distributions for compound classes A and B are
identical such that no class-specific information is captured by this
descriptor. A score of 1 indicates that the distributions are fully
disjoint and that the descriptor perfectly distinguishes class A
from B.

Differences between descriptor rankings produced by DSE
and MI-DSE are illustrated in Fig. 6. For the descriptors “atom
information content” (i.e., entropy of the element distribution in
a molecule), “PEOE_VSA-1” (a partial charge descriptor), and
“number of triple bonds,” value distributions are shown for the
ZINC subset and the exemplary compound activity class from
Fig. 5. According to MI-DSE, the descriptor “atom information

Fig. 6. Different descriptor rankings produced by DSE and MI-DSE. Histograms for value distributions of the descriptors
“atom information content,” “PEOE_VSA-1,” and “number (#) of triple bonds” are shown for the ZINC subset and an
exemplary activity class, AC. For each descriptor, calculated DSE and MI-DSE values are reported.
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content” is most discriminatory. For this descriptor, the distribu-
tion of the activity class is further shifted to the right compared to
the ZINC distribution. However, this descriptor is ranked last by
DSE which only assesses the difference of the SE calculated for the
two sets. Because the information content (SE) of the two distribu-
tions is essentially equivalent, DSE adopts a score of almost zero.
Accordingly, the highest DSE score is obtained for descriptor
“PEOE_VSA-1” for which the SE value for ZINC compounds is
higher than for the activity class because descriptor values for ZINC
compounds are more equally distributed. By contrast, MI-DSE cor-
rectly detects that the two value distributions for “PEOE_VSA-1”
largely overlap andhence considers this descriptor less discriminatory
than the descriptor “atom information content.” MI-DSE ranks
the descriptor “number of triple bonds” lowest because only few
compounds from both data sets contain triple bonds. Therefore, no
set-specific information is provided by this descriptor.

To systematically comparedescriptor rankings producedbyDSE
and MI-DSE and assess the extent to which they differ, value dis-
tributions for 170 descriptors were calculated for 168 target-specific
compound activity classes and then individually compared to the
corresponding descriptor distributions of a randomly collected
ZINC subset. For each activity class, DSE- and MI-DSE-based
descriptor rankings were generated. Spearman correlation coeffi-
cients were then calculated to compare the corresponding rankings
(seeNote 3). Regardless of the number of bins intowhich all descrip-
tor value ranges were divided, correlations between the two rankings
were usually not detectable (8), which emphasized the limited utility
of DSE for comparison of data sets of very different size.

3. Conclusions

The SE concept can be applied to compare the information content
of different descriptors for the same data set or to assess differences
in descriptor variability for different compound classes. However,
in order to quantify the extent to which a descriptor is discrimina-
tory for two compound classes, the value range dependence of
the two corresponding descriptor value distributions must be
taken into account. This was first made possible for compound
data sets of similar size through the introduction of the DSE
approach. Moreover, the recently introduced MI-DSE enables the
comparison of descriptor value distributions for compound data
sets of any size. This is particularly relevant for the identification of
descriptors that capture activity class-specific information because
for this purpose, small compound classes must be compared to
much larger sets of database compounds.
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4. Notes

1. The Shannon entropy H(D) is maximal when all descriptor
values have the same frequency of occurrence, resulting in an
SE equal to log2(n). By contrast,H(D) is minimal and adopts
a value of 0 if all descriptor values are the same, i.e., if the
frequency of a particular descriptor value is 1.

2. In information theory, a concept termed (average) mutual
information (12) answers the question of how much informa-
tion about a classC is contained in the value of a descriptorD.
Formally, it is defined as the difference between the Shannon
entropy of the descriptor D and the conditional SE of the
descriptor D given the class C:

MIðD;CÞ ¼ H ðDÞ �H ðDjCÞ
H ðDjCÞ quantifies the information content of D when class
C is provided. For two classes A and B, H ðDjCÞ is given as

H ðDjCÞ ¼ HAðDÞ � PrðC ¼ AÞ þHBðDÞ � PrðC ¼ BÞ:
By setting PrðC ¼ AÞ ¼ PrðC ¼ BÞ ¼ 0:5 the mutual infor-
mation is transformed into eq. (6) for the modified DSE
approach and corresponds to the Jensen-Shannon divergence
(13) of twodescriptor value distributions. Setting the individual
probabilities to 0.5 can be rationalized as an unbiased estima-
tion of the probability that a molecule belongs to one or the
other class and has the additional advantage (because of the
inequality MIðD;CÞ � H ðCÞ ¼ 1) that the MI-DSE score is
normalized to the value range 0 to 1.

3. The Spearman rank correlation coefficient is a measure of the
correlation between two data rankings. This coefficient does
not take into account the value or score of an object, but only
its ranking position, which sets it apart from the Pearson
correlation coefficient.
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Chapter 5

Expanding the Conformational Selection Paradigm
in Protein-Ligand Docking

Guray Kuzu, Ozlem Keskin, Attila Gursoy, and Ruth Nussinov

Abstract

Conformational selection emerges as a theme in macromolecular interactions. Data validate it as a
prevailing mechanism in protein–protein, protein–DNA, protein–RNA, and protein–small molecule
drug recognition. This raises the question of whether this fundamental biomolecular binding mechanism
can be used to improve drug docking and discovery. Actually, in practice this has already been taking place
for some years in increasing numbers. Essentially, it argues for using not a single conformer, but an
ensemble. The paradigm of conformational selection holds that because the ensemble is heterogeneous,
within it there will be states whose conformation matches that of the ligand. Even if the population of this
state is low, since it is favorable for binding the ligand, it will bind to it with a subsequent population shift
toward this conformer. Here we suggest expanding it by first modeling all protein interactions in the cell
by using Prism, an efficient motif-based protein–protein interaction modeling strategy, followed by
ensemble generation. Such a strategy could be particularly useful for signaling proteins, which are major
targets in drug discovery and bind multiple partners through a shared binding site, each with some—
minor or major—conformational change.

Key words: Protein-ligand interaction, Hotspots, Drug discovery, Conformational ensemble,
Protein interaction prediction, Protein interface, Prism

1. Introduction

Proteins are involved in all molecular processes in living cells
including metabolic, signaling, catalysis, viral entry, and regula-
tion; cellular dysfunction due to inhibition, or to nonnative
interactions of proteins can cause diseases (1, 2). Understanding
the molecular and cellular activities in vivo and controlling their
functions in disease requires analyzing the proteins, investigating
their interactions, and elucidating their functions. Identifying
protein interactions is important not only to understand how
cells work, but also to elucidate disease mechanisms, discover
effective drugs and figure out their effects on the entire cellular
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network (3, 4) to forecast side effects. Several experimental
techniques (5), such as the yeast two-hybrid system (6), phage
display (7), protein arrays (8), and affinity purification (9), gener-
ate massive amounts of protein interaction data. Yet, despite
these, the complex nature of protein interactions is not entirely
understood (10). As more data become available, computational
methods which are able to analyze the large datasets are becoming
increasingly important to make sense of experimental observa-
tions and use them to predict additional interactions, functional
mechanisms, and protein and drug design.

Computational structural biology aims to introduce and apply
effective methods that predict not only which proteins interact but
also how they interact. Predictions of protein interaction can be
carried out using docking or knowledge-based approaches.
Although docking approaches are broadly used and are effective
strategies, they cannot be applied on proteomic scales. The compu-
tation times are prohibitively long, and in particular, for reliable
docking, additional biochemical data such as mutational informa-
tion about protein interactions should be provided; in their absence,
the number of false positive solutions can be astronomical and it is
very difficult to distinguish between native and nonnative predic-
tions (11). Knowledge-based approaches are faster compared to
blind docking methods. Because they decrease the solution space
by limiting possible orientations, the number of potential interac-
tions is smaller which also leads to relatively shorter timescales. This
enables knowledge-basedmethods to copewith large sets of data. In
knowledge-based approaches, templates derived from known inter-
acting proteins can be sequence-based (12–14), domain-based (15)
or interface-based (16, 17). It has been widely accepted that the
structure of the protein is evolutionarily more conserved than the
sequence (18). Thus, in principle, prediction algorithms which are
purely structure-based, where the methodology is completely inde-
pendent from any sequence homology, can work; and this holds
even in the absence of any sequence similarity. This is all themore so
for protein interfaces, which are often more conserved than the
overall structure (19). Analysis of the interfaces has shown that
even if the global structures and functions differ, proteins can bind
through similar interface architectures (20, 21). A structurally non-
redundant dataset of protein–protein interfaces can be clustered
into three types of groups according to the interface and global
structures of the interacting protein pairs (see Fig. 1) (20, 22, 23):
in Type I the interacting proteins have similar global structures and
functions. This is the most common and expected type. In Type II
cluster members have similar interfaces; however, the global struc-
tures and functions are different. This type contains examples that
validate the paradigm that interface motifs can be conserved even in
the absence of global structural similarity (24, 25). In Type III,
only one side of the interface is similar and the surfaces of the
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complementary partners are somewhat different. Hub proteins are
mostly clustered into this type; therefore, members of this cluster
may help in the characterization of hub proteins and shared binding
sites (23). From an energetic point of view, a subset of interface

Fig. 1. Examples of Type I, II, and III interfaces. The interfaces are highlighted with
boxes. (a) Members of Type I proteins use similar interfaces to bind each other. The two
glutathione S-transferase complexes are homologous (PDB identifiers: 10gs and 1b48).
(b) Members of Type I proteins are not related evolutionarily, but the interface structures
are similar. The two complexes, cytochrome C and neuropeptide/membrane protein are
examples of this type (PDB identifiers: 1bbh and 1rso). (c) In Type III, only one side of the
interface has similar architectures, the complementary sides are different (dynein light
chain 8, PDB identifier: 1f95AB; 4-oxalocrotonate tautomerase, PDB identifier: 1otfAE).
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residues can act as “hot spots” (26). These residues contributemore
to the binding free energy of complexes; that is, they play a more
significant role in the affinity and stability of the interaction. There is
a strong correlation between hot spots and conserved residues on
structurally similar interfaces (27), which points to the importance
of hot spots in determining binding sites. Since hot spots contribute
most of the binding energy in the interaction, discovery of mole-
cules that bind to hot spots (1, 28), which can be small molecule
drugs (2, 29, 30) or inhibitory peptides (31–33), has gained impor-
tance in drug design.

Understanding the mechanism of binding is expected to help
drug discovery, since it can lead to more effective methodologies.
Over the years, Koshland’s “induced fit” scenario (34) has been
widely accepted as the binding mechanism. According to the
induced fit, binding of a protein to a ligand leads to a conforma-
tional change in the protein which is “induced” by the ligand and
culminates in a favorable, tight fit. More recently, an alternative
mechanism has been proposed, the so-called “conformational
selection and population shift” (35–39). This proposition
has been based on concepts derived from the free energy land-
scape (40). It argued that since proteins exist in solution in broad
ensembles, among the conformational states present in the
ensemble there should be some with binding sites matching the
shape (and chemistry) of the ligand. While the energy of these
states can be high, and thus they may be only sparsely populated,
the binding will stabilize them, with a subsequent “population
shift” toward these conformers, which maintains the chemical
equilibrium. Recently, considerable experimental and computa-
tional data have accumulated (41–43) validating the conforma-
tional selection and population shift scenario for a broad range of
binding events, and it has further been proposed to apply to drug
discovery (44). Currently, conformational selection is believed to
be the prevailing mechanism, with induced fit dominating in cases
where the concentration of the ligand is extremely high (45).
Of note, the timescales of induced fit are faster than those of
conformational selection and population shift; this is because a
shift in the population necessitates climbing barriers, and thus the
times depend on the barrier heights. Following binding, there is
an induced fit on a minor, local scale to optimize the interactions.
The question arises in which way such a mechanistic scenario can
help in drug discovery strategies. A reasonable way would be to
generate an ensemble of states, and dock these separately to the
small molecule drug. However this is an immensely complex task,
since it critically depends on the sampling. Since high energy states
also need to be considered, the sampling should not be confined
to low energy conformations. Drug discovery is usually aimed at
enzyme active sites; however, increasingly it also targets disruption
or modulation of protein–protein binding sites. While enzyme
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active sites are known, this is not the case for the protein binding
sites, where as we discussed above, data are available only for a
(relatively small) fraction of the interactions. For these cases,
combining prediction of protein–protein interactions and their
binding sites as a first step, coupled with ensemble docking
could be a strategy to consider.

Toward such a strategy, here we present a template-based
protein–protein interaction algorithm, Prism (Protein Interac-
tions by Structural Matching) (46, 47, 78) integrated with Fiber-
Dock (Flexible Induced-fit Backbone Refinement in Molecular
Docking) (48). The Prism algorithm reveals possible interactions
among a group of protein structures based on known protein–
protein interfaces. Due to the existence of a limited number of
distinct binding motifs in nature (49), similar interface architec-
tures are shared among functionally and structurally different
proteins (20). The method, which is independent of sequence
data, utilizes structural and evolutionary similarity of a target
protein with partners of an already known interaction to predict
an interaction between two protein molecules. Although the
structural similarity is detected via geometrical alignment of struc-
tures, evolutionary similarity is approximated by the conservation
of hot spots. Besides the efficiency in prediction of protein inter-
actions on the proteome scale, the prediction algorithm can be
used to construct and analyze specific networks, such as the
human cancer protein–protein interaction network (50), or to
discover shared binding sites in hub proteins (51). Furthermore,
increasing interest in targeting protein–protein interactions (52,
53), especially hot spots in interfaces (54), for drug discovery
makes such a strategy particularly promising. Combining Prism
with FiberDock is a powerful alternative to guide pharmacological
research considering its ability to detect a potential interaction
between a drug and its target protein or of a target protein with
another protein in the network. Moreover, because the interacting
residues can be sequentially discontinuous (see Fig. 2), an algo-
rithm such as Prism which focuses on interfaces and is indepen-
dent of the order of the residues on the chain is advantageous.

2. Materials
and Methods

Prism attempts to predict protein–protein interactions based on
structural similarity of the proteins to the complementary sides
of a known interface. If it is known that there is an interaction
between proteins A and B, and protein A0 is structurally similar to
protein A and protein B0 is structurally similar to protein B,
it is claimed that A0 and B0 may interact with each other (46).

5 Expanding the Conformational Selection Paradigm in Protein-Ligand Docking 63



Prism considers a potential binary interaction by querying
whether target interfaces structurally and evolutionarily comple-
ment each other in a way similar to template interfaces. Then, by
using FiberDock, flexible refinement of docking solution candi-
dates is performed by optimizing the side chain orientations.

Fig. 2. A two-chain interface (a) An example of a two-chain interface (PDB identifier: 1fq3; chains A and B). Black
residues represent contacting residues which interact across the interface. Residues in their spatial vicinity (called
nearby residues) are in whitish gray. The remaining residues in the chains A and B are shown in gray. (b) The interface
consists of bits and pieces of each of the chains, and some isolated residues. The chain A side of the interface consists
of five contacting and 24 nearby residues. There are nine contacting and 17 nearby residues in the chain B interface.
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Binding energy is also calculated for the refined structures. To
carry out such a protocol, the first step involves the availability of
target structures and generation of template datasets. A flowchart
summarizing the prediction algorithm is given in Fig. 3.

2.1. Template Dataset All interfaces of two chain protein complexes available in the Protein
Data Bank (55) were extracted. Interfaces consist of interacting
residues between two chains and neighboring residues.Neighboring
residues are in the spatial vicinity of interacting residues and consti-
tute the scaffold of the interface. Two residues from two different
chains are considered as interacting if they are at a distance smaller
than the sum of van der Waals radii plus a threshold of 0.5 Á. In
addition, a noninteracting residue whose Ca is closer than 6.0 Á to
the Ca of any interacting residue is marked as a neighboring residue.

Fig. 3. Flowchart summary of the prediction algorithm of Prism together with FiberDock.
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In order to obtain a nonredundant dataset, 49,512 two-chain
interfaces (as of February 2006) extracted in the first step were
clustered structurally following an iterative all-against-all struc-
tural comparison in a sequence order-independent way (20, 51).
8,205 clusters were obtained. Interface members of each cluster
are structurally similar to the representative interface. A cluster
should contain at least five nonhomologous sequences.

The template interface can be constructed in several ways: one
can use (1) all representatives (8,205) of the interfaces, or (2)
a subset of the representatives, for example, the heterodimeric
protein interfaces (1,036), or the nonobligate protein interfaces
(158 interfaces) (see Note 1). The type of reduction of the tem-
plate set is determined with respect to characteristics of the query
molecules. Computational hot spots are found by using the
HotPoint web server (56) (see Note 2). Prism then searches for
a potential interaction by comparing the surfaces of target pro-
teins to the partners of known template interfaces while account-
ing for evolutionary conservation.

2.2. Target Dataset Proteins in a target dataset are searched for a potential interaction
(see Note 3). The data of query proteins are extracted from the
PDB. Multimeric proteins are split into their monomers, and
homologous chains are counted only once (see Note 4). The
surfaces of the molecules are extracted by using the NACCESS
program (described in Subheading 2.3).

2.3. Prediction

of Protein–Protein

Interaction

Prism suggests a possible interaction between two target proteins
A0 and B0, if protein A0 shares structural similarity with one side of
template interface I, which is extracted from a known interaction
between protein A and protein B, and protein B0 is structurally
similar to the other side of the interface I.

The surfaces of target proteins are extracted using the NAC-
CESS program (57) (see Note 5). NACCESS calculates the rela-
tive surface accessibilities (RSAs) of residues, which are the
percent accessibility with respect to the accessibility of the residue
type X in an extended ALA-X-ALA tripeptide (58). Residues
whose RSA values are greater than 15% are considered as surface
residues. “Nearby” residues are then added to the surface shell as
described above, but the threshold value is chosen as 5.0 Á.
Structural similarity between target and template interfaces is
assessed using MultiProt (59, 60). MultiProt aligns the target
surface with each complementary partner of the representative
template interfaces and determines the common geometrical
cores between structures. MultiProt’s output is the ten best align-
ments for substructural matching of a target protein surface with a
template interface. Target surfaces should geometrically match
with 50% of the residues of the template chains if the template
chains contain at most 50 residues. This matching threshold is
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30% for the larger template chains. In addition, at least one
conserved hot spot should be correctly matched between the
template interface and the target surface (see Note 6). Moreover,
at least five pairs of matched residues from each side of the tem-
plate interface should be against each other in order to guarantee
the correct matching for the left and right partners (see Note 7).

Target proteins which pass the alignment process and match
with the partners of the same template interface are next checked
if it is physically possible for them to constitute a complex. If the
Ca atom of a residue from one partner is at a distance shorter than
3 Á to the Ca atom of a residue from the complementary partner,
those two residues are considered as clashing. A threshold of five
clashes makes the interaction physically impossible.

Finally, FiberDock (48) is used for flexible refinement of the
predicted complexes and for calculation of the energy of the
interaction. Steric clashes of side chains due to their orientations
are solved via conformational adjustment of the side chains and
the binding energy of the final transformed structures is calculated
(see Note 8). FiberDock ranks the docked solutions by the calcu-
lated energies. Hence, FiberDock checks if a potential interaction
estimated by Prism is favorable in terms of global energy.

3. Notes

1. The algorithm strictly depends on the template set. If there is
no similar motif in the template set, the algorithm cannot find
any similarity between the target protein and template struc-
tures; thus a potential interaction for target proteins cannot
be predicted. Therefore, choosing the right template set for
the target proteins is very important. User can also use his
own template set, but the data relating to the structures in
the template set should be added in PDB format. Although it
may seem as a disadvantage that outcome is a function of the
template set, the algorithm finds reliable results in a short
computation time if suchmotifs are available in the template set.

2. The HotPoint web server is used to find computational hot
spots. The PDB code of the input protein should be entered
or PDB files of the protein can be loaded. The interacting
chains are specified and the distance threshold to extract the
interface residues can be chosen as default value, which is
summation of van der Waals radii of two atoms plus 0.5 Á,
or a value defined by the user. On the results page, contacting
residues are displayed with their features (residue number,
residue name, the chain that the residue belongs to, the
corresponding relative accessibility surfaces area values in the
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monomer and complex forms, a score for its potential to be a
hot spot, and the result of the prediction: hot spot or not).
The interface file in PDB format and hotspot prediction result
file as well as a link for visualization of the interactive 3D
model are also available on the result page.

3. Target proteins should have structural data in the PDB.
However, artificial proteins can be searched for a potential
interaction if their structural data are added in PDB format.
The target set should not contain any DNA or RNA struc-
tures, since these kinds of structures are not computed for
interaction prediction.

4. Homolog models are also compatible as target proteins. If a
protein contains homologous chains, these chains are repre-
sented by one of them in order to avoid redundancy. For
example, since 1axc protein contains homologous chains A,
C and E, chain A is represented as 1axcACE.

5. NACCESS computes the accessible surface area by rolling a
solvent probe on the givenmolecule. The radius of the solvent
probe is chosen as 1.4 Å.

6. If a target protein has no hot spot, the algorithm cannot find
a potential interaction for this target protein. It is expected
that target proteins with any interface size have at least one
hot spot.

7. If structures of two proteins are similar to each side of a
template interface, that is, one target protein has a surface
similar to one side of a template interface and the surface of
another target protein is similar to the other side of the same
template interface, it is expected that they can match with
each other. There should be at least five pairs of matched
residues from each side of the template interface which are
in contact with each other in order to predict that the two
target proteins can potentially interact.

8. In the process of optimizing the predicted protein complex,
hydrogen atoms of molecules are also considered and the
orientation of the clashing interface residues is adjusted
according to the repulsive van der Waals forces. Then, Fiber-
Dock calculates binding energies. However, if the solution
cannot converge, the global energy cannot be computed.

4. A Drug Target:
Insulin Receptor

Mutations in protein kinases contribute to diseases or pathophysio-
logical states, including cancer, autoimmune disorders, cardiac dis-
eases, and inflammatory conditions (61). Therefore, recent effort
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increasingly focuses on inhibitor and small molecule drug design to
modulate these enzymes. The insulin receptor (IR) is a member of
the tyrosine kinase receptors. In addition to diabetes, it appears to
be related to Alzheimer’s disease and cancer (62–66).

IR exists on the surfaces of cells and interacts with insulin, the
hormone having a significant role in regulating the energy and
glucose metabolism in the body. Insulin receptor substrate
2 (IRS2) is one of the substrates of IR. The conformational change
of the insulin receptor tyrosine kinase domain (IR_TKD) through
binding to IRS2 is shown in Fig. 4a. In the figure, the molecular
structure of free IR_TKD is transparent black (PDB identifier: 1irk);
black and thewhitishgraymolecules represent the IR_TKDcomplex
with IRS2 (PDB identifier: 3bu3; black: IR_TKD, chain A; whitish
gray: IRS2, chain B). IR is inhibited by growth factor receptor-
bound protein 14 (Grb14) and the molecular structure is given in
Fig.4b (PDB identifier: 2auh; black: IR_TKD,chainA;whitishgray:
Grb14, chain B). The beads shown in Fig. 4a, b represent the
computational hot spots of IR_TKD extracted by using the Hot-
Point web server (56). Dark gray beads (Leu1171, Val1173 and
Gln1208) are the common hot spots of IR_TKD in receptor/sub-
strate (3bu3) and receptor/inhibitor complexes (2auh). Although
the interacting partners are different molecules and a different

Fig. 4. Insulin receptor tyrosine kinase domain complex with its substrate and its inhibitor (a) Molecular structure of free
insulin receptor tyrosine kinase domain (IR_TKD, black in transparent, PDB identifier: 1irk) and its complex with insulin
receptor substrate 2 (IR_TKD/IRS2, black/whitish gray, PDB identifier: 3bu3). Computational hotspots on IR_TKD are
shown with ball representation (light gray and dark gray). Dark gray balls are common hotspots of IR_TKD in IR_TKD/IRS2
and IR_TKD/Grb14 (b). (b) Molecular structure of insulin receptor tyrosine kinase domain complex with growth factor
receptor-bound protein 14 (IR_TKD/Grb14, black/whitish gray, PDB identifier: 2auh). Computational hotspots on IR_TKD
are shown with ball representation (light gray and dark gray). Dark gray balls are common hotspots of IR_TKD in IR_TKD/
Grb14 and IR_TKD/IRS2 (a).
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conformational change is observed following the binding, IR_TKD
interacts through the samehot spot residues. Interaction of both the
inhibitor and the substrate through the same hot spots indicates the
importanceof targetinghot spots in drugdiscovery (53, 67). Several
studies have focused on the discovery of small molecules that bind
with drug-like potencies to hot spots at the interface (68–70).

5. Discussion
and Conclusions

Conformational selection and population shift is currently the
accepted paradigm for molecular recognition. The question
arises how to use it to improve experimental and computational
strategies. Here our focus is on docking. A knowledge-based
docking approach such as Prism, which follows a rationale that
if a binding site motif is similar between two proteins it is likely to
interact with a common motif of a partner protein, implicitly
follows the conformational selection concept. As such, it can also
be used toward small molecule ligand and peptide docking. As
targets, above we focused on protein–protein interfaces. Our
approach considers two steps: in the first the pathways are mod-
eled to obtain their protein–protein interfaces. This is because
the PDB contains only a small fraction of the interactions. In the
second, ensembles would be generated, and candidate drugs
would be docked to representatives of the ensemble clusters.
Signaling proteins are particularly good targets: they are at the
crossroads of pathways and their binding sites can be shared by a
large number of partners (54). Drug binding will elicit allosteric
effects which not only will change the conformations of their
protein–protein binding sites elsewhere, but will also propagate
in the pathway.

Ensemble docking has been a strategy long in use, even if for
different consideration—to overcome the technical difficulties in
flexible docking. A quick literature search produces hundreds of
papers devoted to the subject; among these is the work by
Lorber and Shoichet (71) which to our knowledge is the first.
Conformational selection has also been used directly in docking
(72, 73). However, it is difficult to apply this concept on a
comprehensive scale. Docking of a large ensemble is currently
prohibitive, because of the timescales. Nonetheless, rapid sam-
pling methods (74) perhaps coupled with semiatomistic
approaches (75) or effective filters (76) or other useful strategies
(77), hopefully will eventually help in this endeavor which
mimics real life mechanisms.
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Chapter 6

Flexibility Analysis of Biomacromolecules
with Application to Computer-Aided Drug Design

Simone Fulle and Holger Gohlke

Abstract

Flexibility characteristics of biomacromolecules can be efficiently determined down to the atomic level by
a graph-theoretical technique as implemented in the FIRST (Floppy Inclusion and Rigid Substructure
Topology) and ProFlex software packages. The method has been successfully applied to a series of protein
and nucleic acid structures. Here, we describe practical guidelines for setting up and performing a
flexibility analysis, discuss current bottlenecks of the approach, and provide sample applications as to
how this technique can support computer-aided drug design approaches.

Key words: Flexibility/rigidity analysis, FIRST, ProFlex, Statics of biomacromolecules, Rigidity
theory, Constraint counting

1. Introduction

Biomacromolecules are inherently flexible and can undergo
functionally relevant conformational changes; these changes occur
on awide rangeof different amplitudes and timescales. The ability to
undergo conformational transitions becomes particularly pro-
nounced in the case of ligand binding to several pharmacologically
important protein or RNA structures (1), with prominent examples
beingHIV-1 protease (2) orHIV-1 TARRNA (3). From an experi-
mental perspective, main sources of information about dynamics of
biomacromolecules are crystallographic B-values, atomic fluctua-
tions derived from NMR structural ensembles, NMR relaxation
measurements, residual dipolar couplings, and H/D exchange
experiments (4, 5). Froma theoretical or computational perspective,
characterizing the dynamics of proteins or nucleic acids is still
challenging.

Here, we present concepts from rigidity theory that allow
obtaining detailed insights into the intrinsic flexibility characteristics
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of biomacromolecules in a very efficient manner (6). For this, con-
straint counting is applied to a topological network representation
of the biomacromolecule. In the network, vertices represent atoms,
and edges represent covalent and noncovalent constraints (see
Fig. 1). Based on the accessibility of rotational degrees of freedom,
each bond is identified as either flexible or rigid. Furthermore, the
molecule is decomposed into rigid regions and flexible parts in
between them. Rigid regions are those parts of a molecule that
have a well-defined equilibrium structure and move as a rigid body
with six degrees of freedom. Thus, no internal motion is allowed
within a rigid region. In turn, flexible regions are hinge regions of
the molecule where bond-rotational motions can occur without a
high cost of energy.

The approach has been implemented into the FIRST (Floppy
Inclusion and Rigid Substructure Topology) (6) and ProFlex
(6, 7) software packages and has been thoroughly validated to
identify rigid clusters and collectivelymoving regions in protein (6)
and RNA structures (8). There are ample possibilities of applying
flexibility analysis in structure-based drug design, such as for dock-
ing or virtual screening approaches; these will be detailed below in
Subheading 6.3. Another noteworthy application of flexibility
analysis is data-driven protein engineering by identifying structural
features that impact protein thermostability (9, 10) and/or inves-
tigating the influence of mutations on protein flexibility and stabil-
ity (9, 11). That way experiments can be guided that aim at
optimizing thermostability of proteins and/or improving enzyme
activity (9, 12). Furthermore, the approach has been successfully
used to determine the change in protein flexibility upon complex
formation (11, 13), to probe the principle of corresponding states
on protein structures frommesophilic and thermophilic organisms
(9, 12), to compare the pattern of flexibility gain during unfolding
across different protein families (14–16), and to obtain insights
into the functional role of the ribosomal exit tunnel (17). The
approach usually takes a few seconds on proteins of hundreds or
thousands of residues (18) so that it can be efficiently applied to
large macromolecules, such as a virus capsid (19) or the ribosomal
complex (17, 20), too. Recent versions of the program are avail-
able for download or interactive use via the FlexWeb site at http://
flexweb.asu.edu/ or the ProFlex site at http://www.bch.msu.
edu/~kuhn/software/proflex.

2. Methods

In the following, we will first outline the concepts of flexibility
analysis based on a topological network representation of a
biomacromolecule. We will then describe the individual steps for
preparing an input structure, performing a flexibility analysis, and
visualizing the results.
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Fig. 1. Workflow of a flexibility analysis of a biomacromolecule based on constraint counting. A thrombin structure (PDB
code 1ETS) was taken as an example. (a) A PDB structure including polar hydrogen atoms is used as input.
(b) The biomacromolecule is modeled as a topological network. In this network, vertices represent atoms and edges
represent covalent and noncovalent bond constraints (strong hydrogen bonds (red lines), salt bridges (red lines), and
hydrophobic interactions (green lines)) (44). Then, each bond is identified as either part of a rigid region or a flexible link
in between. The resulting rigid cluster decomposition of the thrombin structure is shown in (c), where each rigid cluster is
depicted as a uniformly colored body. The left (right) picture shows the rigid cluster decomposition before (after) a phase
transition as determined using the cluster configuration entropy (6.2) (9, 12). The computed decomposition of the
biomacromolecular structure into rigid and flexible regions can be used in a subsequent step as input for coarse-grained
simulations (21, 22, 44), which explore the molecule’s mobility. Panel (d) shows an ensemble of thrombin conformers
generated by such a method, NMsim (21, 55), within a few hours of computational time. Finally, a flexibility index (6.3)
can be obtained, which is mapped in a color-coded fashion onto the thrombin structure (e). Overconstrained regions are
indicated by blue colors (fi < 0), rigid regions are represented in white (fi ¼ 0), and flexible regions are shown in red
colors (fi > 0). The blowup in (e) shows the active site of thrombin together with a bound ligand and the S1, S2, and S3
subpockets. The flexibility index provides crucial insight into the binding site flexibility at the bond level. For example, the
60-insertion loop (Tyr60A-Trp60D) assumes different orientations in complexes with different inhibitors (56). In
agreement with this, residues Leu60 and Asp60E-Thr60I are identified to be flexible, which allows the movement of
the 60-insertion loop. Finally, potential applications of the approach to computer-aided drug design are listed in (f).
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2.1. Flexibility

Analysis Based

on a Topological

Network

Representation

1. Constraint counting
For understanding the influence of covalent and noncovalent
constraints on the flexibility of biomacromolecules consider the
following. In 3D-space, a structure consisting ofn atoms has 3n
degrees of freedom, six of which describe rotational and trans-
lational rigid body motions. The flexibility of the structure is
determined by the number of independent internal degrees of
freedom dof, which is given by subtracting six global degrees of
freedom and the number of independent constraintsC from the
overall number of degrees of freedom (1). Thus, with verymany
(few) constraints present, the biomacromolecule is largely rigid
(flexible).

dof ¼ 3n � 6� C : (1)

2. Treatment of noncovalent constraints
As the flexibility of biomacromolecules is largely determined
by noncovalent interactions, the outcome of a flexibility anal-
ysis is mainly governed by the way hydrogen bonds (including
salt bridges) and hydrophobic interactions are modeled in the
network (see Fig. 1b). In general, hydrogen bonds are included
depending on their geometry and interaction energy. For
this, potential hydrogen bonds are ranked according to an
energy function that takes into account the hybridization
state of donor and acceptor atoms as well as their mutual
orientation (6). By tuning the energy threshold EHB strong
hydrogen bonds can be distinguished from weaker ones.
Choosing EHB ¼ �0.6 kcal/mol corresponds to the thermal
energy at room temperature and so provides a natural choice
(6). Choosing EHB ¼ �1.0 kcal/mol has also been reported in
the literature (21, 22) and is currently the default energy cutoff
for protein and nucleic acid structures in FIRST. (Note that
the default energy cutoff EHB ¼ �0.1 kcal/mol in ProFlex.)

Rather than analyzing a biomacromolecule at a preset
EHB value, one can also simulate a thermal unfolding of the
underlying topological network representation of the bioma-
cromolecule by successively removing hydrogen bonds in the
order of increasing strength. Monitoring the decay of the
network by the so-called cluster configuration entropy (2)
then allows to identify pronounced structural events during
the protein unfolding process:

H ¼ �
X
s

ws lnws ; (2)

where ws is the probability that an arbitrarily occupied site in
the network belongs to a cluster of size s (23) or s2 (9). This
approach is useful if one aims at investigating changes in the
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network that are required for a transition to occur between a
structurally stable state, where a rigid core is still present
within the structure, and a largely flexible state, where this
core has ceased to exist (see Fig. 1c).

Hydrophobic interactions are considered between pairs of carbon
and/or sulfur atoms if the distance between the atoms is smaller
than the sum of the van der Waals radii (1.7 Å for carbon, 1.8 Å
for sulfur) plus a variable threshold DHC. In most studies, DHC is
set to 0.25 (0.15) Å in the case of protein (9, 12, 18) (RNA (17,
24)) structures.

2.2. Preparing

an Input Structure

2.2.1. Selecting

an Input Structure

A structure in protein database (PDB) format is required as input
for the flexibility analysis, as, e.g., obtained from the PDB, nucleic
acid database (NDB), or generated by homology modeling.

1. X-ray structures with high resolution allow for the most
consistent flexibility characterization. We recommend using
X-ray structures resolved to<2.5 Å. Structures with resolution
>3.0 Å usually do not allow modeling the underlying con-
straint network appropriately and should be regarded with care.

2. NMR structures are often deposited as ensembles of models
that agree with the experimental restraints. In those cases, we
recommend either to take the first structure of the ensemble
or to cluster all structures of the ensemble and choose the
structure closest to the centroid of the largest cluster. With
the latter approach, a structure that best represents the
ensemble is identified. Many methods are available for clus-
tering, among them the Multiscale Modeling Tools available
at http://mmtsb.org/. NMR structures do not provide infor-
mation about solvation and ion-binding properties of the
structure and should therefore only be chosen when no
X-ray data are available.

3. Homology models: When no experimental structures are avail-
able, one is tempted to use molecular modeling techniques to
build a structure that can be subsequently used for flexibility
analysis. Since the quality of such model-built structures may
be low, special care has to be taken in preparing the structure
and analyzing the results.

4. In all cases, the quality of the input structure should be
checked with the help of the PDBREPORT database (25),
and no flexibility analysis should be performed on structures
labeled “bad.” In the case of statically disordered residues,
where two or more conformations are present in the PDB file,
only atoms of one conformation should be kept.
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See Note 1 for comments on the sensitivity of the flexibility
analysis to the input structure.

2.2.2. Adding Hydrogen

Atoms and Assigning

Protonation States

In the case of X-ray structures or homology models, missing
hydrogen atoms have to be added. This can be done using the
WhatIf program (26), the REDUCE program (27), or the leap
program from the Amber package (28). In addition, for building a
proper hydrogen bond network, the orientation of Asn, Gln, and
His side chains might have to be corrected; this can be done with
the help of either the WhatIf or REDUCE programs or manually.
Finally, the protonation states of Asp, Glu, His, Lys, and Arg have
to be defined, e.g., either with the help of the H++ webserver (29)
or manually based on an inspection of the molecular environ-
ment/hydrogen bond network these sidechains are embedded in.

2.2.3. Treating Ions

and Water Molecules

Metal ions should be retained when they are part of the structure.
Especially, interactions with divalent ions such as Mg2+ are known
to affect the conformational flexibility of RNA structures (30) and
should be considered in the flexibility analysis, together with
surrounding water molecules when available. Interactions
mediated by other structural water molecules, buffer ions, sub-
strates, or cofactor molecules should not be included unless their
influence on the flexibility of the biomacromolecule is to be
probed; accordingly, these species should be removed from the
structure. Unfortunately, water molecules and ions may be
wrongly assigned when interpreting the electron density (31).
Thus, we recommend evaluating this experimental information
critically if one wishes to include these species in the flexibility
analysis (see Note 2). While interactions between water molecules
or buffer ions and the biomacromolecule can be modeled as
noncovalent bonds in the topological network representation
(see below), interactions between metal ions and the biomacro-
molecule can be modeled as covalent bonds by inserting them
manually into the constraint network (12).

2.2.4. Treating Ligands Depending on the aim of the flexibility analysis, a ligand molecule
can be either included or excluded from the topological network
representation. This can be used for computing changes in the
receptor flexibility upon ligand binding, which may provide a
structural explanation for observed changes in entropy (11, 32).
If the ligand is included in the flexibility analysis, care should be
taken to assign appropriate protonation states to the ligand’s
functional groups.

2.3. Performing

a Flexibility Analysis

1. FIRST software
TheFIRSTsoftwarehandles protein,RNA, andDNA structures
as well as ligands found in PDB entries. As for nonstandard
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nucleosides in tRNA and rRNA, the software can cope with the
most commonly occurring modifications of nucleosides such as
pseudouridine, where the C5 of uracil is covalently attached to
the sugar C10, andmethylation of the 20O position of the ribose
sugar. In addition, methylated bases are generally considered if
the methyl-carbon atom matches one of the following names:
CM1, CM2, CM5, CM7, C5M, or C10. See Note 3 for further
comments onperforming a flexibility analysis onRNAandDNA
structures.

The FIRST software provides many command-line
options for interfering with data input and output, and the
program flow. For a detailed discussion, the reader is referred
to the program’s manual. The three most important options
are related to the definition of noncovalent constraints for the
topological network representation. For the latest FIRST
version (v6.2), these are:

– The energy cutoff for hydrogen bonds EHB can be set via
the command line option “-E.” In general, we recommend
using the default EHB ¼ �1.0 kcal/mol. As an alternative,
a “dilution” of the hydrogen bond network and, hence, a
thermal unfolding of the biomacromolecule can be
simulated via the option “-dil1.”

– There are three options available for identifying hydropho-
bic constraints, which can be defined by the command line
flag “–H.”We recommend choosing “–H 1,” which applies
the most commonly used threshold for hydrophobic con-
tacts DHC ¼ 0.25 (0.15) Å for protein (9, 12, 18) (RNA
(17, 24)) structures, but no additional restrictions. In con-
trast, the default option for identifying hydrophobic con-
tacts in FIRST is “-H 3,” where DHC is set to 0.50 Å (18).
Furthermore, in this case, a hydrophobic constraint is only
included into the network if (1) both atoms of the pair are
bonded to carbons, sulfurs, or hydrogens (as an indication
of a hydrophobic environment) and (2) a given atom does
not already form a contact with another atom of the residue
under consideration.

In summary, a typical FIRST v6.2 run for an input struc-
ture myPDB.pdb can be started with

:\> FIRST myPDB.pdb –E -1.0 –H 1

2. FlexWeb webserver
A webserver for flexibility analysis based on the FIRST
software is available for public use at http://flexweb.asu.
edu. The webserver prompts the user to submit the structure
in a PDB format. Hydrogen atoms are added automatically
using the REDUCE program (27). The user can modify the
energy threshold EHB. After the calculation, the results can be
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investigated on the webpage or downloaded for further
analysis.

3. ProFlex software
A further implementation of the constraint counting algorithm
is provided in the ProFlex software, which is available at http://
www.bch.msu.edu/~kuhn/software/proflex. Although small
differences inmodeling hydrogen bonds and hydrophobic con-
straints in the topological network representation exist as com-
pared to FIRST and FlexWeb, ProFlex also captures the
essential conformational flexibility of proteins. Using a proto-
nated PDB structure myPDB_wiH.pdb, a typical ProFlex run is
started by

:\> PROFLEX –h myPDB_wiH.pdb –e-1.0

where “–e” denotes the energy thresholdEHB for hydrogen bonds

and “–h”must be used in the case of a PDB file having hydrogens.
Again, a “dilution” of the hydrogen bond network and,
hence, a thermal unfolding of the biomacromolecule can be
simulated via the option “-nonh.”
Note that in the current implementation of ProFlex, a hydro-
phobic constraint between two carbon or sulfur atoms is
included into the network (1) using a distance threshold
DHC ¼ 0.50 Å and (2) if both atoms are bonded to carbons,
sulfurs, or hydrogens. This corresponds to theflag “-H2” in the
FIRST software.

4. Generating the topological network representation using
Amber
The topological network representation of a biomacromole-
cule can also be generated using the ambpdb program of the
Amber suite (http://www.ambermd.org) (28). This is partic-
ularly convenient if snapshots from a molecular dynamics
(MD) simulation are available in the “Amber restart file”
format, such as to perform flexibility analysis on an MD
ensemble of structures. Ambpdb converts a restart file into a
FIRSTdataset file, which is essentially a PDB file augmented
by information about covalent and noncovalent bonds. The
resulting topological network representation is almost identi-
cal to the one generated by FIRST if “-H 1” is specified and
no energy cutoff for hydrogen bonds is considered. In addi-
tion to the restart file, ambpdb requires an “Amber prmtop
file” that contains information about the topology of the
biomacromolecule. The FIRST dataset file is generated by

:\> ambpdb -first -p myPDB.prmtop < myPDB.restart > 
myPDB_FIRSTdataset
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The prmtop file can be generated using the program xleap
of the Amber suite and a PDB file as input. As an advantage
over applying FIRST or FlexWeb directly to a PDB file, the
xleap/ambpdb route allows to also consider ligands that have
not yet been deposited in the PDB database. The resulting
network representation can serve as input to the FIRST soft-
ware. For this, use the file ending with “_FIRSTdataset” and
run FIRST via:

2.4. Analyzing

and Visualizing

the Results

The outcome of a flexibility analysis of a biomacromolecule can be
analyzed at different levels of detail. First, rigid cluster decomposi-
tions provide hints about movements of structural parts as rigid
bodies; second, flexibility characteristics at the bond level are
instructive for analyzing, e.g., binding site regions; finally, flexibility
characteristics of larger regions can be related to potential global
movements. That way, static properties of a biomacromolecule can
be linked to biological function and/or be used to support com-
puter-aided drug-design. See Note 4 for comments on comparing
results from a flexibility analysis to data from experiments.

1. Rigid cluster decomposition
A decomposition of the topological network into rigid clusters
(and flexible regions in between) is calculated by both, the
FIRST and ProFlex software. With the help of a Pymol script
generated by the programs, each rigid cluster can be visualized
as a uniformly colored body (see Fig. 1c). That way, regions of
the biomacromolecule that are expected to have a well-defined
equilibrium structure (rigid clusters) can be distinguished
from flexible regions where bond-rotational motions can
occur without a high cost of energy.

2. Flexibility index
While the decomposition into rigid clusters and flexible
regions only provides a qualitative picture, a continuous quan-
titative measure is also available in terms of a flexibility index
fi, which is defined for each covalent bond i. In ProFlex and
initial versions of FIRST, fi is defined as (3) (6)

fi ¼
Fj

Hj
in an underconstrained region

0 in an isostatically rigid cluster

�Rk

Ck
in an overconstrained region

8>><
>>: (3)

In underconstrained regions j, fi relates the number of inde-
pendently rotatable bonds (Fj) to the number of potentially
rotatable bonds (Hj). Conversely, in overconstrained regions k
the number of redundant constraints (Rk) is related to the

:\> FIRST myPDB_FIRSTdataset –E -1.0
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overall number of constraints (Ck). Thus, fi ranges from�1 to
1, with negative values in rigid regions and positive values in
flexible ones; the index allows quantifying how much more
flexible (stable) an underconstrained (overconstrained) region
is compared to a minimally rigid region (13). For visualizing
the results, atom-based flexibility indices can be calculated as
average over fi values of covalent bonds the atom is involved in
(8, 13). For example, a flexibility index for Ca atoms has been
calculated by averaging over the two backbone bonds (N–Ca

and Ca–C
0), while a flexibility index for phosphorus atoms

has been calculated by averaging over the O50-P and P-O30

bonds (8, 13). The atom-based flexibility indices can be
visualized by a color-coded mapping onto the biomacro-
molecule’s atoms (see Fig. 1e) (13, 17). It is common to use
bluish colors for indicating overconstrained regions, reddish
colors for flexible regions, and green or white for minimally
rigid regions (6, 8, 17).

In recent versions of FIRST, a flexibility index gi is now
calculated according to (4):

gi ¼

Fj

6Ej �Bj
in anunderconstrained region

0 in an isostatically rigid cluster
�ð6Vk�6Þ

6VkðVk�1Þ
2

�ð6Vk�6Þ
in anoverconstrained region

8>>>>><
>>>>>:

(4)

In underconstrained regions j, Fj indicates the number of
independently rotatable bonds, Ej is the number of edges
representing rotatable bonds, and Bj is the total number of
constraints from rotatable bonds. In overconstrained regions
k, Vk indicates the number of atoms in that region. Note that
fi ¼ gi for bonds in underconstrained regions but fi 6¼ gi for
bonds in overconstrained regions. The latter must be consid-
ered when comparing flexibility analyses from different pro-
grams or program versions.

3. Hydrogen bond dilution
By gradually removing noncovalent bonds from the constraint
network, the thermal unfolding of biomacromolecule struc-
tures can be simulated (12, 15). So far, hydrogen bonds and
salt bridges have been removed successively from the network
in the order of increasing strength. In contrast, the number of
hydrophobic contacts has been kept constant because the
strength of hydrophobic interactions remains constant or
even increases with increasing temperature. A hydrogen
bond dilution can be computed by FIRST using the “–dil 1”
option and by ProFlex using the “–nonh” option. The dilution
simulates a melting of the network and results in a hierarchy of
regions of varying stability (18). That way, information is
gained that complements the above flexibility indices.
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Furthermore, by applying indices from network theory
(33), the microstructure of a network, i.e., properties of the
set of rigid clusters generated by the bond dilution process,
and macroscopic properties of a network associated with the
rigid cluster size distribution, such as a transition from a
folded to an unfolded state, have been be analyzed in the
context of protein (thermo-)stability (9, 12). Calculating
these indices is possible within the Constraint Network Anal-
ysis (CNA) package (9, 12), which is a front-end to FIRST.
Such analyses may also become valuable for structure-based
drug design when it comes to estimating the effect of ligand
binding on the structural stability of a receptor.

3. Notes

Constraint counting on a topological network representation of
biomacromolecules provides a deeper understanding of the flexi-
bility characteristics of protein, RNA, and DNA structures down
to the atomic level in a computational time on the order of
seconds. Compared to MD simulations, the computational time
requirement for a flexibility analysis is several orders of magnitude
smaller. By now, there is ample evidence that a flexibility analysis
provides a picture of biomacromolecular flexibility that agrees
with MD results or data from experiments (6, 8, 9, 13). Still,
several methodological pitfalls exist, and improvements of the
topological network representation can be anticipated.

3.1. Sensitivity

of Flexibility

Analysis to the Input

Structure

While atomic motions along a MD trajectory are governed by the
continuous spectrum of forces exerted by surrounding atoms, the
constraints in the topological network are “all-or-nothing”—abond
is either present or absent. Especially in the case of noncovalent
interactions, one needs to distinguish forces sufficiently strong,
which are included into the network, from weaker ones, which are
excluded. In the case of marginally stable biomacromolecules, this
can lead to different experimental input structures showing signifi-
cant differences in flexibility predictions (C. Pfleger, E. Schmitt, H.
Gohlke, unpublished results): a region in such structuresmay switch
from flexible to rigid depending on the inclusion of a few (in the
extreme, a single) constraints. We thus recommend testing the
sensitivity of flexibility analysis by varying the energy cutoff for
hydrogen bonds EHB and/or the criteria for inclusion of hydropho-
bic interactions, and repeating the flexibility analysis. Likewise, con-
formations extracted along a MD trajectory can also result in
different flexibility predictions (13, 34). When available, we thus
recommend performing the flexibility analysis on an ensemble of
input structures and then average the results (13). This is also
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advantageous because it allows deriving ameasure of significance for
flexibility predictions on the atomic level in terms of the standard
error of the mean. Ensemble-based flexibility analysis can be per-
formed using the CNA package.

3.2. Treatment

of Water Molecules

Interactions mediated by structural water molecules are known to
affect the flexibility and stability of biomacromolecules. In most
flexibility analysis studies so far, water molecules have not been
included in the topological network, mainly due to the problem to
distinguish tightly bound water molecules from fast-exchanging
ones based on information from experiment. Results from MD
simulations can complement experiments in this respect (35).
However, by incorporating data from computationally expensive
MD simulations, the advantage of the highly efficient flexibility
analysis with computing times on the order of seconds even for
the large ribosomal subunit will be lost. Encouragingly, previous
findings showed only a negligible difference in the flexibility char-
acteristics of a protein–protein complex when structural waters
were considered (13). In addition, the influence of solvent on
structural stability is already implicitly considered by including
hydrophobic interactions as constraints into the network (9).

3.3. Treatment

of RNA and DNA

Structures

Recently, we adapted the approach to RNA structures by develop-
ing a new topological network representation for these macro-
molecules (8). The adaptation was necessary because the
structural stability of proteins, dominated by hydrophobic inter-
actions, and RNA structures, dominated by hydrogen bonds and
base stacking interactions, is determined by different noncovalent
forces. Although the new network parameterization already pro-
vides crucial insights into the flexibility characteristics of RNA
structures (8, 17, 36, 37), several improvements of the network
representation can be anticipated:

1. Base stacking interactions are known to be dependent on both
the type of the bases and the sequential context: (1) stacking
interactions in general increase in the order pyrimidine–
pyrimidine < purine–pyrimidine < purine–purine bases (38);
(2) stacking interactions are larger for sequences rich in G–C
rather than A–U base pairs (39, 40). Thus, differences in base
stacking interactions could be modeled by using varying num-
bers of constraints for the hydrophobic tethers. This approach
has not been pursued so far.

2. Another area of improvement in modeling nucleic acids
relates to the question how repulsive forces between nega-
tively charged phosphate groups can be included into the
topological network representation. Modeling repulsive
forces is difficult within the combinatorial approach followed
in the pebble game algorithm because this leads to one-way
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inequalities, where the constraint length cannot become
shorter but longer, compared to two-way equalities, where
the constraint length is fixed, used so far (41).

In regard to using the RNA parameterization for analyzing
DNA structures, one should notice that both types of molecules
express different flexibility characteristics in response to the pres-
ence or absence of the 20OH group (42). A recent MD study
revealed that the differences between flexibility and rigidity in
both types of nucleic acids are much more complex than usually
believed (43): RNA is very deformable along a small set of essen-
tial deformations, whereas DNA has a more degenerate pattern of
deformability. To date, no validation study for using FIRST on
DNA structures has been reported.

3.4. Comparison

of Flexibility Analysis

Results with Data

from Experiments

When comparing results from a flexibility analysis with data from
experiments, one needs to keep in mind that flexibility is a static
property, which describes the possibility of motion. Phrased dif-
ferently, flexibility denotes the ability of a region to be deformed.
From the study of flexibility alone, however, no information is
available about the direction and magnitude of the possible
motions (44). In contrast, data from experiments, e.g., crystallo-
graphic B-values, or MD simulations, e.g., atomic fluctuations,
often report on themobility of atoms. Unsurprisingly, results from
flexibility analysis and mobility information from experiment or
MD simulation must disagree in the case of a rigid, yet mobile,
body (such as a moving helix or domain).

Along these lines, one must take into account that flexibility
analysis is better suited to characterize biomacromolecular flexi-
bility that underlies longer timescale motions (45). While hydro-
gen/deuterium exchange experiments are frequently interpreted
in the context of such longer timescale motions, NMR S2 order
parameters are generally associated with fast fluctuations in the ns
regime. Thus, results of a flexibility analysis and S2 order para-
meters must be compared with caution.

3.5. Applications There are many potential applications for flexibility analysis. Pre-
dicted flexibility characteristics of biomacromolecules can either
be linked to biological function, which is not in the focus of the
present review, or be used to support structure-based drug design.
The present challenge in structure-based drug design is that it is
not known in advance which conformation a target will adopt in
response to binding of a ligand or how to design a ligand for such
an unknown conformation (1). In this context, it is advantageous
that flexibility analysis provides rigidity and flexibility information
at various structural levels:

1. Flexibility characteristics at the bond level are instructive for
analyzing binding site regions. As such, flexibility analysis can
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be used to guide the sampling of protein main-chain flexibility
during ligand docking as proposed by Keating et al. (7).
In such a case, the identified hinge regions can be used as
input for the docking program FlexDock, which handles
hinge-bending motions of the receptor molecule during the
docking process (46). Similarly, a flexibility analysis will also
be helpful for identifying potentially flexible sidechains
in a binding site. This can be used for docking with Auto-
Dock4 (47), which allows to model as flexible only a few
sidechains of the binding site during the docking.

2. By investigating ribosomal structures from different organisms,
we found characteristic flexibility patterns in the highly con-
served antibiotics binding pocket at the peptidyl transferase
center (PTC) for different kingdoms. These flexibility patterns
have been related to antibiotics selectivity (17). These findings
point to the importance of considering differences in the
degrees of freedom of binding regions upon complex forma-
tion, as such differences may entropically influence binding
processes. Furthermore, it shows that subtle differences in
binding site flexibility might need to be considered for a proper
assessment of the drugability of new putative binding sites.

3. Flexibility characteristics of larger regions can be related to
potential global conformational changes and provide hints
about movements of structural parts as rigid bodies. By deter-
mining a hierarchy of regions of varying stabilities of the large
ribosomal subunit, we were able to propose a pathway of allo-
steric signal transmission from the ribosomal tunnel region to
the PTC (17). Remarkably, this prediction was later confirmed
by cryo-EM data of a stalled ribosome structure (48) andmuta-
tion studies (49). This shows that the approach can be used to
detect coupling between two structural sites, which makes it
most interesting for identifying new allosteric binding sites.

4. Finally, the rigid cluster decomposition can serve as input for
coarse-grained simulation methods (21, 22, 50–52), which
sample the conformational space of a biomacromolecule by
means of constrained geometric simulation (see Fig. 1d).
Ligands can then be docked into the ensemble of receptor
conformations, as was successfully demonstrated for the cyclic
peptide cyclosporine with its receptor cyclophilin (53) and
multiple ligands binding to HIV-1 TAR RNA (37). In both
cases, docking into an ensemble of simulation-generated
structures proved to be a valuable tool to cope with large
apo-to-holo conformational transitions of the receptor struc-
ture, thereby implicitly taking into account conformational
changes upon binding (54).
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Chapter 7

On the Use of Molecular Dynamics Receptor
Conformations for Virtual Screening

Sara E. Nichols*, Riccardo Baron*, and J. Andrew McCammon

Abstract

Receptors are inherently dynamic and this flexibility is important to consider when constructing a model
of molecular association. Conformations from molecular dynamics simulations, a well-established method
for examining protein dynamics, can be used in virtual screening to account for flexibility in structure-based
drug discovery. Different receptor configurations influence docking results.Molecular dynamics simulations
can provide snapshots that improve virtual screening predictive power over known crystal structures,
most likely as a result of sampling more relevant receptor conformations. Here we highlight some details
and nuances of using such snapshots and evaluating them for predictive performance.

Key words: Docking, Receptor structures, X-ray crystallography, Molecular dynamics

1. Introduction

Molecular docking algorithms are typically employed to determine
the binding modes of small organic molecules relative to a biomo-
lecular receptor and to evaluate a score related to their relative
binding affinity. The conformations and chemistry of the receptor
model affects the predictive performance of docking-based
approaches, as illustrated in Fig. 1. Receptors, usually proteins,
are inherently flexible and dynamic; this flexibility is coupled to
their function, and therefore important to consider when con-
structing a model. Currently, incorporating this receptor flexibility
into docking programs is difficult.

The following chapter will briefly present practical considera-
tions for the generation of molecular dynamics configurations
for virtual screening, implicitly incorporating receptor flexibility.
Different receptor conformations can lead to alternative relative
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orientations of the ligand and for virtual screening produce
alternative rankings of possibly active and inactive compounds.
Although a number of strategies to incorporate protein flexibility
have been developed in this context, defining protocols to select
receptor structures prior to docking is still difficult and greatly
influenced by the knowledge of the system being modeled.

Fig. 1. Schematic representation of virtual screening results from two different
receptors. Two different conformations of the same protein result in two different
ranked lists of possible compounds. Retrospective analysis, where compounds are
known to be true ligands or decoys, allows for assessment of accuracy based on the
conformation, using receiver operating characteristic (ROC) curves. Each point on
the curve represents accuracy depending on a user-defined threshold. The area under
the curve (AUC), which takes into account all thresholds enforced, is a metric that can be
used for nonarbitrary comparison of virtual screening predictive power.
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2. Methods

2.1. Molecular Docking

and Virtual Screening

Associations between biomolecules play an important role in
signaling, catalysis, and transportation. The receptor, or host, is
most commonly the target associated with a disease-state; these
molecules are usually protein machinery and modifications in the
receptors’ activity can have positive therapeutic consequences.
The ligand, or guest, is a complementary molecule that transiently
binds the receptor; these compounds are usually small molecules,
but can also be larger biopolymers such as peptides. Contempo-
rary molecular docking algorithms are used to predict the “bind-
ing mode” of the ligand, defined as the conformation and
orientation relative to the receptor. The algorithm generates can-
didate binding modes, so-called “poses,” and scores them so the
user can have an idea of how likely the pose may be considered as a
realistic binding mode. Scoring involves evaluating various prop-
erties of the complex, the receptor and the candidate ligand pose,
and often represents an effective energy of binding. In a process
called virtual screening, the molecular docking scores are used to
rank many different ligands.

2.2. Influence

of Receptor Structure

on Molecular Docking

Results

Most commonly, ensemble-averaged models of proteins deter-
mined by X-ray crystallography (crystal phase) or nuclear mag-
netic resonance (NMR) spectroscopy (liquid phase) are used as
receptor structures in docking. While ligand-bound and unbound
structures can represent important conformational changes of the
receptor upon association, these associations are not always ideal
for predictive docking of a new, ligand molecule, which may cause
alternative conformational changes. This is particularly relevant
for design and discovery of novel drugs using molecular docking
and virtual screening.

Different receptor structures, such as conformations of molecu-
lar complexes, present modified ligand interaction sites. Figure 2
visualizes an extreme case; a G-Protein Coupled Receptor
CXCR4 was crystallized with two different antagonists, one a
small molecule (PDB ID 3ODU), one a peptide (3OE0) (1).
While the backbones of the two crystal structures conformations
are very similar (see Fig. 2a), the pockets can vary in different size,
surface area (see Fig. 2d), polarity of the side chains that line the
binding site, similarity to the cocrystal ligand, as well as solvent
exposure. Virtual screening results are influenced by the PDB
structure chosen for screening because the fit of individual ligands
in the pocket is affected by even themostminor structural changes.

Different conformational changes captured with multiple
crystals present a hard but important decision for a molecular
modeler; which conformation should be used to predict other
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bound conformations for docking or virtual screening? Should
more than one conformation be used or represented? For popular
disease target cases, such as HIV reverse transcriptase, many exper-
imental structures are available in the Protein Data Bank (2). It is
important to understand what structures are available for your
target of interest (see Note 1).

2.3. Using Sampling

Methods to Generate

Receptor Ensembles

While ensemble-averaged configurations from experimental meth-
ods are insightful, modeling the physical dynamics of a biomole-
cule for a ligand-binding event is thought to ultimately allow for
better prediction of these types of associations, as it is a more
accurate representation of the microscopic interaction. Receptors
display an ensemble of configurations the ligand may bind. These
ensembles can be represented by conformations determined exper-
imentally from NMR, X-ray crystallography, or computationally

Fig. 2. Binding site variations in ensemble-averaged crystal structures. (a) GPCR CXCR4
was recently cocrystallized with two different antagonists, yet backbone conformations
are relatively conserved; (b) 3ODU in blues (middle panel) was cocrystallized with a
small molecule antagonist, 3OE0 in oranges (lower panel) was cocrystallized with a
peptide antagonist; (c) surface representations of the binding sites with antagonists
shown in sticks; (d) side-view of binding-site surface areas and shapes.
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using simulationmethods such asMonteCarlo (MC) orMolecular
Dynamics (MD) simulation. Since incorporating full receptor flex-
ibility greatly expands search space, recent advances in this area
include attempts to model modest flexibility. Stochastic heuristics
including MC side chain sampling, user specified flexible regions,
as well as iterative minimization and side chain sampling are just
some of the recent implementations of receptor flexibility (3–5).
MD is a well-established method for characterizing protein
dynamics, and simulations of ligand-bound and unbound proteins
can provide insight on regions of flexibility, particularly important
to where a ligand might bind, as well as how different types of
ligands bind (see Note 2).

Using multiple target conformations from the aforemen-
tioned sampling methods also allows for modest incorporation of
important dynamics into modeling of the protein–ligand-binding
complex. Figure 3 represents a structure-based drug design
workflow that incorporates multiple structures into a virtual screen
of a chemical compounds. Generally, receptor structures are
collected and cognate ligands, or known cocrystallized ligands
for which the binding mode is determined, will be used first to
validate the docking algorithms; predicted binding modes can be
compared to crystal structure conformations. Validating that
known ligands rank highly among a database of possible ligands,

Fig. 3. Workflow of structure-based virtual screening that attempts to incorporate flexibility of the receptor. Several steps
are feedback-mechanism loops as represented by double arrows.
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may also indicate that the algorithm is predictive. Knowledge
gained from these validation steps allows the user to manually
prune structures.

Once an ensemble of structures is chosen, cross-docking, or
predictive virtual screening can take place. Ligands, both potential
and known, are screened against the ensemble representation of
the receptor. Top hits can be further rescored with a variety of
protocols, such as those based on implicit solvent models or more
robust alchemical free energy methods (see Note 3).

2.4. Selection

of Biologically

Relevant Structures

for a Representative

Ensemble

The type of conformation that is relevant for binding is system
specific. Depending on molecular flexibility and binding proper-
ties, favorable protein–ligand complexes can form at varying time-
scales as depicted in Fig. 4 (see Note 4). MD snapshots can be
extracted from a trajectory at regular time intervals. However, this
often results in ensembles of structures containing highly redun-
dant structural information. Clustering algorithms can alleviate
computational costs by reducing the MD ensemble with no sig-
nificant loss of ensemble information (6, 7).

2.5. Evaluation

of Enrichment

with an Ensemble

of Receptor Structures

In practice, after the docking algorithm processes a set of
compounds, the top X ranking ligands are pursued further, while
the rest are discarded. Further pursuits include more accurate, time-
intensive rescoring calculations and eventual experimental validation.

Fig. 4. Alternative MD scenarios for extracting optimal snapshots important for ligand
virtual screening. The optimal configurations for binding of a specific ligand can be rare
or dominant or inexistent over the course of the simulation trajectory. Determining a
transferable metric or group of metrics allowing extraction of such optimal receptor
snapshot prior to virtual screening is an active area of research.
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The top X ligands are thus deemed positives, and the discarded
negatives. If the activity of the compounds ranked is determined,
such classifications are either true or false, and a standard metric in
the field of decision theory, receiver operating characteristic (ROC)
can be used to systematically quantify the level of enrichment of a
virtual screening run (8). The area under the curve of an ROC plot
(AUC), as depicted in Fig. 1, is the probability the docking algorithm
will rank a randomly chosen active over a randomly chosen inactive,
and is a usefulmetric to compare different conformations of the same
receptor (see Notes 5 and 6). This approach is demonstrated in a
recently reported case study, which is used herein as an example (9).

Predictive power of HIV RT conformations from a total of
200 ns MD simulations, two bound and two unbound. These
were compared with 15 experimentally determined structures, ten
bound and five unbound, and then evaluated using ROC integrals
(AUC). RTcatalyzes the transcription of the single-stranded RNA
viral genome into a double-stranded DNA form and is essential
for HIV replication. As a major drug target, RT is the subject of
substantial structural biology efforts, resulting in more than a 100
related crystal structures deposited in the PDB. The NNRTI
binding pocket is of significant pharmaceutical interest and was
suggested to be remarkably flexible, fluctuating between a “col-
lapsed” inhibitor-free state and an “open” inhibitor-bound state
(see e.g., Refs. (10, 11) and references therein). Moreover, the
NNIBP has been shown to bind to a broad range of NNRTIs,
which bear structurally diverse scaffolds, and were considered
representative of allosteric binding sites.

Docking ligand and assumed decoy compound sets to MD
trajectory snapshots result in a distribution of AUC values for each
of the four simulation ensembles owing to the diversity of the
conformational space sampled by the receptor (9). They allow for
the quantification of virtual screening predictive power, for exam-
ple, by comparison of bound versus unbound receptor ensembles.
MD AUC values were also compared with those from virtual
screening of the same compound library against X-ray crystallog-
raphy models Fig. 5.

Histograms of docking-predictive performance for MD
snapshots show general trends in predictive performance. Poorer
predictive power can be observed by comparing the bound systems
peaks of 0.76 and 0.78 AUC for a-APA and UC-781 bound
systems respectively and the unbound ensemble peak of 0.43 and
0.44 AUC for unbound simulations respectively, and it has been
previously suggested that bound receptors improve virtual screen-
ing predictive power comparedwith unbound receptors (12).While
bound conformations aremarkedly better than unbound conforma-
tions, it is interesting to note that a significant part (ca. 20%) ofMD
snapshots were more predictive than the most predictive unbound
crystal structure. This example demonstrates the advantage of using
MD for sampling conformations amenable to docking (seeNote 7).
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3. Notes

1. It is important to understand what structures are available for
use regarding the target of interest. For some targets, such as
HIV reverse transcriptase, many wild-type and mutant struc-
tures have been deposited into the PDB, cocrystallized with a
variety of ligands and solved under different conditions. Search-
ing by sequence similarity to a crystal structure of interest can be
a quick way to find additional structures of the same target.

2. MD simulations can provide insight on regions of flexibility,
particularly where subtle differences may not be obvious.
Figure 6 illustrates one example of the varying residue flexibil-
ity from two 50 ns simulations of HIV reverse transcriptase
(RT) bound to different inhibitors, a-APA and UC-781
(9, 10). Differences in flexibility of various regions are

Fig. 5. Dependence of virtual screening predictive power on the receptor structure chosen prior docking. The predictive
power, measured as the area under the curve (AUC) of ROC plots is compared among MD snapshots and X-ray structures
for the bound (a) and unbound (b) HIV reverse transcriptase receptor. Results for MD snapshots are represented
as normalized histogram distributions, while those for crystal structures are represented as vertical lines, indicating
the average AUC (dashed vertical) and extrema of AUC values for the experimental ensemble (solid vertical lines), where n
is the number of structures in the ensemble.
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prominent but not intuitive, such as side chains around residue
275, which are more flexible when a-APA is bound.

3. While free energy alchemical methods have been shown to
estimate free energies of binding more accurately, results
depend highly on initial complex orientations. The ligand
pose generated from docking that is used to initialize a simu-
lation will influence the final results. For example, the Inde-
pendent Trajectory Thermodynamic Integration (IT-TI)
approach presented in Chapter 27, this volume uses replicates
to reduce dependence on the starting structures, and
improved statistics can be collected from such independent
free energy estimates. This is particularly appealing in view of
its easy implementation for distributed computing.

4. Sampling of optimal receptor configurations for ligand-binding
events can vary based on the system. MD trajectories can be
used to generate such configurations. Rare protein configura-
tions have been shown to be important for ligand binding
in FKBP (13). In other cases, the most dominant, frequent
protein configurations promote best binding conditions for a
variety of ligands (6, 14). In some cases, manual selection may
be relevant if a particular residue or residue cluster conforma-
tion is known to be of interest to the user, for example based on
experimental data available (15).

Fig. 6. Different flexibility from inhibitor-bound simulations of the same target. Root-mean-square fluctuations (RMSF) of
the backbone Ca atom positions from two different inhibitor-bound molecular dynamics simulations of HIV reverse
transcriptase (RT). (a) 50 ns sampling of RT bound to a-APA, (b) 50 ns sampling of RT bound to UC-781. Chemical
structures of the ligands are shown to the right.
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5. Retrospective analysis of a docking algorithm can be quantified
with an ROC plot (8). The four categories of classified com-
pounds, true positive (TP), false positive (FP), true negative
(TN), and false negative (FN), determine the true positive
rate (i.e., the selectivity; (1)) and false positive rate (i.e., 1-
specificity; (2)) for a given receptor and a chosen threshold X.

TP=ðTPþ FNÞ; (1)

1� ðTN=ðFP þ TNÞÞ: (2)

The ROC curve plots these metrics, as the threshold changes.
Figure 1 illustrates an example where the threshold is set to
select the top four compounds, while the selectivity and spec-
ificity for the two receptors is distinctly different. Perturbing
the threshold, represented by each point on the plot, then
generates different overall area under the curve (AUC) for the
two conformations of the same protein.

6. The ROC curves are a useful measurement to compare recep-
tors but are limited by dependence on ligand diversity and
protein model. While qualitatively interesting to compare
multiple systems, the integral of the ROC curve (AUC) is
not rigorous for comparing different receptors or different
libraries of compounds. Quantitatively, this metric should
only be used to compare the same receptor in different con-
formations or ensemble conditions.

7. Results from this RT case study suggest that MD conforma-
tions can improve virtual screening results compared to the
exclusive use of X-ray structures. Determining a general
system-independent protocol for mining important structures
prior to docking would be extremely useful (e.g., based on
particular properties of the binding sites like volume, etc.).
However, this is still challenging andmight be possible only on
a system-dependent basis. Additionally, exploratory screening
using the AUC measurement on an MD ensemble may be
useful for identifying the best MD conformations prior to a
more extensive virtual screening computation, in a hierarchical
fashion, as suggested previously and schematized in Fig. 3.
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Chapter 8

Virtual Ligand Screening Against Comparative
Protein Structure Models

Hao Fan, John J. Irwin, and Andrej Sali

Abstract

Virtual ligand screening uses computation to discover new ligands of a protein by screening one or more
of its structural models against a database of potential ligands. Comparative protein structure modeling
extends the applicability of virtual screening beyond the atomic structures determined by X-ray crystal-
lography or NMR spectroscopy. Here, we describe an integrated modeling and docking protocol,
combining comparative modeling by MODELLER and virtual ligand screening by DOCK.

Key words: Comparative modeling, Virtual screening, Ligand docking

1. Introduction

Structure-based methods have been widely used in the design and
discovery of protein ligands (1–4). Given the structure of a bind-
ing site on a receptor protein, its ligands can be predicted among a
large library of small molecules by virtual screening (1, 5–11):
Each library molecule is docked into the binding site, then scored
and ranked by a scoring function. High-ranking molecules can be
selected for testing in the laboratory. Virtual screening methods
can significantly reduce the number of compounds to be tested,
thus increasing the efficiency of ligand discovery (12–16).

Many protein structures are relatively flexible, and can adopt
different conformations when binding to different ligands. Dock-
ing a ligand to a protein structure with current methods is most
likely to be successful when the shape of the binding site resembles
that found in the protein-ligand complex. Therefore, the protein
structure for docking is best determined in complex with a ligand
that is similar to the ligand being docked, by X-ray crystallography
or NMR spectroscopy. Induced fit and differences between pro-
tein conformations bound to different ligands limit the utility of
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the unbound (apo) structure and even complex (holo) structures
obtained for dissimilar ligands. The problem of the protein con-
formational heterogeneity is especially difficult to surmount in
virtual screening, which involves docking of many different
ligands, each one of which may in principle bind to a different
protein conformation (17).

An even greater challenge is that many interesting receptors
have no experimentally determined structures at all, especially in
the early phases of ligand discovery. During the last 7 years, the
number of experimentally determined protein structures depos-
ited in the Protein Data Bank (PDB) increased from 23,096
to 67,421 (November 2010) (18). In contrast, over the same
period, the number of sequences in the Universal Protein
Resource (UniProt) increased from 1.2 million to 12.8 million
(19). This rapidly growing gap between the sequence and struc-
ture databases can be bridged by protein structure prediction
(20), including comparative modeling, threading, and de novo
methods. Comparative protein structure modeling constructs a
three-dimensional model of a given target protein sequence based
on its similarity to one or more known structures (templates).
Despite progress in de novo prediction (21, 22), comparative
modeling remains the most reliable method that can sometimes
predict the structure of a protein with accuracy comparable to a
low-resolution, experimentally determined structure (23).

Comparative modeling benefits from structural genomics (24).
In particular, the Protein Structure Initiative (PSI) aims to deter-
mine representative atomic structures ofmostmajor protein families
by X-ray crystallography or NMR spectroscopy, so that most of the
remaining protein sequences can be characterized by comparative
modeling (http://www.nigms.nih.gov/Initiatives/PSI/) (25, 26).
Currently, the fraction of sequences in a genome for whose domains
comparativemodels can be obtained varies from approximately 20%
to 75%, increasing the number of structurally characterized protein
sequences by two orders of magnitude relative to the entries in the
PDB (27). Therefore, comparative models in principle greatly
extend the applicability of virtual screening, compared to using
only the experimentally determined structures (28).

Comparativemodels have in fact been used in virtual screening
to detect novel ligands for many protein targets (28), including
G-protein coupled receptors (GPCR) (29–41), protein kinases
(42–45), nuclear hormone receptors, and a number of different
enzymes (14, 15, 46–57). The relative utility of comparative
models versus experimentally determined structures has been
assessed (17, 29, 42, 43, 58–60). Although the X-ray structure
of a ligand-bound target often provides the highest enrichment
for known ligands, comparative models yield better enrichment
than random selection and sometimes performs comparably to
the holo X-ray structure. Recently, we assessed our automated
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modeling and docking pipeline (17) based on MODELLER (61)
for comparative modeling and DOCK (62, 63) for virtual screen-
ing. We demonstrated that when multiple target models are calcu-
lated, each one based on a different template, the “consensus”
enrichment for multiple models is better or comparable to the
enrichment for the apo and holo X-ray structures in 70% and 47%
cases, respectively; the consensus enrichment is calculated by com-
bining the docking results of multiple structures — for each
docked compound, the best docking score across all structures
was used for ranking the compound — thus, the ranking relied
on optimizing the protein conformation as well as protein-ligand
complementarity. Another similar criterion for ligand ranking was
also described (64).

The modeling and docking protocol is carried out in seven
sequential steps (Fig. 1). Steps 1–4 correspond to comparative
modeling: (1) template search finds known structures (templates)
related to the sequence to be modeled (target), (2) target-template
alignment aligns the target sequence with the templates, (3) model
construction computes multiple target models based on the input
alignment, (4) model selection identifies the best-scoring model.
Steps 5–7 correspond to virtual screening: (5) binding site prepara-
tion involves creating input files for generating spheres and scoring
grids used in docking, (6) database screening docks database mole-
cules into the binding site, and (7) database prioritization scores and

Fig. 1. The automated modeling and docking pipeline. Numbers in parentheses indicate
the corresponding section in the text.
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ranks the docking poses of the database molecules. Comparative
modeling is carried out by programMODELLER that implements
comparative modeling by satisfaction of spatial restraints derived
from the target-template alignment, atomic statistical potentials,
and the CHARMM molecular mechanics force field (61). The
spatial restraints are combined into an objective function that is
optimized by a combination of conjugate gradients and molecular
dynamics with simulated annealing; this model-building procedure
is formally similar to structure determinationbyNMRspectroscopy.
Virtual screening is performed by the DOCK suite of programs
(63, 65, 66). DOCKuses a negative image of the receptor – spheres
that fill the receptor site – to describe the space into which docked
molecules should fit. Docking poses are generated by matching the
atoms of a small molecule with the centers of the spheres. The
generated poses are evaluated using a grid-based approach in
which interactions between the docked molecules and the receptor
are precomputed at each grid point.

2. Materials

2.1. Software

for Comparative

Modeling

1. The MODELLER 9v8 program can be downloaded from
http://salilab.org/modeller/.

2. A typical operation in MODELLER consists of (1) preparing
an input Python script, (2) ensuring that all required files
(e.g., files specifying sequences, structures, alignments) exist,
(3) executing the input script by typing’ mod9v8 input-script-
name’, and (4) analyzing the output and log files. A tutorial
for the use of MODELLER 9v4 or newer is available at
http://salilab.org/modeller/tutorial/.

2.2. Database

for Comparative

Modeling

1. Sequence database (UniProt90) contains all sequences from
UniProt (clustered at 90% to remove redundancy), and can be
downloaded from http://salilab.org/modeller/supplemental.
html.

2. Template sequence database (pdball) contains the sequence
for each protein structure in PDB, and can be downloaded
from http://salilab.org/modeller/supplemental.html.

2.3. Software

for Virtual Screening

1. DOCK 3.5.54 (62, 63) is available under the UCSF DOCK
license http://dock.compbio.ucsf.edu/Online_Licensing/
dock_license_application.html (see Note 1). Documentation
for DOCK 3.5 is provided at http://wiki.bkslab.org/index.
php/Image:Dock3_5refman.pdf.
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2. Third party applications. DMS is a program that calculates the
solvent-accessible molecular surface of the protein binding
site (67), and can be downloaded at http://www.cgl.ucsf.
edu/Overview/ftp/dms.shar. SYBYL is a commercial molec-
ular modeling program that can build and manipulate mole-
cules (68). In our study, SYBYL is used to add hydrogen
atoms to polar atoms in a protein receptor (in the PDB
format) that contains only non-hydrogen atoms; it can be
downloaded from http://tripos.com/index.php?famil-
y¼modules,General.DownloadPortal,Home. Delphi is a pro-
gram that computes numerical solutions of the Poisson-
Boltzmann equation for molecules of arbitrary shape and
charge distribution (69); a request for access to this program
can be made at http://luna.bioc.columbia.edu/honiglab/
software/cgi-bin/software.pl?input¼DelPhi.

2.4. Docking

Database of Small

Molecules

1. The Directory of Useful Decoys (DUD) is a docking database
designed to help test docking algorithms by providing chal-
lenging decoys (70). DUD contains a total of 2,950 com-
pounds that bind to a total of 40 targets; in addition, for each
ligand, it also contains 36 “decoys” with similar physical prop-
erties (e.g., molecular weight, calculated LogP) but dissimilar
chemical topology. DUD can be downloaded from http://
dud.docking.org/r2/.

3. Method

The automated modeling and docking pipeline will be illustrated
with one example taken from our benchmark study (17), adeno-
sine deaminase (ADA, EC 3.5.4.4). ADA is a metalloenzyme in
whose binding pocket one catalytic zinc ion is coordinated by
three histidine residues and one aspartic acid residue (71, 72).
The bovine ADA has been co-crystalized with a non-nucleoside
inhibitor (PDB code 1NDW). The DUD database was screened
against comparative models and the ligand-bound (holo) crystal
structure of the bovine ADA, to compare the utility of compara-
tive models and holo crystal structures for virtual screening.

3.1. Comparative

Modeling of Protein

Structures

3.1.1. Template Search

First, a file with the bovine ADA sequence in the MODELLER
“PIR” format is prepared (Fig. 2; see Note 2). Then the ADA
sequence is scanned against all sequences in the PDB (stored in file
“pdball”) to identify suitable templates, with the MODELLER
“profile.build” routine (Fig. 3; see Note 3). In this example, one
holo structure (PDB code 1UIO) (73) with 85% sequence iden-
tity to the target and one apo structure (PDB code 2AMX) (74)
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with 27% sequence identity are selected as templates (see Note 4),
to be used independently for calculating two models of ADA.

3.1.2. Target-Template

Alignment

For each target-template pair (i.e., ADA-1UIO and ADA-2AMX),
the target and template sequences are scanned against all sequences
in UniProt90 independently with the “profile.build” routine,

Fig. 2. File “ADA.ali” in the “PIR” format. This file specifies the target sequence. See the MODELLER manual for the
detailed description of the format.

Fig. 3. File “search_templates.py.” This script searches for potential template structures
in a database of nonredundant PDB sequences.
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resulting in the target profile and the template profile, respectively.
Next, the target profile is aligned against the template profile with
the “profile.scan” routine (a sample script is given at http://salilab.
org/modeller/examples/commands/ppscan.py). The resulting
alignment is presented in Fig. 4, for the 2AMX template
(see Note 5; the ADA-1UIO alignment is not shown).

3.1.3. Model Construction Once the target-template alignment is generated, MODELLER
calculates 500models of the target completely automatically, using
its “automodel” routine (Fig. 5; see Note 6). The best model
(defined in Subheading 3.1.4) is then subjected to a refinement
of binding site loops (see Note 7) with the “loopmodel” routine
(Fig. 6). All three binding site loops were optimized simulta-
neously, resulting in 2,500 conformations of ADA (see Note 8).

Fig. 4. File “align.ali” in the “PIR” format. The file specifies the alignment between the sequences of ADA and 2AMX (A chain).

Fig. 5. File “build_model.py.” The script generates 500 models of ADA based on 2AMX
with “automodel” routine.
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3.1.4. Model Selection When multiple models are calculated for the target based on a
single template (by “automodel,” and “loopmodel,” if there are
binding site loops), it is practical to select the model or a subset of
models that are judged to be most suitable for subsequent dock-
ing calculations (see Note 9). In this example, for each template,
we select the model with optimized loops that has the lowest value
of the MODELLER objective function (ada-loop.BL16340001.
pdb for 2AMX), which is reported in the second line of the model
file (see Note 10). The most suitable model can also be selected by
the Discrete Optimized Protein Energy (DOPE) (75), which is
calculated using the “assess_dope” routine (see Note 11).

3.2. Virtual Screening

Against Comparative

Models

As described in the previous section, a single comparative model
of bovine ADA is selected from models calculated based on the
2AMX template. Another model is selected frommodels based on
the 1UIO template. The DUD database is then screened against
each of the two models independently. We will only describe the
docking to the ADA model based on 2AMX.

3.2.1. Binding Site

Preparation

Prepare input files for the automated docking pipeline. The file
containing the ADA model based on 2AMX is renamed to “rec.
pdb,” followed by (1) removing all lines that do not contain
coordinates of non-hydrogen atoms; (2) replacing “HETATM”
in the line containing the coordinates of the zinc ion by
“ATOM”; and (3) removing all chain identifiers (see Note 12).
Next, the file “xtal-lig.pdb” is created, containing the binding site

Fig. 6. File “loop_model.py.” Input script file that generates 2,500 models with the
“loopmodel” routine.
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specification in the same format as that of “rec.pdb”. In this
example, the ligand observed in the holo crystal structure of the
target is given in “xtal-lig.pdb”; this ligand is transferred into the
model by superposing the crystal structure on the model using
the binding site residues (see Note 13).

Automated spheres and scoring grids generation. First,
the environment variable “DOCK_BASE” is defined to be the
“dockenv” directory of the DOCK 3.5.54 installation. Second,
file “Makefile” from “dockenv/scripts/” is copied to the current
working directory, which also contains the “rec.pdb” and “xtal-
lig.pdb” files. Third, file “.useligsph” is generated. Finally, com-
mand “make” is executed to generate the spheres and scoring
grids (see Note 14).

3.2.2. Database Screening The DUD database contains 2950 annotated ligands and 95,316
decoys for 40 diverse targets (70); the DUD database is stored
in 801 DOCK 3.5 hierarchy database files (DUD 2006 version)
(63). Eight hundred and one sub-directories corresponding to
the 801 hierarchy database files are created. In each sub-
directory, two files are required for docking. One is file
“INDOCK” that contains the input parameters for DOCK
3.5.54 (Fig. 7) (see Note 15). Another file, “split_database_in-
dex,” contains the location and name of the corresponding
database file. In file “INDOCK,” “split_database_index” is
given as the value for the parameter with the keyword “ligan-
d_atom_file.” Docking is performed by running the DOCK
executable “dockenv/bin/Linux/dock” in each sub-directory.
Two output files are produced: (1) the compressed file “test.
eel1.gz” contains the docking poses of database molecules in
the extended PDB format and (2) the compressed file “OUT-
DOCK.gz” contains the docking scores for the database mole-
cules as well as the input file names and parameter values.

3.2.3. Database

Prioritization

First, the conformations of database molecules are filtered for steric
complementarityusing theDOCKcontact score.The conformations

Fig. 7. A section of file “INDOCK” containing some input parameters for DOCK 3.5.54.
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that do not clash with the receptor are then scored by the DOCK
energy function (the DOCK contact score is not included):

Escore ¼ EvdW þ Eelec þ DG lig
desolv; (1)

where EvdW is the van der Waals component of the receptor-ligand
interaction energy based on the AMBER united-atom force field,
Eelec is the electrostatic potential calculated by DelPhi, and

DG lig
desolv is the ligand desolvation penalty computed by solvmap,

as described in Subheading 3.2.2. For each ligand conformation,
the total energy and all the individual energy terms are written out
to file “OUTDOCK.gz” (Fig. 8; see Note 16). The single confor-
mation with the best total energy is saved in file “test.eel1.gz” as
the docking pose of the database molecule. The docking pose of
one ADA ligand—1-deazaadenosine (PubChem ID: 159738,
ZINC ID: C03814313)—is shown in Fig. 11b. After the virtual
screening, the best total energy of each database molecule and the
corresponding molecule ID are extracted from the “OUTDOCK.
gz” files in all sub-directories. The molecules in the docking
database are ranked by their total energies. The top 500 ranked
molecules are then inspected visually. Molecules forming favorable
interactions with the receptor (e.g., a docking pose is similar to
the binding mode found in crystal structures of proteins in the
same family) can be chosen for subsequent experimental testing.

In this benchmark example, we can quantify the accuracy of
modeling and docking by computing the enrichment for the
known ADA ligands among the top scoring ligands:

EFsubset ¼ ðligandselected=NsubsetÞ
ðligandtotal=NtotalÞ ; (2)

where ligandtotal is the number of known ligands in a database
containing Ntotal compounds and ligandselected is the number of
ligands found in a given subset of Nsubset compounds. EFsubset
reflects the ability of virtual screening to find true positives among
the decoys in the database compared to a random selection.
An enrichment curve is obtained by plotting the percentage of
actual ligands found (y-axis) within the top ranked subset of all
database compounds (x-axis on logarithmic scale). Tomeasure the
enrichment independently of the arbitrary value ofNsubset, we also

Fig. 8. A section of file “OUTDOCK.gz” containing docking scores of two DUD molecules.
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calculated the area under the curve (logAUC) of the enrichment
plot:

logAUC ¼ 1

log10100=l

�
X100

l

ligandsubset
ligandtotal

� l � log10
Nsubset

Ntotal

� �� �
; (3)

where l is arbitrarily set to 0.1. A random selection (ligandselected/
ligandtotal ¼ Nsubset/Ntotal) of compounds from the mixture of
true positives and decoys yields a logAUC of 14.5. A mediocre
selection that picks twice as many ligands at any Nsubset as a
random selection has logAUC of 24.5 (ligandselected/ligandtotal
¼ 2 � Nsubset/Ntotal; Nsubset/Ntotal � 0.5). A highly accurate
enrichment that produces 10 times as many ligands than the
random selection has logAUC of 47.7 (ligandselected/ligandtotal
¼ 10 � Nsubset/Ntotal;Nsubset/Ntotal � 0.1). In this example, the
ADAmodel based on 2AMX yielded the logAUC of 40.3 (Fig. 9).
When multiple structures are available (either models or experi-
mental structures), consensus enrichment can be calculated
(Introduction).

4. Notes

1. The DOCK 3.5.54 source distribution contains four items:
the “dock”, the “dockenv” and the “test” directories, as well
as the “README” file. The DOCK source code and

Fig. 9. The enrichment curve for virtual screening of the DUD database against the ADA
model based on 2AMX. The ligand enrichment is quantified by the logAUC of 40.3.
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executable are in the “dock” directory. Scripts used in the
automated docking pipeline are in the “dockenv” directory.
The binary executable “dock” in “dockenv/bin/Linux/” is
used in the docking calculations.

2. The target protein sometimes contains modified residues,
such as carboxylated lysine (KCX) and selenomethionine
(MSE). These modified residues need to be replaced by stan-
dard residues with similar physical and chemical properties (e.
g., KCX by glutamic acid and MSE by methionine).

3. MODELLER script for template search.

The environ routine initializes the environment for the mod-
eling run, by creating a new environment object, called env.
Almost all MODELLER scripts require this step, because the
new environment object is needed to build most other useful
objects.

The sequence_db routine creates a sequence database
object sdb that is used to contain large databases of protein
sequences.

The sdb.read and sdb.write routines read and write a
database of sequences, respectively, in the PIR, FASTA, or
BINARY format.

The second call to the sdb.read routine reads the binary
format file for faster execution.

The alignment(env) routine creates a new “alignment”
object (aln). The aln.append routine reads the target sequence
ADA from the file ada.ali, and converts it to a profile object
(prf).

The prf.build routine scans the target profile (prf) against
the sequence database (sdb). Matching sequences from the
database are added to the profile.

4. In general, a sequence identity value above �25% indicates a
potential template, unless the alignment is too short (i.e.,
<100 residues). A better measure of the alignment signifi-
cance is the E-value of the alignment (the lower E-value, the
better; a conservative cut-off is 0.001). Besides the sequence
similarity, template structures can also be chosen on the basis
of other criteria, such as the accuracy of the structures (e.g.,
resolution of X-ray structures), conservation of active-site
residues, and presence of bound ligands.

5. Different alignment methods vary in terms of the scoring
function that is being optimized. When the target-template
sequence identity is above 30–40%, different methods tend to
produce very similar alignments. When similarity decreases,
different methods tend to produce widely varying alignments.
An accurate alignment is indicated when different methods,
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such as MUSCLE (76), CLUSTALW (77) and T-coffee (78),
produce similar alignments.

6. Model building with the “automodel” routine.

In the input script build_model.py (Fig. 5), an automodel
object is first created, specifying the alignment file (“align.
ali”), the target (ADA), and the template (2AMX). The mod-
els are calculated by the “make” routine. Five hundred models
for ADA are written out in the PDB format to files called
ADA.B9990[0001-0500].pdb.

Ligands, ions, and cofactors in the template structures are
copied to the target models and treated as rigid bodies, using
the “BLK” functionality of MODELLER.

Models are computed by optimizing the MODELLER
objective function in the Cartesian space. The optimization
begins by the variable target function approach, deploying
the conjugate gradients method, followed by a refinement by
molecular dynamics with simulated annealing. The default
optimization protocol can be adjusted (a sample script is
given at http://salilab.org/modeller/examples/automo
del/model-changeopt.py).

7. The binding site loops are defined as those binding site resi-
dues in the vicinity of the binding site that were not aligned to
the template structure. The binding site residues may be
chosen based on the prior experimental information (e.g.,
mutagenesis data) and/or sequence conservation within a
family of homologous proteins. In this study, binding site
residues are defined as the residues with more than one non-
hydrogen atom within 10 Å of any ligand atom in the target
structure. Thus, three insertions in the ADA-2AMX align-
ment are defined as binding site loops (neighboring residues
within two positions of each insertions are also included)
(Fig. 4).

8. Loop optimization with the “loopmodel” routine. In the input
script “loop_model.py” (Fig. 6), the best-scoring model gen-
erated by “automodel” (ADA.B99990047.pdb) is used as the
starting conformation, thus defining the loop environment.
Loop regions defined by the “select_loop_atoms” routine are
randomized, followed by optimization with a combination of
conjugate gradients and molecular dynamics with simulated
annealing. Two thousand five hundred models are written out
in the PDB format to files called ada-loop.BL[0001-2500]
0001.pdb. Calculating multiple loop models allows for better
conformational sampling of the unaligned regions. Typically,
for a single 8-residue loop, 50–500 independent optimiza-
tions are recommended (79).
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9. Most proteins are flexible, often adopting different conforma-
tions when binding to different ligands. Besides the single
best model, it might be helpful to select several sub-optimal
models that are structurally diverse (e.g., selecting the best
model from each conformational cluster of models). When no
target ligand is known, the docking database can be screened
against each of these representative models independently,
followed by combining the screening results. However,
when some target ligands are already known, the best single
model could be selected based on its ability to rank these
known ligands most highly in virtual screening.

10. TheMODELLER objective function is a measure of how well
the model satisfies the input spatial restraints. Lower values of
the objective function indicate a better fit with the restraints.
Models (of the same sequence) can only be ranked by the
same objective function, consisting of the same restraints,
usually derived from the same alignment.

11. TheDOPE is an atomic distance-dependent statistical potential
based on a physical reference state that accounts for the finite
size and spherical shape of proteins (75). By default, the DOPE
score is not included in the model building routine, and thus
can be used as an independent assessment of the accuracy of
the output models. DOPE considers the positions of all
non-hydrogen atoms, with lower scores corresponding to
models that are predicted to be more accurate. A sample script
for generating a DOPE score is given at http://salilab.org/
modeller/examples/assessment/assess_dope.py.

12. All lines in “rec.pdb” should start with “ATOM.” If the
receptor contains a cofactor that has not been defined in the
DOCK force field, a dictionary of parameters needs to be
provided for the cofactor. “Structural” water molecules in
the receptor should be renamed as “TIP”.

13. The binding site can be specified either using a modeled
ligand or residues surrounding the binding pocket. In the
latter case, at least three binding site residues should be
defined in the file “xtal-lig.pdb”; the center of mass of these
residues defines the center of the binding pocket.

14. Eleven tasks are accomplished by “make” (Fig. 10). (1) Copies
of file “filt.params” (the input file for program FILT) as well as
the “sph” and “grids” directories (containing input files and
parameter files for sphere and scoring grids generation, respec-
tively) are copied from directory “dockenv/scripts/”. (2) Pro-
gram FILT located in “dockenv/bin/Linux” is used to identify
binding site residues that are within 10 Å of any atom in the file
“xtal-lig.pdb”. The result is stored in file “rec.site”. (3) Given
the receptor coordinates in “rec.pdb” and the binding site
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definition in “rec.site”, the solvent-accessible molecular surface
of the receptor binding site is calculated by the program DMS.
The result is written in the file “rec.ms”. (4) The program
SYBYL is used to add hydrogens on polar atoms to the receptor.
The atomic coordinates of the protonated receptor are written
to the file “grids/rec.crg”. All lines that do not contain atomic
coordinates are removed manually; all lines in “rec.crg” should
start with “ATOM”. (5) The program pdbtosph in “dockenv/
bin/Linux” is used to derive spheres from atom positions in
“xtal-lig.pdb”. The ligand-based spheres are stored in the file
“sph/match.sph”. (6) Spheres in contact with the binding site
surface are generated by the script “rec.ms” relying on the
program sphgen (80) in “dockenv/bin/Linux”. These recep-
tor-based spheres are stored in the file “sph/sph”. (7) Two perl
scripts “makespheres1.pl” and “makespheres2.pl” in “dock-
env/scripts” are used to generate spheres for the binding site
electrostatic potential calculation with DelPhi (DelPhi spheres,
named as “match1.sph”) and the spheres required for orienting
database molecules in the binding site (matching spheres,
named “match2.sph”), respectively. For both scripts, the
ligand-based spheres “match.sph”, receptor-based spheres
“sph”, and the protonated receptor “rec.crg” need to be
provided as input files. DelPhi spheres occupy a greater volume
than the matching spheres (Fig. 11a). Spheres that are exposed
to bulk water should be removed by hand. (8) The perl script

Fig. 10. Schematic description of the automated preparation of receptor binding site, including sphere and scoring grids
generation.
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“makebox.pl” in “dockenv/scripts” is used to determine the
location anddimensions of the region inwhich the scoringgrids
will be calculated. This region should enclose the volume that
the ligands are likely to occupy (described by “match2.sph”).
The resulting rectangular box is written out in the file “grids/
box”. (9) The contact score is a summation of the number of
non-hydrogen atom contacts between a database molecule and
the receptor (a contact is any intermolecular distance smaller
than 4.5 Å), providing an assessment of shape complementar-
ity. The program distmap (66) in “dockenv/bin/Linux” pro-
duces the grids for contact scoring. Three files are required for
distmap, including the input file “INDIST”, the protonated
receptor “rec.crg”, and the volume of the grids “box”. The
contact grid is produced in the file “grids/distmap” by running
the command “distmap”. (10) The DOCK’s force field score is
the van der Waals interaction energy. The parameters are taken
from the AMBER united-atom force field (81). The program
chemgrid (66) in “dockenv/bin/Linux” produces the grids for

Fig. 11. (a) The matching spheres (dark grey) and DelPhi spheres (light grey) generated
for the binding site of the ADA model (cartoon) based on 2AMX. (b) The docking pose
(stick) and the 2D structure of one ADA ligand—1-deazaadenosine (PubChem ID:
159738, ZINC ID: C03814313)—as well as the matching spheres (light grey ).
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force field scoring. The force field grid is written into the file
“grids/chem.vdw” by running the command “chemgrid”. All
receptor residues and atoms need to be defined in the parameter
files “grids/prot.table.ambcrg.ambH” and “grids/vdw.parms.
amb.mindock”, respectively. (11) The electrostatic potential
grid is generated by DelPhi (69). The receptor coordinates in
“rec.crg” and the Delphi spheres in “match1.sph” are com-
bined into the file “grids/rec+sph.crg”. The DelPhi map is
calculated using a relative dielectric constant of 2 for the volume
defined by the receptor atoms and the spheres in the binding
site, and a relative dielectric constant of 78 for the external
solvent environment. The DelPhi grid is written to the file
“grids/rec+sph.phi” by running the command “./delphi.
com>delphi.log” in the “grids” directory. All receptor residues
and atoms need to be defined in the parameter file “grids/amb.
crg.oxt”. (12) The solvent occlusion grid is calculated by the
program solvmap, for subsequent calculation of the ligand
desolvation penalty (82). Three files are required for solvmap,
including the input file “INSOLV”, the protonated receptor
“rec.crg”, and the volume of the grids “box”. The solvent
occlusion grid is written into the file “grids/solvmap” by run-
ning the command “solvmap”. The grid file “grids/solvmap”
should not contain any blank lines.

15. Several examples of file “INDOCK” are provided in the
directory “dockenv/scripts/calibrate/”. A detailed description
of the parameters used in INDOCK can be found in themanual
of DOCK 3.5. Here, we describe several parameters that are
often modified to achieve an optimal docking performance
(Fig. 7). The parameter “mode” should be specified as
“search”. In the “search” mode, DOCK generates positions
and orientations for each molecule in the database (virtual
screening). The parameter “receptor_sphere_file” specifies the
file that contains the matching spheres for ligand orientation in
the binding site. Matching spheres can be manually scaled or
relocated to achieve satisfying sampling in the desired region (e.
g., catalytic residues suggested by experiments). During dock-
ing, sets of atoms fromdatabasemolecules match sets ofmatch-
ing spheres, if all the internal distances match within a tolerance
value in Ångstroms specified by the parameter “distance_toler-
ance” (65). The choice of the tolerance value depends on the
reliability of the matching sphere sizes and positions, which in
turn is determined by the accuracy of the binding site confor-
mation. We suggest a tolerance value of 1.5 Å when docking to
comparative models. The sampling of the ligand positions and
orientations is controlled by four parameters, including
“ligand_binsize”, “ligand_overlap”, “receptor_binsize”,
and “receptor_overlap” (65). “ligand_binsize” and “recep-
tor_binsize” define the width of the bins containing ligand
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atoms and matching spheres, respectively. “ligand_overlap”
and “receptor_overlap” define the overlap between the bins
of ligand atoms and matching spheres, respectively. The
increase of either the width of bins or the overlap between
bins will result in more atoms/spheres in each bin. As a conse-
quence, a greater number of matches will be found. Extensive
sampling is achieved by setting the bin size for both ligand and
receptor to 0.4 Å, and the overlap to 0.3 Å.

16. As shown in Fig. 8, for each conformation of a database
molecule, two lines are written out in the file “OUTDOCK.
gz”. The scoring results are written in the second line starting
with the letter “E”, followed by the molecule identifier, con-
tact score, electrostatic score, van der Waals score, polar solva-
tion correction, apolar solvation correction, and total energy.
The total energy is a sum of contact score, electrostatic score,
van der Waals score, polar solvation correction, and apolar
solvation correction.
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Chapter 9

AMMOS Software: Method and Application

Tania Pencheva, David Lagorce, IIza Pajeva, Bruno O. Villoutreix,
and Maria A. Miteva

Abstract

Recent advances in computational sciences enabled extensive use of in silico methods in projects at the
interface between chemistry and biology. Among them virtual ligand screening, a modern set of
approaches, facilitates hit identification and lead optimization in drug discovery programs. Most
of these approaches require the preparation of the libraries containing small organic molecules to be
screened or a refinement of the virtual screening results. Here we present an overview of the open source
AMMOS software, which is a platform performing an automatic procedure that allows for a structural
generation and optimization of drug-like molecules in compound collections, as well as a structural
refinement of protein-ligand complexes to assist in silico screening exercises.

Key words: 3D structure generation, Structure refinement, Virtual screening, AMMOS, AMMP,
Open source/free software

1. Introduction

Recent advances in computational sciences enabled extensive use
of in silico methods in projects at the interface between chemistry
and biology. Among them virtual ligand screening, a modern set
of approaches, facilitates hit identification and lead optimization
in drug discovery programs (1–3). Nowadays various in silico
methods can be employed for such purposes, i.e., drug-like prop-
erties’ predictions (4, 5), ligand-based virtual screening (i.e.,
chemical similarity search (6–8), pharmacophore search (9)), or
structure-based virtual screening employing docking and scoring
techniques (10–14). Most of these approaches require preparation
of the libraries containing small organic molecules to be screened
(15, 16) or refinement of the virtual screening results (17, 18).
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Here we present an overview of the recently developed
AMMOS (AutomatedMolecularMechanics for in silico Screening)
software, which is a platform performing an automatic procedure
that allows for a structural generation and optimization of drug-like
molecules in compound collections, as well as a structural
refinement of protein-ligand complexes. AMMOS makes use of
the open source program AMMP [http://www.cs.gsu.edu/
~cscrwh/ammp/ammp.html] and contains programs written
in Python and C. It consists of three packages: (1) DG-AMMOS
(19) performs generation of a single 3D conformation of small
drug-like molecules using distance geometry and molecular
mechanics optimization methods; (2) AMMOS_SmallMol (18) is
a package for structural optimization of compound collections that
can be used prior to ligand– or structure-based in silico screening;
(3) AMMOS_ProtLig (18) refines protein-ligand complex struc-
tures by using energy minimization. It performs an automatic
procedure for molecular mechanics minimization allowing different
levels of receptor flexibility—from rigid to fully flexible structures
of the protein.

The packages and source code of AMMOS are freely available
at http://www.mti.univ-paris-diderot.fr/en/downloads.html.
AMMOS runs on Linux and Mac OS 10.5 operating systems.
The three AMMOS packages can be downloaded in a tar.gz
format and subsequently uncompressed in a Linux shell. The
packages are supplied with manuals.

2. Methods

The overall structure of the AMMOS platform is shown in Fig. 1.
AMMOS consists of several programs developed in C and Python
and is based on the open source programs AMMP. AMMP is a full-
featured molecular mechanics, dynamics and modeling program
incorporating a fast multipole algorithm for efficient calculation of
long-range forces and robust structural optimizers (20). AMMOS
routines written in C transform the input files (PDB for proteins
and MOL2 for small organic molecules) to a specific “ammp”
format and create molecule template files, required by AMMP,
while the automatization of the procedure (Fig. 1) for a large
number of molecules is accomplished via a Python script.

The initial preparation of molecules, either small drug-like ones
or proteins, is performed by employing the program PREAMMP
(included in the package AMMP). Preparation of small molecules
consists of two steps: (1) creation of templates of the small
molecules required by PREAMMP; (2) running PREAMMP to
convert the templates into “ammp” format. The preparation of a
protein also involves two steps: (1) running PREAMMP to convert
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the protein from initial PDB to “ammp” format; (2) running
AMMP autolink to link all amino acid residues. Finally, AMMOS
platform ensures a conversion of the optimized structures from
“ammp” to PDB/MOL2 format and keeps track of the computed
energy values of the molecules, and any warnings that may appear
during the run. All output files are named automatically.

The implemented algorithms andpractical details on installation
and running of DG-AMMOS, AMMOS_SmallMol and
AMMOS_ProtLig are described in the next sections.

2.1. DG-AMMOS

2.1.1. Algorithm

DG-AMMOS uses Distance Geometry (DG) construction and
optimization via Molecular Mechanics to generate 3D conforma-
tion of small drug-like molecules (see Note 1). The input structure
files required for running DG-AMMOS are in MOL2 format and
are treated as topological only (2D), thus the input atomic coordi-
nates are explicitly set to zero prior to the generation of the 3D
conformation. The initial 3D conformations are constructed using
the distance geometry method GSDG (Gauss-Siedel Distance
Geometry) (21). The GSDG method, as implemented in AMMP
and employed in DG-AMMOS, takes into account bond, angle,
hybrid torsion, and nonbonded (point atom electrostatics and van
der Waals) potentials. The initial structure generated by GSDG
is corrected with molecular mechanics minimization via AMMP
leading to a structure with both reasonable geometry and self-
avoidance (see Note 3). For the minimization stage, DG-AMMOS

Fig. 1. Schematic diagram of the AMMOS platform.
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applies conjugate gradient method with the AMMP force field
sp4 (20) developed on the basis of the UFF potential set (22).
The minimization protocol employs two subsequent steps with
the maximum number of iterations set to 500 and a convergence
value set to 0.02 kcal.mol-1 (these values can be adjusted by the user
if necessary in the script build_mol2_dgeom.ammp in the directory
~DG-AMMOS/progs/vls_min/).

2.1.2. Install and Run Users can install the package on his own computer by applying the
installation procedure. The makefile execution compiles
the source code automatically and generates executable files for
the programs AMMP, PREAMMP, and DG-AMMOS installed
into the directory ~DG-AMMOS/bin/. In the working directory,
where 3D generation computations will run, the compound col-
lection in MOL2 format and the input parameter file (see e.g., in
the ~DG-AMMOS/example directory) should be present. The
user has to edit this file to give the correct paths and name of
the compound library. To run DG-AMMOS one should type:

> DG-AMMOS.py input_parameter_file 

The chart flow of the executable entirely automatic procedure
of DG-AMMOS for the generation of a 3D conformation of small
molecules, from the input file (the compound collection, see Note
2) to the output (the final created 3D conformation of com-
pounds), is shown in Fig. 2. The automatic procedure for a large
number of small molecules is accomplished via the wrapper script
DG-AMMOS.pywritten in Python. A routinemol2_to_templ_sp4.c,
written in C, creates a template file for each small molecule based
on the initial MOL2 file. The script build_mol2_dgeom.ammp
involves the protocol for the 3D structure generation performed
by AMMP via distance geometry and molecular mechanics meth-
ods. DG-AMMOS stores the coordinates of the created 3D struc-
tures, their energies, any warning that may appear during the DG-
AMMOS run, and finally “wrong” molecules in terms of high
energy, if any (see Note 3). The C routine ammp-to-mol2.c con-
verts the generated structures from “ammp” format to MOL2.

2.1.3. Application Example Figure 3 shows examples for 3D structures generated by
DG-AMMOSandoptimizedbyAMMOS_SmallMol (see for details
Subheading 2) of five diverse small hit molecules shown to bind
protein targets. Such generated structures, with reasonable confor-
mations and energies, can be used for flexible ligand docking or to
be subjected for multiple conformation generation (see Note 5).

2.2. AMMOS_SmallMol

2.2.1. Algorithm

AMMOS_SmallMol performs an automatic procedure for energy
minimization of small molecule structures in chemical libraries for
virtual screening (see Note 4). The molecular mechanics minimi-
zation in AMMOS_SmallMol is based on two force fields available
in AMMP: sp4 (20) or sp5 (23). The entire procedure of
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AMMOS_SmallMol, from the input of small molecules (in MOL2
format) to the final minimized structures (also in MOL2 format), is
shown in Fig. 4.

The input files required by AMMP for the minimization
procedures allow selection of the optimization method (by default
Conjugate gradient), and the number of iteration steps (by
default 2 � 500). The advanced user can select any optimization
method available in AMMP and specify the minimization para-
meters (i.e., number of iterations, convergence etc. can be adjusted
by the user if necessary in the script min_ligand.ammp in the
directory ~AMMOS_SmallMol/progs/vls_min/).

Fig. 2. Schematic diagram of the DG-AMMOS procedure.
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2.2.2. Install and Run The package AMMOS_SmallMol consists of the programs
AMMP and PREAMMP, as well as the C programs source, Python
scripts and input files for protocols to energy minimize the 3D
structures of the small molecules. The source code is easily com-
piled, hence all executable files are automatically installed into the
directory ~AMMOS_SmallMol/bin/. In the working directory,
where AMMOS_SmallMol computations will run, the compound
collection in MOL2 format and the input parameter file (see e.g.,
in the ~AMMOS_SmallMol/example directory) should be present.
The user has to edit this file to give the correct paths and the

ID hit molecule
Target

2D Structure
3D conformation

After DG-AMMOS
Total energy

3D conformation
After

AMMOS_SmallMols
Total energy

Ref.

Molecule 1
Domain C2 of 
Coagulation

Factor V

(45)

108.14 56.64

Molecule 2
Domain C2 of 
Coagulation

Factor V

(45)

102.82 47.56

Molecule 3
phosphatase

CDC25
(46)

100.71 44.02

Molecule 4
phosphatase

CDC25
(46)

137.45 60.41

Molecule 5
HDM2

(47)

152.96 72.86

Fig. 3. 3D conformations generated by DG-AMMOS (in green) and optimized by AMMOS_SmallMol (in pink) for five
bioactive compounds (45–47). The energies are given in kcal.mol�1. The figure was created using Pymol molecular
viewer. (For colour version of this figure, the reader is referred to the Web version of this chapter.)
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chemical library name. To run AMMOS_SmallMol for energy
minimization of small molecules one should type:

> AMMOS_SmallMol_sp4.py input_parameter_file 

The procedure could be employed for either sp4 or sp5 force
field (AMMOS_SmallMol_sp5.py for sp5).

Input compound libraries must be in a standard MOL2 format
with 3D conformations with added hydrogen atoms and charges
(see Note 2). The script min_ligand.ammp involves the protocol
for themolecular mechanics optimization (see Fig. 4). After running
of AMMOS_SmallMol, the minimized structures will be saved in
MOL2 format. Two files containing the energy of the molecules
before and after minimization, as well as some warning messages (if
they appear during the run) will be also available in the working
directory.

Fig. 4. Schematic diagram of the AMMOS_SmallMol procedure.
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2.2.3. Application Example AMMOS_SmallMol can be applied for a structural optimization of
drug-like (see Fig. 3) molecules that could be helpful prior to dock-
ing or 3D ligand-based virtual screening (see Note 5). AMMOS_
SmallMol procedure forminimization of small compounds has been
previously applied (18) on a chemical library of 37970 molecules
taken from ChemBridge diversity set (http://chembridge.com/
chembridge) with a single conformer generated by Omega 2.0
(http://www.eyesopen.com). The differencesDEobtained between
the energies of the AMMOS_SmallMolminimized and initial struc-
tures generated by Omega have been shown to be up to 200 kcal/
mol (18). For 76% of the molecules DE has been obtained to be
lower than 50 kcal/mol, and for 4% of the compoundsDE has been
higher than 100 kcal/mol. Overall, these results and assessments
demonstrate the efficiency of AMMOS in the structural refinement
of a compound collection.

2.3. AMMOS_ProtLig

2.3.1. Algorithm

AMMOS_ProtLig performs an automatic procedure for energymin-
imization of protein-ligand interactions and can be applied on a huge
number of protein-ligand complex structures previously obtained
(see Note 6). The molecular mechanics minimization employed in
AMMOS_ProtLig is also based on the two AMMP force fields: sp4
and sp5. The chart flowof the entire procedure ofAMMOS_ProtLig,
fromthe inputof theprotein (inPDBformat) andpredocked ligands’
databank (in MOL2 format) to the final databank of the minimized
protein-ligand complexes is shown in Fig. 5.

Overall, AMMOS_ProtLig follows a scheme similar to the
two packages described above. The main characteristics of
AMMOS_ProtLig is that it allows users to select the level of
protein atom flexibility during the optimization of the protein-
ligand complexes (see Fig. 5). Five different cases for protein
flexibility (scripts written in C) ensure the selection of active
(moving)/inactive atoms of the protein, while, in all cases, the
ligands are treated as flexible:

Case 1: All protein and ligand atoms can move
Case 2:Only the atoms of the protein side chains and of the ligand

can move
Case 3: Only the protein atoms inside a sphere (a user defined para-

meter in input_parameter_file) around the ligand and the
ligand atoms can move

Case 4:Only the atoms of the protein side chains inside a sphere
(user defined parameter) around the ligand and the ligand
atoms can move

Case 5:Only ligand atoms canmove, while thewhole protein is rigid

Additionally, AMMOS_ProtLig performs:

1. Conversion of the minimized protein from “ammp” to PDB
format;
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2. Rerankingof allminimized protein-ligand complexes according
to the calculated AMMP protein-ligand interaction energy;

3. In case of multiple docked conformers for a ligand, selection
of the best conformer for each ligand by means of the best
AMMP protein-ligand interaction energy.

2.3.2. Install and Run AMMOS_ProtLig consists of the programs AMMP and PRE-
AMMP, as well as the C programs source, Python scripts and
input files for the AMMOS_ProtLig energy minimization proto-
cols. After compiling, all executable files will be automatically
installed into the directory ~AMMOS_ProtLig/bin/. In the working
directory where AMMOS_ProtLig computations will be ran, the
following files should be present: the protein target in PDB format,
the compound collection containing the predocked ligands in

Fig. 5. Schematic diagram of the AMMOS_ProtLig procedure.
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MOL2 format and the input parameter file (see in the ~AMMOS_
ProtLig/example directory) that should be edited. To run
AMMOS_ProtLig for energy minimization of protein-ligand com-
plexes one should type:

AMMOS_ProtLig_sp4.py input_parameter_file 

The complete automatic procedure could be employed for
either sp4 or sp5 force field (AMMOS_ProtLig_sp5.py for sp5). By
analogy with AMMOS_SmallMol, experienced users can select
other optimization methods available in AMMP, as well as to
specify the minimization parameters (i.e., number of iterations,
convergence etc. can be changed in the scriptmin_case*.ammp in
the directory ~AMMOS_ProtLig/progs/vls_min/).

After processing, the results are saved in a subdirectory with
suffix OUTPUT. The minimized ligands are saved in MOL2
format and the protein atoms that have been moved are kept in
a separate PDB file. The interaction energy before and after mini-
mization, as well as warning messages (if they appear during the
run) are also provided in the OUTPUT directory.

2.3.3. Application Example AMMOS_ProtLig has been validated on several protein targets of
completely different geometries and physicochemical properties of
the binding sites in terms of polarity and topology (14, 18). Here
we illustrate how AMMOS_ProtLig can be useful to improve the
enrichment of virtual screening experiments with an application on
coagulation factor X (FX) (PDB ID 1f0r, resolution 2.10 Å). Our
test simulates a real-life virtual screening experiment on a relatively
large compound collection (about 38000 drug-like molecules
taken from the ChemBridge diversity set (http://chembridge.
com/chembridge) after filtering for drug-like properties (5) with
merged 9 known inhibitors of FX with available X-ray structures in
PDB (24). A two-step docking-scoring protocol (i.e., rigid-body
docking with MS-DOCK (25) and subsequent ligand flexible
docking with DOCK6 (26) has been applied (see for the docking
protocol details (18)). Figure 6 presents the enrichment curves
obtained for FX before and after application of the AMMOS_
ProtLig minimization protocol in all five cases of protein flexibility
considered.

It is seen that 90% of the inhibitors of FX are retrieved in the
top 1% (0.07% in Case 1) of the proceeded database after
AMMOS_ProtLig, while after docking they appear in the first
15%. It can be noted that for FX the AMMOS cases 1, 2, 3, and
4 considering different levels of receptor flexibility achieve very
good enrichment results (see Note 7). Case 5 with a rigid receptor
does not show improvement as compared to the other docking
runs. Thus, for FX, small local receptor flexibility is sufficient to
refine the protein-ligand interactions in the complex (see Note 8).

136 T. Pencheva et al.



3. Notes

1. DG-AMMOS, which is the first package of the AMMOS plat-
form, is an efficient 3D structure generator engine that provides
fast, automated and reliable generation of 3D conformation of
small molecules. Its capabilities have previously been demon-
stratedby comparing its performance toother free and commer-
cial programs for 3D structure generation (19, 27). Currently
DG-AMMOS is also employed in the on-line tool Frog2 (28)
that generates 3D structures by a graph decomposition of the
compound using an initial 3D structure rings library. Frog2
embeds theDG-AMMOSalgorithm for “on the fly” generation
of missing rings and adds them to the initial ring library.

2. DG-AMMOS and AMMOS_SmallMol require a library of
small molecules in protonated form. To speed-up the compu-
tations, atom partial charges can be assigned with the
Gasteiger-Marsili method using the OpenBabel package
(http://openbabel.sf.net). Users can protonate small mole-
cules using the OpenBabel version 2.0.2 which applies simple
rules to add hydrogens at a given pH with the option “�p” or
to use the Hgene tool of the myPresto package (http://
medals.jp/myPresto/index.html).

Fig. 6. Enrichment graphs after docking with DOCK6 and after AMMOS_ProtLig minimization for FX. The y-axis is the% of
retrieved actives vs. the percentage of the database screened (x-axis): enrichment results after ligand flexible docking
step with DOCK6 (blue); enrichment results after rescoring employing AMMOS_ProtLig minimization in Case 1 (magenta),
Case 2 (green), Case 3 (red), Case 4 (brown) and Case 5 (dark green).
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3. Despite of the relatively good DG-AMMOS performance,
unrealistic structures can be generated by the employed dis-
tance geometry method that could not be corrected by using
gradient based optimization methods. If a very high-energy
strain remains after the optimization process, the structure of
this molecule is written into a separate file. Thus, the user
should pay attention to this point.

4. AMMOS_SmallMol additionally refines 3D conformations of
drug-like molecules and can be applied on a huge number of
3D conformations pregenerated with DG-AMMOS or other
free (Frog (29), Frog2 (28), Balloon (30), etc.) or commer-
cial (Omega (http://www.eyesopen.com), Corina (Corina
Molecular Networks), ConfGen (31), MED-3DMC (32),
see the recent review (9)) programs. It is worth noting that
AMMOS_SmallMol succeed to minimize molecules with very
high initial energies and to improve the geometries (18).

5. DG-AMMOS and AMMOS_SmallMol facilitate the prepara-
tion of a compound collection prior to virtual high-throughput
screening. The two widely applied in silico approaches, struc-
ture- and ligand-based virtual screening, often require as input
chemical libraries with small molecules in 3D. Up to now,
experimental structural information obtained by X-ray crystal-
lography or NMR spectroscopy are still largely insufficient to
cover the over 50 millions compounds present in databases
worldwide. Thus, the need of computer-generated 3Dmolecu-
lar structures has clearly been recognized over the years. The
ligand-based virtual screening (machine learning and data
miningmethodologies, 3D quantitative-structure-activity-rela-
tionship technologies (3D-QSAR), 3D pharmacophore based
screening and 3D similarity searching methods (7, 8, 33, 34))
applies input information from known active compounds (and
sometimes inactives) to identify diverse chemical compounds
having similar bioactivity or a common substructure or phar-
macophore.Regarding the structure-based approach, single 3D
structures of small drug-like molecules generated by DG-
AMMOS and optimized by AMMOS_SmallMol can be directly
used in a flexible ligand docking process or can be subjected to
multiple conformer generator packages, such as the free tools,
like Multiconf-DOCK (25) or Frog2 (28) for rigid-body
docking.

6. AMMOS_ProtLig allows refinement of protein-ligand interac-
tions, and, depending on the level of protein flexibility, restores
to a different extent the interactions identified for instance in
the experimental structures of protein-ligand complexes stud-
ied. It can be applied on a huge number of protein-ligand
complexes pregenerated with existing docking programs
(see several reviews on main docking programs (11–13)).
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Today various docking programs, commercial or free for
academics, are available. Among the ones that are usually freely
available to academics and commonly used we can cite DOCK
(26), AutoDock (35), and the recently reported AutoDock-
Vina (36), while, for the commercial ones we note GOLD
(37), LigandFit (38, 39), ICM (40) and many others (13).

7. AMMOS_ProtLig is known to offer solutions that assist in
silico screening projects such as improvement of the enrich-
ment after docking, especially when protein flexibility is
required, as seen here for coagulation FX. Further, an impor-
tant point to improve the enrichment results might be treat-
ing the desolvation due to ligand binding. Advanced users can
include several explicit water molecules in the binding site
during the minimization keeping in mind that in most of
cases water molecules are not included during the docking
process.

8. We currently work on the optimization of AMMOS_ProtLig.
We should note that in some situations protein-ligand inter-
actions can induce large receptor conformational changes that
cannot be considered by molecular mechanics minimizations,
and other approaches like molecular dynamics (41, 42) or
normal mode analysis (43, 44) seem more appropriate to
take into account these phenomena. Thus, our goal in the
next version of AMMOS_ProtLig, which is under develop-
ment, is to enable the treatment of larger receptor conforma-
tional changes and an automated scheme that would take into
consideration of the desolvation effects.
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Chapter 10

Rosetta Ligand Docking with Flexible XML Protocols

Gordon Lemmon and Jens Meiler

Abstract

RosettaLigand is premiere software for predicting how a protein and a small molecule interact. Benchmark
studies demonstrate that 70% of the top scoring RosettaLigand predicted interfaces are within 2 Å RMSD
from the crystal structure [1]. The latest release of Rosetta ligand software includes many new features,
such as (1) docking of multiple ligands simultaneously, (2) representing ligands as fragments for greater
flexibility, (3) redesign of the interface during docking, and (4) an XML script based interface that gives
the user full control of the ligand docking protocol.

Key words: Rosetta, RosettaLigand, Ligand, Docking, Small molecule, Flexible, Flexibility,
Interface

1. Introduction

Rosetta is a suite of applications used in protein modeling (2).
These applications have proven themselves in the areas of
protein structure prediction (3), protein-protein docking (4),
protein design (5), and protein-ligand docking (1). In 2006
RosettaLigand was introduced as premier software for modeling
protein/small molecule interactions. RosettaLigand samples
the rigid body position and orientation of the ligand as well as
side-chain conformations using Monte Carlo minimization.
Ensembles of ligand conformations and protein backbones were
used to sample conformational flexibility. The models produced by
RosettaLigand conformational sampling are evaluated with a scor-
ing function that includes an electrostatics model, an explicit orien-
tation-dependent hydrogen bonding potential, an implicit solvation
model, and van der Walls interactions (1). Default ligand-
centric score term weights are provided through “ligand.wts”
and “ligand_soft_rep.wts” (see the SCOREFXNS section of

Riccardo Baron (ed.), Computational Drug Discovery and Design, Methods in Molecular Biology, vol. 819,
DOI 10.1007/978-1-61779-465-0_10, # Springer Science+Business Media, LLC 2012
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Fig. 2). However we have found that optimizing these score term
weights for a particular class of protein/ligand complexes can
greatly improve predictions (see Note 1).

RosettaLigand was later enhanced to allow receptor back-
bone flexibility as well as greater ligand flexibility (6). Both ligand
flexibility and backbone flexibility were shown to improve self-
docking and cross-docking scores and lead to better performance
than the open-source competitor AutoDock. Ligand flexibility
was modeled by sampling ligand conformers and minimizing
ligand torsion angles. Backbone flexibility included selecting
stretches of residues near the ligand and sampling phi/psi angles
for those residues, using a gradient based minimization (6).
Libraries of ligand conformers can be generated using methods
presented by Kaufmann et al. (7). These features have enabled
Rosetta to excel in predicting how pharmaceutically relevant
compounds interact with their target (8).

In this chapter we present new features and enhancements
to RosettaLigand. Multiple ligands, cofactors, ions, and key
water molecules can now be docked simultaneously (Fig. 1).
User provided ligand conformations are now sampled during
docking, along with protein side-chain rotamer sampling. Inter-
face residue identities can now be redesigned during docking.
A new XML script format is used to describe the ligand docking
protocol (Fig. 2). This adds great flexibility for the user to
customize their docking study.

Fig. 1. Multiple ligand docking. Black curve represents a protein interface. Square and circle represent two ligands.
Often multiple ligands, cofactors, water molecules, and ions interact with a protein in a synergistic manner to produce
the resultant interface structure. Using ligand docking software to dock each of these components separately (left ) may
fail to capture protein induced-fit effects. Simultaneous docking of multiple ligands (right ) with backbone and side-chain
flexibility improves modeling of interfaces—especially those with induced-fit effects.
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2. Materials

RosettaLigand is part of the Rosetta software suite for protein
structure prediction. Visit http://www.rosettacommons.org/ to
obtain a license, download the latest release, and read the manual
for help installing the software. The information in this tutorial

Fig. 2. Ligand docking using rosetta_scripts compatible XML. This protocol will do low-resolution docking followed by
high-resolution docking. “Compound movers” group simple movers for clarity. The parameters in this protocol replicate
those used by Davis et al. (6).
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applies to Rosetta version 3.2. Read the documentation about
how to run Rosetta executables using command line or flag file
options (http://www.rosettacommons.org/manuals/archive/
rosetta3.1_user_guide/command_options.html). Read the tuto-
rial entitled “Dock Design Parser Application” (http://www.
rosettacommons.org/manuals/archive/rosetta3.1_user_guide/
app_dock_design.html). This guide describes an XML format
that is now used for all aspects of ligand docking.

2.1. Preparation

of Protein PDB

Input File

Assure that the protein PDB has at least one backbone heavy
atom present for each residue. Rosetta can add missing atoms to
incomplete residues. If a residue is completely missing use loop
building to add its coordinates. Follow the loop building tutorial
(http://www.rosettacommons.org/manuals/archive/rosetta3.1_
user_guide/app_loop.html). Assure that residues are numbered
in sequence. Rosetta will renumber residues if they are not. Assure
that each ligand, cofactor, water molecule, or ion you wish to dock
is assigned its own chain ID.

RosettaLigand has been successful in comparativemodeling (9),
where an experimental structure of the protein of interest is not
available. In this case, a sequence alignment is made between the
protein of interest and a homologous protein with similar sequence.
The three-letter codes in the PDB file of the homologous protein
are replaced with the three-letter codes of the protein of interest,
according to the sequence alignment and side chain conformations
are reconstructed using a rotamer library. If the protein of interest
has insertions, loop modeling is used to fill in missing density.

Since ligand docking only repacks side-chain residues within
the interface, we first repack all side-chain residues in the protein
using the same score function that will be used in ligand docking.
By optimizing unbound and bound protein structures using the
same scoring function, we ensure that predicted binding affinity is
based strictly on changes related to ligand docking. The following
XML code can be used for repacking the unbound structure
within rosetta_scripts.

<SCOREFUNCTION>

<hard_rep weights=ligand>

</SCOREFUNCTION>

<MOVERS>

<Repack name=repack score_function= hard_rep>

<MOVERS>

146 G. Lemmon and J. Meiler



2.2. Preparation

of Ligand PDB

and “Params”

Input Files

If you are starting with a ligand in PDB format, first convert it to .
mol or .mol2 format. Use <rosetta_source>/src/python/apps/
mol_to_params.py to generate a ligand params file and a ligand
PDB file with Rosetta atom types. The .params file describes
partial charges, atom types, bond lengths, bond angles, torsion
angles, and atom types for each residue. Append the atoms in the
generated ligand pdb file onto the end of the prepared protein
PDB file.

If you are interested in large-scale ligand flexibility, generate
conformations for your ligand using OpenEye’s Omega (http://
www.eyesopen.com/omega) or MOE (http://www.chemcomp.
com). These conformations should be in one PDB format
separated by TER statements. Add the line “PDB_ROTAMERS
<location of PDB file with ligand conformations>” to the end of
your .params file.

If your ligand has more than 7 rotatable bonds or if over
100 conformations are required to fully cover the conforma-
tional space of your ligand, split it into several smaller fragments.
Specify split points at the bottom of your .mol or .mol2 file
before running molfile_to_params.py in this fashion: “M SPLT
<index 1> <index 2>” where indices 1 and 2 correspond to the
atom number in the .mol or .mol2 file (the ATOM block line
number). molfile_to_params.py will generate a .params file for
each fragment.

2.3. Relevant

Command Line

or Flags File Options

Rosetta applications use a common set of options that can
be specified either at the command line or in a file. Not all Rosetta
options are relevant or accessed by each Rosetta application.
The options below are most commonly used with ligand docking.
An asterix signifies a required option.

1. –in:path:database <path to Rosetta database>. The Rosetta
database directory is downloaded from www.rosettacom-
mons.org and contains chemical descriptions of each amino
acid as well default score term weights.

2. –in:file:s <space delimited list of PDB files containing protein
and ligand(s)>. Alternatively use –in:file:list.

3. –in:file:list<text file with two or more PDB files listed on each
line>. This option is especially useful for processing batches of
proteins and ligands. PDBs on the same line are concatenated
for docking.

4. –in:file:extra_res_fa <space delimited list of .params files for
each ligand>. See Subheading 2.2 for preparation of these
.params files. Alternatively use -in:file:extra_res_path.

5. –in:file:extra_res_path <path to find .params files>. All files
in this directory that end with “.param” or “.params” will be
included in docking.
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6. –out:nstruct <number of models to produce per input
PDB>. See Note 2 on determining how many models to
produce.

7. –out:file:atom_tree_diff <name of output file>. In atom_
tree_output files only differences from a reference structure
are recorded. Since output models usually only differ within
the interface region, much less disk space is used by only
recording differences.

8. –parser:protocol <name of rosetta_scripts XML file>. This
file allows the user to customize each step of ligand docking.

9. –packing:ex1, packing:ex2. These options provide larger
(more fine-grained) rotomer libraries for conformational
sampling of amino acid side chains. This can improve results
but also increases compute times.

3. Methods

The RosettaLigand protocol has been implemented as an XML
script used with rosetta_scripts. Instead of providing a separate
RosettaLigand executable, the user creates an XML script that
describes each of the pieces of ligand docking, and passes this script
to the rosetta_scripts executable. This provides a large degree of
flexibility to the user, and allows him or her to create novel
approaches to ligand docking. In this section XML scriptable com-
ponents directly related to ligand docking are described. Figure 1
combines these components into a complete ligand docking proto-
col that replicates the previously published protocol. Hundreds
of additional components that are not ligand-centric are available
and described in the rosetta_scripts documentation found in
the user guide. The XML components below are presented in
the order in which they would be used during ligand docking.

3.1. StartFrom Provide a list of possible xyz starting Coordinates for your
ligand. One of these points is chosen at random and the ligand
specified by the chain parameter is recentered at this position.

<StartFrom name=(string) chain=(string)/>

<Coordinates x=(float) y=(float) z=(float)/>

</StartFrom>

3.2. Translate Randomly move the ligand up to a specified distance in any
direction from its starting position. If you are confident about
your ligand’s starting position and seek only to fine tune this
position, consider selecting from a gaussian distribution,
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where the specified angstroms represent one standard deviation
from the starting point. If the random translation lands the ligand
on top of another protein (as evaluated by the repulsive score
term), then try another random translation. Repeat this cycles
number of times before giving up and leaving the ligand at the
starting point.

<Translate name=(string) chain=(string) 

distribution=[uniform|gaussian] angstroms=(float) cycles=(int)/>

3.3. Rotate Randomly rotate the ligand through all rotational degrees of free-
dom. Specify 360� for full rotational freedom. Cycles in this case
is muchmore complicated than seen in Translate. Perform up to
cycles random rotations of the ligand. Only rotations that pass
a Lennard-Jones attractive and repulsive score filter are stored. Also,
rotations that are close in RMSD to other rotations are not stored.
Once a minimum number of diverse structures are collected (this
minimum is 5 times the number of ligand rotatable bonds) one of
these structures is chosen at random as the starting structure. If no
structures passed the attractive and repulsive filter just select the
rotation with the best attractive and repulsive score.

This somewhat complicated rotation selection scheme is
designed to enrich for hard to find poses, which fit in tight cavities
for instance. By storing only rotations that pass an energy filter we
limit ourselves to rotations that are close to the protein but do not
clash with it. By storing only poses with a minimum RMSD from
each other, we increase the probability of selecting “hard to find”
poses (classes of similar ligand orientations that easily fit in the
interface are only stored once). If you prefer to accept the first
rotation, without filtering, just use cycles ¼ 1.

<Rotate name=(string) chain=(string) 

distribution=[uniform|gaussian] degrees=(int) cycles=(int)/> 

3.4. SlideTogether After an initial random positioning of the ligand, the ligand must
be moved into close proximity to the protein. SlideTogether
moves the ligand toward the protein, 2 Å at a time, until the two
collide (as evidenced by a positive repulsive score). The step size
is halved several times (1, 0.5, and 0.25 Å) to minimize the
distance between the ligand and the protein. This step proves
to be crucial to Rosetta ligand docking. Without it interactions
between amino acid side chains and the ligand are rare.

<SlideTogether name="&string" chain="&string"/>

3.5. HighResDocker During high resolution docking, cycles of rotamer trials
(sampling of side chain rotamers, one side chain at a time)
and repacking (simultaneous sampling of rotamers for multiple
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side chains) are combined with small movements of the ligand(s).
The size of these movements is described by the high_res_
angstroms and high_res_degrees options of LIGAND_AREAS
(see Note 3). LIGAND_AREAS are part of INTERFACE_BUILDERs
(see Note 4) which are part of MOVEMAP_BUILDERs (see Note 5).

The movemap_builder describes which protein residues
to include in rotamer trials, repacking, and minimization. If a
resfile is provided, interface residues are allowed to redesign
(change amino acid identity), according to instructions provided
in the specified file. Resfiles can also be specified through the
command line flag “-packing:resfile.” Resfile support allows pro-
tein interfaces to be optimized for particular ligands.

The user specifies how many cycles of docking and how
often to do a full repack (repack_every_Nth—only rotamer
trials occur in the other cycles). After each cycle the structure is
minimized. If minimize_ligand values were specified in
LIGAND_AREAS then ligand torsion angles are minimized as
well. Monte Carlo sampling is used with a Boltzmann criterion to
determine whether to accept or reject the new structure after each
cycle. If a tether_ligand value greater than 0 is specified in
LIGAND_AREAS, the ligand will be remain within the specified
distance (in angstroms). tether_ligand prohibits multiple
cycles of small translations in the same direction from moving the
ligand farther than desired.

<HighResDocker name="string" cycles=(int) repack_every_Nth=(&int) 

scorefxn="string" movemap_builder="string" resfile="string"/>

3.6. FinalMinimizer Minimize the structure of the docked protein/ligand complex.
This includes off-rotamer side-chain torsion angle sampling.
The movemap_builder specifies which residues to minimize.
If Calpha_restraints were specified in LIGAND_AREAS then
backbone j/C angles are minimized as well.

<FinalMinimizer name=(string) chain=(string) scorefxn=(string) 

movemap_builder=(string)>

</FinalMinimizer> 

3.7. InterfaceScore

Calculator

This component calculates a myriad of ligand specific scores and
appends them to the output file. After scoring the complex the
ligand is moved 1,000 Å away from the protein. The model is
then scored again. An interface score is calculated for each score
term by subtracting separated energy from complex energy.
If a native structure is specified, four additional score terms are
calculated:

1. ligand_centroid_travel. The distance between the native
ligand and the ligand in our docked model.
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2. ligand_radious_of_gyration. An outstretched conformation
would have a high radius of gyration. Ligands tend to bind
in outstretched conformations.

3. ligand_rms_no_super. RMSD between the native ligand and
the docked ligand.

4. ligand_rms_with_super. RMSD between the native ligand
and the docked ligand after aligning the two in XYZ space.
This is useful for evaluating how much ligand flexibility was
sampled.

<InterfaceScoreCalculator name=(string) chains=(comma separated 

chars) scorefxn=(string) native=(string)/> 

3.8. Putting It All

Together

Figure 2 presents an XML script that replicates the protocol pre-
sented in Davis, 2009 (6). Because of the flexibility of ligand
docking through RosettaScripts, it is easy to customize this pro-
tocol. For instance high throughput virtual screening of libraries
of compounds can be accomplished by spending more time in low
resolution docking. Results from low resolution docking can be
filtering and used for high resolution docking. A variety of XML
elements not specific to ligand docking can also be included as
part of a docking study (see the Subheading 2).

A customized ligand docking protocol must take into con-
sideration the number of desired output models (see Note 2), and
the amount of time it will take to produce each model, given the
available hardware (see Note 6). Best energy output models
are then selected for further analysis (see Note 7), and used to
generate testable hypotheses about protein/ligand interactions.

4. Notes

1. Score Term reweighting.
The ligand weights specified in the database file “new.ligand.
wts” perform well on a benchmark of diverse protein/ligand
complexes. However results can be improved if weights are
optimized for the class of protein/ligand interactions one is
interested in. We recently used a leave-one-out analysis to
improve the correlation between experimental binding energy
and rosetta predicted binding energy for HIV-1 protease
mutants bound to various protease inhibitors. The leave-
one-out weight optimization improves the correlation coeffi-
ceint from 0.31 to 0.71.

2. How many models should I make?
The number of models one should make is largely determined
by how large of an interface one is sampling. For this reason
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carefully describing the size and shape of an interface can
save much compute time. By adjusting the angstroms
parameter of Translate and adding more StartFrom
Coordinates, a user can restrict sampling to a smaller area.
Another strategy is to create a limited number of models, then
cluster the results based on RMSD (see Subheading 4, step 4).
Select several low energy clusters for further analysis. Select
a model from each cluster. Use these models in ligand
docking studies, after decreasing the size of angstroms in
the Translate mover.

3. LIGAND_AREAS.
LIGAND_AREAS describe parameters specific to each ligand,
useful for multiple ligand docking studies (Fig. 1). cutoff
is the distance in angstroms from the ligand an amino-acid’s
C-beta atom can be and that residue still be part of the inter-
face. all_atom_mode can be true or false. If all_
atom_mode is true than if any ligand atom is within cutoff
angstroms of the C-beta atom, that residue becomes part of
the interface. If false, only the ligand neighbor atom is used
to decide if the protein residue is part of the interface.
add_nbr_radius increases the cutoff by the size of the
ligand neighbor atom’s radius specified in the ligand .params
file. This size can be adjusted to represent the size of the ligand,
without entering all_atom_mode. Thus all_atom_mode
should not be used with add_nbr_radius.

Ligand minimization can be turned on by specifying a
minimize_ligand value greater than 0. This value repre-
sents the size of one standard deviation of ligand torsion angle
rotation (in degrees). By setting Calpha_restraints
greater than 0, backbone flexibility is enabled. This value
represents the size of one standard deviation of Calpha move-
ment, in angstroms.

During high resolution docking, small amounts of ligand
translation and rotation are coupled with cycles of rotamer
trials or repacking. These values can be controlled by the
high_res_angstrom and high_res_degrees values
respectively. Cycles of small ligand translations can lead to a
large translation. In some cases the ligand can “walk away
from the protein.” The tether_ligand option prevents
this by keeping the ligand close to its starting point before
the high_res_docking step.

<[name_of_this_ligand_area] chain="&string" cutoff=(float) 

add_nbr_radius=[true|false] all_atom_mode=[true|false] minimi 

ze_ligand=[float] Calpha_restraints=[float] 

high_res_angstroms=[float] high_res_degrees=[float] 

tether_ligand=[float]/>

152 G. Lemmon and J. Meiler



4. INTERFACE_BUILDERS.
An interface builder describes how to choose residues that

will be part of a protein-ligand interface. These residues are
chosen for repacking, rotamer trials, and backbone minimiza-
tion during ligand docking. The initial XML parameter is
the name of the interface_builder (for later reference).
ligand_areas is a comma separated list of strings matching
LIGAND_AREAS described previously. Finally extension_
window surrounds interface residues with residues labeled as
“near interface.” This is important for backbone minimization,
because a residue’s backbone can’t reallymove unless it is part of
a stretch of residues that are flexible.

By specifying multiple ligand areas, multiple ligand dock-
ing is enabled. Simultaneous docking of multiple ligands,
cofactors, water molecules and ions may capture synergistic
effects overlooked by serial docking (Fig. 2).

<[name_of_this_interface_builder] ligand_areas=(comma separated 

list of predefined ligand_areas) extension_window=(int)/>

5. MOVEMAP_BUILDERS.
A movemap builder constructs a movemap. A movemap is a
2 � N table of true/false values, where N is the number of
residues your protein/ligand complex. The two columns are
for backbone and side-chain movements. The movemap
builder combines previously constructed backbone and
side-chain interfaces (see previous section). Leave out
bb_interface if you do not want to minimize the back-
bone. The minimize_water option is a global option. If you
are docking water molecules as separate ligands (multi-ligand
docking) these should be described through LIGAND_AREAS
and INTERFACE_BUILDERS.

<[name_of_this_movemap_builder] sc_interface=(string) 

bb_interface=(string) minimize_water=[true|false]/>

6. How long will this take to run?
Of course this question depends on many factors: how fast
your computer is, how many processors you have access to,
how large is your protein? Increasing amino acid rotamers and
ligand conformers can increase run-time. Protein backbone
and ligand torsion angle minimization also add increase run-
time. We have found that the majority of the time is spent in
full-repack cycles of ligand docking. Table 1 shows average
times for modeling the interaction of Carboxypeptidase
A with a phosphonate inhibitor. The XML script in Fig. 1
was used with the exception of modifications shown in col-
umn headings.
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7. How do I analyze my results?
When your docking study has finished you will have an
output file (specified by the –out:file:atom_tree_diff option)
which contains hundreds of models constructed and scored by
Rosetta. You can extract these models to individual
PDBs using rosetta_scripts. Prepare an XML script that is
essentially empty. Under <PROTOCOLS> include this line:
<Add mover_name¼null/>. Run the XML script with the
following command line or flags file options:

(a) -in:file:atom_tree_diff <input file name>

(b) -in:file:extra_res_fa <names of .params files>

(c) –parser:protocol <name of XML file with null mover>

(d) –database <directory of Rosetta Database>

Table 1
Carboxypeptidase A was docked with a phosphonate inhibitor (PDB code: 7CPA)

Amino acid rotamers
Standard rotamers Extended rotamers (ex1, ex2)

Ligand conformations 1 10 100 500 1 10 100 500

rosetta_scripts startup 4.87 4.80 4.87 4.92 4.86 4.87 4.89 4.83

Only setup movers 5.81 5.73 5.76 5.72 5.71 5.77 5.91 5.72

Start From 5.84 5.80 5.80 5.72 5.88 5.74 5.76 5.80

Translate (5, 50) 6.05 6.04 5.88 5.84 5.94 6.04 5.83 5.85

Rotate (360, 1) 6.42 6.37 4.74 6.27 6.40 6.40 4.44 6.27

Rotate (360, 1,000) 76.32 44.81 78.42 40.50 82.94 42.31 68.18 39.71

SlideTogether 5.85 5.98 5.88 5.84 5.85 5.91 5.81 5.87

HighResDocker 1 RT 7.92 7.87 7.89 7.85 8.32 8.29 8.35 8.35

+ MinimizeLigand 8.23 8.21 8.22 8.43 8.32 8.26 8.20 8.34

HighResDocker 1 FR 6.37 6.30 6.38 6.33 11.93 11.85 12.00 11.81

+ Ligand flexibility 6.43 6.38 6.38 6.33 11.77 11.70 11.91 11.84

FinalMinimizer 8.95 8.89 8.98 9.06 8.90 8.89 8.97 9.17

+ Backbone flexibility 14.04 14.26 14.32 13.92 14.04 14.24 14.16 12.26

AddScores 6.02 5.87 5.84 5.95 5.88 5.87 5.77 6.05

Combined 86.77 87.20 95.88 83.35 104.19 98.40 68.36 53.46

The ligand has 9 rotatable bonds. Each datapoint represents the average time in seconds for 10 runs. The
combined protocol uses rotate (360, 1,000), HighResDocker with ligand flexibility and 6 cycles of
packing (full repacks at cycles 1 and 4), and FinalMinimizer with backbone flexibility
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You may only be interested in the best models by interface
score or by total score. You can list the TAGs of the models you
wish to extract at the end of the command line. These tags
are found in the atom_tree_diff output file after “POSE_TAG.”
You can search the file for lines that start with “SCORES.”
By sorting these scores you can find the lowest energy models.

You can also use the Rosetta Cluster application to group
your models by RMSD. Then you can choose one low energy
model from several low energy clusters for further analysis. See
the cluster documentation (http://www.rosettacommons.org/
manuals/archive/rosetta3.1_user_guide/app_cluster.html) for
more information.
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Chapter 11

Normal Mode-Based Approaches in Receptor
Ensemble Docking

Claudio N. Cavasotto

Abstract

Explicitly accounting for target flexibility in docking still constitutes a difficult challenge due to the high
dimensionality of the conformational space to be sampled. This especially applies to the high-throughput
scenario, where the screening of hundreds of thousands compounds takes place. The use of multiple
receptor conformations (MRCs) to perform ensemble docking in a sequential fashion is a simple but
powerful approach that allows to incorporate binding site structural diversity in the docking process.
Whenever enough experimental structures to build a diverse ensemble are not available, normal mode
analysis provides an appealing and efficient approach to in silico generate MRCs by distortion along few
low-frequency modes that represent collective mid- and large-scale displacements. In this way, the
dimension of the conformational space to be sampled is heavily reduced. This methodology is especially
suited to incorporate target flexibility at the backbone level. In this chapter, the main components of
normal mode-based approaches in the context of ensemble docking are presented and explained, includ-
ing the theoretical and practical considerations needed for the successful development and implementa-
tion of this methodology.

Key words: Computer-aided drug discovery, Docking, High-throughput docking, Multiple
receptor conformations, Normal mode analysis, Receptor ensemble docking, Coarse-grained
representation, Elastic network model

1. Introduction

In silico methods are already a key component in the costly and
lengthy process of developing new drugs (1–3). The accurate
prediction of ligand–protein interactions is important in struc-
ture-based drug lead discovery and optimization, being also the
foundation of reliable docking algorithms. Target flexibility is a
very common phenomenon (4), and its consideration is crucial to
accurately describe the pose and interactions of a ligand within a
binding site. The implications of protein flexibility in drug discov-
ery have been already reviewed (5), and its impact in docking and
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high-throughput docking (HTD) has been assessed in several
studies (6–9) (cf. also refs. (4, 10–12) for a review).

The explicit consideration of target flexibility in docking poses
a serious challenge due to the high dimensionality of the confor-
mational space to be sampled, especially when docking is applied
in a high-throughput fashion. Early attempts to incorporate pro-
tein flexibility in docking include soft-docking (13) and partial
side-chain flexibility (14, 15). The use of multiple receptor con-
formations (MRCs) to perform receptor ensemble docking
(RED), either from experimental sources or in silico generated,
seems a straightforward approach, since it allows to incorporate
binding site structural diversity in the virtual screening process,
even at the level of backbone plasticity. For the latest develop-
ments in ensemble docking cf. refs. (4, 16).

Since more than a decade, normal mode analysis (NMA)
has been used to study functional motions (17), showing an
excellent correlation between them and global modes (17, 18).
Moreover, it has been shown that these global modes are charac-
teristic of the structural architecture, being insensitive to struc-
tural and energetical details. In a pioneering work, Tirion
showed that a simplified force-field with single parameter har-
monic potentials yields basically the same modes than using a
detailed force-field (the high frequency ones being excluded)
(19). This prompted the development of coarse-grained (CG)
representations, such as the elastic network models (ENM), in
which the protein is represented by nodes linked by springs
(20). In spite of the simplified representation, ENMs exhibited
excellent agreement with experimental data (cf. ref. (17) and
references therein). NMA furnishes an appealing approach to
generate MRCs by perturbing along the low-frequency modes
associated with collective mid- and large-scale movements, and
thus the dimension of the relevant conformational space could
be drastically reduced. This methodology is especially suited to
sample flexibility at the backbone level, where molecular dyna-
mics methods can be too expensive or even inefficient (21). The
use of NMA in the context of docking to account for protein
flexibility has proven to be both accurate and computationally
efficient (7, 21–31).

MRCs generation using NMA could be the method of choice
when very few experimental structures are available, or even none,
in this case starting from homology models (32) (cf. Note 1).
In this chapter, I present the key components of normal mode-
based approaches in the context of ensemble docking. Starting
with a theoretical overview of NMA, the different stages of the
process outlined in Fig. 1 are explained, while Subheading 3
covers theoretical or practical considerations for the successful
development and application of this methodology.
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2. Methods

2.1. Overview The in silico generation of MRCs in the context of ensemble
docking is especially useful in cases where very few structures
have been experimentally solved, or if several were available, to
further expand the structural diversity of the set. The protocol to
generate alternative structures using normal modes and their use
in ensemble docking is outlined in Fig. 1. Once a structure of the
protein is selected, normal modes are calculated using a full-atom
or CG representation (such as ENM). The most important or
relevant modes to the area of interest—or just the few with lowest
frequency—are then selected, and used to perturb the structure of
the protein along the corresponding eigenvectors. If necessary,
optimization of the side chains could follow. Thus, a structural
ensemble of the protein is generated, from which a smaller repre-
sentative set (less than ten structures) is chosen. That set is used to

Fig. 1. Overview of the normal mode-based approach to generate structurally diverse
receptor conformations to be used in ensemble docking.
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perform ensemble HTD of a given compound library, followed by
scoring of compounds. A final stage of ranking follows, after
which some compounds are selected to advance to the bioevalua-
tion stage.

2.2. Normal Mode

Analysis Theory

The potential energy of a system of N particles around stable
equilibrium can be approximated by

V ð~RÞ ¼ V ð~RoÞ þ
X3N

j

@V

@Rj

� �

o

DRj þ 1

2

X3N

j ;k

@2V

@Rj@Rk

� �

o

DRjDRk;

(1)

where ~R ¼ ðr1x ; r1y ; r1z; . . . ; rNx ; rNy ; rNzÞ, DRj ¼ Rj � Rjo, and
the subscript “o” refers to the equilibrium conformation. At equi-
librium, the second term on the right-hand side (rhs) of eq (1)
vanishes, since each of the first derivatives is zero. The first term is
the value of the potential energy at equilibrium, which can be
arbitrarily chosen as zero. The 3N � 3N matrix of the third term
on the rhs of (1) is called the Hessian H. Thus, near equilibrium,

V ð~RÞ ¼ 1

2

X3N

j ;k

DRjHjkDRk

¼ 1

2
ðD~RÞþHD~R: (2)

Within this second order approximation, the dynamics of the
system can be described by (33)

D~R ¼ Re½A~Q ðtÞ�; (3)

where QjðtÞ ¼ Q j expð�ioj tÞ, oj is the normal mode frequency,
the Q j depend on the original positions and velocities, and A and
oj ¼ (ljj)

1/2 (1 � j � N ) are obtained by solving the eigenvalue
equation

HA ¼ MAl (4)

subject to the orthonormalization conditionAþMA ¼ 1.M is the
3N � 3N diagonal mass matrix with M3j�k ¼ mj, for k ¼ 0, �1,
�2 (1 � j � N), and l is the diagonal eigenvalue matrix.

Equation (3) defines a new set of generalized coordinates Q
called normal coordinates (33–35), in which both the kinetic and
potential energy are simple sum of squares of dQ k/dt and Q k,
respectively, without any cross term (see also Note 2).

The displacement along normal modes is expressed as

~X ¼ ~Xo þ
Xm

k¼1

ak~Ak (5)
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where~X and~Xo refer tothefinaland initial conformation, respectively,
~Ak is the eigenvector associated with normal mode k (solution of
eq (4)),m is the total number ofmodes, and ak is the corresponding
scaling factor (see Note 3).

2.3. Structure

Representation

and Normal Mode

Calculation

The protein structure to be used to distort along normal modes is
chosen based on availability. If bound and unbound structures
were available, the bound one might provide a more realistic
starting point for use in ligand docking (7, 24); however, choices
of unbound structures have been also reported (21, 26, 30).

In an all-atom representation, the structure should be mini-
mized prior to calculating the hessian elements, as it has been
assumed in deriving eq (2) (cf. also Note 4). The advantage of
using this representation is that the distortion of the structure
along normal modes is straightforward. However, since minimi-
zation usually deforms the initial structure (17), and global modes
only depend on protein topology, ENM approaches are usually
used, in which the system is represented as a network of masses
linked by springs. By construction, the system is in a global energy
minimum, with zero potential energy. The degree of coarse-grain-
ing is variable, being however very common to represent each
residue by one node situated at the Ca. In other cases, up to five
masses were used to represent a residue (24): one for each main
atom of the backbone (C, N, and Ca), one for Cb and the other
one for the rest of the residue. The nodes are linked by springs
according to a given cutoff, thus the network topology is inherited
from the original protein structure.

Developed from the seminal work of Tirion (19), the aniso-
tropic network model (ANM) (36) is widely used, in which the
potential energy of the network is given by

V ¼ 1

2

X

k<l

CklðRkl �Ro
klÞ2; (6)

where theCkl are the spring constants, and theRkl are the intermass
distances. The sum includes all pairs of nodes within a given cutoff,
which has been identified as 18 Å, provided the nodes are Ca the
atoms (37). Regarding the spring constants, they can be taken as
exponentially decreasing with distance (38, 39), exponentially
decreasing with the interaction energy between the two residues
represented by the nodes (7), or constant (36). Although it has been
noted that stiffer spring constants for neighboring residues may
improve the agreement with experiments (7, 40), the influence of
specific spring constants on the modes is minimal (17).

Another variant ofENM, theGaussianNetworkModel (GNM)
(20) assumes that fluctuations are distributed in a Gaussian fashion
around the equilibriumposition. In this case, the potential energy of
the network takes the form
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V ¼ 1

2

X

k<l

Cklð~Rkl � ~Ro
klÞ � ð~Rkl � ~Ro

klÞ: (7)

Note that in the GNM, the potential depends on the inter-
node distance vector, while in the ANM (6), it depends only on
the length of that vector (see Note 5).

The next step is the actual calculation of normal modes. When
a full-atom representation is chosen, modes can be calculated
directly with programs such as AMBER (41) or CHARMM (42).
Whenever ENMs are used, modes can be calculated using in-house
programs, or through ad hoc websites (25, 37). The calculation
provides a set of NDoF normal mode frequencies, where NDoF is
the number of degrees of freedom, and their associated eigen-
vectors (of NDoF dimension). Sorted by increasing frequency,
the first six normal modes are zero, and correspond to rigid body
operations (three translational and three rotational); and the rest
NDoF-6 modes correspond to internal degrees of freedom.

2.4. Mode Selection

and Receptor

Ensemble Generation

by Perturbing Along

Normal Modes

In the full-atom representation, distortion along normal modes is
straightforward according to eq (5) (30). In a CG representation,
such as ENM with nodes at the Ca atoms, a parallel displacement
of the residue atoms according to their corresponding Ca eigen-
vector will clearly deform the covalent geometry (see Note 6). To
avoid this, Cavasotto et al. minimized in dihedral space an ideal
residue chain tethered to the normal mode generated structured
through harmonic restraints (7). A recent method used for pro-
tein–protein docking (39), but which could be extended for
ligand–protein, is a modification of the CCD algorithm (43) in
order to preserve bond lengths and angles, perturbing only the
backbone ’ and C angles. Another CG approach represents the
backbone by the Ca, C, and N atoms, and computes the normal
modes in dihedral coordinates (24), thus de facto preserving the
covalent geometry (see Note 7).

Since the system experiences the largest displacements along
the slowest modes, one is usually interested in low frequency
modes. It has been shown, however, that at least for several systems
the lowest normal modes (~20) are insufficient to properly
describe conformational changes (7, 24, 44) (see also Note 8).
This prompted the development of a “measure of relevance” r of
the normal modes (7, 24), to gauge those which are more con-
centrated in, or relevant to the site of interest. To this effect, each
mode p is applied to the original structure Co, obtaining two
conformations C+ and C�, corresponding to ap positive and nega-
tive, respectively (cf. eq (5)). The magnitude of ap is chosen such
that the RMSD of the distorted structure with respect to the
original one Co equals a predetermined threshold. The distorted
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structures C+ and C� are superimposed with Co outside the site of
interest L, and the following deviations are computed:

r1 ¼ RMSDðCþ;C�ÞL ;
r2;3 ¼ RMSDðC�;CoÞL ;
r4;5 ¼ RMSDðC�;CoÞA; (8)

whereL andA refers that the RMSD are calculated on regionL and
on the whole receptor, respectively. The measure of relevance r for
each mode is then defined as

r ¼ r1 �maxðr2; r3Þ
maxðr4; r5Þ : (9)

Thus, only the most relevant modes (those with the highest
r values) are chosen to perturb the original structure and generate
an ensemble of diverse MRCs according to eq (5). This can be
accomplished by generating two structures per mode (24), or
using a linear combination of relevant eigenvectors (7). The use
of relevant modes was also recently employed to refine GPCR
histamine 3 (H3) receptor models (28).

When a CG representation is followed, the correct positioning
of the side chains constitutes an additional step. In the first applica-
tions of NMA to generate MRCs for docking (7, 24), side chains
were positioned through a Monte Carlo with minimization (45)
full flexible ligand-protein docking (46, 47), in a similar way as in
the ligand-steered method, where the ligand is used to properly
shape and optimize the binding site (48, 49). Binding sites can be
selected based on ligand–receptor interaction energy, where the
solvation contribution was evaluated using a continuum solvent
model. Structures can also be selected based on their performance
on a small-scale HTD (48): models with the highest enrichment
are selected for RED. If necessary, the size of the MRCs ensemble
can be reduced by clustering the binding site area (48, 50).

The direct use of the first lowest s modes (s ~ 30) is also
possible, such as performed to refine docked ligand–protein com-
plexes using NMA (25), or in a recent work, where backbone
deformation was achieved through minimization along the ten
lowest frequency modes, and side chain flexibility accounted for
through a rotamer library (27). Sperandio et al. (30), using a full-
atom representation, generated an ensemble of conformation of
the CDK-2 protein kinase through distortion along the first
25 modes, until reaching a mass weighted RMSD of �2 Å with
respect to the original conformation, followed by local energy
minimization. Extremely distorted structures were discarded,
and the rest was clustered to ensure structural diversity of the
binding site. A final set of five structures was selected through a
topology-based analysis using their in-house program GP_PASS,
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based on the PASS program (51). In another approach, three
modes were used to generate an ensemble of ~3,400 structures
of the p38 MAP kinase, in which the distortion was inversely
proportional to the frequency of the normal mode (21). Interest-
ingly, it was also shown that this methodology provided better
coverage of the ligand-bound conformational space than molecu-
lar dynamics in explicit solvent, in agreement with what has been
found for a larger set of proteins (52) (cf. Note 9).

2.5. Receptor

Ensemble Docking

Once the MRC have been selected, the compound library is in
silico docked to the structures in a sequential fashion, as if several
crystal (6, 53) or NMR structures (54) were used. Receptor
structures should be previously prepared according to the docking
tool of choice (for a review of available docking programs cf. refs.
(2, 55); see also Note 10). Once the HTD has been performed,
its results on different structures should be merged, and the best
rank (6, 7, 24), or score (30) per docked molecule should be kept.
From here, the selection of compounds for experimental evalua-
tion follows the usual path of single structure structure-based
virtual screening methods (56, 57) (cf. Note 11).

3. Notes

1. Generation of MRCs using NMA is especially useful to
explore the conformational space of backbone degrees of
freedom through slow modes. In this case, it has been
shown that it may outperform molecular dynamics (21, 52).

2. Matrix A in (4) produces a principal axis transformation in
which the hessian is diagonal. Cartesian coordinates have the
advantage of their simplicity, where the coordinates and velo-
cities of each particle can be described independently of the
others. Normal coordinates, instead, describe concerted or
collective motions of the system as a whole, in which particles
move with the same frequency oj for a given normal mode j,
and the associated potential energy term is proportional tooj

2

(33, 34). Thus, large global displacements of the system–such
as domain or loop movements–are well described by low-
frequency modes, the use of which greatly reduces the
dimensionality of the problem.

3. Displacements along normal modes are meaningful as far as
the harmonic representation of the potential (2) remains valid,
i.e., for small displacements.

4. It should be stressed that NMA assumes the system to be in a
local energy minimum. Otherwise, the first derivative of the
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potential energy would not be zero, and (2) would not be valid.
In this context, ENMhas the advantage over the all-atom repre-
sentation that by construction the structure is already in a local
minimum–in fact, a global one–so no further minimization is
necessary.

5. Study of fluctuations revealed that better agreement with
experimental results might be achieved through GNM com-
pared to ANM (58, 59). It should be remarked that in ENM,
besides choosing the form of the potential (ANM or GNM,
for example, see (6) and (7), respectively), a choice of cutoff
and spring constants is necessary to completely characterize
the system and calculate the normal modes.

6. When ENM are used, care should be taken to ensure that
distortion of the original structure along calculated normal
mode eigenvectors does preserve the correct covalent geometry.

7. Modal analysis in internal coordinates (cf. ref. (24)) has the
benefit that small changes in those coordinates may corre-
spond to a significant displacement in distant parts of the
system.

8. As it has been already pointed out (7, 24, 44), in many systems
the few lowest frequency modes are not enough to map the
conformational flexibility of the binding site, while some of
those nodes represent collective modes not relevant to that
site. This poses the challenge of accurately selecting the modes
that are more important to map the conformational change of
the binding site in a way to keep the dimension of the confor-
mational space to a minimum. Thus, in cases where the lowest
modes are not the most appropriate to map conformational
changes, the most “relevant” or significant modes to the
region of interest are selected. These are the actual modes to
be used in generating the structural ensemble for HTD.

9. The final selection of structures to be used in RED is usually
performed based on the calculation of ligand–protein inter-
action energy, topology-based analysis, or according to
the performance of the NMA-generated structures in small-
scale HTD. This choice is system dependent. In cases where
the energy function is not accurate enough to discriminate
the correct conformations, a topology-based approach could
be followed, or the validation through small-scale HTD.

10. It is usually convenient to relax the structures prior to docking
by performing local energy minimization using the force-field
of the docking program of choice, since likely the structural
ensemble is generated with a different force-field.

11. The final performance of the normal mode approach to RED
obviously also depends on the quality of the docking engine
and scoring function used, and should be understood and
analyzed in this context.
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Chapter 12

Application of Conformational Clustering
in Protein–Ligand Docking

Giovanni Bottegoni, Walter Rocchia, and Andrea Cavalli

Abstract

Protein–Ligand docking is a powerful technique routinely employed in structure-based drug design.
Despite many reported success stories, docking is not always able to provide an accurate and easily
interpretable prediction of the structure of the bound complex formed by a small organic molecule
and a pharmacologically relevant target. Cluster analysis can represent a versatile and readily available
postprocessing tool to be employed in combination with protein–ligand docking to simplify the evalua-
tion of the results and help to overcome present limitations of docking protocols.

Key words: Cluster analysis, Protein–ligand docking, Conformational sampling, Hierarchical-
agglomerative clustering, AClAP

1. Introduction

1.1. Protein–Ligand

Docking

Protein–ligand docking is a computational method that attempts
to predict the three-dimensional structure of a complex formed by
a small organic molecule (the ligand) and a biological counterpart
(the receptor), providing, at the same time, an estimate of the
binding energy of the complex. Since the ground-breaking
attempts of the 1980s (1), docking is presently an established
technique fully integrated in structure-based drug design that
has been implemented in many different ways (2–4). However,
while differing in the details, all the adaptations consist of a very
similar stepwise procedure. First, a sampling algorithm generates
various conformations and orientations of the ligand within
the binding site, a specific region of the receptor previously
defined. Then, a scoring function quantifies the strength of the
receptor–ligand interactions of each calculated complex confor-
mation and ranks the solutions accordingly. While a large amount
of reported data suggests that docking predictions have reached a
fairly good level of accuracy, the method is still prone to errors (5).

Riccardo Baron (ed.), Computational Drug Discovery and Design, Methods in Molecular Biology, vol. 819,
DOI 10.1007/978-1-61779-465-0_12, # Springer Science+Business Media, LLC 2012

169



1.2. Trading Accuracy

for Speed

The reliability of the method is hampered by the necessity of
generating both a meaningful set of conformations of the bound
complex and the associated energetic profile in a reasonable
amount of computational time. Docking has to face what Carlson
and McCammon defined as “an unfortunate but necessary trade-
off between speed and accuracy” (6). In each step of the docking
protocol, several simplifications are introduced to speed the
calculations up. First, receptor’s degrees of freedom are usually
ignored and, despite their flexible nature, these macromolecules
are kept rigid during the simulations. Moreover, the binding site is
not usually described at a fully atomistic level but approximated by
a set of grid maps where the potentials felt by different probes are
calculated. These 3D regularly-spaced lattices consent to estimate
receptor–ligand interactions very efficiently, overcoming the expo-
nential dependency of the calculation time on the total number of
atoms in the system. Second, the size of the ligand conformational
space scales to the power of the number of roto-translational and
torsional degrees of freedom considered; for this reason, a com-
plete search becomes almost immediately unfeasible for a typical
drug-like molecule (7). Searching algorithms adopt a variety of
strategies and heuristics to limit the exploration of the ligand
conformational space only to the most probable regions. Despite
these limits and approximations, sampling engines are usually able
to provide at least one solution closely resembling the native pose
of the ligand (8). In fact, standard docking protocols, rather than
ending up pointing toward a single solution, often provide a
collection of possible binding modes. Both stochastic and deter-
ministic algorithms do not generally converge to the global energy
minimum, providing instead a list of possible solutions
corresponding to local minima or their approximations. Each
pose in the ensemble is then assessed by a scoring function and
assigned an estimate of its interaction energy. Ideally, the best
scoring pose corresponds to the binding mode actually adopted
by the ligand. However, this is not always the case. Again, scoring
functions currently employed are very fast but provide only a very
rough estimate of the actual binding energy (9, 10).More accurate
techniques, such as the path-basedmethods, are too time consum-
ing and do not represent a practical alternative (11).

1.3. Reducing

the Size of

the Problem

When the predictions provided by the scoring functions cannot
be entirely trusted, further investigations become necessary.
However, more computationally demanding simulations and
experimental validations cannot be applied indiscriminately to all
predicted poses and it would be advisable to focus on a restricted,
yet representative, set of conformations. Cluster analysis (CA) is a
technique (or, more exactly, a collection of statistical techniques)
that can be applied to reduce the size of an ensemble with only
minor loss of information. CA assigns the elements of a set to
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homogeneous groups according to a given definition of similar-
ity. In the final partitioning, each element is more similar to the
elements belonging to its group than to any other element
outside it. Since members of the same group are homogenous
by definition, one of them can be selected to represent all the
others. Historically, the application of CA in drug design has
been mainly limited to ligand-based drug design protocols (12).
In the absence of the target structure, these techniques build
predictive models by analyzing chemical and pharmacological
features of molecules already characterized. Most of the proper-
ties and descriptors used to extrapolate predictions are strongly
affected by molecular conformation. Recurring to conforma-
tional searches and CA, several meaningful and nonredundant
conformations can be obtained, increasing the chances of cap-
turing the bioactive one.

More recently, CA has been applied to organize the output of
ligand docking runs: docked poses can be considered as points in a
multidimensional space and their conformational similarities esti-
mated as Euclidean distances between points (13). In this way,
poses can be organized in clusters and only representatives pro-
ceed to additional analysis. Furthermore, the cardinality of each
cluster, i.e., the cluster population, provides useful information on
identifying the most favorable regions of the ligand conforma-
tional space within the binding site.

1.4. Docked Poses

as a Collection

of Observed Data

CA represents a very useful tool to bridge ligand docking
outcomes and more accurate, but time consuming, computational
techniques. Grazioso et al. included CA in a sequential method
that they used to validate the predictive power of a homology
model of the neuronal nicotinic acetylcholine receptor–ligand
binding domain (14). They docked several known agonists at
the model binding site and identified the rescoring protocol
providing binding energy predictions in closer agreement with
experimental data. Without CA, which was used to select the
most representative docked poses of each agonist, a systematic
rescoring of the large amount of generated data would have been
prohibitively demanding. Masetti et al. carried out three retro-
spective docking experiments to prove the usefulness of metady-
namics on characterizing pharmaceutically relevant drug-target
complexes (15). Reducing the size of the conformational ensem-
ble by CA, they were able to exploit metadynamics-based undock-
ing simulations to accurately discriminate the ligand native pose,
and characterize the binding event at an atomistic level. Colizzi
et al. implemented CA in SMD Toolbox, a combined computa-
tional protocol that they devised to separate active from inactive
compounds in analogues series (16). In a reported case study, they
generated 200 poses of a flavonoid inhibitor bound at the binding
site of an antimalarial target. After performing CA, they were able
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to restrict the possible binding modes to the representative poses
of only two highly populated clusters. Further investigations
carried out by means of both plain and steered molecular dynam-
ics simulations on these two poses eventually led to the univocal
identification of the correct binding mode. Together, docking
and CA helped the rationalization of SARs in several drug dis-
covery programs recently carried out on acetylcholinesterase
(17–19), butyrylcholinesterase (20), anti-Alzheimer multitarget
molecules (21–25), Cytochrome P450 17 (26–29), aromatase
(30), HIV-1 integrase (31), and Dengue proteases (32).

1.5. Introducing

Receptor Flexibility

CA can also be used in combination with ligand docking to
address the already mentioned issue of receptor flexibility.
A straightforward strategy to implement receptor flexibility in
docking runs is the so-called multiple receptor conformations
(MRC) docking (33). A standard docking simulation is iteratively
carried out on multiple receptor conformers and the results are
finally merged during a postprocessing step. Different binding site
conformations, obtained either by experimental techniques or by
computational means, such as a Monte Carlo procedure or a
molecular dynamics run (34), are usually processed in order to
get a nonredundant set. In fact, a smaller receptor conformational
ensemble ensures faster calculations and, reducing the amount of
generated noise, improves the results’ quality (35–37).

Finally, as it emerges from the work of Kiviranta et al. (38) on
SIRT2 inhibitors and that of Kranjc et al. (39) on prion protein,
CA provides useful insights when applied to sets of docked poses
generated by means of anMRC procedure. In fact, the presence in
the same cluster of poses coming from different receptor confor-
mations points at a lesser importance of conformational fit in the
binding event under investigation.

2. Methods

2.1. Basic Steps

of Cluster Analysis

In the following, the main steps needed to perform CA over a
dataset of n objects (poses or conformations) are described.

1. Obtaining the data and representing them in matricial form,
Xr,c, usually according to the convention that different
columns host the attributes, such as heavy atom coordinates,
of different objects.

2. If necessary, standardizing the data, that is subtracting from
each element in every row r the average value along that same
row, mr, and then dividing by the standard deviation of the raw
itself,sr . Standardization is not always necessary and sometimes
it must even be avoided. In fact, it must be emphasized that
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standardization is an operation that act separately on every
attribute (i.e., atom coordinate or internal degree of freedom),
and therefore it does not preserve the shape, or even the chemi-
cal topology, of individual objects. This holds true also for small
molecules, unless only rigid translations are considered (see
Note 1).

3. Calculating the resemblance matrix R. The resemblance
matrix generally contains a measure of the dissimilarity
(or, equivalently, the similarity) between the objects that
compose the columns of the, possibly standardized, Xmatrix.
The symmetric nature of the similarity concept reflects in the
symmetry of the matrix, where only the lower (or upper)
triangular part can be used.

4. Performing the actual clustering procedure. Now the data are
ready to be clustered and several alternative clustering strate-
gies are available. Here, we will describe in some detail the
hierarchical agglomerative approach, which is one among the
most commonly adopted flavors of the method. It should be
pointed out that the role of CA is to discover an intrinsic
partitioning that already exists in the data and not to force
its creation. If no natural partitioning exists, because objects
are uniformly or randomly distributed in the considered
space, the application of CA will lead to artifacts. For this
reason, it is advisable to proceed to actual CA only after the
clusterability of the set has been assessed (see Note 2).

5. ReorderingX andRmatrices so that similar objects are placed
in adjacent columns, to give the matricial representation a
more intuitive look. In this way the order of columns reflects
the order of the first agglomerative step of the clustering.

6. Estimating the information loss induced by the clustering
procedure, i.e., the discrepancy between the resemblance
matrix, more detailed, and the partitioning provided by the
CA, more intuitive but less precise. This can be accomplished
by deriving the so-called cophenetic matrix C, and then by
calculating the cophenetic correlation coefficient rR,C between
the nontrivial entries of R and C. A good correlation, say rR,

C > 0.8, indicates that the clustering procedure did not appre-
ciably distort the similarity relationship between the original
elements. More details on cophenetic correlation are provided
in Note 3.

7. Setting a granularity level for the clusters. This is often called
“cutting the dendrogram”; one must decide how much
heterogeneity within a single cluster is tolerable. Evidently,
low tolerance leads to high number of clusters, and limits the
dimensional reduction of the problem. There are several
approaches available in the literature that try to automate
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this choice, but in fact there is no absolute criterion to decide
how many clusters are enough to describe similarity (or
diversity) in a dataset. The answer is really a problem and
user dependent. A readily implementable cutting strategy is
discussed in Note 4.

8. Deciding which clusters further analyze. According to the
purpose of the clustering, i.e., whether one is seeking for a
reduced set of significant poses or rather for a set of confor-
mations as diverse as possible, one might want to keep the
representative only of the most populated clusters, as pre-
scribed by the Chauvenet criterion, or of as many as possible
of them, including singletons (i.e., outliers).

2.2. Hierarchical

Agglomerative

Clustering

CA can be implemented in many different ways and the choice of
the exact procedure to adopt is not always straightforward. No
clustering method universally outperforms all the others and indi-
vidual performances are strongly affected by the nature of the data
to be partitioned, in particular the size of the dataset and the
dimensionality of the objects. Hierarchical agglomerative cluster
analysis (HACA) is considered a very robust procedure that can be
tuned to require a minimal level of user intervention. It starts with
a set of n unary clusters, where n is the number of objects, and
iteratively merges the two most similar clusters in the current
disposition. After n iterations, only one cluster containing all the
poses is obtained. “Hierarchical” means that clusters at a higher
level are union of clusters at lower levels, while “agglomerative”
means that clusters can merge but never break apart during the
formation process. Different criteria can be adopted to quantify
the distance between two objects. When docked poses are consid-
ered, the dissimilarity between poses can be easily represented by
their root mean square deviation (RMSD). Some relevant con-
siderations about dissimilarity measures are discussed in Note 5.
Having adopted a dissimilarity criterion for the objects still lets the
user free to decide how to define the intercluster distance. The
way the intercluster dissimilarity is evaluated is called linkage rule.
Four among the most widely used linkage rules are: single linkage,
average linkage (also known as Unweighted Pair Group Method
with Arithmetic mean, UPGMA), complete linkage, and the Ward
method (for further details see Note 6). HACA provides a discrete
representation of the dataset since each object belongs only to one
cluster and no overlap is possible. The main drawback of this
procedure is that it is quite demanding from the computational
point of view. In fact, depending on the specific linkage rule
adopted, the amount of time required scales between O(n2) and
O(n3), being n the number of elements to cluster. However,
assuming that the typical size of an ensemble of docked poses or
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receptor conformations never exceeds 103 elements, HACA can
run on a modern CPU in a reasonable amount of time.

The complete output of HACA can be directly represented by
so-called “dendrograms” (see Fig. 1). Dendrograms are trees
where different clustering levels are shown and provide a visual
and more intuitive idea of the clustering process.

2.3. Which Clusters

Deserve to Be Further

Considered?

As already mentioned, the reasons and the contexts of performing
CA can be different; if the aim is just to get the most diverse
objects in a dataset, then all clusters deserve to be considered,
irrespective of their cardinality. In contrast, if, as it is most often
the case, only the most significant clusters are to be identified,
there are several rationales for privileging the most populated
ones. As described in ref. (13), most populated clusters have a
higher likelihood to include near to native binding poses when
these latter come from different docking algorithms. Moreover,
when docking algorithms rely on energy-based exploration
engines, such as Monte Carlo methods, large clusters are expected
to correspond to energy minima basins, and their representatives
to be quite stable conformations. To decide whether a cluster is
sufficiently populated or not, the so-called Chauvenet criterion
can be adopted. According to it, a cluster is significantly populated
if its cardinality is more than twice the standard deviation apart
from the average population value for that level of clustering.

Recently, the population of a cluster of docked poses has been
employed as an approximate, yet quite reliable descriptor of the
local energy landscape (40). In particular, large clusters have
been associated to the presence of favorable entropic basins.

Fig. 1. Typical structure of a dendrogram. In the abscissae object labels are present, while in the ordinate axis the
intercluster distance at a given clustering level is shown.
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Considering the final partition as an estimate of a ligand configu-
rational integral, Chang et al. devised an approach to estimate the
contribution of the vibrational entropy to the binding energy.
Taking into account this entropic contribution, they were able
to significantly improve the results accuracy for a series of nucleo-
tides docked at the binding site of APS reductase (41).

2.4. The Choice

of Cluster

Representative

If the dendrogramwas pruned at a level that guarantees intracluster
homogeneity (although we must recall that the homogeneity
threshold might be arbitrary) then any member can be taken as a
cluster representative. When this is not the case, probably the safest
way to choose the representative is to identify its centroid. The
centroid of a cluster is the member which is most similar to the
arithmetic average of all the objects belonging to that cluster. Since
the objects we are referring to are molecular conformations or
binding poses, the arithmetic average of different objects may very
well not correspond to a plausible object, for example it may corre-
spond to a wrong chemical topology. The mentioned centroid
definition yields, among the actual conformations or poses present
in the cluster, the “closest” to the average one.

2.5. Cluster Analysis:

Tools of the Trade

Several docking programs implement postprocessing clustering
approaches. In AutoDock (42), CA is carried out according to the
following algorithm: (1) ligand conformations are sorted according
to the predicted binding energy and appended to a list, (2) the best
scoring pose becomes the reference pose, it is assigned to a new
cluster, and it is eliminated from the list, (3) looping through the
remaining conformations, the RMSD from the best scoring pose is
calculated, (4) if theRMSD from the reference iswithin an arbitrarily
set threshold value, the pose is assigned to the same cluster of the
reference pose and eliminated from the list, otherwise it is skipped.
Upon reaching the end of the loop, if no pose is left, then the
partitioning is complete, otherwise the procedure starts back from
step (2). Some remarks seem somewhat relevant. The final result
depends on the initial order of the elements, so that, for instance,
the first element is always a cluster leader. Furthermore, this simple
adaptationof the nearest neighbor searching strategy toCA is known
to suffer from other severe limitations: (1) it yields good results only
when dealing with groups roughly equivalent in size and shape
(which might not be the case when considering docked poses), (2)
the clusters created during the first iterations tend to grow bigger
than those created later, and (3) the threshold distance dramatically
affects the partition outcome and implies a high level of user inter-
vention. GOLD (43) implements a HACA routine (rms_analysis)
based on the complete-linkage rule. ICM (44) standard docking
protocol returns a collection of possible binding modes (the “con-
formational stack”) already pruned by means of UPGMA clustering
based on an internal coordinates RMSD similarity criterion.
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AClAP (Autonomous hierarchical agglomerative Cluster
Analysis based Protocol) is a standalone clustering tool speci-
fically conceived to cluster the output of docking runs and to
automatically provide a functional partitioning without any a
priori knowledge on the optimal threshold distance to cut the
dendrogram (45).

Docking algorithms usually consider a rigid conformation
for the protein target, neglecting fitting phenomena that might
be of crucial importance. To possibly overcome this limitation,
among other approaches, the Relaxed Complex Scheme (RCS)
makes use of long MD simulations of the apo structure of the
receptor (46). From these trajectories, several snapshots that
might resemble the binding conformations can be extracted. In
the first applications of RCS (47, 48), snapshots were extracted
at equal time intervals and adopted indiscriminately, while later
implementations strongly rely on CA to eliminate conforma-
tional redundancy and to reduce the computational burden
(49). The clustering algorithm implemented in advanced RCS
was first adapted to trajectories analysis by Daura et al. (50) and it
is here briefly summarized: (1) receptor snapshots are extracted
at 0.01 ns intervals for analysis; (2) the resemblance matrix is
calculated assessing the RMSD between snapshots after pairwise
superimposition of backbone heavy atoms; (3) for each structure
in the initial pool, the number of neighbors is determined; two
snapshots are considered neighbors if their RMSD is below an
arbitrarily set threshold (1 Å, in this case); (4) the structure with
the highest number of neighbors is taken as the center of the first
cluster and removed from the pool; all its neighbors are assigned
to the same cluster and removed from the pool as well. The
procedure is iterated until all structures are assigned to a cluster.
This type of approach is biased, since it favors the most populated
clusters, and also results in many singleton clusters (i.e., cluster
populated by only one object). The same algorithm, together
with a HACA single linkage protocol and a nonhierarchical
method called the Jarvis and Patrick algorithm (or kth nearest
neighbor), is also performed by g_cluster, an analysis tool
included in the software suite GROMACS (Groningen MAchine
for Chemical Simulation) (51).

Finally, several libraries for CA are available to develop custo-
mized scripts and applications in widely diffused programming
languages and meta-languages, such as C/C++, Fortran, Perl,
Python, Java, and Matlab (MathWorks Inc., Natick, MA, USA)
(52, 53).
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3. Notes

1. When to perform standardization
In the context of protein–ligand docking, CA can be used in a
few slightly different flavors. According to the exact applica-
tion, it may or may not be correct to standardize the data
matrix.

The most frequent application is to partition docked
poses; here, the spatial Cartesian coordinates corresponding
to different poses are used as input for the algorithm and the
RMSD is adopted as a similarity criterion. The aim of this
application is to reduce size and redundancy in the docking
results identifying significant poses to be further examined
with more accurate tools. In this kind of application, neither
superimposition nor data standardization should be per-
formed.

A similar, although different, application for CA is the
conformational analysis of ligands; it can be applied to docked
poses or to sets of conformations of a compoundgenerated by
computational means in solvent or in vacuo. The main differ-
ence between conformational analysis and the analysis of
docked poses is that the first aims at identifying significant
conformations assumed by the molecule, while the second is
focused on possible bindingmodes. In conformational analy-
sis, when the system is represented in Cartesian coordinates,
the dissimilarity between conformations is well represented
by residual RMSD after superimposition. Superimposition is
a procedure that makes a roto-translational fit in Cartesian
coordinates so to minimize the RMSD. When the system is
described in internal coordinates, one can still adopt as a
dissimilarity measure the Euclidean distance between the
representing vectors, although it is no longer proportional
to the corresponding RMSD. However, since in the internal
coordinates formalism variables are not homogeneous, a stan-
dardization procedure is needed.

In conformational analysis of the protein binding site,
different site conformations, obtained either by experimental
techniques or by computational means, such as a Monte Carlo
procedure or a molecular dynamics run, are processed in order
to get a reduced set of diverse conformations. In this applica-
tion, the backbone atoms of the available structures of the
binding site are first superimposed and then theRMSDbetween
the Cartesian coordinates is used to achieve a similarity score.
In this case, as in the first one described, standardization of the
data is not required.
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2. Clusterability assessment
To assess whether conformations show a natural tendency to
group into clusters, the set can be compared to a random distri-
bution. If the set deviates significantly from randomness, it
means that an underlying partitioning exists andCAwill provide
meaningful results. A very simple and efficientway to test cluster-
ability is a modified version of a test originally developed by
Hopkins (54): theH*test.First, inorder to lower thedimension-
ality of the problem, Principal Component Analysis is performed
over the matrix X and the original dataset is projected onto
the reduced space, L, induced by the first three principal compo-
nents. Then, a small number s of random points (between a
tenth and a twentieth of the number of objects) inL is generated.
Thesepoints arenormally distributed,with zeromeans, and their
projection over each principal component direction has the
same standard deviation as the corresponding principal compo-
nent of the dataset. Then, s samples are randomly drawn and
for each of them, as well as for each randompoint, theminimum
Euclidean distance to the members of the dataset is calculated,
and named Di for the samples, and Vi for the points. This pro-
cedure is repeated for the number of samples and theH* value is
calculated as the following average:

H � ¼
Xs

i¼1

Vi

Xs

i¼1

Vi þ
Xs

i¼1

Di

 !, +

dataset

*

Three cases can occur:

0.5 � H* � 0.6: the poses are homogenously distributed

H* ! 0: the poses are regularly spaced

H* ! 1: the poses show a natural tendency to cluster

CA should be carried out only in the last case. The absence of
regular or repetitive patterns in the outcomes of conforma-
tional analysis and docking simulations makes unlikely the
occurrence of the second case.

3. The cophenetic correlation coefficient
The clustering procedure can remarkably simplify a very
crowded dataset. However, this operation has a price: some
details in the similarity between dataset members are lost. A
possible way to estimate this degradation consists in recon-
structing the equivalent of the resemblance matrix after the
clustering has been performed. This can be done by exploiting
the dendrogram as prescribed: if one is interested in the
dissimilarity between elements labeled as 1 and 2 in Fig. 1,
one should follow the dendrogram up to the level where the
two branches join, this occurs at the upmost level,
corresponding to a dissimilarity of 0.8. It is interesting to
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note that this is the very same value one would obtain when
using the dendrogram to get the dissimilarity between any
element on the abscissae located between 20 and 30 and any
other of the remaining elements. According to this prescrip-
tion, one can fill a matrix with the same structure of the
resemblance matrix but containing the values obtained from
the dendrogram; this matrix is called the cophenetic matrix. If
R and C coincided, there would be no information loss.
Therefore, the Pearson correlation coefficient between the
lower triangular parts of R and C is calculated as follows:

rR;C ¼
P

i<j ðRi;j �RÞðCi;j � CÞ
sRsC

;

where

S ¼ 2
X

i<j
Ri;j=nðn � 1Þ

and

sR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X

i<j
ðRi;j �RÞ2=nðn � 1Þ

r

are average and standard deviation for the dissimilarity values,
respectively, and similarly for the cophenetic matrix. Values of
rR,C close to 1 indicate a good preservation of the original
description, usually a threshold of 0.8 is accepted.

4. How many clusters are in the dataset?
Once the dendrogram is formed, the crucial decision is to fix
the level of clustering more suitable to represent the dataset.
As it is natural for a hierarchical agglomerative approach, a
tradeoff must be found between the overall number of clus-
ters and the intracluster dishomogeneity. This decision can be
made upon the previous knowledge that the user has of the
nature of the data or it can be conditioned by the resources, of
computational and/or experimental nature, available to post-
process the results of the clustering. In case an automatic
criterion is sought, here we will present the Kelley-Gardner-
Sutcliffe (KGS) penalty function (55) that can be used as an
automatic cutting rule for hierarchical cluster trees.

In the KGS approach, an average spread value is calculated
for each clustering level of the dendrogram, for simplicity of
representation, it is numbered with respect to the number of
clusters of the level:

AvSw ¼ 1

w

Xw

M¼1

SM ;
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where w is the number of clusters at a fixed clustering level and
SM is the spread of the Mth cluster, defined as follows:

SM ¼ 2

wM ðwM � 1Þ
XwM

m¼1

XwM

q¼mþ1

dm;q :

When all average spread values are collected, they need to
be normalized so that they lie between 1 and n � 1. The
penalty Pw is therefore calculated as:

Pw ¼ ðn � 2Þ½AvSw �minv2f1;:::;ngðAvSvÞ�
Maxv2f1;:::;ngðAvSvÞ �minv2f1;:::;ngðAvSvÞ

þ w þ 1:

As expected, this penalty function is a balance between the
cardinality of the level and the intracluster mean distance. The
minimum value of the KGS function can be chosen as an
autonomous way (as opposite to a user driven way) to prune
the dendrogram. More details concerning the KGS penalty
function and its properties in the context of conformational
and docking analysis can be found in ref. (45).

5. Similarity assessments
The dissimilarity between docked poses can be intuitively
quantified if every atom of the molecule is represented as a
point in space. In this case, the dissimilarity between atoms
can be expressed by the Euclidean distance between the
corresponding points, and the dissimilarity between poses by
their RMSD. It is important to stress that this holds true if,
and only if, the vectors contain the Cartesian coordinates of
the atoms. RMSD can be easily calculated according to:

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 d
2
i

n

s

;

where n is the number of atoms and di is the Euclidean
distance between the ith atoms pair. RMSD displays the
advantage of being very straightforward to understand and
immediate to calculate. However, despite its obvious interpre-
tation, RMSD does not fully encompass all the details of
protein–ligand interaction, and therefore can only be seen as
an approximation of the real dissimilarity measure between
two binding poses (56, 57). RMSD suffers from several major
flaws: first, it is very difficult to define standard RMSD thresh-
old of similarity since close values can assume very different
connotations in different systems. Second, RMSD provides a
synthetic indication of how much two poses are different but
does not provide any information on the different contribu-
tions to that difference. Finally, being a pure geometrical
measure, RMSD fails to capture subtle differences due to
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specific physical interactions between one or a few specific
atoms and the receptor. In this regard, several authors
proposed to shift the focus from ligand coordinates to 3D
information on the receptor–ligand interactions (58). This
information can be stored in 1D bit strings called Interaction
FingerPrints (IFP), where each bit accounts for the presence
or absence of predefined interactions. The distance between
IFPs can be considered an interesting alternative to RMSD to
express (dis)similarity between docked poses.

In specific circumstances, it may be useful to assign differ-
ent weights to different parts of the ligand while assessing the
distance between two conformations. For example, one might
want to downweight the contributions to RMSD of the atoms
interacting with a region of the binding site that is character-
ized by high B-factors or an approximate fit into the electron
density map (59). In other cases, specific ligand moieties
could be downweighted because these parts do not establish
any specific interactions with the receptor and protrude in the
bulk of the solvent. Finally, whenever clear indications are
available that a specific interaction, for example the formation
of coordination bonds with a metal cofactor, is the leading
force of the binding event, it can prove useful to increase the
weight of the atoms reasonably involved in that interaction.
In these cases, the RMSD equation can be expressed as

wRMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 wid2
i

n

s

;

where n is the number of atoms, di is the Euclidean distance of
the i-th atom pair, and wi the weight assigned to the i-th pair.
Moreover, it can sometimes be useful to limit the distance
assessment, and thus clustering, only to a specific part of the
ligand while the rest of the molecule is completely ignored
(42). In this way, it becomes even possible to perform geo-
metrical CA on a heterogeneous set of compounds as long as
they share a common moiety. This latter case can be consid-
ered a special case of the previously described strategy in
which several atoms are assigned a weight equal to zero.

6. Linkage rules
Single linkage (60), also known as nearest-neighbor distance
method, defines cluster dissimilarity as one of the closest pair
of objects:

DM ;Q ¼ min
m2f1;:::;wM g;q2f1;:::;wQ g

ðdm;qÞ;

where D is the intercluster distance, uppercase roman letters
indicate clusters, d is the RMSD-based dissimilarity measure,
and w is the cardinality of a cluster. A well-known drawback of
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the single linkage rule is the so-called “chaining” phenomenon:
clusters generated initially naturally tend to incorporate the
nearby conformations, therefore forming a “chain”; as a conse-
quence, there is a strong bias toward the first clusters to being
more populated than the others.

In the average linkage method, the mean dissimilarity
between all pairs of conformations is taken:

DM ;Q ¼ 1

wMwQ

XwM

m¼1

XwQ

q¼1

dm;q :

According to this definition, no object is privileged with
respect to the others, preventing “chaining” effect to occur.
In the complete-linkage method, the dissimilarity between
clusters is defined as the maximum distance between pairs of
objects:

DM ;Q ¼ max
m2f1;:::;wM g;q2f1;:::;wQ g

ðdm;qÞ;

This linkage rule tends to generate a low number of
clusters of approximately the same size.

A different linkage rule refers to the Ward method, which
uses a dissimilarity definition based on the analysis of variance
(61). At each step, the merging of two clusters, among all of
the possible combinations, that minimizes the following sum
of squares is performed:

X

M

X

r

X

m2M
Xr;m � 1

wM

X

m2M
Xr;m

 !" #2

¼
X

M

X

r

X

m2M
X 2

r;m � 1

wM

X

m2M
Xr;m

 !2
2
4

3
5:

This method tends to create a consistent number of small
clusters, but due to its agglomerative nature (i.e., due to the
fact that it never breaks existing clusters apart to reassemble in
a different composition), it does not guarantee that the global
minimum is reached. A comparative study seems to indicate
that the average linkage rule is to be preferred to both single
linkage and the Ward methods (13).
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Chapter 13

How to Benchmark Methods for Structure-Based Virtual
Screening of Large Compound Libraries

Andrew J. Christofferson and Niu Huang

Abstract

Structure-based virtual screening is a useful computational technique for ligand discovery. To systematically
evaluate different docking approaches, it is important to have a consistent benchmarking protocol that is both
relevant and unbiased. Here, we describe the designing of a benchmarking data set for docking screen
assessment, a standard docking screening process, and the analysis and presentation of the enrichment of
annotated ligands among a background decoy database.

Key words: Virtual screening, Molecular docking, Enrichment, Decoys

1. Introduction

Virtual screening has become an important computational tool
for the identification of potential lead compounds in the field of
drug discovery. Currently both ligand-based and structure-based
techniques are in development, and with the rapidly increasing
availability of protein structures, structure-based virtual screening
(i.e., molecular docking) is now one of the most practical techni-
ques to leverage target structure for ligand discovery (1–5). How-
ever, as new docking methods are developed it is critical to
evaluate these methods in a meaningful and unbiased way so
that their objective performance in potential ligand identification
may be compared in an “apples to apples” fashion.

The most practical use of the molecular docking approach is
to rank small molecules from a large chemical library (typically
containing hundreds of thousands or millions of compounds)
for complementarity to a macromolecular binding site. Ideally,
docking should be evaluated using three criteria: binding affinity,
docking pose fidelity, and database enrichment. Unfortunately,
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accurately predicting ligand binding affinities using the most
rigorous computational chemistry approaches is still very challeng-
ing in both theoretical and practical aspects, without mentioning
the many approximations involved in simple docking techniques.
Pose fidelity, the degree to which a docking method can reproduce
an experimentally derived ligand binding geometry within a speci-
fied root-mean-square deviation (RMSD) tolerance limit, is an
essential requirement and relatively straightforward to determine.
The final key to evaluating docking methods for the prioritization
of large compound libraries is enrichment. Enrichment is the ability
of a docking method to correctly identify binding ligands from a
large database of nonbinding “decoy” molecules. In order for
enrichment to be a meaningful measurement of a docking meth-
od’s usefulness, the benchmarking data set must be properly con-
structed and validated. Databases of randomly chosen molecules
lead to significant enrichment-factor bias. For example, work by
Verdonk and colleagues determined that simple differences in size
distribution between ligands and decoys can yield artificially good
enrichments results (6). Therefore, database molecules must have
similar physical properties to the annotated ligands so that achieved
enrichment is not merely a separation of simple physical properties.
However, these molecules must also remain chemically distinct so
that they do not themselves bind to the target.

The directory of useful decoys (DUD) (7), a database
containing 2,950 annotated ligands for 40 different targets, with
36 physically similar but topologically distinct decoy molecules
per ligand (for a total database of 98,266 molecules) was devel-
oped as a benchmarking set for molecular docking designed to
minimize bias, and is public and freely available online at http://
blaster.docking.org/dud/. While the DUD dataset itself is a use-
ful benchmarking set, it also provides an example of how to create a
database for benchmarking structure-based virtual screening
methods. Additionally, it has stimulated a wide discussion on
how to properly design the virtual screening experiments and
effectively assess their performance (8–16).

Here, we will outline the criteria for the selection of target
proteins, discuss the method for the generation and preparation of
an unbiased database, and describe the procedure for carrying out
the benchmarking. Finally, we will discuss the analysis and presen-
tation of the results. While the focus here is on structure-based
approaches, work by Rohrer and Baumann has shown similar
concerns for ligand-based virtual screening (17).

2. Methods

The programs listed are not necessarily the only ones capable of
carrying out the specified task, but are merely the ones used as
example for demonstrating this procedure. The ZINC protocol
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is used to demonstrate how to prepare the 3D compound
database (18). The DUD protocol is used to demonstrate how
to generate the property-matched but chemically distinct decoy
molecules (7). The DOCK3.5.54 program (19–21) and DOCK
Blaster protocol (22) are used to demonstrate how to perform a
robust docking screening.

2.1. Protein Target

Selection

and Structure

Preparation

1. Select representative target proteins based on high quality
ligand-bound X-ray crystal structures from the Protein Data
Bank (23), with consideration to the availability of annotated
ligands (see Note 1).

2. Identify cofactors, metal ions and structural waters in the
target protein, and treat them as part of the protein if they
are involved in ligand binding.

3. Assign proper protonation states for binding site residues
(e.g., His, Cys, Lys, Asp, Glu) and optimize the orientations
for polar hydrogen atoms (see Note 2).

2.2. Generation

of Benchmarking

Database

1. Prepare the annotated ligands in the correct chirality form
(if known) and seed them among a large compound library
(see Note 3).

2. Calculate feature key fingerprints using CACTVS (24), and
perform the fingerprint-based similarity analysis with the
program SUBSET (25) to exclude the database compounds
structurally similar to any given annotated ligand (seeNote 4).

3. Determine the key physical properties of the annotated
ligands and the remaining database compounds using Qik-
Prop (Schrodinger, LLC, New York, NY), and prioritize the
database compounds with QikSim (Schrodinger, LLC,
New York, NY) based on their physical similarity to the anno-
tated ligands (see Note 5).

4. Divide the benchmarking data set into a training set and a test
set if necessary (see Note 6).

2.3. Three-

Dimensional

Compound Database

Construction

1. Convert molecules to isomeric SMILES using OEchem
(OpenEye Scientific Software, Santa Fe, NM), then generate
initial 3D structures from SMILES using Corina (Molecular
networks GmpH) (see Note 7).

2. Determine the protonation form at pH 7.0 and additional
protonation states and tautomeric forms in the biologically
relevant range of pH (e.g., pH 5.75–8.25) with LigPrep
(Schrodinger, LLC, New York, NY). Obtain a 3D model of
each protonation and tautomeric form using Corina, then use
AMSOL to calculate partial atomic charges and atomic deso-
lvation energies (21).
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3. Enumerate accessible conformations with Omega (OpenEye
Scientific Software, Santa Fe, NM).

4. Combine AMSOL and Omega results into a single “flexibase”
format file using Mol2db (19) (see Note 8).

2.4. Automated Virtual

Screening Pipeline

(see Note 9)

1. Identify binding site residues within certain range (e.g., 12 Å)
away from any heavy atom of the crystallographic ligand or
the residues used to define the site.

2. Calculate the solvent-accessible molecular surface (26) of the
protein binding site with the program DMS (27) using a
probe radius of 1.4 Å.

3. Generate receptor-derived spheres with the program
SPHGEN (part of the UCFS DOCK suite) (28), in combina-
tion with the ligand-derived spheres if necessary (see Note
10).

4. Grid box dimensions are set to maximize the coverage of the
protein without exceeding two million grid points at a pre-
defined grid resolution. Four scoring grids are generated,
including an excluded contact grid, a van der Waals potential
grid, an electrostatic potential grid and a solvent occlusion
grid (21, 29, 30).

5. Docking was performed with DOCK 3.5.54, a flexible-ligand
method that uses a force-field-based scoring function com-
posed of van der Waals and electrostatic interaction energies
corrected for ligand desolvation (19, 21, 29). Ligand confor-
mations are scored on the basis of the total docking energy
(Etot) (Eele + Evdw�¢Glig-solv), which is the sum of electro-
static (Eele) and van der Waals (Evdw) interaction energies,
corrected by the partial ligand desolvation energy (¢Glig-solv)
(21).

2.5. Analysis

and Presentation

of Screening Results

1. Report tuned parameters and precise ligand and structure
details (see Note 11).

2. Calculate the enrichment factor (EF) using the formula
EFsubset ¼ {ligandsselected/Nsubset}/{ligandstotal/Ntotal}, with
particular emphasis on early enrichment (see Note 12).

3. Plot receiver operator characteristic (ROC) curves (Fig. 1) for
sensitivity (Se), where Sesubset ¼ {ligandsselected/ligandstotal} vs.
specificity (Sp), where Spsubset ¼ {(decoystotal–decoysselected)/
decoystotal}, as Se (i.e., % of selected ligands) vs. (1–Sp)
(i.e., % of selected decoys) (see Note 13).

4. Compare enrichment results for the “own decoy” subset to
the database as a whole (see Note 14).

5. Report pose fidelity and scoring (see Note 15).
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3. Notes

1. Protein targets should be selected to represent a variety of
representative active site conditions in a comprehensive
benchmarking campaign, including but not limited to polar-
ity, hydrophobicity, shape, and cofactors, and should be
diverse enough to draw statistically robust conclusions. The
number of annotated ligands per target should be greater than
10, and should represent different structural classes of known
ligands (31, 32). Annotated ligands should be clustered
according to chemotype (13, 16).

2. Ideally, the target protein should be prepared as if the crystal
ligand was absent, as adjusting the protein to favor crystal
ligands is a source of bias.

3. In this work, decoy compounds were obtained from the
ZINC database (33). It is important that the database decoy
compounds are obtained from is a good representation of
chemical space, and can provide an adequate sample of
ligand-like nonbinding compounds. For example, if a target
protein primarily binds highly charged ligands, it is important
that the decoy set also contain a representation of highly

Fig. 1. ROC plot for an example target protein in the DUD database. The y-axis may also be described as “true positives”
and the x-axis as “true negatives.” The x-axis is displayed on a logarithmic scale to better show early enrichment. “Own
decoy subset” refers to the subset of decoys generated for the annotated ligands of the target protein. Note that an
enrichment factor plot for a large database would appear similar to this, with “% of ranked database” on the x-axis.
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charged nonbinders so that enrichment is more than a trivial
discrimination bymolecular charge. Ideally, the ratio of decoys
to actives should be at least 10:1 for each target. However, a
decoy to target ratio of even 4:1 only increases the error by 11%
compared to an infinite number of decoys (34).

4. In the original DUD protocol, compounds were selected
based on a Tanimoto coefficient (Tc) less than 0.9 to any
annotated ligand. Chirality duplicates were excluded. This
reduced the initial ZINC database of 3.5 million Lipinski-
compliant molecules to set of 1.5 million molecules topologi-
cally dissimilar to the 2,950 annotated ligands. A Tc of less
than 0.9 CACTVS type 2 fingerprints roughly corresponds to
a Tc less than about 0.7 for the widely used Daylight finger-
prints. However, a smaller Tc cutoff might be used to further
reduce the possibility of selected “decoy” molecules being
true ligands.

5. In the original DUD protocol, molecular properties were
prioritized as follows: a weight of 4 was specified to emphasize
druglike descriptors (molecular weight, number of hydrogen
bond donors and acceptors, number of rotatable bonds, and
logP) , and aweight of 1was used for the number of important
functional groups (amine, amide, amidine, and carboxylic
acid). The rest of the physicochemical descriptors were
ignored (weight 0) during the similarity analysis procedure.
However, themolecular charge state is probably also an impor-
tant descriptor to be considered inmolecular property analysis,
especially in the cases of treating highly charged ligands. While
these properties are by no means comprehensive, they may
serve as a guideline for the database construction.

6. The Kubinyi Paradox (35) states that as retrospective prediction
is improved by adjusting a method, there is a tendency for that
method to make poorer predictions. This is because certain
virtual screening methods are being fit to the decoys as well as
the annotated ligands. Therefore, some portion of the database
should be set aside for testing to ensure that themethod has not
been over-parameterized. It is important that this test set be
sufficiently different from the training set in order to determine
if the method is indeed over-parameterized (36).

7. The choice of 3D model builder is important. For example,
CORINA and LIGPREP assign bond lengths with differences
of around 0.01–0.02 Å, which results in measurable differ-
ences in enrichment (16). Annotated ligands should be
prepared for screening in exactly the same manner as decoy
molecules.

8. DOCK3.5.54 implements a flexible docking algorithm by
presampling the ligand conformation on the fly, and then
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assembles the ligand conformational ensemble using a
“flexibase” format file.

9. This section primarily outlines the parameters for the auto-
mated docking procedure. In order to screen a large number
of ligands against multiple targets, it is important to automate
the docking procedure as much as possible. Most binding site
preparation, sphere or “hot spot” preparation, scoring grid
calculation, docking calculation and data analysis procedures
have been automated.

10. For large ligands spanning more than one pocket, specify the
part of the ligand most intimately involved in binding as a
fragment in an individual file that can be recognized as the
reference state for generating the docking spheres. Matching
spheres required for the orientation of the ligand in the bind-
ing site are obtained by augmenting the ligand-derived spheres
with receptor-derived spheres.

11. It is critical that all parameters for all docking methods be
reported so that the results may be independently verified.
Additionally, any changes to active ligand or target protein
structure, as well as a description of how any cofactors, metal
ions, or structural waters are treated, should also be reported.

12. In simple terms, EF is the ratio of binding ligands in the top x
% of the database ranked by the scoring method compared to
the ratio of binding ligands in the database as a whole. It is an
evaluation of the docking method compared to random selec-
tion (which corresponds to an EF of 1). For example, EF1 is
the ratio of binding ligands in the top 1% of the ranked
database compared to the ratio of binding ligands in the entire
database. EFmax is the maximum EF. EFmax and EF1 represent
early enrichment. Early enrichment is important, as practically
speaking there will always be a limited number of potential
binding molecules that can be economically tested experi-
mentally.

13. ROC curves may be used to check for bias introduced in
enrichment plots when the ratio of binding ligands to decoys
grows large (37). Like an enrichment plot, the further away
from the diagonal the ROC curve is, the better the docking
enrichment. To check for size-dependent bias, generate an
ROC curve for a randomly selected subset of the database and
compared it to the ROC curve of the entire database.

14. “Own decoys” refers to the subset of decoys matched only to
the annotated ligands for a specific protein target. Performing
docking screens both on the entire database and the subset of
“own decoys” should be considered, as they present distinct
challenges to the docking method.
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15. A common RMSD cutoff for reporting pose fidelity is 2.0 Å,
but this is by no means the only possible metric. Care must be
taken when optimizing a method for pose fidelity, as there is a
tendency for enrichment to fall as pose fidelity increases (38).
Although the RMSD threshold of 2.0 Å is commonly
accepted as docking success, this measurement alone was
argued to be limited unless combined with interaction-based
measurements (39). If scoring is reported as a measure of
affinity, Pearson’s correlation and Kendall’s Tau should be
used, and a correlation with simpler measures such as cLogP
and hydrogen bond donors and acceptors should be reported
as well (40, 41).
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Chapter 14

AGGRESCAN: Method, Application, and Perspectives
for Drug Design

Natalia S. de Groot, Virginia Castillo, Ricardo Graña-Montes,
and Salvador Ventura Zamora

Abstract

Protein aggregation underlies the development of an increasing number of conformational human diseases
of growing incidence, such as Alzheimer’s and Parkinson’s diseases. Furthermore, the accumulation of
recombinant proteins as intracellular aggregates represents a critical obstacle for the biotechnological
production of polypeptides. Also, ordered protein aggregates constitute novel and versatile nanobioma-
terials. Consequently, there is an increasing interest in the development of methods able to forecast the
aggregation properties of polypeptides in order to modulate their intrinsic solubility. In this context, we
have developed AGGRESCAN, a simple and fast algorithm that predicts aggregation-prone segments in
protein sequences, compares the aggregation properties of different proteins or protein sets and analyses
the effect of mutations on protein aggregation propensities.

Key words: AGGRESCAN, Protein aggregation, Amyloid, Inclusion bodies, Protein misfolding,
Protein production, Biomaterials

1. Introduction

Proteindepositionconstitutesamajorbottleneckduringrecombinant
protein production inmicrobial-cell-factories. This challenging prob-
lem impedes the commercialisation of peptide and protein based
drugs with important potential applications in biomedicine (1).
Also, protein aggregation is a major concern in the development of
therapeutic protein formulations since the presence of aggregates in
these solutions reduces effectiveness and may lead to severe immune
responses in patients (2, 3). Moreover, the formation of protein
aggregates, namely amyloidfibrils, has been associatedwith agrowing
numberofhumandiseases, includingAlzheimer’sdisease, spongiform
encephalopathies, typeIIdiabetesmellitusandParkinson’sdisease(4).
Thus, large efforts have been devoted during the past 10 years to the
development of new strategies addressed to reduce or avoid protein
deposition. Interestingly enough, an increasing number of studies
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suggest that protein-based nanomaterials formed by the ordered
aggregation of polypeptides may constitute an attractive alternative
to inorganic materials, since they can be assembled under mild aque-
ous conditions, are easiest todesign andmodify and less expensive (5).

The study of protein aggregation has revealed that the pri-
mary structure of a polypeptide strongly influences its aggregation
propensity and that point mutations may have a huge impact on
protein solubility (6). Furthermore, recent studies have demon-
strated that not all the residues of a polypeptide sequence are
equally important to determine its aggregation tendency since
there are specific regions or “Hot Spots”, that promote and direct
the protein deposition process (7, 8). Additionally, it has been
found that the residues flanking these aggregation-prone regions
act as “gatekeepers” modulating the aggregation potential of
these sequences (9–12). The knowledge accumulated in the past
10 years on protein deposition processes has facilitated the flour-
ishing of algorithms able to predict and characterise the aggrega-
tion propensity of proteins starting from its primary sequence. To
develop these approaches, researchers have employed a high diver-
sity of sources and premises coming from in vitro or in vivo
experimental data (6, 13), structural parameters (14) or biophysi-
cal properties of polypeptides (15). These computational appro-
aches have proved to be remarkably helpful in the design of
strategies to control protein deposition events (16, 17).
The increasing relevance of protein aggregation in biology, bio-
technology, biomedicine and nanotechnology, together with the
easy access to these bioinformatic tools and their overall accuracy
has resulted in a significant number of published works coming
from different research areas, that exploit these predictive tools to
gain insights on the self-assembly properties of structurally and
sequentially unrelated proteins or protein sets (18–24). This chap-
ter constitutes an exhaustive manual intended to assist researchers
in the use of one of such algorithms: AGGRESCAN (25) (http://
bioinf.uab.es/aggrescan/).

AGGRESCAN is a web-based software that locates “Hot
Spot” regions in a polypeptide sequence, calculates the effect of
sequential changes on the protein aggregation tendency and facil-
itates the evaluation of depositional differences between proteins
or protein sets. AGGRESCAN’s algorithm is based on experimen-
tal results obtained from the study of the aggregation of a complete
set of mutants of amyloid b-peptide inside E. coli cytoplasm (26).
These mutants differ only in one residue located in a central Hot
Spot of this peptide. The correlation between each mutation and
the resultant intracellular aggregation permits to obtain a scale of
the intrinsic aggregation propensity for the 20 natural amino acids
when they were located in this crucial position (27). AGGRES-
CAN algorithm exploits this scale to evaluate the aggregation
propensity of each single protein residue according to its relative
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position in the polypeptide sequence (25). This scale reflects the
intrinsic aggregation properties of natural amino acids in biologi-
cally relevant environments and can be considered generic since
the aggregation of proteins with no sequential or structural rela-
tionship seems to be controlled by the same general rules (4, 6).

AGGRESCAN is an easy to use and fast web-server that
permits to analyse simultaneously the aggregation properties of a
large number of proteins, independently of their size (25). This
software provides graphs to facilitate rapid identification of the
distribution of aggregation-prone residues in a polypeptide
sequence. The outputs include tables and normalized values that
facilitate the evaluation and comparison of the aggregation prop-
erties of different related or unrelated proteins. The algorithm can
be employed in different applications ranging from the discreet
analysis of single proteins and their mutants (28) to the study of
the aggregation properties of whole proteomes (23). AGGRES-
CAN accuracy and applicability can be enhanced complementing
its results outputs with structural predictors (29) or using it in
tandem to other well established aggregation predicting programs
(16, 28, 30–32). Overall, AGGRESCAN, as well as alternative
aggregation predictive algorithms, are versatile tools that can be
employed for many different purposes:

Localisation of Hot Spots

1. To identify protein regions especially relevant for protein
aggregation and amyloidogenesis (32, 33).

2. To calculate the distribution of aggregation-prone regions in
individual proteins (34–36).

3. To identify target regions for the action of b-sheet breakers. b-
sheet breakers are short peptides able to bind an amyloido-
genic sequence and disrupt the intermolecular network that
propagates the amyloid fibril conformation (37–39).

4. To identify sequential targets for small chemical compounds
or antibodies able to block protein aggregation in disease-
related processes.

5. To identify regions able to interact with excipients that would
reduce the aggregation of therapeutically relevant proteins
during storage and increase their shelf life (40).

6. To find putative substrates for molecular chaperones (9, 41).

7. To provide information about the cytotoxic mechanism of a
protein (30).

8. To improve the solubility of therapeutic proteins (2).

9. To design short peptide sequences able to self-assemble into
ordered structures useful for nanotechnologic applications (5).
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Discrete analysis of sequences

1. To identify gatekeeper residues and/or modify them in order
to modulate the aggregation propensity of the sequence they
flank (10–12).

2. To redesign globular proteins in order to stabilize the native
conformation avoiding the occasional exposure of Hot Spots
(42).

3. To redesign proteins in order to ensure their solubility in
pharmaceutical production (16, 17).

4. To obtain a list of possible protective mutations able to avoid
protein aggregation (43).

5. To predict how changes in the polypeptide sequence would
affect its aggregation propensity (15, 17).

6. To design sets of peptides with a gradation of aggregation
propensities for specific purposes, such as studying the corre-
lation between deposition tendency and cytotoxicity (22).

Analysis of large data sets

1. To identify common features between related proteins such as
polypeptides from the same structural or functional family or
those associated to conformational diseases (30, 44–46).

2. To study how evolution modulates the sequence and compo-
sition of aggregation-promoting regions (9, 23, 47).

3. Proteome screening to find new mutations with risk to induce
protein aggregation.

4. To study the relationship between protein aggregation pro-
pensity and solubility (28).

5. To analyse the similarities and differences between native intra-
molecular, native intermolecular and aberrant intermolecular
contacts leading to protein aggregation (29, 31, 48, 49).

6. To study entire proteomes in order to obtain general rules
linking proteins aggregation propensity and their role in the
biology of the cell.

2. Methods

2.1. Front Page The AGGRESCAN initial screen includes links to understand
the basis on which it is implemented this web server (Fig. 1).
At the top, the user can retrieve the open access article where
the program was originally published, the help file and contact by
e-mail with the authors. The essential element of this screen is a
central window where the input information has to be introduced.
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At the bottom the user can find links to the web page of the
author’s institutions.

2.2. Selecting

and Entering

Polypeptide

Sequences

The user should type or past the amino acid sequence from the
protein or protein sets to analyse. The input sequence(s) must be
in one letter amino acid code consistent with FASTA format (50)
(see Note 1). Because AGGRESCAN can perform simultaneous
predictions for large protein sets the sequences should be named
individually to differentiate them from previous and subsequent
sequences (see Note 2). After introducing the required informa-
tion the user should press the submit! button to start the program
calculations.

2.3. The Output Screen The output screen consists of four sections (Fig. 2). The top left
section corresponds to the name of the calculated AGGRESCAN
values and a link to the help file where the user can find a description
of each item (to know more about the AGGRESCAN values check
Notes 3 and 4). The result of each calculated parameter for all the
analyzed sequences is shown at the top centre together with links
to three graphs that illustrate the aggregation properties of the

Fig. 1. AGGRESCAN front page. The AGGRESCAN front page displays different links and a main window to submit protein
sequences. In the central window there are written in FASTA format the sequences of three putative proteins (protA,
protB and protC) with equal amino acid composition but different residue arrangement.
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analyzed sequences more visually (see Note 3). The right section is
useful for the analysis ofmultiple sequences and includes the average
of each AGGRESCAN value in the complete dataset and a list of the
introduced sequences sorted by their “global protein aggregation
propensity average” (Na4vSS) (see Note 5). Under the AGGRES-
CAN values of each sequence, there is a list displaying the intrinsic
aggregation propensity of their residues according to its location in
the sequence (a4v) (see Note 3). There are also three contiguous
columns that indicate the contribution of each residue in the
sequence to Hot Spot regions (HSA, NHSA and a4vAHS) (to
know more about Hot Spots properties check Notes 2, 6 and 7).

As explained above, AGGRESCAN can be applied to perform
discrete or large sequential analyses (see Notes 4 and 5). In the
sections below it is described how to use the algorithm for these
purposes.

Fig. 2. Output screen showing the AGGRESCAN analysis of three putative proteins with equal composition but different
sequences. (a) AGGRESCAN value names and links to the help file (question mark). (b) Sequence names, links to
AGGRESCAN graphs and results of the analysis. (c) Average values and ranking list. (d) Intrinsic aggregation propensity of
each residue (a4v) and their influence in a Hot Spot region (HAS, NHSA and a4vAHS). Hot Spot residues are shown in grey
colour (red in the online image). The protein sequences correspond to those in Fig. 1.
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2.4. Targeted Analysis When the objective is to study the aggregation properties of a
single protein, to compare it with a mutant variant, with a protein
from the same family or to redesign it modulating the deposition
tendency, the user should make use of AGGRESCAN individual
results. First of all, the three AGGRESCAN plots (Fig. 3) permit a
global and rapid examination of the distribution of aggregation
prone residues along the sequence and to localiseHot Spot regions
if they are present (see Notes 6 and 7). Specifically, graph P illus-
trates the aggregation tendency profile of every introduced
sequence. Graph A shows exclusively the area comprised by those
residues involved in a Hot Spot and graph A/N shows the same
area normalised by the protein length. This last plot allows the
comparison between proteins of different size. To know the exact
value of each single residue in the three graphs the user can exam-
ine the lists at the bottom of the screen (see Notes 2 and 6 and
Fig. 2). Data in column a4v is plotted in graph P, data in column
HSA is plotted in graph A and the values of column NHSA multi-
plied by a factor of 102 are plotted in graph A/N.
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Fig. 3. Role of protein sequence and composition on aggregation properties. Examples of graphs P (top) and A/N (bottom)
of three putative proteins with equal composition but different sequence (see also Figs. 1 and 2). The HST and a3v value
are shown as a black (blue on the online image) and grey (green on the online image) horizontal lines, respectively. protA
is an example of a protein with the aggregation prone residues concentrated in one region. protB possess two
aggregation prone regions. proC has aggregation prone residues distributed along the protein sequence and conse-
quently AGGRESCAN does not detect any Hot Spot (there is no A/N graph). Despite these three proteins have identical
amino acid composition their different residue arrangement confers them different aggregation properties.
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2.5. Detecting Hot

Spots and Modulating

Intrinsic Protein

Aggregation

Propensity

The aggregation properties of peptides and proteins are strongly
dependent on specific sequence regions whose aggregation ten-
dencies are particularly high. The comparison of graphs from
different polypeptides makes easy to detect regions differing in
aggregation propensity and permits to detect changes in the num-
ber or size of Hot Spots and thus to predict the effect of sequential
changes on aggregation (25) (seeNotes 6 and 7 and Figs. 3 and 4).
To get more precise information about the residues contributing
to the detected Hot Spots they are highlighted in red in the
different lists (Fig. 2). Comparison of the Hot Spot area values
informs on the differential contribution of each Hot Spot to the
overall protein aggregation propensity (Figs. 3 and 4) (seeNote 6).
This information can be used to forecast the effect of genetic
mutations on the depositional properties of proteins related to
conformational diseases (Fig. 4) or to find candidate sequences
whose chemical blockage by drugs might modulate the nucleation
of aggregation and thus be of potential therapeutic use. In addi-
tion, it can be used to generate more soluble variants of a protein
of biotechnological or biomedical interest like short signalling
peptides or antibodies (see Note 8).
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Fig. 4. Example of designed mutations changing protein aggregation propensity. This image shows the AGGRESCAN
analysis of the Amyloid-b-peptide (WT) and a point mutant (F19D). (a) Graph A of the Amyloid-b-peptide. (b) Graph A/N of
the Amyloid-b-peptide. The arrow and dotted line indicate the size increment of the first Host Spot when comparing the
A and A/N graphs, this data suggest that despite this region comprises few residues it accumulates high aggregation
potential. (c) Graph A/N of the point mutant F19D. (d) AGGRESCAN values resultant from the analysis of the Amy-
loid-b-peptide (WT) and the point mutant (F19D). (e) Section of the amino acid value list comprising the residues of
Amyloid-b-peptide first Hot Spot. The Hot Spot residues are shown in grey (red in the online image). (f) The same section
of the list comprising the residues of the mutated peptide (F19D), in which no Hot Spot is now detected.
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The sequence stretches with higher aggregation propensity
could be interpreted as target regions where modulate the overall
aggregation tendency of the protein (Fig. 4). To carry out virtual
sequential changes and then run the AGGRESCAN calculations is
a useful strategy to redesign a protein, for example, to reduce its
deposition propensity (Fig. 4) (see Note 8). The a3vSA value for
proteins of equal length and the Na4vSS value for proteins of
different size provides an estimation of the global protein aggrega-
tion propensity and therefore it is very useful to check how
these values are expected to change after a sequence modification
(seeNote 4). Itwould be also useful to compare theAGGRESCAN
values obtained with those characteristics of different proteins
differing in conformation (see Note 9). This comparison could
indicate, for instance, if the aggregation properties of the polypep-
tide of interest resembles that of a globular, a natively unstructured
or an amyloidogenic protein (25). The predicted aggregation
properties might be compared with those predicted for soluble
and insoluble data sets to test if it can be classified a priori in one
of these two groups (see Note 9).

To illustrate the application of the AGGRESCAN program for
detecting aggregation prone regions and modulating the aggre-
gation propensity of a particular protein sequence, Fig. 4 exem-
plifies a study performed with the Amyloid-b-peptide (Ab)
associated to Alzheimer disease (51). According to AGGRESCAN
this peptide encloses two Hot Spots between residues 17–22 and
30–42 (25, 27), these data could be obtained from the A and A/N
graphics, from the nHS value or counting up the groups of
residues coloured in red from the bottom lists (Fig. 4). The
comparison of A and A/N graphs shows that the 17–22 Hot
Spot, despite comprising fewer residues, has a global aggregation
propensity close to the complete 30–42 region. The Na4vSS value
is 6.4 and the a3vSA is 0.064 since both are positive values
(see Note 3) they indicate that this peptide has an aggregation
propensity greater than the average of all the proteins diposited in
the SwissProt database (see Subheading 14.7). In case that the
objective of the study consists in the reduction of Ab aggregation
propensity, the two detected Hot Spot regions are good candi-
dates to introduce specific sequence modifications (see Note 6).
Looking at Table 1 (see Subheading 14.4) we can select to change
a high aggregation prone residue from one of these Hot Spots by a
low aggregation one in order to decrease the deposition tendency.
In this way, the change of Phenylalanine 19 by Aspartic acid causes
the loss of the first Hot Spot and a concomitant reduction of the
a3vSA and Na4vSS values (Da3vSA ¼ �0.081 and DNa4vSS ¼
�8.6) (see Notes 2 and 4). In addition, the area values of THSA
and TA experience an important decrease (DTHSA ¼ �3.821
and DTA ¼ �3.59) suggesting a significant reduction of the over-
all protein deposition tendency. The lists under AGGRESCAN
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values show how the presence of this new residue at position 19
promotes a reduction of the aggregation propensity on the entire
Hot Spot region (Fig. 4). In agreement with these predictions, it
has been experimentally observed that after 48 h of incubation the
wild type Ab is able to form mature amyloid fibrils whereas, under
the same conditions, the mutant remains completely soluble (26).

2.6. Detecting

Gatekeepers

Not only Hot Spots are important for protein aggregation but
also the residues flanking them, or gatekeepers, play a crucial role in
deposition modulating the self-assembly properties of aggregation-
prone regions (10–12). Accordingly, the presence of gatekepper

Table 1
Relative experimental aggregation
propensities of the 20 natural amino
acids derived from the analysis
of Amyloid-b- peptide mutants
(26, 27)

Amino acid Value

I 1.822

F 1.754

V 1.594

L 1.380

Y 1.159

W 1.037

M 0.910

C 0.604

A �0.036

T �0.159

S �0.294

P �0.334

G �0.535

K �0.931

H �1.033

Q �1.231

R �1.240

N �1.302

E �1.412

D �1.836
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residues with low aggregation-propenisty reduces Hot Spots
aggregational influence and, in vivo, favours the binding of chaper-
ones. Moreover, several mutations located in these regions have
been associated with the development of depositional diseases. It is
possible that a Hot Spot region would match with a structural
secondary element,wouldbe involved in crucial intramolecular inter-
actions or would be part of the active site of a protein, in these cases
although the sequence of the Hot Spot cannot be directly changed,
the manipulation of the flanking residues might have exactly the
same effect on the local aggregation propensity. Increasing the pro-
portion of charged and/or hydrophilic residues in these regions
could help to improve the overall protein solubility.

2.7. Globular Proteins Because AGGRESCAN is based on the experimental results
obtained with an aggregation-prone initially unstructured protein
(25–27), the data provided by the algorithm should be applied
essentially to aggregation processes starting from totally or par-
tially unfolded states in which the detected aggregation-prone
regions are expected to be accessible to solvent and free to initiate
the self-assembly process. However, the predictions of AGGRES-
CAN can be easily complemented, if available, with structural
information for the selected polypeptide (see Note 8) (29).
Overlapping of these data allows tracing the Hot Spots in the
native conformation of a globular protein allowing detecting
accessible aggregation-prone regions that potentially might start
depositional processes from initially structured conformations.
On the contrary, if a Hot Spot is located inside a secondary
structure element or buried in the hydrophobic core it will be
blocked by stable and often highly cooperative intramolecular
interactions and only destabilization of the overall protein confor-
mation would allow structural fluctuations able to result in its
exposition. Therefore, when we deal with globular proteins and
their mutants it turns to be very useful to analyse, together with
changes in the aggregation propensity, the effect of sequence
modification on the overall protein stability (see Note 8) (28).

Combining the prediction of amyloidogenic sequences and
protein-protein interaction patches using algorithms like
SHARP2 (http://www.bioinformatics.sussex.ac.uk/SHARP2) or
InterProSurf (http://curie.utmb.edu/) it is possible to determine
the spatial coincidence between both regions (29). The so called
Interface Proximity Index (IPI) allows evaluating if the proximity
of an aggregation-prone region to a given real interface is specific.
After the determination of the amyloidogenic sequences and the
interface, the number of residues in the aggregation-prone region
at less than 3 Å from the interface and at less 3 Å from a randomly
chosen protein surface (with the same size that the interface) that
does not include the interface are calculated. Each random surface
is generated by an aleatory selection of a number of solvent
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exposed residues equal to the number of residues constituting the
real interface. Usually, 100 random surfaces are generated for each
aggregation-prone region analyzed.

IPI ¼ 1�(SP/IP)
IP ¼ Interface Proximity ¼ nR/nHS

SP ¼ Surface proximity ¼
P100
nS¼1

nS nHS=

100
;

nR ¼ number of residues in the aggregation-prone region at
less than 3 Å from the interface.

nHS ¼ number of residues in the aggregation-prone region.
nS ¼ number of residues in the aggregation-prone region at

less than 3 Å from a randomly chosen protein surface that
does not include the interface. An IPI � 0 indicates that the
aggregation-prone region is equally or less close to the interface
than to the rest of the surface. An IPI > 0 indicates that the
aggregation-prone region is closer to the interface than to the
rest of the surface.

We illustrate the utility of detecting the coincidence between
interaction and aggregation-prone region tounderstand the under-
lying causes of conformational diseases with the case of human
transthyrretin (TTR) (Fig. 5) an amyloidogenic protein, whose
mutation originates familial amyloidotic polyneuropathy. The
native protein is a homotetramer and presents five aggregation-
prone regions according to AGGRESCAN, three of them exhibit
high IPIs and 90% of the residues of four aggregating regions
are close to the two interfaces of the TTR tetramer suggesting
that mutations that destabilize the interface might interfere with
quaternary protein interactions resulting in the exposition of
previously hidden aggregation-prone regions. The stabilization of
existing interfaces in multimeric proteins or the formation of new
complexes in monomeric polypeptides might become effective
strategies to prevent disease-linked aggregationof globular proteins.

2.8. Characterisation

of the Aggregation

Properties of Protein

Sets

Perhaps the best feature of AGGRESCAN is its ability to analyse
the aggregation propensity of large protein sets in a very fast way.
The most useful AGGRESCAN parameters for this type of studies
are the average values of the complete protein set as well as the
ranking list. The average data show the general aggregational
features of a selected protein group (25). These average values
permit to distinguish the properties of different protein sets and to
identify if a new polypeptide posses similar aggregation properties
than a previously analysed group and therefore to discard or
confirm its assignment to this group (23, 25).
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2.9. Inferring the

Biological Significance

of Protein Aggregation

There is also the possibility to contrast the different outputs
provided by AGGRESCAN with other characteristics of the pro-
tein set (see Note 9) (23). To facilitate this type of analyses
AGGRESCAN provides a text file, with the AGGRESCAN values
for each particular protein sequence and the average values of the
protein set, that can be copied and pasted into a spreadsheet (see
Note 5). The statistic analysis of these data might facilitate to
obtain general or evolutionary conclusions related with proteins
composition, sequence and their environment (23). Because, a
protein set is usually composed by polypeptides of different length
the user must use to this aim exclusively the normalised AGGRES-
CAN values (NnHS, AATr, THAr and Na4vSS) (see Note 4).

It is possible to employ AGGRESCAN to analyze complete
experimental or theoretical proteomes and search for protein
sequences with a special feature, for example high or low aggrega-
tion propensity, with the aim to identify new target sequences for
depositional diseases. In addition, the file provided by AGGRES-
CAN makes possible the comparison of the polypeptide aggrega-
tion properties with the information collected in functional
databases (23). For instance, the results obtained could inform
us about the relationship between protein aggregation propensi-
ties and biological function or cellular localization (23).

Fig. 5. Interface proximity index (IPI) of aggregation-prone regions in the monomer of
human transthyretin. Aggregation-prone regions are coloured according to their IPI
values, which reflect their proximity to the protein complex interface. Dark residues
(red in the online image) correspond to aggregation promoting residues located at the
interface of transthyretin tetramer, whose exposition upon quaternary structure disso-
ciation might trigger the aggregation event.
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3. Perspectives

We have presented the AGGRESCAN methodology for predict-
ing the aggregation propensities of peptide and proteins based on
their specific amino acid sequences. The described approach is
based on the assumption that the primary structure of a
protein determines its folding, misfolding and aggregation beha-
viours. Methods such as the one that we have described here
aimed to predict the most important regions for triggering aggre-
gation processes from unfolded, partially folded or globular states
polypeptide should assist the development of rational strategies
and drugs to modulate protein aggregation in biotechnology and
in conformational diseases, while allowing the design of highly
ordered arrays of proteins with potential use in nanotechnology.

4. Notes

1. Please be sure that the input sequences are in FASTA format
(50). If the sequences are not in this format an error message
indicating this problem will appear on the screen. Remember
that a “>” symbol before the sequences permits to identify
the names and differentiate them from the previous and
subsequent sequences. It is recommended to employ a word
processor to check that there are no letters different from
those corresponding to the 20 natural amino acids. This test
is crucial when large sequence sets are copied directly from
databases since they usually contain unidentified amino acids
labelled with an X. Whitespaces, enter and tab characters in
the sequences are ignored.

2. AGGRESCAN supports sequences length up to 2,000 resi-
dues and 100 characters for name entries. However, long
names should be avoided since they could disturb the

Fig. 6. Calculation example of an a3v window average (a4v).
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visualization of the output. The sequence names must not
contain symbols, only numbers, letters and underscores (_)
are recognised.

3. Definition of AGGRESCAN output parameters:
Amino acid aggregation propensity value (a3v): This parame-
ter is the relative aggregation propensity of a particular amino
acid when placed at the first Hot Spot of Ab (26, 27). This
value was calculated based on the aggregation in vivo of 20
different point mutants of this peptide fused with a fluorescent
reporter (26). To obtain the individual aggregation propen-
sities, the change in the aggregation relative to the wild type
peptide was calculated and normalised by the average change
of the 20 natural amino acids (27) (see Table 1). The a3v is
indicated in the AGGRESCAN plots as a green line.

a3v window average (a4v): This is the a3v average over a
sliding window that depends on the protein length (see
below). This average value is assigned to the central residue
of this window. The size of the sliding window (5, 7, 9 or 11
residues) was trained against a database of 57 amyloidogenic
proteins with known Hot Spots. To avoid analysis problems
the program employs optimal window lengths relative to the
size of the analyzed protein. Accordingly, the finest predictions
were obtained using a window size of 5 for�75 residues, 7 for
�175, 9 for �300 and 11 for >300. These data indicate that
for long sequences large Hot Spots are required in order to
significantly influence the aggregation propensity, while short
stretches suffice for small peptides. A virtual residue is added to
each side of the sequence to incorporate the charge effects of
the polypeptide’s termini (NH3+ and COO�). Accordingly,
the a3v of residue 0 (N- terminus) is the a3v average of the
basic residues (K, R, see Table 1) and the residue n + 1 (C-
terminus) is the a3v average of the acidic residues (D, E, see
Table 1). Provided that not possible to calculate an a4v value
for the off-centre residues 1, 1–2, 1–3 or 1–4 of the selected
windows these residues receive the average value of the first
window ranging from residue 0 to residue 4, 6, 8 or 10,
respectively (Fig. 6).

Hot Spot Threshold (HST): The Hot Spot Threshold is a value
that indicates the average composition of a standard sequence
protein. Accordingly, an a3v value above the HST indicates
the existence of more aggregation prone residues than in a
typical protein and an a3v smaller than the HST the presence
of fewer aggregation prone residues. The HST value is �0.02
and it is calculated as the average of multiplying the a3v of
each natural amino acid by its frequency in the SwissProt
database. The HST is indicated in the AGGRESCAN plots
as a blue line.
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Hot Spot (HS): AGGRESCAN identifies as a Hot Spot those
sequence stretches of 5 or more uninterrupted residues with
an a4v larger than the HST and without any proline. Proline
residue is assumed as an aggregation breaker since its structure
destabilizes the b-sheet conformation characteristic of
ordered aggregates (52, 53).

AA: This is the name of the column that displays the amino
acid sequence of the protein.

Number of Hot Spots (nHS): This is the number of Hot Spots
that have been predicted to be in the analysed sequence.

Normalized number of Hot Spots for 100 residues (NnHS): This
value is the nHS divided by the number of residues in the
input sequence and multiplied by 100.

a4v average in the Hot Spot (a4vAHS): This value is the a4v
average in a given HS.

Total Area of the aggregation profile (TA): This is the area of
the AP graph, taking the HST as the zero axis, along the entire
input amino acid sequence, calculated with trapezoidal inte-
gration.

Area of the Aggregation Profile above the Hot Spot Threshold
(AAT): This is the area of the AP graph, above the HST, along
the entire input amino acid sequence, calculated with trape-
zoidal integration.

AAT per residue (AATr): This value is AAT divided by the
number of residues in the analysed sequence.

Hot Spot Area (HSA): This is the area of the AP graph, above
the HST, of a given HS calculated with trapezoidal integra-
tion. In the bottom lists, the HAS of a residue from a Hot
Spot is established equivalent to the HAS of all the Hot Spot.

Normalized Hot Spot Area (NHSA): This value is calculated as
the HAS divided by the number of residues in the input amino
acid sequence.

Total Hot Spot Area (THSA): This value is the sum of the HAS
of all the Hot Spots of the analysed protein sequence.

THSA per residue (THSAr): This value is calculated as the
THSA divided by the number of residues in the input amino
acid sequence.

a4v Sequence Sum (a4vSS): This is the sum of all the a4v values
obtained from the entire input amino acid sequence.

Normalized a4vSS for 100 residues (Na4vSS): This value is
obtained dividing a4vSS by the number of residues in the
input amino acid sequence and multiplying by 100.

214 N.S. de Groot et al.



Aggregation Profile (P): This plot illustrates the a4v values of
the input amino acid sequence (red line). It includes the a3vSA
of the protein as a green line and the HST as a blue line (25).

Area graph (A): This graph shows the area of each HS along
the protein sequence (red line). If there is no HS an X will
appear instead of the graph.

Normalized-Area graph (A/N): This diagram shows the
NHSA normalised for 100 residues of the analysed protein
(red line). If there is no HS an X will appear instead of the
graph.

4. All AGGRESCAN output values are useful for discrete
sequence analyses. However, to compare proteins with differ-
ent length the user must use the normalised ones (NnHS,
AATr, THAr and Na4vSS), they are also useful to compare
other protein characteristics with the associated deposition
propensity.
Accordingly, as shown in the example of Tots els anteriors
Amyloid-B-peptide, comencen amb majúscula. Aquest hauria
de començar amb majúscula (A). (see Subheading 5, Fig. 4) it
is possible to calculate:

DNnHS¼NnHSF19D �NnHSWT ¼ 2:381� 4:762¼�2:381

DAATr ¼ AATrF19D � AATrWT ¼ 0:264� 0:33 ¼ �0:066

Da3vSA¼ a3vSAF19D� a3vSAWT ¼�0:021�0:064¼�0:081

DNa4vSS ¼ Na4vSSF19D �Na4vSSWT ¼ �2:2� 6:4 ¼ �8:6

5. Na4vSS value corresponds to a global measure of the protein
aggregation propensity. Because it is normalised by the
sequence length it could be employed in any type of study.
Moreover, sorting protein sequences according to their
Na4vSS value permits to classify them by their global aggre-
gation tendency and it turns to be very useful to compare
between different protein characteristics or databases and the
predicted aggregation properties.

6. It is possible to find proteins that form aggregates in spite of
being devoid of any detectable Hot Spot (54). This takes place
when the residues with high aggregation propensity are
distributed along the protein sequence and not concentrated
in a specific region. Therefore, there is no sequence stretch
with the Hot Spot properties able to lead an ordered aggre-
gation process, although this does not necessarily means that
this process is avoided (54). In these situations the Na4vSS
and the a3vSA provide a value of the global protein residue
composition and indicate if the amount of aggregation prone
propensity is higher or lower than the average of a typical
protein. To redesign this type of proteins and reduce their
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aggregation propensity the user has to inspect the lists with
the information concerning to each residue carefully looking
for those residues with higher values. Reduce the amount of
residues with elevated aggregation propensity will decrease
the overall protein deposition tendency.

7. The AGGRESCAN graphics together with the nHS, NnHS
and THSA values show how the Hot Spot regions are
arranged along the sequence and their relative contribution
to the protein aggregation propensity (Fig. 4). These data are
relevant since the number and specificity of the intermolecular
contacts formed during the deposition process would deter-
mine if the final aggregates would be ordered or amorphous
(25, 55). It is has been observed that amyloidogenic proteins
have globally low aggregation propensity and posses few Hot
Spots, however in general these regions accumulate a THSA
similar to other proteins with more aggregation prone regions
per sequence (25, 55) indicating that they have a higher
aggregation potential. Consequently, in amyloidogenic pro-
teins the Hot Spots act as preferential and obligatory nucle-
ation points from which the amyloid fibrillar structure could
be expanded leading to the formation of highly ordered
aggregates (25, 55). Accordingly, a point mutation in a HS
of an amyloidogenic protein generally has a critical effect on
the protein solubility (25). In contrast, a globally high aggre-
gation propensity or the presence of many aggregation prone
regions reduces the influence of each Hot Spot and the speci-
ficity of the contacts generated during the aggregation process
resulting in less structured deposits.

8. The prediction of a decrease in the aggregation propensity
does not ensure full protein solubility when it is expressed
in vivo. There exist globular proteins that require denaturing
conditions to initiate the protein aggregation in vitro but
spontaneously form protein deposits inside the cell. This
phenomenon likely occurs because in the cell the protein
commonly suffers small thermal fluctuations that perturb
the structure to generate locally unfolded states able to initiate
aggregation processes (56). The acquisition of these locally
unstructured conformations from the native state depends
mostly on the protein conformational stability (56). In this
way, it has been observed that in vivo aggregation correlates
negatively with protein stability (28). As a result, when we
want to modulate globular proteins solubility in vivo it is
essential to analyse both their aggregation propensity and
their protein stability.

9. The analysis of 5 different data sets has provided an average
value of each AGGRESCAN parameter for globular proteins,
natively intrinsically unstructured proteins, proteins which are
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soluble when overexpressed in bacteria, proteins forming
inclusion bodies when overexpressed in bacteria and amyloi-
dogenic proteins (25). These values provide a reference range
for the AGGRESCAN parameters and permit to speculate
about the structural nature of the protein sequence studied.
The Table 2 shows the standard AGGRESCAN values for
these five groups. For instance, according to this table, it is
expected that a sequence with Na4vSS near to �28.73 and a
NnHS of 2.06 would correspond to an unfolded protein, one
with Na4vSS near to�4.26 and a NnHS of 3.89 to a globular
protein and one with Na4vSS near to �12.96 and a NnHS of
2.89 to an amyloidogenic protein.
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Table 2
AGGRESCAN reference parameters for globular, natively unstructured, amyloido-
genic, soluble and insoluble proteins (25)

Set name Globulara Unfoldedb Amyloidc Ibsd Solublee

a3vSA �0.04 �0.28 �0.12 �0.02 �0.05

nHS 9.54 5.63 5.86 11.97 10.34

NnHS 3.89 2.06 2.89 3.50 3.35

AAT 29.94 18.21 24.51 41.27 34.43

THSA 25.58 14.97 21.26 36.00 29.61

TA �5.17 �60.95 �26.42 �5.00 �5.55

AATr 0.12 0.07 0.13 0.13 0.12

THSAr 0.11 0.05 0.11 0.11 0.09

Na4vSS �4.26 �28.73 �12.96 �2.51 �5.18

aNatively globular proteins: 160 proteins randomly selected from SCOP (the ASTRAL40 set)
bNatively intrinsically unstructured proteins: 51 proteins
cAmyloidogenic proteins: 57 proteins
dProteins forming inclusion bodies when overexpressed in bacteria: 121 proteins
eProteins which are soluble when overexpressed in bacteria: 38 proteins
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Chapter 15

ATTRACT and PTOOLS: Open Source Programs
for Protein–Protein Docking

Sebastian Schneider, Adrien Saladin, Sébastien Fiorucci,
Chantal Prévost, and Martin Zacharias

Abstract

The prediction of the structure of protein-protein complexes based on structures or structural models of
isolated partners is of increasing importance for structural biology and bioinformatics. The ATTRACT
program can be used to perform systematic docking searches based on docking energy minimization. It is
part of the object-oriented PTools library written in Python and C++. The library contains various
routines to manipulate protein structures, to prepare and perform docking searches as well as analyzing
docking results. It also intended to facilitate further methodological developments in the area of macro-
molecular docking that can be easily integrated. Here, we describe the application of PTools to perform
systematic docking searches and to analyze the results. In addition, the possibility to perform multi-
component docking will also be presented.

Key words: Protein-protein interaction, Flexible docking, Coarse-grained modeling, Binding inter-
face prediction, Normal mode analysis

1. Introduction

The majority of biological processes involve protein-protein interac-
tions. Since only a small fraction of real and putative protein-protein
interactions in a cell can be determined experimentally the realistic
prediction of protein-protein complex structures (protein-protein
docking) is of increasing importance. The ATTRACT program
(1–7) employs energy minimization in rotational and translational
degrees of freedom (+ potential conformational variables) of one
protein partner (ligand)with respect to the secondprotein (receptor).
It can be used as a stand alone program but has also been integrated
into the PTools molecular docking library. Flexibility of the partner
structures can be taken into account by representing flexible surface
side chains (and also loops) as multiple conformational copies.
The ATTRACT docking minimization employs a reduced or
coarse-grained protein model which is intermediated between a
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residue-based representation and full atomic resolution. Each residue
is represented by up to four pseudo atoms (two for the backbone and
up to two for each side chain) approximately accounting for the dual
character of some amino acid side chains (e.g., hydrophobic and
hydrophilic parts of a side chain). Small amino acid side chains (Ala,
Asp, Asn, Ser, Thr, Val, Pro) are represented by one pseudo atom
(geometric mean of side chain heavy atoms) whereas larger andmore
flexible side chains are represented by two pseudo atoms (1, 8).

The repulsive and attractive LJ-parameters describe approxi-
mately the size and physico-chemical character of the side chain
chemical groups. Systematic tests of the model on “bound” protein
partners indicate that rigid-body-minimization of the experimental
complex structures yields energy-minimized complex structureswith
anRmsd (rootmean square deviation) of the ligand protein from the
experimental position of ~1–2 Å (1, 5, 8) which is comparable to
energyminimizationusing atomisticmodels. A schematic viewof the
various steps to perform a docking search and the form of the energy
function to describe effective interactions between coarse-grained
centres is given in Fig. 1. The parameters have been systematically
optimized by comparing the ranking of near-native solution with
respect to non-native decoy complexes (8). The energy function
consists of pair-wise soft Lennard-Jones type functions and an
electrostatic interaction term with a distance dependent dielectric
constant (e(r) ¼ 15r) for the interaction of charged residues. As
illustrated in Fig. 1 the scoring function differs from a standard
Lennard-Jones-type function in that it contains a saddle point instead
of an energy minimum for certain types of pseudo atom pairs (those
that are repulsive).

For systematic docking studies one of the proteins (usually the
smaller protein, called the ligand protein) is used as probe and
placed at various positions on the surface of the second fixed
(receptor) protein. To select regularly spaced starting points a
probe radius that is slightly larger than the maximum distance of
any receptor atom from the ligand center is used. At each starting
position on the receptor protein various initial ligand protein
orientations are generated. The docking from each start
position consists of a series of energy minimizations of the ligand
protein with respect to the receptor protein. During the first
minimization a harmonic restrain between the center of the fixed
protein and the closest Ca-pseudo atom of the ligand protein can
be applied. This first minimization serves to generate a close
contact between the two proteins. For the subsequent energy
minimizations the ligand protein is typically free to move to the
closest energy minimum.

The original ATTRACT program was written in Fortran
together with a set of auxiliary programs to setup docking simula-
tions. The program is still used and further developments are
supported. Indeed, a number of flexible docking options such
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as the inclusion of soft normal mode directions as additional
variables during docking is so far only possible in the Fortran
version of the program. However, in order to facilitate future
methodological developments and to make it sufficiently flexible
for new functionalities it was recently embedded in the docking
library PTools (9) which relies on a modular, object-orientated
implementation based on Python/C++ coupling. The PTools
library has been designed in order to perform assembly tasks in
an efficient way and to ease developments without sacrificing
speed for correctness.

PTools can handle both coarse-grained as well as atomic
resolution representations of biomolecular structures. It can be
used for preparation, setup, running and analysis of docking mini-
mizations following the ATTRACT protocol. It can handle dock-
ing problems of two partners but also docking of multiple protein
molecules. Recent extensions include the prediction of putative
binding sites on proteins and the possibility of including this

Fig. 1. (a) Schematic representation of the workflow for running docking simulations using ATTRACT. The protein partners
are first translated into a coarse-grained representation and ligand protein start positions are distributed over the surface
of the receptor protein. (b) Docking scoring function as implemented in ATTRACT and used for docking minimization and
scoring. (c) In case of an attractive pair (continues line) an r�8/r�6-Lennard-Jones-type potential is used (r: distance
between coarse-grained centers). For a repulsive pair (dotted line) the energy minimum is replaced by a saddle point.

15 ATTRACT and PTOOLS: Open Source Programs for Protein–Protein Docking 223



information during docking based on a reweighting of the inter-
action scoring function. It is also possible to perform protein-
DNA docking searches (5, 10). The workflow of using the Ptools
package and performing interface prediction as well as running a
systematic protein-protein docking run will be explained in the
Methods section.

2. Methods

2.1. Setting Up

a Docking Simulation

Using PTools

PTools can be used to perform docking searches but the library
contains also several methods and scripts to load and manipulate
structures (an overview is given in Fig. 2). An introduction to some
of these options is given in the Notes section (see Note 1 and 2).
As a default the PTools library includes the knowledge-based
coarse-grained force field used by the docking program
ATTRACT for protein-protein and protein-DNA docking. The
coarse-grained representation of the macromolecule can be gener-
ated by the “reduce.py” script. For the docking simulation on an
already known complex one can first load the PDB (Protein Data
Bank) file and split it into two partners, the receptor and ligand

Fig. 2. PTools architecture. The compiled C++ core is linked to the Python functionalities via Python bindings, which
allow correspondence between C++/Py classes and functions. The user can use python programs like “reduce.py,”
“Attract.py” and analysis tools. It is possible to construct new tools using the python language, or directly implement the
C++ code.
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proteins, respectively (see Note 2 for structure preparation). It is
possible to perform this process within a C++ program as a series
of method calls (compare Note 3 on PTools documentation):

Rigidbody prot (“1AY7.pdb”);

AtomSelection selA = prot.SelectChain(“A”);

Rigidbody chainA = selA.CreateRigid();

AtomSelection selB = prot.SelectChain(“B”);

Rigidbody chainB = selB.CreateRigid();

WritePDB(chainA, “1AY7_lig.pdb”);

WritePDB(chainB, “1AY7_rec.pdb”);

These C++ commands can also be conveniently integrated
into a Python script (via the Python bindings) that can be adapted
for application to other protein docking cases.

prot = Rigidbody (“1AY7.pdb”)

chainA = prot.SelectChainId(“A”)

chainB = prot.SelectChainId(“B”)

ligandProtein = chainA.CreateRigid()

receptorProtein = chainB.CreateRigid()

WritePDB(ligandProtein, “1AY7_lig.pdb”)

WritePDB(receptorProtein, “1AY7_rec.pdb”)

In the following we will only describe the Python coding for
the description of a protein-protein docking search. Of course,
instead of splitting a complex structure as described above the two
partner proteins can also be loaded separately. Using the “reduce.
py” script the two protein structures will be transformed into a
coarse-grained representation.

$ reduce.py –prot 1AY7_rec.pdb > receptor.red

$ reduce.py –prot 1AY7_lig.pdb > ligand.red

In the following the file extension “.py” indicates a Python
script (the $ sign indicates that a python script needs to be
invoked). The “.red” filename suffix can be used to easily distin-
guish reduced coordinates files from regular PDB files. The format
of the coarse-grained model is an extended PDB-format with
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additional columns for pseudo-atom type, charge, conformational
copy flag and re-weighting of interactions, respectively.

2.2. Inclusion

of Experimental

and Bioinformatics

Data on Putative

Binding Region

Although it is possible to perform a docking search without any
knowledge of the interaction surface regions it can be helpful to
include such information. In many protein-protein docking cases
there is some knowledge on putative binding regions on either one
or both protein partners available. It is possible to include this
additional data directly during the ATTRACT docking search.
This is achieved by giving each interaction a weight that can be
modulated by external data. The weight data is stored in an extra
column in the reduced PDB-file and can be generated within the
PTools approach. The standard weight for each interaction is 1 and
indicates that the original ATTRACTscore is used.Weights of up to
2 can be used to linearly increase the contribution of selected atoms.
Weights lower than 1will decrease the interactionwith those atoms.
It is possible to change weights on individual pseudo atoms, for
example, if there is experimental evidence for single residues parti-
cipating in binding. However, it is also possible to include predic-
tions from bioinformatics binding site prediction WEB servers.
This option is outlined for the metaPPISP-Server (11) which gen-
erates a consensus prediction from several binding site prediction
methods. In a comparative evaluation of binding site prediction
servers the metaPPISP-Server was among the top performing pre-
diction servers (11). The “metaPPISPprediction.py” python script
sends the protein files directly to theWEB-server (Internet connec-
tion and installation of the wget program required), waits for the
results and maps the prediction onto the original proteins. As a
result PDB files with the suffix “_predicted.pdb” will be written
with binding site probabilities in the range of 0.0–1.0 included in
the B-factor column of the PDB files.

$ metaPPSIPprediction.py –rec 1AY7_rec.pdb –lig 1AY7_lig.pdb

The binding site prediction can then be encoded as weights in
the coarse-grained protein representations:

$ predictionOnReduced.py –original 1AY7_rec_prediction.pdb –reduced 

receptor.red

$ predictionOnReduced.py –original 1AY7_lig_prediction.pdb –reduced 

ligand.red

A third option is to directly use a binding site prediction
method implemented in PTools based on electrostatic desolvation
profiles (12). The method is implemented in PTools as a series of
scripts to create input files and perform the necessary calculations.
It finally generates interaction weights for each atom according to
the prediction which can be used in the same way as described
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above to bias the docking towards solutions compatible with
predicted binding regions.

2.3. Performing

Systematic Docking

Using the ATTRACT

Docking Program

The ATTRACT docking program is implemented as a Python
script using the PTools library. This script is also provided with
the PTools package. Note, that it is also possible to use the
Fortran version of the ATTRACT program which uses the same
force field and input files. The Fortran version contains a few
options for including side chain and global flexibility based on
normal mode variables not yet implemented in the released
Python/C++ version. ATTRACT performs systematic docking
minimization of the interaction energy, the ligand (mobile part-
ner) being placed at regular positions and orientations around the
receptor surface (fixed partner) at a distance slightly larger than its
largest dimension. For each starting position, about 200–400
initial ligand orientations are generated. Starting from each of
these geometries, an energy minimization (quasi-Newton mini-
mizer) is performed using translational and rotational degrees
of freedom of the ligand. Different Python scripts are provided
with the ATTRACT program to set up the input files needed by
the ATTRACT docking script (see Note 4 for an overview).
It requires a receptor and a ligand structure in coarse-grained
representation (see above), an input file (called “attract.inp,” see
Note 5 for further information) and a parameter file (“parmw.
par”). The parameter file contains all pair-wise effective radii and
repulsive as well as attractive Lennard-Jones type parameters to
setup the force field for the docking search (8). Finally, the
“attract.inp” file contains all the specifications required to process
the docking simulation (number of minimization steps, cutoff,
etc.). It is further explained in the PTools documentation and the
Notes section. Several minimizations (with decreasing cutoff) are
used and the pairlist to calculate the interactions is only generated
at the beginning of each minimization.

In order to perform a systematic docking search the Python
command “translate.py” (see Note 6 gives further information
about generation of starting points) needs to be invoked to gen-
erate regularly spaced starting points on the surface of one of the
protein partners (typically the larger partner which is also called
the receptor protein).

$ translate.py receptor.red ligand.red > translation.dat

The various orientations of the mobile partner protein (called
the ligand) are stored in the “rotation.dat” file which can also be
modified by the user. A systematic docking search can now be
started using the “Attract.py” script

$ Attract.py receptor.red ligand.red > Docking.out
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Attract docking simulations can be easily launched on
distributed supercomputers since a single run option is already
implemented in the PTools library. The option –t specifies which
starting position (corresponding to one line in the “translation.
dat” file) of the ligand should be considered for the docking
simulation. Attract can then be launched in a distributed mode
with selected tasks for individual docking runs. Output files can be
concatenated using a simple cat command. For example, starting a
docking search only from position 18 on the receptor surface (but
including all starting orientations) can be performed using the
following option:

$ Attract.py –t 18 receptor.red ligand.red > Docking_18.out

2.4. Analysis

of a Docking

Simulation

A systematic docking search typically results in a large number of
putative solutions which can be ranked according to the docking
score. For a search over the complete surface of the target receptor
protein the program needs ~6–15 h on a single CPU depending
on the size of the protein partners and the number of starting
arrangements (see Note 7 for possible failures of docking runs).
Depending on the number of available CPUs this can be dramati-
cally reduced if one employs the distributed run option explained
above. It is possible to cluster the docking solutions using the
“cluster.py” script, which can group nearly identical structures
without requiring a preselected number of desired clusters.
In the following command, the ouput file of the docking simula-
tion (“Docking.out”) and the protein ligand (“ligand.red”) in its
reduced form are used for the clustering analysis.

$ cluster.py Docking.out ligand.red > cluster.out

Each line of the clustering output file identifies a unique
structure (each solution is a unique combination of translation
and rotation), its energy and a weight representing how many
structures are found in this cluster. With the help of the
“Extract.py” script it is possible to extract single solutions and
write PDB-files from the output file of a systematic search by
indicating the appropriate translation and rotation number of
the docking solution (Ntrans and Nrot):

$ Extract.py Docking.out ligand.red Ntrans Nrot > B_Ntrans_Nrot.red

If the structure of the bound complex is known the quality of
the predicted complex structures can be evaluated by calculating the
Rmsd of the ligand protein or the interfaceRmsd and the fraction of
native contacts of the docking solutions.
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2.5. Multi-Protein

Docking Simulation

In addition to systematic docking searches on two protein partners
it is possible to perform single dockingminimizations on 2 ormore
proteins after generating coarse-grained representations of each
protein. The sequence of necessary commands is given below:

A = AttractRigidbody("A.red")

B = AttractRigidbody("B.red")

C = AttractRigidbody("C.red")

After loading the force field parameters,

forcefield = AttractForceField1("parmw.par", 8.0) 

the three proteins are added to the docking minimization run
using the AddLigand method (it is, in principle, possible to add
an arbitrary number of partner proteins):

forcefield.AddLigand(A)

forcefield.AddLigand(B)

forcefield.AddLigand(C)

The protein A is selected as fixed receptor protein using,

A.setRotation(False)     # don't allow rotations and 

A.setTranslation(False) # translations for unit A

and docking minimization is invoked by,

lbfgs = Lbfgs(forcefield)

lbfgs.minimize(50) # minimizes for at most 50 steps

After minimization, the “lbfgs” object contains the energy of
the minimized system as well as the final coordinates and other
variables of the docking system. The minimizer also stores the
different states of the system for each minimization step. The
commands for performing single docking minimizations with
multiple partners can be used in new scripts to implement system-
atic strategies for multi protein docking.

3. Notes

1. To use PToolsmake sure that the PTools directory is in the PATH
and PYTHONPATH of your session (e.g., set it to/my/path/
to/ptools and /my/path/to/ptools/PyAttract, respectively).
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Remember to include thePTools library innewly createdpython
scripts.

2. Protein structure files should be inspected and checked prior to
docking with respect to completeness of the structure. Missing
atoms or residues in the protein files should be added possibly
with the aid of external programs.Generally it is prerequisite that
the structure files are formatted correctly in thePDB-file format.

3. For the PTools library extensive documentation is provided
which goes beyond the description given above. It includes
a tutorial describing every step from the compilation of the
library source code to full protein—protein and also protein–
DNA docking simulations. The C++ API is also automatically
parsed by Doxygen (13) which generates the documentation
with an exhaustive description of every class and member
function within the library.

4. In order to perform a systematic docking run the following files
need to be in the working directory: “attract.inp” (Attract
docking input file; see Note 5); “translate.dat” (stores the
starting placements of the ligand protein with respect to recep-
tor protein) (see Note 6); “rotation.dat” (stores a set of starting
orientations of the ligand protein); “parmw.par” (force field
scoring parameters for docking). In addition, a ligand reference
structure file, termed “standard.pdb” can be used by the pro-
gram for comparison with all docked structures (arbitrary file-
name in PTools with the ‐‐ref command option).

5. The ATTRACT docking input file attract.inp is explained in
the PTools and ATTRACT manuals in detail. For performing
a docking search the file must be present in the working
directory. An example input file with detailed description is
given below:

4 0 0

0.00000 0.00000 0.00000 0.00050

30 2 1 1 0 0 0 0 1 2500.00

30 2 1 1 0 0 0 0 1 1500.00

40 2 1 1 0 0 0 0 0 100.00

60 2 1 1 0 0 0 0 0 50.00

The first row in the input indicates the number of successive
minimizations (four in the case above), the two 0 s on the
first line indicate that no soft modes for receptor or ligand
are used. Second row: restraining coordinates for pushing the
ligand on the surface of the protein (usually the center
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coordinates of the receptor protein), the fourth term is the
force constant for the restraining potential (should not be
larger than 0.001 RT/Å2).

The next 4 lines indicate the minimization conditions for
each of the four docking minimizations (the number of lines
must equal the number of minimizations chosen in the first
line). Each line consists of the following entries:

Column 1. number of EM steps
Column 2. minimization method ((1) steepest descend

(only used for testing), (2) variable metric)
Column 3. include rotational forces (if ¼ 1)
Column 4. include translational forces (if ¼ 1)
Column 5. include soft modes for receptor (if ¼ 1)
Column 6. include soft modes for ligand (if ¼ 1)
Column 7. number of ligand soft modes
Column 8. number of receptor soft modes
Column 9. add a restraining contribution (using parameters

from the second input line), (if ¼ 1)
Column 10. cutoff radius (squared, means 100.0 corre-

sponds to a cutoff ¼ 10.0 Å)

The selectivity of the current energy function is opti-
mized for a short cutoff (rcut2 ¼ 50 Å). A series of mini-
mizations (with decreasing cutoff) is necessary because the
pairlist to calculate the interactions is only calculated at the
beginning of each minimization (the variable metric mini-
mizer converges faster if one calculates the pairlist only
once). Note, that the option of including pre-calculated
normal modes as additional variables accounting for the
flexibility of binding partners is currently only available in
the Fortran version of the ATTRACT program.

6. Starting points for systematic docking are generated with the
translate.py script as described before and by default stored in
the “translate.dat” file. With the default settings starting
points are placed approximately evenly at the surface of the
receptor with a distance between starting points of approxi-
mately 7–8 Å. Using the -d option this value can be changed
which also changes the number of docking runs. Adjusting
this parameter might be useful depending on the size of the
system or the available computation time. For example, if the
binding region is approximately known one can generate
starting points at increased density and subsequently elimi-
nates those beyond a cut off distance from the known binding
region.

7. If Attract.py fails to run or stops with import error messages
make first sure that the PYTHONPATH is set correctly
and the PTools library is included in any new python script
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(see Note 1). If Attract.py still fails to run make sure all
necessary files are in the working folder (or in the PATH of
the session) (see also Note 4). Another source of errors can be
an incorrect format of pdb start structure files. It is always a
good idea to have a look at the reduced structures with a
visualization program before docking.

The PTools library has been developed and extensively
tested for Python versions 2.4 and 2.5. Some special imple-
mentations of python can lead to a “bus error” while trying to
import PTools libraries. This can be solved by using the
standard Python installed by the OS or if not available by
reinstalling a clean Python version 2.4 or 2.5.
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Chapter 16

Prediction of Interacting Protein Residues
Using Sequence and Structure Data

Vedran Franke, Mile Šikić, and Kristian Vlahoviček

Abstract

Identifying hotspots responsible for protein interactions with other macromolecules or drugs provides
insight into functional aspects of the protein network, and is a pivotal task in systems biology and drug
discovery. Here, we present the protocol for the application of a machine-learning method – Random
Forest – to prediction of interacting residues in proteins, based on either the structural parameters or the
primary sequence alone.

Key words: Random Forest, Protein interactions, Prediction

1. Introduction

Protein interactions are an integral part andanunderlyingmechanism
of almost all biological processes, ranging from the transmission of
intracellular information to control of the cell cycle and cell death.
With the ability to understand and therefore also successfully
predict mechanisms of protein interactions, comes the power to
alter thesemechanisms through rational drug design and influence
the cellular phenotype (1).

However, the physicochemical properties governing the
interactions have made the design of small molecular inhibitors
very difficult. Crystallographic studies have shown that the protein
interfaces are predominantly almost planar surfaces (2, 3), without
very distinctive topological characteristics (in comparison to, e.g.,
enzyme active sites). Binding affinity between proteins is achieved
by multiple weak interactions over a large surface area, which the
small molecule often cannot emulate in order to achieve the
required binding specificity.
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Fortunately, Clackson and Wells (4, 5) have shown that not
all protein interactions are based on uniform, small energetic
contributions of widely dispersed residues. Using the growth
hormone system, they found that most of the binding affinity is
mediated by a small subset of interface residues, termed “hot
spots.” The discovery of “hot spots” removed the size constraint
interaction inhibitors needed to have in order to emulate most of
the interacting interface, thus making feasible the design of small
molecules that can modulate interaction properties. Experimental
determination of hot spot residues is still a laborious and time
consuming process, achieved by mutating individual interacting
amino acids to alanine in order to determine their contribution to
the binding overall binding affinity (alanine scanningmutagenesis,
alanine shaving, and residue grafting) (6, 7).

Currently, two different conceptual approaches exist to compu-
tational determination of hot spots: in silico alanine scanning, which
uses biophysical models to calculate the importance of binding
residues for the affinity of interactions, and advanced statistical
methods that use machine-learning algorithms to classify interface
residues into different functional categories. The advantage of
machine-learning methods over the biophysical models is that they
can discriminate between different residue types based only on
single structures and sequences, without the explicit need for solved
structures of protein complexes. Combining knowledge of hotspots
with the results of genome wide interaction studies can further
improve the process of rational drug design that could specifically
influence the cellular phenotype in pathological conditions.

Most of the currently available implementations of the algorith-
mic methods for prediction of interacting residues are reviewed in
(8–10).

The accuracy of each prediction method depends on several
factors: the dataset quality; the selection of features used for the
description of the individual residues, and the selection of the
machine-learning algorithm for classification and prediction.

Datasets used for prediction of interacting residues need to
contain structural data of high quality for the interacting amino
acid pairs to be unambiguously discernible – the positions of the
side chainsmust be precisely defined, and it is equally important that
the interactions are a result of biological contacts and not the result
of experimental bias. Although the RCSB Protein Data Bank is the
primary repository for structural data, the lack of manual curation
and a high redundancy of the data on the sequence level usually
require eitherpreprocessingor theuseof secondarydatabases for the
dataset construction. Structures containing biological assemblies
(and not asymmetric units) can be obtained from four sources:

1. Directly from PDB (11).

2. ProtBuD database (12).
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3. PQS server (13).

4. 3D Complex database (14).

The structural files from different databases relating to the same
protein complex have been shown to contain differences (15). Our
preference is the 3D Complex database. The database is manually
curated and the authors have corrected the original PDB formatted
files by renumbering residues and renaming all of the chains inside
each file, which facilitates computational tracking of residues during
the analysis. 3D Complex is connected to the PiQSi server (16),
which contains manual annotations of every structure from the 3D
Complex database, enabling easy filtering based on a number of
parameters (e.g., structure resolution, number of subunits, type of
quaternary structure, etc.).

Another request for the elimination of redundancy in the
database used for training is the choice of machine-learning algo-
rithm. Random Forest algorithm is sensitive to redundancy, and
therefore it is necessary to use culled datasets. Several resources
provide information that can be used to eliminate redundancy in
the structural dataset at the level of primary sequence:

1. PDB–data is clustered using the BLASTClust program on the
level of individual chains.

2. PDB-REPRDB (17)–a web server that enables the user to
filter the datasets on a number of parameters, and also pro-
vides nonredundant sets clustered based on sequence and
structure similarity.

3. Pisces (18, 19)–program that uses PSI-BLAST, which gives it
the power to detect distant homologues (between sequences
that have less than 40% sequence similarity)

4. PDB select (20)–a precompiled list of culled structures cut at
40% identity

The disadvantage of most of the databases is that they provide
culled lists of sequences that relate to chains in the PDB database,
which requires the user to extract the structural information from
PDB formatted files by hand. It is sometimes more advantageous
to make the culling by yourself–the standard software for cluster-
ing sequence data is BLASTClust from the NCBI BLAST Toolkit.
It requires only FASTA formatted input sequences.

All supervised machine-learning algorithms (e.g., Random
Forest, support vector machines, neural networks) require the
data to be described by a set of numerical or categorical variables
(called the feature vector), and a corresponding class to be
assigned to each instance in the dataset. The choice of variables
depends on the experimentalist, and the properties he considers to
be the most important for discriminating between different func-
tional categories (e.g., interacting and noninteracting residues).
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In view of prediction of interacting residues, variables represent
physicochemical, geometric, and conservational properties assigned
to each residue in the data set. Physicochemical and geometric
properties are usually calculated from structures with a number
of applications (21–23), while the level of conservation is obtained
from PSI-Blast (24) profiles or multiple alignments. AAindex is a
database of numerical indices representing various physicochemi-
cal and biochemical properties of amino acids and amino acid
pairs (25). It currently contains 544 amino acid indices in flat file
format that can be easily incorporated in feature vectors along with
calculated structural data using the R environment.

Random Forest algorithm is an ensemble classifier that uses
random subsampling of the variable space to construct multiple
decision trees, which result in a better predicive performance than
by using only a single decision tree model (26). Random Forest
algorithm has been shown to work well with high-dimensional
data (i.e., many features), it is not prone to overfitting (construc-
tion of a model that classifies accurately only elements from the
training set) and can take categorical descriptor variables (e.g.,
amino acid names without converting them to a numerical space).
It was successfully applied with comparable results to protein
interaction prediction (27). Together with the classification
model, the result of the training procedure is a list of variables
ranked by their “importance,” i.e., contribution to the ability
of the algorithm to discriminate between the functional classes.
Variable importance measure enables the user to further refine
their training procedure by selecting a subset of the most impor-
tant features.

As with any other machine-learning algorithm, the require-
ment for proper model construction is to use multiple sets for
classifier training and performance assessment. This is usually
done by cross-validation–random splitting of the training data
into several training and testing subsets. The accuracy of the
classifier is then visualized using the ROC curve.

Random Forest algorithm is implemented in several common
software applications: WEKA, R, Orange, or Rapid Miner
(28–31). The choice of software package depends on user’s profi-
ciency with specific computational tools. For users with less expe-
rience, we recommend the software with graphical user interface
(WEKA, Rapid Miner). For more proficient users we recommend
the R language for statistical computing. It is an integrated envi-
ronment that enables easy experimental setup without the need
for the knowledge of additional programming languages
(although knowing one of the high level programming languages
helps–Perl/Python/Ruby). The main advantage of using R
language as a platform for protein interaction prediction (over
the use of specialized web applications) is that it gives the user
the power to create custom data sets by integrating data from
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multiple sources. Vectorization capabilities of relational databases
and implementations of many machine-learning algorithms make
R our preferable choice for computational experiments. The over-
all procedure is outlined in (Fig. 1).

2. Software
and Data

To execute the protocol below, the user has to have a basic
working knowledge of the UNIX operating system (directory
and file operations, and regular expression) and the R language
for statistical computing (vector subsetting, iterative concepts,
installing packages). Additional packages for the R environment
are required:

– Bioconductor toolkit for handling biological data (http://
www.bioconductor.org/), which can be easily installed by run-
ning the following commands in the R interpreter:

source("http://bioconductor.org/biocLite.R")
biocLite()

Fig. 1. An outline of the training and prediction processes covered in this chapter.
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We will use the Biostrings library from the Bioconductor
package.

– randomForest (http://cran.r-project.org/web/packages/ran
domForest/) providesRwith themachine-learning and classifica-
tion algorithm Random Forest (29).

– ipred (http://cran.r-project.org/web/packages/ipred/index.
html) package for the improvement of predictive models by
the use of nonparametric statistics.

The following additional software tools are used in the chapter:

– Protein Structure and Interaction Analyzer (PSAIA) (21)
(http://complex.zesoi.fer.hr/PSAIA.html) is used to calculate
structure-based parameters for training and classification.

– BLAST NCBI toolkit (http://blast.ncbi.nlm.nih.gov/Blast.cgi?
CMD¼Web&PAGE_TYPE¼BlastDocs&DOC_TYPE¼Down-
load) is used in the process of making the training set nonredun-
dant at the sequence level.

Methods presented in the chapter can be applied to any
user-selected sample of protein structures to derive classification
parameters. However, the examples shown here are based on the
collectionof protein structure complexes, the 3DComplex database
(14) (http://supfam.mrc-lmb.cam.ac.uk/elevy/3dcomplex/
Home.cgi).

All examples in the methods section were prepared on a
Linux-based operating system, but can easily be adopted to work
on any other common OS, like Microsoft Windows or MacOS.
The analysis takes approximately 30 h of processor time, with
maximum usage of 30 GB of working memory.

3. Methods

3.1. Data Set

Preparation

The main goal of this part is to prepare a nonredundant and
representative dataset for parameter extraction and Random For-
est classifier training. The user can either follow the protocol
above or use the existing structure collections (27).

1. Go to the 3D Complex database website (http://supfam.
mrc-lmb.cam.ac.uk/elevy/3dcomplex/Download2.cgi) and
download both part1 and part2 of the complete dataset. You
can do that easily using the wget command in Linux OS.

wget http://supfam.mrc-
   lmb.cam.ac.uk/elevy/3dcomplex/data/3Dcomplex
   set partI.tar.gz
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When the download is complete uncompress the archives using

tar –xzf 3Dcomplex_set_partI.tar.gz &
tar –xzf 3Dcomplex_set_partII.tar.gz &

and combine the two extracted folders together by moving the
contents of the second folder to the first folder

mv 3Dcomplex_set2/* 3Dcomplex_set/ &mv 3Dcomplex_set2/* 3Dcomplex_set/ &

On the same page you can find a FASTA formatted file
(seqres_V2.fa) that contains sequences taken from the SEQRES
field in the corresponding PDB structural files. The sequence
information will be used for removing redundancy from the
database.

2. Go to the download page of the 3D complex database (http://
supfam.mrc-lmb.cam.ac.uk/elevy/3dcomplex/Download.cgi)
and check the following fields to be included in the output table:

Resolution
Is it a Homomer?
Is the QS a likely error?
Corrected symmetry
Corrected number of subunits
Save the given data into a textual file: struc.param.txt.

3. Run the R interpreter and read in the struc.param.txt file:

data = 
   read.table('struc.param.txt',sep='\t',header=
   T)

Select the subset of high quality structures that are going to
be used as a training set for the Random Forest classifier
(see Note 1).

data.subset = data[data$resol <= 2.7 &  
   data$pdb_error == 'NO' & data$ corrected_nsub
   >= 2, ]

Save the table to a file named high.qual.data.txt and exit R.

write.table(na.omit(data.subset), file = 
    'high.qual.data.txt', quote=F, row.names=F, 
    col.names=F, sep='\t')
quit()

4. Using the following set of commands, copy the selected
subset to a new folder named Data:
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mkdir Data
cut -f1 high.qual.data.txt | sed 's/^/cp 
   .\/3Dcomplex_set\//' | sed 's/$/.pdb 
   .\/Data/' > copy.data.sh
chmod 755 copy.data.sh
./copy.data.sh

By using the structure identifiers from the first column of the
high.qual.data.txt file, the second line of the code above con-
structs a series of commands that will do the actual copying,
and saves the commands into the copy.data.sh executable file.
Last two lines give the permissions to copy the files and
execute the copying.

5. Using the Protein Structure Analyzer (PSA) calculate the
structural characteristics for each protein chain in the 3D
complex database (see Note 2).

/path_to_PSAIA/psa/psa.sh <config file> <input
 file>

6. Using the Protein Interaction Analyzer (PIA) designate inter-
acting residues (see Note 3).

/path_to_PSAIA/pia/pia.sh <config file> <input 
    file>

7. Cluster the protein sequences using the blastclust tool from
the NCBI BLAST toolkit.

To extract a subset of sequences from the seqres_V2.fa
file (from step 2), we will use the Bioconductor Biostrings
package.
Start the R interpreter and load the Biostrings package.

library(Biostrings)

Read in the FASTA file containing the protein sequences.

fasta = read.AAStringSet(file = './seqres_V2.fa',
    format = 'fasta')
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Read in the table of selected structures.

data = read.table(file = 'high.qual.data.txt',
    header = F)

Take a subset of sequences from the FASTA file that is present
in the high.qual.data.txt table.

fasta.subset = fasta[sub('.$','',names(fasta)) fasta.subset = fasta[sub('.$','',names(fasta))
    %in% data[,1]]

Write the results to a FASTA formatted file named high.qual.
data.fasta, and exit from R.

write.XStringSet(fasta.subset, 
    file='high.qual.data.fa', format = 'fasta', 
    width = 70)
quit()

Run the blastclust application (see Note 4).

setwd(‘path to pia output folder’)setwd(‘path to pia output folder’)

3.2. Data Integration To be able to construct a model that can predict interacting amino
acids, we have to describe each residue in our dataset by a series of
numeric or categorical variables, and assign to each residue a class
based on its interaction status. This is done by integrating all of
the data we prepared in the previous steps.

First we will aggregate the data obtained as the output of
Protein Structure and Protein Interaction Analysers.

8. Start the R interpreter and change the working directory to
the PIA output folder.

setwd(‘path to pia output folder’)setwd(‘path to pia output folder’)

9. Get the names of all of the files in the folder, and create a variable
that will contain all of the contents (pia.data). The loop below
iterates through the interaction designator files and concate-
nates all of the files into the pia.data table (see Note 5).
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pia.files = list.files()
pia.data = list()
for(i in 1:length(pia.files)){
    pia.file = pia.files[i]
    cat("Working on file:", pia.file, "\n")
    pdb.id = unlist(strsplit(pia.file, 
    split='_'))
    pdb.id = ifelse(length(pdb.id)==5, 
    paste(pdb.id[1], pdb.id[2],sep='_'), 
    pdb.id[1])
    pia = read.table(pia.file)
    pia = read.table(file.path(pia.path, 
    pia.file), stringsAsFactors=F, header=T)
    pia.data[[i]] = data.frame(pdb.id=pdb.id, 
    chain.id=as.factor(pia[,1]), aa.num=pia[,2], 
    aa=pia[,3], aa.status=pia[,4])
}
pia.data = do.call(rbind, pia.data)

10. Now we do an analogous process for PSA output. Change the
working directory into the PSA output folder (using the
setwd() function), and aggregate all of the output into a
single table (see Note 6).
psa.files = list.files()
psa.data = list()
for(i in 1:length(psa.files)){
    psa.file = psa.files[i]
    cat("Working on file:", psa.file, "\n")
    pdb.id = unlist(strsplit(psa.file, 
    split='_'))
    pdb.id = ifelse(length(pdb.id)==5, 
    paste(pdb.id[1], pdb.id[2],sep='_'), 
    pdb.id[1])
    psa = scan(psa.file, skip=7, what='list', 
    sep='\n')
    psa = gsub('[|"]','', psa)
    psa = gsub('\\s+',' ', psa)
    psa = gsub('^\\s+','', psa)
    header = unlist(strsplit(psa[1], split=' '))
    psa = do.call(rbind, 
    strsplit(psa[2:length(psa)], split='\\s+'))
    psa.data[[pdb.id]] = data.frame(pdb.id, 
    psa[,c(1,7:ncol(psa))])
}

11. Read in the output of the Blastclust application and select a
set of nonredundant chains that will be used to train the
Random Forest predictor. During the process we create the
data.subset table that is going to be used in downstream
analysis.
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path = ‘path to blastclust ouput’
clusters = scan(path, what='list', sep='\n')
clusters= lapply(clusters, FUN = 
    function(x)unlist(strsplit(x, split="\\s")))
non.red.chains = unlist(lapply(clusters, sample, 
    1))

non.red.id = sub('.$', '', non.red.chains)
psa.data.subset = psa.data[names(psa.data) %in% 
    non.red.id]
data.subset = do.call(rbind, psa.data.subset)
colnames(data.subset) = c("pdb.id", "chain.id", 
    "aa.num", "aa", 
    "total.ASA","b.bone.ASA","s.chain.ASA", 
    "polar.ASA", "n.polar.ASA", "total.RASA", 
    "b.bone.RASA", "s.chain.RASA", "polar.RASA", 
    "n.polar.RASA", "Hydrophobicity")
data.subset = 
    data.subset[paste(data.subset$pdb.id, 
    data.subset$chain.id, sep='') %in% 
    non.red.chains,]
data.subset[,5:ncol(data.subset)] = 
    apply(data.subset[5:ncol(data.subset)], 2, 
    as.numeric)

12. To classify each residue by interaction type, it is necessary to
make an intersection of the PIA output and the subset of the
data we created in the previous step. Creating a unique identi-
fier (see Note 7) for each residue in both tables will enable us
to assign values from the PIA table to the residues present in
the data.subset table.

pia.data.uniq = 
data.frame(aa.status=pia.data$aa.status, 
uniq.id=paste(pia.data$pdb.id, pia.data$chain.id,
pia.data$aa.num, sep='_'))
data.subset$uniq.id = paste(data.subset$pdb.id, 
data.subset$chain.id, data.subset$aa.num, sep='_')
merged.data = merge(data.subset, pia.data.uniq, 
by.x='uniq.id', by.y='uniq.id')
merged.data = merged.data[, -1]

3.3. Feature Vector

Construction Using

a Sliding Window

Approach

Sliding window approach is a method of describing each element in
a biological sequenceusingproperties of its immediate neighbors–in
our specific example, a feature vector for each residue contains not
only variables describing that specific residue, but also all of the
attributes of n residues around the residue of interest (where n is
defined by the size of the window). It is customary to use windows
of odd length (e.g., 3, 5, 7), so that there is no confusion as to which
residue is the central one in the window. There are two major
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downsides to the method. By concentrating on the middle residue
of the window, starting and ending residues of each sequence are
omitted, which can cause a loss of information. Also, a number of
structures are missing residues in the middle of their polypeptide
chain, resulting in an incorrect window assignment. This can lead to
false labeling of distant residues as neighbors and thus to construc-
tion of false feature vectors (see Note 8).

13. Each polypeptide chain is assigned a unique id composed of the
name of the corresponding PDB file and the name of the chain.
The resulting list is filtered for chains longer than ten residues.

merged.data$uniq.chain.id = 
    paste(merged.data[,1], merged.data[,2], 
    sep='_')
merged.data$aa.num = 
    as.numeric(as.character(merged.data$aa.num))
chains = unique(merged.data$uniq.chain.id)
chains = chains[tapply(merged.data$uniq.chain.id,
    merged.data$uniq.chain.id,length) > 10]

14. Now iterate through each chain and construct the feature
vectors (we will use windows of length 5–window.size¼5).
The class of the window is determined by the class of the
middle residue (e.g., If the window size is 5, then the clas-
s–interacting or not-interacting–is assigned to the third resi-
due, see Note 9). To ascertain that the residues in the table
are ordered in the same way as in their corresponding poly-
peptide chains, we explicitly reorder them by their residue
numbers.

window.size = 5
vectors = list()
for(i in chains){
   cat("Working on chain:", i, "\n")
   my.chain = my.chain[order(my.chain$aa.num),]
   my.chain = my.chain[,-c(1:2, ncol(my.chain))]
   my.chain$aa = as.character(my.chain$aa)
   windows = sapply(1:(ncol(my.chain)-
   window.size+1), 
   function(x)seq(x,x+window.size -1))
   a = apply(windows, 2, 
   function(x)my.chain[x,])
   a = lapply(a, unlist)
   vectors[[i]] = data.frame(do.call(rbind, a), 
   stringsAsFactors=F)
}
vectors = do.call(rbind, vectors)

15. Here we create an index of all of the windows that covered a
part of the sequence that contains a gap.
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vector.ind = apply(vectors[,grep('aa.num', 
    names(vectors))], 2, as.numeric)
vector.ind = rowSums(t(apply(vector.ind, 1, 
    function(x){x-min(x)})))== 
    ncol(vector.ind)*(ncol(vector.ind)-1)/2

And remove the columns from the table that we do not
use as predictor variables.

vectors = vectors[vector.ind, -c(grep('status',
    names(vectors)), grep('aa.num', 
    names(vectors)))]
aa.col = grep('^aa', names(vectors))
vectors$class = vectors$aa.status3
vectors[,-(aa.col)] = apply(vectors[,-(aa.col)],
    2, as.numeric)

The last two lines designate the class of the window as the
class of the middle residue (column aa.status3) and explicitly
convert all of the variables (except amino acid symbols) to
numbers.

16. To finalize the dataset, we need to reduce the number of
noninteracting windows in the table. This is done by down-
sampling of the noninteracting windows to the number of the
interacting ones.

vectors.interacting = vectors[vectors$class == 1,
    ]
vectors.noninteracting = vectors[vectors$class ==
    0, ]
complete.features = rbind(vectors.interacting,
    vectors.noninteracting[sample(1:nrow(vectors.
    noninteracting), 
    nrow(vectors.interacting)),])

3.4. Random Forest

Training, Testing,

and Validation

Random Forest algorithm is implemented in R language
in the randomForest package. To enable its use, load the
functions into the memory.

library(randomForest)

17. A proper practice for working with machine-learning algo-
rithms is to separate your dataset into training and test sets.
We do that here by randomly assigning 80% of the instances
to the training set and 20% to the test set, and run the model
construction.
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complete.features$class = 
    as.factor(complete.features$class)
num.of.instances = nrow(complete.features)

complete.features.train.ind = 
    sample(1:num.of.instances, trunc(0.8 * 
    num.of.instances))
complete.features.train = 
    complete.features[complete.features.train.ind
    ,]
complete.features.test = complete.features[-
    complete.features.train.ind,]
 
random.forest.model = 
    randomForest(y=complete.features.train$class, 
    x=complete.features.train[,-
    ncol(complete.features.train)], 
y.test=complete.features.test$class, 
    x.test=complete.features.test[,-
    ncol(complete.features.test)], ntree=1000)

18. To validate the model we use the errorest from the ipred
package, which uses tenfold cross-validation to estimate the
error rate of the classifier (see Note 10).

error = errorest(class ~. , data = 
    complete.features, model=randomForest, 
    estimator='cv', ntree=500)

3.5. Prediction

of Interacting

Residues in a New

Structure

To make the prediction of interaction residues on a new structure,
take the PDB formatted file and construct the feature vectors by
repeating steps 10–14 (without the aggregation of pia output, and
convert the psa.data list into a table using data.subset¼do.call
(rbind.psa.data)) -> step 15 of the analysis. Then, using the
predict function on the trained model, make the prediction (see
Note 11). The output will be the predicted class (interacting or
noninteracting amino acid), for each window. It is up to the user
then to assign functional significance to the prediction.

predict(random.forest.model,
new.feature.vectors)

(Fig. 2.)."

An example of experimental vs. predicted interaction
surfaces is given in 

An example of experimental versus predicted interaction surfaces
is given in (Fig. 2)
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4. Notes

1. We filter the dataset based on three parameters:

– Structure resolution (2.7 Å is a stringent cut off, but
ensures that only high quality structures are kept).

– Number of subunits–all of the structures are required to
contain at least two chains in order to assure we will find
contact residues.

– Only those structures which are annotated as not having
an error in the quaternary structures are kept (for details
see (16)).

2. <config file> is a path to the configuration file where you

specify which structural parameters you want to be calculated.

We recommend using the parameters given below:

analyze_bound: 0
analyze_unbound:
calc_asa:      1
z_slice:       0.25
r_solvent:     1.4
write_asa:     1
calc_rasa:     1
standard_asa:
    /path_to_PSAIA/amac_data/natural_asa.asa
calc_dpx:      0
calc_cx:       0
calc_hydro:    1
hydro_file:
               /path_to_PSAIA/amac_data/hydrophobi
city.hpd
radii_filename:
write_xml:     0
write_table:   1
output_dir:    ./PSA_OUT/ 

Fig. 2. Accessible surface representation of the Naja naja phospholipase A2 protein, chain A (PDB:1a3f). The protein is
biologically active as a homotrimer. Left: real interacting sites; right: interacting sites predicted using the methods
outlined in this chapter (with OOB error rate of 28.38%). Interacting residues are marked with darker shade.
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Files containing hydrophobicity indices, standard atomic
radii, and precalculated standard ASA for all of the 20 amino
acids are included with the PSAIA application

<inputfile> is a path to a textual file containing paths to

the .pdb structural files you want to analyze. In this case it

contains paths to the subset of high quality structures from the
3D complex database.

ls Data/ | sed 's/^/.\/Data\//' > input.file.txt

Due to the large size of the database, it is advisable to split
the input into several files and run the analysis in parallel on
each file separately.

split –a1 input.file.txt input.file.

Which creates files named input.file.a, input.file.b. . .
Before starting the application you have to explicitly create

the output folder and list the corresponding name after the
output_dir argument in the config file.

mkdir PSA_OUT

3. Three different measures are usually used for designating
interacting residues in protein structure complexes:

(a) Maximal distance of 6 Å between the centers of any two
atoms in the corresponding amino acids belonging to two
different polypeptide chains.

(b) Distance between the centers of any two atoms of the
corresponding amino acids is not greater than the sum
of their corresponding Van der Waals radii plus 0.5 Å.

(c) The change of accessible surface area for the amino acid
upon complexation is greater than a given cutoff value.

<config file> for Protein Interaction Analyzer (the
second criterion is used for designating interacting residues–con-

tact_criterion: 2, with the interatomic distance of 0.5 Å)

contact_criterion: 2
threshold:        0.5
radii_filename:   /path_to_PSAIA/PSAIA-
    1.0/amac_data/chothia.radii
write_contacts:   0
write_binding_residues:
write_binding_state:
write_xml:        0
write_table:      1
output_dir:       ./PIA_OUT/
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<input file> is the same as for the PSA program.

4. Blastclust uses single linkage hierarchical clustering (http://
www.autonlab.org/tutorials/kmeans.html) to cluster seque-
nces into nonredundant sets.

Two parameters determine the specificity of the clustering
procedure:

– L–Length coverage threshold–default value is 0.9, which
means that the two sequences have to be aligned by 90% of
their length for them to be put in the same cluster.

– S–Score coverage threshold is the percent of identical resi-
dues in the aligned region.

By lowering the threshold for the two parameters we
decrease the specificity of the algorithm and create larger
clusters containing more distant sequences, thus making the
dataset less redundant.

$blastclust -i high.qual.data.fa -a 8 -o
    high.qual.data.clust -p T –L 0.7–S 0.7 

5. The pia.data table has the following columns:

pdb.id–id of the file

chain.id–name of the polypeptide chain in the pdb file

aa.num–number of the amino acid in the sequence

aa.status–designator whether the residue is interacting or
noninteracting

6. Aggregation and loading of the data can take a considerable
amount of time, and therefore it is recommended to save the
data as an intermediate step in the RData file type:

save(list = c(‘psa.data’, ‘pia.data’), file =
    ’StrucData.RData’) 

which can then be read in, using the load function.

load(‘StrucData.Rdata’)

7. Each residue in the dataset needs to have a unique identifier
assigned, to enable its unequivocal identification. Such iden-
tifier is constructed by combining the pdb.id–chain.id and aa.
num in each row of the table.

8. Several methods have been developed for solving such pro-
blems. By using only those windows for which there is com-
plete information we reduce the percentage of false positives,
at a price of slightly reducing the dataset.
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9. If each residue is described by a large number of attributes, the
feature vector resulting from the sliding window can be large
(even to the point that it contains too many dimensions for
the Random Forest algorithm to work properly). In such cases
it is useful to perform the averaging of attributes within the
window.

10. Cross-validation is a procedure for error estimation which is
based on multiple rounds of partitioning of the data into
complementary subsets which are subsequently used to con-
struct models. Each model is then tested on each subset
separately and the error rate is taken as the average of the
error rates of all the models. Visual assessment of the perfor-
mance of the classificator is done using the ROC curve. ROC
curve can easily be plotted in R using the ROCR package. For
Random Forest, this is done using the “votes” attribute from
the randomForest object.

11. It is important, that through the whole process of prediction
you keep track of the residues using unique keys. False assig-
nation of predicted classes is the main cause of the experimen-
tal error.
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Vlahoviček K (2008) PSAIA - protein struc-
ture and interaction analyzer., BMC struc-
tural biology 8, 21.

22. Rost B (2001) Review: protein secondary
structure prediction continues to rise, J Struct
Biol 134, 204–218.

23. Neshich G, Mazoni I, Oliveira SRM,
Yamagishi MEB, Kuser-Fal1 ao PR, Borro
LC, Morita DU, Souza KRR, Almeida GV,
Rodrigues DN, Jardine JG, Togawa RC,
Mancini aL, Higa RH, Cruz SaB, Vieira FD,
Santos EH, Melo RC, and Santoro MM

(2006) The Star STING server: a multiplat-
form environment for protein structure anal-
ysis., Genetics and molecular research : GMR
5, 717–722.

24. Altschul SF, Madden TL, Schaffer AA, Zhang
J, Zhang Z, Miller W, and Lipman DJ (1997)
Gapped BLAST and PSI-BLAST: a new gen-
eration of protein database search programs,
Nucleic Acids Res 25, 3389–3402.

25. Kawashima S, Pokarowski P, Pokarowska M,
Kolinski A, Katayama T, and Kanehisa M
(2008) AAindex: amino acid index database,
progress report 2008., Nucleic acids research
36, D202–205.

26. Breiman L (2001) Random forests, Mach
Learn 45, 5–32.
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Part IV

Rescoring Docking Predictions





Chapter 17

MM-GB/SA Rescoring of Docking Poses

Cristiano R.W. Guimarães

Abstract

The critical issues in docking include the prediction of the correct binding pose and the accurate
estimation of the corresponding binding affinity. Different docking methodologies have all been success-
ful in reproducing the crystallographic binding modes, but struggle when predicting the corresponding
binding affinities. The rescoring of docking poses using the MM-GB/SA technique has emerged as an
important computational approach in structure-based lead optimization as it provides for congeneric
molecules, clearly superior correlations with experimental data to those obtained with typical docking
scoring functions. Although the technique has been collectively referred as MM-GB/SA, there are in fact
many flavors in the literature. Here we describe the details of our MM-GB/SA scoring protocol, high-
lighting not only its strengths but also the limitations.

Key words: Docking, MM-GB/SA, WaterMap, Knime, Binding, Lead optimization

1. Introduction

Small-molecule docking is designed to orient and score a large
number of molecules for complementarity against a macromolec-
ular binding site in a short period of time (1–7). The critical issues
in docking include the prediction of the correct binding pose and
the accurate estimation of the corresponding binding affinity.
Despite the enormous size of the conformational space for the
ligands, different docking methodologies, e.g., force-field based,
empirical, and knowledge based, have all been successful in repro-
ducing the crystallographic binding modes (8–12). However, the
accuracy in predicting binding affinities is quite poor for all of them
(13–16). The computational errors may be attributed to many
approximations employed in the scoring functions, particularly
the ones that lead to poor estimation of the desolvation, intramo-
lecular, and entropy penalties for the ligands upon binding.
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Since the docking algorithms provide good-quality binding
poses, an energy function with more physically reasonable descrip-
tion of binding contributions can be employed to rescore the
docking results. MM-PB/SA calculations, pioneered by Kollman
and coworkers, use a combination of molecular mechanics and
continuum solvation to compute average binding energies for
configurations extracted from MD simulations of the unbound
and bound states (17). The encouraging results obtained with this
methodology have inspired several authors to use molecular-
mechanics-based scoring functions with GB/SA (18) as the
implicit solvent model in the rescoring process. When compared
to docking scoring functions, the MM-GB/SA procedure pro-
vides improved enrichment in the virtual screening of databases
and better correlation between calculated binding affinities and
experimental data (19).

Although the technique has been collectively referred as MM-
GB/SA, there are in fact many flavors in the literature differing in
the force fields and GB/SA solvation models employed, use of a
single energy-minimized structure or an ensemble of conformations
extracted from MD/MC simulations or conformational search
methods for the unbound and bound states, and exclusion or not
of binding contributions that deteriorate the method accuracy.

We have demonstrated good agreement between our
MM-GB/SA implementation and experimental binding data for
a diverse set of pharmaceutically relevant targets, including
CDK2, FactorXa, Thrombin, and HIV-RT (20), as well as for
several Pfizer internal targets. The correlation with experiment
obtained with the physics-based scoring is far superior to docking
(see Fig. 1). We have also shown recently that an improved scoring
procedure is obtained when the GB/SA protein desolvation is
replaced by the free energy associated with the liberation of bind-
ing-site waters upon ligand binding estimated by the WaterMap
method (21, 22). Since WaterMap is not a widely available
method, this work will focus on the MM-GB/SA scoring only
with the aim of describing the details of our protocol, highlighting
not only its strengths but also the limitations.

2. Methods

Figure 2 illustrates the main steps of our MM-GB/SA rescoring
procedure. While the unbound state is represented by an ensem-
ble of conformations for the ligands, a single energy-minimized
structure is used for each complex. All energy calculations related
to the MM-GB/SA scoring are performed with the OPLS_2005
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Fig. 1. Plots for the test cases FactorXa (left ) and CDK2 (right ) display correlations with the experimental data obtained
with GlideXP, MM-GB/SA, MM-GB/SA including the GB/SA protein desolvation (+ptnDGGB/SA ), and MM-GB/SA including
the free-energy liberation calculated by WaterMap (+DGWM ).
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force field (23) and the GB/SA method (18) as implemented in
the Macromodel (24). The protocol details are provided below.

2.1. Docking 1. Ligands are built manually using the Build tab inMaestro (25)
and then energy minimized in the gas phase before the dock-
ing calculations.

2. Crystal structures are prepared using the Protein Preparation
Wizard in Maestro. All crystal waters are deleted. The hydro-
gen bond network around the ligand is visually inspected to
decide possible tautomers and protonation states for His, and
rotamers for Asn, Gln, Ser, Thr, and Tyr. The structure is then
energy minimized to a root-mean-square deviation (RMSd)
of 0.18 Å with respect to the crystal structure coordinates.

3. The docking grid for the protein is then generated using
Glide (11, 26) with a scaling factor of 0.8 for the van der
Waals radii of nonpolar protein atoms in order to accommo-
date for the fact that the protein structure will not in general
be optimized to fit a particular ligand. Positional, hydrogen
bond, and hydrophobic constraints are generated in this step
in case they are needed during the docking calculations.

4. Docking calculations are performed using theGlideXP scoring
function (27). Van der Waals radii for ligand atoms are not
scaled. The constraints obtained during the grid generation as
well as core constraints might be used in this step to avoid
unreasonable drift of the docking poses for a congeneric series;

Fig. 2. The MM-GB/SA scoring protocol.
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the common core for the series must have good overlap in
order not to adversely impact theMM-GB/SA scoring results.
Only the best pose is output and used for rescoring. If the best
pose for a given compound in a congeneric series does not
match the crystal structure binding mode, another docking
run is performed to check if additional low energy solutions
contain the crystal structure binding mode. In some cases, it
might be necessary to build the poses manually, in particular
for ligands that are active but too large to fit in the binding site.

2.2. Energy

Minimization

of Bound State

1. To better account for protein flexibility, the complexes
between the protein and the ligands are energy minimized
in water. The embrace procedure in the interaction mode
within Macromodel (24), which enables the definition of
substructures containing flexible and constrained residues
during the energy minimization, is employed in this step.
No constraints are applied to residues within 5 Å from a
reference ligand defined by the user; the shell containing the
flexible residues obtained in this manner is extended to all
other ligands during the embrace energy minimization. The
remaining residues are held fixed. This is done with the pur-
pose of reducing noise in the scoring since each complex
could be driven to different local minima in a fully flexible
energy minimization step. The energy minimization is per-
formed by the application of the PRCG method, which is a
conjugate gradient minimization scheme that uses the
Polak–Ribiere first derivative method with restarts every 3N
iterations. This is the best general method for energy minimi-
zation (28). The energy minimization is stopped if 1,000
iterations are reached or a gradient less than 0.05 kJ/mol Å
is achieved. The maximum number of iterations is usually
satisfactory to meet the convergence criterion. Nonbonded
interactions cutoffs of 8 and 20 Å are applied for van der
Waals and electrostatic interactions, respectively.

2.3. Conformational

Analysis of Unbound

State

1. In the unbound state, a conformational analysis for the ligands
in water is performed using the Monte Carlo Multiple Mini-
mum (MCMM) Method (29), which is highly efficient in
performing global searching, exploring close as well as distant
areas of the potential energy surface. The extended option for
torsion sampling, which samples all amide-like and ester-like
linkages, is used. In the MCMM procedure, the conforma-
tional search is terminated when the number of generated trial
structures reaches 1,000. Mirror image conformations are
considered to be separate structures. All conformers within
21 kJ/mol (ca. 5.0 kcal/mol) from the lowest energy
conformer are retained.
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2. The conformations obtained are then clustered using the
Xcluster program. An RMSd value of 0.3 Å for heavy atoms
and hydrogens connected to heteroatoms is used to define
unique conformations.

2.4. Scoring Terms 1. DEintra and DGsolv. Assuming a Boltzmann distribution, the
probability for each ligand’s unique conformer (Pi) in the
unbound state is calculated using the relative total energies
extracted from the conformational search and then normal-
ized so that their sum is equal to 1. Since the output file from
the conformational search does not list the breakdown of the
total energy, a single-point calculation using Macromodel is
performed for all conformers to obtain their individual intra-
molecular (Ei

intra) and solvation (Gi
solv) energies. The average

intramolecular hEU
intrai and solvation hGU

solvi energies for the
ensemble of conformers of each compound in the unbound
state are obtained according to the equations below.

hEU
intrai ¼

Xn
i

Ei
intraPi (1)

hGU
solvi ¼

Xn
i

Gi
solvPi (2)

The ligand intramolecular (EB
intra) and solvation (GB

solv) ener-
gies when complexed to the protein are found in the
embrace output file in the section that lists energy contribu-
tions related to Atom Set 2 (ligand). GB

solv is taken as the sum
of the values listed for the properties Solvation GB and
Solvation SA, the ligand polar and nonpolar solvation com-
ponents. EB

intra is obtained by subtracting GB
solv from the

property Total Energy. DEintra and DGsolv, the ligand intra-
molecular and desolvation penalties upon binding, are cal-
culated by taking the difference between the bound and
unbound state values as depicted below (see Notes 1–3,
12, 14, and 15).

DEintra ¼ EB
intra � hEU

intrai (3)

DGsolv ¼ GB
solv � hGU

solvi (4)

2. � TDSconf . The conformational entropies (Sconf ) in the
unbound state are computed from the Pi values obtained as
described above using (5), where kB is the Boltzmann con-
stant. In the bound state, it was assumed that there was only
one conformation accessible to each ligand; its conforma-
tional entropy is therefore 0.
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Sconf ¼ �kB
Xn
i¼1

Pi lnPi (5)

Thus, DSconf is the ligand conformational entropy penalty
upon binding, multiplied by � T to convert it into free
energy (see Notes 4, 5, 10, 11, 14, and 15).

3. EVDW and EElect. Protein–ligand EVDW and EElect interactions
are printed in the output file from the embrace calculations in
the section that lists energy contributions for the interaction
between the Atom Set 1 (protein) and Atom Set 2 (ligand).
They are under the properties Van der Waals and Electrostatic
(see Notes 6, 7, 13, 14, and 15).

4. EPTN. The protein energy (EPTN) values for all complexes are
also obtained from the embrace output file, but in the section
that lists energy contributions forAtom Set 1 only. Specifically,
EPTN is obtained by subtracting the values listed for the
properties Solvation GB and Solvation SA, the protein polar
and nonpolar solvation components, from the property Total
Energy. This term describes the protein deformation imposed
by each ligand. Although the protein energy for each complex
is a large number, the typical range for the EPTN values within
a congeneric series is 5–10 kcal/mol since most of the protein
residues are constrained during the energy minimization
(see Notes 8, 9, 12, 14, and 15).

3. Notes

One of the main advantages of our scoring approach is that the
calculated binding contributions are separated. This provides inter-
pretation of SAR data when the method is used retrospectively or
allows modulation of specific binding contributions to gain affinity
when used prospectively. The separation also enables diagnose of
terms that improve or deteriorate the correlation with experimental
data. The calculated contributions that are consistently harmful to
the accuracy of the method were permanently excluded from our
MM-GB/SA scoring equation. The equation shown in Fig. 2 is the
one that provides the best results across a series of targets and their
respective ligands. However, one should keep in mind that the
equation and its terms are not perfect; some of their strengths and
weakness are outlined below. The final ranking is obtained by calcu-
lating relative binding energies (DDGbind) using the top-scoring
inhibitor of each target as reference.

1. Force fields perform reasonably well at calculating the relative
energies between different energy minima, but they tend to
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overestimate energy barriers. As the bound conformation for
the ligand is not at any particular energy minimum since it is
deformed by the protein, the DEintra values tend to be more
positive than what would be expected using a quantum-
mechanical method. This problem should be minimized
when scoring a congeneric series.

2. In most cases, DEintra, the ligand intramolecular penalty upon
binding, is a positive number but there are few cases when it is
negative. One classical example is when the compound forms
an intramolecular hydrogen bond in the bound state but not
in solution due to competition with the solvent. In this case,
DGsolv will be very unfavorable. In any event, the sum between
DEintra and DGsolv is always positive.

3. DEintra is highly correlated with the sum between protein–ligand
EVDW and EElect interactions; ligands are deformed as much
as possible to maximize intermolecular interactions with the
protein.

4. � TDSconf , as described above, which assumes a Boltzmann
distribution in solution, is the correct way of estimating the
ligand conformational entropy penalty upon binding. A com-
mon approach used in the literature, which penalizes each
rotatable bond in the ligand that becomes “frozen” upon
binding by +0.65 kcal/mol, considerably overestimates the
entropy loss. This is because this approach assumes that each
rotatable bond has three degenerate conformations, giving a
total of 3N possible conformations, all equal in energy, for a
molecule with N rotatable bonds (20).

5. � TDSconf for a congeneric series has a typical dynamic range
of approximately 1 kcal/mol and it does not have an apprecia-
ble impact on the MM-GB/SA scoring.

6. The protein–ligand EVDW interaction term generally domi-
nates the binding energy differences; it is the term with the
best correlation when plotted individually against experimen-
tal activities.

7. The protein–ligand EElect interaction term is important but
somewhat problematic. The application of a protein dielectric
constant of 1 in a model where protein motions are not taken
into account and the use of a fixed charged force field cause
overestimation of electrostatic attractions and repulsions due
to the lack of shielding effects. Shielding from the solvent as
estimated by the GB method alleviates this problem but this
term tends to be noisy and is excluded from the scoring
equation. Hence, one should be careful when scoring ligands
that form hydrogen bonds with the protein; they tend to have
very favorable scores since the desolvation penalty term DGsolv

is not enough to offset the overestimated EElect term.
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Depending on the makeup of the congeneric series being
scored, EElect might adversely affect the correlation with the
experiment, especially if the ability to form hydrogen bonds
with the protein is limited to only few ligands in the series and
the hydrogen bonds are nonproductive.

8. Applying energy minimization for the complexes rather than
MD simulations greatly increases computational efficiency
and provides a method with a time scale compatible with
synthetic chemistry–biological test cycles. On the other
hand, lack of sampling could in theory pose a significant
limitation on the method since the protein would not be
able to relax to accommodate different scaffolds after docking.
This problem should beminimized when scoring a congeneric
series. In addition, a recent study suggests that a single,
relaxed structure for each complex provides superior results
when compared to the standard averaging over MD trajec-
tories (30). A possible explanation for this is the introduction
of noise in the scoring as each complex could be visiting
different regions of the phase space due to short trajectories.

9. EPTN also suffers from the lack of electrostatic shielding men-
tioned above. This is evident in cases where ligands disturb
neighboring salt bridges within the protein at different
degrees; kinases are a classical example with the salt bridges
between the catalytic Lys and the Glu residue from the C-helix
and/or the Asp residue from the DFG loop adopting different
geometries for each ligand. As a consequence, EPTN can get
very noisy. One solution for this is to reduce the shell of
flexible residues in the energy minimization from 5 to 3 Å.

10. Entropy contributions such as the changes in translational,
rotational, and vibrational entropies for the ligand and protein
upon binding are ignored. The inclusion of such contribu-
tions for ligands in a congeneric series using the rigid rotor
harmonic oscillator (RRHO) approximation as implemented
in Macromodel has little to no impact in the rank ordering.
The contributions for the protein are assumed to be relatively
constant within a series.

11. Another entropic contribution ignored here is associated with
the narrowing of the torsional energy wells for the ligands and
the protein when forming the complex compared to solution
(31). The restriction of torsional motions is possibly the entro-
pic contribution that affects rank ordering themost. However,
its calculation is extremely intensive and typically requires 1
week per compound on a single CPU; the MM-GB/SA score
for 20–30 ligands takes few hours on a single CPU, an accept-
able turnaround in the pharmaceutical industry.
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12. Although solvent effects are included in the protein–ligand
complex geometry optimization using GB/SA, the protein
desolvation term calculated by the continuum model
(ptnDGGB=SA) is excluded from the scoring since it consis-
tently deteriorates the correlation with experimental results,
as illustrated in Fig. 1 for FactorXa and CDK2. The GBmodel
has been shown to give solvation-free energies in agreement
with experiment for small molecules (18, 32). However, the
performance of this model for simulations of large biomole-
cules is questionable at best (33). As for the nonpolar compo-
nents of solvation in GB/SA, the empirical parameterization
of the nonpolar components of hydration free energies based
solely on the solvent accessible surface area is insufficient;
favorable VDW dispersion between interior atoms of the
solute and the solvent, insignificant for small molecules, is
an important effect in the solvation of large solutes such as
biopolymers, and not well captured in a simple surface-area
dependent term (34, 35). This is particularly problematic
when protein systems differ significantly in the number of
buried and solvent-exposed atoms, which is the case when
estimating the different protein desolvation contributions
caused by each ligand.

13. In the WaterMap method, the thermodynamic properties of
waters in the protein-binding site, specifically enthalpy and
entropy changes with respect to bulk water, are obtained from
averaging solvent–solvent and protein–solvent interactions
energies extracted from molecular dynamics simulations and
application of inhomogeneous solvation theory, respectively.
A displaced-solvent functional was later derived to estimate
the free-energy liberation when a ligand that is suitably com-
plementary to the binding site displaces the waters therein
into an assumed-to-preexist cavity in bulk solution, previously
occupied by the ligand. As a consequence, a cavity of identical
size and shape is formed in the protein. The WaterMap
method then represents an attempt to isolate the free energy
associated with transferring the solvent cavity from the bulk to
the binding site from all other contributions to binding and
provides, in other words, an estimate for the hydrophobic
effect. Thus, protein and ligand entropic changes and intra-
molecular strain upon binding as well as ligand–solvent and
protein–ligand interaction energies are excluded from the
estimate for the free-energy liberation of binding-site waters;
our MM-GB/SA approach includes most of them in the scor-
ing. On the other hand, WaterMap does include the loss
of protein–solvent interactions when the cavity for the ligand
is created in the binding site, a term that is not reliably com-
puted by the continuum solvation model as discussed above.
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Therefore, WaterMap and MM-GB/SA seem rather comple-
mentary methodologies. Incorporation of theWaterMap free-
energy liberation (DGWM) (21, 22) into our MM-GB/SA
equation improves the scoring (see Fig. 1), but only modestly.
It is possible that part of that is due to the fact that the
combined method is approaching the maximum R2 value a
model can obtain given the properties of the data sets studied,
as suggested by Brown et al. (36). The small improvement can
also be explained by the high correlation between DGWM and
the protein–ligand EVDW interaction term, the former a mea-
sure of the hydrophobic effect and the latter of hydrophobic-
like interactions (22).

14. Although the MM-GB/SA scoring equation provides good
correlation with experimental data and accurate rank ordering,
the scores display a large dynamic range (15–20 kcal/mol)
with respect to the experimental range, typically around
4–5 kcal/mol. This can have enthalpic as well as entropic
origins. As for the enthalpic effects, it is possible that the
wider scoring spread is due to (1) the lack of shielding of
electrostatic interactions between the protein and ligands
that cause overestimation of electrostatic attractions and
repulsions, (2) the lack of thermal effects as only one energy-
minimized structure for each complex is considered resulting
into overly optimal protein–ligand interactions, and (3) the
lack of complete protein relaxation/strain introduced by dif-
ferent ligands; the ligands that interactmore favorably with the
proteinmight deform it at a larger extent thanwhat is captured
by just a constrained energy minimization. Another potential
explanation for the wider scoring spread is associated with the
incomplete description of enthalpy–entropy compensation
such as (1) more significant vibrational entropy penalties for
complexes displaying more favorable protein–ligand interac-
tions, (2) greater loss of translational and rotational entropies
upon binding for ligands with higher molecular weight, which
tend to exhibit more favorable hydrophobic effect and VDW
interactions with the protein, and (3) a more significant loss of
torsional vibrational entropy for the complexes between the
protein and themore flexible ligands, which have more oppor-
tunities to maximize their intermolecular interactions. This
last entropic contribution is likely to play a more important
role in the scoring range and correlation with experiment
since, as mentioned above, the inclusion of translational, rota-
tional, and vibrational entropies for the ligands using the
RRHO approximation did not have a pronounced effect.
Ongoing work is being conducted to ascertain the relative
importance of each ignored contribution.
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15. The scoring terms of our MM-GB/SA protocol are now
obtained very easily using Knime Extensions as depicted in
Fig. 3. Knime is a modular, highly configurable framework for
easy workflow automation and data analysis (37).
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Chapter 18

A Case Study of Scoring and Rescoring
in Peptide Docking

Zunnan Huang and Chung F. Wong

Abstract

Previously, we examined the application of a molecular dynamics-based simulated annealing cycling
protocol to docking peptides to proteins using two implicit-solvent models: a distance-dependent
dielectric model (e(r ) ¼ 4r ) and a version of the Generalized Born model termed GBMV. We found
that rescoring structures obtained from one implicit-solvent model with the other could improve the
identification of the correct docking pose. Here, we guide interested readers on how to perform a similar
study, using the docking between a hexapeptide and the protein phosphatase YopH in Yersinia pestis as an
example.

Key words: Simulated annealing, Distance-dependent dielectric model, Generalized Born model,
YopH in Yersinia pestis, Energy rescoring, CHARMM, MMTSB Tool Set, ptraj

1. Introduction

It is still challenging to predict reliability of the docking structure
between a protein and a flexible peptide. Recently, we tested a
molecular dynamics (MD)-based method that takes both protein
and peptide flexibility into account. The advantage of using a
molecular dynamics-based method is that force fields developed
for MD simulation are already designed for simulating protein
motion. This method can also naturally simulate the coupled
structural change of the protein and the peptide if a simulation is
performed directly on the whole protein-peptide system, as
opposed to, for example, docking a peptide to dynamic snapshots
of the isolated protein.
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However, to make it practical to use MD-based methods for
docking, it is necessary to utilize additional tricks because a large
configurational space needs to be searched before the best dock-
ing pose can be found. One trick we used was to go beyond
running MD simulation at room or physiological temperatures
to using a simulated annealing (SA) (1) cycling protocol. Each
MD simulation was performed by periodically heating up and
cooling down a system to encourage a system to sample a large
configurational space. We showed that (2, 3) this simulated
annealing cycling strategy was more efficient than conventional
simulated annealing (1)–in which a single heating and cooling
cycle was used–and the replica-exchange (REX) method (4, 5).

We further reduced simulation time by using implicit- rather
than explicit-solvent models. In particular, we have tested one
specific distance-dependent dielectric model (the e(r ) ¼ 4r
model), and one generalized Born model (Generalized Born
using Molecular Volume (GBMV) (6, 7)) along with the
CHARMM param27 force field (8, 9). We also focused on dock-
ing peptides to protein kinases and phosphatases (10). In testing
whether rescoring structures obtained from one implicit-solvent
model with the other could improve the identification of the
correct docking pose, we got positive results.

In this article, we provide details on to perform such a study,
using the docking of a hexapeptide inhibitor Ac-DADE-F2Pmp-
L-NH2 (F2Pmp stands for difluoro-substituted phosphono-
methylphenylalanine, which is a phosphotyrosine analog) to the
protein tyrosine phosphatase YopH of Yersinia pestis as an exam-
ple. Phan et al. (11) designed this phosphorylated hexapeptide
mimic of the protein’s natural substrate and determined its co-
crystal structure with the protein (PDB id: 1QZ0).

2. Methods

2.1. CHARMM CHARMM (Chemistry at HARvard Macromolecular Mechanics)
is the name of a widely used molecular simulation program as well
as the name of its associated set of force fields for performing
molecular dynamics simulation (8, 9, 12, 13). The program has
been developed in the laboratory of Professor Martin Karplus at
Harvard (http://www.charmm.org/). The CHARMM Develop-
ment Project now involves a network of developers throughout
the world. The earlier CHARMM versions indicate the force field
version numbers whereas the later versions denote new versions of
the CHARMM program. We used CHARMM version c31b1 in
this work.

We used the CHARMM27 force field for our simulation (8, 9).
Although the force field was parameterized for the TIP3P water
model, it is also frequently used with implicit-solvent models,
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including various distance-dependent dielectric and generalized
Born models. Additionally, parameters for ligands such as NAD+,
sugars, and fluorinated compounds can be found in extra stream
files. In our simulations, we used the CHARMM27 force field
for protein stored in the files par_all27_prot_na.prm and
top_all27_prot_na.rtf. We also used the stream file toppar_prot_-
na_all.str for patching tyrosine to dianionic phosphotyrosine.

2.2. MMTSB Tool Set MMTSB (Multiscale Modeling Tools for Structural Biology) Tool
Set (14) contains utilities and programming libraries to facilitate
enhanced sampling simulation and multiscale modeling. MMTSB
Tool Set was originally developed at the Scripps Research Institute
under the leadership of Professor Charles L. Brooks III (http://
mmtsb.org/), and is now maintained and continually being
improved by Professor Michael Feig’s group at Michigan State
University (http://feig.bch.msu.edu/mmtsb/Main_Page). This
software is freely accessible to academic users.

MMTSB Tool Set interfaces with the widely used molecular
modeling packages CHARMM(12, 13) andAMBER (15) to solve
problems such as predicting and refining protein/nucleic acid
structure, and performing enhanced conformational sampling.
For example, it can perform REX simulation using all-atom and
coarse-grainedmodels.Here, we describe the twomain Perl scripts
in the MMTSB Tool Set: aarex.pl and enerCHARMM.pl, from
which we have modified to perform protein-peptide docking.

The aarex.pl script is for performing all-atom REX simulation.
In most parallel environments, it automatically starts the REX
server and allocates different replicas (temperature windows) to
different CPUs in the same or different machines. The results are
put under sub-directories with the default name aa* where the *
indicates the replica number. In each sub-directory, log files such
as server log file, CHARMM log file, and energy log file are also
written. The dynamics snapshots are put under sub-directories of
each aa* sub-directory, forming a big directory tree.

On the other hand, the enerCHARMM.pl script uses
CHARMM to evaluate the energy of a system given its topology,
parameter, and coordinate files. We have modified it to rescore
structures obtained from simulated annealing simulations.

2.3. Our Modified

MMTSB Scripts

We modified the MMTSB Tool Kit (14) to use with the
CHARMM package (12, 13) to perform simulated annealing
cycling docking (16). Table 1 lists the main scripts/packages
that we modified. The SA scripts/packages were derived from
four scripts/packages for performing REX simulation.

aacycleSA.pl, derived from aarex.pl, set the initial parameters
and called SAServer, SAClient and CHARMM to perform an
all-atom simulated annealing cycling simulation. aacycleSA.pl dif-
fered from the original aarex.pl script in twomain respects. First, it
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called SA server and clients rather than REX server and clients.
Second, it read and transferred the SA parameters (such as cooling
rate, threshold temperature below which a previous simulated
annealing cycle was ended and a minima structure was sampled,
and a high temperature at which the system was heated back to
and a new simulated annealing cycle begun) rather than the
temperature windows of REX simulations. SAServer.pm and
ReXServer.pm differed a lot due to the different simulation pro-
tocols used in the SA Server and the REX Server. These two
packages constructed and set their own Server objects with differ-
ent arguments; read and wrote different information files defining
and monitoring the simulations, initiated different clients; and
controlled temperature perturbation (SA) or exchange (REX)
steps for their clients.

On the other hand, SAClient.pm was almost the same as
ReXClient.pm except for the client names because the SA clients
and REX clients performed a similar function: performing a simu-
lation after a temperature perturbation (in SA cycling) or after a
REX (in REX simulation) signaled by their servers.

Finally, in CHARMM.pm, the Perl package for interfacing
MMTSB with CHARMM, we added new arguments related to
SA simulation and setting default values when constructing
CHARMM objects, and a function setupFromPSFPDB($psffile,
$pdbfile) used for rescoring dynamical snapshots.

Table 1
Modified MMTSB scripts for simulated annealing cycling simulation and energy
rescoring

Original SCRIPT Modified script Function

aarex.pl aacycleSA.pl Perform all-atom simulated annealing cycling
simulation

ReXServer.pm SAServer.pm Server for simulated annealing cycling simulation

ReXClient.pm SAClient.pm Set up clients for performing simulated annealing
cycling simulation

CHARMM.pm CHARMM.pm Provide interface with CHARMM

enerCHARMM.pl enerCHARMM.pl Get CHARMM energy from psf/pdb/crd files for a
single structure

enerCHARMM.pl enerCHARMMens.pl Get CHARMM energies from psf/pdb/crd files for
an ensemble of dynamic structures

Molecule.pm Molecule.pm Read/write/convert structure information
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The enerCHARMM.pl and enerCHARMMens.pl scripts were
used to rescore dynamic structures using an implicit-solvent model
differing from the one used in the simulated annealing cycling
simulation. They called setupFromPSFPDB in the modified
CHARMM.pm to read the coordinates of the structures (in Protein
Data Bank (PDB) format) from the simulation and to get the topol-
ogy information of the structures from the topology file (commonly
with .psf extension).

In Molecule.pm, we added a function readPDBcrd to read in
the atomic coordinates from each snapshot file in PDB format but
discard other information. This function was called from setup-
FromPSFPDB in our modified CHARMM.pm.

2.4. ptraj ptraj is a general-purpose utility for analyzing and processing
trajectory or coordinate files created from MD simulations or
various other sources. For example, it can carry out superposition
of structures, extract coordinates, calculate different properties
such as bond/angle/dihedral values, atomic positional fluctua-
tions and correlation functions, perform clustering, and analyze
hydrogen bonds. Professor Thomas E. Cheatham III at the Uni-
versity of Utah wrote ptraj. (http://www.chpc.utah.edu/~chea-
tham/software.html). It is now distributed as part of the free set
of “Amber Tools” (http://ambermd.org/AmberTools-get.html).

3. Simulation
Procedures

The UNIX operation system is assumed unless stated otherwise.
Table 2 lists all the scripts used (see Note 1).

3.1. System Set Up 1. Preparing initial coordinate files from the crystal structure of
the YopH-peptide system: We downloaded PDB entry 1QZ0
(11) from the PDB and extracted the coordinates of the YopH
protein (chain A), the peptide (Ac-DADE-F2Pmp-L-NH2,
Chain C), and three water molecules (wat61, wat184, and
wat430) inside the binding pocket of chain A. We then saved
these coordinate files as 1QZ0prot.pdb, 1QZ0pept.pdb, and
1QZ0water.pdb, respectively and further revised them by
changing some atom and residue names to be consistent
with CHARMM (see Notes 2 and 3). Table 3 lists the atom
and residue names that were changed.

2. Building the topology and coordinate files for the protein and
water molecules (see Note 5): We made the two CHARMM
input script files 1QZ0.inp and Water.inp, for this purpose.
Table 4 shows 1QZ0.inp in its entirety. The function of each
segment was explained briefly inside the script; detailed
descriptions are found in the CHARMM documentation.
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Table 2
Description of simulation script

Script name Script function Execution syntax

1QZ0.inp To generate the topology and coordinate files
of the YopH protein

charmm <1QZ0.inp>
1QZ0.out

Peptide.inp To generate the topology and coordinate files
of the phosphorylated hexapeptide

charmm <Peptide.inp>
Peptide.out

Water.inp To generate the topology and coordinate files
of three crystal water molecules

charmm <Water.inp> Water.out

1QZ0Pepti-
dewater.inp

To generate the topology and coordinate files
of the YopH-peptide-water complex

charmm <1QZ0Peptidewater.
inp> 1QZ0Peptidewater.out

Minrun.inp To perform energy minimization on the YopH-
peptide-water structure to relieve bad contact

charmm <Minrun.inp>
Minrun.out

submit To submit a run of four simulated annealing
cycling simulations to a computer cluster

BSUB < submit

SAeps4 To perform simulated annealing cycling
simulations using the e(r ) ¼ 4r model

./SAeps4

SAgbmv To perform simulated annealing cycling
simulations using the GBMV model

./SAgbmv

SA.inp For setting up RMSD restraints on the protein
during simulated annealing cycling
simulation

Read by SAeps4 or SAgbmv

enerEPS4 To recalculate the total energy of the dynamic
snapshots using the e(r ) ¼ 4r model

./enerEPS4

enerGBMVall To recalculate the total energy of the dynamic
snapshots using the GBMV model

./enerGBMVall

ener.inp To set up calculation of the self-energy and
interaction energy of different systems
(protein, peptide, etc.) during rescoring (also
see Table 15)

Read by enerEPS4

trjprod To generate one single binary trajectory file aa.
binpos in Scripps’ “binpos” format from all
pdb files written out by our modified
MMTSB Tool Set and then calculate peptide
RMSDs

./trjprod

trjgen.trajin For use with ptraj to generate one single binary
trajectory in Scripps’ “binpos” format from all
dynamics structures written out by MMTSB

“ptraj 1qz0peptidewater0.psf
<trjgen.trajin> trjgen.out”;
called from trjprod

rmsd.trajin For use with ptraj to calculate the RMSD
between the peptide and the crystal structure

“ptraj 1qz0peptidewater0.psf
<rmsd.trajin> rmsd.out”;
called from trjprod
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Table 5 shows the part of Water.inp that differed from 1QZ0.
inp. These scripts performed the followings: read topology
and parameter files, read stream file, read sequence, generated
system topology, patched modified residues (such as proto-
nated or terminated), wrote protein structure files: *psf, read
coordinate file, built missing heavy atom coordinates, added
missing hydrogens, and wrote out coordinate files in PDB and
CHARMM’s crd formats. We used these scripts to generate
the *.psf, *.pdb, and *.crd files for the protein and the water
molecules, respectively by issuing “charmm <1QZ0.inp or
Water.inp> 1QZ0.out or Water.out” in the UNIX shell.

3. Building the topology and coordinate files for the co-crystal
structure and the extended conformation of the peptide: We
made the CHARMM input script file Peptide.inp for this
purpose. The script Peptide.inp differed somewhat depending
on whether one was building the co-crystal structure or the
extended conformation of the peptide. For the former,
CHARMM read 1QZ0pept.pdb containing the co-crystal
structure. For the latter, CHARMM used the command “IC
SEED 1 N 1 CA 1 C” to initiate the coordinates of an
extended conformation for the peptide. Table 6 lists parts of
Peptide.inp. The optional segment or command for generat-
ing different conformations of the peptide is illustrated in
bold. The script read a stream file “toppar_prot_na_all.str”
for patching TYR to generate the dianionic phosphotyrosine
form denoted by TP2. In addition, it also used in several IC

Table 3
Atom and residue names that were changed in the PDB files to be consistent with
CHARMM

1QZ0prot.pdb 1QZ0pept.pdb 1QZ0water.pdb

Original Revised Original Revised Original Revised

CD ILE CD1 ILE FTY C 505 TYR C 505 O HOH 61 OH2 TIP3 1

HIS HSD/HSE P FTY P1 TYR O HOH 184 OH2 TIP3 2

CYSa CYN O1P FTY O2 TYR O HOH 430 OH2 TIP3 3

O SERb OT1 SER O2P FTY O3 TYR

OXT SERb OT2 SER O3P FTY O4 TYR

CLE C 506 LEU C 506

N2 CLE NT LEU

CYN negatively charged form of CYS (see Note 4)
aFor Cys-403 only
bFor the last C-terminal residue Ser-468 only
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Table 4
The 1QZ0.inp input script file for use with CHARMM

! Read revised topology and parameter force field files which include the
new residue CYN

OPEN READ FORM UNIT 1 NAME "top_all27_prot_na_peptide.rtf"

READ RTF CARD UNIT 1

CLOSE UNIT 1

OPEN READ FORMUNIT 2 NAME "par_all27_prot_na_peptide.prm"

READ PARAMETER CARD UNIT 2

CLOSE UNIT 2

! Read protein sequence to build protein topology

READ SEQUENCE CARD

* PSF TEST

*

282

SER PRO TYR GLY PRO GLU ALA ARG ALA GLU LEU SER SER

ARG LEU THR THR LEU ARG ASN THR LEU ALA PRO ALA THR

ASN ASP PRO ARG TYR LEU GLN ALA CYS GLY GLY GLU LYS

LEU ASN ARG PHE ARG ASP ILE GLN CYS ARG ARG GLN THR

ALA VAL ARG ALA ASP LEU ASN ALA ASN TYR ILE GLN VAL

GLY ASN THR ARG THR ILE ALA CYS GLN TYR PRO LEU GLN

SER GLN LEU GLU SER HSD PHE ARG MET LEU ALA GLU ASN

ARG THR PRO VAL LEU ALA VAL LEU ALA SER SER SER GLU

ILE ALA ASN GLN ARG PHE GLY MET PRO ASP TYR PHE ARG

GLN SER GLY THR TYR GLY SER ILE THR VAL GLU SER LYS

MET THR GLN GLN VAL GLY LEU GLY ASP GLY ILE MET ALA

ASP MET TYR THR LEU THR ILE ARG GLU ALA GLY GLN LYS

THR ILE SER VAL PRO VAL VAL HSE VAL GLY ASN TRP PRO

ASP GLN THR ALA VAL SER SER GLU VAL THR LYS ALA LEU

ALA SER LEU VAL ASP GLN THR ALA GLU THR LYS ARG ASN

MET TYR GLU SER LYS GLY SER SER ALA VAL ALA ASP ASP

SER LYS LEU ARG PRO VAL ILE HSD CYN ARG ALA GLY VAL

GLY ARG THR ALA GLN LEU ILE GLY ALA MET CYS MET ASN

ASP SER ARG ASN SER GLN LEU SER VAL GLU ASP MET VAL

(continued)
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commands to generate missing coordinates for two or six resi-
dues: for the crystal structure, the first two residues in peptide
structure are missing and for the extended conformation, no
coordinates for the six residues are available. CHARMM was
invoked to generate the missing coordinates. To run the script,
issue “charmm <Peptide.inp> Peptide.out” to obtain the
topology and coordinate files (*.psf, *.pdb, and *.crd).

4. Building the initial structure of the YopH-peptide-water system
for simulation: We made the CHARMM input script file
1QZ0Peptidewater.inp for setting up the whole complex. Issue
“charmm <1QZ0Peptidewater.inp> 1QZ0Peptidewater.out”

Table 4
(continued)

SER GLN MET ARG VAL GLN ARG ASN GLY ILE MET VAL GLN

LYS ASP GLU GLN LEU ASP VAL LEU ILE LYS LEU ALA GLU

GLY GLN GLY ARG PRO LEU LEU ASN SER

GENERATE PROT WARN SETU

! Patch ASP 170 (ASP 356 in the PDB file) by ASPP to make it protonated

PATCH ASPP PROT 170

AUTO ANGL DIHE

! Write the protein topology file with .psf extension

OPEN WRITE CARD UNIT 40 NAME "1qz0.psf"

WRITE PSF UNIT 40 CARD

! Read the 1QZ0prot.pdb file from the co-crystal structure, its first residue
is SER 187

OPEN UNIT 50 READ FORM NAME "1QZ0prot.pdb"

READ COOR PDB OFFSET -186 UNIT 50

CLOSE UNIT 50

! Add all hydrogens when using a crystal structure

HBUILD SELE ALL END

! Write a new PDB file for the protein. Its first residue becomes SER 1.

OPEN WRITE UNIT 60 FORM NAME "1qz0.pdb"

WRITE COOR PDB UNIT 60

! Write out the protein in crd format

OPEN WRITE UNIT 70 CARD NAME "1qz0.crd"

WRITE COOR UNIT 70 CARD

STOP
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Table 5
The partial CHARMM input file Water.inp

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

! The segment above for reading force field files is the same as that in
1QZ0.inp

! Read water sequence to build water topology

READ SEQUENCE CARD

*

3

TIP3 TIP3 TIP3

GENERATE WAT SETU NOANGLE NODIHEDRAL

! The following segments are similar to those in 1QZ0.inp, except for
different names of the input/output files (*.psf, *.pdb, and *.crd) and
the lack of the OFFSET command.

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

Table 6
Part of the CHARMM input file Peptide.inp

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

! The above segment for reading force field files is the same as that in
1QZ0.inp

! Read stream file for patching TYR to its phosphorylated form

STREAM toppar_prot_na_all.str

! Read peptide sequence to build peptide topology

READ SEQUENCE CARD

*

6

ASP ALA ASP GLU TYR LEU

GENERATE PEPT FIRST NTER LAST CT2 WARN SETU

PATCH TDF2 PEPT 5

AUTO ANGL DIHE

! Write out the peptide topology file with .psf extension

OPEN WRITE CARD UNIT 40 NAME "peptide.psf"

(continued)
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in the UNIX command line to run the script to generate the
topology andcoordinatefilesof theYopH-peptide-water system.
Table 7 shows the content of the script 1QZ0Peptidewater.inp.
In the script, 1qz0.pdb, peptide.new.pdb, and water.new.pdb
were obtained from the earlier steps when we built the topology
and coordinate files for the protein, peptide, or water molecules
separately. We used peptide.new.pdb and water.new.pdb instead
of peptide.pdb and water.pdb because the residue numbers in
these new PDB files were increased by adding the number of
protein residues and thenumberof proteinplus peptide residues,
respectively. 1QZ0allcombined.pdbwas obtained by combining
1qz0.pdb, peptide.new.pdb, andwater.new.pdb into a single file.
The script for building the complex X-ray co-crystal structure or
with the peptide in the extended conformation is similar to the
one shown in Table 7; it read different peptide structure files
depending on whether the crystal structure or an extended
conformation of the peptide was used.

Table 6
(continued)

WRITE PSF UNIT 40 CARD

! Read the 1QZ0pept.pdb file, its first residue is ASP 503.

! This segment is for the co-crystal structure only

OPEN UNIT 50 READ FORM NAME "1QZ0pept.pdb"

READ COOR PDB OFFSET -500 UNIT 50

CLOSE UNIT 50

! Build missing coordinates

IC GENERATE

IC PARA

IC SEED 1 N 1 CA 1 C ! For extended peptide structure only

IC BUILD

IC PRINT
! Add hydrogens to the crystal structure

HBUILD SELE ALL END

! The following segment for writing peptide.pdb and peptide.crd is similar
to that in 1QZ0.inp.

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
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Table 7
CHARMM input script 1QZ0Peptidewater.inp for generating
the topology file and coordinate file for the YopH-peptide-
water complex

! Read revised topology and parameter force field files which include the
new residue CYN

OPEN READ FORM UNIT 1 NAME "top_all27_prot_na_peptide.rtf"

READ RTF CARD UNIT 1

CLOSE UNIT 1

OPEN READ FORMUNIT 2 NAME "par_all27_prot_na_peptide.prm"

READ PARAMETER CARD UNIT 2

CLOSE UNIT 2

! Read stream file to change tyrosine (TYR) to phosphorylated tyrosine
(TDF2)

STREAM toppar_prot_na_all.str

! Part I: build protein topology, read sequence from coordinate file

OPEN UNIT 10 READ FORM NAME "1qz0.pdb"

READ SEQU PDB UNIT 10

CLOSE UNIT 10

GENERATE PROT WARN SETU

PATCH ASPP PROT 170

AUTO ANGL DIHE

! Part II: build peptide topology, read sequence from coordinate file

OPEN UNIT 20 READ FORM NAME "peptide.new.pdb"

READ SEQU PDB UNIT 20

CLOSE UNIT 20

GENERATE PEPT FIRST ACE LAST CT2 WARN SETU

!287¼282+5

PATCH TDF2 PEPT 287

AUTO ANGL DIHE

! Part III: build water topology, read sequence from coordinate file

OPEN UNIT 30 READ FORM NAME "water.new.pdb"

READ SEQU PDB UNIT 30

CLOSE UNIT 30

GENERATE WAT SETU NOANGLE NODIHEDRAL

! Write topology file for the protein-peptide-water system

(continued)
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5. Prior to each molecular dynamics simulation, we performed
500 steps of steepest descent energy minimization of the
YopH-peptide-water complex to remove bad contacts. Dur-
ing the energy minimization, the a carbons and the water
oxygens were held fixed. The minimization was performed
by issuing “charmm<Minrun.in>Minrun.out” in the UNIX
command line. Table 8 shows the content of Minrun.in.

3.2. Simulated

Annealing Cycling

Simulation

1. We performed the simulations in a cluster named LEWIS at
the University of Missouri Bioinformatics Consortium. This
cluster has 128 dual core-dual processor cluster node with
2.8 GHz Intel Xeon EM64T processors. Table 9 shows the
script for submitting a job to the cluster via its Load Sharing
Facility (LSF) (see Note 6). We used 4 CPUs to perform each
run containing four SA simulations.

2. We started each peptide docking simulation either from the
X-ray co-crystal structure or with the peptide in the extended
conformation on the protein surface near its binding site. Five
runs were performed separately in different directories for each
of the two starting structures. Table 10 shows the MMTSB
script SAeps4 for running the simulated annealing cycling simu-
lations using the e(r ) ¼ 4r model. Each run used 4 CPUs
(-cpus 4) and included four independent trajectories of

Table 7
(continued)

OPEN WRITE CARD UNIT 40 NAME "1qz0peptidewater.psf"

WRITE PSF UNIT 40 CARD

! Read the original pdb file

OPEN UNIT 50 READ FORM NAME "1QZ0allcombined.pdb"

READ COOR PDB UNIT 50

CLOSE UNIT 50

! Write out the complex to a pdb file

OPEN WRITE UNIT 60 FORM NAME "1qz0peptidewater.pdb"

WRITE COOR PDB UNIT 60

! Write out the complex to a file in crd format

OPEN WRITE UNIT 70 CARD NAME "1qz0peptidewater.crd"

WRITE COOR UNIT 70 CARD

STOP
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Table 8
CHARMM input file Minrun.inp for performing energy
minimization to remove bad contacts

! Read revised topology and parameter force field files that include the new
residue CYN

OPEN READ UNIT 1 CARD NAME "top_all27_prot_na_peptide.rtf"

READ RTF UNIT 1 CARD

CLOSE UNIT 1

OPEN READ UNIT 2 CARD NAME "par_all27_prot_na_peptide.prm"

READ PARA UNIT 2 CARD

CLOSE UNIT 2

! Read stream file containing a patch to change tyrosine (TYR) into
phosphotyrosine (TDF2)

STREAM toppar_prot_na_all.str

! Read topology and coordinates of the complex

OPEN READ UNIT 10 CARD NAME "1qz0peptidewater.psf"

READ PSF UNIT 10 CARD

CLOSE UNIT 10

OPEN READ UNIT 20 FORM NAME "1qz0peptidewater.crd"

READ COOR PDB UNIT 20 CARD

CLOSE UNIT 20

! Use the epsilon ¼ 4r implicit-solvent model

NBOND ATOM VATOM FSWITCH VSHIFT RDIE EPS 4.0 -

CUTNB 14.0 CTOFNB 12.0 CTONNB 10.0 WMIN 1.0

! fix the alpha-carbons and the water oxygens during minimization

CONS FIX SELE ((ATOM * * CA .AND. SEGID PROT) .OR. (TYPE
OH2 .AND. SEGID WAT)) END

! Perform 500 steps of steepest descent energy minimization

MINI SD NSTEP 500

! Write out the minimized structure in crd and PDB formats

OPEN WRITE UNIT 30 CARD NAME "1qz0peptidewatermin.crd"

WRITE COOR UNIT 30 CARD

CLOSE UNIT 30

OPEN WRITE UNIT 40 FORM NAME "1qz0peptidewatermin.pdb"

WRITE COOR PDB UNIT 40

CLOSE UNIT 40

STOP
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simulated annealing cycling simulations, starting at 500K (win-
dowsandtemp 4:500). Therefore, 20 trajectories were per-
formed for each starting structure (see Note 7) and a total of
40 trajectories resulted.Each trajectory lasted2ns (-n2000). As
a result, the aggregate simulation time for the YopH-peptide-
water system covered 80 ns. We used a time step of 2 fs
(dyntstep¼0.002) in these simulations.During the simulations,

Table 9
Script for submitting a simulated annealing run to the
computer cluster LEWIS at the University of Missouri
Bioinformatics Consortium

#BSUB -J YOPHpeptide

#BSUB -n 4

#BSUB -R "span[hosts¼1]"

#BSUB -oo YOPH.o%J

#BSUB -eo YOPH.e%J

mkdir /tmp/zunnan

cd /tmp/zunnan

cp /home/zhuang/data/YOPHPeptide/EPS4/141210/test10/* .

./SAesp4

mv * /home/zhuang/data/YOPHPeptide/EPS4/141210/test10/

rmdir /tmp/zunnan

cd /home/zhuang/data/YOPHPeptide/EPS4/141210/test10/

Table 10
Job script (SAeps4) for performing a simulated annealing
run using our modified MMTSB Tool Set for the "(r ) ¼ 4r
model

aacycleSA.pl -n 2000 -mdpar dynsteps¼500, dyntstep¼0.002, param¼27,
stream¼toppar_prot_na_all.str, nogb, explicit¼0, dielec¼rdie,
epsilon¼4.0, shake¼1, cutnb¼14.0, cutoff¼12.0, cuton¼10.0,
echeck¼9999999999999999999 -par initruns¼0, equilruns¼0,
perturbedfreq¼1, psf¼1qz0peptidewater.psf -cpus 4 -windowsandtemp
4:500 -pert 1:5.0:0.5:500 -log 1qz0peptidewater.log -charmmlog clog
-elog elog -custom setup SA.inp 1qz0peptidewatermin.crd
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we applied root-mean-square deviation (RMSD) restraints to
keep the protein and the three water molecules in the binding
pocket near the crystal structure. Only the a carbons of the
protein and the water oxygens were restrained. The specific
commands, from a portion of the input file SA.inp read by the
job script SAeps4, for implementing the RMSD-restraints in
MMTSB are shown in Table 11. The simulated annealing
cycling docking simulations were conducted with the
CHARMM param27 force field (8, 9) (param¼27). In the
simulation using the e(r ) ¼ 4r model (dielec¼rdie,
epsilon¼4.0), we used a nonbonded cutoff distance of 14 Å, a
switching function for the electrostatic interactions that began
at 10 Å and ended at 12 Å, and a shifting function for the
Lennard-Jones potential (cutnb¼14.0, cutoff¼12.0,
cuton¼10.0). The simulations wrote a snapshot every picosec-
ond (500 dynsteps *0.0002 dyntstep) into the file final.pdb, a
CHARMM log file named clog (-charmmlog clog), and an
energy log file elog (-elog elog) for each trajectory (seeNote 8).

3. For the simulations using the GBMV (6, 7, 17) model, we also
ran20 trajectories for eachof the two starting structures but each
trajectory only lasted for 1 ns (-n 1000) (seeNote 9). Therefore,
the aggregate time for the GBMV simulations of the YopH-
peptide-water system covered only 40 ns. In the simulation
using theGBMV (6, 7)model, we used theGBMV1 parameters
of Chocholoušová and Feig (17) (gb¼gbmva, dielec¼cdie,
gbmvabeta¼�12, gbmvap3¼0.65, gbmvsa¼0.015). In addi-
tion, we used a nonbonded cutoff distance of 12 Å and a switch-
ing function applied between 8 and 10 Å (cutnb¼12.0,
cutoff¼10.0, cuton¼8.0) (see Note 10). Table 12 shows the
MMTSB script file SAgbmv for running simulated annealing
cycling simulations using the GBMVmodel.

3.3. Energy Rescoring 1. Weperformedenergy rescoringusing the implicit-solventmodel
not used in the simulated annealing simulation. In other words,
we rescored structures generated fromthe e(r ) ¼ 4rmodelwith

Table 11
Input file SA.inp containing extra commands read by the
job script in Table 10

DEFINE RSTN SELE ((atom * * ca .and. segid prot) .or. (.not. type H* .
and. segid WAT)) END

cons rmsd force 1000.0 mass sele RSTN end

cons rmsd show
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the GBMV model or vice versa. Tables 13 and 14 display
the MMTSB script files enerEPS4 and enerGBMVall for rescor-
ing docking pose with the e(r ) ¼ 4r and the GBMV models,
respectively. In these two script files, **** represents a number
of 2,000 for the simulation using the e(r ) ¼ 4r model and
1,000 for the simulation using the GBMVmodel. In rescoring
dockingposewith the e(r ) ¼ 4rmodel,wecontinued touse the

Table 13
Job script enerEPS4 to use with MMTSB to rescore
docking pose with the (r ) ¼ 4r model

enerCHARMMens.pl -oneline -par param¼27,
stream¼toppar_prot_na_all.str, nogb, explicit¼0, dielec¼rdie,
epsilon¼4.0, cutnb¼14.0, cutoff¼12.0, cuton¼10.0 -psfpdb
1qz0peptidewater.psf final.pdb -log ener.log -cmd enerclog -custom
ener.inp -n 4 -outfile bindingener_eps4_all.dat -nruns ****

Table 12
Job script file SAgbmv for running simulated annealing
cycling simulations with our modified MMTSB Tool Set
using the GBMV model

aacycleSA.pl -n 1000 -mdpar dynsteps¼500, dyntstep¼0.002, param¼27,
stream¼toppar_prot_na_all.str, explicit¼0, gb¼gbmva, dielec¼cdie,
gbmvabeta¼-12, gbmvap3¼0.65, gbmvsa¼0.015, shake¼1,
cutnb¼12.0, cutoff¼10.0, cuton¼8.0,
echeck¼9999999999999999999 -par initruns¼0, equilruns¼0,
perturbedfreq¼1, psf¼1qz0peptidewater.psf -cpus 4 -windowsandtemp
4:500 -pert 1:5.0:0.5:500 -log 1qz0peptidewater.log -charmmlog clog
-elog elog -custom setup SA.inp 1qz0peptidewatermin.crd

Table 14
Job script enerGBMVall to use with MMTSB to rescore
docking pose with the GBMV model

enerCHARMMens.pl -oneline -par param¼27,
stream¼toppar_prot_na_all.str, gb¼gbmva, explicit¼0, dielec¼cdie,
gbmvabeta¼-12, gbmvap3¼0.65, gbmvsa¼0.015, cutnb¼12.0,
cutoff¼10.0, cuton¼8.0 -psfpdb 1qz0peptidewater.psf final.pdb -log
GBMVenerall.log -cmd GBMVallclog -n 4 -outfile
bindingener_GBMV_all.dat -nruns ****
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cutoff distances 14, 10, and 12 Å described before. For the
GBMV model, we used the smaller cutoff distances of 12, 8,
and 10 Å. In addition, the enerEPS4 script file read in the file
ener.inp shown in Table 15 to calculate the energy of the
isolated species such as protein and peptide, and different
interaction energy contributions among the YopH-peptide-
water complex (see Note 11). In doing this, we first wrote
out the total energies in the file bindingener_eps4_all.dat
(-outfile bindingener_eps4_all.dat/bindingener_GBMV_all.
dat) for four trajectories in each directory and an energy log
file containing the energy of structures written out every pico-
second (-log ener.log/GBMVenerall.log). We then used in-
house programs to extract different interaction energy contri-
butions among the YopH-peptide-water complex such as the
binding energy between protein (water) and peptide for each
dynamics trajectory from the energy log file ener.log for the
e(r ) ¼ 4r model. Because Gpol and the surface area energy in
the GBMV model are not additive, the binding energy could
not be calculated directly in the same way. Therefore,
enerGBMVall did not read ener.inp to calculate the energies
of the isolated protein(water) or peptide. Instead, two other
scripts enerGBMVprotwat (not shown), and enerGBMVli-
gand (not shown) were used to calculate the energy of the

Table 15
Input file ener.inp to use with the job script
in Table 13 to rescore docking pose with the
(r ) ¼ 4r model

DEFINE BDPT SELE (segid PROT .or. segid WAT) END

inte select BDPT end select segid PEPT end

inte select BDPT end

inte select segid PEPT end

inte select segid PROT end

inte select segid WAT end

inte select segid PROT end select segid PEPT end

inte select segid WAT end select segid PEPT end

inte select segid PROT end select segid WAT end

DEFINE BDST SELE (segid PEPT .or. segid WAT) END

inte select segid PROT end select BDST end

inte select BDST end
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two species and calculated the binding energy from the differ-
ence between the energy of the complex and those of the
isolated species.

3.4. Data Analysis 1. To examine whether the ligand was docked correctly, we
calculated the root-mean-square deviation (RMSD) between
a docking structure and the crystal structure for the peptide
after superposition of the coordinates of all the heavy atoms of
the protein. We used the ptraj program to calculate the
RMSD. Table 16 shows the trjprod script file for use in the
ptraj program to obtain the peptide RMSD (see Note 12).
When the job was run with this script, two files trjgen.trajin
(shown in Table 17) and rmsd.trajin (shown in Table 18) were
also used (see Note 13). The former was used to generate a
single binary trajectory, in Scripps’ “binpos” format, from all
dynamic snapshots (final.pdb) generated every picosecond
from the simulated annealing cycling simulations. rmsd.trajin
was used for calculating different types (all heavy atoms, all
backbone atoms, all backbone atoms plus all heavy atoms of
phosphotyrosine residue, or all a-carbon atoms) of RMSD for
the docking peptide. From the ptraj output files (with .dat
extension) such as peptidermsd.dat and petidermsdbackbo-
neandTry.dat file, one could easily obtain the best docking
poses from the protein-peptide docking simulations using
Microsoft Excel or in-house programs listed in Table 19.

Table 16
Job script trjprod for use with ptraj

cd aa1/

ptraj ../1qz0peptidewater0.psf <../trjgen.trajin> ../trjgen.out

cd ../aa2/

ptraj ../1qz0peptidewater0.psf <../trjgen.trajin> ../trjgen.out

cd ../aa3/

ptraj ../1qz0peptidewater0.psf <../trjgen.trajin> ../trjgen.out

cd ../aa4/

ptraj ../1qz0peptidewater0.psf <../trjgen.trajin>../trjgen.out

cd ../

ptraj 1qz0peptidewater0.psf <rmsd.trajin> rmsd.out
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Table 17
trjgen.trajin for use with ptraj to generate MD
trajectory aa.binpos from the dynamics snapshots
(final.pdb files) generated from our modified MMTSB
program

trajin prod/0/1/final.pdb.gz

trajin prod/0/2/final.pdb.gz

trajin prod/0/3/final.pdb.gz

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

trajin prod/9/99/final.pdb.gz

trajin prod/10/0/final.pdb.gz ! last line for GBMV simulation

trajin prod/10/1/final.pdb.gz

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

trajin prod/19/98/final.pdb.gz

trajin prod/19/99/final.pdb.gz

trajin prod/20/0/final.pdb.gz ! last line for e(r ) ¼ 4r simulation

trajout aa.binpos binpos nobox

Table 18
rmsd.trajin for use with ptraj to calculate different types
of RMSD between peptide docking poses and the crystal
structure

trajin aa1/aa.binpos

trajin aa2/aa.binpos

trajin aa3/aa.binpos

trajin aa4/aa.binpos

reference 1qz0peptidewaterxray.pdb

rms reference out protrmsd.dat :1-282@C*,N*,O*,P*,S* time 1.0 fit

rms reference out peptidermsd.dat :285-288@C*,N*,O*,P*,S*,F* time
1.0 nofit

rms reference out peptidermsdbackbone.dat :285-288@C,O,N time 1.0
nofit

rms reference out peptidermsdbackboneandTry.dat :287@C*,N*,O*,P*,
S*,F*-:285-286@C,O,N-:288@C,O,N time 1.0 nofit

rms reference out peptidermsdCA.dat :285-288@CA time 1.0 nofit
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2. Likewise, one can read bindingener_eps4_all.dat, bindin-
gener_GBMV_all.dat, and bindingener_GBMV_all.dat into
Microsoft Excel to obtain the RMSD of the best docking
poses identified by using the total energy or the rescored
energy of the YopH-peptide-water complex, as shown in
Table 20.

4. Notes

1. It is useful to set up the environment variables and path shown
in Table 21 (for C shell) for running CHARMM and
MMTSB.

2. Steps 1–4 in Subheading 1: In creating pdb files such as
1QZ0prot.pdb, 1QZ0pept.pdb, and 1QZ0water.pdb for
reading by CHARMM, it is useful to add an END line at the
end of the file. Although many programs could read PDB files
without an END line, CHARMM could fail to read the coor-
dinates of the atom in the last line if there is no END line.

3. Steps 1–4 in Subheading 1: It is necessary to assign the proper
protonation states for HIS residues–HSE, HSD, or
HSP–when building the topology file of the protein.

Table 19
Best docking poses from protein-peptide docking simula-
tions with the "(r ) ¼ 4r model and the GBMV model

Simulation Property

Smallest
peptide
RMSDheavy
(Å)

Smallest
peptide
RMSDbackbone
(Å)

Smallest
peptide
RMSDbackbone + pTyr

(Å)a

e(r ) ¼ 4r
model

X-rayb 0.60 0.31 0.32

Extendedc 1.30 0.56 1.06

GBMV
model

X-rayb 0.73 0.57 0.48

Extendedc 6.49 2.74 6.43

This table was modified from [10]
aRMSD calculated by the backbone atoms of the peptide and the heavy atoms
of the phosphotyrosine residue
bSimulations starting from the X-ray structure
cSimulations starting with the peptide ligand on the protein surface and with
an extended conformation

Bold: RMSD > 3 Å
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PDB2PQR program (18) is a useful program to do this and to
generate missing hydrogens as well. For example, type
“pdb2pqr –ff¼charm 1QZ0prot.pdb 1QZ0protpqr.pdb” in
the Unix command line to generate the output file
1QZ0protpqr.pdb with protonation states assigned and miss-
ing hydrogens added, after PDB2PQR has been installed in
your system.

Table 20
RMSD of the best docking pose identified by the total energy and the rescored
total energy of the YopH-peptide complex using different energy models

MD
simulations
performed
with e(r ) ¼ 4r
model

MD simulations
performed with
GBMV model

Property Simulation
Scored with
e(r ) ¼ 4r

Rescored with
GBMV

Scored with
GBMV

Rescored with
e(r ) ¼ 4r

RMSDheavy (Å) 1.57 1.34 9.69 1.21

RMSDbackbone + pTyr

(Å)a
0.69 0.67 9.41 0.70

This table was modified from (10)
The docking simulations were run with the e(r ) ¼ 4r or the GBMV model
aRMSD calculated by the backbone atoms of the peptide and the heavy atoms of the phosphotyrosine
residue

Table 21
The part of the .cshrc file for setting the environment for
performing simulated annealing cycling simulation with
CHARMM and the MMTSB Tool Set

setenv CHARMMEXEC /home/zhuang/programs/CHARMM/
c31b1/exec/gnu/charmm

setenv CHARMMDATA /home/zhuang/programs/CHARMM/
c31b1/toppar

setenv MMTSBDIR /home/zhuang/programs/MMTSB

setenv PERL5LIB /home/zhuang/programs/MMTSB/perl

set path¼($MMTSBDIR/perl $MMTSBDIR/bin

/home/zhuang/programs/CHARMM/c31b1/exec/gnu)
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4. Steps 1–4 in Subheading 1: CYS403 adopts the negatively
charged form and ASP356 takes on the protonated neutral
form at physiological conditions (19). In the topology file
top_all27_prot_na_peptide.rtf, we added a new residue CYN
to represent the negatively charged form of CYS403. ASP356
was converted to the protonated neutral form by using the
patch ASPP.

5. Steps 2–4 in Subheading 1: One could neglect steps 2 and 3,
and use step 4 only to build the topology and coordinate files
of the YopH-peptide-water complex directly. However,
performing steps 2 and 3 first simplified debugging. In addi-
tion, the separate topology files generated in steps 2 and 3 for
the isolated protein or peptide could be used later, for exam-
ple, in calculating the binding energy between the protein and
the peptide in the GBMV model.

6. Step 1 in Subheading 2: during the simulation on the com-
puter cluster, all output data including dynamic snapshots
were written to temporary directories (/tmp) attached to
the computing nodes. The final results were only transferred
to the /home directory directly accessible by the user after the
simulation was finished. This avoided inefficient frequent I/O
through the network during the simulation.

7. Steps 2 and 3 in Subheading 2: In each simulated annealing
cycling run containing 20 trajectories, we started the trajec-
tories with the same structure and temperature but with dif-
ferent random number-generating seed to initiate the atomic
velocities. The random number seed (ISEED number in
CHARMM) was set automatically at start time by the
MMTSB program. If one wants to reproduce a previous tra-
jectory, for debugging purpose for example, one could set a
specific random number-generating seed in the MMTSB
script by adding the option “dynseed¼N” in which N is the
seed number used in an earlier simulation.

8. Steps 2 and 3 in Subheading 2: The total energy written out
by MMTSB directly into the energy log file elog included the
energy due to the restraints if they were applied.

9. Steps 2 and 3 in Subheading 2: For the simulations using the
GBMVmodel, we ran each trajectory for only 1 ns rather than
2 ns because it consumed significantly more computational
time. The simulations of the YopH-peptide-water system
using the e(r ) ¼ 4r model with 40 2-ns trajectories took
about 1,142 CPU hours on our dual core-dual processor
cluster nodes with 2.8 GHz Intel Xeon EM64T processors.
On the other hand, the GBMV model with 40 1-ns trajec-
tories took about 13,311 CPU hours. Therefore, GBMV
model was about an order of magnitude more expensive to
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use than the e(r ) ¼ 4r model, even though the length of the
former simulation was only half of the latter.

10. Steps 3 in Subheading 2: The GBMV model required much
more dynamic allocated memory than the e(r ) ¼ 4r model
did. Even when we used a smaller cutoff distance of 12, 8, and
10 Å in the GBMV model instead of 14, 10, and 12 Å in the
e(r ) ¼ 4rmodel, the default allocated memory in CHARMM
was still not enough to run the GBMV simulations in our
cluster with 4 GB RAM per node. Therefore, we doubled the
default setting by revising “HEAPDM¼10240000” to
“HEAPDM¼20480000” in the CHARMM file heap.fcm
and recompiled the program.

11. Step 1 in Subheading 3: We used the MMTSB script file ener.
inp to rescore docking pose with the e(r ) ¼ 4rmodel (shown
in Table 15). This script helped us obtain the intramolecular
energy of the isolated systems–such as protein, peptide, and
water–as well as the interaction energies among different
components. These components can then be combined in
different ways to form different rescoring functions: e.g.,
total energy of the whole system, total energy minus the
protein (including additional waters), and so on.

12. Step 1 in Subheading 4: In Table 16, 1qz0peptidewater0.psf
was revised from 1qz0peptidewater.psf such that the first line
read “PSF” rather than “PSF CMAP CHEQ” in order to use
it with ptraj.

13. Related to step 1 in Subheading 4: In Table 17, there were
1,000 lines of trajin prod/*/*/final.pdb.gz for the simula-
tion from the GBMV model and 2,000 lines from the e(r )
¼ 4r model. If one combined these structures to form a
CHARMM/AMBER-compatible binary trajectory in
Scripps’ “binpos” format, one could use CHARMM or ptraj
to analyze the data. We have written the script file maketra-
jinfile.pl to generate the ptraj input file trjgen.trajin.
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Chapter 19

The Solvated Interaction Energy Method
for Scoring Binding Affinities

Traian Sulea and Enrico O. Purisima

Abstract

The solvated interaction energy (SIE) is an end-point, physics-based scoring function for predicting
ligand-binding affinities. It supplements the force-field interaction energy with the desolvation cost of
binding. Parameters such as the solute dielectric constant, Born radii, a cavity term and an overall scaling
coefficient and additive constant have been previously calibrated against a training set of 99 protein–ligand
complexes. We describe the application of the method to estimating binding free energies from molecular
dynamics trajectories of protein–ligand binding complexes.

Key words: Binding free energy, Scoring function, Protein–ligand binding, Molecular dynamics

1. Introduction

Accurate prediction of protein–ligand binding affinities is critical for
a successful structure-based drug design and for understanding the
thermodynamic aspects of molecular recognition in biological sys-
tems. A large and ever-increasing number of binding affinity predic-
tionmethods emerged over thepast few years in order to address the
“scoring problem” (1–3). Current scoring functions can be classi-
fied into three main categories: empirical, knowledge-based, and
physics- or force-field-based (4). Empirical scoring functions are
rapid QSAR-like methods with a set of weighted empirical energy
terms whose coefficients are obtained by fitting to binding affinities
from a training set of complexes with known structures (5–9).
Knowledge-based scoring functions, also known as statistical poten-
tials or mean-force scoring functions, derive pairwise interaction
potentials from the occurrence frequency of atom pairs from large
structural databases of diverse protein–ligand complexes instead of
fitting to experimental affinity data (10–15).
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The solvated interaction energy (SIE) method belongs to
the group of end-point force-field-based scoring functions that
represent a reasonable compromise between time, computational
resources, and accuracy. SIE (16, 17) approximates the
protein–ligand binding free energy in aqueous solution, DGbind,
by an interaction energy contribution, Einter, and a desolvation
free energy contribution, DGdesolv. This approximation to binding
free energy in solution resembles the formalism used in other
physics-based binding free energy end-point calculation methods,
including MM-PB(GB)/SA (18–21) and LIE (22). Each of the
interaction and desolvation contributions is further made up of an
electrostatic component and a nonpolar component:

DGbind � Einter þ DGdesolv ¼ ECoul
inter þ DGR

desolv|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
electrostatic

þEvdW
inter þ DGnp

desolv|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
nonpolar

Thus, the electrostatic SIE component includes the Coulombic
intermolecular interaction energy, ECoul

inter , and the electrostatic
desolvation free energy, DGR

desolv, due to the change in reaction
field energy upon binding. The nonpolar SIE component includes
the van der Waals intermolecular interaction energy, EvdW

inter , and the
nonpolar desolvation free energy, DGnp

desolv, that results from
changes in the solute–solvent van der Waals interactions and
changes in the work of maintaining the solute-size cavity in
water. The free state of the system is obtained from the rigid
separation of the protein and ligand conformations from their
complexed state. Hydrogen-bond formation is implicitly included
in the electrostatic effect. Although entropy is not explicitly
included, calibration of the SIE function on binding affinities
leads to an empirical overall scaling factor whose value corresponds
to, and hence can be interpreted as, the effect of configurational
entropy compensation on binding free energy (23–25). The spe-
cific functional form of the SIE function is given by

SIEðr;Din; a; g;CÞ ¼ a � ½ECoul
inter ðDinÞ þ DGR

desolvðr;DinÞ
þ EvdW

inter þ gðr;DinÞ � DMSAðrÞ� þ C

Here, r is a factor applied to derive atomic Born radii by linear
scaling of AMBER van der Waals radii (R*). Din is the solute
interior dielectric constant. Both electrostatic terms, ECoul

inter and

DGR
desolv, depend strongly on Din, and DGR

desolv also depends on
Born radii (hence on r). g is the molecular surface tension coeffi-
cient describing the nonpolar component of solvation free energy,

DGnp
desolv, multiplied by the change in the molecular surface area of

the solute upon binding, DMSA. The surface tension g depends
weakly on the (r,Din) parameters, as it is derived from the
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experimental hydration free energy of alkanes after subtracting
their small electrostatic solvation component (calculated), and
fitting the pseudo-experimental nonpolar residual to their MSAs
that depend on atomic radii. a is a global scaling factor of the total
raw SIE relating to the scaling of the binding free energy due to
configurational entropy effects (24, 25).

2. Materials

The SIE method was developed in the context of the AMBER
force field and AMBER-generated molecular dynamics (MD) tra-
jectories. Hence, the fitted parameters used in the method are
specific to the AMBER force field and need to be recalibrated if
used with another force field.

1. The AmberTools package (http://ambermd.org) contains the
ptraj utility, which is used to prepare the molecular dynamics
trajectory for use with the SIE calculations with sietraj.

2. The sietraj program (http://www.bri.nrc.ca/ccb/pub) is a set
of scripts and executables for carrying out the SIE calculation
on a molecular dynamics trajectory or single snapshot of a
target–ligand complex.

3. Method

The instructions outlined below make use of the AmberTools
utilities and sietraj programs to process an MD trajectory.

3.1. Preparatory Steps 1. Strip off water molecules and salt ions from theMD trajectory
file. This is most easily done using the ptraj utility from the
AmberTools package. Typical ptraj commands would look
like (see Note 1):

ptraj myfile.prmtop
trajin myfile.mdcrd.gz 1 2000 1 (see Note 2)
strip :WAT
strip :Na+
strip :Cl-
trajout myfile_dry.trj nobox

2. Generate a prmtop file corresponding to the trajectory file with
the water molecules and salt ions stripped off (see Note 3).

3. Identify the atom ranges corresponding to the target and
ligand moieties, respectively. These need not be contiguous
atom numbers.
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3.2. Processing

Molecular Dynamics

Trajectories

1. Run the sietraj program on the prmtop and MD trajectory
file. This calculates the SIE for selected snapshots.

sietraj -pt myfile_dry.prmtop -trj myfile_dry.trj -sf 10 \
   -ef 1000 -inc 10 -tr 1-2611 -lr 2612-2654 -o mysie.out –sie

The flags used are shown in Table 1.

2. Compute averages from the calculated SIE values of each
processed snapshot (see Notes 6 and 7).

sietraj –ave mysie.out

The output gives the predicted binding affinity as well as the
components and standard deviations and standard errors. The
example below is for 2,000 snapshots from a 20-ns run.

4. Notes

1. In this example, we are extracting every snapshots 1–2,000
from the original compressed trajectory. The nobox option
removes the extra lines in the trajectory file for the periodic
boundary box dimensions.

2. If instead of an MD trajectory file you have just a single
structure (e.g., pdb or AMBER crd file of a complex) for

Table 1
Flags for the sietraj program

Flag Argument taken

-pt Name of prmtop file

-trj Name of trajectory file

-sf Start frame, First snapshot to include (see Note 4)

-ef End frame, Last snapshot � End frame number

-inc Snapshot increment (see Note 5)

-tr Range of atom numbers comprising the target, separated by a “-” e.g., 1-1947. If the numbering
is not contiguous, enter all ranges separated with a comma with no spaces, e.g., 1-1947,2000-
2034,2100-2234

-lr Range of atom numbers comprising the ligand. Same format as for -tr

-o Name of output file

-sie No argument. Presence indicates an SIE calculation will be carried out, as opposed to processing
the output of an SIE calculation (see -ave option below)
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which you want to do an SIE calculation, you can use the
trajin command with that file instead of the MD trajectory
file, for example: trajin pdbfilename. Together with the
rest of the ptraj commands, this will generate a file in trajectory

format that can be processed by sietraj.

Due to the steepness of the repulsive end of the
Lennard–Jones potential, applicationof SIE to a single structure
requires a prior step of energy-minimization.We generally carry
out a vacuum minimization with a distance-dependent dielec-
tric function of 4r. If the initial structure is a trustworthy one
such as a crystal structure, we carry out a restrained minimiza-
tion of the ligand and protein residues within 4 Å from the
ligand, applying harmonic restraints of 3 kcal/(mol Å2) and
20 kcal/(mol Å2) for the non-hydrogen atoms of the ligand
and protein in this region, respectively.

3. This prmtop file generally corresponds to the file used to
generate the target–ligand complex prior to solvating it in a
box of water molecules and adding salt counterions in setting
up the original MD simulation. For the ligand charges in the
prmtop file, we usually use either AM1BCC (26) or RESP-
fitted charges (27). Note that the coefficients and parameters
used in the SIE function were derived for use with the
AMBER FF99SB (28) and GAFF force fields (29). We have
obtained reasonable results using the same coefficients in
conjunction with the FF03 force field (30), but this has not
been extensively tested.

Energies in kcal/mol:
 Average  StdErr   Stdev
 Inter vdW   -78.80    0.09    4.10
 Inter Coulomb   -66.78    0.12    5.34
 Reaction Field    74.49    0.13    5.71
 Cavity   -12.52    0.01    0.41
 Constant    -2.89    0.00    0.00
 -----------------------
 Delta G   -11.65    0.01    0.54

Sample size= 2000

Coefficients used:

alpha= 0.104758
gamma= 0.012894
const= -2.89

Delta_G = alpha * (vdw + Coul + RF + Cav) + constant
Cav = gamma * Delta_SA
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4. It is sometimes advantageous to start the SIE calculation a few
hundred picoseconds after the start of MD trajectories to
allow for additional equilibration.

5. In a typical MD trajectory where snapshots are saved every
picosecond, it is generally sufficient to use an increment of
10–20 to save on computer time. For a protein–ligand com-
plex involving a protein of about 160 amino acids and a drug-
sizedmolecule, the SIE of a single snapshot takes about 20 s on
one core of a 2.8 GHz Intel Xeon (E5440). Hence, processing
100 snapshots from, say a 1-ns run, takes about half an hour. It
is trivial to parallelize the calculation acrossmultiple processors
by assigning different ranges of snapshots to several processors
and combining the output files for obtaining averages.

6. The standard error of the mean that is reported is most likely
an underestimate, especially if the snapshot increment used in
the SIE calculation is relatively small, due to some degree of
correlation of snapshots that are not too distantly separated in
time. Moreover, Genheden and Ryde (31) note that even
after correcting for this correlation, the standard errors
obtained are still an underestimate. A further source of under-
estimation of the standard error is the limited sampling of a
single MD trajectory. Hence, rather than using a single long
(>10 ns) trajectory for the SIE calculation it may be prefera-
ble to use several shorter ones (1–3 ns) and average the
results. This may improve sampling as pointed out in other
MD studies (31, 32).

7. The quality of the predicted binding affinities is somewhat
system-dependent. A good indication of what can be expected
is provided by published applications of the method. Figure 1a
shows the performance of SIE on the original calibration data
set. Figure 1b shows the performance across several systems
taken from publications from different laboratories (33–40).
The degree of scatter is comparable to that observed in the
original fitting, suggesting that the SIE parameters were not
overfitted to the training set. Moreover, the range of pre-
dicted absolute binding affinities is well within the range of
experimental affinities.
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5. Böhm, H. J. (1994) The development of a
simple empirical scoring function to estimate
the binding constant for a protein-ligand com-
plex of known three-dimensional structure, J.
Comput.-Aided Mol. Des. 8, 243–256.

6. Head, R. D., Smythe, M. L., et al. (1996)
VALIDATE: A New Method for the Recep-

tor-Based Prediction of Binding Affinities of
Novel Ligands, J. Amer. Chem. Soc. 118,
3959–3969.

7. Tokarski, J. S., and Hopfinger, A. J. (1997)
Prediction of Ligand-Receptor Binding Ther-
modynamics by Free Energy Force Field
(FEFF) 3D-QSAR Analysis: Application to a
Set of Peptidometic Renin Inhibitors, J. Chem.
Inf. Comput. Sci. 37, 792–811.

8. Eldridge, M. D., Murray, C. W., et al. (1997)
Empirical scoring functions: I. The develop-
ment of a fast empirical scoring function to
estimate the binding affinity of ligands in
receptor complexes, J. Comput.-Aided Mol.
Des. 11, 425–445.

9. Wang, R., Lai, L., and Wang, S. (2002) Fur-
ther development and validation of empirical
scoring functions for structure-based binding
affinity prediction, J. Comput.-Aided Mol. Des.
16, 11–26.

10. Hwang, J. K., and Warshel, A. (1987) Semi-
quantitative Calculations of Catalytic Free
Energies in Genetically Modified Enzymes,
Biochemistry 26, 2669–2673.

–16

–14

–12

–10

–8

–6

–4

–2

0

–16 –14 –12 –10 –8 –6 –4 –2 0

EXP (kcal/mol)

a b
S

IE
 (

kc
al

/m
ol

)

–14

–12

–10

–8

–6

–4

–2

–14 –12 –10 –8 –6 –4 –2

EXP (kcal/mol)
S

IE
 (

kc
al

/m
ol

)
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Chapter 20

Linear Interaction Energy: Method and Applications
in Drug Design

Hugo Guitiérrez-de-Terán and Johan Åqvist

Abstract

A broad range of computational methods exist for the estimation of ligand–protein binding affinities.
In this chapter we will provide a guide to the linear interaction energy (LIE) method for binding free
energy calculations, focusing on the drug design problem. The method is implemented in combination
with molecular dynamics (MD) sampling of relevant conformations of the ligands and complexes under
consideration. The detailed procedure for MD sampling is followed by key notes in order to properly
analyze such sampling and obtain sufficiently accurate estimations of ligand-binding affinities.

Key words: Binding free energy, Linear interaction energy, Molecular dynamics, Structure-based
drug design

1. Introduction

Structure-baseddrugdesign canbeviewedas a stepwise processwith
three stages: (1) Obtaining structural information about the drug
target (usually a protein), which can be achieved by experimental
methods (i.e., protein crystallographyorNMRmethods) or compu-
tational predictions (i.e., homology modeling). (2) Elucidation of
ligand-binding modes, again by either experimental resolution of
the structure of complexes, or by computational predictions, in this
case through theuseofdockingalgorithms. (3)The characterization
of ligand-binding affinities, and establishment of structure–activity
relationships that can further guide the liganddesign pipeline.Here,
pharmacological or biological experiments will provide the relevant
measurements of ligand dissociation constants (Ki, IC50), while
several computational approaches exist for the estimation of
ligand-binding free energies. Indeed, the development of methods
for the computational estimation of ligand-binding affinities is a
major challenge within the computational chemistry field.
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1.1. Computational

Estimation

of Ligand-Binding

Affinities

The batch of existing computational methods range from simple
empirical, statistical, or knowledge-based scoring functions, to rig-
orous although computationally demanding free energy perturba-
tion (FEP) methods or related statistical mechanical approaches.
There is an inverse relationship between the speed (or computa-
tional cost) and the accuracy associated with binding affinity estima-
tions, which must be taken into account when selecting the most
appropriate method in a structure-based ligand design project.
Figure 1 indicates the number of compounds typically processed
by different affinity prediction methods, represented within the
classical virtual screening workflow. Binding affinity prediction
methods like the linear interaction energy (LIE) or related
approaches are especially attractive for lead optimization phases,
since they offer a good compromise between speed and accuracy.
Thesemethods usually rely on a proper representation of ligand–re-
ceptor interactions by the terms included in a molecular mechanics
force field, and consider both solvation and entropic effects. Gener-
ally speaking, a samplingmethod such as molecular dynamics (MD)
or Monte Carlo (MC) simulations is needed in order to generate

10 -102

10 -103

104 -106

# molecules  
processed 

• Detects binding modes 
• Active / decoys filtering 
 

HIT COMPOUND(s)

Speed/Accuracy

Binding affinity prediction 
LIE and other LR-based approaches 

MM-PBSA, MM-GBSA 

• Ranking of compounds 
• Establishment of SARs 
• Detects important residues 
• Structure refinement  
• Lead optimization 
 

(i) 

FEP 
TI 

Docking & Scoring 

STRUCTURE-BASED VIRTUAL SCREENING
WORKFLOW

 Lead 
optimization  

(ii) 

Fig. 1. Flowchart depicting the different structure-based virtual screening methods. Ligand-based methods, which are
discussed in other sections of the present volume, should be used as a prefiltering step, especially if one has to handle
databases bigger than 105 compounds. Note that in most VS campaigns the last step (FEP/TI) is avoided and hit
identification and hit to lead phases are mostly obtained with methods in the “intermediate” section.

306 H. Guitiérrez-de-Terán and J. Åqvist



ensembles of configurations and obtain thermodynamic averages
from these. However, simplified (and less accurate) versions of these
methods can be obtained by “single-point” energy minimization of
the complexes. Other important distinctions between methodolo-
gies pertain to the way that the solvent is considered (i.e., contin-
uumor explicit treatment) and how the energetics of the dissociated
state is accounted for.

1.2. The Linear

Interaction Energy

Method

In this chapter, we will concentrate on the applicability and use of
the LIE method for the computation of absolute ligand-binding
affinities (1), in the framework of structure-based ligand design
projects. The typical accuracy of the method shows root-mean-
square (RMS) errors from the experimental binding free energies
of less than ~1 kcal/mol (2, 3), which is better than the average
performance of scoring functions (2–2.5 kcal/mol) (4). The asso-
ciated MD sampling of the ligand–receptor complexes, which is
primarily needed to generate thermodynamic averages of the
energies, is also useful in order to allow for structural and ener-
getic relaxation of the starting structures. This is a major differ-
ence compared to the use of scoring functions, and offers
additional advantages of using the LIE method in the ligand
design pipeline. These include, but are not limited to: (1) straight-
forward rationalization of the calculated free energies of binding
(2) consideration of induced-fit effects, (3) an accurate description
of ligand–water–receptor interactions, taking into account the
mobility of water molecules, (4) further refinement and scoring
of predicted docking poses for a given ligand.

Since the first applications of the LIE method to proteases (5)
and DHFR inhibitors (6) in the 1990s, limited to the detailed
study of a few compounds, the available hardware resources for
computational chemistry laboratories have increased consider-
ably. Additionally, the force-field parameters for organic mole-
cules have developed much in the last years, including the
availability of automated algorithms for the parameterization of
new ligands (7, 8). These technical and methodological advances
have made possible the application of the LIE method, coupled
to MD sampling of ligand–receptor complexes, in typical virtual
screening pipelines of industrial or academic projects (9). In this
chapter, we will explain the practical aspects to obtain LIE
estimations of the binding affinity of two particular enzyme
inhibitors. The application of the protocol proposed for medium
throughput screening is straightforward and just requires avail-
ability of the computational resources and scripting the steps
here explained, to repeat the process for hundreds to thousands
of compounds.
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2. Theory

2.1. The LIE Method The process of ligand binding to a biological macromolecule
can be viewed as a partition problem, in which the ligand (l) is
transferred from one medium, i.e., free in water (f) to another, i.e.,
the binding site of the water-solvated macromolecular target (b).
It follows that not only the bound state of the ligand, but also the
reference state (water-solvated ligand) must be taken into account
for a proper description of the total change in free energy asso-
ciated to the formation of a ligand–receptor molecular complex.
This is the analogy behind the LIE method, where the binding
free energy is estimated as the free energy of transfer between
water and protein environments as:

DGbindðlÞ ¼ DGb
solðlÞ � DG f

solðlÞ (1)

The main difference with respect to a regular transfer process
between two solvents is that the standard state in water (1 M and
free rotation) is replaced by restricted translation and rotation in a
confined receptor-binding site. In order to calculate the free
energy of binding as a solely function of these two physical,
relevant states of the ligand, we can draw a thermodynamic cycle
(see Fig. 2), where the upper corners represent these two states
(left: free, solvated in water; right: bound to the protein). The two
bottom corners will account for two unphysical, intermediate
states: a pseudo-ligand without any (intermolecular) electrostatic

Fig. 2. The thermodynamic cycle used to estimate binding free energies with the linear
interaction energy (LIE) method based on (2).
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interactions, in its free (left) or bound (right) state. The resolution
of such a thermodynamic cycle leads to the following equation:

DGbind ¼ ðDGpolar
bound � DGpolar

free Þ þ DDGnonpolar
bind

¼ DDGpolar
bind þ DDGnonpolar

bind (2)

where the entropic confinement contributions are hidden in the
nonpolar term. Thus, the free energy of binding can be expressed
as a sum of the corresponding polar and nonpolar components of
the free energy. This is quite convenient, since molecular mechan-
ics force fields analogously split the nonbonded potential energies
into electrostatic and nonelectrostatic components. Now the ques-
tion is: how do we convert potential energies (U) into free energies
(DG)? For the polar contribution, a useful approximation comes
from the linear response theory for electrostatic forces (10, 11),
which states that the electrostatic part of the solvation free
energy is:

DGel
sol ¼

1

2
fhU el

l�sion þ hU el
l�sioffg (3)

where the brackets hi indicate thermodynamic averages of the
ligand–surrounding (l–s) interaction energies as calculated with
standard force-field molecular dynamics (or, alternatively, MC or
other relevant statistical sampling). The term with the electrostatic
interactions turned off in the sampling, hU el

l�sioff , corresponds to the
average electrostatic energy that would be obtained from the sam-
pled configurations if the interactions instead were turned on (i.e., a
“preorganization” term). This term is assumed to be constant or
negligible compared to hU el

l�sion (the corresponding energies sam-
pled with the interactions turned on). Thus we will write (3) as

DGel
sol ¼ 1

2 hU el
l�sion, omitting a possible constant that will be consid-

ered below. In applying the linear response approximation to the
problem of ligand binding wemust also consider the reference state
with a dissociated ligand in water. Furthermore, seemingly minor
deviations from the exact linear response scaling factor of ½ have
been demonstrated for hydration-free energies that, in fact, are
important to take into account in order to improve the accuracy of
themethod (12, 13). Thus,wewill write the expression for the polar
component of the free energy in the general form of:

DGpolar
bind ¼ bðhU el

l�sib � hU el
l�sif Þ ¼ bDhU el

l�si (4)

The other main idea behind the LIE method is to estimate the
nonpolar component of the free energy of binding analogously as:

DGnonpolar
bind ¼ aðhU vdW

l�s ib � hU vdW
l�s if Þ ¼ aDhU vdW

l�s i þ g (5)

where the a parameter is the empirically-derived nonpolar scaling
factor and g a constant. This was motivated by the observation of
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linear dependencies of both solvation free energies for nonpolar
compounds and hU vdW

l�s i on molecular size (which can also be
compared to semi-macroscopic approximations such as DGnonpolar

sol

ffi gA þ cDhU vdW
l�s i, representing the creation of a cavity and inser-

tion of van der Waals centers into this cavity, where g is the surface
tension,A the surface area, and c a scaling factor). However, due to
the fact that hU vdW

l�s i not only represents “steric” interactions but
also is an efficient size measure, (5) takes into account all size-
dependent and constant contributions to the binding free energy,
approximating contributions from “cavity creation,” confinement
effects, and the second term of (3) (14). It follows that the full LIE
equation, for the estimation of binding affinities based on force-field
averaged energies, can be written as:

DGbind ¼ aDhU vdW
l�s i þ bDhU el

l�si þ g (6)

It is important to note that with this equation, one can
calculate the free energy of binding by averaging the ligand-sur-
rounding potential energies, which are collected only for the two
physical states of the ligand involved in the binding process (repre-
sented in the upper corners of Fig. 2): the free state (ligand
solvated in water hUl�sif ) and the bound state (ligand in the
solvated protein-binding site hUl�sib). This makes a substantial
difference compared to other methods for the estimation of free
energies, e.g., in more complicated methods, such as FEP or
thermodynamic integration (TI), intermediate unphysical states
resulting from mixing of end-point potentials must be explicitly
simulated. On the other side, statistical methods such as scoring
functions generally only take into account descriptors collected for
the bound state, and not the free state, which tends to yield
artificial dependencies of binding free energies on ligand size
(molecular weight) (15).

2.2. The Parameters

of the LIE Equation

Åqvist and Hansson (13) determined a first set of refined values
for the scaling factor b as a function of the chemical nature of the
ligand (see Table 1) on the basis of FEP calculations performed for
different chemical entities. The values in Table 1 correspond to
deviations from the linear response theory, which are directly
related to the capability of the ligand to participate in the hydro-
gen bond network of the aqueous solvent.

More recently, Almlof et al. (12) proposed a more detailed set
of bFEP values, on the basis of free energies of solvation estimated
with the FEP method for more than 200 chemical groups.
According to this study, a b scaling factor is calculated for a
given ligand, as a weighted contribution of the corresponding
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bFEP values assigned to each chemical group present in the ligand,
as shown in (7) and the values provided in Table 2:

b ¼ b0 þ
P

i wiDbiP
i wi

(7)

The main advantage of this new estimation of the b coefficient
is the flexibility and higher accuracy, since deviations from the
linear response due to chemical groups such as amides, amines,
or carboxylic acids is now explicitly taken into account. However,
for the majority of the compounds normally considered in a drug
design process, the estimated b factors are close to the “classical”
values shown in Table 1, which will suffice for most ligand-binding
calculations.

In the initial derivation of the LIE method, the nonpolar
scaling factor was estimated using a pure empirical approach,
through a calibration on a set of 18 protein–ligand complexes.

Table 1
Values for the b parameter as a function of the chemical
nature of the ligand according to Hansson et al. (31)

b Chemical nature

0.5 Charged compounds

0.43 Neutral compounds

0.37 Neutral compounds bearing a single hydroxyl group

0.33 Neutral compounds bearing two or more hydroxyl groups

Table 2
Values for the b parameter in (7) according to Almlof et al.
(12)

Parameter Value Chemical nature
b0 0.43 All ligands

Dbi �0.06 Alcohols

Dbi �0.04 1º, 2º-Amines

Dbi �0.02 1º Amides

Dbi �0.03 Carboxylic acid

Dbi +0.02 Anions

Dbi +0.09 Cations
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The obtained value of a ¼ 0.18 has successfully reproduced since
then the binding free energies in a wide variety of ligand–protein
systems, including small, neutral ligands of P450CAM (16),
charged compounds such as potassium-channel blockers (17, 18)
and even large flexible compounds such as peptidomimetics in
aspartic proteases (3).

Finally, in order to estimate absolute free energies of binding,
an offset parameter g 6¼ 0 might be considered, although not
strictly required for calculation of relative binding affinities (i.e.,
ranking of compounds). The value of such parameter has been
related to the hydrophobicity of the binding site, and in any case it
has to be determined empirically (16).

Finally, it is worth noting that several variants of the LIE and
other linear response methods have been proposed in the litera-
ture (10, 19–22), a review of which is out of scope of the present
chapter.

3. Methods

One of the most extensive applications of the LIE method in drug
design corresponds to the search of novel plasmepsin inhibitors as
novel antimalarial compounds. Plasmepsins are aspartic proteases
evolved in the degradation of the host cell hemoglobin that is used
as a food source by the malaria parasite. In the course of a collab-
orative project with medicinal chemists, enzymologists, and crys-
tallographers, we have applied the LIE methodology to estimate
binding affinities of more than 30 synthesized or prospect com-
pounds in a variety of plasmepsin enzymes. The results, which
have been reviewed elsewhere (3), have guided the synthesis and
provided a rationale to available experimental data. In this section,
we will illustrate practical issues when using the LIE method with
one particular example extracted from that project: the binding of
two allophenylnorstatine inhibitors to the Plasmodium malariae
(Pm) Plm4 enzyme (23) of known affinity (see Note 1).

We will use the MD program Q (24) which is specially
designed for free energy calculations and empirical valence bond
simulations, available from the Åqvist group web page (for other
suitable programs, see Note 2). Structural analysis can be done
with any molecular graphics software, like the open-source soft-
ware PyMOL that is used to illustrate the present case. Statistical
analysis, energy plots, and the estimation of binding affinities
following the LIE equation can be obtained with a variety of
common programs. We will refer to the plotting software
Gnuplot, which might be combined with simple shell scripts,
and the creation of spreadsheets with standard offimatics software.
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3.1. MD Sampling

Under Spherical

Boundary Conditions

The goal ofMD in theLIE calculations is to generate an ensemble of
structures and energies for the ligand that corresponds to a thermal
equilibrium, in its physically relevant states (i.e., free and bound).
Following the above approximations, these ensembles can then be
used to estimate thermodynamic properties such as the free energy
of binding. Since only ligand-surrounding energies need to be
collected and averaged, it is very convenient to perform the MD
simulations under spherical boundary conditions, in order to maxi-
mize the computational efficiency while maintaining high accuracy
in the energetic description of the ligand (seeNote 3). The solvation
method implemented in Q is the SCAAS model (25), where water
molecules are added before the simulation to fill vacant positions
and restraints are used to reproduce bulk water density and polari-
zation near the system boundary. Atoms outside the system bound-
ary are harmonically restrained to initial positions. A few points and
recommendations are worth mentioning when setting up MD
simulations using spherical boundary conditions:

1. Typically, the same ligand conformation is used as the starting
point in the bound and free simulations, as indicated in Fig. 3,
with the sphere center located in the center of mass of the
ligand (see Note 4 for a more exhaustive MD sampling). In
the present example, the sphere is centered on the asymmetric
carbon bearing the hydroxyl group.

2. The size of the sphere must be big enough to allow a proper
solvation of the ligand, in order to avoid a lack of dielectric
screening. A distance of 10–15 Å between the most distal
atom in the ligand and the sphere boundary provides a good
balance between computational speed and accuracy.

Fig. 3. Simulation sphere used in the present example. The protein–ligand complex (left) and the free ligand (right) are
embedded in a TIP3P water sphere of 20 Å radius, with the center defined on the carbon atom bearing the asymmetric
hydroxyl group of the ligand. The diameter defined by all ligand atoms is depicted with a gray sphere in the right, so it is
clear that the water sphere is large enough to properly solvate all ligand atoms.
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According to Fig. 3, a sphere size of radius 20 Å was consid-
ered sufficient in this example.

3. Titratable residues closer than 3–5 Å to the boundary, as well
as those outside the solvent sphere, should be modeled as
neutral because of the lack of dielectric screening. An excep-
tion to this rule should be made if the titratable residue is
making a salt-bridge interaction with a more central group. In
the present case, one of the catalytic aspartates (Asp 214) is
modeled in its neutral, protonated form, whereas the other
catalytic aspartate (Asp 34) is charged. No other titratable
residue was considered in its charged form within the simula-
tion sphere.

4. MD simulations in the bound and free states must be per-
formed under identical boundary conditions, e.g., the sphere
center and sphere size defined above must be equal in the two
simulations. In the special case of charged ligands, the net
charge of the sphere of simulation should also be the same in
the two states, since the contribution to the electrostatic
solvation energy from the medium outside the sphere (Born
terms) would otherwise be unequal. To achieve this condi-
tion, one can vary with the sphere radius, or turn off the
charges of some titratable residue located far enough from
the ligand. Continuum corrections for the effect of turning of
such distant charges can be added to the calculations after-
ward (see Note 5). In the current example, where the ligands
are neutral, this condition does not apply and we have main-
tained the total charge of �1 in the bound sphere, being the
sphere of the free simulation neutral.

5. Charge groups, cutoffs and long-range interactions. It is
common in MD simulations to use a cutoff for parts of the
nonbonded interactions. In this example, such a cutoff is set
to 10 Å. Beyond the cutoff, the electrostatic interactions are
calculated through the local reaction field approximation,
which almost exactly reproduces the infinite cutoff result
(26), whereas all van der Waals forces outside the cutoff are
ignored. In all cases, atoms belonging to the protein and
solvent are grouped into charge groups, according to the
rules of the force field chosen. However, it is very convenient
in free energy calculations that the ligand atoms are treated
explicitly (i.e., one atom as one charge group).

3.2. Prepare and Run

the MD Simulations

In order to perform two separate MD simulations of the ligand
(i.e., free and bound), we usually start from an X-ray structure of
the complex or a generated complex using molecular docking.
For the pair of allophenylnorstatin plasmepsin inhibitors of this
example, the starting case is the crystal structure of inhibitor
KNI764 with PmPlm4 (PDB code 2ANL), while the pose of the
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second ligand considered, KNI577 has been obtained by molecu-
lar docking in the same protein structure. We will create a separate
directory for each ligand case (e.g., named ligand_x, where x is
an index number), and within that two separate subdirectories (i.e.,

called bound and free), where the respective MD ensembles will be

collected. We will store the PDB starting coordinates of each complex
in ligand_x/bound/complex.pdb. Thereafter we can simply

extract from that file the lines referring to the ligand and save a new

PDB file as ligand_x/free/ligand.pdb. The next step is to
solvate each molecular system and generate the corresponding topol-
ogy file necessary for the MD software to combine the information

about the initial positions of the atoms (PDB file) and the informa-
tion about the force-field parameters. This step, which in Q is done

with the module Qprep, must be independently performed for the

bound and free directories. Binding affinity estimations with
the LIE method can be obtained with any force field (16), as long

as the necessary parameters for the protein, the solvent, and the
ligands are available. In our case we will use OPLS all-atom force

field (27), which is implemented in Q as a library (Qoplsaa.lib)
and parameter (Qoplsaa.prm) files. The ligand parameters must be
obtained and implemented in Q. First, a new library entry is created,

indicating the atom names, atom types, partial charges, and connec-

tivities for the new ligand (file ligand.lib). Then, all the necessary
new molecular mechanics parameters must be added to the atom,

bonds, angles, and dihedral sections of the parameter file, Qoplsaa.
prm. In the present case, a manual parameterization was performed,
although automated methods exist (see Note 6). Some editing of the

PDB file complex.pdb is needed, in order to neutralize the titrat-

able residues: the ASP/GLU/ARG/LYS residue names will be
changed for their neutral OPLS-AA forms (ASH/GLH/ARN/

LYN) with the only exception of “ASP 34,” since we want to main-

tain the negative charge on that particular residue. Qprep will add
the solvent (on the basis of the sphere center and sphere radius as

defined in the previous section) and the hydrogens, following the

connectivity rules depicted in the library files. Finally, the ligand
atoms must be specified in a file that we will call ligand.fep.
This file is needed to apply the special treatment for the ligand

atoms (i.e., no charge groups), and also to provide the corresponding
ligand-surrounding energy values (i.e., Ul–s).

Once the topologies for the bound and free states are gener-
ated, we are ready to run the two separate MD simulations.

3.2.1. Bound Simulation The solvated protein–ligand complex must be carefully equili-
brated before the MD collection phase. The equilibration scheme
followed in the present example is outlined in Table 3. It starts
with a first phase similar to steepest descent energy minimization
of the solvent and the hydrogens of the solute and ends in a short
50 ps phase under the same conditions as the collection phase.
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The latter consisted of a single 300 ps unrestrained MD run at
room temperature, which was considered long enough to achieve
convergence in the present case, as it will be assessed later on (for
advices to enhance conformational sampling see Note 4).

3.2.2. Water Simulation Here, only the solvent molecules need to be equilibrated so the
equilibration phase is simpler (see Table 3). However, one impor-
tant change is needed: Given the lack of conformational restraints
provided by the protein, one positional restraint is added in order
to keep the center of mass of the ligand in the sphere center. Such
a positional restraint is maintained along the collection phase to
ensure a homogeneous solvation of the ligand. The collection
phase is otherwise run under identical conditions than in the
bound simulation.

3.3. Evaluating

the MD Simulations

It is now time to evaluate the MD simulations. This evaluation
should not only consist on the estimation of the LIE-binding
affinities, but also a careful structural analysis is recommended,
including the identification of specific ligand–protein interactions.

Table 3
Scheme of the MD equilibration process in the bound (_b) and free (_f)
simulations

Equilibration
phase

Starting
file

Temperature
(K)

Bath
coupling
(fs)

Time
step
(fs)

Number
of steps

Force
constant,
protein atoms
(kcal/mol/Å2)

Force
constant,
ligand atoms
(kcal/mol/Å2)

eq1_b complex.
top

1 0.2 0.2 2,000 100 100

eq2_b eq1_b.re 150 10 1.5 5,000 10 100

eq3_b eq2_b.re 300 10 1.5 7,000 5 10

eq4_b eq3_b.re 300 10 1.5 7,000 2 2

eq5_b eq4_b.re 300 10 1.5 50,000 – –

eq1_f ligand.
top

300 0.2 0.2 2,000 – 100

eq2_f eq2_f.re 300 1 10 10,000 – 10

The most relevant parameters are highlighted
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3.3.1. Evaluation of the

Energies and Estimation

of LIE Calculated Binding

Affinities

For each ligand (directory ligand_x), the average ligand-sur-

rounding potential energies must be extracted and subsequently
integrated into the LIE equation, that is: hU el

l�sib and hU vdW
l�s ib in

the bound subdirectory and hU el
l�sif and hU vdw

l�s if in the free sub-

directory. The corresponding output files (md.log) contain the
single-point values, Ul�s, written at a given frequency (the default

value in Q is every 25th MD step), following the format:

Type st lambda el vdW

Q-surr. 1 1.0000 -30.41 -57.10

With a simple script, one can easily extract the desired values
and store them in a table, from which we can generate average
values, plots, and error bars. These convergence errors can be
estimated by dividing the production phase in two halves, namely
A and B, and defining the average values of each part as the
interval limits (see Note 7). Thus, the error associated to the
energy value, El�s is:

El�s ¼ 1

2
fhU A

l�sig � fhU B
l�sig (8)

This measure will give us an idea of the convergence of the
ligand-surrounding energies in the given MD simulation. These
error estimates can be combined into a LIE-like equation, but
adding all the values since the error is additive:

Errorbind ¼ a½ðhEvdW
l�s ib þ hEvdW

l�s if Þ� þ b½ðhEel
l�sib þ hEel

l�sif Þ� (9)

Figure 4 depicts such energy plots for the MD simulation of
the ligand KNI764 in the bound state, with the corresponding
error estimations showing an acceptable convergence of the
ligand-surrounding interaction energies. Table 4 shows the com-
plete results for the two plasmepsin inhibitors. An excellent agree-
ment with the experimental data is found, using the standard LIE
coefficients (a ¼ 0.18; b ¼ 0.33, since ligands have two hydroxyl
groups; g ¼ 0) (13), with associated errors below �1 kcal/mol.

3.3.2. Structural Analysis Looking at the structures is a very important part of the evalua-
tion process. The program Q generates restart files, which can be
easily converted into standard PDB files and loaded into
PyMOL. Alternatively, the trajectory files are stored in DCD
format, so it is also possible to load a movie trajectory to look
at the time evolution of the complex. In the case of KNI764, we
observed an early conformational change in the 2-methylbenzyl
group in position P2, which was maintained along the MD
simulation. Such a conformational change enables the existence
of a hydrogen bond between the carbonyl of this group in the
ligand and the main chain of Ser79, located at the flap loop, and
Thr217 in the S2 site in agreement with the classical binding
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mode in aspartic proteases (28). Several numerical evaluations of
the structural stability of the MD simulations can be performed
with the Qcalc module in Q. These include (1) RMSD calculations

(of the ligand or selected residues), (2) time evolution of selected
interatomic distances, or (3) generation of average coordinates of

the MD trajectories.

3.3.3. Key Interactions

Relevant to Protein–Ligand

Binding

It is often of interest to identify the residues that contribute the
most to the ligand binding. With the module Qcalc we can

calculate average interaction energies of the ligand with each of the
surrounding residues, i.e., hU el

l�resi and hU vdW
l�resi. According to the

values in Table 4, the main difference between the two ligands is

located in the stronger electrostatic component in the binding affinity
of KNI764 (DDGel ’ 2 kcal=mol). To better understand the molec-

ular basis of this variation, a plot of the difference in the nonbonded

terms of the corresponding ligand–residue interactions (DU el
l�res and

DU vdW
l�res) is presented in Fig. 5. A look at this plot easily identifies that

the electrostatic interactions with the polar residues Tyr77, Asp214,
and Thr217 account for the enhanced binding affinity of KNI764.

The presence of an isobutyl sidechain at the S2 site, much smaller

than the aromatic substituent in the corresponding position of

Fig. 4. Plot of the ligand-surrounding energies, as extracted from the 300 ps MD trajectory of PmPlm4-KNI764 complex.
Electrostatic (gray, bottom) and nonelectrostatic (black, top) potential energies are plotted every 25th time step, and
average values (every 30 ps) are plotted with thick lines. The corresponding average values for the first (A) and second (B)
part of the simulation are shown, together with the estimated error of the total average value.
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KNI764, allows more flexibility to the nonprime site of KNI577, and

consequently to a weaker interaction with the aforementioned resi-

dues. This kind of information, extracted from the dynamic and
energetic analysis of the binding modes here presented, is very impor-

tant for the lead optimization process typical of medicinal chemistry

projects.

3.4. Applications

to Large-Scale Ligand

Screening

Running the MD simulations related in this example would take
about 2 h on a single processor CPU. It is also possible to speed up
the calculations with the parallel version of Qdyn, which is also

advised if really long trajectories are needed for the MD sampling.
However, when several ligands must be analyzed, an optimal compu-

tational efficiency is generally achieved by distributing the cases on

Table 4
Ligand-surrounding energies from single MD runs of the two inhibitors, in the free
and bound state, the calculated free energy of binding according to the LIE
method and the corresponding experimental affinity values

Compound
DGbind, exp
(kcal/mol)

DGbind, LIE
(kcal/mol)

Ligand-surrounding interactions (kcal/mol)

hU vdW
l�s ib hU el

l�sib hU vdW
l�s if hU el

l�sif
Kni764 �9.6 �9.5 � 0.8 �68.1 � 0.5 �76.1 � 1.3 �42.7 � 0.5 �61.2 � 0.7

Kni577 �7.6 �7.0 � 0.8 �67.2 � 0.8 �62.6 � 1.4 �39.3 � 0.2 �56.6 � 0.5

Fig. 5. Ligand–residue interactions. (a) Plot of the difference in the interaction energies of the ligands with each residue in
the protein, calculated as DU type

l�res ¼ hU type
KNI764�res

i � hU type
KNI577�res

i, where type accounts for electrostatic (el, dotted bars)
or van der Waals (vdW, solid bars) A more negative value indicates favored interactions for the ligand KNI764. (b) The
average conformation extracted from the respective MD of the two complexes are superimposed (KNI764-PmPlm4, dark
gray; KNI577-PmPlm4, light gray). The residues showing the highest difference in the electrostatic interaction energies
(DUel

l�res) are highlighted in the former structure, with frequent hydrogen bonds depicted in dashed lines.

20 Linear Interaction Energy: Method and Applications in Drug Design 319



the processors available, and run sequentially, rather than using the

parallel code. Some tips to run large-scale LIE simulations, are:

l Assuming that the binding site is conserved, define only once the
sphere of simulation (sphere center, sphere radius, charge of
titratable residues). The sphere should be ideally neutral, at
least if charged ligands will be processed (see Note 5), and large
enough to properly solvate all the ligands considered. Any
manipulation of the PDB file of the protein should be done
only once (i.e., create protein.pdb, ready to be processed byQ).

l Follow one of the methods described in Note 6 to obtain
automatic force-field parameters for each ligand, using the
docking pose as an input file. You shall obtain a ligand PDB
file (ligand_x.pdb), the corresponding library file (lig.lib),
the lie.fep file that specifies ligand atoms and the parameter
file with all necessary parameters for the ligand added (Qopl-
saa_mod.prm).

l Follow the same directory tree and file names as explained in
this chapter (i.e., only change the value “x” of the ligand_x
directories). Within each directory, combine the protein.pdb
file with the ligand_x.pdb file to create bound/complex.
pdb, and just copy ligand_x.pdb for the subdirectory free.

l Use the same input files for all ligands. This way you can easily
script the setup and run of all your ligand cases.

4. Notes

1. Experimental free energy of binding (kcal/mol) is straightfor-
ward to calculate from Ki affinity values, according to the
equation: DG0

bind; exp ¼ RT lnKi. However, if only IC50 values
are available then this relationship becomes: DG0

bind; exp ¼ RT ln
IC50 þ c where c ¼ �RT lnð1þ ð½S�=KM ÞÞ. Thus, the solute
concentration and the corresponding dissociation constant
must be known. If this is not the case, only relative affinities
can be estimated.

2. Other MD software might be suitable for LIE calculations, as
long as it allows the extraction of the corresponding ligand-
surrounding potential energies (U el

l�s and U vdW
l�s ) as a bare

minimum. Additional desirable options include the availabil-
ity of spherical boundary conditions and the proper treatment
of the long-range electrostatic interactions, especially for the
ligand atoms. Some examples include academia free-of-charge
software such as GROMACS (http://www.gromacs.es),
NAMD (http://www.ks.uiuc.edu/Research/namd/), or
ADUN (http://lavandula.imim.es/adun-new/). The last
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software includes a special plugin to make LIE-binding free
energy calculations.

3. Note that under spherical boundary conditions, only the
nonbonded interactions involving atoms inside the system
boundary are calculated. Although it is possible to use other
boundary conditions such as periodic boundary conditions
(PBC) for performing LIE calculations, it is worth to note the
important decrease in computational efficiency of this choice,
since most of the computational time is spent on interactions
which are irrelevant for the study of ligand-binding energet-
ics. On the other side, the consideration of continuum elec-
trostatics models such as Poison Boltzman or Generalized
Born considerably speeds up the calculations, but the cost is
that the possible role of water molecules in the ligand-binding
process is neglected (29).

4. For flexible ligands, the conformational sampling might be
increased in order to achieve convergence. Although one can
always run longer MD simulations, it is generally recom-
mended in these cases to run several short MD simulations
(hundreds of picoseconds) with different starting points (i.e.,
different random seeds, several ligand conformations in the
free state, or slightly different docking poses in the bound
state) (30). In the provided example, the original LIE calcu-
lation included MD sampling of the protein ligand complexes
obtained by automated docking and manual docking
(KNI577) or the X-ray original pose (KNI764) (23).

5. In the special case of charged ligands, an electrostatic correc-
tion term should be added to the LIE-estimated free energies
that accounts for the long-range interactions of the ligand
charge with neglected charges in the protein. This correction
term is easily estimated following Coulombs law: DGel

corr ¼
1

4pe0

X
p2neglected ionic sites

l 2 ligand atoms

qpql
erp�l

.

Here, qp is the integer charge of the neglected ionic
group; ql is the partial charge of the ligand atom; rl–p is the
distance between the ligand atom and a central atom of the
ionic group; e is the dielectric constant, typically 80 (the
dependence of the correction on the dielectric constant is
easily examined). It is usually enough to calculate this correc-
tion term for a single frame or average structure of the stable
phase of the simulation.

6. Manual parameterization is a tedious process that consists in a
loop of guessing and assuming similarities with existing atom
types, assigning existing parameters or creating new ones.
Nowadays, however, there exists some software to obtain
automatic parameterization for several force fields:
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AnteChamber (AMBER suite) provides GAFF parameters
compatible with the Amber force fields (8); Macromodel
(Schrödinger, Ltd) provides parameters for the OPLS-AA
force field, and some efforts are currently under development
for the CHARM suite of force fields. The implementation of
such automatically derived parameters is just a question of
designing scripts that translate the output into the format
required by Q.

7. There are several ways of estimating errors. Other methods
previously used with LIE are the “statistical inefficiency” mea-
sure of Allen and Tildesley (32) and the calculation of multi-
ple independent trajectories, which is probably the most
unbiased error estimate (30). In any case, the most important
point is to monitor the relevant energies to see that they don’t
drift.
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Computation of affinity and selectivity: bind-
ing of 2,4-diaminopteridine and 2,4-diamino-
quinazoline inhibitors to dihydrofolate
reductases. J Comput-Aided Mol Des 12,
119–131.

7. Wallin, G., Nervall, M., Carlsson, J., and
Aqvist, J. (2009) Charges for Large Scale

Binding Free Energy Calculations with the
Linear Interaction Energy Method. J Chem
Theor Comput 5, 380–395.

8. Wang, J., Wolf, R. M., Caldwell, J. W.,
Kollman, P. A., and Case, D. A. (2004) Devel-
opment and testing of a general amber force
field. J Comput Chem 25, 1157–1174.

9. Stjernschantz, E., Marelius, J., Medina, C.,
Jacobsson, M., Vermeulen, N. P. E., and Oos-
tenbrink, C. (2006) Are automated molecular
dynamics simulations and binding free energy
calculations realistic tools in lead optimiza-
tion? An evaluation of the linear interaction
energy (LIE) method. J Chem Inf Model 46,
1972–1983.

10. Lee, F. S., Chu, Z. T., Bolger, M. B., and
Warshel, A. (1992) Calculations of Antibody-
Antigen Interactions: Microscopic and Semi-
Microscopic Evaluation of the Free Energies
of Binding of Phosphorylcholine Analogs to
McPC603. Prot. Eng. 5, 215–228.

11. Marcus, R. A. (1964) Chemical and Electro-
chemical Electron-Transfer Theory. Ann Rev
Phys Chem 15, 155–196.

12. Almlof, M., Carlsson, J., and Aqvist, J.
(2007) Improving the accuracy of the linear
interaction energy method for solvation free
energies. J Chem Theor Comput 3,
2162–2175.
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18. Luzhkov, V. B., and Åqvist, J. (2001)Mechan-
isms of tetraethylammonium ion block in the
KcsA potassium channel. FEBS Lett 495,
191–196.

19. Carlson, H. A., and Jorgensen, W. L. (1995)
An Extended Linear-Response Method for
Determining Free-Energies of Hydration.
J Phys Chem 99, 10667–10673.

20. Huang, D., and Caflisch, A. (2004) Efficient
evaluation of binding free energy using con-
tinuum electrostatics solvation. J Med Chem
47, 5791–5797.

21. Su, Y., Gallicchio, E., Das, K., Arnold, E., and
Levy, R. M. (2007) Linear Interaction Energy
(LIE) Models for Ligand Binding in Implicit
Solvent: Theory and Application to the Bind-
ing of NNRTIs to HIV-1 Reverse Transcrip-
tase. J Chem Theor Comput 3, 256–277.

22. Wang, W., Wang, J., and Kollman, P. A.
(1999) What determines the van der Waals
coefficient beta in the LIE (linear interaction
energy) method to estimate binding free ener-
gies using molecular dynamics simulations?
Proteins 34, 395–402.

23. Gutiérrez-de-Terán, H., Nervall, M., Dunn,
B. M., Clemente, J. C., and Aqvist, J. (2006)
Computational analysis of plasmepsin IV

bound to an allophenylnorstatine inhibitor.
FEBS Lett 580, 5910–5916.

24. Marelius, J., Kolmodin, K., Feierberg, I., and
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Chapter 21

Estimation of Conformational Entropy in Protein–Ligand
Interactions: A Computational Perspective*

Anton A. Polyansky, Ruben Zubac, and Bojan Zagrovic

Abstract

Conformational entropy is an important component of the change in free energy upon binding of a ligand
to its target protein. As a consequence, development of computational techniques for reliable estimation
of conformational entropies is currently receiving an increased level of attention in the context of
computational drug design. Here, we review the most commonly used techniques for conformational
entropy estimation from classical molecular dynamics simulations. Although by-and-large still not directly
used in practical drug design, these techniques provide a golden standard for developing other, computa-
tionally less-demanding methods for such applications, in addition to furthering our understanding of
protein–ligand interactions in general. In particular, we focus here on the quasi-harmonic approximation
and discuss different approaches that can be used to go beyond it, most notably, when it comes to treating
anharmonic and/or correlated motions. In addition to reviewing basic theoretical formalisms, we provide
a concrete set of steps required to successfully calculate conformational entropy from molecular dynamics
simulations, as well as discuss a number of practical issues that may arise in such calculations.

Key words: Conformational entropy, Thermodynamics of protein–ligand binding, Molecular
dynamics, Quasi-harmonic entropy, Drug design

1. Introduction

1.1. Conformational

Entropy Is an

Important Component

of the Free Energy

of Binding

Detailed knowledge of the thermodynamics of ligand binding is
crucial for design of potential drugs. In this context, the change of
Gibbs free energy, DGbind, upon binding of a ligand to its target
determines the ligand’s binding affinity, which is usually directly
related to its efficacy as a biologically active compound. Taking into
account that DGbind is a sum of two terms (DGbind ¼ DHbind �
TDSbind), ligand design can benefit fromoptimizing both enthalpic
(DHbind) and entropic (�TDSbind) contributions (1). However, in
practical implementations, protein–ligand interactions are usually
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related to and optimized through the enthalpic component, while
entropy is primarily attributed to the hydrophobic effect and sol-
vation, believed to be the major contributors to this term (2, 3).
Nonetheless, entropic contributions upon binding include also
changes in conformational entropies of both molecules i.e., DSbind
¼ DSconf

P + DSconf
L + DSsol + DSRT

P + DSRT
L, where DSconf

P and
DSconf

L are attributed to changes in conformational entropy of
protein and ligand, respectively, DSsol captures changes of solvent
entropy, while DSRT

P and DSRT
L correspond to entropy changes

due to rotational and translational degrees of freedom of protein
and ligand, respectively. Although the potential importance of
conformational entropy was emphasized already several decades
ago (4–6), only recently has experimental evidence been provided
to indicate that it can dramatically influence free energy of pro-
tein–ligand association (7–10). For example, in studies of interac-
tions of calmodulin with fragments of different target proteins,
Wand and co-workers have shown that DSconf

P and DSsol can, in
fact, be of comparable magnitude (7, 10). Similarly, consideration
of changes in ligand conformational entropy (DSconf

L) upon bind-
ing has been found to be important in design of conformationally
restricted binders (11–13).

1.2. Fast Protein

Dynamics (ps-ns)

Is a Rich Source

of Conformational

Entropy

One of the central paradigms of modern structural biology is the
idea that the dynamics of proteins directly governs their function.
While microseconds-milliseconds (ms-ms) motions are often
emphasized as being on the same timescale as folding, catalysis,
and ligand binding; the motions occurring on picosecond-nano-
second (ps-ns) timescale are universal: in contrast to ms-ms, these
thermal motions exist in all proteins above the glass transition
temperature, and are believed to be directly related to protein
conformational entropy (14). NMR relaxation methods are the
most suitable experimental technique for capturing ps-ns dynamics
of proteins (14). Almost two decades ago, it was demonstrated that
atomic fluctuations, as measured by order parameters of bond-
vectors (S2 or, as sometimes labeled,O2), are related to the canoni-
cal partition function (17). These findings made possible the
development of analytic expressions relating S2 with absolute con-
formational entropy (7, 18, 19). However, absolute entropies are
highly dependent on the models used to describe the motion,
while only relative entropies (e.g., between free- and bound-state
of a protein) are found to be model independent (14). Altogether,
simplifications of protein dynamics used in different models to
provide the link between S2 parameters and entropy, together
with the general difficulty of detecting and treating correlated
motion, pose some of the major challenges to realistic conforma-
tional entropy estimation exclusively from NMR experiments.

On the other hand, ps-ns dynamics of proteins can be directly
observed in molecular dynamics simulations (MD) using
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physically realistic, semiempirical force fields and different sampling
techniques (20, 21). In particular, a combination of MD simula-
tions withNMR experiment promises to be a particularly powerful
approach in addressing the challenges inherent in conformational
entropy estimation (9, 22–26). Traditionally, modeling of protein
flexibility has been considered in drug designmainly in the context
of improving standard docking techniques for predicting and opti-
mizing properties of protein–ligand complexes (27–29).However,
different efforts have recently been extended in the direction of
including different explicit representations of conformational
entropy even in docking algorithms (30–32). What is more, the
computationally more demanding, MD-based approaches for
entropy estimation are being increasingly deployed in practical
ligand-design tasks (33, 34). We are of a firm conviction that this
trend will keep growing, and that the majority of all future compu-
tational drug-design efforts, regardless of their level of complexity,
will be taking conformational entropy into account. In this chapter,
we review the most common computational techniques, which
provide conformational entropy estimates based on MD simula-
tions (5, 35–38). Although still mostly out of the arena of practical
drug design, thesemethods provide a golden standard for develop-
ing other, computationally less-demanding methods for such
applications, in addition to deepening our understanding of pro-
tein–ligand interactions in general (9, 22–26). Our aim is to pres-
ent a number of general concepts concerning estimation of
conformational entropy from MD data, accessible to a broader
audience, rather than give a complete discussion of physical and
mathematical aspects of the problem, which can be found else-
where (38–40). Because of space restrictions, we focus only on
the most widely used methods, without covering all of the
promising work being carried out in the field (41–44). In the
following text, we first briefly outline the statistical–mechanical
framework necessary for understanding different methods, fol-
lowed by a Subheading 2 containing a description of concrete
steps needed to calculate conformational entropies from MD
data. We conclude by a list of notes containing practical advice,
caveats, and critical comments concerning different aspects of the
problem.

1.3. How to Calculate

Conformational

Entropy from MD

Data?

1.3.1. Discrete (Sd)

and Continuous (Sc)

Single Molecule Entropies

As mentioned in the introduction, conformational entropy is a
component of the total entropy of a molecule. The total entropy
of a molecule with discrete n microstates can be defined using the
Gibbs formula:

Sd ¼ �kB
Xn

i¼1
ri ln ri; (1)

21 Estimation of Conformational Entropy in Protein–Ligand. . . 329



where ri ¼ e�Ei=kBT =
Pn

i¼1 e
�Ei=kBT ¼ e�Ei=kBT =Zd is the probabil-

ity of occurrence of the microstate i, Ei is its energy and Zd is the
discrete partition function. Assuming continuous character of the
system’s phase space, described by conjugate momenta p and
generalized coordinates q, the following continuous definition of
the total entropy can be provided:

Sc ¼ �kB

ðð
rðp; qÞ lnrðp; qÞ dp dq; (2)

where rðp; qÞ ¼ e�Eðp;qÞ=kBT =
Ð Ð

e�Eðp;qÞ=kBTdp dq ¼ e�Eðp;qÞ=kBT =Zc

is the probability density function of phase space ðp; qÞ and Zc is
the continuous partition function. Here, Eðp; qÞ is the total energy:

Eðp; qÞ ¼ EkinðpÞ þ EpotðqÞ; (3)

where EkinðpÞ is the kinetic and EpotðqÞ the potential energy of the
system. Please note that Eqs. 1 and 2 are not fully equivalent (see
Note 1 for more details). Importantly, the entropy of Eq. 2 does
not have the units of kB because the logarithmic operation is
performed on a dimensional probability density function rðp; qÞ.
One can account for this by including a scaling variable of dimen-
sion ½rðp; qÞ��1 inside the logarithm. For example, quasi-classical
entropy is defined in this way as (45):

Sc ¼ �kB

ðð
rðp; qÞ ln �hdrðp; qÞ dp dq; (4)

where �h is the Planck’s constant and d is the number of degrees of
freedom of the system. Note that the scaling using �hd can be
applied only to the complete expression of entropy including
both momentum and coordinate components. However, because
the energy (see Eq. 3) can be divided into a kinetic energy com-
ponent, which is a function of momenta, and a potential energy
component, which is a function of coordinates, the following
holds:

rðp; qÞ ¼ rðpÞrðqÞ: (5)

Subsequently, the two components of the total entropy can be
split up in the following way:

Sc ¼ �kB

ð
rðpÞ ln �hd

Ld
rðpÞ dp

�kB

ð
rðqÞ lnLdrðqÞ dq; (6)

where L is a constant in units of length (which makes both parts of
Eq. 6 in units of kB). In other words, the total entropy can be
divided into momentum and coordinate parts:

Sc ¼ SpðpÞ þ SqðqÞ: (7)
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Because of the equipartition theorem, at constant tempera-
ture SpðpÞ is constant. Since biological systems usually function at
constant temperature, in the remainder of this review we will focus
primarily on SqðqÞ. Using Cartesian coordinates, the coordinate
part of the entropy can be calculated as:

SqðqÞ ¼ �kB

ð
rðqÞ lnLdrðqÞ dq; (8)

where d ¼ 3N whereN is the number of atoms. Note that the Ld

term is often ignored, but in that case absolute entropy may be ill-
defined. Even so, entropy differences remain well defined,
provided that the number of degrees of freedom in the system
does not change. To calculate the conformational entropy com-
ponent of SqðqÞ, rotation and translation of the molecule should
be removed by least-squares fitting of coordinates to a reference
structure (for simplicity from now on q will be assumed to be the
fitted coordinates unless stated otherwise) or by using an internal
coordinate system Q e.g., internal bond-angle-torsion (BAT)
coordinates. If, however, fitted Cartesian coordinates are used,
Eq. 8 does not apply: for example, in the case of a multivariate
Gaussian distribution, the entropy is proportional to the loga-
rithm of the covariance matrix determinant, which goes to zero
for fitted coordinates (as six of the eigenvalues go to zero), and the
logarithm is ill-defined. For this reason, for fitted Cartesian coor-
dinates one has to employ different methods, which allow one to
define and use entropies of individual modes (see below). When it
comes to internal BAT coordinates (45):

SBAT;conf ðQ Þ ¼ �kB

ð
rðQ ln xdrðQ Þ dQ ; (9)

where x is a constant in BAT units so that the conformational
entropy is in units of kB and d ¼ 3N � 6. Using the definitions
given in Eqs. 8 and 9, conformational entropy of a molecule can
only be calculated using BAT coordinates (see Note 2 for details
about how to calculate the total coordinate entropy from BAT
coordinates). However to calculate conformational entropy using
Cartesian coordinates, a method is needed to take into account
the conformational entropy contribution of every individual
degree of freedom, except the rotational and translational ones.
This can be done by using quasi-harmonic analysis, which can also
be carried out using BAT coordinates, provided the appropriate
Jacobian is included (see below).

1.3.2. Typical Assumptions

Behind Conformational

Entropy Calculations

In general, one can reasonably divide most of the approaches for
conformational entropy estimation into two major groups: those
that analyze external Cartesian coordinates of the molecule (11, 33,
36, 37, 48, 49) and those that analyze internal BAT coordinates
(5, 26, 35, 47, 50–52). In the first group of approaches, Cartesian
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coordinates of atoms are used to perform mass-weighted principal
component analysis (mwPCA) of the dynamics of themolecule. The
variances of the 3N � 6 distributions of principal component
(or eigenmode) coordinates can then be used to calculate confor-
mational entropy using quasi-harmonic analysis, by assuming that
all distributions of eigenmode coordinates are: (1) independent i.e.,
there are no correlations between them, and (2) Gaussian, i.e., their
entropy can be treated analytically.

In the second group of approaches, distributions of BAT
coordinates are used to calculate conformational entropy, which
could be calculated easily if one would have rðQ Þ. However, such
direct calculation of entropy from simulations is intrinsically diffi-
cult, because complexity of the phase space accessible to a mole-
cule requires a large level of sampling to get reliable estimates of
the full probability density function. In order to solve this prob-
lem, again assumptions of independence and Gaussianity are typi-
cally employed. The methods in both groups have several
limitations in common (most notably, related to the simplifying
assumptions made (38, 46, 47)), but these can be corrected for
the quasi-harmonic method using different techniques, as dis-
cussed below.

1.3.3. Conformational

Entropy Estimation Using

Cartesian Coordinates

To calculate conformational entropy using Cartesian coordinates,
one has to first remove rotational and translational degrees of free-
dom by fitting all n MD structures from an MD trajectory to a
reference structure by minimizing Cartesian atom-positional root-
mean-square deviation (see Subheadings 2 and 3 for details). After
this, mass-weighting of Cartesian coordinates is performed by

d jM ¼ M1=2qj ; (10)

where qj is a vector of all Cartesian coordinates of all the atoms in
snapshot jðj ¼ 1 . . .nÞ, whileM is the 3N � 3Nmass matrix with
the masses of all N atoms on the diagonal (obviously, in multiples
of three due to x, y and z Cartesian coordinates of every atom). All
of the data vectors for all n snapshots can be put in a data matrix:

DM ¼ ðd1M
; . . . ; dnM

Þ: (11)

Principal component analysis is then performed by first calcu-
lating the covariance matrix of the data matrix DM followed by a
subsequent determination of its eigenvalues and eigenvectors.

From the methodological point of view, the following equiv-
alent approach lends itself to easier calculation (36). The covari-
ance matrix of the fitted structures, s, is multiplied by the mass
matrix, M, and the eigenvalues li and the ith eigenvectors ui

satisfy the following equation:

Msui ¼ liui: (12)

332 A.A. Polyansky et al.



Eigenvectors and eigenvalues determined from Eq. 12 can be
used in entropy calculations in different ways. The most basic
methods are the ones that employ eigenvalues and assume a
Gaussian distribution of all principal eigenmode coordinates
(i.e., projections of the simulated trajectory on the individual
eigenvectors). Since the displacements of a harmonic oscillator
in the canonical ensemble are distributed according to a Gaussian
distribution, these methods are often called quasi-harmonic.
Within this framework, the 3N � 6 eigenvalues (the vanishing
six eigenvalues of the rotational and translational movement are
excluded from the calculation) can be related to harmonic oscilla-
tor angular frequencies (oi), which can then be calculated by the
equipartition theorem, valid in the classical limit o � kBT =�h:

o2
i ðmeffs2PCÞi ¼ kBT ; (13)

where meffs2PC ¼ li are the eigenvalues obtained in the mass-
weighted principal component analysis (which makes it obvious
why mass-weighting was needed).

Subsequently, conformational entropy can be estimated using
the formula for the entropy of a quantum-mechanical harmonic
oscillator (37):

Sqh ¼ kB
X

i

�hoi=kBT

e�hoi=kBT � 1
� lnð1� e��hoi=kBT Þ

� �
: (14)

A detailed protocol for this approach as applied in studies of
ligand binding to calmodulin is given in the Subheading 2.

1.3.4. Conformational

Entropy Estimation Using

Internal BAT Coordinates

Karplus and Kushick were the first to introduce Gaussian approxi-
mation of the multidimensional configurational probability distri-
bution using internal BAT coordinates (5) to treat conformational
entropy. Here, the probability density function of all BAT coordi-
nates is given by a multivariate Gaussian:

rðQ Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞN jsj

q e�ð1=2ÞðQ�hQ iÞTs�1ðQ�hQ iÞ; (15)

where now Q is a vector of internal BAT coordinates, s is the
covariance matrix of all 3N � 6 degrees of freedom for a molecule
with N atoms and |s| is its determinant. Using Eq. 9, conforma-
tional entropy can be calculated as:

S ¼ kB
2
ð3N � 6Þ þ kB

2
ln½ð2pÞ3N�6jsj�; (16)

where the xd term is omitted, (see Notes 1 and 3). The relative
entropy of a molecule in different states (DS) can then be
expressed as:

DS ¼ S2 � S1 ¼ kB
2

ln
jsj2
jsj1

� �
: (17)
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Note that DS will have proper units only if the number of
atoms in both states is the same. Otherwise the xd term has to be
included (see Notes 1 and 3).

Like in the case of Cartesian coordinates, mass-weighted
principal component analysis can also be done using BAT coordi-
nates. The only difference is that the mass matrix and covariance
matrix in Eq. 12 have to be corrected for the transformation of the
coordinate system (see for details Note 2). Thus, Eq. 12 using
BAT coordinates becomes:

A1=2sBATA
1=2ui ¼ liui; (18)

where A ¼ J T
BATðQ ÞMJ BATðQ Þ. However, because Eq. 18 is dif-

ficult to satisfy since the Jacobian is a function of the conformation
of the molecule, an assumption is frequently made that:

J BATðQ Þ � J BATðhQ iÞ: (19)

This assumption can, however, have a significant impact on
entropy calculation, especially when the molecule is flexible.

Finally, each of the internal coordinates can be separately
used, without the quasi-harmonic approximation, using the sta-
tistical–mechanical formula, developed for the case of dihedral
(torsion) angles by Endholm and Berendsen (35). Here, the
probability distribution function was estimated from histograms.
Assuming that MD evolution of torsional angles, in contrast to
constrained bonds and bond angles, provides the most important
contribution to the conformational heterogeneity of a molecule,
the entropy equation can be simplified as:

S ¼ �kB
Xbins

i¼1

ri ln
ri2p
D

; (20)

where D is the bin size in radians and ri is the probability weight of
each bin. Importantly, this approach shares similar advantages and
deficiencies with the quasi-harmonic approach using BAT coordi-
nates (see Notes 4 and 5). An example of application of the former
approach in the studies of ligand binding to calmodulin is given in
the Subheading 2.

1.4. Going Beyond

Quasi-Harmonic

Entropy

The twomain corrections to the quasi-harmonic entropy are those
due to the inclusion of anharmonic motions and those due to
supralinear correlations between eigenmodes. In other words, the
correction to the quasi-harmonic conformational entropy, DScorr,
can be expressed as:

DScorr ¼ DSanh;h þ DSSC; (21)

where DSanh;h ¼ Sanh � Sh (where Sanh is the anharmonic entropy
and Sh is the entropy of a Gaussian as a function of its variance) and
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DSSC represent corrections for anharmonic and supralinear corre-
lations, respectively (49).

1.4.1. Accounting for

Anharmonic Effects

If the distributions of eigenmode coordinates (or collective coor-
dinates i.e., projections of the simulated trajectories onto the
eigenvectors obtained in mwPCA) are Gaussian, conformational
entropy can be calculated analytically for both Cartesian and BAT
coordinates using quasi-harmonic approaches. However, if this is
not the case, the variances alone, as calculated from MD data and
used in the Gaussian approximation, are not sufficient to accu-
rately estimate conformational entropy. This is qualitatively illu-
strated in Fig. 1, depicting two model distributions, which can be
thought of as distributions of values for two eigenmode coordi-
nates (or for two dihedral angles, or any other distribution). As
implied by Fig. 1, approximating data by a Gaussian distribution
may have major consequences for the entropy. In fact, quasi-
harmonic entropy always gives an upper limit to conformational
entropy (33). On the other hand, constructing histograms of
these distributions based on MD data allows one, in principle, to
evaluate the exact (anharmonic) contribution of individual eigen-
modes to conformational entropy in the following way.

The probability density of an eigenmode coordinate can be
estimated from a series of n projections (corresponding to n snap-
shots of the trajectory) of the simulated trajectory onto the
corresponding eigenvector of the covariance matrix. One gets
collective coordinates zij along eigenvector i from snapshot j
from the data using:

zij ¼ uT
i M

1=2ðqj � hqiÞ; (22)

Fig. 1. Two model distributions characterized by the same mean and variance. The real probability distribution is on top,
while discrete data obtained by MD is in the model. In both cases, the data exhibit the same mean and variance and
would be linked with identical Gaussian distributions (bottom), but clearly come from very different real distributions,
which also have different entropies. The x-axis can be interpreted to correspond to different dihedral angles, or to be
different sizes of single eigenvectors in case of analysis based on Cartesian coordinates.
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whereui is the eigenvector,M is themassmatrix, qj is a vector with
all Cartesian coordinates of the molecule of snapshot j and hqi is
the vector with average Cartesian coordinates along the whole
trajectory (in the case of BAT coordinates, the mass-matrix has to
be corrected for the coordinate system transformation using the
Jacobian). The exact contribution of a given eigenmode to confor-
mational entropy can then be obtained by calculating the entropy
of the collective coordinate probability density function. In partic-
ular, one needs to choose optimal binning or kernel density esti-
mation techniques to perform this (see below). However, note
that, in the end, anharmonic corrections to conformational
entropy are typically relatively small (e.g., typically <3%) (49).

1.4.2. Techniques for the

Estimation of Probability

Density Functions

In going beyond the quasi-harmonic approximation, one invari-
ably needs to estimate probability density functions belonging to
different degrees of freedom from finite samples obtained in MD.
This estimation can be performed using different approaches. A
commonly used method employs binning the samples (i.e., build-
ing histograms) in bins of fixed size (35). Alternatively, a distance
to the kth nearest neighbor of every sample is used to approximate
the probability density (54). Finally, one can use different non-
parametric kernel density estimation techniques to obtain contin-
uous PDFs from finite samples (25, 55).

In the histogram method (35), calculation of the probability
density in bin i is implemented as follows:

ri ¼
ni

n

1

D
; (23)

where D is the bin size, ni is the number of samples in bin i and n is
the total number of samples. The choice of the optimal bin size is
discussed in the Subheading 3. Next, entropy of the distribution
can be calculated as (see Notes 6–8 for limitations):

S ¼ �kBD
Xbins

i¼1

ri lnri: (24)

Here, one still has to deal with a logarithmic operation on a
quantity with dimensions (see Notes 1 and 3 for details). On the
other hand, the kth Nearest Neighbor method (kNN), (or nearest
neighbor method) allows for estimation of probability density func-
tion fromEuclidean distances between each collective coordinate zij
of an eigenvector i of the jth frame and its kth nearest neighbor zijk.
The corresponding density at a given sampled value zij is approxi-
mated by the distance to its kth nearest neighbor. This distance is
used as the bin size for each particular sample (snapshot). Hence,
probability density at snapshot j can be approximated by:

rðzij Þ � rcðzij Þ ¼
k

nRj ;k
; (25)
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where k is the kth nearest neighbor chosen, n is the total number
of samples or snapshots and Rj ;k ¼ jzij � zijk j. Entropy of the
distribution is calculated by the following equation:

S

kB
¼ 1

n

Xn

j¼1

lnRj ;k þ ln 2n � Lk�1 þ g; (26)

where the last three terms are required to eliminate the asymptotic
bias and are defined as:

Ll ¼
Xl

h¼1

1

h
; L0 � 0 (27)

and g ¼ 0:5772 . . . is the Euler-Mascheroni constant. In princi-
ple, the kNN method is similar to the binning procedure, but the
bin size here is not predefined and is dependent on the data at
hand.

Finally, a continuous distribution can be constructed from a
finite set of samples by convoluting them with a continuous kernel
(e.g., a Gaussian for nonperiodic data or von Mises kernel for
periodic data such as dihedral angles). In this case, the entropy
estimate obtained using Eq. 2 has to be corrected for the entropy
of the kernel itself (47, 55).

1.4.3. Accounting for

Higher-Order Correlation

Effects

In contrast to anharmonicity corrections, corrections due to
supralinear correlations, not accounted for by quasi-harmonic
analysis, are typically much more significant. Importantly, there
are different treatments for taking correlations of different order
into account, but it appears that pairwise supralinear correlations
are the most important ones (38, 49, 51, 56, 57). Practically, these
corrections are the only ones that can realistically be taken into
account, given the current computational limitations (38, 49, 56).
Binning techniques allow one to estimate the degree of correla-
tion between different generalized coordinates (such as collective
coordinates of eigenmodes or BAT coordinates), which can be
represented as mutual information (I) of different degree for the
distributions in question:

Iij ¼ Sanh;i þ Sanh;j � Sanh;i;j ; (28)

where Sanh,i and Sanh,j are the anharmonic entropies of eigenmodes
i and j, and Sanh;i;j ¼ �kB

Ð Ð
rðzi; zj Þ lnrðzi; zjÞ dzidzj , where

rðzi; zjÞ is the joint probability density function of collective coor-

dinates of eigenmode i and j. Therefore, the entropy correction of
Eq. 21 with anharmonic and higher-order corrections becomes
(56):

DScorr ¼
X3N�6

i¼1

Sanh;i �
X3N�6

i¼1

Sh;i �
X3N�6

i¼1

X3N�6

j¼iþ1

Iij : (29)
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Here, mutual information is the function of a two-dimensional
probability distribution, which can be calculated by different bin-
ning methods, but analogous expansions to include higher-order
correlations are also possible (see below).

In the histogram approach (35), the two-dimensional proba-
bility is:

rij ¼
nij

n

1

D1D2
; (30)

where nij is the number of samples in patch ij , n is the total
number of samples, and D1 and D2 are the bin sizes of distribution
1 and 2, respectively (where D1D2 is the area of a patch). The
entropy Sanh;i;j of this distribution becomes now:

Sanh;i;j ¼ �kBD1D2

Xbins1

i¼1

Xbins2

j¼1

rij ln rij : (31)

Note that, here, one still has to deal with a logarithmic opera-
tion on a quantity with dimensions (Notes 1 and 3). Similarly, the
kNN method can be applied for approximation of Sanh;i;j .

Using the kNN method the probability distribution is multi-
dimensional and is defined as rðz1; . . . ; zDÞ, where D ¼ 2 for first
order correlation and D has a maximum value of 3N � 6,
corresponding to the number of degrees of freedom (without
rotation and translation) for a molecule with N atoms. Note that
operation with a function of such high order will, obviously, result
in convergence problems.

The probability density can be estimated (56) from n obser-
vations zj ¼ ðz1;j ; . . . ; zD;j Þ with j ¼ 1; . . . ;n, as:

rðz j Þ � rcðz j Þ ¼
k

nVDðRj ;kÞ ; (32)

where VDðRj ;kÞ is the D-dimensional hyper-sphere with radius
Rj ;k and defined by:

VDðRj ;kÞ ¼
ffiffiffi
p

p
Rj ;k

� �D

GððD=2Þ þ 1Þ ; (33)

where G is the Gamma function and Rj ;k is the Euclidean distance
between z j and its kth nearest neighbor z jk given by:

Rj ;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

i¼1

ðzij � zijkÞ2
vuut : (34)

Now the entropy calculation from a multidimensional distri-
bution becomes:

S

kB
¼ D

n

Xn

j¼1

lnRj ;k þ ln
npD=2

GððD=2Þ þ 1Þ � Lk�1 þ g: (35)
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Note that Eqs. 32 and 35 reduce to Eqs. 25 and 26 when
D ¼ 1.

Pairwise mutual information Iij used for entropy corrections
for higher-order correlations can, in principle, be substituted by
mutual information between three or more distributions (46).
This mutual information expansion can be obtained using the
Generalized Kirkwood Superposition Approximation that gives
an approximation of an Dth order probability distribution using
a combination of allD � 1th order and lower probability distribu-
tions:

rðz1; . . . ; zDÞ �

Q
D

D � 1

	 
 rðzi1 ;...;ziD�1
Þ

Q
D

D � 2

� � rðzi1 ;...;ziD�2
Þ

..

.
Q

D
2

� � rðzi1 ;zi2 Þ

Q
D
1

� � rðzi1 Þ

(36)

The product notation
Q

D
1

� � symbolizes that all of the M
N

� �

unique combinations of the degrees of freedom in question have
to be included in the product.

A third-order probability distribution can be obtained in this
way by:

rðz1; z2; z3Þ � rðz1; z2Þrðz1; z3Þrðz2; z3Þ
rðz1Þrðz2Þrðz3Þ : (37)

In the same way, a higher-order entropy can be approximated
by lower order entropies:

Sðz1; . . . ;zDÞ�
XD

i¼1

SðziÞ�
X

D

2

� �
I2ðzi1 ;zi2Þ

þ
X

D

3

� �
I3ðzi1 ;zi2 ;zi3Þþ���þð�1ÞD�1

X

D

D�1

� �
ID�1ðzi1 ; . . . ;ziD�1

Þ;

(38)

where Ikðzi1 ; . . . ; zikÞ ¼
Pk

j¼1 ð�1Þjþ1P
k
j

� � Sðzi1 ; . . . ; zij Þ.
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Although the former approach does not remove sampling and
convergence problems, it does present a systematic method for
including higher-order corrections to the approximated full-
dimensional entropy (46).

2. Methods

We illustrate the application of techniques for the estimation of
changes in conformational entropy of a protein–ligand system by
focusing on the interactions of calmodulin (CaM) and peptide
MKKa (see Fig. 2a). This system has been well characterized in a
number of experimental studies (7, 10) (see Subheading 1 for
details), and is, in terms of general features, similar to other systems
typically encountered in MD studies. In the following, a widely
used package Gromacs 4.0.7 (58) is used as the reference software
forMD simulations and parts of analysis in the context of the Linux
operating system, but in principle, the described methods can be
implemented in other MD packages as well. In the following, we
focus onCartesian-coordinate quasi-harmonic entropy and internal
coordinate dihedral angle entropy only. While both of these meth-
ods exhibit several important deficiencies, as discussed throughout
this review, they are still widely used, and, importantly, they allow us
to illustrate a number of different methodological principles shared
by other methods as well (see Note 9).

2.1. Calculation

of MD Trajectories

1. Construct systems for MD calculations. To estimate DS P
conf

and DS L
conf at least three MD trajectories with the same degree

of sampling are required: (i) isolated target (CaM); (ii)
isolated ligand (MKKa); (iii) target + ligand in the bound
state (CaM + MKKa). We used standard Gromacs protocol
for construction of those systems. Protein molecules were put
in a cubic simulation box using the Gromacs editconf utility
(note, all the hereinafter reported utilities are part of the
Gromacs 4.0.7 package (58)) and solvated in SPC (59)
water (genbox). For all systems, the necessary number of
counter ions was added to neutralize system charge (genion).
Parameters of the simulated systems are given in Table 1.

2. Choose force field (pdb2gmx) and protocol, which provide
stable and reproducible simulations of target and ligand in
explicit solvent. For all simulations, we used Gromos 45A3
united atom force field with explicit polar hydrogens (60, 61).

3. Perform the following steps before simulating production
runs: energy minimization and subsequent heating up to
simulation temperature. Run simulations in the isobaric-
isothermal ensemble (NPT). Our MD simulations were
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Fig. 2. (a) Interaction of calmodulin (CaM, green) with MMKa ligand peptide (red ).
Proteins are given in cartoon representation, while Ca2+ ions are shown with orange
spheres. PDB codes are 1CLL and 1CKK for CaM holo and CaM + MKKa complex,
respectively. (b, c) Dependence of absolute (S, insets) and relative (DS ) conformational
entropies of CaM and MKKa on the separation between the saved MD frames, for the
same total trajectory length of 200 ns. The results are given for (b) the quasi-harmonic
aproach using Cartesian coordinates, and (c) the histogram approach using internal
coordinates (dihedral angles). For clarity, DS axes in the panels in (b, c) are given on the
same scale, but with different offset. The arrows denote the cutoff at which at least
3N + 1 frames are included, where N is the number of atoms in the system.
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carried out with a time step of 2 fs, utilizing 3D periodic
boundary conditions in the NPT ensemble with an isotropic
pressure of 1 bar and a constant temperature of 300 K. Tem-
perature and pressure were scaled using the Berendsen
thermo- and barostat (62) with 1.0 and 0.1 ps relaxation
parameters, respectively. The van der Waals and electrostatic
interactions were truncated using a twin range 10/12 Å
spherical cutoff. Trajectory snapshots were extracted every
50 fs. This was done to test the effect of frame-output fre-
quency on the convergence of conformational entropy values.
Based on our analysis, we recommend to save coordinates
at least every 10 ps or more frequently, for systems of com-
parable size and trajectory length to ours (see Note 10). MD
trajectories should be long enough to reach “equilibrium”
and obtain sufficient statistics (see Notes 11 and 12). In our
example, we simulated all systems for 200 ns. For more
details about setting up and running MD simulations, please
consult (63).

2.2. Estimation

of Quasi-Harmonic

Entropy in Cartesian

Coordinates

1. Fit target and ligand conformations to a reference MD struc-
ture (e.g., initial conformation). For most compact, globular
proteins, the specific choice of the reference structure does
not make a major difference (64). Preferably, perform mass-
weighted fitting using all atoms. Alternatively, standard least-
square fitting for heavy atoms can also be used. Usually initial
structure can be employed as reference conformation.

2. Calculate covariance matrix for fitted conformations and per-
form mass-weighting with the mass matrix.

3. Compute eigenvalues and eigenvectors of the mass-weighted
covariance matrix (see Eq. 12) by one of numerical methods.

4. Calculate the frequencies from the first 3N � 6 eigenvalues
using Eq. 13. If you obtain zero-valued or negative eigenva-
lues except the last six, your input, probably, contains too few
snapshots (see Note 10).

5. Calculate entropy by using the quantum-mechanical harmonic
oscillator formula given in Eq. 14. Steps 1–6 can be performed
in Gromacs using g_covar and the following syntax: g_covar -f
<trajectory file, *xtc/trr> -s<binnary topologyþ structureþ
parameters file, *tpr> -b <starting time for the ananlysis>
-e <ending time for the analysis> -o <eigenvalues file>
-v <eigenvectors files> -mwa. The –mwa flag provides the
necessarymass-weighting for the covariancematrix. It is advis-
able to remove all other atoms (solvent, counter ions) in the
trajectory except atoms ofmolecules of interest. This procedure
helps to speed-up reading of long trajectory files by g_covar . If
you use g_covar from the Gromacs package version 4 or later,
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entropy values by standard Schlitter (see Note 13) or Cartesian
quasi-harmonic approaches (see Eq. 14) will be calculated auto-
matically together with the analysis of the covariance matrix.
Results of the implementation of steps 1–6 for CaM, MKKa,
CaM + MKKa are given in Fig. 2b. For this system, and using
the highest frame-output frequency (50 fs between frames),
Cartesian-coordinate quasi-harmonic entropy values converge
to 40.8/9.2 and 36.9/5.9 kJ mol�1 K�1 for CaM/MKKa in
free and bound states, respectively. Finally, the changes in con-
formational entropies, Sbound � Sfree, upon binding are �3.9
and �3.3 kJ mol�1 K�1 for CaM and MKKa, respectively. A
decrease in conformational entropy for CaM upon binding was
previously observed experimentally (7). Importantly, quasi-har-
monic entropy shows strong dependence on the spacing
between individual MD frames (see Fig. 2b, Note 10).

2.3. Estimation

of Entropy in

Internal Coordinates

1. General steps in using exclusively dihedral angles in conforma-
tional entropy estimation are as follows:

(a) Define dihedral angles for you molecules. This information
is usually included in the force field parameter file for the
simulated molecule. Make sure that the number of dihe-
drals you specify does not exceed N � 3 where N is the
number of atoms. Force field parameter files can contain a
larger number of dihedral angles than required to define a
molecule. For a direct determination of dihedral angles for
a molecule, build a connection matrix. Further steps can be
carried out using a recursive program that walks along the
molecule and chooses every unique combination of four
atoms as a dihedral angle. Also, you can generate all possi-
ble different dihedral angles and then choose the ones
where the connections are all real physical bonds, so that
in the end one has to select N � 3 dihedral angles, where
every atom is present in at least one of them (see Note 5).
After this, calculate the angles between the atoms always in
a consistent way. There is no absolutely universally defined
angle between two vectors in three dimensions and the
smallest angle will always be between zero and 180	, so a
third vector should be chosen relative to these two vectors
to make all the angles calculated consistent with one
another and so that they will have values between zero
and 360	. If this is not followed, there is no way of telling
if a given angle remained fixed or flipped by 180	. One way
of doing this is the following: in each dihedral angle there
are 4 atoms and 3 bonds. One can calculate a normal vector
relative to the first two bonds (n1) and a second normal
vector relative to the second and third bond (n2). To
calculate an angle between � p and p one needs to use
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the arctan2 function which is available in all standard
mathematical libraries. One should therefore move the
two vectors in a 2-dimensional plane and calculate their x
and y coordinates. One of the vector (n1) is chosen as x-axis
and the orthogonal (nor ¼ n1 � ðn1 � n2Þ) to this vector
in the n1, n2 plane is chosen as the y-axis. Now the x and y
value of n2 in the n1;n2 plane can be used to calculate the
angle using the arctan 2ðy; xÞ function. If all the vectors are
unit vectors: x ¼ n̂1 � n̂2 and y ¼ n̂or � n̂2, the dihedral
angle y is now given by y ¼ arctan 2ðn̂or � n̂2; n̂1 � n̂2Þ.

(b) Generate histograms for each dihedral angle based on bin-
ning the values from MD. The bin sizes recommended in
the literature range between 1	 and 5	 (see Notes 6–8). In
Gromacs this procedure can be performed using the follow-
ing command: g_angle -f <trajectory file, *xtc/trr> -n
<index files containing angles selected on previous step> -
type dihedral -od <output histogram file> -b <starting time
for the analysis> -e<ending time for the analysis> -binwidth
< bin size specified in degrees>).

(c) Use calculated histograms to obtain entropy values according
to Eq. 20 and sum up individual contributions. Application
of steps 1–3, Subheading 3 to analysis of CaM, MKKa,
CaM + MKKa systems gave the values of dihedral angle
entropies (see Table 1) given in Fig. 2c. Using the highest
frame-output frequency (50 fs between frames), dihedral
angle entropy values converge to 32.9/7.5 and 31.5/
5.4 kJ mol�1 K�1 for CaM/MKKa in free and bound states,
respectively. Finally, the changes in conformational entropies,
Sbound � Sfree, uponbinding are�1.4 and�2.1kJmol�1K�1

forCaMandMKKa, respectively. Importantly, dihedral angle
conformational entropies are largely insensitive to the spacing
between individual MD frames, in contrast to Cartesian-
coordinate methods (compare Fig. 2b, c). The principal
reason for this is that dihedral angle methods a priori assume

Table 1
Parameters of the simulated MD systems

System Composition Box size, Å3

CaM 1Prot/2 � 104 H2O/16 Na+/4Ca2+ 85 � 85 � 85

MKKa 1Prot/4 � 103 H2O/4Cl� 56 � 56 � 56

CaM + MKKa 2Prot/1 � 104 H2O/12Na+/4Ca2+ 68 � 68 � 68
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independence between different degrees of freedom i.e., they
do not consider the more slowly converging covariances.
This might at first sight appear somewhat contradictory as
the principal components in quasi-harmonic approaches are
also assumed independent. However, the latter still account
for linear pairwise correlations (which converge more
slowly), while the former approaches by definition do not
even include these.

2. General steps in using internal (BAT) coordinates in quasi-
harmonic entropy estimation are as follows:

(a) Convert a trajectory from Cartesian coordinates to BAT
coordinates (advantages of using BAT instead of Cartesian
coordinates, as well as possible drawbacks are discussed in
Notes 4 and 5, respectively). This can be performed by first
defining a connectionmatrix for different atoms. From this,
all the N � 1 bond lengths can be easily calculated, where
N is the number of atoms. Using the connection matrix
and a recursive program that walks along the molecule,
chose triplets of atoms defining the N � 2 angles. Do the
same for the N � 3 torsion angle quadruplets. Using these
triplets and quadruplets, calculate angles and torsion
angles, respectively.

(b) Calculate the covariance matrix, where every element is
defined by:

Qij ¼ hðQ ;j � hQ ;jiÞðQ ;j � hQ ;jiÞi; (39)

where Q is in BAT coordinates.

(c) Depending on the units used for BATcoordinates, calculate
the determinant of the matrix and use it to calculate the
entropy. However, if one uses standard units (degrees and
meters), the determinant will likely be too small, so that
the floating-point precision is not enough. This can be
solved by calculating eigenvalues of the covariance matrix
and summing up their natural logarithms:

ln jsj ¼ ln
Y3N�6

i¼1

li ¼
X3N�6

i¼1

ln li: (40)

(d) It is important to note that the calculation of the deter-
minant directly is often much faster than calculating the
eigenvalues. To calculate the determinant one can use a
LU decomposition algorithm (65).
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3. Notes

1. To illustrate the fact that discrete (see Eq. 1) and continuous
(see Eq. 2) entropy formulas are not equivalent, let us con-
sider a random variable X with the probability density func-
tion rðxÞ (53). Let us also assume that a range of X is divided
into bins of size D and the density is continuous within the
bins. Following the mean value theorem, there is a value xi
within each bin such that:

rðxiÞD ¼
ððiþ1ÞD

iD
rðxÞ dx; (41)

If one considers the quantized random variable XD, defined
by

XD ¼ xi; if iD
X<ði þ 1ÞD (42)

the probability that XD ¼ xi is

ri ¼
ððiþ1ÞD

iD
rðxÞ dx ¼ rðxiÞD: (43)

Now, the entropy of the quantized version is

SdðXDÞ ¼ �kB
Xn

i¼1

ri lnri

¼ �kB
Xn

i¼1

rðxiÞD lnrðxiÞD

¼ �kB
Xn

i¼1

rðxiÞD lnrðxiÞ � kB lnD: (44)

Under the assumption that rðxÞ lnrðxÞ is Riemann integrable,
the first term approaches an integral so that

Xn

i¼1

rðxiÞD ln rðxiÞ !
ð
rðxÞ lnrðxÞ dx; as D ! 0; (45)

SdðXDÞ þ kB lnD ! ScðX Þ: (46)

These formal manipulations clearly show that binning has to
be applied if the random variable is not continuous (and with
finite sampling it never is).

2. The total coordinate entropy (including conformational,
translational and rotational entropy) SqðqÞ can be calculated
using Cartesian coordinates as shown in Eq. 8. However one
can also calculate coordinate entropy using BAT coordinates.
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SqðQ Þ ¼ �kB

ð
rðQ Þ ln xd

jJ BATðQ Þj rðQ Þ dQ ; (47)

where jJ BATðQ Þj is the determinant of the Jacobian for trans-
forming Cartesian-to-BATcoordinates. The Jacobian J BATðQ Þ
for the transformation of Cartesian q ¼ ðq1; . . . ; qmÞ to internal
BAT coordinatesQ ¼ ðQ 1; . . . ;Q nÞ is given by:

J BATðQ Þ ¼ dq

dQ
¼

@q1
@Q1

. . . @q1
@Qn

..

. . .
. ..

.

@qm
@Q1

. . . @qm
@Qn

2
664

3
775: (48)

The determinant of the Jacobian, which is used in Eq. 47 is
given by (66):

jJ BATðQ Þj ¼ sin yexb22
YN

i¼3

b2i sin yi; (49)

where bi and yi are bond lengths and bond angles defined by
the BAT coordinates, respectively, b2 is the bond length
of atoms 1 and 2 and yex is the first of three rotational
coordinates. From Eq. 47 it might at first sight appear that
coordinate entropy depends on the chosen coordinate system,
because of the Jacobian determinant that is included. BAT
coordinates have only 3N � 6 degrees of freedom and the
total coordinate entropy is a function of 3N degrees of free-
dom (not only conformational 3N � 6 degrees of freedom,
but also six translational and rotational degrees of freedom are
included). To account for these lost degrees of freedom using
BAT coordinates, one must include the Jacobian. Also, with a
canonical transformation of the full phase space (i.e., includ-
ing both momentum and coordinate variables), the Jacobian
determinant is unity, meaning that the entropy does not
depend on the coordinate system (45).

3. It is important to emphasize that calculation of entropy
changes will give values of proper dimension only if the num-
ber of atoms remains the same in both states (as it usually is
during binding of a ligand to a target protein). If the latter
requirement is not satisfied (e.g., a protein undergoes covalent
modification), both absolute and relative entropy will be unre-
solved, because of the logarithmic operation applied to a
dimensional variable. Nevertheless, the dimension problem
can be solved the way it was shown in above—including bin
size as � lnD term. In this way, one implicitly sets the mini-
mum possible entropy for the system that is in some ways
loosely similar to choosing a standard state in thermodynamic
considerations. An alternative operation is to use kernel-based
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density estimation procedures, and then remove the entropy
of the kernel used from any entropy estimates thus obtained.

4. The principal advantage of using internal instead of Cartesian
coordinates is that the failure to completely remove rotational
and translational motion from the configurations of a mole-
cule in Cartesian coordinates may significantly influence the
results. In other words, it is sometimes difficult to perform
adequate fitting and superposition of structures in Cartesian
coordinates, especially in the case of unfolded or flexible pro-
teins (e.g., intrinsically disordered proteins), a problem which
is completely obviated if one uses internal coordinates. More-
over, results obtained for a model system have shown that
internal coordinates provide lower (i.e., better) entropy esti-
mates (38). In addition to entropy overestimation due to the
Gaussian approximation for probability distributions (same as
for internal coordinate), fitting represents another source of
increasing entropy magnitude. For instance, a rotation of one
backbone dihedral angle can be reflected in the variances of all
other atoms, and would lead to overestimations. Neverthe-
less, conformational entropy calculations in Cartesian coordi-
nates, when adequately corrected for anharmonicity and
higher-order correlations, have been widely and successfully
used in studies of protein–ligand interactions (11, 33, 34, 56).

5. Themajordrawbacksof themethods for conformational entropy
estimation in internal coordinates include: (a) cumbersome con-
version of Cartesian-to-internal coordinates, (b) necessity to
make simplifying assumptions (see Eq. 19) about the properties
of the Jacobian related to the Cartesian-to-internal coordinate
conversion in mass-weighted principal component analysis,
and (c) difficulty of uniquely defining averages, variances
and covariances for periodic degrees of freedom, such as the
torsional angles. These difficulties notwithstanding, several
studies have reported more accurate entropy estimates using
internal than Cartesian coordinates in the context of quasi-
harmonic analysis (55, 69).

6. Choosing a bin size in the calculation of dihedral entropy
should be addressed carefully, because too large or too small
a bin size would result in overestimation or underestimation
of entropy, respectively. The optimum for typical dihedral
angles in proteins has been shown to be anywhere between
1	 and 5	 (23, 24, 35).

7. Numerical integration of the Gibbs entropy formula in, for
example, evaluating the effect of anharmonicities or supra-
linear correlations, needs to be performed accurately. It is
reasonable to assume that the bin width D should be propor-
tional to the standard deviation of the distribution in
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question. Baron et al. proposed a method to determine the
constant of proportionality in question by numerically evalu-
ating the integrals for a range of proportionality constants to
find those values where the integral essentially does not
change (38, 49)

8. Another way of optimizing the size of bins in numerically
evaluating Eq. 2 has been proposed by Shimazaki and Shina-
moto (70). In their approach, one chooses bin size dY for an
angle Y, for example, so as to minimize the cost function

CðdYÞ ¼ ðh2Ki � hDK2iÞ=dY2, where hKi and hDK 2i are
the mean and variance of the number of samples per bin.
Krishnan and Smith used this method to show that the opti-
mal bin size for the angle of rotation of a methyl group in
proteins is 2	 (23).

9. One of the outstanding challenges when it comes to estimating
conformational entropies from simulation is the fact that there
are very few experimental approaches that can be used as bench-
marks or golden standards for validation. In particular, NMR
relaxation measurements (14–16) are currently the only experi-
mental method that can provide direct information about con-
formational entropy in biomolecules, but notwithout a number
of potentially critical assumptions (see Subheading 1). It is our
hope thatMDstudies can actually be used to provide inspiration
for further development of experimental techniques for confor-
mational entropy estimation. By having access to both micro-
scopic and macroscopic aspects of biomolecular systems, MD
simulations are in an ideal position to provide suggestions for
potential proxies i.e., correlates of conformational entropy that
are actually experimentally accessible.

10. The “sampling problem” is also directly related to how often
MD snapshots of a molecule are collected. It is very important
to output and save snapshot often enough. It can be seen from
Fig. 2b that the calculated Cartesian-coordinate conforma-
tional entropy is strongly influenced by the number of snap-
shots available, even for trajectories of the same total length,
and both absolute and relative values of entropies can be
affected. For instance, upon increasing time separation
between frames from 10 to 100 ps, relative Cartesian-coordi-
nate quasi-harmonic entropy of CaM drops in magnitude by
about 25% for the same total simulated length. Unfortunately,
the correct number of snapshots, one needs to obtain con-
verged conformational entropy values, differs from system to
system. For our 200 ns-long simulations of calmodulin, it
appears that a 10 ps output frequency suffices to obtain con-
verged entropy values for all the components. For the calcula-
tion of the variance of 3N principal components (N being the
number of atoms and six of these going to zero because of
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the rotational and translational fitting), it is necessary to have at
least 3N + 1 snapshots to avoid under-determination (68).
This will, however, not guarantee that the variances are con-
verged, but that they can at all be correctly calculated from the
data supplied. In fact, the above difference of 25% is primarily
due to the fact that for the spacing of 100 ps, one is using fewer
than 3N + 1 snapshots. Importantly, the dependence of the
dihedral angle entropies on the frame-output frequency is
much less severe. In the CaM/MKKa example, one obtains
converged values for both absolute and relative entropies even
with the spacing of 1 ns between individual frames.

11. To make sure that MD results are reproducible and estimated
DS values are converged, it is better to simulate several inde-
pendent runs with same sampling rates (length of trajectories,
minimal time separation between snapshots) for each system
(target, ligand, target + ligand). Simple recommendation can
be that in all runs initial configurations of all systems are the
same, while generated velocities are initiated using different
randomnumber seeds for different runs (67).However, such a
strategy still likely does not provide efficient sampling for
flexible proteins, containing extensive disordered parts.

12. Reaching equilibrium is an important requirement for proper
estimation of conformational entropy, which, however, can
only rarely be completely satisfied. Convergence of entropy
values can be directly estimated by varying the length of the
trajectory parts used for analysis in an incremental fashion.
Plots of Sconf values vs. lengths of MD trajectory fragments are
usually used to find the upper limit to which entropy during
simulations is converged (33).

13. Using the mass-weighted covariance matrix in Cartesian coor-
dinates, Schlitter suggested (36) an approximate heuristic
formula for entropy calculations:

SSch ¼ kB
2

X

i

ln 1þ kBTe

�hoi

� �2
 !

: (50)

This equation helps to substitute computationally expensive
procedure of calculating eigenvalues by a direct use of the
determinant:

SSch ¼ kB
2

ln 1þ kBTe2

�h2
Ms

����

����: (51)

However, taking into account only moderate computational
gains thus obtained, along with a lack in accuracy, this formula
is not recommended anymore for practical application.
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Chapter 22

Explicit Treatment of Water Molecules in Data-Driven
Protein–Protein Docking: The Solvated HADDOCKing
Approach

Panagiotis L. Kastritis, Aalt D.J. van Dijk, and Alexandre M.J.J. Bonvin

Abstract

Water molecules are active components in, literally, every biochemical event, forming hydrogen bonds,
filling cavities, and mediating interactions with other (bio)molecules. Therefore, solvent drastically affects
the kinetics and thermodynamics of numerous cellular events, including protein–protein interactions.
While docking techniques are becoming successful in predicting the three-dimensional structure of
protein–protein complexes, they are still limited in accounting explicitly for water in the binding process.
HADDOCK is one of the few programs so far that can explicitly deal with water molecules during
docking. Its solvated docking protocol starts from hydrated molecules, and a fraction of the interfacial
water is subsequently removed from the docked models in a biased Monte Carlo procedure. The Monte
Carlo-based removal is based on interfacial amino acid—water contact propensities derived from a dataset
of high-resolution crystal structures of protein–protein complexes. In this chapter, this solvated docking
protocol is described and associated methodological aspects are illustrated through an application exam-
ple. It is shown that, although docking results do not always improve when the solvated docking protocol
is applied, scoring is improved and the positions of buried water molecules in an interface are correctly
predicted. Therefore, by identifying important water molecules, solvated docking can aid the develop-
ment of novel inhibitors of protein–protein complexes that might be better accommodated at an interface.

Key words: Protein complexes, HADDOCK, Protein–protein docking, Explicit model, Solvation
shell, Monte carlo, Structure prediction, Solvated docking

1. Introduction

Water–protein interactions constitute a major determinant of the
kinetics and thermodynamics underlying protein interactions (1).
Over the last decades, advances in X-ray crystallography (2, 3),
neutron diffraction (2), femtosecond fluorescence (4), NMR spec-
troscopy (5), andmolecular dynamics simulations (6) have opened
the route to the establishment of methodologies for studying
binding, structure, and dynamics of water. These methods have
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revealed that water molecules are active components in, literally,
every biochemical pathway, forming hydrogen bonds with the
backbone or side chains of the polypeptidic chains, filling cavities,
and mediating interactions with other (bio)molecules.

Water molecules also play a key role in the hydrophobic effect
in protein–protein binding. They can guide a fully solvated pro-
tein to recognize another fully solvated protein by a gradual
expulsion of water layers. The water molecules that are finally
trapped in an interface form hydrogen bonds that contribute to
the enthalpy of binding while water molecules “released” from
more apolar interfaces regain freedom in the bulk, resulting in an
increase in entropy (7). In addition to the hydrophobic effect,
water is a critical contributor to the specificity of protein–protein
interactions: The wet nature of some protein–protein interfaces
suggests that water is not randomly trapped in the interface, but is
part of the recognition code, as it mediates interactions that would
be less favorable in its absence (8). For example, water is a critical
contributor to the cognate and noncognate binding of colicins
and immunity proteins (9, 10), and completely different networks
of water-mediated interactions are observed in the complexes of
Barstar with Barnase (11) or RNAse S1 (12), respectively, result-
ing into dramatic differences in the binding affinities of those two
complexes (11, 12).

Analysis of existing structures of protein–protein complexes
has revealed an equal number of direct and water-mediated hydro-
gen bonds between the partner chains (13). Considering that (a)
each water molecule in an interface can contribute ~1.5 kcal/mol
to the total energy of the complex (8) and (b) their residence time
ismuch longer (10–1,000 ns) than that of other watermolecules in
the first hydration shell (~500 ps) (5, 14), buried waters should be
considered as an integral part of the structure of a protein complex.

Computational modeling of the three-dimensional (3D)
structure of biomolecular complexes, formed by two or more
interacting biological macromolecules, is referred to as macromo-
lecular docking. When only proteins are considered, the term
protein–protein docking is used. Docking typically consists of
two different steps: the search through interaction space and the
scoring of the resulting models. In the search step, a set of possible
configurations for the 3D complex of interest are generated,
typically starting from the free-form structures of the partners
that are being docked. The generated set should reliably include
at least one nearly correct configuration (also termed “near
native”). In the second step (scoring), the “near-native,” correct
solutions have to be identified from the generated set of possible
configurations of the complex.

Current docking methods have shown a substantial improve-
ment throughout the years in predicting correctly the 3D structures
of macromolecular complexes (15, 16). However, the role of water
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in both steps is, in most cases, ignored, contrary to the underlying
physics of protein–protein association. During the search step, most
of the docking algorithms consistently ignore the presence of water
molecules, and, therefore, docking is performed in vacuum; even
implicit representations of water are often ignored. Most of the
algorithms include a desolvation term in the scoring function,
which significantly improves the ranking of correct docking config-
urations (17, 18). Implicit treatment of the water comes with a
price: approximations are introduced, and compared to explicit
models, the description of the energetics is coarser (1, 19, 20). In
the standard high ambiguity data-driven DOCKing (HADDOCK)
protocol (21, 22), explicit waters are used in the final stage to refine
models generated in vacuum. During this refinement, however,
water molecules cannot diffuse into the interface to form specific
contacts, but rather remain at the rim of the interface.

In this chapter, the solvated docking protocol implemented in
our data-driven docking approach HADDOCK (21, 22) is dis-
cussed in detail, demonstrating that water can be explicitly intro-
duced in protein–protein docking. In Subheading 22.2, the basic
idea of the protocol is described, along with our docking program
HADDOCK. Subheading 22.3 explains how to actually perform a
solvated docking calculation using the HADDOCK web server
(23), and how to analyze and interpret the results. In the associated
application section, we illustrate how docking results for Barnase,
an extracellular ribonuclease, and Barstar, its intracellular inhibitor,
are improved when the standard solvated docking protocol (24) is
applied: Water molecules are recovered in all docking stages of
HADDOCK and results from the explicit solvent refinement can
be used to derive statistics about structural waters buried in the
interface. In Subheading 22.4 we discuss advantages and limitations
of solvated docking along with potential applications.

2. Theory

The solvated docking protocol is a strategy that mimics the con-
cept of the solvated encounter complex formed in the initial phase
of protein–protein recognition. We perform the docking, starting
from protein chains that are solvated in explicit shells of water
molecules. Once the proteins have formed a 3D encounter com-
plex, removal of water molecules trapped in the interface is
achieved via a biased Monte Carlo (MC) approach. The latter is
based on water-bridged amino acid—amino acid contact propen-
sities derived from an analysis of high-resolution crystal structures
of protein–protein complexes.
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2.1. Residue–Water

Contact Propensities

The probabilities of findingwater-mediated contacts in the interface
are used to discard or keep waters in the initial stage of docking.
These probabilities were derived from the nonredundant set of
protein–protein complexes fromKeskin et al. (25). For this analysis,
interface residues were defined as residues having at least one heavy-
atom contact with a residue from the partner chain within a 10 Å
distance cutoff. Water-mediated contacts were defined between
pairs of interface residues, provided a water molecule is making at
least one heavy-atom contact within 5 Å with both residues. Pro-
pensities for residue pairs interacting with water molecules are
shown in Fig. 1 (see Note 1). Probabilities for nonstandard residue
types or small molecules that appear in the interface are, in principle,
unknown.However, an average interacting probability is assigned to
them, using the average probability of the known elements of the
matrix.

2.2. High Ambiguity

Data-Driven DOCKing

HADDOCK is a molecular docking method driven by experimen-
tal knowledge in the form of information about the interface
region between the molecular components and/or their relative
orientations. In HADDOCK, experimental data are entered as
active and passive residues. Identified interface residues are
described as active residues, and their solvent accessible neighbor-
ing residues correspond to the passive ones. Active and passive
residues are used to define a network of ambiguous interaction
restraints (AIRs) between the molecules to be docked. An AIR is
defined as an ambiguous intermolecular distance ðdeff

iABÞ with a
maximum value of typically 2 Å between any atom m of an active
residue i of protein A ðmiAÞ and any atom n of both active and
passive residues k (NresB in total) of protein B nkB (and inversely
for protein A). The introduction of passive residues ensures that
residues located in the interface but not detected (or predicted)

Fig. 1. Calculated propensities for pairs of amino acids interacting with water. Amino
acids are sorted according to the Kyte–Doolittle hydrophobicity scale.
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can satisfy the AIRs. The effective distance, corresponding to each
restraint, is calculated using the following equation:

deff
iAB ¼

XNAatoms

miA¼1

XNresB

k¼1

XNBatoms

nkB¼1

1

d6
miAnkB

 !�1=6

; (1)

where 1
d6
miAnkB

denotes a potential that resembles the Lennard-Jones

attractive term. The function has the property that deff
iAB will always

be smaller than the shortest distance dmiAnkB
entering the sum. The

AIRs effectively without imposing any restraint on their relative
orientation.

2.3. Solvated Docking In our solvated docking protocol, the molecules to be docked are
initially solvated in a shell of TIP3P water (26). Waters closer than
4.0 Å or further away than 8.0 Å from the protein surface are first
removed. This results in a water layer surrounding each protein.
Subsequently, a short molecular dynamics simulation is performed
to optimize the water positions (see Note 2). After that, an
additional removal of water molecules is performed, where only
water molecules within 5.5 Å distance from the surface of the
protein are kept. At this point, docking starts by rigid body
minimization, during which each protein, with its corresponding
solvation shell, is treated as one rigid entity. The resulting complex
has two partly overlapping solvation shells (see Fig. 2, after
step B). All noninterfacial water molecules are removed from the
complex and the remaining waters, together with the protein
chains, are treated as separate molecules in a subsequent rigid
body energy minimization stage.

Waters are then removed in a biasedMC approach: water mole-
cules are randomly picked and probed for their closest amino acid
residues on both chains; their probability to be kept is set equal to
the observed fraction of water-mediated contacts for this specific
amino acid combination as derived from thewater-mediated contact
propensities (see Fig. 1 and Note 3). The Monte Carlo process of
interface water removal consists of the following steps:

1. A random water molecule is selected.

2. The distances between each water molecule and all neighbor-
ing atoms that belong to the first chain are calculated, and the
minimum distance for each water molecule is stored. The
same is applied for the second chain (Fig. 3A).

3. The shortest distance interaction pair with its bridging water
is assigned a probability to be kept that derives from the
corresponding frequencies stored in a database file. The data-
base file includes the pairing probabilities from the high-reso-
lution structures originating from the Keskin dataset (25) (see
Note 4).
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Fig. 3. The biased Monte Carlo procedure illustrated through an example consisting of 8 water molecules: (a) Interfacial
water molecules are randomly selected and their corresponding minimum distance from residues in the interacting
chains are identified. (b ) According to the probabilities that were derived (see Fig. 1), water molecules are either kept or
discarded. (c ) When only 25% of the water molecules are remaining, the MC procedure is stopped and, (d ) an energetic
criterion is applied to further remove unfavorable water molecules.

Fig. 2. Schematic of solvated docking steps. (a) Short MD run in a solvation shell to
optimize the water positions. Water molecules far from the protein (>5.5 Å distance)
are subsequently removed. (b) Rigid-body docking of the proteins with the optimized
water layers. (c) Removal of noninterfacial water and energy minimization (for more, see
Subheading 2). (d) Biased Monte Carlo removal of interfacial waters and further removal
of energetically unfavorable interface waters based on their corresponding energetics
(waters are removed when Ewat

vdW þ Ewat
Elec>0) and final minimization.
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This process (see steps 1–3) is repeated, until a user-
defined percentage (typically 25%) of the initial interfacial
water molecules remains (see Fig. 3A–C and Note 5).

4. Energetically unfavorable water molecules are removed that
do not satisfy the criterion Ewat

Elec þ Ewat
vdW � 0 (see Fig. 3D and

Note 6). The remaining waters and the protein chains are
again subjected to a final rigid body energy minimization,
with each molecule treated as a separate rigid body.

The solvated docking protocol as described above corre-
sponds to the rigid body docking stage in HADDOCK (see
Note 7).

3. Method

Solvated docking with HADDOCK can also be performed using
its web server implementation (23) (http://haddock.chem.uu.nl/
services/HADDOCK) (see Fig. 4). In order to use the full
functionalities of the web server and have full control over the
solvated docking protocol, guru interface registration is required
(see Note 8).

To fully understand the protocol that is described in this
section, it is highly recommended to read the articles describing
the HADDOCK server and its usage (23) and the original work
on solvated docking (24). Note that only significant parameters
related to solvated docking will be discussed here. For unsolvated
protein–protein docking, consult other published material from
our group (21, 27, 28). Do not alter other parameters unless
otherwise stated.

3.1. Submitting

a Solvated Docking

Calculation for the

Protein–Protein

Complex of Interest

1. Provided that you are registered as a guru user, go to http://
haddock.chem.uu.nl/services/HADDOCK/haddockserver-
guru.html.

2. Unfold the menu of the First molecule and upload the PDB
file of the first protein. This file should be in correct PDB
format else the server will give an error. Note that the mole-
cule can be directly downloaded from the PDB; just input the
PDB ID of the molecule. This is, however, not recommended
since it is better to inspect first and clean the files from
unwanted/unnecessary molecules.

3. Define the chain that should be used for docking. If the
protein consists of several chains that should all be used in
docking, select the option “all” (see Note 9).
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4. Define active and passive residues for the molecule. There are
several experimental methods that can be used to define resi-
dues that are involved in protein–protein binding (28–30).
For example, mutagenesis experiments, as well as chemical
shift perturbation data from NMR experiments, can be used
as an input for the active residues. If no experimental infor-
mation is available, docking can also be performed using
bioinformatics interface predictions (for a review see (29)).

Fig. 4. The “guru” interface of the HADDOCK web server, providing full control over all
HADDOCK parameters and supporting all experimental restraints that can drive the
docking procedure. The solvated docking field is shown.
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To define active and passive residues, residue numbers should
be inserted, corresponding to the number of the residues that
are observed or predicted to be at the interface, (see Note 10).
For the passive residues, it is suggested to check the option to
automatically define the passive residues related to the user-
specified active residues (see Note 11).

5. Repeat steps 2–4 for the second protein molecule.

6. Turn on solvated docking under the sampling parameters
box.

7. Unfold the solvated docking parameters box. If the original
protocol is to be followed, change the number of generated
solvation shells from 1 to 5 (see Note 12). For more informa-
tion on how to use alternative protocols of solvated docking,
see Note 13.

8. Fill in your name and your password and submit.

3.2. Retrieving

a Docking Run

and Analyzing

the Results

Once the HADDOCK run has finished, the results are accessible
via a web link to the Results page, which has been automatically
e-mailed to you. After a successful docking run, the clustered
docking predictions will be displayed. Although the clusters are
numbered according to cluster size, i.e., cluster 1 corresponds to
the largest cluster and cluster 2 to the second largest, they are
sorted by their HADDOCK score (see Note 14). Only the top ten
clusters are displayed, and the cluster with the lowest (best)
HADDOCK score is on top of the web page, being the most
plausible solution according to HADDOCK. For every cluster,
the various components of the HADDOCK score are displayed.
The top four structures of every cluster can be downloaded or
viewed directly in a web browser using a JMol applet (http://jmol.
sourceforge.net).

The entire docking run, containing all structures from all
docking stages, is available for download in the form of a zipped
tar archive. If the HADDOCK software has been installed on a
local machine, the HADDOCK analysis and clustering steps can
then be repeated with user-defined parameters. For this, down-
load and save the archive in a local directory. Extract then the
archive of the docking run; a new folder is created with the same
name as the specified run name. In this folder, final predictions
from the solvated docking procedure can be found in structures/
it1/water. PDB files including water molecules that derive from
solvated docking share the same format: complex_X_h2o.pdb,
where X corresponds to the structure number (see Note 15).
These underwent semiflexible simulated annealing in torsion
angle space, and final refinement in explicit solvent, according to
the standard HADDOCK protocol. In order to visualize the
models, a molecular graphics program is required (e.g., PyMol
(http://www.pymol.org/)) (see Note 16).
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3.3. Application

Example: Barnase

and Barstar

Barnase is an extracellular nuclease that can interact very strongly
with its cognate intracellular inhibitor Barstar, a protein with very
high affinity and specificity for Barnase (11). Next to the well-
established electrostatic steering of this interaction that guides the
association of these proteins, water molecules play a critical role in
the affinity and specificity of the interaction (11). The crystal struc-
ture of the protein–protein complex has been determined at 2.0 Å
resolution (11), revealing a very wet interface. Eighteen water
molecules are found in a relatively small interface (1,556 Å2),
corresponding to the presence on average of one water molecule
per 86 Å2 of the interface. Half of these waters correspond to
bridging water molecules, forming in total 12 hydrogen bonds
with residues from both chains.

Because using bound structures as starting point for docking
does not correspond to the biological situation where unbound
molecules bind to each other, the crystal structures of the
unbound Barnase (PDB ID: 1A2P) (31) and Barstar (PDB ID:
1A19) (32) will be used as input to predict the protein–protein
complex. The positions of the water molecules in the interface will
be predicted by solvated docking. The true interface definition is
used (see Note 17) to focus on the role of buried interface water in
the prediction of the protein–protein complex. To simulate a
more realistic case, 50% of the restraints are randomly removed
during docking. We follow the standard solvated docking proto-
col described above. For comparison, a second docking run is
performed, toggling off the solvated docking procedure but
using otherwise the same settings. Results from both docking
runs are evaluated according to the standard CAPRI criteria (see
Note 18). Generally, a high-quality structure (***) means that the
predicted complex closely resembles the true binding mode of the
protein partners; a medium quality structure (**) corresponds to a
reasonably good prediction, whereas an acceptable structure (*)
indicates a near-native solution with correct interface, but with
possibly some shift or rotation of the partner molecules. All other
predictions that are not assigned a star are considered incorrect.

3.3.1. Results from

Unsolvated Docking

When the proteins are docked using the standard HADDOCK
protocol (unsolvated docking), a single cluster is generated. How-
ever, although nearly 400 docking solutions are of acceptable or
better quality in the rigid body docking stage, only 46 are high-
quality predictions (***), ranking outside the top 200 structures
in HADDOCK score (see Table 1); medium-quality (**) predic-
tions are also generated, but still are not selected for the
subsequent refinement stage, since they rank low. However, 83
acceptable predictions (*) rank very high within the top 200.

After semiflexible refinement, 73 acceptable structures
remain, the first one of rank 2. The final explicit refinement
improves the structures substantially, leading to 108 acceptable
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predictions, corresponding to 54% of good predictions. Scoring is
also good with the top 6 ranking structures all of acceptable
quality. On average, acceptable structures rank much better than
incorrect ones (see Table 1).

3.3.2. Results

from Solvated Docking

Three clusters of solutions were generated from the solvated
docking run (see Table 2). Although the first cluster is similar to
the single cluster generated by the unsolvated docking protocol,
two additional clusters are present. When results from solvated
docking are retrieved and analyzed, high-quality structures are
now ranking at the top (see Fig. 5). Even though the total number
of acceptable or better structures generated in it0 is smaller com-
pared to unsolvated docking (see Table 1), scoring is greatly
improved, leading to the selection of both high- (***) and
medium- (**) quality predictions for semiflexible refinement,
whereas in unsolvated docking only acceptable (*) quality struc-
tures were selected. After the semiflexible refinement stage, six
high-quality structures are ranking at the top that can easily be
selected from the pool of decoys. After final water refinement, one
can observe a general improvement in the quality of the models,
reaching 59% of acceptable or better solutions. The third ranking
(in terms of HADDOCK score) protein–protein complex that is
generated is a high-quality (***) solution (see Fig. 5, A), resembling
with high accuracy the bound conformation of Barnase–Barstar

Table 1
Docking results for the Barnase–Barstar complex, in terms of quality of the
generated structuresa

Docking stage Unsolvated docking Solvated docking

Quality *** ** * UN *** ** * UN

it0 Number 46 196 156 602 44 172 197 587

Best rank 649 201 2 1 168 18 5 1

it1 Number 0 0 73 127 25 7 53 115

Best rank n/a n/a 2 1 1 12 8 6

Water Number 0 0 108 92 30 2 87 81

Best rank n/a n/a 1 7 3 130 1 9

aAsterisks correspond to the standard CAPRI quality criteria, “UN” denotes unacceptable docking
predictions. It0, it1, and water correspond to the (a) rigid-body minimization, (b) semiflexible simulated
annealing in torsion angle space and (c) explicit solvent refinement stages of HADDOCK, respectively.
Number rows correspond to the number of structures of different quality generated at each docking steps
(total number of generated models is 1,000, 200, 200 for it0, it1, and water, respectively.). Rank is the
best ranking structure from each corresponding category (the lower this number, the better), generated at
each stage.

22 Explicit Treatment of Water Molecules in Protein–Protein Docking 365



(PDB entry 1BRS) (11). It is included in the top-ranking cluster,
which, on average, has a much better score than the other clusters
generated in the solvated docking, or the single cluster from unsol-
vated docking (see Table 2). Incorrect solutions after the final water
refinement only appear at rank 9 or lower.

Such results clearly show that solvated docking can be used for
protein–protein complexes in order to improve scoring. However,
high-quality data for the interface should be available to retrieve
high-quality results from the solvated docking and analyze conserved
water positions with high confidence (see below and Table 3).

3.3.3. Water Positions

in the Generated Solutions

The crystal structure of Barnase and Barstar has in total 12
water-mediated hydrogen bonds, involving nine bridging water
molecules (11). All these water molecules and their interactions
with the corresponding residues are well recovered in it0 (all of
them are observed in the pool of acceptable solutions, although not
consistently). However, after semiflexible refinement some of

Fig. 5. Best docking results (dark grey color) from unsolvated (left) and solvated (right) docking, using unbound barnase
and Barstar superimposed on top of the bound complex (light grey—PDB ID: 1BRS). Best docking results refer to the
model from the top-ranking cluster with the lowest i-RMSD from the crystal structure. On the bottom, a comparison of
the interfacial waters found in the crystal structure (PDB entry 1BRS) (11) (dark grey) and recovered by solvated docking
(light grey) are shown (the hydrogen atoms are not shown). Residues contacting these water molecules are represented
as sticks.
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(Å
)

f n
a
t

H
A
D
D
O
C
K

sc
or
e
(a
.u
.)

va
n
de
r
W
aa
ls

en
er
gy

(k
ca
l/
m
ol
)

El
ec
tr
os
ta
ti
c

en
er
gy

(k
ca
l/
m
ol
)

D
es
ol
va
ti
on

te
rm

(a
.u
.)

S
o
lv
at
ed

d
o
ck
in
g

1
3
4

2
.0

�
0
.7

0
.6
5
�

0
.1
5

�1
7
0
�

2
1

�5
4
.8

�
8
.7

�3
6
4
.3

�
6
9
.3

�3
.9

�
9
.2

2
2
0

1
2
.1

�
0
.9

0
.0
8
�

0
.0
2

�1
5
9
�

1
7

�6
3
.2

�
9
.1

�2
1
8
.7

�
4
2
.0

�0
.7

�
7
.1

3
1
4
1

1
0
.9

�
0
.3

0
.1
0
�

0
.0
2

�1
5
2
�

2
2

�5
6
.5

�
8
.2

�2
4
5
.9

�
5
4
.2

�8
.4

�
8
.1

U
n
so
lv
at
ed

d
o
ck
in
g

1
2
0
0

1
0
.9

�
0
.3

0
.1
0
�

0
.0
2

�1
0
9
�

1
5

�5
8
.0

�
7
.5

�2
3
8
.2

�
4
7
.4

�1
3
.4

�
7
.4

T
h
e
b
es
t
ra
n
k
in
g
cl
u
st
er

is
h
ig
h
li
g
h
te
d
in

b
o
ld
.

22 Explicit Treatment of Water Molecules in Protein–Protein Docking 367



those move to more energetically favored positions, e.g., forming
contacts with residues that are both highly hydrophilic and can
forma salt bridge.After thewater refinement, the top-ranking cluster
(see Table 3) has a very high recovery rate of the water-mediated
contacts observed in the crystal structure of the bound complex
(1BRS), reaching >58% of correctly placed structural waters. The
top-ranking structure of the cluster is shown in Fig. 5A. We recom-
mend, however, analyzing all the members of the cluster to get
reliable statistics about the position of structural waters (see also
Note 16).

4. Concluding
Remarks and
Perspectives

The present application example is highlighting the direct influence
of the water in the structure prediction of protein–protein com-
plexes. A significant improvement in the quality of the docking

Table 3
Specific water molecule recovery for the best cluster of the
solvated docking runa

Barnase Barstar
Water-mediated contacts
observed in the best cluster

Lys62 Asp35 +(6)

Asn58 Asp35 +(8)

Arg59 Asp35 +(4)

Tyr103 Asp35 �
Ile55 Trp38 �
Glu73 Trp38 �
Lys27 Asp39 +(2)

Glu73 Asp39 +(5)

Arg83 Gly43 +(2)

Ser38 Val45 �
Ser38 Tyr47 �

aContacts on the left are present in the crystal structure of the Barnase–Barstar
complex (PDB entry 1BRS) as reported in the original manuscript (24).
(+) and (�) represent the presence or absence of the water-mediated contact
in the best cluster. The numbers in parentheses represent their frequencies
(cluster size ¼ 34).
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predictions is observed compared to the standard unsolvatedHAD-
DOCK protocol for this system. Scoring of the models, as high-
lighted in the Barnase–Barstar example, can be improved when
waters are explicitly accounted for during docking. On the other
hand, when solvated docking is benchmarked on other systems (24)
(tested initially in the original solvated docking development (24)),
comparisonwith unsolvated docking results indicates that, for some
of the complexes, scoring is improved and for others not. Since the
original publication, HADDOCK has undergone over the years
small but significant improvements that are reflected in a strong
performance in the CAPRI competition (21, 33). Therefore, it
should not be surprising that docking predictions with solvated
docking are not always better, compared to the standard HAD-
DOCK protocol.

Solvated docking can also be applied for structure prediction
of multibody protein complexes (34). The functionality has been
already implemented in the multibody docking interface of
the HADDOCK web server (34) (http://haddock.chem.uu.nl/
services/HADDOCK/haddockserver-multi.html). Experienced
HADDOCK users can perform solvated docking with up to six
biomolecules. However, the performance of solvated docking has
not yet been benchmarked for complexes that are composed of
more than two proteins, and therefore, it is suggested to use with
caution.

We are currently extending the knowledge-based probability
method to account also for protein–DNA systems (Marc van Dijk,
Utrecht University, personal communication). Solvated docking
should be particularly important for these systems considering the
wet interfaces of protein–DNA complexes. The presented solvated
docking protocol can also easily be extended to protein–ligand
docking: Although the pairing probabilities of a ligand are
unknown, they are currently set to the average default value
(see Subheading 22.1). New pairing probabilities involving phar-
macophore groups could be derived from protein–ligand crystal
structures deposited in the PDB. They could have a direct applica-
tion in structure-based drug design for ligand optimization.

As a final remark, solvated docking can best be used in cases for
which there is sufficient information about the interface. In such
cases, the interface can be identified with confidence and our sol-
vated docking protocol can predict fairly accurately the water posi-
tions. This is valuable information that can drive the development of
novel inhibitors of protein–protein interactions by accounting for
the structural role of waters at protein–protein interfaces, thereby
increasing their specificity.
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5. Notes

1. It is evident, as well as expected, that hydrophilic residues are
observed to interact much more frequently with waters when
compared to hydrophobic residues. These propensities drive
the removal of the water molecules during docking. If a water
molecule lays in-between two hydrophobic residues in the
interface, it is less likely to be kept, compared to water being
in-between two hydrophilic residues.

2. The MD protocol consists of four times 1,000 integration
steps at 600, 500, 400, and 300 K, respectively.

3. For example, a water molecule that is bridging a histidine and
a glutamate is more likely to be retained (P(H,E) ¼ 0.73)
compared to a water molecule that is bridging two hydropho-
bic residues (e.g., isoleucine and valine (P(I,V) ¼ 0.08)).

4. These probabilities vary ðPðQ Þ 2 ½0; 0:73�Þ. Therefore, the
highest probability of a water molecule to be kept corresponds
to the water molecule bridging E and H residues (see also
Fig. 1).

5. The fraction of interfacial water to be kept after the Monte
Carlo removal process is an important parameter for the sol-
vated docking protocol. Although it is set to 25% by default,
water molecules that are kept in the interface could make
unfavorable contacts and correspondingly have a high energy.
The cutoff percentage of 25 corresponds to the average per-
centage of the interface that is solvated from an analysis of
protein–protein complexes (8).

6. Water molecules with unfavorable interaction energies (sum
of van der Waals and electrostatic water–protein energies
>0.0 kcal/mol) are, finally, removed. The number of retained
waters at the end of the protocol is usually lower than 25% due
to this energy criterion. In some cases, this criterion allows all
interfacial water to be removed, which could be needed in the
case of highly hydrophobic interfaces.

7. The resulting models, including the remaining water mole-
cules, are then further refined using semiflexible simulated
annealing in torsion angle space, and final refinement of the
derived complexes in explicit solvent, according to the stan-
dard HADDOCK protocol (21, 22).

8. There are three main web interfaces for HADDOCK, each
corresponding to the experience level of the user: The easy
interface, requiring only starting structures and lists of active
and passive residues that will be used to drive the docking; the
expert interface, allowing the more advanced user to upload
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custom restraints to drive the docking process; and the guru
interface, providing full control over all aspects/parameters of
the HADDOCK program.

9. If the option use all chains is selected, there should be no
overlap in the residue numbering between the various chains
of the molecule.

10. Residues that are considered active should be on the surface of
the protein. We advise against setting all residues on the
surface of the protein as active: next to increasing unnecessar-
ily the computational time, they will result in large restraint
violations, corresponding to very high energies of the result-
ing complexes.

11. This option assigns as passive, those residues that are both on
the surface (relative surface accessibility of either main chain
or side chain >15%, as calculated with NACCESS (http://
www.bioinf.manchester.ac.uk/naccess/)) and within a radius
of 6.5 Å of any active residue.

12. Generally, it is recommended to leave the solvated docking
settings at their default values. In the original work, five
different solvation shells were generated for each starting
structure to assess the performance of the solvated docking
protocol. If there are more than one starting structures for
one of the proteins that are docked, you can leave this option
to its default value.

13. Options “initial cutoff for restrains solvating method,” “cut-
off for restraints solvating method,” “scale factor for restraints
solvating method,” and “water-surface-cutoff” should never
be changed. These options correspond to another approach of
solvated docking that has not yet been benchmarked. Briefly,
water molecules are forced to be at close proximity to amino
acids that form the most water-mediated contacts (Arg, Asn,
Asp, Gln, Glu, His, Lys, Pro, Ser, Thr, and Tyr). This is done
by defining ambiguous distance restraints between each water
molecule and those amino acids on both sides of an interface.
If “fraction of water to keep in ntrial loop” is changed, the
fraction of water molecules that will be kept after the biased
Monte Carlo removal procedure will be affected. By default it
is 25% (therefore, boxes have the values 25 and 0.25). If more
water molecules should be kept, these values must be set
higher. Keep in mind that the protocol was tested to perform
best using default values. Finally, it is also possible to turn off
water translation during rigid-body energy minimization if
desired, disabling the option “use translation in loop mini-
water.” If the option “do some water analysis” is selected,
additional files will be generated with some water statistics.
Note that when performing solvated docking via the web
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server interface, additional PDB files with extension _.h2o.pdb
will be written in the structures/it1/water directory. These
contain both the complex and the water molecules.

14. The HADDOCK score (given in arbitrary units) cannot be
used to predict binding affinities or compare different com-
plexes (35). It should only be used to compare different
solutions for a given complex. The reported scores are eval-
uated on the top four members of a given cluster.

15. The PDB files in the water directory do not contain the stan-
dard chainID (column 22) that distinguishes the chains in a
complex. This information is instead stored in what is called
the SegID (columns 73–76). Sincemostmolecular viewers use
the chainID to distinguish between chains, it is convenient to
transfer first the SegID information to the ChainID. Provided
a local version of HADDOCK has been installed, this can be
done with the following command: $HADDOCKTOOLS/
pdb_segid-to-chain input-pdb > output-pdb.

16. In order to have good statistics for the water positions, more
than one model should be analyzed. For example, to derive
which water molecules are found in the interface and are
conserved throughout the docking run, a large majority of
the structures present in the (top-ranking) cluster should be
analyzed. We are currently developing analysis scripts that will
be included in the tools directory of the downloadable docking
archive in a future version of HADDOCK.

17. The true interface is defined as those residues directly involved
in the interaction of the partners. Interface residues of Barnase
that served as input for HADDOCK were 35, 37, 38, 55–60,
62, 73, 82–84, 101–104, and 106, whereas interface residues
for Barstar were 27, 29, 30, 31, 33–36, 38–40, 42–47, 73,
and 76. This information was converted into Ambiguous
Interaction Restraints (AIRs) via the GenTBL page of the
HADDOCK website (http://www.nmr.chem.uu.nl/sevices/
GenTBL) and the generated file was uploaded directly in the
distance restraints section of the server.

18. Docking decoys are evaluated using the ligand root mean
square deviation (L-RMSD), interface RMSD (i-RMSD),
and fraction of native contacts (fnat).

The classification is as follows:

***, high-quality prediction: fnat �0.5 and (L-RMSD �1.0 or
i-RMSD �1.0)

**, medium quality prediction: fnat �0.3 and (L-RMSD �5.0 or
i-RMSD �2.0)

*, acceptable quality prediction: fnat�0.1 and (L-RMSD�10.0 or
i-RMSD �4.0)
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Chapter 23

Protein–Water Interactions in MD Simulations:
POPS/POPSCOMP Solvent Accessibility Analysis,
Solvation Forces and Hydration Sites

Arianna Fornili, Flavia Autore, Nesrine Chakroun,
Pierre Martinez, and Franca Fraternali

Abstract

The effects of solvation on molecular recognition are investigated from different perspectives, ranging
from methods to analyse explicit solvent dynamical behaviour at the protein surface to methods for the
implicit treatment of solvent effects associated with the conformational behaviour of biomolecules.
The here presented implicit solvation method is based on an analytical approximation of the Solvent
Accessible Surface Area (SASA) of solute molecules, which is computationally efficient and easy to
parametrise. The parametrised SASA solvation method is discussed in the light of protein design and
ligand binding studies. The POPS program for the SASA computation on single molecules and complex
interfaces is described in detail. Explicit solvent behaviour is described here in the form of solvent density
maps at the protein surface. We highlight the usefulness of that approach in defining the organisation of
specific water molecules at functional sites and in determining hydrophobicity scores for the identification
of potential interaction patches.

Key words: Protein–Water Interactions, Implicit Solvation, POPS, Solvent Accessible Surface Area,
Water Density Maps, Hydration Sites, Molecular Dynamics

1. Introduction

Most relevant binding processes occurring in biology take place in
the aqueous solvent, and water plays an active role in molecular
recognition (11, 50). Protein–protein and protein–ligand interac-
tions often involve desolvation and dynamical rearrangement of
solvent molecules. These two phenomena critically influence the
thermodynamics and kinetics of binding processes. (MD) simula-
tions have been widely used to investigate the dynamic nature of
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protein hydration (1–6) and experimental studies have proved the
importance of solvation on protein motions (7–10). Analysis of the
hydration map around the protein in MD simulations has allowed
for the identification of tightly bound water sites that correlate
strongly with structurally conserved water molecules as identified
in X-ray structures. At the same time, the dynamical behaviour of
watermolecules at the protein surface as seen inMDsimulations has
implications on potential interactions sites and can be used as pre-
diction for interaction “hot-spots”.

Taking explicit water phenomena into account in the calcula-
tion of binding free energies is computationally very expensive and
the accuracy of the results is often insufficient to justify the exten-
sive computer resources used. A similarly difficult problem is how
hydration affects ligand binding in protein cavities and how
enthalpic and entropic effects of dehydration of the cavity and
the ligand are effectively balanced (11). Particularly in the case of
large-scale applications such as drug design or protein design, in
which extensive screening of compounds or protein libraries is
required together with the calculation of binding affinities, an
efficient and fast evaluation of solvent free energies is essential.

Implicit solvation models are often used for this purpose,
leading to a significant increase in computational efficiency.
These methods neglect the solvent degrees of freedom and
model instead the solvent as a continuous medium having the
average properties of the real solvent (12). Empirical methods
based on the solvent accessible surface area (SASA) model provide
simple and efficient alternatives to the evaluation of the solvation
energy with an accuracy comparable to more sophisticated theo-
retical models (13). SASA models can also be used for large-scale
analyses of protein–protein or protein–ligand complex structures
and to obtain estimates of the desolvation energy of molecular
complexes.

Here, we describe methods to tackle computationally chal-
lenging aspects of solvation in MD simulations and Structural
Bioinformatics analyses. We describe in particular three
approaches relating to (a) estimates of free energies of solvation
via Models based on SASA terms, (b) calculation of protein-
protein and protein-ligand interaction interfaces, (c) calculation
of for the analysis of the solvent behaviour at the protein surface.

2. Methods

2.1. Implicit

Solvation Models

Implicit solvation models based on an approximation to the SASA
have been widely used in Molecular Dynamics (14–16), in target
functions used for structure prediction (17) and in protein–ligand
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binding energies estimates (18). The solvation free energy of a
solute is expressed as a sum of atomic contributions, weighted by
their solvent-exposed area. The contribution of each atom is
measured by an atom-specific solvation parameter, which reflects
the hydrophobic or hydrophilic character of the considered atom
type. The free energy of solvation of a solute molecule can be split
into terms describing cavity formation, solute-solvent van der
Waals interaction and polarisation (19):

Gsol ¼ Gcan þ GndW þ Gpol � (1)

The termsGcan +GndW can be approximated as being proportional
to the molecular SASA, which is the sum of the atomic SASA
contributions Ai:

Gcan þ GndW ¼
X

i

siAi � (2)

This model was incorporated into the GROMOS simulation
package (20) and used to specify the atomic sSASAi parameter
values (21). These parameters can be derived by comparison
with a variety of experimental or simulated properties of proteins
of different size in water. The same model with a virtually identical
parametrisation was later used in conjunction with the CHARMM
force field (22).

Apart from non-polar contributions to the solvation free
energy, such as Gcan and GndW, electrostatic contributions play an
important role. Because solvation parameters are derived from
fitting to experimental data, one would assume that the electro-
static contribution is partly incorporated into the parameters.
However, particularly when using a small number of atom types,
it is necessary to add a screening term to account for the shielding
of protein–protein electrostatic interactions. A possible solution is
to add an empirical parameter that reduces the electrostatic inter-
actions between protein atoms by a constant factor, which adopts
the role of a dielectric constant. Usually, to balance the electro-
static and SASA terms of the solvent model within a given para-
metrisation, an overall weight a is applied to the SASA term. This
model is referred to as the Coulomb/accessible surface area
(CASA) model (13). More accurate approaches for screening
energy calculations are the Generalised Born (GB) model
(23, 24) and the Poisson–Boltzmann (PB) model (12, 23, 25,
26). The first set of atomic solvation parameters to be used in such
models was proposed by Eisenberg and McLachlan in 1986 (27).
Octanol to water transfer energies for the 20 amino acids were
used to derive specific solvation parameters for five atom types.
After this seminal work many studies have derived atomic solva-
tion parameters datasets. Ooi et al. (28) derived seven different
parameters by fitting them to experimental solvation free energies
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of small organic molecules. At the other extreme of the scale,
Fraternali and van Gunsteren (21) restricted the number of solva-
tion parameters to two: one for carbon (5 kJ mol�1 nm�2),
representing the hydrophobic contribution, and one for both
nitrogen and oxygen (�25 kJ mol�1 nm�2), representing the
hydrophilic contribution to solvation. These two parameters
were optimised such that the hydrophobic and hydrophilic
SASAs, obtained from MD simulations of a number of proteins,
were matching those measured on the corresponding X-ray struc-
tures. In the last few years, several more complex parametrisations
of SASA models have been developed, (29–31), reaching up to
100 different atom types and using large training sets of experi-
mental solvation free energies of diverse organic molecules. The
simple Fraternali parametrization adapted within a CASA model
by adding two extra parameters for charged atoms and a dielectric
constant of 20 gave very similar results to GB methods when
compared to the Poisson reference in a study of side-chain place-
ment for 29 proteins of different sizes (13). In about 80% of the
charged mutations, the method was able to correctly capture the
sign and order of magnitude of the protein stability change.

The efficiency of the implicit SASA method has also been
successfully applied to studies of peptide and protein stability
(32, 33) and to otherwise computationally challenging studies
of protein folding (34, 35).

2.2. POPS

and POPSCOMP

In our implicit solvent model POPS (36, 37), we have adopted an
analytical approximation to the SASA.We describe here the central
formulae and the computational procedure to obtain this term.
The SASA of a solute molecule is the sum of its i atomic SASAs:

SASAmol ¼
X

i

SASAi � (3)

The atomic SASA can be computed efficiently by using a probabi-
listic approach to multiple overlapping spheres and parametrised
formulae for small molecules and biomolecules have been
described (21, 36, 38). The POPS method contains optimised
SASA parameters for proteins and nucleic acids. The SASA of
atom i is given by the analytical formula:

SASAiðrN Þ ¼ Si
YN

j¼1j 6¼i

1� pi pij
bij ðrij Þ
Si

� �
� (4)

Si is the isolated atomic surface area and the geometric parameters pi,
pij and bij quantify the reduction of Si by the overlapping neighbour
atoms j. In practice, we use an atom-specific pi and four pij para-
meters for covalent bond distances 1–2, 1–3, 1–4, and 1 ≧ 5.
The parameter bij is determined by the radii of atoms i and j.
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Hence, the SASA computation requires the determination
of the covalent bond structure (topology), the nonbonded neigh-
bour relations (conformation) and assignment of the atom-specific
POPS parameters to each atom and its neighbours.

The computational procedure POPS method (36, 37) is out-
lined in Notes (see Subheading 4.1).

POPS has been parametrised for two levels of resolution:
per-atom and per-residue. The latter “coarse-grained” parametri-
sation is intended for bio-molecular structures of low resolution,
where side-chains or even parts of the backbone may be unre-
solved. The only requirement for a SASA computation is a com-
plete sequence of Ca atoms (proteins) or phosphate P atoms
(nucleic acids). Non-standard residues are designated as ’HET’
entries in the PDB format and their SASA is generally computed
on the basis of default POPS parameters for unspecified residues
(see also Note 4.3).

2.2.1. POPSCOMP Surface exposure is a sensitive measure of atomic association and
therefore ideally suited for the analysis of molecular complexes.
The method POPSCOMP (39) performs an automated assess-
ment of complex interfaces, as illustrated in Fig. 1 and outlined in
Note 4.2.

2.3. Water Density

Maps at the Protein

Surface

The hydration sites at the protein surface can be identified through
MD simulations by explicitly taking into account the interactions
between the protein and the water molecules, generally repre-
sented by simple models such as the TIPnP series or the simple
point charge (SPC) model (51, 52). In this case, the interaction
with the protein generates an inhomogeneous distribution of
the water molecules around the surface. A 3D representation
of the arrangement of the water molecules can be obtained from
the water density function g(r) (1, 3), also known as spatial distri-
bution function (40, 41). This can be calculated as follows:

gðrÞ ¼ rðrÞh i=r0; (5)

where hr(r)i and r0 are the average number density values of the
water oxygen atoms at the point r and in the bulk, respectively.
Hence, points with g(r) > 1 define the regions where water
molecules are preferentially found because of favourable interac-
tions with the protein. Water is instead excluded from regions
where g(r) < 1. The g(r) is generally calculated at discrete points
in the space by defining a rectangular grid around the solute. The
overall roto-translational motion of the protein is removed by
fitting each structure of the trajectory to a reference. The number
density r(r) ¼ nOW(r)/∂V, where nOW(r) is the number of water
oxygen atoms in the grid cell at r and dV is the cell volume, is then
accumulated at each frame and the final hr(r)i is calculated as the
average over all trajectory snapshots. It is to be noted that while
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the grid points are fixed, the protein conformation can considerably
change during the simulation. Different high-density regions may
be obtained from different protein conformations along the trajec-
tory and therefore their populationmay fluctuate over the simulated
time. Moreover, highly flexible regions may appear as poorly sol-
vated because the water molecules following their motions fail to
produce a high signal in the fixed reference frame. A possible strat-
egy to overcome this problem involves the introduction of dynamic
reference frames, that move with specific regions of the protein (5).
Later, wedescribe away to recover information fromflexible regions
also when using a fixed reference frame.

The calculation of g(r) allows to compare the water distribu-
tions obtained from simulations with those obtained from X-ray

Fig. 1. Lysozyme from turkey egg-white in complex with single-chain Fv fragment 1F9
(PDB code 1DZB). (a) Molecular surface representation (transparent) of the lysozyme
(black) and the single-chain Fv fragment 1F9 (white). A cartoon representation of the
backbone is also visible. (b) Interface residues are highlighted in grey for each
monomer. The relative position and orientation of the monomers is modified to show
the interface. The overall buried DSASAburied is calculated as the difference between the
SASAm of the single monomers and the SASAcomplex.
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structures or NMR experiments. Indeed, it is possible to identify
the hydration sites by locating the local maxima of the g(r) that
satisfy certain criteria. They should be found within rshell from the
protein, the value of the density should be at least rcut times the
bulk value and they should not be closer to each other than rcut.
A critical discussion of these parameters can be found in (5).
Typical values range between 3.6–6 Å for rshell (3, 5, 6), 1.4–1.7
Å for rcut (1, 3, 6) and 1–2 Å for rcut (1, 3, 5, 6). The identification
of the maxima can be done following standard methods for the
analysis of 3D functions, namely, by comparing the values at each
point with their first neighbours (3, 42).

Apart from the g(r) value, the different hydration sites can be
characterised by the residence time, related to the persistence of
the molecule in the site (2–7). There is no direct correlation
between g(r) and residence times (3, 43). Indeed, high-density
sites may host either low-residence water molecules rapidly
exchanging with the bulk solvent or highly persistent water mole-
cules trapped in cavities. The calculation of solvent entropy maps
from the solvent spatial distribution has been recently proposed to
recover the dynamical information on the water molecules sur-
rounding the protein (6).

A good agreement has been generally found between the
position of crystallographic water molecules and the hydration
sites derived from MD simulations, in particular when high-
residence sites are involved. The analysis of the water density
maps provided by MD simulations of the prion molecule
(Fig. 2) showed that the sites with higher residence times correlate
well with structurally conserved X-ray water molecules (6). Con-
versely, high-entropy regions have been found to be related with
under-protected regions of the protein surface, where the protein
backbone hydrogen bonds are exposed to the solvent.

We have applied this method to a number of systems for
which the interaction with water was suspected to be crucial in
terms of adopted conformational preferences or in terms of
exposed sites available to interacting molecules. An example of
the first case is the stability and conformational preference
adopted by the C-terminal catalytic deaminase domain (C–CDA)
of human APOBEC3G (A3G) cytidine deaminase. A3G is a
potent component of innate immunity that naturally inhibits the
replication of HIV–1.While structural data on the full length A3G
protein are lacking, recently three NMR (PDB codes 2JYW,
2KBO and 2KEM) and two crystal structures (3E1U and 3IR2)
of the catalytic deaminase domain (C–CDA) of A3G have been
reported. These differ for the conformation of an exposed
b-strand, b2, that was shown to be crucial in the assembly of the
molecule (44). Analysis of the water density maps of the available
structures showed, with the exception of 3E1U, one to three
water molecules corresponding to peaks in the water density
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function between the strands of the b1–b2 sheet (Fig. 3a–c),
causing the b-bulges observed in these structures (45).

The detected water molecules are always coordinated by the
same amino acid residues (Y222 and V224 of the b1-strand;
Q237, R238 and G240 of the b2-strand) and the extent of the
bulge is correlated with the number of water molecules within the
b1-b2: 2JYW and 2KBO showed three water molecules, while for
the 2KEM structure, which has a smaller b2-bulge, only one water
molecule was observed (Fig. 3a–c). The water density analyses
performed on simulations of the X-ray structure 3E1U show no

Fig. 2. Water spatial distribution function (transparent surface) of the prion molecule
(cartoon) from sheep (pdb code: 1UW3). The surface connects the points with g(r) ¼ 2.
The hydration sites (spheres) with g(r)≧ 2 are coloured from black to white according to
the increasing g(r) value. Larger spheres were used to highlight the three sites related
with structurally conserved waters (6). A 0.5 Å-spaced grid was used for the calculations
of the g(r). The water density was averaged over snapshots extracted from the MD
trajectory every 0.1 ps. The bulk water density was evaluated at the grid points that are
6–8 Å distant from any protein atom. The hydration sites were identified as local
maxima of the g(r) by comparison of each grid point with its first neighbours.
The maxima were no closer than 1.4 Å from each other and they were selected within
a 6 Å-shell around the protein.
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water molecule insertion, instead a very ordered b2-strand
(Fig. 3d). In the 3IR2 structure two water molecules with high-
residence time were found between residues V224 and L235
(Fig. 3e). Inspection of the electron density map of the 3IR2
crystal structure revealed the presence of two water oxygen
atoms in the same position (Fig. 3f), confirming our simulation
results. These findings demonstrated that the presence of a bulged
conformation of the b2-strand is driven by hydration of residues
V224, L235 and Q237, and that formation of an ordered confor-
mation of b2 coincides with the exclusion of water molecules from
the b1-b2 interface.

Fig. 3. (a)–(e) Water molecules corresponding to the maxima of the water density function derived from MD simulations
of the structures 2JYW, 2KBO, 2KEM, 3E1U and 3IR2. Water molecules are indicated as spheres and their interactions
with amino acid residues of the b1–b2 sheet are indicated by black dotted lines. (f) Representation of the water
molecules observed in the electron density map of the crystal structure XRAY2-2K3A.
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Another interesting application of hydration analysis is the
determination of potential interaction sites with other proteins or
ligands. A good example provide MD simulations of the sweet
protein Monellin (MNEI, Fig. 4a) and its mutant G16A, whose
sweetness is one order of magnitude lower than that ofMNEI (46).
The calculated MD solvent density maps strongly support the
wedge model for the MNEI-receptor complex, requiring a large
interaction interface (47). The MD hydration spots describe a spe-
cific surface delimited by four stretches localised at the vertices of a
tetrahedron with the loop L34 (residues 65–69, termed sweet
finger) on the top (Fig. 4b and c). These findings were found
strongly consistent with known mutagenesis data and with the
surface predicted by the wedge model (47, 48). The entire region
of interactionwith the receptor proposed by thewedgemodel is not
particularly populated by high-residence hydration sites, supporting
the hypothesis that the molecular recognition process is facilitated
by short time residence water molecules at the protein active

Fig. 4. Water density maps of MNEI and its G16A mutant. The colour code is light grey (highlighted by dashed circles)
for wild-type MNEI (PDB entry 1FA3) and dark grey for the mutant G16A (PDB entry 1M9G). (a) General protein hydration
map with the a-helix outlined. (b) Wild-type close-up view of L34. (c) G16A close-up view of L34. The overall distribution
of the water density maxima is similar for the two proteins. Main differences can be observed in the helix region.
Whereas MNEI shows a large concentration of density maxima in the middle region of the helix, the G16A mutant is more
likely to be solvated at the termini of the helix. Conversely the L34 loop, possibly a sweet finger, shows a comparable
hydration profile. MD hydration sites are contoured at 2.5 times the bulk solvent value.
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site, making this region easier to desolvate and more prone to
interactions. We also observed asymmetric hydration of the helix
in the comparison between wild-type and G-6Amutant, suggesting
that this secondary structure element could play a specific role in
orienting the protein during the binding process.

The examples presented so far are were focused on preferen-
tially hydrated sites at the protein surface. However, water density
maps could also be used to identify regions that are poor in
hydration sites, which can be related with hydrophobic patches.
To help analysing the spatial arrangement of hydration sites, we
devised an atom-based “hydration score” by mapping the infor-
mation contained in the water density function onto the protein
surface. First, all the local maxima with g(r) > 1 are identified as
explained above. Then, the number of maxima nmax(i) within 3.5
Å from each atom i are determined, together with their average
density value gave(i). A score Shyd(i) is then calculated as

ShydðiÞ ¼ n0
maxðiÞ þ g 0

aneðiÞ; (6)

where X0 ¼ (X � hX i)/sX indicates the standardised X variable.
According to this score, an atom can be highly hydrated either if it
is surrounded by many maxima or if it is close to a high density
maximum. By including the contribution from the number of
maxima, it is possible to recover the information about the water
molecules that solvate flexible regions of the protein (see above).
Indeed, highly mobile charged groups are generally surrounded
by many low-density maxima, whose spatial arrangement reflects
the different possible orientations that the group adopts during
the simulation (Fig. 5).

The density maxima surrounding atoms with a negative
hydration score are either fewer or with a lower density than the
average. “Clusters” of atoms with negative hydration scores define
hydrophobic patches (Fig. 5). We introduced the hydrophobicity
score Sphob(i) of atom i as:

SphobðiÞ ¼ �ShydðiÞ �H ðScuthyd � ShydðiÞÞ if SASA ≧ 5A
� 2
(atom i exposed);

0; if SASA <5A
�2

(atom i buried) :

8
<

:

(7)

where H(x) is the Heaviside step function (with H(x) ¼ 0 for x <
0 and H(x) ¼ 1 for x ≧ 0). We set the threshold Scuthyd to the first
quartile (25% lowest values) of the distribution of the Shyd(i)
values including all the exposed residues. The average over the
residue atoms gives the hydrophobicity score SresphobðmÞ of residue
m, which is a measure of the relative hydrophobic content of a
given residue (Fig. 6a). In Figs. 2 and 6 we illustrate an application
of the scores described above to the H2H3 sub-domain extracted
from the C-terminal domain of the prion molecule. This has been
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recently shown as the smallest part of the prion that is able to
aggregate (49), which suggests a primary role of the H2H3 region
in the formation of amyloid fibrils. MD simulations of H2H3
revealed a transition from the starting helical conformation to a
double b-hairpin, providing a possible candidate structure to the
initiation of the oligomerisation process (49). The hydration map
of the b-hairpin form (Fig. 2) highlights an asymmetry in the
distribution of hydrophobic patches, so that a hydrophobic (A)
and hydrophilic (B) face can be identified. The hydrophobic

Fig. 5. Hydration score mapped onto the surface of the H2H3 construct (C182-C217 fragment) extracted from the sheep
prion molecule (49). The water density map was calculated from a 5 ns MD trajectory where the protein backbone was
harmonically restrained with a force constant of 1.2 kcal · mol�1. The surface atoms are coloured from black to white
according to increasing hydration score. The local water density maxima with g(r) > 1 used for the calculation of the
score are represented as spheres, coloured from black to white according to increasing g(r) value. Two different views of
the H2H3 surface are shown in panels a and b. Cartoon representations are included in the insets to help in comparing
the orientations. Residues are coloured from black to white according to the increasing average hydration score of their
atoms. The C182–C217 disulphide bond, together with the H190 and I208 residues are shown as licorice. The colour
scales used for the atom hydration score (surface), the residue hydration score (cartoon) and the SDF (spheres) are
shown in the legend. The arrow points to the chargedNHþ

3 group of C182, surrounded by a large number of low-density
maxima (dark spheres).
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Fig. 6. (a) Residue hydrophobicity score Sres
phob (see (23.7)) of the H2H3 molecule. The black dashed line marks the third

quartile (25% highest values) of the Sres
phob distribution. A cartoon representation of H2H3 is shown in the inset (see Fig. 2

for the colouring scheme), where the residues with Sres
phob close to or above the black line are represented as licorice.

(b) Relative hydrophobic SASA of H2H3 residues. It is calculated by summing the SASA over each residue’s atoms with
Sphob(i ) > 0 and normalising that value by the total residue SASA. SASA values were calculated with POPS.
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regions in face A could be responsible for the oligomer formation.
Moreover, residues H190 and I208, whose mutation has been
shown to affect the behaviour of the construct in oligomerisation,
seem to contribute significantly to the hydrophobicity of the
surface (Fig. 6).

3. Conclusions

We have presented here methodological approaches to the treat-
ment and analysis of solvent forces in MD simulations and Struc-
tural Bioinformatics. Treatment of implicit solvent by calculation
of the SASAs can be useful in speeding up considerably the simu-
lation time, but also in the evaluation of free energy changes
associated with point mutations. Surface burial upon complexa-
tion can be calculated by POPS and the free energy of desolvation
can be estimated. Finally, accurate calculations of water density
maps in the analysis of explicit water simulations may provide a
novel framework for the calculation of surface hydrophobicity
scores.

4. Notes

1. POPS computational procedure

l Given the molecular coordinate information (PDB file),
assign residue- and atom-specific POPS parameters to
each coordinate entry.

l Create a list of covalent bonds by testing allNi(Ni� 1)/2
atom pairs whether they fulfill the condition db

ij ≦0:5
ðri þ rj Þ.

l Create a list of covalent bond angles by matching all
Nb(Nb � 1)/2 bond pairs with identical terminal atoms.

l Create a list of covalent torsion angles by matching all
Na(Na � 1)/2 angle pairs with an identical central and
terminal atom. Atoms in rings are excluded from the tor-
sion angle assignment. Since ring (or loop) detection is
computationally expensive, a ring attribute (0/1) is stored
for each atom of the standard residues in the POPS param-
eter list.

l Compile a list of nonbonded overlapping (neighbour)
atoms j for each atom i. The cutoff radius for nonbonded
interactions is defined as dnb

ij ≦ ri þ rj þ 2r soln.
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l Using the above information, (23.4) can be solved to
yield atomic SASA values, which can be summed to
obtain the SASAs of residues, chains, molecules, and
complexes.

2. POPSCOMP computational procedure

l Split the complex into its Nm single monomers, where a
monomer is assumed to be a macro-molecular chain unless
specified otherwise. Compute the SASAm of each mono-
mer.

l Create all Nm(Nm � 1)/2 monomer pairs by joining the
coordinate files of the respective monomers and compute
the SASAcomplex of each pair.

l Compute the DSASAburied difference between the sum of
the SASAm of the single monomers and their SASAcomplex

in the monomer pair. Any SASA difference reflects surface
burial due to complexation and the interaction strength is
roughly proportional to the buried surface area. POPS-
COMP is particularly useful for large multi-component
complexes because the mapped pair interactions provide a
detailed and comprehensive picture of the inter-molecular
interactions.

3. POPS/POPSCOMP and structure inconsistencies

The POPS program (http://mathbio.nimr.mrc.ac.uk/wiki/
Software#POPS.2A) and its server implementation (http://
mathbio.nimr.mrc.ac.uk/wiki/POPS) check the input struc-
ture in terms of semantic, topological, and conformational
consistency. Detection of an inconsistency triggers a message
to the error stream.

Semantic checks concern standard and non-standard resi-
dues as defined by the PDB format (see http://www.wwpdb.
org/documentation/format32/v3.2.html). All coordinate
entries beginning with “ATOM” are compared to a program-
internal list of standard residues (amino acids and nucleotides).
A warning is issued if no residue match is found and atoms
belonging to that residue are parametrised with default values,
yielding a less precise SASA, in particular if small rings are
present. These unmatched residues are assigned to the residue
type “UNK” (for “unknown”). A different procedure applies to
the non-standard “HET” entries, for which generally no pro-
gram-internal data are available. Atoms in non-standard resi-
dues are always parametrised with default values. If no default
value is found for the atom type in question, i.e. for its atomic
element, a warning is issued and the atom is skipped for the
SASA calculation.
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Checks of the topology/conformation comprise an
expected minimal distance between atoms (≧ 0.5 Å) and
an expected covalent bond between atom pairs with a dis-
tance below the cutoff distance db

ij (see POPS method
above). Violations of these conditions are mostly caused by
duplicated atom entries or unphysically distorted structures.
This type of distortion leads to exaggerated atom overlaps
and incorrect SASA values.

4. Hydrophobicity score
It may occur that residues usually defined as hydrophilic can
have a significant hydrophobic score, see for example Lys197
in Fig. 6a. This is due to the aliphatic part of the residue,
which may contribute to an hydrophobic patch even if the
charged group at the end of the side chain is highly hydrated.
Indeed, the fraction of the exposed surface of Lys197 with
Sphob(i) > 0 is much smaller than that of residues usually
defined as hydrophobic (like I206 or I185), which can con-
tribute to a hydrophobic patch with the entire side chain
(Fig. 6b).
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Chapter 24

Computing the Thermodynamic Contributions
of Interfacial Water

Zheng Li and Themis Lazaridis

Abstract

Water molecules at the binding interface of biomolecular complexes or water molecules displaced
from hydrophobic cavities have lately been recognized as important modulators of binding affinity.
One approach to computing the contribution of these water molecules to solvation thermodynamics
is inhomogeneous fluid solvation theory (IFST). Over the past few years this approach has been applied
to interfacial water molecules, both individual and in clusters. Our implementation of IFST resulted in
the computational package Solvation Thermodynamics of Ordered Water (STOW). This chapter gives
an overview of the theory and its applications and describes how to calculate the thermodynamic
contributions of ordered water molecules using STOW.

Key words: Solvation, Binding, Statistical thermodynamics, Enthalpy, Entropy, Drug design

1. Introduction

Water molecules are often found at biomolecular binding
interfaces, either alone or forming clusters, usually bridging the
binding partners via hydrogen bonds. They can also be found in
hydrophobic cavities of proteins, displaced by binding ligands.
They are variably referred to as “bound” or “ordered.” Many
questions remain unanswered about these water molecules: how
do they affect the binding thermodynamics, is it more favorable in
ligand design to displace them or to keep them, how can they be
best accounted for in binding affinity scoring functions? Experi-
mental and theoretical methods for estimating the contribution
of such water molecules to binding thermodynamics have been
reviewed in ref (1).

One approach used to obtain insights into bound water con-
tributions is inhomogeneous fluid solvation theory (IFST) (2, 3).
This theory treats the solute as fixed (hence the term inhomoge-
neous fluid) and computes the solvation energy and entropy as

Riccardo Baron (ed.), Computational Drug Discovery and Design, Methods in Molecular Biology, vol. 819,
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integrals over the space occupied by solvent. The theory has been
implemented by us in a computational package named Solvation
Thermodynamics of Ordered Water (STOW). The input to this
package is water coordinates obtained from any molecular
dynamics package. These coordinates are used to construct distri-
bution functions which are then used to compute the integrals
required by IFST. The output is the contribution of individual
water molecules, either isolated or in clusters, to solvation
thermodynamics. This approach has been applied to several
biological systems: HIV-1 protease–ligand complexes, Concanav-
alin A-carbohydrate complexes, and cyclophilin A–ligand com-
plexes (1, 4–6). We found that the entropic penalty of ordering
is usually large but outweighed by the favorable water–protein
interactions.

IFST has also been recently used by Berne, Friesner, and
coworkers to compute energies and entropies of water clusters in
hydrophobic cavities (7). They found that the atypical enthalpies
and entropies of a cluster of water molecules in the ligand binding
cavity of streptavidin contribute significantly to the enhanced
binding affinity to biotin. A semiempirical scoring function using
IFST results, when applied to a series of ligands of Factor Xa,
was able to produce a high correlation between calculated and
experimental binding affinities. This implementation of IFST
has been developed into a new software product by Schrodinger,
Inc. (WaterMap), which has already been used in several
publications (8–10).

In this chapter, we first give a brief exposition of IFST and
then describe the process of calculating the thermodynamics of
ordered water molecules using the STOW package. This package
is freely available from the authors via email.

1.1. Theory IFST (2, 3) provides expressions for the energy and entropy
of solvation as functionals of molecular correlation functions.
The solute is taken to be fixed at the origin, thus creating an
inhomogeneous fluid field around it. In this approach the solva-
tion free energy is decomposed into four components: the
solute–solvent energy (Esw), the solute–solvent entropy (Ssw),
the solvent reorganization energy (DEww), and solvent reorgani-
zation entropy (DSww). The latter are due to the difference in
solvent–solvent interactions and correlations in the bulk and in
the complex.

DGsolv ¼ Esw þ Eww � T Ssw þ DSwwð Þ (1)

These components can be expressed as integrals over the
solute–solvent correlation function gsw (r, o) and solvent–solvent
correlation function g inhwwðr, r0o;o0Þ (11).
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Esw ¼ r=O
ð
gswðr;oÞuswðr;oÞdrdo (2)

DEww ¼ �1

2

r2

O2

ð
gswðr;oÞ½gswðr0;o0Þg inhwwðr, r0;o;o0Þ

� gowwðR;orelÞ�uwwðR;orelÞdrdr0dodo0
(3)

Ssw ¼ �kr=O
ð
gswðr;oÞlngswðr;oÞ drdo: (4)

DSww ¼�1

2
k
r2

O2

ð
gswðr;oÞ½gswðr

0
;o

0 Þfg inh
wwðr,r

0
;o;o

0 Þ lng inh
wwðr,r

0
;o;o

0 Þ

� g inh
wwðr, r

0
;o;o

0 Þ þ 1g � fgowwðR;orelÞ ln gowwðR;orelÞ
� gowwðR;orelÞ þ 1g�drdr0dodo0

(5)

where k is Boltzmann’s constant, r is the density of bulk solvent,
r and r0 denote the position of two water molecules; o, and o0

denote the orientation of these two water molecules with respect
to the solute, each of which is expressed as three Euler angles;
O is the integral over o (O ¼ 8p2), R is the distance between
two water molecules, orel are the five angles which describe the
relative orientation of two water molecules, and Orel ¼ Ð

dorel ¼
32p3; go

wwðR ;orelÞ and g inh
ww r; r0;o;o0ð Þ are the solvent–solvent

correlation function in the pure solvent and in the complex,
respectively; usw (r, o) and uww(R,orel) are water–solute and
water–water potentials, respectively.

For pair-wise additive potentials the expressions for the
energy are exact. The entropy expressions are, strictly speaking,
an infinite series which cannot be calculated exactly. Usually, only
two-particle contributions to the entropy are considered and the
contribution of three and higher-particle correlations is neglected
(as in (5) above). This is equivalent to the Kirkwood superposition
approximation, i.e., g 3ð Þ

1;2;3
¼ g 2ð Þ

1;2
g 2ð Þ
1;3

g 2ð Þ
2;3

. This approximation has
given good results for the entropy in simple fluids (3).

In practice, the solute–solvent energy (Esw), and the solvent
reorganization energy (DEww) are more easily evaluated directly
from the simulations, rather than using (2) and (3). For the
entropy this is not possible and the integrals in (4) and (5) need
to be evaluated. These integrals are over all space V. gsw(r, o) is
zero over the regions occupied by the solute; the only contribu-
tions come from regions occupied by the solvent. Because any
integral over V can be split into a sum of integrals over distinct
subregions (V ¼ P

i

ni;V 0 ¼ P
j

nj), the contributions of specific
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water molecules can be determined. As a result, (4) and (5) can be
written as (6)

Ssw ¼ � kr=O
ð

V

gswðr;oÞlngswðr;oÞ drdo

¼ �kr=O
ð

P
i

vi

gswðr;oÞlngswðr;oÞ drdo

¼ �kr=
X

i

ð

vi

gswðr;oÞlngswðr;oÞ drdo

�
X

i

SswðiÞ (6)
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(7)

The entropy can be split into a translational and an orienta-
tional term (6). Equation (7) is essentially the difference in
entropy between bound water and water in the bulk. In practice,
it is more convenient to calculate the bound water terms and then
subtract the entropy of bulk water, for which similar theoretical
formulas give –15.2 cal/mol K. Thus, the solvent reorganization
entropy of one bound water molecule is,

DSw ið Þw ¼
X

j

StranswðiÞwðjÞ þ
X

j

SorwðiÞwðjÞ þ 15:2cal/molK, (8)

where the solvent–solvent translational part S transwðiÞwðjÞ and the sol-
vent–solvent orientational part SorwðiÞwðjÞ of the entropy of w(i) can
be calculated as
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S transwðiÞwðjÞ ¼ � 1

2
kr2

ð

ninj

grswðiÞðrÞg r
swðjÞðr

0 Þfgr;inhwðiÞwðjÞðr, r
0 Þ

ln g r;inhwðiÞwðjÞðr, r
0 Þ � gr;inhwðiÞwðjÞðr, r

0 Þ þ 1gdrdr0 (9)

SorwðiÞwðjÞ ¼�1

2
kr2

ð

ninj
gr
swðiÞðrÞgrswðjÞðr

0 Þgr;inhwðiÞwðjÞðr,r
0 ÞSmwðiÞwðjÞðr,r

0 Þdrdr0

(10)

where SmwðiÞwðjÞ is an integral over orientational correlation func-
tions (6).

The solvation entropy DSsolv is the sum of the solute–solvent
entropy and solvent reorganization entropy of all bound water
molecules.

DSsolv ¼
X

i

ðDSwðiÞw þ SswðiÞÞ (11)

In this way the contribution of specific water molecules
(or regions of space) to the solvation entropy can be determined.

2. Methods

2.1. Molecular

Dynamics Simulations

Any molecular dynamics (MD) software package can be used to
sample water configurations. In our workwe usedCHARMM(12).
Starting structures were obtained from the Protein Data Bank and
interfacial water molecules in the crystal structure were kept. A 15 Å
sphere of TIP3P water molecules was added around the active site
and subjected to spherical stochastic boundary conditions (13). The
protein and ligand were kept fixed, only the water molecules were
allowed to move. Typically, less than 10 ns was sufficient to obtain
good statistics. A configuration was saved every 1 ps. CHARMM
was used to calculate the average interaction of each water molecule
with the ligand/receptor as well as the average interaction between
water molecules. The MD package can be used to obtain average
protein–water and water–water interaction energies.

2.2. Calculation

of Euler Angles

Any orientation may be described using three Euler angles. Any
rotation A can be written as

A ¼ BCD

¼
cosf sinf 0
� sinf cosf 0

0 0 1

0
@

1
A

1 0 0
0 cos y sin y
0 � sin y cos y

0
@

1
A

�
cosc sinc 0
� sinc cosc 0

0 0 1

0
@

1
A (12)
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where y, ’, c are the Euler angles.
If X and X0 are the coordinates of any point in the original

and final coordinate system before and after the rotation A,
respectively, they are related by

X ¼ A�1X 0: (13)

To simplify the calculations, the oxygen atoms of the ordered
water molecule in each frame are first translated to their original
position. Next, a body-fixed transformation is performed with the
y-axis on the bisector of HOH, the x-axis perpendicular to y-axis
on the plane of water molecule, and the z-axis perpendicular to
this plane. Six equations can be obtained for the coordinates of the
two hydrogen atoms (XH1, YH1, ZH1, XH2, YH2, ZH2) in each
frame:

cosC cosf� cos y sinf sinC � sinC cosf� cos y sinf cosC sin y sinf

cosC sinfþ cos y cosf sinC � sinC sinfþ cos y cosf cosC � sin y cosf

sin y sinC sin y cosC cos y

�������

�������

XH01

YH01

ZH01

��������

��������
¼

XH1

YH1

ZH1

��������

��������

cosC cosf� cos y sinf sinC � sinC cosf� cos y sinf cosC sin y sinf

cosC sinfþ cos y cosf sinC � sinC sinfþ cos y cosf cosC � sin y cosf

sin y sinC sin y cosC cos y

�������

�������

XH02

YH02

ZH02

��������

��������
¼

XH2

YH2

ZH2

��������

��������
;

(14)

where XH01, YH01, ZH01 and XH02, YH02, ZH02 are the coordi-
nates of the two hydrogen atoms at the reference frame. Solving
these equations, we can obtain the Euler angles (y, ’, C).

2.3. Calculation

of the Entropy

of Interfacial

Water Using STOW

This package computes the contribution of discrete, ordered water
molecules to the solvation thermodynamics of a biomolecule or
biomolecular complex. Based on the trajectory file from the MD
simulations, the specific region of each ordered water molecule is
first defined. In the next step, the probability distribution of the
position (expressed in a spherical coordinate system) and the orien-
tation (with three Euler angles y, ’, and c) of each water molecule
is calculated. Next, the translational and orientational correlation
functions are calculated. Finally, the solvent–solute entropy and
solvent–solvent entropy of the ordered water molecules are calcu-
lated using integrals over the correlation functions.

Included in the package are three FORTRAN programs:
“subregionfinder.f,” “ENTROPY_CALCULATOR.f,” “SUB-
EULERANGLES.f,” and some necessary input files: “GWW_
ORIE_BLK.crd” and “GWW_R_BLK.crd.” Sample input or
output files are also included (see Table 1). The function and
format of these files are described below.

The calculation of thermodynamic contributions of isolated,
fully buried water molecules is simpler. The water–water interac-
tions and correlations are negligible and we just need to calculate
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the solute–solvent correlation and interaction in the complex.
The calculation procedures are the same as described below except
that step 2 is skipped. The user should also set the number of
the subregions as 0 in the “[water]_subrgn.crd” file.

2.4. Extracting the

Ordered Water

Molecules in a Specific

Region and Their

Surrounding Solvent

Molecules from the

Trajectory of the MD

Simulation

For the entropy calculations one needs to first determine the
average position of all ordered water molecules (which should be
close to their positions in the crystal structure). Then one reads
each frame of the trajectory and writes out in a separate file the
coordinates of a water molecule (if any) within a certain distance
from the average position (we used 1.2 Å). All these files are
named by the frame number and placed in a directory. The format
for these files is the standard CHARMM format for atomic coor-
dinates, i.e., A20, 3(2x, F8.5). For those frames where the specific
region is unoccupied, the corresponding files will be empty. With
simple UNIX commands (e.g., ls -l|grep “0 bytes” > [water].crd)

Table 1
Files included in the STOW package

File name Description

subregionfinder.f This program is used to determine the subregions around each
ordered water molecules

ENTROPY_CALCULATOR.f This is the main program that calculates the entropy of interfacial
water

SUBEULERANGLES.f Includes all of the subroutines for the Euler angle calculations.
Which are called by ENTROPY_CALCULATOR.f

GWW_ORIE_BLK.crd Gives the distributions of the water–water orientational
correlation functions (5D) within different water–water
distance (R). (Format: F15.5)

GWW_R_BLK.crd Gives the distributions of the water–water translational
correlation functions (1D) (Format: A19, 2(1x,F8.5))

iofile.h Lists the files including the coordinates of the water molecules
involved in the calculations

ordered_wat.crd Lists the ordered water molecules considered in the
protein–ligand binding interfaces

005_subrgn.crd The sample of [water]_subrgn.crd file, which gives the definition
of the subregions of water 005 and whose subroutines are used
to calculate the Euler angles.

005.crd Sample [water].crd file that gives which frames are unoccupied by
ordered water 005 (obtained with a command like “ls –l |
grep. . .” in the directory that contains the coordinates of the
water molecule in the region of interest)

subregion_of_wat005.crd Sample output file from the subregionfinder.f

entropy_005_p1.crd The sample final output file for the calculation of water entropy
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one can figure out in which frames the region is unoccupied and
how many such frames exist. Similarly, the coordinates of all water
molecules that are within a certain distance (we used 5 Å) from
the central water molecule are written in a separate file for each
frame. These files are placed in a different directory.

2.5. Defining the

Subregions Around

Each Ordered Water

Molecule

The program subregionfinder.f determines the regions around
a water molecule that are occupied by other water molecules.
The user needs to first determine which ordered water molecule
and how many frames from the MD simulation trajectory are
empty in the region corresponding to this molecule (see step 1).
The files including the coordinates of water molecules are
obtained from step 1 and act as the input files in this program.

This program will produce a file named “subregion_of_wat
[water].crd,” which contains a matrix showing the probability of
finding solvent water molecules around the one in question along
the three spherical coordinates (r, y, f). The format of the matrix
is 6(1X, 7.4), including six columns: The first and second columns
are the intervals of f and y, respectively; the third column is the
probability of finding water in the mini-boxes within 3 Å; the
fourth column is the probability of finding water in the mini-
boxes within 3–4 Å; the fifth column is the probability of finding
water in the mini-boxes within 4–5 Å; the sixth column is the
probability of finding water in the mini-boxes within 2–5 Å.

Employing some picture-drawing tools, e.g., “Microcal Origin
6.0” based on the matrix calculated above, a 3D figure can be
plotted, which shows the distribution of solvent water molecules
around each ordered water molecule. Based on such a figure, it is
easy to define the different subregions for each considered ordered
water and figure out how many subregions there are around each
ordered water molecule and the edges of each subregion and then
input them into one file, say “[water]_subrgn.crd”, in a certain
format, which will be used in the following steps. The format is:

A19, I4 [unoccupied frames]
A19, I4 [number of subregions]
A19, F4.2 [defining the edges of the subregions]
. . .. . .. . ..
A19, I4 [giving the right subroutine used to calculate the Euler

angles for the water molecules in each subregion]
(see the sample file 005_subrgn.crd)

2.6. Entropy

Calculations

The program, ENTROPY_CALCULATOR.f is involved in this
step. The definition of the subregions and the coordinates for all
of the water molecules are required by this program for the
calculation of the solute–solvent orientational and translational
distribution functions. In this program, all these functions are
combined with the solvent–solvent translational and orientational
function corresponding to bulk water, the KSA approximations
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are employed, the solute–solvent entropy for each ordered water
molecule, and the water–water entropies are summed up, giving
the solvation entropy for each ordered water molecule (DSsolv).
The user is asked to select a reference frame for the calculation of
the Euler angles and should check that the distribution of the
angles is smooth before feeding them into the statistical mechani-
cal formulas. The name and format of the necessary input files
involved in this step are listed below:

l “ordered_wat.crd,” which provides how many interfacial
ordered water considered and their names:

A19, I4 [give the number of ordered water considered]
A3 [give the name of the ordered water, e.g., 005]
. . . . . . . . .

l “GWW_R_BLK.crd” and “GWW_ORIE_BLK.crd,” which
include the distributions of the correlation functions gww(R)
and gww(o|R) respectively, in pure water.

l “[water].crd,” which gives the frames in the MD trajectory
where the region of the ordered water considered is unoccu-
pied. Those frames with the specific region unoccupied corre-
spond to files with specific size (0 byte). Its format should be:

A56, I5 [frame unoccupied]

l The following files in the subdirectory include the coordinates
of the considered water ([water]/*.crd) in each frame and
coordinates of other water around it ([water]a/*.crd), which
are obtained directly from the MD trajectory file:

[water]/1.crd
[water]a/1.crd
. . . . . .
[water]/8000.crd
[water]a/8000.crd

l These files have a standard CHARMM format for the atomic
coordinates:

A20, 3(2x, F8.5) [give x,y,z coordinates of the Oxygen atom on
the first line and of the two hydrogen atoms on subsequent lines]

The outcome of this program includes:

1. The average position of the water molecules (including the
ordered water molecule and water molecules around it) and
the occupancy in each region and subregion. For each ordered
water, we considered six subregions at most. But for most of
them, the number of their subregions is less than six. In these
cases, we used NAN to describe the empty subregions.

2. The most frequently appearing water in each subregion
during the MDs.
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3. Distribution of the Euler angles (y, f, c) for each water
molecule corresponding to different region or subregions
(region 0 stand for the region occupied by the ordered
water molecule, region 1–6 stand for the subregions occupied
by the solvent water molecules).

4. The subshell to which each solvent water molecule belongs.
In our work, we defined eight subshells for each ordered
water with the r0 ¼ 2.5 Å and Dr ¼ 0.3 Å. That is, the first
subshell is within 2.5–2.8 Å, and the second subshell is within
2.8–3.1 Å, etc.

5. The solute–solvent entropy of the ordered water molecule,
including the solvent–solute translational and orientational
parts, and the water–water translational and orientational
parts for each water pair.

6. The entropies of each ordered water considered (see the
sample output file entropy_005_p1.crd).

3. Notes

1. For isolated and fully buried water molecules, e.g., the key
water molecules in HIV 1 protease-KNI 272 complex and
concanavalin A-trimannoside 1 complex, the interaction
and correlation between them and the other solvent mole-
cules are negligible. Therefore, the DSww is simply the entropy
of removing a water molecule from bulk water DSw(i)w ¼
þ 15.2 cal/mol K.

2. For those water molecules that are not fully buried or form a
water cluster, one needs to first split the region occupied
by these water molecules into distinct spherical regions (i)
based on the average positions of each bound water molecule
obtained from the MD simulation (within a radius 1.2 Å in
our work). This cutoff value is practicable because in bulk
water, the nearest neighbor’s distance is about 2.8 Å
for oxygen–oxygen pair, and half of this value is 1.4 Å.
Also, our studies show that the density of each bound water
molecule decreases to 0 before r reaches 1.2 Å.

3. The occupancy O(i) of water in each region should be
checked. One can identify any water molecule located in a
region (i) with the corresponding bound water molecule
[w(i)], i.e., allow for exchange between water molecules.
The solvent–solvent energy and entropy terms (DEw(i)w(j)

and DSw(i)w(j)) should be calculated separately for each water
pair. w(i)w(j) denotes the water–water pair composed of
the bound water molecule in region i and any other water
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molecule close to it and lying in different subregions (j).
The subregions (j) can be defined by scanning a spherical
space of a bound water molecule [w(i)] within a radius of
5 Å (the magnitude of the interaction energy Eww is no more
than 0.2 kcal/mol beyond this distance) and looking for
locations of high water density.

4. Sometimes a reference frame for the calculation of Euler
angles (xy-plane, yz-plane, or xz-plane) gives incorrect proba-
bility distributions. The user should select the most appropri-
ate subroutine to calculate the Euler angles of each water
molecule. For each water molecule, the user can first use
one subroutine to calculate its Euler angles and check the
output file to see if the distributions of the angles are smooth
(in the SUBEULERANGLES.f the subroutines are num-
bered as 1 and 2 for the reference water in the xy-plane,
3 and 4 for the reference water in the yz-plane, 5 and 6 for
the reference water in the xz-plane). If not, the user can
change the subroutines until good distributions are obtained.
This could be done by changing the assigned values for the
parameters in the file “[water]_subrgn.crd.” For most of
the water molecules, all of the subroutines are applicable.
The difference between these subroutines only comes from
the selection of the reference frame, which requires us to solve
different equations simplified and derived from (12) and (13).
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Chapter 25

Assignment of Protonation States in Proteins and Ligands:
Combining pKa Prediction with Hydrogen Bonding
Network Optimization

Elmar Krieger, Roland Dunbrack, Rob Hooft,
and Barbara Krieger

Abstract

Among the many applications of molecular modeling, drug design is probably the one with the highest
demands on the accuracy of the underlying structures. During lead optimization, the position of
every atom in the binding site should ideally be known with high precision to identify those chemical
modifications that are most likely to increase drug affinity. Unfortunately, X-ray crystallography at
common resolution yields an electron density map that is too coarse, since the chemical elements and
their protonation states cannot be fully resolved.
This chapter describes the steps required to fill in the missing knowledge, by devising an algorithm that

can detect and resolve the ambiguities. First, the pKa values of acidic and basic groups are predicted.
Second, their potential protonation states are determined, including all permutations (considering for
example protons that can jump between the oxygens of a phosphate group). Third, those groups of atoms
are identified that can adopt alternative but indistinguishable conformations with essentially the same
electron density. Fourth, potential hydrogen bond donors and acceptors are located. Finally, all these data
are combined in a single “configuration energy function,” whose global minimum is found with the
SCWRL algorithm, which employs dead-end elimination and graph theory. As a result, one obtains a
complete model of the protein and its bound ligand, with ambiguous groups rotated to the best
orientation and with protonation states assigned considering the current pH and the H-bonding network.
An implementation of the algorithm has been available since 2008 as part of the YASARA modeling &
simulation program.

Key words: pKa prediction, Hydrogen bonding network, Particle mesh Ewald, YASARA,
Drug design, Docking

1. Introduction

Virtually all molecular modeling methods that employ all-atom
force fields benefit heavily from “having the details right.” If a
molecular dynamic simulation is run with incorrectly oriented or

Riccardo Baron (ed.), Computational Drug Discovery and Design, Methods in Molecular Biology, vol. 819,
DOI 10.1007/978-1-61779-465-0_25, # Springer Science+Business Media, LLC 2012
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protonated side chains, the protein stability can be reduced
significantly. Likewise, docking a ligand to a receptor may fail
miserably if a wrong tautomer is chosen for a key active site residue
(1). It is therefore a true pity that these important atomic details
normally cannot be resolved experimentally, since only a tiny
fraction of the X-ray diffraction experiments reach the resolution
required to locate individual hydrogen atoms or distinguish the
heavier elements (which becomes important if groups of atoms
can adopt multiple conformations that all fit the X-ray density
equally well). One is thus forced to infer the missing details from
mainly two sources of information: first, the pKa values, that in
principle allow to determine the probabilities of the various
protonation states of an ionizable group at the pH of interest
(from the Henderson–Hasselbalch equation, which is in practice
complicated by coupling effects between nearby groups (2)).
And second, the environment: most importantly the hydrogen
bonding possibilities (3), but also potential clashes (which for
example favor the smaller oxygen over the larger NH2 group of
an ambiguous glutamine side-chain amide group (4)).

While pKa values can be measured experimentally, only about
500 have been reported for proteins to date (5), so for most
purposes they need to be predicted instead. Many different, initi-
ally physics-based, pKa prediction methods have been developed,
ranging from simplified models based on Debye–Hueckel theory
(6) or electrostatic screening functions (7) to “high-end meth-
ods” that solve the Poisson–Boltzmann equation (which allows
to consider the influence of dielectric solute/solvent boundaries
and ionic strength on the local electrostatic potential and thus
the pKa (8–10)). Surprisingly, most pKa prediction methods
perform about equally well (due to inherent prediction difficul-
ties, see Note 1), which makes the development of simple and
fast empirical methods feasible that cut some corners (11–15).
The one summarized here belongs to the latter category and has
been evaluated in detail before (12).

The H-bonding possibilities in the neighborhood can be
readily analyzed to determine the best placement for a hydroxyl
hydrogen, or to decide if the side-chain amide group of a gluta-
mine should be rotated by 180�. Unfortunately such ambiguous
cases are rarely isolated, and the choice made for one group
immediately influences the possible choices for its neighbors,
often leading to extensive H-bonding networks that stretch over
protein and ligand, and are too large to be solved by brute force
evaluation, especially if waters are included. The methods devel-
oped to untangle the knot differ in various aspects. Some focus
on asparagine/glutamine side chains (16), others on entire pro-
teins including water (3) and even certain common groups in
ligands, using information obtained from the PDB HetGroup
dictionary (4) or direct ligand analysis (17). The methods applied
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to disentangle the network range from simulated annealing (3) to
dynamic programming (17).

The approach described here adds mainly three new features:
first, pKa prediction is included to consider the influence of the pH
on the hydrogen bonding network. Second, nonstandard amino
acids and ligands are fully accounted for with the help of a chemical
knowledge library in SMILES format (18). And third, the use of the
SCWRL algorithm (19) allows to find the globally optimal solution
almost instantly (the major part of the time is spent on the setup).
Since the goal is to predict structural details that cannot be resolved
with X-ray spectroscopy, evaluation of the prediction accuracy is a
major challenge (20).While developing and tuning thismethod, we
therefore did not only look at the small but growing number of
structures solved by neutron diffraction (which can better resolve
hydrogen positions), but also took a pragmatic approach: we com-
pared our prediction results for proteins with those of the three
programsNQ-Flipper (16), Reduce (4) andWHATIF (3), and then
manually checked cases where the programs disagreed. These were
either truly ambiguous or “interesting,” i.e., offered new insights
that allowed us to improve the method. Two assignment examples
involving ligands are shown in Fig. 1.

Fig. 1. Two exemplary assignments made by the algorithm described here. (a) Left, Nicotinamide-adenine-dinucleotide
(NAD) cofactor in PDB file 1A5Z. The amide group has been placed incorrectly in the electron density and needs to be
rotated by 180� (green arrows, top) to form hydrogen bonds with the backbone of residue Thr 246 (bottom). (b) Right, two
identical inhibitors (CHQ) sharing the binding site in PDB file 1W1T. While the imidazole ring in the left ligand is kept in the
neutral state to accept an internal hydrogen bond, the same imidazole ring in the other ligand is predicted to experience a
pKa shift, get protonated, and donate two hydrogen bonds to the nearby residues Glu 144 and Asp 215.
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2. Methods

2.1. 3D Structure

Preparation

Virtually all applications in computational biology that perform
energy calculations require 3D structures to be in a clean state, so
that force field parameters can be assigned. Since this is a very
common procedure also in the other chapters, it is only outlined
briefly. All the steps below are for example performed by the
“Clean” command of the YASARA program, which can be
accessed via a web server at www.yasara.org/minimizationserver:

1. Detect missing bonds and add them, assign bond orders
(which are not stored in PDB files).

2. Rebuild protein side chains with missing atoms.

3. Delete terminal protein residues with largely incomplete
backbone that often occur in X-ray structures when the
chain enters a disordered region.

4. Delete atoms that are present more than once at alternate
locations, keeping those with the highest occupancy.

5. Delete residues and chains that overlap significantly with
others and are most likely the result of incorrect PDB format
usage, such as PDB file 1GTV or BTN/BTQ in 2F01.

6. Add terminal oxygens at the protein C-termini, and capping
groups at internal chain breaks (missing X-ray density).

7. Add missing cysteine bridges between close Cys SG atoms,
provided that their positions allow bridge formation (19).

8. Add missing hydrogens (using the default states “Asp, Glu ,
His deprotonated,” and “Tyr, Lys protonated”) to provide a
starting point for the following analysis.

9. Assign force field parameters, at least the charges will be
needed in the next steps. In the context of the AMBER
force fields (21), ligands can be handled easily using GAFF
(22) and AM1-BCC charges (23). Some of the available tools
are Antechamber (24), the AutoSMILES server (www.yasara.
org/autosmiles) or PDB2PQR (25).

2.2. Fast Empirical

pKa Prediction

The configuration energy function devised here includes the pKas
of ionizable groups, so that the energetic cost of adding or remov-
ing protons at the pH of interest can be considered. As mentioned
above, the recipe provided is rather simple, knowing that very
complex approaches are not guaranteed to perform better (see
Note 1). It can in principle be replaced with any other available
method, just make sure that this other method has been validated
with a data set of statistically significant size, and has been
compared to an optimized jack-knifed null-model (see Note 2):
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1. Determine the initial default pKas for protein residues, which
are simply the average experimentally measured values. In a
rather large set of 541 measured pKas reported recently (5),
the averages are 3.3 for the C-terminus, 3.5 for Asp, 4.2 for
Glu, 6.6 for His, 6.8 for Cys, 7.7 for the N-terminus, 10.3 for
Tyr, and 10.5 for Lys. Alternatively, pKa prediction often
employs so-called “intrinsic pKas” (see Note 3).

2. Consider the electrostatic influence of the environment on
the pKa: if there are lots of positively charged residues in the
neighborhood, they will repel other protons and make it
harder for an ionizable group to get protonated, thus lower-
ing its pKa. Likewise, a negative electrostatic potential will
raise the pKa. A very convenient way to estimate the electro-
static potential (ESP) is provided by the Particle Mesh Ewald
method (26), which has been developed to efficiently handle
long-range electrostatic interactions without a cutoff: first
it is part of essentially all molecular simulation programs,
and second, it expresses the ESP as the sum of a short-range
and a long-range term (26). The latter replaces point charges
with extended Gaussian charge densities and thus yields a
smoothed representation of the ESP, which makes it well
suited for our purpose: short-range noise is avoided, and
there are no singularities, allowing to calculate the ESP
directly at the coordinates of the atoms (where it is normally
infinite). This way, the estimated pKa of a given residue is
obtained as

pKa ¼ default pKa þ
Xionizable atoms

i¼1

�Ai � EwaldEnergyi: (1)

In the formula above, default pKa is the average pKa of
the residue type from step 1 above, the sum runs over the i
ionizable atoms in the group (one in Lys, two in Asp and
Glu), A is the empirical proportionality constant (12)
(0.00264 for Asp, 0.00209 for Glu, and 0.00408 for Lys)
and Ewald energyi is the smooth long-range portion of the
Ewald energy of a charge +1 at the location of the ith ionizable
atom in kcal/mol (the energy is used instead of the ESP only
for convenience). No parameters are provided for other resi-
dues, since there were either not enough measurements
available when the method was developed (12) (termini,
Tyr, Cys) or there was no improvement (His).

3. The pKa prediction could be improved further by considering
two additional well-known factors that shift the pKa. First, the
desolvation (Born) effect: it costs energy to bury a charge
inside the protein where the dielectric constant is lower,
which means that the environment cannot shield the charge
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as well as water. In theory, the Born effect should thus favor
the neutral state (raise the pKa of Asp/Glu and lower the one
of Lys/His), but in practice it is found that desolvation mainly
increases the magnitude of the pKa shift (27), which makes it
hard to use for empirical prediction schemes (12). The second
factor is a much more helpful indicator: hydrogen bonds.
If a group accepts a hydrogen bond, there is less space to
bind a proton, and the pKa will be lowered. Likewise, if
a group can immediately use a bound proton to donate a
hydrogen bond, the pKa will be raised. This knowledge
could be incorporated into (1) above (12), but this is not
needed here, since hydrogen bonds are explicitly taken care of
in our configuration energy function, which is better fed with
the pKa before the consideration of hydrogen bonds.

4. Determine the default pKas for ionizable groups in ligands.
While protein side chains pKas depend mostly on the environ-
ment in the 3D structure, those in ligands are additionally
influenced by the local electronic structure, which depends on
other functional groups. These effects can of course be con-
sidered (28), but they are beyond the scope of this chapter.
Instead, the default pKas are simply obtained by matching the
ligand with a library of SMILES strings (18), which encode
the potential protonation states and associated pKas for all
common functional groups. Three typical examples are shown
in Fig. 2, the complete library can be downloaded from
www.yasara.org/grouplibrary.txt, a regularly updated version
is distributed with the YASARA program.

2.3. Definition of the

Configurational Energy

Function

The structure to analyze (e.g., a protein-ligand complex) contains
variable groups that can adopt different protonation states (e.g., a
carboxyl group), different ambiguous orientations (that yield
about the same X-ray density and can thus not be distinguished,
e.g., the terminal amide group of an asparagine side chain),
or both at the same time (e.g., the imidazole ring in histidine).
To indicate their relation to side-chain rotamers, these different
configurations are called “confimers” here, Fig. 3 shows some
examples. The total energy of the system is

Energy¼
XGroups

i¼1

SelfEnergyðCiÞþ
Xi�1

j¼1

InteractionEnergyðCi;Cj Þ
 !

;

(2)

which simply loops over the variable groups and sums up the self-
energy of the current confimer Ci and the interaction energies
with the current confimers Cj of nearby variable groups. The goal
is to choose the confimers such that the energy becomes minimal.
A very fast algorithm to find this global minimum has originally
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been developed for side-chain rotamer prediction (19), and it
comes with just one drawback: it requires that all energies are
positive (unfavorable, like steric clashes), while our configu-
rational energy function also needs to consider the negative
(favorable) hydrogen bonding energies. This fundamental prob-
lem can fortunately be resolved by keeping in mind that a well-
formed hydrogen bond contributes almost nothing to the stability
(DG) of a protein or a protein-ligand complex, because an equally
good hydrogen bond can be formed with surrounding water
molecules in the unfolded or unbound state (29). What really
counts is the (positive) energetic cost of missing or suboptimal

Fig. 2. Description of protonation states and associated pKas using SMILES strings (18)
for three exemplary groups (lowercase characters are aromatic atoms, numbers are
used as ring closures). To better express chemical equivalence (and find proton
placement permutations), the standard SMILES syntax has been expanded with frac-
tional bond orders: the characters “^” and “~” represent bonds of orders 1.33 and 1.5,
respectively. The question mark “?” is a placeholder for any external group, possibly a
single hydrogen. For example, the middle example shows a phosphate group, which
carries two protons (“?”) below pH 1.38. From pH 1.38 to pH 6.33, one oxygen is
protonated, the other two are not, forming equivalent bonds of order 1.5 (therefore
carrying a formal charge of �0.5 each). Above pH 6.33, the bond orders of three
oxygens are 1.33 (formal charges �0.66, total charge �2). Figure 3 shows the
corresponding structures.
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hydrogen bonds. So our goal is not to maximize the number of
hydrogen bonds (which may lead to incorrect results), but instead
to minimize the number of buried unsatisfied hydrogen bond
donors or acceptors. Since these all contribute a positive energy
penalty, negative energies can be avoided. The following steps are
required to calculate the self- and interaction energies in (2):

1. Create a neighbor search grid to quickly find atoms close in
space.

2. Calculate molecular surface areas of the heavy atoms. There
are different ways to achieve that (30). Here, a triangle mesh
of the molecular surface is created, then each mesh vertex gets
assigned one third of the areas of all triangles it is part of.
Finally, the vertex areas are assigned to the closest atoms, then
hydrogen areas are transferred to the bound heavy atom.

3. Assign aromaticity: atoms are simply flagged as aromatic if
they are in a planar ring and no atom in the ring forms
bonds outside the ring plane.

4. Preliminarily identify potential hydrogen bond donors and
acceptors (see Note 4).

5. In each SMILES string (18) in the SMILES library (Fig. 2)
identify those atoms that are chemically equivalent (i.e., yield
the same SMILES strings when used as the first atom in the
string), and transfer this knowledge of equivalence to the
corresponding atoms in the other SMILES strings of the
group. For example in the each of the three SMILES strings
that describe a phosphate group (Fig. 2), three of the oxygens

Fig. 3. Ball and stick models of the three exemplary variable groups from Fig. 2 with their confimers. Darkened bonds (red
in the electronic version) have bond order 1.5 (except for the bottom right phosphate group, where the bond order is
1.33). The top left carboxyl group has maximally 3 + 3 + 1 ¼ 7 confimers: There are three different protonation states
with a hydrogen on the first, second, or no oxygen. Since the hydrogen can rotate freely, up to three confimers are used to
cover various hydrogen positions. Two where the hydrogen forms a hydrogen bond with the two closest potential
acceptors (if present), and one where the hydrogen faces away from potential donors and clashing atoms. The top right
imidazole group has six confimers: Three different protonation states, and since the X-ray electron density does not
reliably permit to distinguish carbon from nitrogen, each state is present twice, with the ring rotated by 180�. Finally, the
phosphate group at the bottom has up to 37 confimers: At low pH <1.38, two hydrogens are present, which can be
distributed over the three oxygens in three ways (calculated from the binomial coefficient “3 choose 2”), and since each
hydrogen can take up to three positions (see above), there are up to 3*9 confimers. At pH <6.33, only one oxygen is
protonated, yielding up to 3*3 confimers. Finally, at pH >6.33 there is only one confimer without protons.
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will be tagged as equivalent, because they truly are in the last
of the three strings. At this point, the use of fractional bond
orders facilitates the detection of equivalence.

6. Match all the atoms with the SMILES library. Every group of
atoms that matches a SMILES string becomes a “variable
group” with a certain number of confimers, which is initially
simply the number of different protonation states (Fig. 2).
If an atom matches more than one SMILES string, it is part
of the largest variable group.

7. For each confimer, and for each set of atoms tagged as equiv-
alent in the confimer (step 5 above) sum up the number of
hydrogens bound. If it is >0, split the confimer into a set
of confimers that cover all potential ways of distributing the
hydrogens over the equivalent atoms (the number of confi-
mers can simply be calculated from the binomial coefficient,
see Fig. 3).

8. For each confimer, determine the number of freely rotatable
hydrogens Nh (e.g., hydroxyl groups) and split it into at
most 3Nh confimers that let each of the hydrogens point
into up to three different directions: toward the two closest
hydrogen bond acceptors (if present), and away from nearby
hydrogen bond donors and clashing atoms (see Note 5).

9. For each hydrogen bonding atom in a confimer (see Note 4)
determine DonSites (the number of bound hydrogens),
AccSites (the number of H-bond acceptance sites) andHBSites
(the sum of both).

10. For each covalent bond, check if it can serve as a 180� rotation
axis for a planar group of atoms, where both rotation states
yield essentially the same X-ray density (i.e., where each atom
falls “on top” (distance <0.75 Å) of a partner atom on the
other side after a 180� rotation). If any pair of partner atoms
has different hydrogen bonding preferences, add the two
rotation states as new confimers. In proteins, this will for
example add two confimers for the amide groups of aspara-
gine and glutamine, and the imidazole ring of histidine
(Fig. 3). Rotation angles other than 180� (e.g., 120�) are
currently not considered.

11. For each donor hydrogen i and acceptor j in each confimer,
calculate the penalty for being unsatisfied (to help keep track
of the sign, the word “penalty” is used for positive energies):

UnsatDonPenaltyi ¼ max

 
0;�IdealHBEnergy=2

þ
XfixedAcceptors

k¼1

HBEnergyi;k=2þWaterHBEnergyi=2

!
; (3)
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where IdealHBEnergy is the energy of an ideal H-bond
(�25 kJ/mol) and HBEnergy is the energy of an actual
H-bond (see Note 6), in this case formed with a nearby fixed
(i.e., not part of any variable group) acceptor. So we take the
cost of leaving the donor unsatisfied (-IdealHBEnergy/2, the
division by 2 makes clear that we distribute H-bonding
energies equally over donor and acceptor), and add the
energies of (usually 0 or 1) hydrogen bonds formed with
nearby acceptors andwater molecules (WaterHBEnergy, calcu-
lated from the donor’smolecular surface area, seeNote 7). The
penalty for unsatisfied acceptors is calculated in a similar way,
except that there are often more than one acceptor sites
(AccSites aka “lone pairs,” step 9), and that acceptors can be
satisfied not only by H-bond donors, but also by cations
(AccIonEnergy, see Note 8):

UnsatAccPenaltyj ¼ max

 
0;AccSitesj ��IdealHBEnergy=2

þ
XfixedDonors

k¼1

HBEnergyj ;k=2þ
XCations

l¼1

AccIonEnergyj ;l=2

þWaterHBEnergyj=2

!
: ð4Þ

12. Calculate the self-energy of each confimer (see (2) above):

Self energy ¼ pKa Deviation2 � 2:5

þ
XAcceptors

j¼1

 
UnsatAccPenaltyj ;reduced þ

XfixedSoleAcceptors

k¼1

Acc2Penaltyj ;k

!

þ
XDonHyds

i¼1

 
UnsatDonPenaltyi;reduced þ

XfixedDonHyds

l¼1

Hyd2Penaltyi;l

þ
XCations

m¼1

HydIonPenaltyi;m þ
XNeighbors

n¼1

HydClashPenaltyi;n

!

þUnsatFixedDonAccPenalty:

(5)

where pKaDeviation is either 0 (if the confimer’s protonation
state is the most probable one at the current pH), or pKa–pH
(pKa is taken from Fig. 2, either from the current confimer
(if pKa <pH) or from the previous one (if the previous pKa

>pH)). Acc2Penalty is the cost of two sole acceptors (that are
not also donors) facing each other (40/Distance kJ/mol).
Hyd2Penalty is the cost of two donor hydrogens getting
close (see Note 9), HydIonPenalty is the cost of a donor
hydrogen facing a cation (see Note 10) and HydClashPenalty
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is the cost of a donor hydrogen bumping into any other
nearby atom (see Note 11). Before UnsatDonPenalty (3)
and UnsatAccPenalty (4) are plugged into (5), they need to
be further reduced (if possible down to 0) by adding potential
H-bonding energies from nearby variable groups. Since the
confimer of the nearby variable group is at this point undeter-
mined, this can be considered an optimal potential interaction
with the neighboring “confimer cloud.” The potential hydro-
gen bonds added here must be remembered till step 13
(PotHBEnergySum), where the interaction energies of the
confimers will be calculated. Finally, UnsatFixedDonAccPen-
alty is the penalty for leaving nearby buried fixed donors,
acceptors, and ions (that do not belong to any variable
group) unsatisfied. It is �0.5 � the sum over the energies of
the best H-bonds formed between these nearby atoms and
other confimers (but not the current confimer) of the current
variable group.

13. For each confimer pair i, j of two interacting variable groups
(which have been identified in the previous step) calculate the
interaction energy (2):

Interaction energy¼
XDonHyds i

k¼1

XDonHyds j

l¼1

Hyd2Penaltyk;l

þ
XSoleAccs i

m¼1

XSoleAccs j

n¼1

Acc2Penaltym;n

þmax

 
0;

XH�Bonds

o¼1

HBEnergyo

�PotHBEnergySumi�PotHBEnergySumj

!
:

(6)

The interaction energy thus consists of three obvious parts
(the penalties for two hydrogens or two sole acceptors facing each
other, and the summed up H-bonding energies) and one less
obvious term: The summed up potential H-bonding energies
(PotHBEnergySum, a negative value) which have been added
in the previous step 12 to lower the UnsatDonPenalty and Unsa-
tAccPenalty terms (representing the ideal potential interaction of a
certain confimer with the complete “confimer cloud” at the
neighboring variable group) is subtracted here again to avoid
double-counting. As a result, the negative H-bonding energy is
usually replaced with a positive value (because more potential
H-bonds can be formed with a confimer cloud than actual H-
bonds with a single confimer). In case UnsatDonPenalty and
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UnsatAccPenalty reached 0 already in step 11 or 12, before all
potential H-bonds were added, PotHBEnergySum might not be
low enough now to compensate, in this case the max() function
sets the term to zero. This just means that all H-bonding sites
of the confimer have been fully satisfied from the beginning
(either by water or the neighboring confimer cloud), and can be
ignored for this interacting confimer pair. The one and only
purpose of this complex compensation scheme is to keep the
self- and interaction energies positive, which allows to find the
optimum solution quickly, as described below.

2.4. Finding the Global

Minimum of the

Configurational Energy

Function

The name “confimer” has been chosen due to its similarity with
“rotamer,” which already provides a hint that finding the best
confimer for each variable group is exactly the same as finding
the best rotamer for each amino acid side chain in a protein.
Consequently, the well-developed methodology of protein side-
chain prediction can be used without change. We employ
the SCWRL algorithm, which is extremely fast and essentially
guaranteed to find the global energy minimum (19):

1. Build an undirected graph, where each variable group is a
node (with two or more confimers), and those nodes that
interact (have an interaction energy >0 according to (6)) are
connected with an edge.

2. For each node, discard those confimers whose self-energy
is higher than the maximum energy (¼self + interaction
energy) of another confimer (dead-end elimination).

3. Break the graph into biconnected components (subgraphs
that cannot be split in two by removing a single node).
Solve the biconnected components individually for each con-
fimer of the articulation node (i.e., the node that connects
a biconnected component to the next one), adding the result-
ing energies to the self-energies of the confimers. This effec-
tively “collapses” a subgraph onto its articulation node,
thereby reducing the search space until only a single node is
left, whose lowest confimer energy is simply the global energy
minimum.

4. Start from the final node, walk along the graph in the reversed
direction and determine for each node which confimer con-
tributed to the global energy minimum. Transfer this config-
uration to the actual 3D structure (adding or deleting
hydrogens and turning ambiguous groups around where
needed).

An important point that has so far not been mentioned is
water molecules. They also participate in the hydrogen bonding
network, and can in principle be included in the energy function
(3). But in practice it is quite hard to find a case where structurally
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important water uniquely determines the hydrogen bonding
network of the protein. Most of the time—thanks to their ability
to change from donor to acceptor with just a rotation—waters
simply adapt to the solute. One can therefore obtain a useful
H-bonding assignment for waters by considering the solute as
fixed, finding the water that forms the largest number of potential
hydrogen bonds with fixed atoms, choosing the resulting best
orientation, fixing this water too, and iterating until all waters
are assigned. An even simpler alternative is to perform an energy
minimization of the waters with any force field, while keeping the
water oxygens and the solute fixed.

3. Notes

1. The majority of protein pKa values have been measured by
NMR spectroscopy for proteins in solution. But often, the
actual NMR solution structure is not available (or of limited
quality (31) and presumably also accuracy), so that one is
forced to use a crystal structure to predict solution pKa values
(32). That is why pKas may be strongly influenced by features
missing in the structure used for the prediction, which obvi-
ously adds a considerable amount of random noise. This
might explain why protein pKa prediction accuracy is usually
around 0.8 pKa units (RMSD between predicted and
measured pKa), independent of the method used.

2. When evaluating the accuracy of a pKa prediction method, the
first question is: does the method perform any better than
the null-model (the trivial “prediction”), which just assigns
the same pKa to all ionizable groups of a certain type (e.g.,
a pKa of 4.09 to all glutamate side chains). It is crucial that
the null-model pKas are optimized, i.e., chosen such that the
RMSD between null-model pKa and experimentally measured
pKa is minimal. To avoid bias, this can be done with a jack-
knife approach, which excludes the pKa to predict from the
null-model optimization (12). If the null-model was not
optimized but instead based on some arbitrary default values
(e.g., the experimentally measured pKa of an isolated gluta-
mate residue), then performing better than this arbitrary
null-model would not be a valid proof of usefulness.

3. Intrinsic pKa values are those measured for Ala-Ala-X-Ala-Ala
pentapeptides, which thus represent the pKa of residue “X”
in a protein with minimum influence of surrounding residues.
In theory, these should be the ideal starting points for pKa

prediction, but for the empirical method described here, we
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found that the optimal starting points were closer to the
average measured pKas (12).

4. The elements N, O, S, and P are donors if they have a
hydrogen bound, metal ions are always “donors.” The num-
ber of potentially accepted hydrogen bonds is determined
as follows: Elements O and S accept one hydrogen bond
if they are aromatic, and max(0,4-valence) bonds otherwise
(the valence is the sum of the bond orders). Phosphorous with
�3 bonds accepts one hydrogen bond. Nitrogens that are
planar (sp2) or form >3 bonds do not accept any hydrogen
bond, and one otherwise.

5. The last of the three positions considered for a freely rotating
hydrogen is facing away from other hydrogens and clashing
atoms. It is estimated quickly by summing up a*r/|r|3, where
r is the vector from nearby metal ions, hydrogen bond donors
and their hydrogens (a ¼ 1.65) or carbon atoms (a ¼ 1.0)
closer than 5 Å to the donor atom. The empirical exponent 3
is chosen because the interaction is not purely electrostatic
(exponent 2) but also includes Van der Waals repulsion (expo-
nent 13). The rotating hydrogen is then placed in the plane
spanned by the summed up direction vector and the hydrogen
rotation axis.

6. A central goal of the configuration optimizer is to reach a high
performance. Energies are therefore generally not calculated
from all atoms involved (as known from MD force fields),
but from the minimum set of atoms required. Consequently,
they are mostly “effective empirical energies” which have
been balanced to yield the result considered correct (see
Subheading 1). The energy of a hydrogen bond is defined
as a function of the hydrogen-acceptor distance HADis and
two angle-dependent scaling factors:

HBEnergy ¼min

�
0;�25� 2:6�maxðHADis ; 2:1Þ

0:5

�DHAScale �HAXScale

�
kJ/mol;

where DHAScale is 0 for Donor-Hydrogen-Acceptor angles
<100, 0 . . . 1 for angles 100 . . . 165, and 1 for angles >165.
HAXScale is 0 for Hydrogen-Acceptor-X angles <85, 0 . . . 1
for angles 85 . . . 95, and 1 for angles >95. “X” is the atom
bound to the acceptor. If the acceptor forms more than one
covalent bond, the one with the minimum H-A-X angle (and
thus the worst energy) is taken (this accounts for bumps
between “X” and the donor, which lower the quality of the
hydrogen bond).
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7. The hydrogen bonding energy with surrounding water mole-
cules is defined as

WaterHBEnergy ¼ ð�25þ 2:5Þ �MolSurfArea

6
�UsedSites

HBSites
kJ/mol;

where 2.5 is the “entropic cost of a H-bond with water”
(which ensures that internal H-bonds are preferred), MolSur-
fArea is the molecular surface area of the donor or acceptor
including all bound hydrogens in Å2, “6” is the area typically
needed per hydrogen bond with water, UsedSites is 1 for
donors and AccSites for acceptors, which is explained like
HBSites in the main text.

8. The coordination energy between an acceptor and a cation
is set equal to a hydrogen bond when they touch and
then decays like an electrostatic interaction (the AccRadii for
N,O,P,S are 1.34, 1.14, 2.0, 2.0 Å):

AccIonEnergy

¼ �25

maxð1;AccIonDis�AccRadius�IonRadiusþ1ÞkJ/mol:

9. The penalty for two polar hydrogens facing each other consists
of long-range electrostatic repulsion and short-range VdW
repulsion (using a softer exponent 4 instead of the usual 12):

Hyd2Penalty

¼ 40=Distance þ 40�max 0;2:7�Distanceð Þ4kJ/mol:

10. The repulsion energy between a donor hydrogen and a
cation is defined accordingly as

HydIonPenalty

¼ 53

maxð0;HydIonDis � 0:32� IonRadius þ 1Þ kJ/mol:

11. The penalty for a hydrogen bumping into another atom
(with VdWRadius) that is separated by more than three
covalent bonds is

HydClashPenalty

¼ 40�max 0; 1:2þ VdWRadius �Distanceð Þ4kJ/mol:
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Part VI

Toward the Use of Robust Free Energy
Methods in Drug Design





Chapter 26

Best Practices in Free Energy Calculations
for Drug Design

Michael R. Shirts

Abstract

Free energy calculations are increasingly of interest for computing biophysical properties of novel small
molecules of interest in drug design, such as protein–ligand binding affinities and small molecule partition
coefficients. However, these calculations are also notoriously difficult to implement correctly. In this
article, we review standard methods for computing free energy differences via simulation, discuss current
best practices, and examine potential pitfalls for computational researchers without extensive experience in
such calculations. We include a variety of examples and tips for how to set up and conduct these
calculations, including applications to relative binding affinities and absolute binding free energies.

Key words: Free energy calculation, Alchemical methods, Thermodynamic integration, Bennett
acceptance ratio, MBAR, Drug design, Binding free energy

1. Introduction

The term free energy calculationdescribes a large family of simulation
procedures to calculate the free energy difference between two
thermodynamic states. Calculating the free energy difference
between twostates is extremely useful in simulationsofbiomolecular
interactions in drug design. If we can calculate the free energy
difference between two arbitrary molecular systems, we can deter-
mine small molecule transfer free energies and partition coefficients,
and thus predict the concentration of the molecule in each phase.
Perhaps the most relevant free difference for drug design is the free
energy of binding of a small molecule to a receptor which can be
directly related to the inhibition constant of the receptor.

Over the last decade, there has been a increasing enthusiasm
in the potential for free energy calculations as a useful tool in drug
design. First, methodological innovations make the calculations
easier and more robust. Second, implementation of these methods
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makes them available to many users. Finally, steady increases in
computer power enable application to a broader range of systems.
These improvements bring these techniques close to providing
reliable free energy estimates for biophysical systems. But free
energy calculations are still difficult, and deciphering the proper
techniques can be confusing. This methodological review is
designed to help researchers who have some familiarity with
molecular simulations and knowledge of statistical mechanics,
but are looking for more guidance on performing free energy
calculations.

Free energy calculations are among the most difficult types of
biomolecular simulations to carry out for several reasons. Most
simulation packages require extensive manual adjustments to
input files to carry out free energy calculations. Calculation
between two thermodynamic states can be extremely sensitive to
choices of parameters unimportant for simulations of a single
thermodynamic state. Additionally, a vast number of methodolo-
gies available can lead to a bewildering number of choices.

Standard computational methods for calculating free energies
use molecular simulations to generate independent samples from
the equilibrium distribution of the molecular system. Then, the
information from these samples is analyzed using statistical tools
to obtain an estimate of the free energy difference. Because of the
statistical nature of this analysis, free energy calculations give
estimated free energies, and repeating the calculation from differ-
ent starting configurations or different random seeds will give
different free energy estimates. To emphasize; free energy results
are not exact results; they are statistical estimates obtained from
sampling molecular probability distributions. Consequently, error
analysis must always be performed to identify the statistical noise
in the calculation, and no free energy calculation should ever be
used or published without a statically robust uncertainty estimate.

Free energy calculations provide an estimate of the correct free
energy difference between a thermodynamic process given a par-
ticular set of parameters and physical assumptions, not necessarily
an estimate of the value that would be observed experimentally.
The goal of good free energy methods is to converge to the
unique free energy for that model. This is the “correct” free
energy for the calculation. Only after this free energy is deter-
mined accurately can parameters of a model be improved, though
substantial care must be taken to avoid overfitting. This review
does not address finding or developing the best molecular model
for a particular problem.

In this methods survey, we focus primarily on calculating
binding free energies of ligands to proteins. A chapter entitled
“An Introduction to Best Practices in Free Energy Calculations”
in the book Biomolecular Simulations: Methods and Protocols in
this same “Methods in Molecular Biology” series covers more
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general aspects of free energy calculations for biophysical meth-
ods, and readers are encouraged to also review that chapter for an
expanded discussion of many of the topics discussed here.

We first discuss what should and what should not be expected
when performing free energy calculations of drug binding. We
then cover basic theoretical principles behind free energy calcula-
tions of binding affinity. Finally, we outline the steps that must be
performed for typical free energy calculations, including setup,
running the simulation, and data analysis. We conclude with
specific examples of these calculations for absolute binding free
energies and relative ligand binding affinities.

1.1. What One Can

Expect in Calculating

Binding Free Energies

of Drugs

At this time, it is not yet possible to accurately and reliably calcu-
late free energies of protein-ligand binding using molecular simu-
lation. Any such notion should be disabused up front. Tests of free
energy calculations have thus far been insufficient to demonstrate
if such calculations are truly predictive. This lack of testing has
partly been because of the lack of good data sets, and partly
because the computational expense to run such a comparisons
has generally been too large. Nevertheless, there is almost univer-
sal agreement that the two most important factors are the inade-
quacy of current classical force field models to capture the
biophysical properties of small molecules and proteins, and the
difficulty of sampling all relevant configurations for macromolec-
ular binding.

Full ligand binding free energy calculations should therefore
not yet be seen as a useful screening technique because of the
computational cost involved and the lack of validation of the
underlying force fields. It can take hundreds of ns of simulation
to compute a binding free energy with even moderate statistical
convergence. The often difficult manual setup for most free
energy calculations also creates a substantial barrier to performing
high-throughput calculations.

However, there are a number of ways in which free energy
calculations of binding affinities can still be useful. These calcula-
tions can have some predictive value if sufficient care is taken; for
example, a recent study was able to perform accurate blind pre-
dictions to the apolar site of T4 lysozyme (1). More fundamen-
tally, performing free energy calculations can allow physical
identification of the molecular interactions contributing to bind-
ing in a dynamic macromolecular system with fluctuations, infor-
mation that is very difficult to calculate in any other way. Full
protein flexibility and explicit water molecules are naturally
included in full statistical mechanical free energy calculations, so
that one can discover locations of bound waters and correlations
of ligand orientations and protein conformations.

Calculating free energies of binding through full statistical
mechanical calculations provides a clear path for continual
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improvement because of the fully physical approach. If the models
are sufficiently physically accurate, and we perform sufficient sam-
pling, the answers must be correct because of the underlying
physics. Thus, the long-term prospects for free energy calculations
as a predictive tool are significantly more encouraging than the
current status may indicate.

1.2. Theoretical

Principles

In this discussion, we assume standard classical molecular mechan-
ics models, including harmonic bond and angle terms, periodic
dihedral terms, and nonbonded terms consisting of point charges
and Lennard-Jones repulsion/dispersion terms. We do not
address free energies with polarizable models or with mixed
QM/MM simulations (2), since these are not well developed
enough to be of interest in most drug binding calculations yet.

All of the standard approaches for calculating free energies are
variations of the same statistical sampling procedure. Samples are
collected from simulations of thermodynamic ensembles and then
analyzed to obtain a free energy difference. The main difference
between approaches are in the types of energy data collected from
simulation, and in the analysis performed with this data.

Free energy differences between states are directly related to
the probabilities of those states. Specifically, the free energy differ-
ence is the log of the ratio of the partition coefficients of the
thermodynamic states of interest. Rigorously, the free energy
difference between two thermodynamic states in a constant vol-
ume ensemble is as follows:

DAij ¼ �kBT ln
Q j

Qi
¼ �kBT ln

R
Vi
e
�Ui ð~qÞ

kBT d~q
R
Vj
e
�Ui ð~qÞ

kBT d~q
; (1)

where DAij is the Helmholtz free energy difference between state j
and state i, kB the Boltzmann constant, Q the canonical partition
function, T is the temperature in Kelvin, Ui and Uj are the poten-
tial energies as a function of the coordinates and momenta ~q for
two states, and Vi and Vj are the phase space volume of~q over which
we sample. The phase space volume is the total set of coordinates
and momenta in which the system has nonzero probability of
being found. In this survey, we assume that this phase space
volume is the same for both molecules, which is reasonable
for most systems (see Note 1). For ease of notation, we also use
kBT¼ b in this article (see Note 2). We also assume that the masses
of the particles do not change, and we use the potential energy
U instead of the more general Hamiltonian H for clarity.

From this basic definition, we note that we are always calcu-
lating free energy differences, not absolute free energies. All of the
quantities that are of interest in biophysical measurements are free
energy differences between two thermodynamic states, so we
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must always specify two states. Even “absolute” free energies of
drug binding are still free energy differences between two states,
specifically (1) a ligand in the binding site and (2) a ligand and a
host separated from each other.

We can easily modify the above discussion to deal with the
Gibbs free energy (G) instead. If we replaceUi andUjwithUi +PiV
and Uj + PjV respectively, and integrate over all system volumes V
(not to be confused with the phase space volumes) in addition to
integrating over the coordinates~q, then we will get the Gibbs free
energy G instead of A and the isobaric-isothermal partition func-
tion X instead ofQ. All the derivations presented in this review can
be extended directly with this substitution. At constant pressure,
the change in free energy related to changes in average volume will
be small at physiological pressures. This is only an approximation,
as it ignores fluctuations, but illustrates that we can generally
neglect the PV component to the free energy and perform calcula-
tions at NVT if we are careful to make sure that the simulation is
actually at the average volume for the state (see Note 3). To make
clear our discussions of the NVT case, we use the Helmholtz free
energy difference DA. Again, any simulation method that includes
proper isobaric–isothermal sampling of volumes can simply insert
U + PV in place of U, where P is the applied (not instantaneous)
pressure and all the subsequent derivations will hold.

1.3. Simulation

Methods Useful

for Calculating Free

Energy Differences

In this section, we discuss the need for having a pathway of inter-
mediates connecting two states, and review the most common
and/or useful method for computing free energy, the Zwanzig
relationship, thermodynamic integration, the Bennett Acceptance
ratio (BAR), the weighted histogram method (WHAM), and the
multistate (). We use the term “alchemical transformation” to
using these methods to compute the difference of a process that
changes the chemical identity of our molecule (see Note 4).

1.4. Multiple

Intermediates

In most instances where the states of interest have very little phase
space overlap, the transformation can be broken into a series of
intermediate states that do have good phase space overlap. By
good phase space overlap between two states, we mean that the
number of configurations that both states visit is some moderate
percentage of each state’s total phase space. Without good phase
space overlap, it is impossible to compute the free energy differ-
ences between two states.

ConsiderK� 1 free energy calculations spanning a series ofK
states that do have phase space overlap, where k ¼ 1 and k ¼ K are
our states of interest. Mathematically it is as follows:

DA1;K ¼
XK�1

i¼1

DAi;iþ1:
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A separate free energy calculation is then performed for each
of the individual DA’s, simulating the two neighboring states.
Since we care specifically about the free energies of only the end
states, we do not care about precise form of the intermediates.
This leaves us free to choose intermediate states that have high
phase space overlap with one another, which means we can choose
completely unphysical states if they lead to less overall error.
Statistical uncertainty is a very steep function of the amount of
phase space overlap, so the total uncertainty decreases quickly as a
function of the number of intermediates. Common examples of
nonphysical intermediates include atoms without charges, an
atom with van der Waals parameters that are part-way between a
carbon and a nitrogen, or a “softened” atomic site that solvent
molecules can penetrate.

It is both useful conceptually and mathematically convenient
to think of these intermediate states as lying along a pathway
connecting the initial and final states. The parameterized distance
along this path connecting the initial and final states is tradition-
ally called l, with l¼ 0 corresponding to the initial state and l¼ 1
corresponding to the final state. Since these states are often
unphysical, we call them alchemical states. We can then think of
the potential describing the system as a function of both l and~q,
writing this as U ðl;~qÞ. We must then perform simulations of
U ðl;~qÞ at a series of l values, generating samples that will allow
us to estimate each of the DAi,i+1 free energy differences.

1.5. Zwanzig

Relationship

The most historically well-known method for calculating free
energy differences from simulations is the Zwanzig relationship
(3). This method is sometimes called free energy perturbation or
exponential averaging. We refer to this method as EXP, for expo-
nential averaging. The free energy between two potentials U0ð~qÞ
and U1ð~qÞ over a coordinate and momentum space ~q can be
calculated as:

DA ¼ b�1 ln e�bðU1ð~qÞ�U0ð~qÞÞ
D E

0
¼ b�1 ln e�bDU ð~qÞ

D E

0
: (2)

Although the equation is exact for standard molecular models,
except in the case of rather small changes, EXP converges very
poorly as a function of the number of samples collected. Free
energy differences that appear to have converged may only indi-
cate very poor phase space overlap between the two states (4, 5).
Except for very specific cases, where the difference between
potential energy distributions is known to always be very small
for all~q, on the order of (1 � 2kT), EXP should generally not be
used. There are some cases where all potential energy differences
are known to be small; some of these cases are discussed in
previously mentioned chapter of Biomolecular simulations: meth-
ods and protocols in the “Methods in Molecular Biology” series.
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If a sufficiently large number of intermediate states are used, then
EXP can give correct results, but it is usually significantly less
efficient than other methods.

1.6. Thermodynamic

Integration

By taking the derivative of the free energy with respect to the
variable l describing the distance along the series of intermediate
alchemical states, we find the following:

dA=dl ¼ d

dl

Z
e�bU ðl;~qÞd~q ¼ dU ðl;~qÞ

dl

� �

l

DA ¼
Z 1

0

dU ðl;~qÞ
dl

� �

l
dl:

(3)

Computing free energies using this formula is called thermo-
dynamic integration, abbreviated as TI in this chapter, and is often
done using numerical integration. Since we can only simulate a
limited number of intermediates, we must use some type of
numerical integration of the integral. By definition, numerical
integration introduces bias, which must be minimized sufficiently
that it is well beneath the level of statistical noise.

Various numerical integration schemes are possible, but the
trapezoid rule provides a simple, flexible, and robust scheme.
All types of numerical integration can be written as follows:

DA �
XK

k¼1

wk
dU ðl;~qÞ

dl

� �

k

;

where the weights wk correspond to a particular choice of numer-
ical integration. Researchers have tried a large number of different
integration schemes (6–8). Many other integration routines
require specific choices of l to minimize bias, which makes them
unsuitable when the intermediates have widely varying levels of
uncertainty. For starting researchers, we, therefore, recommend a
simple trapezoidal rule scheme, as it allows for maximal flexibility
in which values of l are simulated. (see Notes 5 and 6).

TI can be extremely simple to apply for some paths, but most
paths require derivatives with respect to l to be calculated in the
code itself. If the pathway is chosen such that U ðl;~qÞ ¼ ð1� lÞ
U0ð~qÞ þ lU1ð~qÞ, then dU

dl ¼ U1ð~qÞ �U0ð~qÞ, which can be easily

calculated in post-processing by evaluating the same configuration
at the initial and final states. If the pathway is not linear in the
potential, then the derivative must be calculated analytically in the
code. Unfortunately, most problems of interest require using
pathways that are not linear, as we discuss later. However, if the
code does compute dU

dl , then TI is perhaps the simplest method to
use, as it involves a very little postprocessing, and the analysis
requires only simple averages and sums. As long as care is taken
to make sure that enough intermediates are used to reduce bias in
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the integration well below the statistical noise, then TI gives very
robust energy results. The more curvature dU

dl

� �
has, the more

intermediates will be required.

1.7. Bennett

Acceptance Ratio

Measurements of potential energy differences can be used in a
statistically optimal way to compute free energy differences. The
difference between the potential energy of the same configuration
~q for two different states along the pathway is DUij ð~qÞ. There is a
very robust, statistically optimal way to use this potential energy
differences collected from both states i and j together to obtain an
improved estimate of the free energy difference between two
states. Bennett’s original derivation started with a simple relation-
ship for the free energies:

DAij ¼ � ln kT
Q j

Qi
¼ kT ln

að~qÞ exp½�bDUij ð~qÞ�
� �

1

að~qÞ exp½�bDUjið~qÞ�
� �

0

; (4)

which is true for any function að~qÞ>0 for all~q. Bennett then used
variational calculus to find the choice of að~qÞ that minimizes the
variance of the free energy (9), resulting in an implicit function of
DA easily solvable numerically:

Xni

i¼1

1

1þ expðlnðni=nj Þ þ bDUij � bDAÞÞ

�
Xnj

i¼1

1

1þ expðlnðnj=niÞ � bDUji þ bDAÞÞ ¼ 0; (5)

where ni and nj are the number of samples from each state.
A separate derivation shows that the same formula provides a
maximum likelihood estimate of the free energy given the samples
from the two states (10). Both derivations give the same robust
estimate for the variance and uncertainty of the free energy. Stud-
ies have demonstrated both the theoretical and practical superior-
ity of BAR over EXP in molecular simulations (4, 5), and EXP can
be shown to converge to EXP in the limit that all samples are from
a single state (9, 10). Significantly less overlap between the con-
figurational space of each state is required to converge results than
in the case of EXP, though some overlap must still exist. Many
simulation packages have tools to compute the BAR estimator
automatically, so it usually does not need to be implemented.

It is difficult to compare TI and BAR on a theoretical basis
because the two approaches use different information. However,
practical experience indicates BAR generally performs more effi-
ciently. More precisely, given a amount of simulation, fewer inter-
mediate states are required for BAR than for TI to give equivalent
level of statistical precision. TI can be as efficient as BAR under
conditions where the integrand is very smooth (4, 11), such as
charging or small changes in bonded or nonbonded parameters.
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In other cases, such as the pathways required to remove large
numbers of atomic sites, BAR is much more efficient than TI or
EXP for free energies of larger molecular changes (4, 5, 12).
Additionally, no analytical computation of du/dl is required to
use BAR.

1.8. Weighted

Histogram Analysis

Method

The WHAM provides a way to use information from all of the
intermediate l values in computing free energy differences
between states. Most free energy calculations require simulation
at a number of different intermediates, and we would prefer to use
as much thermodynamic information as possible from all of these
simulations simultaneously to save computational cycles. Histo-
gram weighting techniques were first introduced by Ferrenberg
and Swendsen (13) to capture all of the thermodynamic informa-
tion from all sampled states in computations of free energies and
other observables. WHAM is a histogram reweighting technique
introduced in 1992 by Kumar and collaborators for alchemical
simulations (14). WHAM is the lowest uncertainty method for
calculating free energies using samples collected from discrete
states. However, it introduces biases for continuous distributions,
such the energies of atomistic simulations, because all variables
must be discretized into bins. Other variations of WHAM based
onmaximum likelihood (15) and Bayesian methods (16) have also
been developed. Beginners should generally not write their own
WHAM implementation, because solving the nonlinear equations
correctly can be very challenging. The CHARMM molecular
mechanics package includes WHAM-based free energy calcula-
tions (17, 18), and several other stand-alone WHAM implemen-
tations are available, so new development of tools is not necessary,
other than for pedagogical reasons.

One can reduce the WHAM equations to a simpler form by
shrinking the width of the histograms to zero (14, 17), yielding a
set of iterative equations that estimate the free energies from K
states simultaneously.

Ai ¼ �b�1 ln
XK

k¼1

XNk

n¼1

exp½�bUið~qknÞ�
PK

k0¼1

Nk0 exp½bAk0 � bUk0ð~qknÞ�
; (6)

where i runs from 1 toK, theAi are the free energies of each state,
~qkn is the nth sample from the kth state, and the Ui are the
potentials of these K states. Although this looks like a formula
for absolute free energies, not a formula for free energy differ-
ences, the equations are only unique up to an additive constant, so
we must fix one of the free energies as a reference states. We are
then effectively calculating free energy differences from that refer-
ence state. The derivation of this approximation is somewhat
suspicious for finite numbers of samples, as the derivation involves
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finding the weighting factors that minimize the variance in the
occupancy of the bins, which becomes undefined as the bind
width and therefore the average number of samples per bin goes
to zero.

1.9. Multistate Bennett

Acceptance Ratio

A multistate extension of BAR called the multistate Bennett’s
Acceptance Ratio, or MBAR (19) was recently introduced which
overcomes the binning issues with WHAM. In this approach, a
series ofK�K weighting functions aij ð~qÞ are derived to minimize
the uncertainties in free energy differences between all K states
considered simultaneously. The lowest variance estimator is exactly
the WHAM equation in the limit of zero-width histograms (6).
WHAM can be therefore be interpreted as a histogram-based
approximation to MBAR. This MBAR derivation additionally
gives the statistical uncertainty of the calculated free energies,
which is not available in WHAM. MBAR has no histogram bias
and is guaranteed to have lower bias and variance than WHAM.
However, in many cases, the bins are small enough so that the
difference in free energies between the two methods is negligible
compared to the statistical precision required. If WHAM is imple-
mented directly in the code, it may not be worth the additional
gain to switch to MBAR, as the statistical uncertainty can be
obtained by alternate methods that we describe below. MBAR is
still not standard in molecular simulation, but aMBAR implemen-
tation can be downloaded at https://simtk.org/home/pymbar.

1.10. Nonequilibrium

Methods

Nonequilibrium simulations can also be used to compute free
energies. In a physical or alchemical process where thermody-
namic variables change over some interval of time, some amount
of work W required to make this change. If this is done infinitely
slowly, the process is reversible, and W will be the free energy
difference between the end states. However, if the change is
performed in a finite amount of time, this process will not be
reversible and hence the work will not equal to the free energy.
Jarzynski noticed that the free energy of the transformation can be
written as the average of the nonequilibrium trajectories that
started from an equilibrium ensemble.

DG ¼ b�1 ln e�bW� �
0
: (7)

If the switching is instantaneous, then (7) is identical to EXP
because the instantaneous work is simply the change in potential
energy Dij. A version of BAR (though not MBAR) can be con-
structed with the nonequilibrium work (10, 20).

Several studies have compared nonequilibrium pathways to
the equilibrium pathways (21, 22). It appears that under most
circumstances, equilibrium simulations are about the same or
slightlymore efficient than free energies calculated from ensembles
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of nonequilibrium simulations. It is thus not yet clear the extent to
which free energy calculations using Jarzynski’s relationship will be
useful in ligand binding calculations in the future, because of the
extra complications of running many separate trials. This is an area
of intense research, partly because this formalism has proven useful
in treating nonequilibrium experiments as well as simulations, and
partly because there are still some tantalizing possibilities for sub-
stantially increasing the efficiency in free energy calculations with
such simulations. However, we do not recommend that beginners
use these methods, as they add an extra degree of complication to
both the simulation and the analysis. Further information on how
to implement such calculations can be found in other reviews (23).

2. Methods

2.1. Outline of Free

Energy Calculations

Fundamentally, calculating a free energy requires a molecular
simulation package that generates samples from the equilibrium
distribution of the states of interest, as well as from any interme-
diate states that might be required, and extracts basic energetic
information from those states.

Several key ingredients in a simulation package can help make
free energy calculations much more convenient. The key features
of a code that makes it easy to calculate free energies efficiently are
(1) the ability to simulate nonphysical intermediate states along a
low variance pathway (2) automatic and computationally efficient
calculation of the required energetic information (either DUij or
dU
dl ) and (3) some degree of automation of the analysis of this

information. Many types of free energy calculations can be per-
formed with any molecular mechanics or Monte Carlo code,
though calculations sufficiently efficient to study large and com-
plicated systems require code specifically set up to support good
free energy practices.

In what follows, we discuss how to conduct free energy cal-
culations, striving to avoid specifics about particular codes and
tools. It is impossible to give full descriptions of proper steps for
all simulation packages, as the free energy capabilities of virtually
all simulation packages are evolving rapidly. Most of the common
packages used for biological simulation (AMBER, CHARMM,
GROMACS, GROMOS, DL-POLY, LAMMPS, Desmond)
have at least one of the standard free energy functionalities built
in, but certainly not all programs have all free energy functional-
ities. With collaborators, have developed a Web site, http://www.
alchemistry.org, which is intended to provides more in-depth
information on with code specific instructions, points too detailed
to include in this present format, and example files and results.
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All methods for computing free energies differences presented
in this review consist of the following steps:

1. Construct a thermodynamic cycle that allows easy calculation
of the free energy of interest, and determine the end states for
each calculation required by the thermodynamic cycle.

2. Choose a sequence of intermediate states connecting the two
end states for each free energy calculation.

3. Perform equilibrium simulations of the states of interest and
any required intermediate states to collect uncorrelated, inde-
pendent samples.

4. Extract the information of interest required for the desired
free energy method from the sampled configurations.

5. Analyze the information from the simulations to obtain a
statistical estimate for the free energy, including an estimate
of statistical error.

2.1.1. Construct

Thermodynamic Cycles

and Choose End States

The free energy is a state function, and any series of transforma-
tions connecting the two end points gives the correct free energy.
In many cases, it will be significantly more effective to use less
direct paths that are more efficient. Whenever performing a free
energy calculation, it is important to construct the appropriate
thermodynamics cycle to clearly visualize the transformation
being performed.

For example, perform relative binding free energies can be
simply understood by drawing the appropriate thermodynamics
cycle. Relative free energies can be computed by performing two
separate calculations of free energies of binding for two different
molecules, and subtracting them (see Figure 1). However, free
energies of binding can require extremely long simulation times,
because they require removing the entire ligand from the environ-
ment of the protein and the solvent, a process that can require
either prohibitively large amounts of computer power, or fairly
involved constraining methods to improve convergence. How-
ever, as can be seen in Figure 1, this same free energy difference
can be written as the difference of two different nonphysical
processes, the changing of molecule A to molecule B while
bound, and the changing of molecule A to B while unbound:

DAbind ¼ DAB
bind � DAA

bind ¼ DAbound
A!B � DAunbound

A!B :

Since the unbound protein is the same in both cases, no
simulation needs to be performed of the unbound protein.

The next step is to determine which simulations correspond
to the end states of the free energies differences of interest. This
must be done carefully. For example, for computing a solvation
free energy of a small molecule solute, the initial state the
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calculation of the solvation consists of the solute and some quan-
tity of solvent in a specified volume. The final state consists of the
same small molecule solute in vacuum in the same volume as in the
initial state, and plus the same number of solvent molecules as the
initial state, also in the same volume as the initial state. A typical
beginner’s error is to use a final end state with all energetic terms
of the solute turned off, which is not correct; in the vapor phase,
the intramolecular interactions of the solute should remain turned
on. Only the intermolecular interactions should be turned off.

2.1.2. Choose a Series

of Intermediate States

If the end states of the transformation of interest do not have
significant overlap in phase space, a series of intermediate states is
required. The judicious choice of these intermediates is one of the
most complicated aspects of free energy calculations.

It is important to clarify some of the terms used in free energy
calculations. When performing equilibrium simulations of inter-
mediate states along a pathway, any distinction between “for-
ward” and “backward” is arbitrary. If one state contains an atom
in state A that is not present in state B, then interpreting A as the
initial state and B as the final state means that this atom is dis-
appearing or being destroyed or annhiliated, whereas treating
state B as the initial state means that the same atom is being
created or introduced into the system. The choice of words to
describe this change is entirely semantic. We generally refer to
either of these changes as decoupling, where only intermolecular
interactions are turned off, or annihilation, which refers to turn-
ing off all interactions with the system, both intermolecular and
intramolecular, rather than creation or coupling.

Fig. 1. The thermodynamic cycle for the relative binding affinities of ligand A and B to a
host molecule.
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The simplest choice for most transformations between two
potential functions U0 and U1 is the linear pathway. For example:

U ðl;~qÞ ¼ ð1� lÞU0ð~qÞ þ lU1ð~qÞ þUunaffectedð~qÞ; (8)

where Uunaffectedð~qÞ is the potential due to interactions which do
not change as a function of intermediate state. For annihilation, it
will be the solvent–solvent interactions; for decoupling, it will be
the solvent–solvent and solute–solute interactions.

A significant problem with this approach is that equal spacing
in l does not actually lead to equal spacing in phase space overlap.
If a Lennard-Jones function is used to for atomic exclusion and
dispersion interactions, as is typical for biomolecular interactions,
then when l ¼ 0.1, nearly at one end state, the excluded volume
for a OPLS-AA united methane sphere (i.e., the volume with
energy above 2–3 kBT) will still be 60–70% of the original volume.

More severely, this choice of parameterization with a r�12

leads to a singularity in hdU/dli at r ¼ 0, which then cannot be
integrated numerically. Some studies try to approximate this dif-
ference by extrapolation, but this is extremely unreliable and error
prone. Therefore, a linear pathway in energy should not be used to
annihilate or decouple atoms (see Note 7).

Fortunately, there are now standard ways to handle the decou-
pling of atomic sites in an efficient way, the “soft core potential”
approach (24, 25). In this approach, the infinity at r ¼ 0 of the
r�12 interaction is “smoothed out” in a l dependent way. The
most common form of the pairwise potential is:

H ðl;rÞ¼4Eln að1�lÞmþ r

s

� �6� 	�2

þ að1�lÞmþ r

s

� �6� 	�1
" #

;

(9)

where e and s are the standard Lennard-Jones parameters, a is a
constant (usually 0.5), with the original choice of n ¼ 4 and m ¼
2 (24). Further research has shown that using n¼ 1 andm¼ 1,with
a fixed at 0.5, noticeably improves the variance (26–28).

To turn off intermolecular interactions between a molecule
and its surroundings requires decoupling both the charge and the
Lennard-Jones interactions. One highly reliable, relatively high
efficiency pathway for annihilation or decoupling of atoms is to
turn off the charges of these atoms linearly and then afterwards
turn off the Lennard-Jones terms of the uncharged particles using
the soft core approach. The same pathway can be followed in
reverse for atomic sites that are introduced (18, 27). This
ensures that when the repulsive cores with infinite positive energy
at r ¼ 0 are eliminated, there are no negative infinities energies at
r ¼ 0 due to Coulombic attraction between unlike charges.
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Another similar approach is to turn off both the Coulombic
and the dispersion term first, and then in a separate step turn off
the repulsive term. There appears to be little difference in effi-
ciency between these two approaches; both work well. It is possi-
ble to turn off both the Coulombic term and the van der Waals
term at the same time using soft core potentials with both,
(24, 29), but it can be difficult to choose parameters for these
approaches that are transferable between systems. We highly
recommend using the soft core for only the van der Waals inter-
actions, after charges have been turned off separately.

Constructing alchemical pathways between twomolecular end
states involves one of two main approaches. These are the single
topology approach and the dual topology approach (see Note 2).
In the single topology approach (a, upper) a single topology has
sites that correspond to atoms in bothmolecules. At one end state,
two hydrogens are turned into “dummies” that have no non-
bonded interactions with the rest of the system, and the upper
heavy atom is an oxygen, while at the other end state, all atoms
present, and the upper heavy atom is now a carbon. The alternative
dual topology approach differs in that no atoms change their type;
they merely change back and forth from being dummies to being
fully interacting particles (b, lower). In this case, at the ethanol end
state, the methyl group is noninteracting, while in the ethane end
state, the hydroxyl group is noninteracting.

One advantage to dual topology approach is that the moieties
which change are free to sample the configurational space while
decoupled. This can help increase the sampling if the simulations
at different intermediates are coupled in a way that allow
exchanges, such as expanded ensemble or Hamiltonian exchange
simulations. However, for a dual topology approach, more atoms
or molecules must be annihilated or decoupled from the environ-
ment, which will require more intermediates. In many cases, the
convergence time may be the limiting factor, so a dual topology
approach can be more efficient.

Dummy atoms can in principle affect free energies, but han-
dled correctly, their effects can often be neglected. Although the
end states shown in Fig. 2 have the correct nonbonded interac-
tions for both ethane and ethanol, they are clearly different molec-
ular objects, as they have nonphysical dummies bonded to the
carbon or oxygen. Because these dummy atoms affect the system,
we need to account for their free energy contributions. The easiest
solution is to perform the transformation in both vacuum and in
the molecular surroundings. In the rigid-rotor approximation,
where all bonds are fixed in length, the effect on the free energy
of these nonphysical dummies cancel out (30). If the bonds are
not constrained, then there will be slight differences, but they
appear to be small enough (less than 0.01 kcal mol�1) to be
neglected in any problem of real interest.
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Inmany cases,we need tomodify the bonded interactions of the
molecule. This can be handled in a straightforward way. For exam-
ple, in the single topology transformation of ethane to ethanol, the
angle and dihedral terms involving the changing heavy atom are
clearly different in the two end states.Wemust change these bonded
interactions in addition to the nonbonded interactions. The vari-
ance due to changes in the bonding terms is not generally a problem;
although the energy changes for these terms can be quite large, the
time scale of the motions means that they converge quite quickly.
Pathways that are linear in the bonded parameters (such as harmonic
spring constants and equilibrium bond lengths or angles) are per-
fectly adequate. However, care must also be taken for constrained
bonds. There is no phase space overlap between bonds constrained
to two different lengths, and so an approach that only constrains
hydrogen bonds is bemuch preferred to avoid correction terms that
can be difficult to compute (31).

The choice of single versus dual topology will depend on the
simulation code used – individual simulation packages may only
support one or the other. Both cases will lead to correct final
results. Notice that in neither case did we give an example with
opening or closing rings; Both require removing bonds, which is
problematic; it is much better to appear or disappear rings entirely,
even if they are large. We, therefore, recommend never breaking
rings in calculations.

Fig. 2. Single topology (a, upper) and dual topology (b,lower) approaches to constructing
an alchemical path between ethane and ethanol. D represents noninteracting dummies,
while M represents nonphysical intermediate atoms. In a dual topology approach, no
atoms change type, only have their interactions turned off from the rest of the system;
however, more atoms need to be altered to go from the initial to the final state.
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2.1.3. Pulling Methods A completely different choice of pathway for the free energy of
protein ligand association is to physically pull the molecule away
from the protein. If the final state is sufficiently far from the
original protein, the free energy of this process is the free energy
of binding. This can be done either by nonequilibrium simula-
tions, using the Jarzynski equation as discussed earlier (32), or
by computing a PMF using umbrella sampling with different
overlapping harmonic oscillators at specified distances from the
binding site (33–35)

There are a number of complications with pulling methods.
Pulling a ligand out of a completely buried site can have high
statistical error because of the lack of an direct pathway, and it can
be difficult to pull the ligand sufficiently far away from the protein
with a simulation box of tractable size. Additionally, a pulling
pathway must be chosen. In the case of reasonable box sizes,
some analytical or mean-field approximation must be applied for
the free energy of pulling the ligand to infinity, and there has not
been extensive research on the reliability of such corrections.
Some researchers have argued that pulling may be more efficient
for highly charged ligands (34). However, because of the difficulty
of choice of pathway, pulling pathways are not recommended for
beginners.

2.1.4. Rules of Thumb

for Constructing

Intermediate States

There are a number of other small points that are worth taking
into account when deciding on a series of intermediates states, not
all of which can be fully described in limited space, but we list as
many as possible here, as well as summaries of the discussions
above that require emphasis.

l Bonded terms, such as angle or bond force constants can be
changed or turned off linearly. Changes in bond distances, if
they are not constrained, can also be performed linearly.

l Constrained bonds should not generally change length, as
there are free energy terms associated with these changes
that cannot be neglected (36).

l Choose a pathway that maximizes the similarity between two
states. Remove or decouple fewer atoms when possible.

l Do not open or close rings. There are some fundamental
theoretical problems with changing the number of degrees
of freedom in changing thermodynamic states. It is much
better to make entire rings disappear and appear, even if it
involves more atoms changing.

l Given a fixed number of intermediate states, the states should
be chosen such that the statistical uncertainty of the free energy
difference between any neighboring pair of states is equal. This
is not simply an empirical rule of thumb; mathematically, it will
lower the overall variance (37).
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l Changes in parameters can be calculated using a simple linear
function. Introduction or deletion of atoms should always be
done with a “soft-core” type potential.

l Charges on any atoms to be created or annihilated should be
completely off before the atomic repulsive terms are turned off.
Otherwise, thesimulationwill rapidlycrashaschargesofopposite
charge will approach to zero distance, crashing the simulation.

l The variance shrinks very quickly as a function of state
spacing. Until the free energy differences between intermedi-
ates are lowered to approximately kT, and if sufficient CPU’s
are available, it is better to use more states than fewer states. If
limited by the number of CPU’s available, fewer states can be
used, but it may end up being less statistically efficient in the
end, more uncorrelated states will be required from each
simulation.

l For a given scheme, the shape of the variance curve as a
function of l does not change significantly with the number
of atoms (38). This means that if the same alchemical pathway
is used for two different molecules, then both molecules will
require tighter spacing of lambda in the same places, though
of course more total intermediates will be required for a larger
molecule.

l Quickly prototyping possible intermediate states with short
simulations is highly recommended. The rough magnitude of
variance of free energy differences can be estimated with very
short simulations, frequently as quickly as 100 ps. Occasionally,
simulations may get stuck in metastable states, and the true
variance when the simulation is allowed to escape from such
states may be larger than that observed in a short simulation.

l The total charge of the simulation should bemaintained across
all values of l. Free energy calculations with chargedmolecules
are fine, as long as the total charge of the system remains the
same. Most methods for computing long-range electrostatics
make approximations, such as a uniform neutralizing charge,
which are reasonable if the total charge of the system remains
the same. However, when the overall charge of the system
changes as a function of l, these approximations can lead to
significant differences in the overall free energy. Simulations
with changing charges will still give useful qualitative informa-
tion, but the extent of the errors are not known, and they
cannot be considered quantitatively reliable inmost cases (39).

2.1.5. Perform Simulations

of the States of Interest

The heart of the free energy calculation is conducting equilibrium
simulations of the states of interest and any required intermediate
states to collect uncorrelated, independent samples. There are sev-
eral important topics to cover to ensure reliable, repeatable results.
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l The simulations must be at equilibrium. Even for nonequilib-
rium work simulations, the initial states must be in equilib-
rium. Sufficient time must be given for the system to reach
equilibrium before samples are collected. Because many free
energy methods effectively give large weight to rare events, a
small amount of unequilibrated data can have an outsized
contribution to the overall free energies.

l The system must reach equilibrium at each value of l. One
efficient way to start each system is to run a series of short
(10–100 ps) simulations at each l state, restarting the next
state from the final state of the previous simulation. This gives
the system time to partly relax to the new intermediate state’s
potential and avoid instabilities in simulations. Changes in the
volume occupied by the changing molecule or molecules can
affect the total energy. As l changes, the pressure should be
allowed to adjust as well so that the solvent density of the
system does not change as the effective volume of the mole-
cule changes. Small changes in V can cause problems, not
because the PV term becomes significant in calculating the
free energy (see Note 3) but because liquids are nearly incom-
pressible, and a small change in average volume leads to a large
change in thermodynamic properties. To obtain the most
consistent results, if the final simulations at each l are run at
NVT, they should use the average volume of the system, as
different fluctuations in the box volume can lead differences
of 0.1–0.3 kcal mol�1 in the final free energy. However, it can
take 100’s ps or several ns, or even longer in some cases (40)
to relax to an equilibrium distribution in the new intermediate
state. Significant simulation time should be allowed for this
relaxation to occur. The required time varies drastically from
system to system, and no hard and fast rule can be given. For
solvation of smaller molecules, it may take only 100–500 ps,
but for systems that are started out of equilibrium and have
long correlation times, it could be hundreds of ns. The aver-
age energy of the simulation, dU

dl

� �
, as well as structural obser-

vables, must be carefully monitored for convergence. The
number of hydrogen bonds to a small molecule is one useful
observable to watch for convergence of a simulation because it
can exhibit relatively slow equilibration rates (41).

l The samples must be collected at the state of interest. In all
simulation codes, different choices of simulation parameters
can result in changes in the potential energy surface. If such a
change move the entire potential energy surface up by a
constant amount, or affect the relative depths of wells by less
than a few tenths of kT, then simulations at a given interme-
diate may appear to be unaffected. However, if these choices
result in changes to the potential surface as a function of l, it
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can lead to significant modifications of the free energy of the
end states of interest.

l To give just one example, for simulations done with the stan-
dard particle mesh Ewald (PME) treatment of long-range
electrostatics, PME parameters that are sufficient for “stan-
dard” MD can give significant errors in the free energy for
modifying partial charges on amolecule, up to 4 kcalmol�1 for
some small molecules. So, when doing free energy calcula-
tions, it is in general not a good idea to assume that particular
settings are not important. If the potential could possibly be
affected, the dependence on this parameter should be checked.

l The samples must be independent, meaning they are uncorre-
lated in time. All of the analysis methods presented here
assume independent samples. But for all but the simplest of
systems, completely independent samples can be very difficult
to generate. For protein-ligand binding affinities, the time
scale for some motions may be hundreds of ns, meaning
truly uncorrelated samples may be impossible to generate in
a reasonable amount of time with today’s simulation technol-
ogy. In this case, free energy calculations might provide some
useful information, but will only be approximations to the
correct free energy for that model, and cannot be considered
reliable.

l Monitor the simulations for changes in important degrees of
freedom. For large ligand binding simulation, movement of
most solvent degrees of freedom will happen quickly. How-
ever, there are a number of degrees of freedom that might not
move quickly. This include tightly bound waters, ions, dihe-
drals of both side chains and the ligand, and large scale protein
domain motions.

2.1.6. Extract Information

from the Samples

Once samples and energies are obtained, then we can apply the
analysis methods discussed above. The data required from the
sample will depend on the method used.

l TI requires the value of dU ð~qÞ
dl .

l EXP requires either the energy difference DUk;kþ1ð~qÞ or
DUk;k�1ð~qÞ, where k is the state of that sample, depending
on which direction the free energy is calculated.

l BAR requires both the energy difference DUk;kþ1ð~qÞ and
DUk;k�1ð~qÞ at each sample.

l WHAM and MBAR both require the set of energy differences
DUk;j ð~qÞ, where j ¼ 1, . . ., K runs over all states along the

pathway, though this information must be binned for
WHAM.
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For BAR, MBAR, and WHAM, this information can either be
computed directly during the simulation, or in post-processing.
It is obviously preferable to have this information automatically
computed during the simulation, as it removes additional work
from simulation setup, avoids errors that might result from these
additional steps, and reduces the amount of data that must be
kept. It is recommended to use information computed during the
simulation if at all possible, as it is faster and involves fewer
potential human errors that could be introduced during sampling.

However, if configurations from each simulated state k are
stored sufficiently frequently, and with sufficient precision, then
single point energy calculations can be run using each of these
configurations as input to produce the quantities DUk;j ð~qÞ. For
BAR, only three single point calculations (at k + 1, k, and k � 1)
need to be performed for each saved configuration. while for
MBAR and BAR, K single point calculations need to be per-
formed. Although technically DUk;kð~qÞ does not need to be com-
puted, as it should be zero, it is highly recommended to compute
this quantity. First, it allows a check of whether the energy
obtained for that configuration during the original simulation at
state k is the same as the energy obtained in the reevaluation. If the
difference between the two energies is greater than could be
explained by numerical precision issues, then the simulation
setup should be rigorously checked for self-consistency; such
errors can easily lead to large free energy differences. The precision
in the coordinates of the output files must be greater than the
precision in standard pdb files. Coordinates stored as binary for-
mat are of course greatly preferred, but precision to within 10�5 Å
may be a sufficient compromise depending on the software used.
In any case, specific choices must be carefully validated.

In some special cases where U ðl;~qÞ is a separable function of
l and~q like the linear case,U ðl;~qÞ ¼ ð1� lÞU0ð~qÞ þ lU1ð~qÞ, TI
can be computed in postprocessing using the single point energies
of the end – points. In other cases, such as for soft core potentials,
dU ð~qÞ
dl cannot be computed in postprocessing and must be com-

puted directly in code.
Once the data have been assembled, independent subsets of

the data must be identified. This process involves an analysis of
autocorrelation times. The autocorrelation time measures the
time between effectively uncorrelated samples, and there are a
number of approaches for computing it. Assume that we have an
observable A gathered over a simulation of time T. If we write

dAðtÞ ¼ AðtÞ � T �1
R T
t¼0AðtÞdt , or the instantaneous value

minus the average over the interval then:

CAðDtÞ ¼
R T
t¼0 dAðtÞdAðtþ DtÞdt

R T
t¼0 dAðtÞ2dt

:
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If theCA(D t)¼ 0 at and afterD t, then two samples separated byD
t are uncorrelated, and can be treated as independent samples.

For a series of N samples, occurring time d t apart, CA(d T)
will be defined at i distinct points. Since dAðiÞ ¼ AðiÞ�
1
N

PN
i¼0 AðiÞ, then:

CAðiÞ ¼
PN

j¼0 dAðjÞdAðj þ iÞ
PN

j¼0 dAðjÞ2

Under standard assumptions, samples can be considered
effectively uncorrelated if they are spaced by 2t.

In many circumstances, the autocorrelation function can be fit
to an exponential, in which case t is simply the relaxation time of
the exponential function. Alternatively, t can be computed as the
integral under the CA(t) curve, though care must be taken as it
becomes noisy at long times, especially at more than half the total
simulation time. As a rule of thumb, a total time of 50t should be
simulated to feel confident about an estimate of t, as very long
correlation times may not be detected by shorter simulations.
Many mature simulation packages have tools to compute these
correlation times, sometimes at a more sophisticated level than
that presented here. In any case, some tools for computing corre-
lation times should emphatically be used, or the calculated statis-
tical uncertainty will be lower than it should be.

It appears that for solvation free energies of small molecules,
the time scales involved are often not particularly long. The lon-
gest time scales are those for water rearrangement and torsions.
Some unpublished test give the correlation times of dU

dl for small
rigid molecules are around 5–30 ps. However, if there are explicit
torsional barriers in the molecule, which are particularly high,
such as boat–chair transitions or slow rotations of internal torsions
(such as the hydroxyl orientation in carboxylic acids, for example),
this correlation time can be many nanoseconds (42).

Once the correlation time is calculated, there are two possible
ways to use the information to obtain answers from independent
data. For methods that compute averages from single states, like
TI, the average over all samples can be used as the mean, and the
variance then multiplied by

ffiffiffiffiffi
2t

p
to obtain an effective variance.

Alternatively, the data set can be subsampled, with a set of samples
mutually separated by 2t being selected to analyze (see Note 8). If
the correlation time is estimated accurately, we are not actually
throwing away information by discarding data, since this dis-
carded data duplicates information contained in the retained data.

Technically, we are only sampling independent configurations
if all coordinates are uncorrelated between each sample, not just
the energies. In most cases, independent sampling of the energies
also implies uncorrelated sampling of the configurations.
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However, there are a number of situations in which energies
appear to be sampled approximately independently within the
limit of the noise, but the configurational space is only partly
sampled. For example, if there is a second binding pose that has
similar binding affinity, but which the ligand only travels to occa-
sionally, this might not show up when inspecting the correlation
time of the energetic components alone.

This problem can be partially solved by also monitoring struc-
tural correlation times. For example, for a small molecule solvation
energy, the correlation times of slow dihedrals can be computed.
For a binding affinity problem, the autocorrelation time of the
distance between a given point on the protein and the ligand, or
the ligand dihedral angle between a bond in the protein and a bond
in the ligand can be computed to verify that sufficient sampling is
indeed happening on the time scale of the simulation.

2.1.7. Analyze the

Information from

the Samples to Obtain

a Statistical Estimate

for the Free Energy

Once we have a set of independent samples of energy data from a
series of equilibrium simulations, we can analyze this data to obtain
an estimate of the free energy and the error associated with its
estimate. The exact form of the analysis will depend on themethod
being used, so we look at different methods individually.

Data Analysis for TI Given a set of Nk samples of dU
dl from

equilibrium at each of k states, dU
dl

� �
k
can be computed from the

simple averages dU
dl

� �
k
¼ N�1

k

PNk

i¼1
dU
dl at each state k. To compute

the free energy D A, we then perform numerical integration:

DA �
XK

k¼1

wk
dU

dl

� �

k

;

where the wk are weighting factors corresponding to different
types of numerical integration (see Note 5). As discussed previ-
ously, the trapezoidal rule is the most robust and most recom-
mended for beginners, since it easily allows for unequal spacing in
l, which is required tominimize the variance. Although alternative
methods can yield lower integration error, these methods require
significant problem specific information, and are not recom-
mended for beginners. In almost all cases, it is simpler to identify
regions of high curvature, and runmore simulations in these areas.

Computing the overall variance of TI is straightforward,
though it involves one pitfall. It is important to calculate the
overall variance of the integration, rather than calculating the
variance of each individual D Ai,i+1 and assuming the variances
add independently. They do not. Instead, since each of the dU

dl

� �

results is independent of the others, since they are generated from
different simulations, and therefore var dAð Þ ¼PK

i¼1 w
2
k

var dU
dl

� �
k
. In the case of simple trapezoidal rule, we can see that
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var DA1;K

� � ¼
XK

k¼1

w2
k var

dU

dl

� 	

i

¼1

4
var

dU

dl

� 	

1

þvar
dU

dl

� 	

2

þ � � � þ var
dU

dl

� 	

K�1

þ 1

4
var

dU

dl

� 	

K

:

This is very different than if we calculated the variance for each
DAi,i+1, and then added these variances directly, which would
result in the following:

var DAi;iþ1

� �¼1

4
var

dU

dl

� 	

i

þ1

4
var

dU

dl

� 	

i

var DA1;N

� �¼
XN�1

i¼1

var DAi;iþ1

� �

¼1

4
var

dU

dl

� 	

1

þ1

2
var

dU

dl

� 	

2

þ���þ1

2
var

dU

dl

� 	

K�1

þ1

4
var

dU

dl

� 	

K

:

As discussed above, the standard error can then be computed

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var DA1;N

� �q
from all samples, then multiplied by

ffiffiffiffiffi
2t

p
to

obtain a corrected variance that corresponds to the correlation
time.

Alternatively, averaging and integrating can be performed on
the subsampled data set. For alchemical changes that result in
smooth, low curvature sets of dU =dlh i, TI can be accurate
using a relatively small number of points. However, if the curva-
ture becomes large, as is frequently the case for alchemical simula-
tions where Lennard-Jones potentials are turned on or off, then
the bias introduced by discretization of the integral can become
large (4, 24, 38). Even in the case of small curvature (i.e., charging
of small polar molecule in water) reasonably large errors can be
introduced (i.e., 5–10% of the total free energy with 5l values).
The basic conclusion is that TI is an adequate method for most
purposes, but a researcher must verify that enough states are
included such that the free energy is essentially independent of
the number of states. If a molecule is being annhiliated, TI might
require a large number of states to give accurate results, as the
curvature of such decoupling paths is large. Large variance at a
given states indicate large curvatures, so l should be chosen to
minimize variance.

Data Analysis for EXP Free energy propagation from EXP
can be analyzed in the same way as TI, using the correlation time
to either subsample or to calculate an effective sample number.
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Since EXP produces free energies differences between intermedi-
ates that depend only on samples from one state, variance esti-
mates for individual D Ai,i þ 1 values are independent, and the
total variances will add.

Data Analysis for BAR and MBAR For BAR, the mathe-
matical details are somewhat more complicated, since they involve
solving a set of iterative equations. The variance estimate from
BAR computes the variance between two states. As with TI, the
variances of consecutive intervals k � 1 to k and k to k þ 1 are
correlated, since they both involve samples from the state k.
However, the relationship between these values is more compli-
cated than with TI. Alternative methods, such as bootstrap sam-
pling described below, must be used to obtain an accurate error
estimate. MBAR involves solving complex systems of linear equa-
tions to compute the variances. However, for MBAR, all correla-
tions between data are taken into account. Implementations of
both BAR and MBAR, with examples for free energy calculations,
can be found at http://www.simtk.org/home/pymbar if other
tools are not available.

One straightforward statistical method that can be used for all
methods is bootstrap sampling. In bootstrap sampling, we takeN
random samples generated with replacement from the original
data, and calculate the variance over these N different values.
Further details on bootstrap sampling can be found in a number
of sources (43), and a simple tutorial is contained in the Biomolec-
ular simulations: methods and protocols in the “Methods in Molec-
ular Biology” series. The great power of bootstrap sampling is that
it can be used with any statistical estimator. However, it does
requires the additional overhead of calculating the function of
the samples F repeated M times. In most cases, this time will be
negligible compared to the time used to generate the data, per-
haps 5–10 min for MBAR, seconds for TI.

2.2. Accelerating

Sampling

We have presented a series of robust methods for calculating the
free energy of a given system. However, in many cases of interest,
this may require significant investment of computational
resources, beyond that which can be obtained by most research-
ers. In this chapter, we therefore also examine additional tools for
accelerating the sampling. Because of space limitations, we do not
go deeply into all these methods. They are not needed to carry out
free energy calculations, but may be required to converge calcula-
tions in complex systems with slow dynamics. Many of these
techniques are relatively new, and may not be available in all
simulation packages.

2.2.1. Using Umbrella

Sampling for Convergence

One standard method for improving sampling in atomistic simu-
lations is umbrella sampling (44), where bias terms are added to
constrain the simulation in some way, and the effect of these
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restraints is then removed in the analysis. This procedure can be
used to either lower potential energy barriers or to restrain simu-
lations to slow-interconverting configurations that are relevant to
the binding affinity (for example, different torsional states), allow-
ing each of the component free energies to be properly computed
and then combined (1, 18, 45). Sometimes this can even be
necessary for hydration free energy calculations (42) Another
application of umbrella sampling is computing the free energy of
constraining the free ligand into the bound conformation directly
before computing the free energy of binding, and then computing
the free energy of releasing these restraints. This usually decreases
the correlation times for sampling of the intermediate states and
thus increasing the efficiency of the simulation (18, 34).

2.2.2. Expanded Ensemble,

Hamiltonian Exchange,

and l-Dynamics

It is possible to bring all the intermediates together in a single
simulation system, either as series of coupled simulations of the
intermediate states, usually called Hamilton exchange simulation,
or as a single simulation that simultaneously samples both interme-
diate states and separate coordinates, called expanded ensemble
simulation. A number of studies have shown that Hamiltonian
exchange simulations can speed up simulations by allowing the
system avoid kinetic barriers by going through alchemical states
where those barriers are not as pronounced, significantly speeding
up free energy simulations (46–51). Alternatively, the alchemical
variable l can be treated as a dynamical variable, which adds com-
plications by introducing a fictitious mass corresponding to the l
degree of freedom, but is essentially equivalent to Monte Carlo
techniques (49, 52–54). There are a number of variations of sam-
pling in l that may show promise in the future, but such methods
are still in the preliminary stages of development (55–59).

At the current time, although they are extremely promising,
we cannot recommend expanded ensemble and l-dynamics meth-
ods to most practitioners. The methodology and implementations
are not always robust and require tweaking additional parameters
to obtain proper convergence. However, we do recommend
Hamilton exchange methods. Most codes implementing Hamil-
tonian exchange methods do so on top of well tested temperature
replica exchange routines, and no additional analysis is needed;
the outputs of Hamiltonian exchange simulations can be analyzed
in the same way as the outputs ofK uncoupled simulations. These
simulations are guaranteed to decorrelate as fast or faster than
standard simulations, though the exact amount of improvement
depends on the system. The analysis of correlation times can be
somewhat complicated by such simulations; computation of cor-
relation times should be computed along trajectories that sample
different states, not along single states that might be switching
back and forth along very different trajectories.
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2.2.3. Verification,

Verification, Verification

There are a number of ways that free energy simulations can go
wrong, and the lists presented here cannot cover all possible
problems. The best defense is to consistently evaluate the validity
of each step of the process. For example, it is generally a very good
idea to start out by calculating free energies which are well-known.
The free energy of solvation of OPLS methane in TIP3P water is
known to be �2.2 � 0.1 kcal mol�1, and has been replicated a
number of times in different simulation programs. The hydration
free energy of toluene in TIP3P water with AMBER/AMBER-
GAFF parameters and HF 6-31G* RESP charges has also been
the object of multiple studies and has been reported as �0.41
� 0.2 and �0.7 � 0.1 kcal mol�1 (27, 60). The Web site http://
www.alchemistry.org maintains a number of these examples to
test. If using any software suite to calculate free energies for the
first time, it is highly recommended to first reproduce a simple
solvation energy to verify that the approach is being performed
correctly before moving to more complicated calculations.

One of the most common problems that can occur is that the
input files and/or options used to perform the free energy calcu-
lations are different than the input files used to perform standard
calculations. In virtually every free energy enabled code, this leads
to the possibility that the state set up for free energy calculations
no longer corresponds to the same state when free energy options
are turned off. To avoid this, you should always verify that the
potential energy of the system with free energy options turned off
in the initial state is exactly the same as the potential energy at l ¼
0 with the free energy options turned on.

Likewise, you should always verify that the potential energy of
the system with free energy options turned off in the final state is
exactly the same as the potential energy at l ¼ 1 with the free
energy options turned on. “Exactly,” in this case means that any
differences should be no more than those caused by numerical
rounding from differences in order of operations. Anything larger
than this indicates some breakdown in the computation that could
potentially result in propagated error significantly affects the
results.

Another common problem is human error in setting up simu-
lations. If humans are involved in editing topology and other
input files for the initial and final states, it is easy to accidentally
set up one atom to have an incorrect final state, or mistype a key
parameter. This typically means human input is a bad idea and
calculation setup should be done by script or program, since bugs
are then reproducible. New tools for calculation setup should be
carefully tested on cases with known results to ensure that the
setup process is functioning correctly.

Poor convergence, undetected by uncertainty analysis, can
also wreak havoc on results. There are several methods for validat-
ing convergence, such as checking that thermodynamic cycles sum
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to zero, when conducting relative free energy calculations, or
ensuring computed free energies are consistent when beginning
frommarkedly different starting structures, which is applicable for
both relative and absolute binding calculations, as well as for
hydration free energy calculations (1, 42,61).

As a simple but very useful check, simulation trajectories
should always be visually inspected. Visual inspection of trajec-
tories can often catch errors that are hard to otherwise notice. For
example, if the calculation is of the relative binding affinity of
ligands that are tight binders, but the composite ligand is some-
how ejected into the solvent, or adopts unnaturally high energy
configurations, then there is likely an error in the simulation setup.
If the molecules move visibly between very different configura-
tions on a long time scale, it indicates either the system is not yet
equilibrated, or that the correlation times for the system may be
slow in a way that does not yet show up in the energetic analysis.
Visual inspection during (and not just after simulations have
completed) allows error to be recognized before too much
computational time is wasted. Performing simulations for multi-
ple physically reasonable starting configurations is also a useful
technique on this subject we refer the reader to the Independent-
Trajectory Thermodynamic Integration (IT-TI) approach
described in Chapter 27 (62).

We now give some specific examples for implementing this
description of free energy calculations. The examples are the
relative free energy of phenol and toluene binding to T4 lysozyme
(1, 45, 63), and the absolute free energy of binding toluene to T4
lysozyme. A discussion of small molecule solvation in water can be
found in the free energy chapter of Biomolecular simulations:
methods and protocols in the this same “Methods in Molecular
Biology” series.

2.3. Example 1:

Relative Free Energies

of Binding

As a first example of free energy calculations for small molecule
binding affinities, we first look at the difference in the relative free
energies of binding of toluene and phenol in the apolar cavity of
T4 lyzosyme.

l What is the thermodynamic cycle? We compute the free energy
to turn phenol into toluene in the protein cavity and compute
the free energy to turn phenol into toluene in solution, as
described in Fig. 1.

l What are the end states? The end states for the first calculation
calculation is T4 lysozyme, in water, with a intermediate mole-
cule with nonbonded parameters that look like toluene at one
end state and that look like phenol in the another end state.
There are a number of choices for even this. It is likely simplest
to choose a dual state topology, such as in Fig. 3; an ortho or
meta arrangement be used just as easily.
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l Which series of intermediates? Arbitrarily selecting phenol as the
initial state, theOHmoiety must disappear, and themethyl must
appear. A good approach would be to first turn the charge on the
OHand the paraHtozero. It shouldbedonekeeping theoverall
system at the same total charge at each intermediate.

Once these charges are turned, then the Lennard-Jones e of the
hydroxyl and that para can be turned to zero. At the same time,
and angle, bonded, and torsional terms can be turned off line-
arly. Then the LJ e of the methyl group and its para hydrogen
can be turned on, while its bonded terms are turned on, and
finally, the charges of the methyl and its para hydrogen can be
turned on. How many intermediates will this require? In prac-
tice, using BAR orMBAR, perhaps 2–4 intermediates for turn-
ing off the charges, and 4–6 intermediates for turning off the
Lennard-Jones terms andbonded terms.However, this assumes
that intermediates are spaced to minimize the statistical error,
and BAR or MBAR is used to calculate free energies. If equal
spacing in l is used, the number of states might be significantly
higher, perhaps 10 for theCoulombic terms and 20 or more for
Lennard-Jones terms. Therefore, finding an appropriate
spacing equalizing variance between states is important for
efficiency. There is a trade-off in adjusting the l spacing; it
obviously requires more processors to sample more intermedi-
ate states, but the decrease in variance compensates for this until
spacing is relatively close. TI would likely require even more
intermediates, the exact number depending on the level of
uncertainty required.

Fig. 3. A sample dual topology design for the transformation of phenol (a) to toluene
(b) as described in the text. The choice of para arrangement is arbitrary; ortho or para
arrangements would work as well.
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In general, the choice of spacing will depend on the avail-
ability of processors, the correlation times of the system under
study, and the level of precision required. Linear changes of
bonded terms generally are well behaved.

If all time scales were the same as obtained with small
molecule solvation, then this sort of spacing would result in
statistical uncertainty in the 0.1–0.05 kcal mol�1 range for 5 ns
simulation at each l state is performed, as used in previous
large scale studies (26). would require perhaps 2–3 times as
many intermediates. However, this is the lower bounds on the
statistical uncertainty; in most cases, it would bemuch larger, as
there will be long time scale correlation times due to the
motion of the protein. It is possible to perform both Lennard--
Jones transformations simultaneously, but in this case, it would
be necessary to remove the improper torsions on the rings, as
they would force the substituents to collide with each other.

l What simulations to run? Equilibrium simulations must be run
at each of the intermediates. Typically, one could start with the
fully interacting state at all intermediates, and run for several
nanoseconds, to allow the system to equilibrate at that inter-
mediate. Even for relatively rigid molecules, such as FKBP,
experience has demonstrated that equilibration typically
requires 2–4 ns, though this will vary from system to system.

The simulation box should be large enough for the solvated
molecules not to interact with themselves, so the width of
the box should be at least twice the cutoff plus the longest
width of the protein plus ligand. The simulation time required
will depend on the accuracy of the simulation. For a protein, all
torsional exchanges tend to be slowed down, and one would
expect something more like 20 ns. But more generally, the
simulation time required will depend on the accuracy of the
simulation; for a molecule this size, simulation times of perhaps
50 ns may be necessary to get consistent results. At the present
time, even with relatively inflexible proteins, getting results
that have statistical uncertainty of less than 0.5 kcal mol�1 is
difficult.

Deciding on what simulations to run also means deciding
which starting configuration to use. The choice of which start-
ing configurations is difficult, since the environment is a pro-
tein binding site, not a homogeneous liquid. The ideal starting
structure is a crystal structure of the ligand bound to the site, or
at least a homologous ligand to which the ligand of interest can
be modeled without distorting the structure of either the
ligand or the protein. If the binding site is not known, then
obtaining an accurate free energy is not likely; docking is not
necessarily reliable for picking the single true experimental
binding site. If the binding site is known but a crystal structure
is not available, then docking can be used to generate a range of
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potential starting locations. Initial simulations several nanose-
conds in length, tens of nanoseconds if possible, should be used
to test if these configurations interconvert. If they do not, it
may be necessary to run multiple simulations for each of the
binding sites (1).

Once starting configurations are selected, one would again
generally start with the fully interacting state at all intermedi-
ates, and run short simulations at each l to allow the system to
partially equilibrate at each new l value, followed by long
equilibrations for each l state with constant pressure simula-
tions to find the equilibrium density. In this case, at least 2–4 ns
should be used to equilibrate. Even for a crystal structure,
several starting configurations (perhaps obtained frommultiple
crystal structures, if available) should be used, and examined to
see if the ligands sample the same conformational states in all
simulations (1, 61). It is possible that even closely related
ligands may not bind in the same orientation, presenting
some sampling problems (61).

l How do we analyze the data? First, assume that we are using
BAR, and that the code does not automatically print out the
energy differences. In that case, the potential energy differ-
ences must be generated by single point simulations. This can
be done by saving configurations every N steps, where N will
depend on the correlation times of the potential energy. Typi-
cally, for a small rigid molecule, it would be around 1 ps,
though if there are slow degrees of internal freedom, it could
take longer. We would then take those configurations, a run a
series of single point energy calculations. These calculations
should be identical to the ones performed to generate the
runs, but each configuration will be evaluated at the l value
of the neighboring intermediate. For each interval, we will have
two energy differences, from state i to iþ 1 sampled from state
i, and from i þ 1 to i, sampled from state i þ 1. The BAR
calculation is performed for each interval, giving an estimate
for the free energy difference. We could then apply bootstrap
sampling to the data set of evaluated energies to obtain an error
estimate. If the energy differences are printed out, then we can
skip all but the bootstrap sampling and BAR calculation,
greatly simplifying the analysis.

Now assume that we are now performing thermodynamic
integration. In this case, we expect that the values of dU

dl are
printed at each step. It would be impossible to generate this TI
data in postprocessing, assuming we are using the recom-
mended soft core potentials. We simply average the values
from each simulation, and perform numerical integration and
error estimation from the formulas above. The free energies of
two transformations, in aqueous solution and in the presence
of the protein are then subtracted to obtain the final result.
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l Anything else to watch out for? Visualizing the simulation is
always a good idea just to make sure nothing strange is hap-
pening. Note that the details of the protein was hardly men-
tioned in the discussion; the protein, in most respects, is just
different external environment than the water. One difference
that occasionally has some relevance is the location of the
binding state. Assuming the ligand is a tight binder, then the
ligand will always remain tightly localized around the binding
site, and the definition of the binding site becomes pretty much
irrelevant. See Note 9 for further discussion of weak binding.
In most standard cases, determining precise binding affinities
of weak binders is not required. Rather, the scientific questions
will be to distinguish between tight binding ligands, or to tell
whether a ligand is a tight or weak binder.

2.4. Example 2:

Absolute Binding

Affinity of Toluene

to T4 Lysozyme

What is the thermodynamic cycle? There are several different poten-
tial ways to construct a thermodynamic cycle. Two of the most
useful potential cycles are shown in Fig. 4 and Fig. 5. The alchem-
ical decoupling pathway is shown in Fig. 4 and a pulling path is
shown in Fig. 5.

In the alchemical decoupling path (Fig. 4), we start with a
bound complex, and then turn off the interactions of the ligand
with its environment. Since there are now no interactions between
ligand and the rest of the system, we can transfer this “ghost” ligand
from the solvated protein box to a solvent box with DA ¼ 0.
We can then turn the intermolecular interactions back on while
the ligand is in the pure solvent box; the binding free energy
completes the cycle, since we now have a pathway that we can
simulate from the complexed ligand to the solvated, unbound
ligand.

Fig. 4. A thermodynamic cycle for the absolute binding affinity of a ligand L by an
“alchemical decoupling” pathway. The free energy of transfer of the decoupled mole-
cule from protein to solvent is zero, resulting in a full thermodynamic cycle for
computing the binding free energy DAbind.
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In the pulling pathway (Fig. 4), we start again with the bound
complex. We then turn on a harmonic restraint to the center of
mass of the ligand, and then move the center of the harmonic
restraint from inside the binding site to a location sufficiently far
away from the the site. The harmonic restraint in solution can
then be removed analytically (see Note 10), and which can be
calculated as

DA ¼ kT ln
3

V

pkT
K

� 	3=2
 !

; (10)

whereK is the force constant of the spring, and V is the volume of
reference state. The average volume per molecule for a reference
concentration of 1 M is 1.661 � 103 Å3/molecule (see Note 11).

One problem with the alchemical decoupling pathway as
described above is that the ligand can come free to wander
throughout the entire simulation box, or get stuck in different
parts if the protein in near-ghost states. These motions can lead to
extremely long time scale motions, making it very difficult to
collect uncorrelated samples, and thus making computation of
accurate free energies. Additionally, this pathway neglects any
knowledge of the standard state of the system; equilibrium con-
stants are only defined up to the standard state. One standard

Fig. 5. A thermodynamic cycle for the absolute binding affinity of a ligand L by a pulling
pathway. The ligand is pulled away by a harmonic potential attached to the center
of mass of the ligand. The harmonic restraints are then turned off; via a series of
equilibrium simulations in the complexed ligand, and analytically in the case of the
solvated ligand.

26 Free Energy Calculations 457



solution to both of these problems is to harmonically restrain the
ghost state ligand to be to a certain location, defined by the
geometry of the protein. Once in the ghost state, the harmonic
restraint can be analytically removed before transferring the ligand
to the solvent box, identical to the harmonic potential in the
pulling pathway.

Unlike the pulling pathway, the ligand is harmonically con-
strained not to a fixed point in space, but to a geometric point in
the cavity defined by the protein, as close as possible to the average
bound location. At minimum, the ligand should be restrained in
translational space; however, there is substantial evidence that it is
also computationally efficient to restrain the orientational config-
uration of the ligand during the coupling (31, 63). Note that in
the free state, the ligand is always free to move; the constraining
potentials are added along the chain of intermediates. Other con-
straints schemes are possible (see Note 12). The rotational and
translation degrees of freedom, instead of needing to be sampled
along all intermediate states, only need to be sampled as the
harmonic restraints are turned on. This means the correlation
times along these degrees of freedom in the coupled state
becomes very short, allowing data to be collected efficiently.

For translational harmonic restraints, the free energies can be
computed using the formula U (xcm�ligand) ¼ K/2 (xcm�ligand �
x0)

2, where x0 is the anchor point, xcm–ligand is the center of mass of
the ligand, and K is the spring constant. For restraints in orienta-
tional space, then harmonic potentials are placed on six degrees of
freedom; one distance, two angles, and three torsions, determined
by the locations of three ligand and three protein atoms (31, 63)
(See also Note 13).

What are the end states? For the alchemical pathway (Fig. 4),
we have a four stage thermodynamic cycle. We use three free
energies to compute the fourth, so we have potentially six end
states to simulate. However, one of the free energy changes is zero,
so we only need to worry about two calculations, with two end
states for each. For the first calculation, the simulation is simply of
the bound state. This is exactly the same as the initial state for
relative free energies of binding. The information we need to
simulate the end state for an absolute binding free energy is the
same as that required for the protein-ligand coupled states of the
relative free energy.

The final state of this first computation is the protein in
“complex” with the decoupled ligand. There are two choices for
our decoupled ligand end state. Once choice for the end state has
all of its intramolecular interactions intact, and only has the
ligand-environment calculations turned off. Alternatively, we
could choose a ligand end state that has some of the intramolecu-
lar interactions turned off. Either method will work, as the
“ghost” state is the same in both the protein and pure solvent
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decoupling stages. Turning off the intramolecular interactions will
result in larger free energy differences, but might aid convergence,
since the decoupled state can sample configuration space more
easily. However, only the nonbonded and proper torsional terms
should be turned off. Turning off bonds, angles and improper
terms could lead to geometric distortions in the molecule that
could cause convergence problems.

Since the solvent box remains the same through the first
transformation, we don’t actually need to do perform any simula-
tion of this box. It remains essentially a bookkeeping tool that
allows us to see that the entire thermodynamic cycle is indeed
complete. Similarly, for the second calculation in the alchemical
pathway, the protein simulation is not affected, we do not need to
perform any simulations with the protein in this step; including it
is again bookkeeping tool to see the full cycle.

For the second transformation, the end states are the
decoupled “ghost” ligand in solvent, and the fully coupled ligand.
The “ghost” state must be the same as in the first simulation for
the free energy to be zero. If the decoupled state only has inter-
molecular interactions turned off, then this free energy is the free
energy of solvation. If the free energy of solvation is known, then
this additional check might motivate using an end state with full
intermolecular interactions.

For the pulling pathway, the initial state is again the fully
interacting ligand and protein. The end state of the first calculation
is a harmonically coupled ligand; turning on harmonic terms line-
arly appears to be an appropriate pathway. For the second calcula-
tion, the center of the harmonic spring is moved gradually, so that
there is overlap between the volumes sampled by the “pinned”
ligand in neighboring states, until the ligand is sufficiently far from
the protein. Finally, the harmonic term can be removed analytically
if when are sufficiently far from the protein. How far one must be
depends on the system; some preliminary examples indicate that as
little as 10 Å away from the nearest approach to the proteinsmay be
sufficient for systems without large charge–charge interactions
between the ligand and the protein.

Which series of intermediates? More atoms are changing in the
absolute binding free energies than with the relative free energy
calculations, which make it more important to choose a high
efficiency pathway. For the alchemical pathway, the standard
high efficiency pathway is again turning off all charges linearly
and then turning off all the Lennard-Jones interactions using the
soft core pathway. Turning off all ligand–ligand interactions as
well as the ligand-environment interactions will result in a larger
total free energy change for this part of the cycle, which will then
be canceled out in the ligand–solvent calculation. However, the
correlation times of the motion of the intramolecular interactions
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will generally be lower than the correlation times of the intermo-
lecular interactions, so the efficiency may not be very different.
The specific choice of pathway is mostly independent of the
protein–ligand and pure–solvent ligand simulations; an efficient
pathway for one of the simulations will also be an efficient pathway
for the other type of simulation (see Note 14).

What simulations to run? The prescription of exactly which exper-
imental simulations to run are again similar for the simulations in
relative binding affinities; again, the initial state is exactly the same,
and the intermediate states are similar. If Hamiltonian exchange or
expanded ensemble techniques are used, then the absolute bind-
ing case may actually converge more quickly than the relative
binding affinities, as the ligands can more easily diffuse and escape
from configurational traps when it is in the decoupled state. For
relative free energy binding calculations, all intermediate states
have a sizable number of atoms completely coupled to the system,
and thus the “hybrid” ligand cannot move freely around the
binding site.

How do we analyze the data? In the case of absolute binding
affinities, the analysis is very similar to what it is for relative free
energies. The data coming out of the simulations, whether we use
BAR, TI, or MBAR, are in the same format as with relative free
energies. This is one of the advantages of free energy simulations;
the analysis methods do not care what simulations are actually
being done, so the analysis will be the same. As before, we take the
fact that the thermodynamic cycle must have a free energy that
sums to zero, and compute the final free energy as sum or differ-
ence of the computed transformations.

Anything else to watch out for? Again, the problems to watch out
for are similar for absolute binding affinities and for relative bind-
ing affinities. Visualizing the simulations are important, and
choice of initial state is extremely important. Because absolute
binding affinities are significantly larger than relative binding
free energies, there can frequently be much less cancellation of
error when comparing two relative binding affinities. If the under-
lying model is incorrect, this may mean that it is harder to extract
understandable information from absolute binding affinities than
for relative binding affinities.

2.5. Summary Free energy calculations are a sophisticated, powerful set of tools
for finding properties such as solvation free energies in arbitrary
solvents and binding free energies. However, they give only a
statistical estimate of free energy differences between two thermo-
dynamic states whose accuracy and precision depend on careful
choices of parameters, pathways of intermediates, and methods.
Additionally, they can only give the free energies of the model, not
the true experimental system; the molecular parameters of the
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system under study must be sufficiently accurate for the correct
free energy for the model to match the free energy of the system.

For complicated systems with long correlation times, free
energy methods are not always reliable, because of the difficulty
of collecting uncorrelated samples. Relative or absolute free ener-
gies of binding to proteins must, therefore, be taken with some
degree of caution. As can be seen from the extensive set of notes
and qualifications in the methods presented here, free energy
“black-box” methods will not “automagically” determine free
energies without significant investment in the physics, chemistry,
and biology of the system under study.

However, such calculations are certainly closer to providing
utility to biophysical researchers than they were in the past. As we
present in this chapter, the methods used for free energy calcula-
tions are changing rapidly. Major biomolecular simulation
packages, such as AMBER, CHARMM, NAMD, GROMACS,
and GROMOS all are undergoing major improvements and
changes in the features used to compute binding free energies.
Although these changes will likely greatly improve the ability to
perform free energy calculations in the near future, ongoing
changes make it difficult to put together stable work flows for
preparing ligands and simulation structures and determining
ideal free energy protocols without significant human effort. It is
difficult to recommend particular codes for the easiest use at the
present time; we instead recommend using the code with which
the user is most comfortable, as long as it supports one of the
methods discussed here.

Because of the scope of free energy calculations, a single
review article cannot be hoped to capture all possible problems
or issues; for further information, readers are encouraged to read a
number other of reviews on the subject of free energy calculations
(64–71), particularly several very recent reviews (23, 72–74), as
well as several useful books (64, 75–78).

3. Notes

1. The total phase space volume is the same for most molecular
models because the only configurations with nonzero proba-
bility are where two atoms are directly on top of each other,
with infinite positive energy. The effective phase space volume
is lower, since there are a large number of configurations that
might take a very long time to reach, because the atoms are
partially overlapping. In that case, although (1) is true, it may
take far more sampling to converge than could be done in any
practical simulation.
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2. The temperature T in (1) does not have a subscript, because
we are considering free energy differences at the same temper-
ature. It is possible to compute a free energy difference
between systems at two different temperatures, D Aij ¼ �kB
Tj ln Qj + kB Ti ln Qi, but is no longer a ratio of partition
functions, and it should never be necessary in systems of
biological interest. When a researcher thinks of temperature
dependence of the free energy, he or she is usually thinking
about the effect of temperature on the free energy difference
between two states, both of which are at the same temperature
when the difference is calculated or measured.

3. For example, a change in average volume corresponding to
the elimination of a 1 nm sphere would result in a PV work
contribution to free energy of 0.032 kJ mol�1 or 0.008 kcal
mol�1, which is generally smaller than the error in all but the
most precise experiments.

4. “Free energy perturbation” is a common term for these meth-
ods that directly compute the free energy difference as a
function of changing molecular structure. “Perturbation”
usually refers to an approximate theory that can be written as
a series expansion. Free energy perturbation, however, is
exact. The term “perturbation” here refers to the changes in
the chemical identity, since simulations frequently involve
changes in chemical identity, such as an amine to an alcohol,
or a methyl group to a chlorine, or the disappearance of
atoms.

5. If we are using simple trapezoidal rule, with equal lambda
spacing, this becomes w1 ¼ wK ¼ 1

2ðK�1Þ , while wk ¼ 1
K�1

for i 6¼ 1,K. For the trapezoidal rule with uneven spacing,

w1 ¼ l2�l1
2 , wK ¼ lK�lK�1

2 , and wk ¼ lkþ1�lk�1

2 for k 6¼ 1,K.

6. Although the trapezoid rule is very robust, some improve-
ments can be made by using a fit of the data to a polynomial
fit (8) or to some other functional forms (7). Since fits to
higher order polynomials can have numerical stabilities for
some underlying functions, and alternate functional forms
might only be appropriate with some transformations, some
expertise and experience is required.

7. By using a power of l� 4 instead of a strictly linear parameter-
ization (such asU(l)¼ (1�l)4U0 + l

4U1) then the integral of
dU =dlh i will converge. However, it will converge rather
slowly in number of samples, and can cause numerical instabil-
ities (27, 28). For any nonzero l, whatever the power, there
will be small “fence posts,” particles with a small impenetrable
core (27). One possible way to avoid issues with these “fence-
posts” has been to shrink the entire molecular structure. How-
ever, this can create problems with nonbonded interactions as
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the molecular framework shrinks, causing instabilities in inte-
gration inmolecular dynamics (27, 79, 80) and is generally not
practical for large numbers of bonds.

8. For example, assume we are using BAR to compute the free
energy between the 1st and 2nd states, and we have collected
5 ns of simulation, with snapshots every 10 ps, for a total of
500 samples. Then, we need to take the time series DU1,2 and
DU2,1 and compute the autocorrelation function and correla-
tion time. If we assume that the correlation time for DU1,2 is
20 ps, and the correlation time for DU2,1 is 40 ps, then we
should take every fourth sample (or 2t) from the DU1,2 data
series and every eighth sample from the DU2,1 data series, and
do subsequent analysis only with this reduced data set.

9. A ligand that is a weak binder (Kd> 100 mm) spendsmore time
outside the binding site, and the terms “binding site” becomes
more difficult to define. However, this difficulty of definition
occurs in both experiment and simulation. For weak binder,
one must carefully examine the physical phenomena leading to
signaling of binding, as different signals may or may not be
triggered by weak binding, and getting quantitative results is
complicated.

10. We can remove this harmonic restraint analytically when we
are in pure solvent because away from the binding site, the
only part of potential energy of the ligand that depends on
location is the harmonic restraint. The partition function can
then be separated to the harmonic potential, acting only on
the ligand center of mass, and the rest of the potential energy,
which does not depend on the ligand center of mass. These
free energies are thus independent.

11. We have examined a number of different ways to define the
attachment point for the harmonic oscillators to the protein
system, and a number of different spring strengths. The free
energies appeared to be consistent, relatively independent of
the spring strength (tested for 10–5,000 kcal mol�1Å�2) and
the location (tested a range of harmonic anchor points 0,2,3,5
and 10 Å along the vector projected outward from the binding
cavity from the average center of mass of the bound ligand).

12. It is also possible to add ligand conformation restraints (34, 35)
to the ligand, which can reduce the correlation times even
further. This is somewhat of a more advanced topic, since it is
not clear if ligand constraints can be sampled as easily as
harmonic restraints while being imposed.

13. One possibility for adding the restraints to the ligand is to add
the restraints before decoupling the ligand from the environ-
ment, rather than during the decoupling. This will require
more intermediates, but may be more efficient, as the
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correlation times for sampling will be lower once the restraints
are implemented, since only configurations near the restraints
are allowed. Alternate configurations are only collected while
the restraints are being turned on. However, it is not yet clear
what the best choice of these two options are in general. If the
restraints are turned on too quickly, or insufficient sampling of
the states where the torsions are turned on is done, then the
results will not converge to the correct answer.

14. A good pathway of intermediates when complexed to the
protein is similar to a good path in solution, since in both
cases, the ligand experiences a large number of charge inter-
actions and large number of Lennard-Jones interactions, with
approximately the same density of particles in both cases.
So, although the quantitative result will depend on the para-
meters, the qualitative behavior of the free energy as a func-
tion of distance along the alchemical pathway will be the same
in both environments.
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Chapter 27

Independent-Trajectory Thermodynamic Integration:
A Practical Guide to Protein-Drug Binding Free
Energy Calculations Using Distributed Computing

Morgan Lawrenz, Riccardo Baron, Yi Wang,
and J. Andrew McCammon

Abstract

The Independent-Trajectory Thermodynamic Integration (IT-TI) approach for free energy calculation
with distributed computing is described. IT-TI utilizes diverse conformational sampling obtained from
multiple, independent simulations to obtain more reliable free energy estimates compared to single TI
predictions. The latter may significantly under- or over-estimate the binding free energy due to finite
sampling. We exemplify the advantages of the IT-TI approach using two distinct cases of protein–ligand
binding. In both cases, IT-TI yields distributions of absolute binding free energy estimates that are
remarkably centered on the target experimental values. Alternative protocols for the practical and general
application of IT-TI calculations are investigated. We highlight a protocol that maximizes predictive
power and computational efficiency.

Key words: Neuraminidase, dTDP-6-deoxy-D-xylo-4-hexopyranosid-4-ulose-3,5-epimerase,
Oseltamivir, Independent-Trajectory Thermodynamic Integration, Molecular dynamics, Conver-
gence, Solvent effects

1. Introduction

Alchemical absolute binding free energy calculations often employ
Molecular Dynamics (MD) simulations of unphysical intermedi-
ates to compute the free energy change for the transfer of both a
ligand and target protein from the unbound to the bound
state (1). The binding free energy is computed using the well-
established thermodynamic cycle (Scheme 1), in which the ligand
is transformed into a noninteracting molecule, effectively an ideal
gas, within both the protein-bound and unbound solvated envir-
onments (2). While these methods have basis in rigorous statistical

Riccardo Baron (ed.), Computational Drug Discovery and Design, Methods in Molecular Biology, vol. 819,
DOI 10.1007/978-1-61779-465-0_27, # Springer Science+Business Media, LLC 2012

469



mechanics principles (3–10), their practical application to estimate
free energy differences is still challenging for systems with many
degrees of freedom. Frustrated protein and ligand energy land-
scapes can trap the simulated system in a confined region of
conformational space, thus limiting sampling statistics.

However, the use of many, independent MD simulations has
been shown to improve sampling while retaining unbiased dynamic
information and is well suited for increasingly available distributed
computing architectures. Several studies have employed this app-
roach in the context of alchemical free energy calculations. Fujitani
et al. employedmultiple free energy perturbation (FEP) calculations
to estimate absolute free energies of FKBP ligand binding (11).
Zagrovic et al. usedmultiple one-step perturbation runs to calculate
relative free energies of PDE5 ligand binding (12). Lawrenz et al.
employed Independent-Trajectory Thermodynamic Integration
(IT-TI) to obtain accurate absolute free energies for peramivir bind-
ing to N1 neuraminidase (13, 14). Here we introduce the reader to
the IT-TI approach in detail using examples of two different pro-
tein-ligand binding partners. First, we study the key influenza drug
target, viral surface protein N1 neuraminidase, complexed with the
inhibitor oseltamivir (15). TheN1active site is very solvent exposed,
with charged residues residing on flexible loops (see Fig. 1a) (13,
16). The second protein is theMycobacterium tuberculosis enzyme ,
orRmlC,which is crucial for assembly of thewaxymycobacterial cell
wall (17). In this case, the bound ligand, Compound Identifier
(CID) 77074, was a top hit from virtual screening, followed by
experimental validation (17). The RmlC binding site is smaller and
more narrow than theN1 active site (compare Fig. 1a, b), withmany
aromatic residues that stack against the ligand rings (Fig. 1d).

The IT-TI approach generates a distribution of independent
free energy estimates rather than a single value and allows for a
reliable measure of uncertainty. We show that these distributions
are centered remarkably near the target experimental value for
both investigated systems. Furthermore, we compare different
options for distributed computing and alternative protocols for
the practical application of IT-TI. We suggest a protocol that
might be optimal for protein–ligand binding in general and is
particularly well suited for computing binding free energies with
distributed computing.

+ +

Scheme 1. Thermodynamic cycle employed for IT-TI calculations.
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2. Materials
and Methods

2.1. Coordinates Initial coordinates were available for N1 bound to the ligand
oseltamivir based on X-ray crystallography experiments (PDBID:
2HU0) (15). For RmlC, initial coordinates for its complex
with CID 77074, or 1-(3-(5-Allyl-5H-[1,2,4]triazino[5,6-b]
indol-3-ylthio)propyl)-1H-benzo[d]imidazol-2(3H)-one, were
based on the unbound X-ray structure (PDBID:2IXC) and an
experimentally verified computational docking pose (17). A
monomer of the natively tetrameric protein N1 was simulated, as
in previous studies (13), while the RmlC protein was simulated as a
dimer, for half the N1 simulation time, because its active site spans
the interface between two monomeric units (see Fig. 1b). See
Table 1 for a summary of MD sampling periods.

NH

N

O

S

N

N

N

N

O NH3

HN O

COO

a

d

b

c

Fig. 1. Protein–ligand structures of the two investigated systems. Overall view of the N1 monomer (a) and RmlC dimer
(b) structures are shown, with the RmlC monomers in (b) colored (in online version only) to highlight the dimer interface.
Ligand chemical structures are depicted for the N1 ligand oseltamivir (c) and the RmlC inhibitor 77074 (d), the latter with
the restrained atom highlighted. For oseltamivir, the center of mass was restrained instead. See Methods section for
computational details.
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2.2. Molecular Model Both protein-ligand systems were parametrized with the AMBER
FF99SB force field (18) and solvated with the compatible TIP3P
model for water (19). The cubic simulation box contained N1:
15,126 and RmlC: 24,305 water molecules. Both systems were
neutralized with (N1: 1 or RmlC: 24) Na+ counterions with
AMBER rescaled parameters (20). The importance of Ca2+ ions
in N1 ligand binding has recently been highlighted (21). Ligands
were parameterized using the Generalized Amber Force Field
(GAFF) (22) parameters for angles, bonds, and torsions, and
RESP (23) fitting of Gaussian03 (24) calculated electrostatic
potentials at the Hartree-Fock/6-31G* level.

2.3. Molecular

Dynamics Simulation

All simulations were performed using the NAMD software (25)
(version 2.7b1). A 2 fs timestep was employed, with hydrogen-
containing protein bonds constrained using RATTLE (26) and
water geometries constrained using SETTLE (27). The Particle
Mesh Ewald (PME) approximation (28) (1 Å�3 grid density) was
employed for electrostatics. Short-range nonbonded interactions
were evaluated every timestep and long-range electrostatics every
2 timesteps (nonbonded interaction cutoff: 12 Å; switching dis-
tance: 10 Å) (25). After incremental heating to 300 K, the system
was equilibrated for 2 ns in the N,p,T ensemble with Langevin

Table 1
Protocols for IT-TI calculations

Reference name
Elec/vdW
no. l Initialization

Nonbonded
decoupling

Runs � time/l
(ns)

Total time
(ns)

Medium parall/sep/
19la

9/10 Paralleld Separate 20 � 1 380

Long parall/sep/19l 9/10 Paralleld Separate 10 � 2 380

Medium parall/simul/
19l

9/19 Paralleld Simultaneous 20 � 1 380

Medium parall/sep/
14lb (vdw)

9/5 Paralleld Separate 20 � 1 280

Medium parall/sep/
14lc (elec)

5/9 Paralleld Separate 20 � 1 280

Medium cont/sep/19l 9/10 Continuous Separate 20 � 1 380

aFor N1, 19 l ¼ [0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0,4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,
0.95, 1] for RmlC [0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.37, 0.45, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,
0.97, 1]
bOmit l [0.55, 0.65, 0.75, 0.85, 0.95]
cOmit [0.05, 0.15, 0.25, 0.3]
dWell suited for distributed computing
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pressure and temperature controls (29) before each N,V,T
independent TI simulation was initialized with a random velocity
(see Note 1).

2.4. Free Energy

Calculation

The theoretical background of the free energy calculations
employed in this study is presented in this same volume. There-
fore, here we focus on the practical aspects of the IT-TI method-
ology. Free energy changes along the thermodynamic cycle (2)
in Scheme 1 were evaluated using thermodynamic integration
(TI) (1) as:

DF 0!1 ¼
Z 1

0

dl
�
@U

@l

�

l
: (1)

For absolute binding free energy calculations, DF0!1 corre-
sponds to both DF �

protein and DF �
water from Scheme 1. In this study,

DF� corresponds to the standard state Helmholtz free energy in
the N,V,T ensemble. The ligand is decoupled from the surround-
ing environment by linear scaling of all ligand nonbonded poten-
tial energy terms with the order parameter l. This parameter
assumes values between 0 and 1 to create a mixed potential that
interpolates between the end state potential energy functions,
shown in Eq. (2):

U ðX ;lÞ¼UunperturbedðX ÞþlUdecoupledðX Þþð1�lÞUcoupledðX Þ;
(2)

where X denotes the overall system configurational space assum-
ing equilibrium conditions. The coupled state is defined at l ¼ 0,
and the decoupled state at l ¼ 1. Soft-core potentials are used
to enhance sampling and eliminate instabilities (see Note 2).
Alternative procedures to numerically obtain the integral in

Table 2
Summary of IT-TI results

Reference name

N1
D �F �

bind � dbind
kcal·mol�1

RmlC
D �F �

bind � dbind
kcal·mol�1

Medium parall/sep/19l �14.3 � 0.5 �11.8 � 0.3

Long parall/sep/19l �12.8 � 0.6 �10.8 � 0.2

Medium parall/simul/19l �11.2 � 0.6 –

Medium parall/sep/14l (vdw) �11.1 � 0.6 –

Medium parall/sep/14l (elec) �12.5 � 0.5 –

Medium cont/sep/19l �13.7 � 1.1 –
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Eq. (1) have been proposed (see Note 3). The @U
@l values

of Eq. (1) were printed for each l every five timesteps (0.1 ps)
and their forward cumulative average was monitored to evaluate
convergence (see Note 4).

A harmonic restraining potential U ðrLÞ ¼ 1
2 khðrL � r0Þ was

applied to restrict ligand sampling rL to a finite volume V pocket

within the active site throughout the TI calculations of DF �
protein

(see Note 5). For calculation of DF �
protein, a correction term must

be applied (see Note 6) (6, 30–32).

2.5. IT-TI Permutations As described in (14), one can obtain IT-TI DF �
bind estimates from

all combinations of K independent DF �
water estimates and J inde-

pendent DF �
protein estimates as:

DF �
bind;ðk;jÞ ¼ ½DF �

water;k � DF �
protein;j �k¼1;...;K

j¼1;...;J (3)

A total of N ¼ K · J estimates of DF �
bind are generated and

binned in windows of width RT ¼ 0.6 kcal · mol�1, where RT
is the energy contributed on average by thermal fluctuations at
T ¼ 300 K. The linear average of the N independent binding
free energy estimates, D�F �

bind, are summarized in Table 1 and are
reported throughout the chapter.

We stress that a linear average was employed in this case to
maintain appropriate match with the experimental reference value,
which was obtained from a linear average.

However, in general ensemble averages could be employed
when independent free energy estimates are obtained for separate
systems microstates.

2.6. Error Analysis Accuracy of the IT-TI estimates is described by the match of

D�F �
bind with respect to a reference experimental value, here

assumed to be characterized by zero uncertainty (see Note 7).
Precision is reflected in the spread of the IT-TI DF �

bind estimates
and is described by the standard deviation sbind. Here, sbind has
two components, swater of the D�F �

water estimates and sprotein of the

DF �
protein estimates, as sbind ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2water þ s2protein

q
(see Note 8).

Accuracy is limited by systematic errors, which are due to, for
example, empirical force field and water models, as well as numer-
ical approximations in the MD algorithms. Both accuracy and
precision are affected by random errors from finite sampling. We
can capture the statistical uncertainty due to random errors on
the IT-TI estimate D�F �

bind with the propagated standard error:

dbind ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
swaterffiffiffiffiffi

K
p

� �2

þ sproteinffiffiffi
J

p
� �2

s

(4)

from J estimates of DF �
protein and K estimates of DF �

water in Eq. (3).
Note that this metric approaches zero for large N.
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For each l intermediate used for the integral in Eq. (1), an
error can be computed with alternative methods (see Note 9).

2.7. Varied IT-TI

Protocols

Two approaches are available for IT-TI implementation using
distributed computing (see Note 10). Depending on the system,
calculation of accurate thermodynamic properties may be aided by
distributing fewer independent simulations, each of longer
sampling times, or, instead, more, shorter simulations. For N1-
oseltamivir and RmlC-70774, distributions of DF �

bind estimates are
produced from DF �

protein (Eq. (3)) computed using J ¼ 20 simula-
tions with medium sampling time and J ¼ 10 long simulations at
each l (see Fig. 2 and Note 11). Themedium and long approaches
can be directly compared because identical total simulation times
were used in both cases (Table 1). Additionally, varied user-defined
input are available for TI, in terms of the approach for decoupling
of electrostatics and van der Waals nonbonded components
(see Note 12), the total l values employed (see Notes 13 and
14), and the configurations used for initialization of the l simula-
tions (see Note 15 and 16). For additional data analysis we refer to
Ref. (14).

2.8. Receptor

Sampling

MD trajectory information can be saved for analysis of dynamics
throughout the TI calculations; here snapshots were saved every
2 ps. Before analysis, all protein backbone atoms should first be
aligned to a reference structure to remove overall translation and
rotation of the system. Protein sampling during the calculations
can then be conveniently examined with standard Principle
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Fig. 2. Normalized distributions of N1-oseltamivir (left) and RmlC-77074 (right) IT-TI results for medium and long parall/
sep/19l protocols. DFexp for both systems is also depicted (grey line), along with D �F �

bind (thin black line). See Table 1 for
protocol description.
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Component Analysis (PCA) (33, 34) of protein fluctuations,
performedherewithGROMACS (version4.0.4 compiled in double
precision) (35). Active site residues were identified as those within a
5 Å radius around the ligand, and the covariance matrix for active
site heavy atoms is computed using all independent simulations at all
l intermediates. Then, projections for independent l simulations
can be generated along the dominant principal components (PC) of
this matrix. This allows visualization of the changes in protein
fluctuations during progression from the bound (l ¼ 0) to the
unbound (l ¼ 1) state. Similar to (14), we used PCA to compare
N1 sampling during calculations with two different protocols –
medium parall/sep/19l and medium cont/sep/19l (Table 1), using
altogether 560 ns of simulation to construct the covariance matrix
(see Note 15). The software VMD (36), xmgrace, as well as python
scripts based on matplotlib and NumPy libraries were used for
analysis and graphical representations.

3. Notes

1. To generate distributions of DF �
bind estimates with IT-TI, one

must initialize independent trajectories for each l intermedi-
ate for the calculations (see Methods 2.4 and 2.5). For the
examples here, we start independent simulations with a
random velocity from a Maxwell-Boltzmann distribution.
Depending on the available information on the considered
protein–ligand system, multiple runs maybe as well initialized
from distinct conformations derived from different protein-
ligand X-ray structures or from alternative ligand poses gen-
erated through molecular docking.

2. For all free energy calculations, the ligand soft-core potentials
by Zacharias et al. was employed (shift parameter d ¼ 5) (37).
These potentials truncate ligand nonbonded (van der Waals
and electrostatics) interaction energies before the exponen-
tially repulsive region at small interatomic distances. They
enhance sampling throughout the l simulations and eliminate
instabilities, particularly near the end states when l switches
the potentials from full-interaction to noninteraction.

3. In this study, numerical integration of Eq. (1) was performed
using a cubic spline. Spline interpolation gives the advantage
of smoothing the h@U@l il vs. l data, which is often very rough
due to discrete, user-defined l steps and inaccurate ensemble
quantities. These splines may be weighted by 1

ssimðtÞ (Eq. (6))
at each l value to improve the fit. Instead of spline interpola-
tion for integration, Simpson’s rule has been shown to reduce
systematic errors compared to trapezoidal rule for TI (38).
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4. When nonbonded components are rescaled with a new l value
during a TI calculation, the system must relax to this pertur-
bation before equilibrium statistics may be extracted. The use
of reverse cumulative averaging and normality tests has been
suggested (39) to determine the equilibration period, but
here we monitor the forward cumulative average of @U

@l for
convergence. For both systems, @U

@l stabilizes at 500 ps for
most l values, but independent simulations may converge to
different values, as seen in Fig. 3 for N1-oseltamivir with
protocol parall/sep/19l (see Table 1 for protocol description).
Here, we see that averaging statistics from independent simu-
lations is beneficial for computing more reliable h@U@l il values
and integrated free energy estimates.

Fig. 3. Forward cumulative average of @U
@l for (a) van der Waals and (b) electrostatics

decoupling steps during J¼ 10 independent simulations at l values [0, 0.2, 0.5, 0.8, 1].
Independent simulation data is shown in different colors (available in the online version
only) for the 500 ps of equilibration used before collection of statistics for the long parall/
sep/19l (see Table 1 for protocol description).
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5. Application of a harmonic restraint throughout the TI calcu-
lation of DF �

protein is key for accurate free energy estimates.
Without this restraint, the ligand can leave the active site, no
longer sampling conformations relevant for the bound state.
Reasonable kh values were obtained from average fluctuations
of the ligand position (hdr2i) – represented by either the
center of mass (COM) or a single central atom – during a
free 2 ns N,p,T MD run as kh ¼ 3RT

hdr2i (13, 32), with R the
molar gas constant and T the absolute temperature of 300 K.
A kh of 2.9 kcal · mol�1 Å�2 was used for restraint of the
oseltamivir COM and kh ¼ 0.74 kcal · mol�1 Å�2 for restraint
of a central atom (highlighted in Fig. 1d) in 77074. Alterna-
tive types of restraints have been exploited to improve conver-
gence of the calculations (40, 41).

6. A correction to account for the transfer of the ligand from the
restricted volume V pocket to the standard volume V � is com-
puted and added to Eq. (27.1) for DF �

protein as:

DF �
protein ¼

Z 1

0

dl

*
@U

@l

+

l

þRT ln
V pocket

V �

� �
; (5)

where V � ¼ 1,661 Å3 to reflect protein–ligand binding at a
standard ligand concentration of 1 M, and T ¼ 300 K. We
explicitly calculate Vpocket from multiple MD trajectories using
the VMD VolMap plugin (36), although alternative, analytic
solutions for calculation ofVpocket have been outlined (30–32).
The correction RT lnðV pocket

V � Þ in Eq. (5) was on average �1.25
kcal · mol�1 for the N1-oseltamivir and �1.07 kcal · mol�1 for
the RmlC-77074 system. These corrections are significant (up
to 10% of the DFbind values for both systems) and should not be
neglected. For each RmlC calculation, the DF �

protein was halved
to obtain an average value for one active site.

7. The accuracy of the D�F �
bind computed from IT-TI can be

evaluated with a reference free energy derived from the exper-
imental Ki as DFexp ¼ RTln(Ki). Without an available Ki for
the investigated system, the IC50 may be converted to an
approximate Ki with the Cheng-Prusoff relationship using
information from the assay (42). Here, both systems had
available Ki values and for the N1-oseltamivir system, DFexp
is �13.7 kcal · mol�1 (43) and, for the RmlC-77074 system,
the target binding free energy value is �9.9 kcal · mol�1 (17).
The IT-TI distributions of N free energy estimates are cen-
tered near the DFexp for both N1-oseltamivir and RmlC-
70774 (compare D�F �

bind in Fig. 2).

8. As in Eq. (3), distributions ofNDF �
bind estimates are generated

from K independent calculations of DF �
water and J calculations

of DF �
protein. The shape of these distributions is generally domi-

nated by the variation of the JDF �
protein results, as this state has a
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more complex energy landscape. In other words, sprotein >
swater and DF �

protein most to the standard deviation sbind and
uncertainty dbind (Eq. (4)). For the medium parall/sep/19l
results in Fig. 2a, b, the swater ¼ 0.4 and 0.2 kcal · mol�1 for
oseltamivir and 77074, respectively, while sprotein ¼ 2.1 and
2.9 kcal · mol�1 for N1-oseltamivir and RmlC-77074, respec-
tively.

9. For each intermediate l used for the integral in Eq. (1), an
error can be computed with the standard deviation of the
time-varying @U

@l as:

ssimðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T � 1

XT

t¼1

@U

@l

� �

l;t
� @U

@l

� �

l

 !2
vuut (6)

with T being the total number of block-averages (44) through-
out the single trajectory i, for a single TI estimate, or N con-
catenated trajectories in IT-TI. ð@U@l Þl;t denotes the potential
energy derivative, block-averaged for a given l at time t, and

h@U
@l il is the ensemble average over T at a given l. The error is

obtained with an alternative method in this study. First, the
statistical inefficiency g was computed as described and coded
by Chodera, et al. (45) for simulations at each l. Then, the
error is obtained at each l with a bootstrap method (46). This
method randomly resamples the @U

@l data, decorrellated at
intervals of g, for a subsample average ð@U@l Þl;g . The standard
deviation of 1,000 ð@U@l Þl;g values is used as error bars in Fig. 4.

Fig. 4. Cubic spline interpolation for N1 IT-TI calculations with varied total number of l intermediates. Both (a) van der
Waals and (b) electrostatics h@U@lil values derived from all J¼ 20 independent simulation data are shown. Solid lines are
the cubic spline interpolation using all l intermediates for the parall/sep/19l protocol, and dashed lines show
interpolation with l intermediates omitted as in (a) protocol parall/sep/14l (vdw) and (b) protocol parall/sep/14l
(elec). See Table 1 for protocol description.
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10. Distributed computing in the context of molecular simulation
relies on the simple idea that one intensive calculation can be
conveniently distributed as multiple tasks performed indepen-
dently by different computers, or nodes, connected through a
network. These architectures can allow improved perfor-
mance by running many, shorter simulations in parallel com-
pared with an identical overall simulation time obtained from
a single, longer calculation. IT-TI was designed as an
approach for free energy calculations in the distributed com-
puting framework, by utilizing data derived from independent
trajectories to contribute to the linear or ensemble average in
Eq. (1). The IT-TI approach is particularly appealing in the
long term, with consideration of the rapid and steady increase
of computational power in the form of multiple CPU or GPU
clusters.

11. We investigated two options for distributed computing
with IT-TI, comparing free energy estimates computed
using J ¼ 20 medium and J ¼ 10 long (Eq. (3)) simulations
at each l for calculation of DF �

protein with the parall/sep/19l
protocol (Table 1). For these calculations DF �

water was consis-
tently computed using J ¼ 20 long simulations. For N1-
oseltamivir, IT-TI calculations with more independent
medium simulations gave more reliable free energy results
than with fewer long simulations (Fig. 2a, c). Here the

D�F �
bind estimate was �14.3 � 0.5 kcal · mol�1, near the

DFexp. In contrast, for RmlC-77074, the use of fewer, inde-
pendent runs with longer sampling times gave the best results.
The closest match with experiment is found with J ¼ 10 long
simulations, leading to a D�F �

bind value of �10.8 � 0.2 kcal ·
mol�1. We note that such agreement is especially remarkable
in this case because the initial ligand binding pose was derived
from docking, not a crystal structure (see Methods 2.1).

12. Ligand electrostatics and van der Waals interactions were
perturbed in two alternative ways (see Table 1). First, for the
sep protocol used for estimates in Fig. 2, the components were
scaled in separate steps, electrostatics for 0� l� 0.5 and then
van der Waals for 0.5 � l � 1. Second, with the simul
protocol, the electrostatics are decoupled for 0 � l � 0.5
and van der Waals more slowly decoupled simultaneously for
0 � l � 1. In Fig. 5a, b, N1-oseltamivir results for simulta-
neous and separate decoupling protocols can be compared,
respectively. The same total number of l intermediates is
maintained for both protocols, but the van der Waals are
scaled with 9 additional intermediates in the parall/simul/
19l protocol (Table 1). Despite these extra intermediates,
the estimates are less favorable and more spread than those
produced by the parall/sep/19l protocol. The D�F �

bind shifts
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away from the target value by 2.5 kcal · mol�1 to �11.2, and
sbind increases from 2.1 to 2.7 kcal · mol�1. Separate decou-
pling of the nonbonded components gives more accurate and
precise results than simultaneous decoupling.

13. The number of l intermediates used for TI can have a large
impact on accuracy of the results, due to integration error
(38). These intermediates can be more conveniently placed
at target l values for smoother interpolation once a prelimi-
nary knowledge of the h@U@l il vs. l curve is known. In Fig. 5c,
we see free energy results with the parall/sep/14l (vdw) pro-
tocol, which omits five l intermediates from the van der Waals

cont/sep

λ=0.0

λ=0.2

λ=0.5

λ=0.8

λ=1.0

parall/sep

λ=0.0

λ=0.2

λ=0.5

λ=0.8

λ=1.0

λ=0.0

λ=0.2

λ=0.5

λ=0.8

λ=1.0
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λ=0.8

λ=1.0

a b

Fig. 5. N1 IT-TI results for various decoupling protocols with medium simulation time. Results are shown in (a) with the
parall/simul/19l protocol; in (b) with the parall/sep/19l protocol, which gives optimal accuracy and precision; in (c) with
the parall/sep/14l (vdw) protocol; in (d) with the parall/sep/14l (elec) protocol; and in (e) with the cont/sep/19l protocol.
DFexp for both systems is also depicted (grey line), along with D �F �

bind (thin black line). See Table 1 for protocol
description.
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scaling step (see Table 1). In this case, the free energy estimates
are shifted to unfavorable values, with D�F �

bind ¼ �11:1

kcal �mol�1, although precision is unchanged. A plot of the

h@U@l il values with l in Fig. 4a shows the difference in the

interpolated curves computed with and without these five
van der Waals l intermediates. A big change is observed in
the initial and final stages of the decoupling when h@U@l il
changes significantly with l. The additional van der Waals l
values employed with the parall/sep/19l protocol (Fig. 5b)
allows smoother interpolation of the data for integration and
gives more accurate free energy estimates.

14. The electrostatics component of h@U@l il should scale roughly
linearly with l (47). As a result, fewer l intermediates may be
used without a large impact on the interpolation compared to
the corresponding van der Waals intermediates (see Note 12).
In Fig. 5d, we see free energy estimates with the parall/sep/14l
(elec) protocol, which has five l intermediates omitted from
the electrostatics decoupling step (see Table 1). In this case,
the free energy estimates are less favorable than parall/sep/19l
results in Fig. 5b, with D�F �

bind ¼ �12:5 kcal �mol�1 and
unchanged precision. The plot of h@U@l il with l shows that the
interpolation is improved with additional intermediates near

Fig. 6. Protein sampling at l values [0, 0.2, 0.5, 0.8, 1] captured by four dominant principal components (PC) of active
site residue fluctuations for medium protocols (a) cont/sep/19l and (b) parall/sep/19l. Contours depict >95% of the
projections of the apo (filled grey ) and holo (filled black ) MD simulations, as well as each of J ¼ 20 independent
trajectories (unfilled color; available in the online version only).
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the start of the decoupling, but no change near the end, when
the relationship is very linear (Fig. 4b).

15. The TI calculations were initialized in parallel (parall protocol)
or continuously (cont protocol). The first case is well-suited
for distributed computing (noted in Table 1), as all l simula-
tions are independently initialized with the same N,p,T
equilibrated configuration with a random velocity from a Max-
well-Boltzmann distribution. Instead, for the cont protocol,
simulations at l¼ 0 started from the configuration (coordinates
and velocities) from the 2 nsN,p,Tequilibrated system; then, at
each increasing l value, the end configuration from the previous
l simulation was used. These IT-TI protocols are less-suited for
distributed computing because the MD initialization requires
information from sequential runs, but this approach does allow
more equilibrated starting structures at each successive l value.
However, comparing Fig. 5b, e; the cont/sep/19lN1-oseltami-
vir results are much less precise than the parall/sep/19l results.
The D�F �

bind in Fig. 5e is centered on the target at �13.7 kcal ·
mol�1, but with sbind significantly increased from 2.1 to 4.9
kcal · mol�1.

16. We used PCA (see Methods 2.8) to compare N1 sampling
during calculations with protocols parall/sep/19l and cont/
sep/19l, which gave very different N1-oseltamivir free energy
results (Fig. 5b, e). Twenty out of 528 total PCs were analyzed,
accounting for 68% of the protein fluctuations, and projections
along the four most dominant PC for five l intermediates are
shown in Fig. 6.We also project previously performed (21) 400
ns l ¼ 0 apo and holo N1 simulations onto these PC for
reference. We see that with the cont/sep/19l protocol, at
increasing l, the independent projections have little overlap
with each other and have restricted motions (based on smaller
contour area) compared to the reference holo or apo simula-
tions (Fig. 6a). This frustrated N1 sampling is alleviated with
initialization of each l intermediate with an equilibrated l ¼
0 configuration in the parall/sep/19l protocol (see Note 14).
For these calculations, the J simulations sample similar portions
of conformational space, indicated by overlapping projections
at all l values and, based on independent contour area, have
better coverage of apo and holo motions within a single inde-
pendent simulation (Fig. 6b). This approach also allows faster
completion of the calculations compared to calculations with
continuously initialized intermediates.
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Chapter 28

Free Energy Calculations from One-Step Perturbations

Chris Oostenbrink

Abstract

The one-step perturbation approach offers an efficient means to estimate free energy differences. It may be
applied to estimate solvation free energies, conformational preferences or relative free energies of binding
of series of compounds to a common receptor. Applicability of the method depends on the possibility to
define a proper reference state which may in itself be an unphysical molecule. Here, we describe practical
considerations and explicit guidelines to define a proper reference state, and to efficiently calculate relative
free energies. The strengths and limitations of the method are highlighted and special considerations are
noted. The method may be applied using many different simulation programs. Here, analyses are
exemplified at the hand of the GROMOS simulation package.

Key words: Molecular dynamics simulations, Free energy calculations, One-step perturbation,
Soft-core potential, GROMOS

1. Introduction

The accurate and efficient calculation of free energy differences
is still one of the major challenges of molecular simulation.
As the free energy is the driving force of all chemical processes,
it is crucial to be able to do so in order to fully describe, e.g., the
interactions between (putative) drugs and their macromolecular
targets. Methods to calculate binding free energies for drug
design have been extensively described in the literature (1–3).
The one-step perturbation method is directly derived from the
perturbation formula due to Zwanzig in 1954 (4). This method
starts from the statistical mechanical definition of the (Helmholz)
free energy as

A ¼ �kBT lnZ ðN ;V ;T Þ; (1)

where Z(N,V,T ) is the (canonical) partition function valid for a
system with a constant number of particles (N), volume (V), and
temperature (T ),
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Z ðN ;V ;T Þ ¼ 1

h3NN !

ð ð
e�H ðr;pÞ=kBTdrdp: (2)

h is Planck’s constant, kB is the Boltzmann constant, andH(r,p) is
the Hamiltonian of the system, as a function of the coordinates r
and momenta p of all atoms in the system. The free energy
difference between two slightly different systems A and B can
subsequently be written as

DAAB ¼ AB �AA ¼ �kBT ln
ZBðN ;V ;T Þ
ZAðN ;V ;T Þ

¼ �kBT ln

Ð Ð
e�H Bðr;pÞ=kBTdrdpÐ Ð
e�HAðr;pÞ=kBTdrdp

¼ �kBT ln

Ð Ð
e�ðHBðr;pÞ�HAðr;pÞÞ=kBT e�HAðr;pÞ=kBTdrdpÐ Ð

e�HA
ðr;pÞ=kBTdrdp

¼ �kBT ln he�ðHBðr;pÞ�HAðr;pÞÞ=kBT iA;
(3)

in which the angular brackets<. . .>A denote an ensemble average
obtained over, e.g., a molecular dynamics simulation of system A.
The perturbation formula (3) is generally applicable in the limit
of infinite sampling. In practical applications, it is only valid if
the simulation of system A also covers the relevant (low-energy)
regions of the conformational space of system B. In the top panel
of Fig. 1, this would be the case for systems A and B0, but not for
A and B. The standard application of free energy perturbation
(FEP) solves this problem, by defining a series of (unphysical)
intermediate systems, between which the conformational space
overlaps, as exemplified in the second panel of Fig. 1 (1).

The one-step perturbation method developed by the van
Gunsteren group takes a slightly different approach. If we define
a reference state that has a wide conformational sampling, such as
R in the bottom panel of Fig. 1, then we can calculate the free
energy difference to several systems, A, B, C, . . . directly by
applying (5, 6) eq. (4)

DARA ¼ �kBT ln he�ðHAðr;pÞ�HR ðr;pÞÞ=kBT iR (4)

and the free energy differences between the various systems by
using

DAAB ¼ DARB � DARA: (5)

The strength of the method comes from the observation that
the reference state R does not need to correspond to a physically
feasible molecule. The only real requirement for R, is that it
should sample as many conformations as possible that are also
relevant for the systems A, B, C, . . . and that it should sample as
few conformations as possible that are irrelevant for any of these.
In practice, an effective way to do so is by using soft-core
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potentials (7) in which the singularity at short distances has been
removed from the nonbonded van der Waals interaction, thereby
allowing overlap of different atoms from time to time. In this
way, a simulation of a soft-core particle will sample conformations
that are relevant to systems in which a real (hard-core) particle
occupies this position, but also conformations that are relevant
to systems in which the particle is absent.

1.1. Example

Applications

The potential applications of the one-step perturbation from an
unphysical reference state are manifold. Using a single soft sphere
as reference state, the free energies of solvation were estimated for
small apolar solutes as real states (8) and by including additional
rotational and translational sampling also for polar solutes (9).
The stability of base–base stacking and base pairing for a large set
of alternative, synthetic bases in a DNA single and double helix
was estimated based on a reference state containing a set of
unphysical reference bases (10). The conformational preference
for C8-substituted GTP analogs was analyzed using a reference
state in which the specific barriers were removed, on top of a
chemical modification (11). Very recently, it was shown that
OSP may also be used to estimate the effect of modified force
field parameters on, e.g., folding equilibria (12, 13). Here, we will
focus on the use of OSP to efficiently predict relative free energies
of binding of a series of compounds to a common receptor (5, 6,
14–18). Such calculations rely on the application of a

conformational space

A

A

A

B

B

B

R

B’

C

D

E

Fig. 1. Pictorial representation of the distribution of conformational space for ensembles
of different systems A and B. Top panel: systems A and B0 show sufficient overlap to
apply equation (3), while systems A and B do not. Middle panel: the multistep approach
in free energy perturbation methods. Bottom panel: simulation of a single reference
state that shows overlap with various end states.
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thermodynamic cycle like the one in Fig. 2. For each of the
ligands, A, B, C, . . . one may estimate the relative binding affinity
between them, DDAAB

bind or the binding affinity relative to the
binding affinity of the reference molecule R, DA0

A
bind, by using

the free energy differences DAA, DAB, DAC, . . . obtained from a
simulation of R free in solution and when bound to the protein.

2. Methods

The OSP method may be applied in any general purpose
simulation package. Most of our own work, however, was per-
formed with the GROMOS package for biomolecular simulations
(19, 20). Below, general guidelines will be given to apply the
OSP method, exemplified at the hand of the implementation in
GROMOS.

2.1. Choice

of the Reference

State

The definition of the reference state is one of the most crucial
concerns for the one-step perturbation method. The strength
of the method comes from the observation that the reference
state does not need to reflect a physical molecule. This also
means that no strict rules for the definition of the optimal R can
be given. For efficient calculations, the following requirements
can be formulated:

1. In order for Eq. (4) to hold, the mapping of the real states A,
B, C, . . . onto a trajectory involving reference state R should
be exactly defined. In most current examples, every atom in R
is modified to a single (possibly noninteracting dummy) atom
in A, B, C, . . ., but alternative mappings may also be possible,
such as placing the real atom at the center of geometry of

H2O Protein

A A

BB

C

…

C

…

R R

AAbind

ABbind

AAH2O

ABH2O

AAprot

ABprot

A’A
bind= AA

bind  – AR
bind = AA

prot – AA
H2O – AR

bind

AAB = AB
bind – AA

bind = AB
prot – AB

H2O – AA
prot + AA

H2O

Fig. 2. Thermodynamic cycle used to calculate the relative free energy DDA of binding for compounds A, B, C,. . . from
two simulations of a reference state R.

490 C. Oostenbrink



specified atoms in R, or using a rotational fit (16) (see Note 1
for details).

2. A simulation of R should sample as many relevant conforma-
tions of A, B, C,. . . as possible. Initially, one may be tempted
to construct a complex R that may be representative for a very
large amount of A, B, C,. . ., typically by combining different
functional groups. Note that it should still be possible to
simulate all relevant conformations for all A, B, C,. . . in a
physically practicable time.

3. The sampling of the conformations relevant for A, B, C,. . .
should be fast and reversible. If the simulation of R is first
stuck in a local minimum relevant for A and subsequently in a
local minimum relevant for B, the ensemble that is generated
for R is not converged, nor will the free energy estimates be.

4. A simulation of R should sample as few conformations as possi-
ble that are completely irrelevant for anyA,B,C,. . .. Particularly
difficult is the definition of R when, e.g., A and B have large
dipole moments of opposite direction. Defining R without any
dipole moment (as the average of A and B) leads to a simulation
in which R does not polarize its environment and thus samples
mostly configurations that are irrelevant for A and B. On the
other hand, defining R with a dipole moment similar to A will
fail to produce configurations relevant forB. Similarly, the use of
long chains (more than three) of soft atoms should be avoided.
It is very likely that such R are too dissimilar from A, B, C,. . .
(15). In such cases, it may be advisable to define multiple R’s
which are representative for subsets of A, B, C,. . ..

A simple and efficient example of a reference state that fulfills
the requirements above is given in Fig. 3. Using a united atom
representation of a chiral CH-group, we define a reference state in
which the improper dihedral interaction on the CH-group has
simply been removed. The distribution of the dihedral angle z and
of the angles y around the CH-group for R (dashed lines) is
compared to the distributions obtained for the two stereo isomers
(solid lines). The overlap is significant, the sampling between the
maxima in the distribution of z is sufficiently fast (approximately
every 8 ps in solution) and reversible, and a limited amount
of configurations is sampled with irrelevant values of z (in the
interval <�20�, 20�>).

A slightly more complex, but potentially more powerful defi-
nition of R involves the use of soft atoms, for which the singularity
of the van der Waals interaction has been removed (7). This
allows R to sample configurations relevant for states A, B, C,. . .
in which the corresponding atoms have different types, including
a noninteracting dummy type, essentially removing the atom
completely.
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In GROMOS, soft interactions are implemented in the
context of a molecular perturbation between states A and B. The
resulting reference state can still very well be valid for additional
states. The full description of the van der Waals interaction
between two atoms i and j becomes dependent on a coupling
parameter l,

V vdwðrij ; lÞ ¼ ð1� Lvdw
IJ ðlÞÞnV LJ ðrij ;A;LSLJ

IJ ðlÞÞ
þ ðLvdw

IJ ðlÞÞnV LJ ðrij ;B; 1� LSLJ
IJ ðlÞÞ; (6)

where n has integer value and the various individual L values may
be different depending on the energy groups I and J to which
the atoms belong. All LIJ depend on the overall l as

LT
IJ ðlÞ ¼ aTIJ l

4 þ bTIJ l
3 þ cTIJ l

2 þ dT
IJ lþ eTIJ : (7)

The actual interaction for a state X is calculated the using
soft-core Lennard-Jones function,

C
R2R1

R3

H

CH
R2R1

R3

CH
R2R1

R3

C
R2R1

R3

H

= =

Fig. 3. Example of a simple reference state, representative for two stereoisomers. R is defined by simply removing the
improper dihedral interaction on the stereocenter, leading to sampling of both the configurations. Distributions of
the improper dihedral angle z and the angles y around the stereocenter for R (dashed lines) show significant overlap
with the corresponding distributions of any of the real isomers.
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V LJ ðrij ;X;LÞ ¼ C12X ði; jÞ
aLJC126XL2 þ r6ij

� C6X ði; jÞ
" #

� 1

aLJC126XL2 þ r6ij
; (8)

where C12X(i,j) and C6X(i,j) are the Lennard-Jones parameters
for the atoms, and C126 is defined as C126 ¼ 0 for C6 ¼ 0 and
C126 ¼ C12/C6 otherwise. Similar equations are defined for
soft electrostatic interactions.

Two approaches may now be chosen to define a soft atom:

1. In the (perturbation) topology define state A and state B as
having the same parameters, use LIJ ¼ l ¼ 0.5 for all LIJ and
n ¼ 1 in (7), and modify the softness through parameter aLJ.
Note that in this case, for simulations at any value other than
l ¼ 0.5, the interaction becomes a linear combination of
interactions at different softness levels.

2. Use only the definition of stateA in the (perturbation) topology
and set Lvdw

IJ ¼ 0 and LSLJ
IJ ¼ l using Eq. (7). This has the

advantage that the softness level can additionally be modified
through the parameter l, andmay bemodified in the context of
a perturbation or a replica exchange simulation (21), without
modifying the chemical character or the strength of the interac-
tion of the atoms at longer distances.

Of course, soft atoms based on different chemical entities
defined in states A and B and with different Lvdw and LSLJ inter-
actions may be defined as well. It becomes difficult to envision
how such atoms will behave in the context of the second and
fourth requirement to R postulated above.

2.2. Simulation Once the reference state has been defined, the actual sampling can
be performed relatively straightforward. In GROMOS, molecular
dynamics is used. The free energy difference between the refer-
ence state R and the end states A, B, C,. . . is calculated by post-
analysis of the obtained trajectories, from which the ensemble
average in Eq. (4) is estimated. The following recommendations
are given:

1. Perform the simulations of the reference state free in solution
and when bound to a protein, solvated in explicit solvent.

2. Perform the simulations at the appropriate thermodynamic
boundary conditions. Use of constant volume and tempera-
ture will lead to Helmholtz free energies, while performing
the simulations at constant pressure and constant temperature
will lead to Gibbs free energies. For typical protein–ligand
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complexes, the difference in the relative free energies due to
a pDV term is negligible.

3. Store sufficient configurations for the postanalysis. Typically,
all molecular coordinates of the system (including solvent) are
written to disk every 0.1–0.2 ps, and the simulations are run
for several nanoseconds, such that several 10,000 configura-
tions are available for later analysis. For consistency with the
later analysis, make sure that the configurations are written
at a time-step at which the pairlist was newly constructed.
Pay close attention to estimate the convergence and errors
(see Note 3).

4. It is advisable to perform simulations of some end states in
parallel. This may be used to compare results from the refer-
ence state simulations in terms of structural and energetic
observations. Use the same simulation parameters as for the
reference state.

2.3. Analysis At first glance, it may seem inefficient to recalculate the potential
energy by postprocessing of previously stored trajectories. How-
ever, this allows the user to reuse existing trajectories time and
again. Moreover, as Eq. (4) contains only the difference in the
Hamiltonian between R and A, only those potential energy terms
need to be recalculated which differ between R and A. Typically,
this is true for the nonbonded interactions of a handful of atoms
and possibly some covalent interactions. Another advantage of
postprocessing the trajectories is that it allows for some modifica-
tions in the coordinates after the simulations have been performed
(see Notes 1 and 2).

The following steps are to be followed

1. Identify the potential energy contributions that are different
between R and the end states. Note that upon changes of
bond lengths (see Note 2), also other covalent interactions
like (improper) dihedral angles may change slightly.

2. Calculate the potential energy contributions over the previ-
ously stored trajectory for R and for A, B, C,. . .. Note that
the same settings need to be applied (cutoff, reaction field,
soft-core interaction for R, not for A, B, C,. . .) as in the
original simulations. In GROMOS, the analysis program
ener may be used to generate a time series of the selected

potential energy terms.

3. Apply Eq. (4) by generating the ensemble average over the
time series. In GROMOS this may be performed using pro-
gram dg_ener.

4. Apply the thermodynamic cycle in Fig. 2 to combine the
individual free energy differences into relative free energy
differences between pairs of end states (DDAAB) or to
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calculate the binding free energy for all end states (DA0
A
bind)

relative to the hypothetical binding free energy of the refer-
ence state (DAR

bind). If some experimental data is available,
the relative free energies of binding may be compared directly,
or the experimental values may be used to obtain an estimate
of DAR

bind.

2.4. Projections Apart from the analysis of free energies, the one-step perturbation
method may be used to estimate observables for states A, B, C,. . .
from the simulation of R. Examples are the occurrence of hydro-
gen bonds (10), the conformational distributions (12), or the
resulting 3J-coupling constants (11). For this, we write the ensem-
ble average of property Q as an expectation value, calculated over
the different configurations.

hQ iA ¼
X
i

Q ðri;piÞPAðri;piÞ; (9)

where Q(ri,pi) is the instantaneous value of Q calculated over the
configurations from the simulation of R, and PA(ri,pi) is the
probability that this configuration occurs for state A, calculated as:

PAðri;piÞ ¼
e�ðHAðri;piÞ�HR ðri;piÞÞ=kBTP
j

e�ðHAðrj;pjÞ�HR ðrj;pjÞÞ=kBT : (10)

In GROMOS, the nonnormalized probabilities are written
out by program dg_ener. The procedure outlined above can also

be considered as the unbiasing step in, e.g., umbrella sampling (22),

where the biasing potential V bias ¼ (HR–HA) is added to the physical
potential HA to perform the simulation.

3. Notes

1. Direct mapping.
Even with a very well-chosen reference state R which is repre-
sentative for many different end states A, B, C,. . . it is not
unlikely that interest arises in an end state X, which is similar
to R, but not really covered. For example, a relatively large
soft atom (Br) was used as a substituent on a molecular
structure, which was being replaced by real substituents, H,
CH3, F, Cl, Br in the analysis (11). A substituent CF3may also
find favorable configurations of the surroundings around the
soft Br atom, but its atoms cannot be straightforwardly placed
in the configurations stored from the simulation of R, simply
because there were no atomic sites for the three F atoms in the
simulation of R. If the positions of missing atoms can be
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determined exactly based on the coordinates of the atoms that
were present during the simulation, one can add these coor-
dinates to the stored trajectory and consider them to have
been present during the simulation as noninteracting dummy
particles. Similar considerations may also be used when plac-
ing atoms into a cloud of soft atoms, through a well-deter-
mined procedure (16).

Next, one may be tempted to modify the position of given
atoms a posteriori, such that they correspond better to the
Hamiltonian of states A, B, C,. . .. Formally, this corresponds
to a variable substitution, thereby also changing the integra-
tion variables in the partition function of A in Eq. (3) (23).
In order for Eq. (3) to hold, this requires the inclusion of the
proper Jacobian determinant containing the derivatives of
the variable substitution. This may be trivial for simple trans-
formations, such as a translation or a rotation of selected
atoms (23) and was successfully used as a means to increase
the sampling of polar solutes placed in a nonpolar reference
cavity (9). It may also be used to additionally sample the
orientation of, e.g., an OH group within a ligand. Care
should, however, be taken for more complex variations, such
as an energy minimization of certain degrees of freedom
within the given configuration. In this case, the transforma-
tion is not constant over time and the appropriate Jacobian
may be much more difficult to estimate.

2. Bond lengths.
Bond lengths are relatively stiff degrees of freedom. That is,
when bond lengths differ between R and the states A, B, C,. . .
this will generally lead to large unfavorable contributions to
(HA–HR) in Eq. (4). Moreover, in molecular dynamics simu-
lations, the bond lengths are often treated as constraints (24)
to allow for a larger time-step. It is clear that a simulation of R
in which a bond length is constrained is not representative for
a state A, in which the bond would be of a significantly
different length.

Following the discussion in the previous section, simple
translations or rotations of given atoms correspond to a Jaco-
bian of 1. This offers the possibility to adjust bond lengths a
posteriori to more closely resemble states A, B, C,. . . than state
R. That is, in the example outlined in the previous section, the
position of the real atoms H, CH3, F, Cl may be adjusted
before the energy calculations take place. This may however
also lead to much less favorable nonbonded energies than
would have been obtained when the bond was kept at its
original length, especially if it was lengthened, rather than
shortened. Care should also be taken that all energy terms
that are being modified due to the bond-length adjustment
are included in Eq. (4), including, e.g., improper dihedral-
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angle definitions that may differ slightly due to a different
bond length. Note that when bond lengths are treated as
constraints in the description of R and A, B, C,. . ., the poten-
tial energy term corresponding to the bond lengths is not
included in the calculation.

In GROMOS, the adjustment of bond lengths and other
simple modifications to atomic positions may be performed by
the program gca, or in the current context the program
gca_ener. The latter program first adjusts the atomic coordi-
nates as specified and then calculates the energy contributions,

avoiding an intermediate step to write out modified coordinates.

3. Error Estimates.
The output of program dg_ener shows the development of

DA according to Eq. (4) as a function of time. Typically, only a
fraction of all stored configurations contribute significantly to

the ensemble average in this equation. This leads to the typical

saw-tooth development of DA in time: the current estimate
gradually increases, and whenever a favorable configuration is

encountered a sudden drop in DA is observed. This may be

used to visualize and inspect those configurations that are rele-
vant for state A (25), but care should be taken that not all

favorable configurations lead to a pronounced drop of DA. The

saw-tooth behavior also indicates that it is very difficult to assess
if enough sampling has been performed to make an accurate

estimate of DA. A next drop may occur just in the next couple

of picoseconds after a simulation was ended.
dg_ener calculates an error estimate of the ensemble aver-

age, based on block averaging and extrapolation to infinite block
lengths (26). This is translated to error estimates on DA. Espe-

cially, if favorable configurations occur only rarely, this may yield

relatively large errors. Therefore, it is often insightful to count the
number of configurations that contribute significantly to the free

energy difference and how these are distributed over time. Typi-

cally, one counts the number of configuration for which the
following condition holds (8, 16):

HAðr;pÞ �HRðr;pÞ;�;DARA þ kBT : (11)

A significant number of configurations should contribute
to the free energy estimates.

It is strongly advised to perform simulations of at least
some of the end states explicitly as well. Through the proce-
dure outlined in Subheading 2.4, this allows for a direct com-
parison of observables such as energy distributions,
conformational preferences, 3J-values, or hydrogen-bonding
propensities (11). Moreover, it may give confidence that the
simulation of R has not drifted off into regions of conforma-
tional space completely irrelevant for the end states (step 4 in
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Subheading 2.1). If possible, one should also consider to
calculate some free energy differences by less efficient methods
such as thermodynamic integration or multistep FEPs to vali-
date the accuracy of the method, independently of the force
field.

References

1. Beveridge, D. L., DiCapua, F. M. (1989) Free
energy via molecular simulation: Applications
to chemical and biomolecular systems. Ann
Rev Biophys Biophys Chem 18, 431–492.
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Chapter 29

Using Metadynamics and Path Collective Variables
to Study Ligand Binding and Induced
Conformational Transitions

Neva Bešker and Francesco L. Gervasio

Abstract

Large-scale conformational transitions represent both a challenge and an opportunity for computational
drug design. Exploring the conformational space of a druggable target with sufficient detail is computa-
tionally demanding. However, if it were possible to fully account for target flexibility, one could exploit
this knowledge to rationally design more potent and more selective drug candidates. Here, we discuss how
molecular dynamics together with free energy algorithms based on Metadynamics and Path Collective
Variables can be used to study both large-scale conformational transitions and ligand binding to flexible
targets. We show real-life examples of how these methods have been applied in the case of cyclin-
dependent kinases, a family of flexible targets that shows promise in cancer therapy.

Key words: Molecular dynamics, Free energy methods, Drug design, Induced-fit, Protein flexibility

1. Introduction

Quantitative computational modeling of ligand-induced or
ligand-stabilized conformational transitions in proteins is very
challenging. Current docking methods implement various strate-
gies to model target flexibility (1). However, only local structural
changes can be predicted reliably, and the quality of predicted
docking poses invariably decreases as the docked drug differs
from that bound in the crystal structure. Computationally inten-
sive methods, as Monte Carlo and molecular dynamics (MD)
simulations, are a proven tool for studying the flexibility of bimo-
lecular systems (2, 3), as shown in the design of HIV integrase
inhibitors (4). Unfortunately, their predictive power has been so
far limited by the complexity of the conformational free energy
landscape, which prevented exhaustive sampling by means of stan-
dard MD. Recently, the algorithmic advances in molecular
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dynamics code (3, 5) the use of specialized hardware (6), and
distributed computing platforms (7) as well as the development of
advanced sampling algorithms (8–10) have significantly alleviated
the timescale limitation. Among the several free energy methods
available, metadynamics (10) with its major variant, parallel temper-
ing metadynamics (PTmetaD) (11), and the path-collective vari-
ables (PCV) (12) show great promise (13, 14). Both metadynamics
and PCV methods require long molecular dynamics simulations to
converge and are much more computationally expensive when
compared to fast docking approaches. Still, they are able to recon-
struct the free energy landscape orders of magnitude faster than
nonaccelerated molecular dynamics simulations (15). Metady-
namics, as the widely used Umbrella Sampling (16), is a free energy
method based on the biasing of a set of chosen Collective Variables
(CVs). It provides in many cases a unified framework for computing
free energies and accelerating rare events. It has been used to suc-
cessfully reconstruct the binding free energy surface andmechanism
of action in several cases of pharmaceutical interest including the
binding of staurosporine to CDK2 (17), of tetramethylammonium
to Acethylcholinesterase (18), and of a peptide to HIV protease
1 (19). Together with the PCV approach, it was used to get a
quantitative estimate of the differential binding of a series of cogene-
ric drugs to CDK2, to rationalize the differential drug-residence
time of a ligand binding to COX1 and COX2 (13) and to gain a
complete understanding of conformational dynamics of a kinase
(CDK5) while keeping a fully atomistic description(20). This chap-
ter is intended to provide a description of themethod (see Subhead-
ings 1, 2, 3), with a focus on the practical aspects (see Subheading 4)
that need to be addressed when one attempts to apply PCV and
metadynamics to obtain (1) themode-of-action of drug-like ligands
in CDKs including the binding free energy profile and (2) an in-
depth understanding of the large-scale transitions involved in the
dynamics of activation of CDKs.

2. Materials

l PLUMED, an open-source LGPL plug-in for free energy calcu-
lation in molecular systems that implements metadynamics and
other free energy methods (umbrella sampling, etc.) with a large
variety of CVs. It works together with some of the most popular
molecular dynamics engines. (http://merlino.mi.infn.it/
~plumed/PLUMED/Home.html).

l A Molecular Dynamics package (Gromacs (5), Amber (21),
NAMD (22), DL_POLY (23), LAMMPS (24), ACEMD (25)).
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l The utility program sum_hills.f90, a tool for obtaining the free
energy surface from the metadynamics run (included in the
PLUMED distribution).

l C++ and FORTRAN compilers.

3. Methods

3.1. Metadynamics Metadynamics is an algorithm that can be used together with
Molecular Dynamics or Monte Carlo simulations for accelerating
rare events and for reconstructing the free energy of complex
systems. The algorithm is based on biasing the normal evolution
of the simulation by a history-dependent potential constructed as
a sum of Gaussians centered along the trajectory followed by a
suitably chosen set of CVs. To use a metaphor first introduced in
ref. (10), using metadynamics to escape local minima in the free
energy surface can be seen as a walker who tries to exit from a pool
by filling it with sand.

Imagine a walker who, during the night, falls in an empty
swimming pool. The walls are too steep for him to climb, and the
complete darkness hinders the localization of a shallow point. He
is trapped in the pool. However, if he had access to a large source
of sand that he could deposit in his current position, the sand
would slowly fill the pool enabling him to climb out of it. Meta-
dynamics is the computational sand filling the local free energy
minima and enabling the MD to escape them.

The novel idea that differentiates metadynamics from similar
preexisting methods (26) is that if one keeps memory of all the
positions in which the sand was deposited (the Gaussians), he will
be able to reconstruct a negative image of the underlying pool (the
free energy). The time-dependent potential defined by the sum of
Gaussians deposited up to time t provides an unbiased estimate of
the free energy in the region explored during the dynamics. This
property has been verified empirically in several complex systems
and was demonstrated rigorously for a system evolving under the
action of a Langevin dynamics (27).

Since the history-dependent potential iteratively compensates
the underlying free energy, a system evolved with metadynamics
tends to escape from a free energy basin via the lowest saddle
point, a property that turns out to be very useful in undocking
simulations.

The peculiar properties, the computational efficiency, and the
ease of coding make metadynamics a very flexible tool. This
flexibility reflects in the numerous contexts in which this method
has been applied so far, ranging from material science and chemis-
try (10) to biophysics and drug design (17, 18, 20, 28–38).
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Being based on CVs, metadynamics requires the preliminary
identification of a set of CVs that describe the process of interest.

3.2. The choice of CVs Similarly to other methods that project the free energy on a set
of generalized coordinates, the reliability of metadynamics is influ-
enced by the choice of the CVs.

If the CVs are chosen sensibly, the system will quickly find its
way over the lowest free energy saddle point and evolve over the
next minimum as it would eventually do in a very long MD
simulation. The simplest type of CVs used in the study of chemical
reactions and biophysical systems is geometry related, such as
distances, angles, and dihedrals formed by atoms or group of
atoms. For example, to study protein–ligand recognition, meta-
dynamics can be performed with the distance between the ligand
and the cavity and one or more angles defining the orientation of
the ligand (17). Choosing the right set of CVs can be difficult in
complex cases as there is no a priori recipe for finding the correct
set of CVs (see Note 1). Sometimes, it is necessary to proceed by
trial and error, attempting several metadynamics simulations with
different combinations of variable and checking a posteriori if the
description provided by the chosen set is correct (see Note 2). In
complex cases (e.g., protein conformational transitions), the use
of special CVs as the vectors of a principal component analysis of
an MD trajectory (39), the combination of metadynamics
with parallel-tempering (11), or the use of PCV provide good
alternatives to extensive trial-and-errors attempts with simple
geometric-based CVs (see Note 3).

3.3. Path-Like CVs Sometimes, the definition of “relevant” CV proves to be complex.
If one has the knowledge of the states of interest of the chosen
biological system (e.g., the crystal structures of two different
conformations), it is possible to define the path in a configu-
rational space from some initial state to some final state. The
two path-like variables can be introduced that are able to describe
the position of a point in configurational space relative to a preas-
signed path (12):

sðxÞ ¼ lim
l!1

Ð 1
0te

�lj SðxÞ�SðtÞk k2dt
Ð 1
0e

�lj SðxÞ�SðtÞk k2dt
(1)

zðxÞ ¼ �1

l
lim
l!1

ð1

0

e� SðxÞ�SðtÞk k2dt ; (2)

where t parameterizes a path S(t) in a high-dimensional CV space
and indicates the distance in this space. For any microscopic
configuration x, s(x) and z(x) measure, respectively, the progres-
sion along the path and the distance from the path. In practical
applications, a first guess for the path is discretized with a discrete
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number of frames S(l), l ¼ 1,P with S(1) ¼ SA, and S(P) ¼ SB,
and (1) and (2) are approximated by finite sums over l. The
distance ||. . .|| in (1) and (2) can be defined in different spaces.
A possible simple metric is the RMSD between the two structures
after they are optimally aligned using the Kearsley (40) algorithm.
But different choices for the metric are possible, as e.g., the
contact map matrix SC(R) defined as:

ScðRÞ ¼
X

i;j

1� rij
r0

� �n

1� rij
r0

� �m; (3)

where the sums on i and j run on two sets of atoms; rij is the
distance between the ith and jth Ca atoms of the protein backbone,
n and m set to 6 and 10, respectively and the cutoff distance r0 is
taken to be r0 ¼ 8.5 Å. The square distance ||. . .||2 between a
generic state R and a point SC(l) along the path described by the
is measured in this case as:

ScðRÞ � ScðlÞk k2 ¼
X

j>i

Cij ðRÞ �Cij ðlÞ
� �2

; (4)

where nearest neighbors are excluded from the sum.
As rigorously shown elsewhere (18), the initial guess on the

path can be refined at will, eventually finding a rigorous parame-
terization of the committor. Still, if a totally independent reaction
mechanism exists, it will be explored with vanishingly small prob-
ability as a transition between the two mechanisms is a “rare
event” in path space. Using z(R) together with metadynamics
allows exploring reaction pathways that are further and further
from the initial guess, eventually finding a reaction pathway that is
completely different (12). Indeed, independent reaction mechan-
isms are similar to different free energy minima in path space, and
metadynamics can help in escaping local minima.

A variant of this approach can be used to obtain an optimal
binding reaction coordinate and the free energy profile along it.
Its use minimizes human intervention on the choice of CV and
drastically decreases the computational resources needed to calcu-
late the binding–unbinding free energy (see Subheading 4)

3.4. Practical example:

Ligand Binding

In the light of the above considerations in ref. (41), a protocol
based on PCV to calculate the binding free energy of ligands was
introduced. It provides a full free energy profile along the binding
reaction coordinate with a full flexibility and explicit solvent while
drastically decreasing the computational resources needed to cal-
culate the binding–unbinding free energy. The protocol first uses a
metadynamics in the space of the distance (r) and a dihedral angle
(o) to find an approximate pathway of docking or undocking (42).
The target is cyclin-dependent kinase 2 (CDK2), and the chosen
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inhibitor is shown in Fig. 2 (see Note 4). The definition of the CVs
is the following:

1. r is the distance between a carefully chosen reference point on
the protein pocket (group2_prot in the input example) and
the center of mass (CM) of a rigid moiety of the ligand
(group1_lig);

2. o is the dihedral angle between two reference points on the
protein, and the CM and a rigid moiety of the ligand chosen
to define r.

Fig. 1. The effect of neglecting a relevant degree of freedom. Right: 2D Z shaped
potential energy surface. Left : the behavior of the free energy profile reconstructed with
a metadynamics simulation generated using only s1 as CV. Transitions from A to B are
not properly described by CV1, causing strong hysteresis in the reconstructed free
energy profile.

Fig. 2. The inhibitor 1 (inset) and a 3D representation of its exit path from the CDK2 active site.
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The reference points on the protein were the center of mass of
the two a-helices of the C-terminal domain lying below the active
site. The rigidity of these protein portions was assessed during the
unconstrained preliminary MD run.

Metadynamics was run until the inhibitor reached a distance
of 20 Å from the active site.

Given the large Gaussians used, the undocking is fast. In
principle, this approach can be used by itself to calculate the
binding free energy.

However, it usually takes a very long time to converge. Refer-
ring to Fig. 3, after fully exploring the internal cavity A and filling
it with bias, metadynamics must completely fill the “outside”
space B, which in this case is delimited by restraining the ligand
within a conical area (defined by CV #3 in see Note 4). The source
of inefficiency is the long time necessity to fill B and to the
multiple recrossing of the narrow gate G needed to reach conver-
gence. Moreover, the relative depths of area A and B of the free
energy surface depend on the volume accessible to the drug in the
area B and must be reweighted according to the standard volume
used in the experiments.

Instead, the r/omega metadynamics can be used to quickly
undock the ligand and build a guess path from A to B to be used
with PCV (see Fig. 4 and Note 5), where state A is the relaxed
crystallographic pose of the ligands. The choice of state B is more
arbitrary as in principle one should take a point at a very large
distance (ideally infinite) from the target. Here, given the limited
size of the MD cell, a point ’ 8 Å away from the mouth of the
enzyme cavity was taken. This choice must be corrected by taking
into account the standard volume of a free ligand in solution if the
absolute DGbinding is needed.

In this case, metadynamics together with the PCV approach
was able to correctly calculate the relative (and absolute) binding
free energies (DDGbind) of the ligand and its congeneric, and to

Fig. 3. Performing a metadynamics run using r and theta as CVs. In the scheme
P ¼ protein; A ¼ binding cavity; G ¼ narrow gate; B ¼ external area; O ¼ a point
just outside the internal cavity. In this example tree CVs are used, a distance, an angle,
and a dihedral.
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reconstruct the full docking FE profile including the transition
states and metastable minima. This approach required a much
lower computational cost when compared to a fully converged
metadynamics with all the needed CVs (43).

3.5. Large-Scale

Flexibility of CDK5

So far one of themost ambitious applications ofmetadynamics-based
methods was aimed at studying the open-to-closed conformational
change of CDK5. Simulations were carried out using PCVs. CDK5
does not seem to be involved in cell-cycle regulation, and instead of
interactingwith cyclins is activatedbyp35orp39,whose expression is
limited to neurons and to a few other cell types. As a consequence,
CDK5 is implicated in neuronal development and maintenance of
adult neuronal architecture, and its deregulation has been associated
with a number of neurodegenerative diseases (44–48). At variance
withotherCDKs,CDK5does not seem toneed the phosphorylation
of the T-loop to be fully active (49). The peculiar nature of CDK5
and the absence of the phosphorylation step made the investigation
of the closure mechanism of great scientific interest, not to mention
its possible practical relevance in drug design. To determine the
closing pathmetadynamics was used together with PCVs. The initial
configuration for the path was taken from the relaxed open crystallo-
graphic structure. In the absence of experimental data, the closed
state was obtained from homology modeling, using as template
CDK2. The initial guess path was then constructed using a standard
bioinformatics tool (43) that interpolates the initial and final states.
The optimal pathwas obtained by optimizing it and turned out to be
very different from the initial guess (seeNote 6). The open-to-closed
transition of CDK5 is rather complex, and the process takes place in
two steps (see Fig. 5). First, the salt bridgebetweenLys33 andGlu51
is broken, leading to 45� rotation of theC-helix and the formation of
a salt bridge between Glu51 and Arg149. Later, a highly concerted
motion of the aC-helix and the T-loop leads to the final closed

Fig. 4. A schematic representation of the path used for the docking/undocking free
energy calculations.
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conformation, with the aC-helix rotated by 90� while Arg149 and
Glu51 are exposed to the solvent but remain bonded. The associated
free energy profile shows the stability of the closed state of about
4–6 kcal/mol lower in free energy than the open one, with an activa-
tionbarrier of about 16–20 kcal/mol. This very highbarrier suggests
the fundamental catalytic roleof thep25,p35, andp39.Fromthe free
energy profile, a low free energy state can be identified as a possible
metastable intermediate. A similar intermediate has been crystallized
in two related protein kinases, Srckinases, Src, and Hck (50, 51)
giving support to our finding and to the possibility of using this
intermediate as a novel target for drug design.

Fig 5. Top: a schematic representation of the different conformations assumed by CDK5 in going from the open state to
the closed state. Bottom: corresponding free energy landscape as a function of s and z.
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4. Notes

1. Ideally the CVs should satisfy three properties:

a. They should clearly distinguish between the initial state,
the final state, and the intermediates.

b. They should describe the slow events that are relevant to
the process of interest.

c. Their number should not be too large, otherwise it will
take a very long time to fill the free energy surface nor too
small (see (39)).

2. If a relevant CV is neglected, a hysteretic behavior in the
reconstruction of the free energy surface will be observed.
In this respect, a simple metadynamics run on an idealized
model can be enlightening. Consider the Z-shaped 2D free
energy depicted in Fig. 1. If a metadynamics simulation is
performed biasing only CV1 and neglecting CV2, the simu-
lation, that is started in basin B, is not able to perform a
transition toward A when the basin is filled with bias, and
metadynamics goes on overfilling this minimum. A transition
is finally observed only when the height of the accumulated
Gaussians will largely exceed the true barrier height. This
behavior will continue indefinitely without ever reaching a
situation in which the free energy grows evenly. A similar
behavior is observed in real cases and is an indication that an
important CV is missing (see ref. (18)).

3. In PLUMED several CVs are available, ranging from simple
geometry-based ones as distances, angles, dihedrals, coordi-
nation numbers to more complex one as principal component
analysis vectors, path CVs, contact maps, etc. Moreover
various kinds of metadynamics variants can be used as well-
tempered metadynamics, which is to be favored to the original
metadynamics as it has better convergence properties, to the
powerful and computationally expensive parallel-tempering
metadynamics (11) that is our method of choice in very
complex systems.

4. An example of the PLUMED input is given in Box 1.
This input was used in ref. (41) and the atom numbers
reported are specific to the pdb used. Still, it is a good illustra-
tion of a real-life PLUMED input. The units are those of
GROMACS (nm and kj/mol). The volume of deposited
Gaussians is large (a gaussian of 1.25 kj/mol height deposited
every 1,000 steps). This particular choice wasmade to obtain a
quick undocking. The run uses well-tempered metadynamics
with a maximum bias factor of 10. In addition to r and omega,
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a third CV is defined to impose a conical restraint on the ligand
exit path (see Fig. 3).

5. An example of the PLUMED input for a PCV run is given in
Box 29.2. The units of this input are those of NAMD/Amber
(Angstrom and kcal/mol). Also in this case, we performed a
well-temperedmetadynamics. A quadratic restraint (UWALL)
on the distance from the path (Z_PATH) is used to restraint
the ligand within a tube around the optimal path (see Fig. 4).
The value to be used for this restraint depends on the metric
used to define the path. Sometimes, a preliminary run (with-
out any restraint on Z) in which the ligand is pulled all the way
outside the cavity can be used to determine the best range of
values for UWALL.
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6. The optimization of a path can be performed by following the
procedure described in ref. (11), which is not available in
PLUMED but can be easily coded in a script, or by repeatedly
pulling the system along the path and choosing equally spaced
frames along the resulting trajectories.
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Chapter 30

Accelerated Molecular Dynamics in Computational
Drug Design

Jeff Wereszczynski and J. Andrew McCammon

Abstract

The method of accelerated molecular dynamics (aMD) has been shown to increase the rate of phase-space
sampling in biomolecular simulations. In this chapter, we discuss the theory behind aMD and describe the
implementation of two versions: dual-boost and selective aMD. Each method has its practical advantages:
dual-boost aMD is useful for increasing sampling of global conformational motions while selective aMD
can improve the rate of convergence of free energy calculations. Special emphasis is placed on the use of
these methods in computer-aided drug design, and the example of oseltamivir binding to neuraminidase is
highlighted for both cases.

Key words: Molecular dynamics, Conformational sampling, Alchemical free energy transformations

1. Introduction

Free energy methods that rely on molecular dynamics (MD)
simulations have two major sources of error: the accuracy of MD
“force fields” and sufficient sampling of phase space. Work con-
tinues on improving the reliability of force fields, for example by
introducing the effects of polarizability (1), and expanding their
applicability to novel small molecules through more general
implementations (2, 3). Sampling of phase space can be improved
through advances in computational power (4), algorithmic impro-
vements (5), and methodological developments (6, 7). Methods
that enhance sampling through modification of the system’s
Hamilitonian have shown particular promise in increasing the
rate of transitions over large energy barriers. In 2004, Hamelberg
et al. introduced accelerated molecular dynamics (aMD), a unique
method for enhancing sampling that has several practical
advantages: it is relatively simple (only two parameters are
required), it maintains the approximate shape of the underlying
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(or “unaccelerated”) free energy landscape, and it does not
require the definition of a “reaction coordinate” (8–11).

Here, we discuss two potential uses of aMD that are pertinent
to computer-aided drug design. In the first, the global motions of
a biomolecular system are accelerated to observe large-scale tran-
sitions between conformational states. This can be used to reveal
states which may be pertinent for ligand interactions but are not
experimentally observed, thereby increasing the effectiveness of
methods that rely on utilizing multiple protein structures, such as
the relaxed complex scheme (12, 13). In the second, local motions
are accelerated through selectively applied aMD, which has the
advantage of enhancing sampling around a local minimum (such
as the binding pose for a ligand) while also allowing for accurate
reweighting of the accelerated trajectory, so that results may be
utilized in free energy calculations, such as alchemical transforma-
tions or PMF-based methods (14).

2. Theory

In this section we discuss the theory behind aMD as applied to an
abstract potential energy surface. Reweighting of trajectories to
recover ensemble averages for the conventional, unaccelerated
system is then presented, followed by a discussion of the different
“flavors” of aMD.

2.1. Theory of aMD The underlying potential energy landscape of biomolecular systems
is inherently rough, with low-energy regions often separated by
high-energy barriers. The time required to cross such barriers may
reach the ms–ms timescale, much longer than current simulations,
which tend to be on the order of 10–100 ns in length. Accelerated
molecular dynamics typically modifies the underlying potential
energy landscape, V(r), such that a “boost” potential DV(r) is
applied when the system has a potential energy below the user-
specified value of E:

V �ðrÞ ¼ V ðrÞ V ðrÞ � E
V ðrÞ þ DV ðrÞ V ðrÞ<E

�
: (1)

The form of the boost potential is:

DV ðrÞ ¼ E � V ðrÞð Þ2
aþ E � V ðrÞð Þ : (2)

This formalism has several advantageous features. The first is that
only two parameters, E and a, must be specified for acceleration.
The boost level, E, dictates the energy below which the system is
accelerated, while a is the “tuning parameter” which affects the
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smoothness of the boosted energy landscapeV*(r). As an example,
in Fig. 1 an unaccelerated landscape is boosted by several DV(r)
functions, all of which have the same value for E but distinct a
values. As a is increased, the landscape along which dynamics are
propagated transitions from a flat surface to one closely resembling
the original potential.

Figure 1 also highlights the other main advantages of aMD.
Due to the form of the boost, the accelerated landscape is smooth
and has a continuous first derivative, thus avoiding the sudden
application of large forces that might render a simulation unstable.
The boosted energy surface also resembles the shape of the origi-
nal surface, allowing low-energy states to be highly populated in
aMD simulations, albeit less populated than in conventional MD
(cMD) simulations.

Since the level of applied boost is known, structures generated
from aMD simulations may be reweighted by the Boltzmann
weight of the applied boost. Thus, an ensemble average for the
observable A(r) in an unaccelerated trajectory may be calculated
from the aMD trajectory by:

AðrÞ ¼
Ð
drA�ðrÞebV �ðrÞ
Ð
drebV �ðrÞ (3)

While (3) is theoretically exact, the exponential form of the
reweighting term creates practical issues if the variance in the
boost potentials is on the order of 10 kcal/mol, resulting in
overweighting of low-energy states and inaccurate ensemble
averages. Therefore, when aMD is applied to an entire biomolec-
ular system, the calculation of precise thermodynamic values is

Fig. 1. A one-dimensional potential energy landscape (solid line) modified by several
boost potentials with identical E and varying a parameters. As the tuning parameter a is
increased, the modified landscape V*(r) approaches the original (unaccelerated) land-
scape.
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difficult, if not impossible. However, aMDmay still be quite useful
in exploring the conformational space available to the system.

Acceleration may be applied to any of the potential energy
terms in the system. Boosting of all the dihedral energy terms
(“dihedral aMD”) is advantageous as the conformations of
proteins are determined largely by torsional rotations (8). The
diffusivity of the system may be increased by boosting all of
the potential energy terms of the system (“total aMD”), as the
motions of solvent molecules are also accelerated (15). “Dual-
boost” aMD captures the advantages of both dihedral aMD and
total aMD by applying a boost to the entire potential energy
surface of the structure and an additional boost to the dihedral
terms, thus improving sampling of the biomolecule’s torsions and
increasing the rate of diffusive motions (16). Dual-boost aMD is
therefore especially useful for exploring phase space, as will be
detailed in Subheading 1. When accurate reweighting statistics
are required, acceleration may be limited to a particular region
of phase space in “selective aMD” as discussed is Subheading 2.

3. Methods

In this section we describe the practical implementation of two
different aMD methods to the N1 flu enzyme neuraminidase
(17). In Subheading 1, dual-boost aMD is applied to enhance
sampling of the entire conformational space, a useful technique
for exploring regions of phase space that may not be experimen-
tally observed but are pertinent for ligand-binding. In Subhead-
ing 2, selective aMD is applied to improve the convergence
rate for FEP calculations of neuraminidase to the clinically
approved inhibitor oseltamivir. We assume that the reader has a
basic understanding of MD methodology (system set-up, equili-
bration, analysis) and present the methods independent of any
MD software package.

3.1. Dual-Boost aMD 1. Construct a fully solvated system for thebiomolecule of interest.
Here we have chosen a holo form of the neuraminidase mono-
mer bound to oseltamivir from the “A” chain of the crystal
structure 2HU0 and solvated it in a box of TIP3Pwaters with a
minimum distance of 12 Å between the protein and box edge,
and added sodium ions to neutralize (see Fig. 2) (17). TheAm-
ber99SB force field has been chosen for the calculations (18).

2. Perform sufficient equilibration of the system such that the
RMSD stabilizes. Here we have performed 2.3 ns of equili-
bration, with restraints on the protein’s heavy atoms gradually
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released over the first 0.3 ns, such that the heavy-atom RMSD
stabilized around 2 Å.

3. Choose the aMD parameters based upon conventional simu-
lations. A 10 ns cMD simulation was performed, with analysis
reporting average dihedral and potential energies over the
simulation of 3,906 and �153,874 kcal/mol, respectively.
Following the suggestions in Note 1, the dihedral aMD
parameters were set to Edihed ¼ 5,526 kcal/mol and adihed
¼ 308 kcal/mol and the total aMD parameters were set as
Etotal ¼ �143,640 kcal/mol and atotal ¼ 1,023 kcal/mol for
the system of 385 residues and 51,174 atoms.

4. Perform the aMD simulation. Here we have performed a 5 ns
aMD simulation that utilizes a 1 fs timestep with bond dis-
tances between hydrogen and heavy atoms constrained by the
SHAKE algorithm (see Note 2).

5. Analyze the accelerated trajectory. In Fig. 3 we have shown the
root-mean square deviation values for both the entire protein
and the flexible “150-loop” of neuraminidase for aMD and
cMD simulations of the same number of steps (19). In previ-
ous work, Amaro et al. showed that this 150-loop is highly
dynamic in MD simulations, sampling both the open state
observed in crystal structure 2HU0 and a new “wide-open”
state that has not been captured by experiments. We note that
in Fig. 3, this loop samples states far away from both the open
and closed ones in the aMD simulations; however, in cMD
simulations, states remain close to the initial structure. Global

Fig. 2. (a) A monomer of neuraminidase in the open structure bound to the clinically approved inhibitor oseltamivir (PDB
code: 2HU0). The highly mobile 150-loop is shown in blue. (b) A zoomed in view of the binding site, with the closed state
of the 150-loop (PDB code: 2HU4) shown in red (online).
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sampling is also enhanced relative to cMD simulations, as
shown by the higher RMSD values for all heavy atoms.

6. Choose diverse states which may be relevant to drug design
work. Since the boost energies are too large to allow for
accurate reweighting, less rigorous techniques are often
employed. For example, Markwick et al. chose diverse states
of IkBa from aMD simulations by clustering the conforma-
tions which had the highest boost energies (the lowest energy
states), and performingMM-PBSA calculations on these clus-
ters to determine their relative populations (20).

3.2. Selectively

Applied aMD

1. Choose the dihedrals to accelerate. Here we have analyzed
100 ns of a previous simulation of the N1 tetramer and chose
dihedrals that satisfied the following criteria: they were in resi-
dues that had at least one heavy atom within 5 Å of the osleta-
mivir molecule in the crystal structure, they contained only
heavy atoms, and their sampling distribution was multivariate
throughout the simulation (they sampled multiple minima).
This resulted in a total of 29 dihedrals chosen for acceleration.
Other potential methods are possible, see Note 3.

2. Choose the proper acceleration parameters. In the case pre-
sented here, several short simulations were performed to
test convergence and reweighting properties, and values of
E ¼ 13 and a ¼ 2 were chosen.

Fig. 3. Root-mean square deviation values for all backbone atoms and those in the 150-loop relative to the closed (2HU4)
and open (2HU0) conformations for cMD (black) and aMD (blue) simulations. Accelerated simulations consistently sample
states further from the global and 150-loop crystal structures of both the closed and open conformations than
conventional simulations. The sampling of states far from the closed and open conformations for the 150-loop in the
aMD simulations agrees well with previous results showing a “wide-open” conformation in long-timescale cMD (19).

520 J. Wereszczynski and J.A. McCammon



3. Run alchemical calculations. Here we have chosen to run
three sets of alchemical transformations, each with 21 win-
dows in which the electrostatics and van der Waals interac-
tions of the ligand were separately decoupled from the
protein, for 1.7 ns a window. For the first 200 ps of simulation
time, acceleration was applied to all dihedrals in the system
(E ¼ 2,600 and a ¼ 400) to improve convergence, which
was followed by 1.5 ns of selective aMD.

4. Analyze the results. In this case we have used a weighted
Bennett acceptance ratio; however, modified versions of
other estimators, such as thermodynamic integration, which
account for the reweighting factor, are also conceivable. In
this case, (5) and (6) in Shirts et al. are modified to account
for the unequal weights of each observed work function (21)
(for further details, see (14)). In Fig. 4 we compare the
average free energies for decoupling the ligand from the
protein for conventional simulations run for 5 ns/window
(and analyzed with standard BAR) with these aMD simula-
tions, for three choices of initial equilibration time (which is
discarded in the analysis). Results show that the aMD simula-
tions converge to the same value as the cMD ones on time-
scales 3–5 times faster.

4. Notes

1. The choice of aMDboosting parameters is critical for sampling:
if parameters are chosen to be too low then there will be little, if

Fig. 4. Free energies for decoupling of oseltamivir from neuraminidase as computed with alchemical transformations for
cMD (left ) and selective aMD (right ). In ease case, three possible values of equilibration time are chosen to highlight the
effects of incorporating unequilibrated data into calculations. Both cMD and aMD converge to similar energies with
similar errors; however, aMD converges with significantly less equilibration and sampling time.
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any, enhancement in sampling and if they are set too high, then
the systemmay sample regions far from the states of interest (for
example, a nicely folded protein may “explode” into random
coils). Based on past experience, we offer these suggestions as
starting points for parameters E and a for simulations with the
Amber force field, based on the average dihedral and total
potential energies observed in a cMD simulation, <Vdihed>
and <Vtotal>, the number of residues in the protein, nres, and
the number of atoms in the system, natoms. For the dihedral
acceleration, suggested initial parameters are:

Edihed ¼ Vdihedh i þ 4 � nres

adihed ¼ 4

5
� nres

For the total acceleration, suggested initial parameters are:

Etotal ¼ Vtotalh i þ natom

5

atotal ¼ natom

5

If these parameters are insufficient for the desired sampling
level, then incrementing E by multiples of a should produce
noticeable changes in the acceleration levels.

2. As with cMD simulations, the timestep used in aMD may be
set at either 1 or 2 fs, with 2 fs only being appropriate when
bond distances between hydrogens and heavy atoms are con-
strained. In some cases, the system may still be unstable with
constraints and a 2 fs timestep, in which case reduction of the
timestep to 1 fs should alleviate any instabilities. This appears
to be a system dependent phenomenon and should be tested
before production simulations are begun.

3. Choosing the dihedrals to accelerate for selective aMD simu-
lations may not be straightforward. One wants to pick enough
dihedrals that acceleration increases sampling of all the perti-
nent bound states, but choosing too many dihedrals may
create problematic reweighting. Here, we have analyzed a
cMD simulation to determine the dihedrals which are most
likely to visit multiple states throughout the simulations.
Other approaches could be based upon the type of residue
the dihedrals are a part of (for example, acceleration of an
arginine, which is likely to be flexible, may be more important
than acceleration of a proline, which is likely to be inflexible)
or the proximity to the ligand. In some cases, such as Val111
in T4 Lysozyme (22), the choice of dihedral(s) to accelerate
may be known in advance, while in other cases experimenta-
tion may be required.
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Chapter 31

Molecular Dynamics Applied in Drug Discovery:
The Case of HIV-1 Protease

Yi Shang and Carlos Simmerling

Abstract

Molecular dynamics (MD) is a way to computationally simulate the movement of particles and it is widely
used to provide a dynamic perspective on biomolecules. Nowadays, the ever-growing computer power
and the improvement in methodology further strengthen the role of MD in drug discovery. In this
chapter, an overview of MD’s application in drug discovery will be given first, using HIV-1 protease as an
example. Then, the underlying theories of MDwill be briefly outlined. The second half of this chapter will
provide a practical protocol on how to simulate a soluble protein in solvent. All-atom simulation with
either implicit solvent or explicit solvent will be covered. The former samples global conformational
change more efficiently, and post-processing including angle/distance measurement, structural deviation
measurement, Ramachandran plot, and secondary structure analysis will be introduced. The latter is more
realistic/expensive and is generally used to finely examine local conformational rearrangement and water-
mediated interactions. Post-processing including water density analysis will be described.

Key words: Molecular dynamics, Structure based drug design, Implicit solvent, Explicit solvent,
Minimization, Equilibration, Water density analysis, Force field, HIV-1 protease

1. Introduction

An ideal molecular dynamics simulation (MD) acts like a “virtual
microscope” with both space and time resolution, which enables
us to reproduce and understand biological events happening in
reality. MD relies heavily on computer resources. To date, MD has
space resolution of angstrom (about atom size), and time resolu-
tion of femtosecond (the time scale of covalent bond vibration).
Generally, only one copy of the solute is simulated, and events can
be accurately modeled are on sub-microsecond time scale.

HIV-1 protease (HIVPR), being an important drug target in
AIDS treatment, is a good example of structural based drug
design. Experimentally determined structures and theoretical
models worked together to speed up HIVPR drug design process
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(1–4). MD’s application in HIVPR drug discovery can be broadly
classified into three categories. (1) Help interpret experimental
data. HIVPR has two b-hairpin flaps covering the active site,
which are believed to control the entry of substrates/inhibitors.
Previously solved crystal structures for HIVPR have either closed
or semiopen flap conformations. The transition between these
two conformations was not initially clear. Later, MD of apo
HIVPR revealed the reversible interconversion between closed and
semiopen forms, and also the transient open flap conformation not
observed in crystals (5),which linked experimental observations and
provided new insight into HIVPR inhibition. Apart from structural
data, ensemble properties such as thermodynamic data are prefera-
bly explained by MD (6). Moreover, physiological factors such as
salt concentration and molecular crowding on HIVPR dynamics
were also investigated byMD (7, 8). (2)Complement other theoreti-
cal methods to rank inhibitors.Methods such as docking and QSAR
are used widely in computer-based drug design. They filter out
inhibitors that are unlikely to bind well and thus save time and
labor from further experimental assay. However, although these
methods are very time-efficient, simplification is usually involved.
Nowadaysmore andmore docking studies incorporateMD inorder
to account for receptor flexibility and to get more accurate binding
affinity predictions (9–11). (3) Explore processes difficult to probe by
experiment. HIVPR Ligand binding pathways were investigated by
different groups usingMD(12, 13). Interestingly, these simulations
suggest that small ligands slide into the active site while protease
flaps are not fully open, which may differ from the entry pathway of
natural substrate polypeptides.

2. Theory

2.1. Levels

of Approximation

Whenmodeling a solvated protein usingmolecular dynamics (MD),
the first question is how the system will be represented. Van der
Walls spheres with weight, charge, and radii can be used to represent
either atoms (in all-atom simulation) or residues (in coarse-grained
simulation). Both the solute and the solvent can be described by
spheres (in explicit solvent simulation), or only the solute (in implicit
solvent simulation). These choices are made mainly because all-
atom explicit solvent simulation, being the most realistic model, is
computationally expensive due to the system size (number of parti-
cles involved) and the viscosity that slows conformational changes.
To observe events that happen on or above microsecond time scale,
either accelerated simulation methods are used, or simpler simula-
tionmodels are used. Accelerated simulationmethod is out of scope
of this chapter and readers are redirected to recent reviews (14–16).
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When simpler simulation models are used, there is speed/accuracy
tradeoff. For example, side-chain details are missing in coarse-
grained simulation, and the directionality of water-mediated hydro-
gen bonds is absent in implicit solvent simulation. Computer chips
specially designed for MD have made lengthy simulations possible
(17), and hopefully this technology would benefit more researchers
in the future. However, at present, to simulate a molecule for the
first time, it generally is a reasonable approach to use a simpler MD
model to capture interesting events in a qualitative manner before
spending huge amounts of computer time on all-atom explicit
solvent simulation.

2.2. Force Field The term force field denotes the potential energy function used in
MD, which determines the forces acting on each particle, and in
turn particles’ positions and velocities. Force fields vary in functional
form, but a typical force field calculates the potential energy by
summing up bonded energy (bond stretching, angle bending and
dihedral torsional energies) and nonbonded energy (vdW and elec-
trostatic energies). Quantum effects such as bond forming/break-
ing are not considered. Force field parameters are constantly being
validated and improved by comparing to experimental observables
(18, 19). There are frequent discussions in the literature about the
strengths and weaknesses of different force fields (20, 21). A force
field should usually be chosen based on literature reports of a similar
application to that being studied, or if no such precedent is available,
it is important to carefully compare the simulation results against
experiments to ensure the validity of modeling.

2.3. Periodic

Boundary Conditions

When modeling a protein solvated in explicit solvent, periodic
boundary conditions (PBC) are used to model a continuous
system in order to reduce computational cost and also surface
artifacts at the solvent-gas boundary. The system in this sense is
a liquid with crystal symmetry. A water molecule that moves out of
the modeled space would reenter the space from the opposite side.
Therefore, it is important to include sufficient number of water
molecules (by increasing box dimensions) so that the solute won’t
interact strongly with its neighboring images. Implicit solvent
simulations typically do not include periodic images.

2.4. SHAKE, Cutoff,

and Particle-Mesh

Ewald (PME)

When particles move during MD, forces acting on them need to
be reevaluated. Therefore, the time step of MD needs to be small
enough to reduce cumulative error and conserve energy. Using
SHAKE algorithm (22) to constrain bond lengths (typically the
highest frequency molecular motions) can extend time step sized
and allow faster computing.

To further speed up simulations, a distance cutoff can be
applied to nonbonded interactions, meaning pair interactions
beyond the distance cutoff will not be calculated. This works
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fine with vdW energy, which decays rapidly when the distance
increases, but will cause unacceptable inaccuracies for electrostatic
energy calculation. Therefore, one should use a cutoff value much
larger than the system size in implicit solvent simulation. For
explicit solvent simulation, Particle-Mesh Ewald (PME) (23–26)
methods should be used, which largely alleviate the electrostatic-
interaction-cutoff problem in PBC system by dividing the energy
into two parts: a fast-decay part that works with cutoff, and a slow-
decay part that’s easy to calculate using Fourier transformation.

2.5. Minimization,

Equilibration,

and Temperature/

Pressure Control

From a static starting structure (usually obtained from crystallog-
raphy or NMR data) to a molecule in motion, careful minimiza-
tion and equilibration are needed to optimize starting structure,
heat the system to desired temperature, and equilibrate residues or
solvent molecules that needed to be modeled. Unlike MD,
(energy) minimization doesn’t follow Newton’s law and its trajec-
tory doesn’t make physical sense. Instead, minimization algo-
rithms try to find a local energy minimum for the system by, for
example, eliminating clashes and abnormal bond length. Equili-
bration is essentially a restrained MD. Part of the system is
restrained in order to avoid deformation during heating and to
gently transform the system from experimental condition to sim-
ulation condition.

Since cutoff and cumulative errors would cause drift in system
energy and in turn affect velocities/kinetics, temperature control
is typically employed throughout the simulation. This can be
achieved by coupling the system to an external thermostat and
adjusting velocities accordingly. Pressure control is available for
PBC, which is achieved by adjusting the system volume.

3. Methods

In this section, HIV-1 protease (HIVPR) will be used to walk
through how to create aMD starting structure (see Subheading 1),
how to use implicit solvent simulation to detect global conforma-
tional change (see Subheadings 2–4), and how to use explicit
solvent simulation to examine water-mediated interactions (see
Subheadings 5–7). AMBER simulation package (27) and molecu-
lar visualization program VMD (28) are used in illustrations.
However, the procedure and concepts introduced here should be
applicable to other packages as well. A MD protocol with GRO-
MACS simulation package (29) has been presented earlier (30).

We will use several AMBER programs below: tleap is used to
setup a simulation; antechamber/parmchk is used to derive inhibi-
tor parameters; sander is used to perform simulations; and ptraj is
used to process/analyze simulation results.
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3.1. Create a MD

Starting Structure

1. Obtain structure.Each simulationneeds a startingconformation,
which is usually a crystal or NMR structure downloaded from
the PDB (31). You should choose one according to either
experimental conditions (sequence, temperature, pH, etc.),
or data quality (crystal resolution, missing densities, etc.). If
the PDB file contains multiple structures (NMR structure,
etc.), you need to delete alternative structures and keep only
one. If you want to simulate a multimeric protein but only the
monomer form has been crystallized, you should download
the “biological unit” file from PDB instead and delete
“MODEL” lines in the PDB file. As an example, download
crystal structure 1SDT from PDB. It is a complex of wild type
HIVPR and inhibitor indinavir (IDV). We will use it to setup
simulations ofHIVPR in unbound state (with implicit solvent)
and in bound state (with explicit solvent).

2. Check structure quality. Carefully inspect experimental condi-
tions anddataquality recorded in thePDBheader.Check crystal
packing on http://ligin.weizmann.ac.il/~lpgerzon/cryco5.0/
cryco (32). Download electron density map from http://eds.
bmc.uu.se (33) and visualize it in VMD (see Note 1).

3. Add missing atoms and mutate residues if needed. If there are
missing hydrogen atoms in the structure, use MolProbity
http://molprobity.biochem.duke.edu/ (34) to add them.Mol-
Probity also offers to check Asn/Gln/His side-chain flipping
when addinghydrogen atoms, which is worth doing. SwissPdb-
Viewer http://spdbv.vital-it.ch (35) is preferable for adding
side-chains and doing virtual mutations because it has a side-
chain-rotamer library for each amino acid so that atom clashes
introduced by the new side-chain are relieved/avoided. For
1SDT, four mutations (A67C, A95C on both monomers) are
made to match Q7K/L33I/L63I sequence used in experi-
ments. Make sure to deselect “Ignore solvent” in SwissPdb-
Viewer loading preference in order to load/save solvent
coordinates. In PDB file generated with either MolProbity or
SwissPdbViewer, delete lines that start with “CONECT”. Later
tleap will determine the connectivity based on the force field.

4. Decide protonation states for ionizable residues. Ionizable
residues don’t change their protonation states during normal
MD. Therefore, you need to predefine their states. We will
simulate HIVPR at neutral pH. We leave acidic and basic
residues in their ionized states, except for catalytic aspartates.
In aspartyl proteases, one of them should be protonated, so
we will change Asp25 atom name to “ASH”. Later tleap will
add a proton to its outer carboxyl oxygen atom. For histi-
dines, tleap will convert all “HIE”/“HIS” to “HIE”, unless
you change the residue name to “HIP” or “HID”. According
to prediction by MolProbity, we have HIE69 and HID169,
so we rename residue 169 to “HID”.
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5. Treat solvent molecules in the PDB file. Your PDB file may
contain solvent molecules, such as water molecules, ions, and
glycerol. For implicit solvent simulation, they are removed.
For explicit solvent simulation, it is a good idea to retain water
molecules and remove the rest, because ions are hard to
equilibrate and they are usually modeled in at a distance
from the solute to neutralize the system only (36, 37). If
you want to retain other molecules like glycerol or buffer,
you will need to locate or derive their parameters before the
simulation (see Subheading 5).

Now take the pdb file you obtained from step 4, delete
chloride ions and save it as bound.pdb. Then open bound.pdb,
delete inhibitor and water molecules, and save as apo.pdb.

3.2. Set Up

an Implicit Solvent

Simulation

AMBER needs three files for unrestrained simulations: (1) one
input file containing simulation parameters such as time step,
temperature/pressure control, etc. (2) one topology file that
defines every aspect of the system except for particle coordinates,
(3) one coordinate file that matches the topology file. Here, we
will use tleap to generate topology and coordinate files from apo.
pdb we obtained in Subheading 1.

1. Create tleap input as follow (see Note 2).

2. Run tleap using the command below to get topology file apo.
top and coordinate file apo.crd (see Note 3). Make sure to
visualize the molecule you built before using it for simulation
(see Note 1).

$tleap -f tleap_apo.in
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3.3. Minimize,

Equilibrate,

and Simulate Apo

HIVPR in Implicit

Solvent

1. Generate input files (see Note 4). Amber input file is
organized as one header line followed by the parameter list.
Terms “&cntrl” and “&end” mark the beginning and ending
of the parameter list, respectively. Although there is no rule on
which parameter should be listed first, the input files in this
chapter are organized so that each line contains parameters
from certain category. See Table 1 for explanation. The num-
bers at the start of each line should not be included and are for
reference in the text only.
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Table 1
AMBER input parameters. A number in parentheses denotes available value
for the parameter

Line
number Function Content explained

1 Header Comments for the input. It won’t be read by the program

2 Marker cntrl: Marks the beginning of parameter list

3 Simulation
type

imin: Minimization (1) or MD (2)
maxcyc: maximum number of cycles of minimization
nstlim: Number of MD steps to perform
dt: MD time step in ps
ntx: Use (5) or not use (1, default) velocity information in coordinate

input
irest: restart MD (1, requires ntx ¼ 5) or no (0, default)

4 Output
frequency

ntwx: Frequency of trajectory output
ntwr: Frequency of coordinate output
ntpr: Frequency of energy output

5 SHAKE (used
with MD)

ntc: SHAKE not performed (1, default), bonds involving H atoms
constrained (2), or all bonds constrained (3)

ntf: All bond interactions evaluated (1, default), bonds involving H
atoms omitted (2), or all bonds omitted (3)

6 Temperature
control

ntt: Temperature control scheme. No temperature control (0, NVE
ensemble), Berendsen weak-coupling control (1), Anderson
control (2), or Langevin dynamics (3)

tautp: time constant in ps for ntt ¼ 1
gamma_ln: Collision frequency in ps�1 for ntt ¼ 3
ig: random seed generator, which should be set to a different value for

each MD run when ntt equals 2 or 3. Random seed will be based
on current date and time if ig ¼ �1

tempi: Initial temperature, default 0. No effect when ntx ¼ 5
temp0: Reference temperature at which the system will be

maintained

7 Solvent-
dependent
parameters

cut: nonbonded cutoff in Å
igb: Implicit solvent model GBHCT (1), GBOBCI (2), or GBOBCII

(5) will be used
ntb: no periodic boundary (0), fixed periodic boundary (1, constant

volume, default), or flexible periodic boundary (2, constant
pressure) will be applied

ntp: no pressure control (0) isotropic positional scaling (1), or
anisotropic positional scaling (2)

taup: pressure relaxation time in ps
iwrap: For periodic boundary. Molecules will be imaged back to the

primary box when writing coordinate file if iwrap ¼ 1

8 Positional
restraints

ntr: With (1) or without (0) harmonic positional restraints
restraintmask: Atoms that will be restrained
restraint_wt: Restraint weight in kcal/mol·Å2

nscm: Frequency of removing translational/rotational motion,
default 1,000. Set to 0 when using positional restraints

Bigger
than 8

Other
restraints

Change system temperature from “value1” to “value2” over step
“istep1” through “istep2”



Then 4equi.in and 5equi.in are generated from 3equi.in by
modifying restraint_wt value to1and0.1, respectively.MDinput
6md.in is generatedbydeleting line 8 (positional restraints) from
3equi.in and adding term “ig ¼ -1” (see Table 1).

2. Performminimization/equilibration/simulation. We will run
minimization/equilibration with sander and unrestrained
simulation with pmemd, which performs many of the same
functions as sander but scales better in parallel computing.
During equilibration we will restrain the molecule to the
starting structure of each step.

The six commands below need to be carried out sequen-
tially in order to complete minimization/equilibration and
finish first run of unrestrained MD (6md). Flag O is needed
all the time, which specifies overwriting output files when they
exist. Flags i, p, c, and ref should be followed by input,
topology, coordinate, and reference file names, respectively.
These files are the inputs of the program. Flags o, x, and r
should be followed by energy, trajectory, and coordinate file
names. These files are the outputs of the program. When a
simulation finishes, the coordinate file produced can be used
along with topology and input files to initiate the next simu-
lation step (see Notes 5 and 6).

3.4. Analyze Results

from the Implicit

Solvent Simulation

After your equilibration/simulation finished, the most common
analyses are energetic and structural analysis. See Note 5 on how
to plot energies. The most straight forward way to do structural
analysis is through a molecular visualization program. Below an
example using VMD will be given, assuming you did two consec-
utive MDs: 6md and 7md.
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1. Load the topology file (apo.top) and trajectory files (6md.x
and 7md.x) into VMD (see Note 1).

2. Align frames. To eliminate translational/rotational motions,
in the main window click Extensions:Analysis:RMSD Tra-
jectory Tool (RMSD stands for Root-Mean-Square-Devia-
tion and is a way to measure the deviation of two sets of
coordinates). In the pop-up window, click Align. This
would align the frames in your trajectory according to the
mask specified in the upper left field, by minimizing the
RMSD between each frame and the first frame. The default
mask is “protein” and “noh”, which means that all protein
heavy atoms are used in RMSD calculation.

3. Visualize the trajectory. After aligning frames, you can now
visualize your trajectory easily using the animation tool on the
bottom of the main window.

4. Change representation of your HIVPRmolecule. By default,
the molecule is in line representation. Protein backbone can
be outlined by clicking Graphics:Representations in the
main window and choosing Create Rep:Drawing
Method:Tube in the pop-up window. You can also change
the configuration of an existing representation. Click on the
first representation with mask “all”, change the mask to
“residue 25 124,” and click Drawing Method:CPK, now
you should see two catalytic aspartates displayed in CPK
representation.

5. Distance/angle/dihedral measurement. See Note 1 on how
to pick and display atom/distance/angle/dihedral. During
trajectory animation, the distance/angle/dihedral value will
be updated at each frame. In the main window click Gra-
phics:Label. In the pop-up window select a bond you want
to graph, clickGraph:Show preview so that a preview of the
distance plot will be shown with maximum and minimum
labeled out. Then you can either click Graph to see the full
size distance plot, or click Save to save the data. The same
process applies to angle and dihedral measurements.

6. RMSD calculation. Sometimes you want to quantify the
motion you observed in the trajectory, for example, how
HIVPR flaps moved from their original position. Now open
RMSD tool. HIVPR flap tips are composed of residue 46–55
and 145–154, so “(residue 46–55) or (residue 145–154)” is
typed in the upper left field. Select Plot:Save to file:RMSD
to plot and save RMSD data (see Note 7).

7. Ramachandran plot. You can also plot Ramachandran plot
for residue(s). In the main window click Extensions:Analy-
sis:Ramachandran Plot. Then in the pop-up window select
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molecule ID and type the mask in “selection” field. For
example, type in “residue 40 to 60”, then you should see
yellow dots displayed in the Ramachandran plot, which rep-
resent the most populated j/c combination for each resi-
due. Most of them should be in the upper left corner (b
conformation). Click a dot to see that residue’s distribution
in the entire trajectory. Click Create 3-d Histogram to get a
3D view.

8. Secondary structure analysis. You can also visualize the change
in protein secondary structure along the trajectory. In the
main window click Extensions:Analysis:Timeline. In the
left panel of the pop-up window select your molecule ID,
then click Calculate:Calc. Sec. Struct. You should see the
molecule in the display window being animated, and the pop-
up window being updated with color coded secondary struc-
ture plot. The X axis shows frame number, and the Y axis
shows residue number. Now click on the secondary structure
plot with the middle button of your mouse. You should see
the residue highlighted on both X and Y axes and detailed
information displayed in the lower left corner. Moreover, the
residue is shown in red in the display window. By pressing
down the middle button of your mouse while scrubbing over
the plot, you can change the residue as well as the frame being
displayed.

3.5. Set Up an Explicit

Solvent Simulation

Similar to implicit solvent simulation, here we will generate topol-
ogy and coordinate files. However, in bound.pdb we have inhibi-
tor IDV, whose parameters are not included in AMBER.
Therefore, we need to derive parameters for it. We will first
generate its charge parameters using antechamber, and then use
generalized AMBER force field (GAFF (38)) to take care of other
parameters.

1. Open bound.pdb, copy inhibitor lines (those lines with resi-
due name “MK1”) into a new file, and save it as IDV.pdb.

2. Use antechamber to generate IDV_am1bcc.mol2 file with
AM1-BCC charge (see Note 8). Here flags -i, -fi, -nc, -o, -
fo, and –c should be followed by input file name, input file
type, molecule net charge, output file name, output file type,
and charge model, respectively.
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3. Generate library file containing charge parameters for IDV.
Again we will use tleap.

4. Run tleap to get IDV.off.

5. Generate force field modification file, which contains force
field information not included in GAFF but needed for the
ligand.

Inspect IDV.frcmod carefully to see what parameters are
filled in.

6. Modify bound.pdb. Since in off library file we defined IDV
residue name as “IDV”, replace residue name “MK1” in
bound.pdb with “IDV” so that tleap can recognize it.

7. With IDV.off, IDV.frcmod and bound.pdb, we are ready to
create topology and coordinate files. Create tleap input as
below.
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8. Run tleap to get topology file bound.top and coordinate file
bound.crd (see Note 3). Examine the structure in VMD (see
Note 1).

3.6. Minimize,

Equilibrate, and

Simulate Bound HIVPR

in Explicit Solvent

1. Generate input files, which are similar to those from implicit
solvent simulations of apo HIVPR (see Note 4). The
main differences are: (1) water molecules and the inhibitor
need to be equilibrated, (2) periodic boundary is applied
with volume/pressure control (see Note 9), and (3) the
cutoff is much smaller than in implicit solvent because
PME is used.
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Then 4equi.in and 5equi.in are generated from 3equi.in
by modifying restraint_wt value to 1 and 0.1, respectively.
MD input 6md.in is generated by deleting line 8 from the
3equi.in.

2. Perform minimization/equilibration/simulation. Commands
used in Subheading 3, step 2 also apply here, but you need to
change apo.top to bound.top, and change apo.crd to bound.
crd.

3.7. Analyze Results

from the Explicit

Solvent Simulation

1. Post-process the trajectory. Different from implicit solvent
trajectory, explicit solvent trajectory is difficult to visualize
directly in VMD because of PBC and the presence of solvent
molecules. Usually we care more about collective influence
from the solvent than the trace of a single solvent molecule.
Therefore, one could histogram the water density over the
trajectory as solvent information, and then analyze the dry
trajectory (with solvent stripped out) as solute information.
We will use ptraj to accomplish these two objectives. Ptraj
inputs are shown below, assuming you get 6md.x and 7md.x
(see Note 2).
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Then execute ptraj using the following command. Notice
that ptraj needs a corresponding topology file to interpret the
trajectory.

Ptraj should generate three files for you: reference.pdb.1,
grid_wat.xplor (water density file), and complex.x (dry trajec-
tory).

2. Energetic and structural analysis. The procedures introduced
in Subheading 4 also apply here. Note that bound.top doesn’t
match complex.x (since the solvent was removed) so you need
to generate a corresponding topology file in order to visualize
complex.x in VMD. To do this, use tleap_bound.in but delete
line 8–11. Also delete water molecules in bound.pdb.

3. Visualize water density map. Open VMD, in main window
click File:New Molecule and load grid_wat.xplor. Then in
main window click Graphics:Representations. Increase Iso-
value criterion to display less water density. To help
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understand the position of water density relative to protein
structure, you may also load reference.pdb.1.

4. Notes

1. To load a pdb file in VMD, click File:New Molecule, and
load the pdb file as type PDB. CCP4 format electron density
maps can be loaded similarly. To load AMBER files (topology,
coordinate, trajectory files), make sure to load the topology
file asAMBER7 Parm type first, and then load coordinate file
or trajectory file by clicking File:Load Data into Molecule.
Load coordinate file (no matter whether it contains velocity
information or not) as AMBER7 Restart type. Load trajec-
tory file as AMBER Coordinates type if it doesn’t contain
periodic box information, or load it as AMBER Coordinates
with Periodic Box type if it contains box information. The
display can be messed up if topology file and coordinate file
don’t match (topology file doesn’t contain solvent while
coordinate file does, etc) or if file uploaded and file type
selected don’t match (trajectory contains periodic box infor-
mation but specified as AMBER Coordinates type, etc.).

After loading the molecule, in the main window click
Graphics:Representations to change how the molecule is
displayed. Each molecule entry in the main window has four
clickable letters before it: T, A, D, and F. Theymean top (so its
frame number will be the maximum frame displayed), active,
displayed, and fixed, respectively. To change view of your
molecule, click display window to make it active, and then
click R on your keyboard for rotation, click T for translation,
or click S for rescaling. Moreover, click 1, 2, 3, or 4 to pick/
display atoms, bonds, angles, or dihedrals, respectively.

2. Tleap and ptraj inputs are prepared with comments (strings
begin with “#”) explaining strings below them. Line numbers
were added to sander inputs to reference the detailed explana-
tions in Table 1. Pay extra attention to inputs in Italic, such as
force field choice and restraint mask, you may need to change
the parameters according to your system.

3. Tleapwill use the force field to add missing atoms/side-chains
before saving topology/coordinate files, but it doesn’t con-
tain rotamer libraries so it is not as good as SwissPdbViewer. A
leap.log file will be generated in the same directory. Check it
carefully for any warnings/errors. The only warning you can
ignore is the one about missing improper torsion.

The “check” command was included in tleap.in to double
check if there are still abnormal geometries or bad clashes.
Clashes caused by hydrogen atoms usually will be fixed during
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minimization,but clashes causedbyheavy atomsmaynot.When
this happens, visualize the molecule in VMD (see Note 1)
and make sure you built the system correctly.

Pay attention to any heavy atoms added by tleap, make
sure that’s reasonable. If extra parameter files are used, make
sure tleap reads them.

Tleap will exit with error if there are atoms undefined. For
example, residue with name “ASP” can’t have hydrogen atom
linked to the carboxyl group. If this happens, delete the
undefined atoms and run tleap again.

4. A crucial part of successful minimization/equilibration is defin-
ing restraint mask. Generally we don’t want to put restraints on
anything we built in, such as hydrogen atoms or side-chains,
because we are not confident about their positions. So exclude
them from the restraint mask. Meanwhile, we want to decrease
the restraints little by little until it’s relaxed enough for unre-
strained MD, so we put decreasing restraints first on heavy
atoms and then on backbone atoms only.

AMBER restraint mask uses “&”/“|”/“!” as Boolean
logic and/or/not, respectively. Residue number/name
should be proceeded with “:”, and atom number/name
should be proceeded with “@”. Wildcard “¼”matches any
name that starts with given characters. So “!:WAT & !
@H ¼ & !:67,95,166,194” means “not water, not hydrogen,
and not residue 67/95/166/194.” Examine the MD output
file carefully to make sure the correct mask has been applied.

5. Energy outputs should be inspected carefully for all minimi-
zation/equilibration/simulation. Energy output contains
total energy (Etot), kinetic energy (EKtot) and potential
energy (EPtot), as long as other energy terms and system
conditions such as temperature (TEMP), pressure (PRESS),
and density. Generally, the potential energy should decrease
during minimization/equilibration. It is ok for energies to
fluctuate during simulation, but you should definitely pay
attention to any abrupt increase or spikes in energy plots.
Note that 1–4 vdW energy (1–4 NB) and 1–4 electrostatic
energy (1–4 EEL) are listed as separate terms but should be
included when calculating the total vdW or electrostatic
energy.

You might encounter “namelist” error when using
sander/pmemd, meaning the program doesn’t recognize the
parameter list you gave it. When this happens, you can trou-
bleshoot by deleting lines in the input file, until the error
disappears. During a simulation, you might encounter “vli-
mit” error, which means velocities of certain atoms become
huge. This is usually due to overlapping atoms. One general
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way to troubleshoot a simulation is to increase the frequency
of outputs (set ntwx and ntpr to 1), and then visualize the
trajectory in VMD to see which part went wrong. It can also
help to look at the minimization output and see which atom is
listed with the highest forces (Gmax), and visualize that
region of the structure.

6. There is no standard rule on how long a simulation should be.
That depends on your computational resources and the ques-
tion you want to answer. However, do think about negative
controls and statistics when you want to raise hypothesis from
the simulation. One event observed from one simulation is
not convincing enough. When you only have one starting
conformation, you can use ig to randomize velocities and
setup independent runs.

7. RMSD calculation in VMD is based on the trajectory dis-
played. Every time you align the frames, the trajectory is
changed. Therefore, it doesn’t make sense to align frames
according to the side-chain of a surface residue, and then
calculate RMSD of HIVPR flaps, because then the swing of
that side-chain will affect the value of RMSD calculated.
Instead, you need to pre-align frames, using a sensible mask,
every time before your RMSD calculation. You could either
align frames according to core domain coordinates, which are
relatively stable, or you could pre-align frames using the same
mask as the RMSD mask.

8. AM1-BCC charges, which were parameterized to match HF/
6-31G* RESP charges, is recommended for large scale calcu-
lations because of its efficiency. But if higher accuracy is
needed, especially when the ligand’s net charge is not zero,
you should do multi-conformational RESP fitting to derive
charge parameters using R.E.D. (39).

9. For explicit solvent simulation, the first few steps of minimi-
zation/equilibration should always be constant volume.
Constant volume simulation is needed to equilibrate the
solvent density prior to constant pressure simulation, other-
wise system instability could occur. However, even if you
want to do constant volume simulation, there should always
be at least one equilibration step (several hundred picose-
conds) to adjust the pressure and system density, after which
the volume can once again be fixed. To sum up, you should
have constant volume step, followed by constant pressure
step, which is then followed by either constant volume or
constant pressure.
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Chapter 32

Decomposing the Energetic Impact of Drug-Resistant
Mutations: The Example of HIV-1 Protease–DRV Binding

Yufeng Cai and Celia Schiffer

Abstract

HIV-1 protease is a major drug target for AIDS therapy. With the appearance of drug-resistant HIV-1
protease variants, understanding the mechanism of drug resistance becomes critical for rational drug
design. Computational methods can provide more details about inhibitor-protease binding than crystal-
lography and isothermal titration calorimetry. The latest FDA-approved HIV-1 protease inhibitor is
Darunavir (DRV). Herein, each DRV atom is evaluated by free energy component analysis for its
contribution to the binding affinity with wild-type protease and ACT, a drug-resistant variant. This
information can contribute to the rational design of new HIV-1 protease inhibitors.

Key words: HIV-1 protease, Darunavir, Drug resistance, Rationale drug design, Free energy
calculation, Free energy components analysis

1. Introduction

The human immunodeficiency virus type 1 (HIV-1) protease is a
homodimeric aspartic acid protease. It cleaves the viral Gag-Pol
polyprotein to release the enzymes and structural proteins indis-
pensable for the maturation of infectious viral particles (1). The
nine FDA-approved proteases have effectively decreased the mor-
tality rate of HIV/AIDS patients (2, 3). However, clinical expo-
sure to protease inhibitors selects for viruses whose protease has
acquired drug-resistant mutations due to the high replication rate
of HIV-1 and to lack of a proofreading mechanism in its reverse
transcriptase. The drug-resistant protease variants decrease their
high binding affinity to inhibitors, while maintaining enough
enzyme activity for the virus to propagate (4). How specific prote-
ase mutations decrease protease-inhibitor binding affinity has
been partially elucidated by comparing the crystal structures of
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wild-type and drug-resistant variant proteases in complex with
inhibitors (5–7). However, structural data do not readily allow
quantitative analysis and elucidation of the critical components of
binding affinity. Elucidating these binding affinity components in
terms of particular atomic interactions can be aided, in principle,
by free-energy simulations (8–10). The calculation results can be
further analyzed, e.g., for free-energy decomposition, to provide
information about affinity changes due to specific kinds of interac-
tions on an atomic level, which cannot be determined by experi-
mental methods.

Free-energy simulations were used to analyze affinity changes
between darunavir (DRV) (Fig. 1a), a recent FDA-approved HIV-
1 protease inhibitor (11, 12) and wild-type (WT) protease and a
drug-resistant variant (ACT). The Gibbs free energy change for
DRV-WT binding measured by isothermal titration calorimetry
is �15.2 kcal/mol. ACT has two active site mutations, V82T and
I84V (Fig. 1b) (7). The Gibbs free energy change for DRV-ACT
binding is �13.6 kcal/mol. Energetic studies of protease-inhibi-
tor recognition by computational methods have found that the
dominant influence is vdW interactions (13, 14). In this context,
the vdW energy contributions were calculated by the molecular
dynamics (MD) simulation package AMBER (15) for each DRV
atom with the WT and ACT protease variants. Comparison of the
WT and ACT protease-DRV energetic interactions enhances
understanding of how the protease mutates to decrease its binding
affinity with a very-high-affinity inhibitor, thus contributing to
developing better strategies to design protease inhibitors.

Fig. 1. (a) Chemical structure of darunavir (DRV). (b) Structure of protease variant ACT-DRV complex. DRV is yellow.
The side chains of the mutated residues, Thr82 and Val84, are displayed in red or green. (c) The four moieties of DRV.
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2. Methods

2.1. Generate Topology

and Coordinate Files

from the Crystal

Structures for the MD

Simulations

Create a text file “hivpr_md.leap” with the following content
(do not include any text in parentheses):

Enter “/$AMBERHOME/exe/teLeap –f hivpr_md.leap” to
create the topology and coordinate files.

2.2. Perform Energy

Minimizations for Both

WT-DRV and ACT-DRV

Systems

Create a text file “emin” with the following context:
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Perform energy minimization by typing the following com-
mand line:

2.3. Assign Initial

Velocities for Each

Atom of Both WT-DRV

and ACT-DRV Systems

Create a text file “thermin” with the following context:

Assign the velocities by typing the following command line:
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2.4. Perform

Restrained MD

Simulations

to Equilibrate

the System

Create a text file “equilin” with the following context:

Type the following command line and hit enter.

2.5. Performing MD

Simulations

to Sample the

Conformations

Create a text file “mdin” with the following context:
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Type the following command line and hit enter.

Perform steps in Subheadings 2.2–2.5 for DRV-ACT

2.6. Create

the Topology File

for Free Energy

Decompositions

Open the 1T3R PDB file and define the DRV atoms residue
indexes as shown below.

Remove all atoms other than the protease and inhibitor
atoms. Save the file as “1T3R.dc.pdb.” Delete the inhibitor infor-
mation from 1T3R.dc.pdb to make another PDB file named
“1T3R.rec.pdb.” Delete the protease atom information from
1T3R.dc.pdb to make another PDB file named “1T3R.lig.pdb.”

Create a text file “decom.leap” with the following contents:
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Enter “/$AMBERHOME/exe/teLeap –f hivpr_md.leap” to
create the topology and coordinates files.

2.7. Process

the Trajectories

Create a text file “DRVwt.coor.in” with the following context:

Type the following command line and hit enter.
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2.8. Calculate the vdW

Energy Change

for Each DRV Atom

Create a text file “DRVwt.decom.in” with the following context:
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Type the following command line and hit enter.

A file name “DRVwt_statistics.out” will be created after the
calculations are done.

Perform the same operations in Subheadings 2.6 and 2.8 on
the DRV-ACT system.

A file name “DRVact_statistics.out” will be created after the
calculations are done.

Extract the data under the “TVDW” column label; the last 75
lines are the 75 atoms of DRV interaction energy with the prote-
ase. The order of the DRV atoms will be the same as in the PDB
file (see Note 10).

3. Notes

1. “$AMBERHOME” is the directory for the AMBER package.

2. “DRV.in” provides information and parameters ofDRV. It can
be downloaded from link bellowed.
http://users.umassmed.edu/shivender.shandilya/caiy/

3. “dt ¼ 0.001” – the time interval of the calculation is 1 fs.

4. “ig ¼ 1001” – This is the random seed value. Changing this
value can generate a parallel MD simulation with different
initial conditions of the system.

5. “DRV.dc.in” is the parameter file of DRV, where each atom is
defined as a unit. It can be downloaded from link bellowed.
http://users.umassmed.edu/shivender.shandilya/caiy/

6. Total number of the system with explicit solvent. Check it in
the file “DRVWT.top” and “DRVACT.top.”

7. The number of the first DRV atom, check it in the topology
files.

8. The number of the last DRV atom, check it in the topology
files.

9. The number of the last protease atom, check it in the topology
files.

10. DRV had 37 hydrogen atoms with very limited contribution
to the vdW interaction energy. Thus, data were analyzed for
the 38 non-hydrogen atoms of DRV. Structurally, DRV can
be considered as formed by four major moieties: (a) 4-ami-
nophenyl group, (b) isopropyl group, (c) benzyl ring, and (d)
bis-tetrahydrofuranylurethane (THF) (Fig. 1c). The percent-
age of energy lost by each moiety can be calculated (Table 1).
The bis-THF group and benzyl ring of DRV sustain their
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vdW interactions with the drug-resistant protease variants and
contribute most to the inhibitor-protease binding, while
DRV’s 4-aminophenyl and isopropyl groups are susceptible
to changes in the protease’s binding pocket and adopt
conformations that lose vdW interaction with drug-resistant
variants (Table 1). The analysis suggests that modifying the
4-aminophenyl and isopropyl groups will help in designing
new protease inhibitors that will likely have higher binding
affinities with wild-type protease and drug-resistant variants.
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Table 1
Loss of van der Waals’ interaction energy for different moieties of DRV and APV

DRV
4-Aminophenyl
group

Isopropyl
group

Benzyl
ring bis- Tetrahydrofuranyl

DRV-ACT kcal/mol 1.11 0.83 0.30 0.20

% 18.9 28.0 6.5 3.2
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Chapter 33

Guide to Virtual Screening: Application to the Akt
Phosphatase PHLPP

William Sinko, Emma Sierecki, César A.F. de Oliveira,
and J. Andrew McCammon

Abstract

We present an example-based description of virtual screening (VS) techniques used to identify new
regulators of the Akt phosphatase PHLPP (PH domain Leucine-rich repeat Protein Phosphatase). This
enzyme opposes the effects of two kinases, Akt and PKC, which play a major role in cell growth and
survival. Therefore, PHLPP is a potential therapeutic target in pathophysiologies where these pathways
are either repressed, such as in diabetes and cardiovascular diseases, or over-activated as in cancer. To the
best of our knowledge, no PHLPP inhibitors have been reported so far in the literature. In this study, we
used a combination of chemical and virtual screening techniques that led to the identification of a number
of inhibiting compounds with diverse scaffolds. These compounds bind PHLPP and inhibit cell death
when tested in cellular assays. We employed GLIDE docking software to screen a library of more than
40,000 compounds selected from the NCI open depository (250,000 compounds) by similarity searches.
We compare the efficiency at which we determined binding compounds from the chemical screen, and
compare enrichment factors of the virtually discovered compounds over chemical screening.

Key words: Docking, Virtual screening, PHLPP, Akt phosphatase, Drug discovery, Computer aided
drug design

1. Introduction

In the past few decades, the role of computation in drug discovery
efforts has increased dramatically. As of 2004, approximately
50 compounds that had been discovered with computational
approaches had entered human clinical trials and some are FDA
approved (1). With the constant increase in computational power
and improvements in methodology, computers are aiding
drug discovery more so than ever. Computational methods can
be employed to effectively design experiments more likely to suc-
ceed (2). In this example-based chapter, we present a workflow
from recent research in which experimental and computational
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scientists worked closely to improve the efficiency of searching for
drug-like compounds of a new target, the Akt phosphatase
PHLPP. PHLPP is a newly discovered phosphatase that depho-
sphorylates Akt and PKC (3), leading to the inactivation of the
former and downregulation of the latter (4). Since PHLPP is a
negative regulator of two major survival pathways, this enzyme is
increasingly found to play a major role in cancer as a tumor sup-
pressor. It is located on chromosomes often lost in colon (18q21,
PHLPP1) and breast (16q22, PHLPP2) cancer; loss of PHLPP
has been reported in different cancers at both themRNA (5, 6) and
the protein level (7–9). On the other hand, studies indicate that
activation of Akt may positively affect those suffering from myo-
cardial infarction or diabetes mellitus (10, 11). Thus, development
of chemical tools for the modulation of activity of this enzyme is
critical. The phosphatase domain of PHLPP belongs to the PP2C
family of enzymes for which no general inhibitors have been
described (12).

Prior to the virtual screening procedures, we initially performed
an experimental screen using about 2,000 compounds (13) from
the NCI Diversity Set. The results were used to optimize the
PHLPP homology model and select libraries of compounds for
use in high-throughput virtual screening (HTVS) (14). Experimen-
tal high-throughput screening (HTS) has been a well-established
process for drug discovery (15). It requires an assay that can distin-
guish between compounds that bind the protein target and often
inhibit or activate its function. This assay is used to test a large and
diverse library of compounds, and find compounds with the desired
activity. As the chemical libraries increased in size, the number of
compounds tested per day increased (10,000–100,000 per day for
HTS, >100,000 per day for uHTS) and automation and robotics
became necessary. A campaign of HTS is therefore highly expensive
andoften requires large amount of reagents.OftenHTS is limited to
large pharmaceutical companies and national agencies due to the
cost and specialized equipment requirements (15, 16). Virtual
screening (VS) using docking software has been instituted in an
attempt to enrich libraries of compounds prior to the expensive
experimental screens. Docking calculations are simple and quick to
use and can guide the experimental screening toward “focused”
libraries to reduce reagent use and labor.

By integrating knowledge of recently discovered inhibitors
with docking studies, in this study, we showed a nearly tenfold
increase in the ratio between the number of hits found using VS
and the number of compounds tested (enrichment factor). An
enrichment factor of 10 was observed when we applied a struc-
tural similarity search, based on known binders, to build libraries
of compounds in order to be used in the VS calculations. Interest-
ingly, without any previous knowledge of inhibiting compounds
(VS of the entire diversity set), the enrichment factor only
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decreases to 6.4 (see Table 1). It should be noted that the virtual
screening described here was performed on a desktop computer
and over 50,000 compounds were selected from a library of a
quarter million compounds. Compounds that inhibited PHLPP
were found to have IC50s in the range of 4–100 mM.

2. Materials

This section is meant to briefly illustrate the methodology used in
the experimental in vitro compound screening. Experimental
screens and IC50 determination assays are necessary to determine
how well docking results correlate with the experimentally deter-
mined IC50s and to verify virtual hits.

2.1. Experimental

Screen of a Focused

Library

In a 96-well plate, compounds diluted in DMSO are tested in
duplicate at the desired concentration (50 mM) alongside 12 con-
trols (DMSO) and 4 background controls (without enzyme).
Detailed reaction conditions are described elsewhere (14). The
dephosphorylation of the substrate, para-nitrophenol phosphate
(pNPP) is monitored by spectrophotometry as the increase in
absorbance at 405 nm. The activity of the protein (determined
by the slope of OD vs. time) is compared to the averaged activity
of the controls. Compounds which decrease the activity of the
protein below a defined cut-off (0.5) are subjected to the next
step, the determination of IC50.

2.2. Determination

of IC50

This assay is also performed in a 96-well plate. An 8-points range
of dilutions in DMSO (0.1–100 mM) is carried out for each
compound of interest. An activity control (DMSO) is included

Table 1
Efficiency and enrichment factors of various methods used

Method used Efficiency (%) Enrichment factor

Chemical screen 2.5 1

Virtual screen (VS) 16 6.4

Structural search ) VS 25 10

Efficiency is the percentage of compounds tested experimentally that were
confirmed to inhibit at 100 mM or less. Enrichment factor compares the
efficiency of the virtual screening method over the baseline efficiency of
chemically screening the NCI diversity set
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for each range. The assay is performed as previously described and
the inhibition is calculated as a percentage of the averaged activity
of the controls. This assay is performed in triplicate for better
accuracy. The data are fitted against a decreasing exponential.
The IC50 value is determined as the concentration resulting in a
50% inhibition of the enzymatic activity.

3. Methods

In this section we describe how to build and set up the homology
model of PHLPP2 and perform the docking calculations. We
describe how to use GLIDE docking software to screen thousands
of compounds on a desktop computer (see Note 1; all notes are
compiled in Subheading 4). A workflow diagram summarizes the
steps in this section (see Fig. 1). Maestro software from the
Schrödinger Suite provides a graphical user interface from which
many modeling programs can be run (17).

3.1. Selecting

a Structure

All docking software requires at least one structural model of
the target, which can be crystallographic, NMR, homology, or
Molecular Dynamics (MD) derived structures. The protein data
bank is an excellent resource for biomolecule structures (18). For
PHLPP, since there is no X-ray crystallographic structure depos-
ited to date, we built our protein model via homology modeling
(see Note 2).

3.2. Homology

Modeling

When a crystal structure is not available for a given target, such as
for PHLPP, homology modeling can be used to create a structural
model of the target. The program MODELLER (19) was used
with standard settings to produce the homology model of the
PP2C phosphatase domain (residues 745–1102) of PHLPP2 (an
isoform of PHLPP (4)) from the crystal structure of PP2Ca (PDB
id: 1A6Q) (20, 21), and ClustalW was used to align the sequences
with default parameters (22) (see Note 3).

3.3. Preparing

the Structure

The program Maestro inside the Schrödinger Suite was used to
assign bond orders, partial charges and atom types, according to
the OPLS 2001 force field (17). Hydrogens were added to the
protein based on the standard pKa of each residue. Ligands not
believed to be important in compound binding should be
removed from the structure. All these steps can be performed
using the “Protein Preparation Wizard” under the Workflows
dropdown menu (23). There is evidence of the presence of
metal ions in the PHLPP active site. Since our homology model
does not include the metals, we modeled 1, 2, or 3 manganese
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ions into the structure and relaxed the protein structure using
MacroModel from the Schrödinger Suite (24) (see Note 4).

3.4. Receptor Grid

Generation

The first step in any docking calculation consists of the generation
of a three dimensional grid from the receptor structure file. This
grid is used to dock the compounds and estimate their poses and
free energy of binding. The grid center is usually defined around
the region of interest to dock the ligands. The size of the grid
depends mostly on the size of the ligands present in the library of
compounds. In this study, the center of mass of the three

Structure from: 
-solved coordinate file
 -Molecular Dynamics
-or homology model

-Assemble virtual compound library,
often thousands to millions of 
compounds

Ligand poses are generated and
evaluated by scoring function at 
3 levels of accuracy in GLIDE

-Analyze virtual hits visually

-Confirm inhibition using an 
experimental assay

-Create grid used to
dock compounds

Docking Funnel 
                       

Virtual
Hits

1. HTVS

2. SP

3. XP

1- Edit structural file,
2- Add or remove 
metal ions, and 
ligands
3- Model in missing 
residues, side chains

The confirmed hits are used to design more focused libraries or provide structural
cues to modify the receptor model, via a feedback loop.

Confirmed
Hits

Fig. 1. Docking scheme: A 3-dimensional grid file and a compound library are necessary for docking. The grid file is
derived from a PDB file or from a homology model. The homology model is then modified to add or remove ions or ligands
in the active site, and fill in missing residues. The compound library is narrowed via similarity searches. Then GLIDE using
the funneling scheme is employed.
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Manganese ions was selected as the center of the box. In GLIDE,
two boxes are defined: a small one inside which the center of mass
of the docked compound must lie, (we used a cubic box with an
edge of 14 Å) and a larger one defining the outer edges of the grid
in which the entire molecule must sit (we used a cubic box with an
edge of 44 Å).

3.5. Compound

Library Selection

When looking for a compound library there are many character-
istics to evaluate. Among these are its size, cost per compound,
and intent of use (see Note 5). When screening against PHLPP,
we first used the NCI Diversity Set (~2,000 compounds), which
was screened in vitro, and next looked for new compounds in
the NCI Open Depository (~250k compounds). The Diversity
Set (13) and Open Depository (25) are available to download free
of charge.

3.6. Selecting

from the Compound

Library

In order to eliminate excess screening and analysis, it may be helpful
to sort through the compound library prior to virtual screening. If
there is information concerning known binders, a similarity search
may be performed. For this study, we performed a similarity search
based on the 11 families of compounds identified via in vitro screen-
ing and the seven most potent ones. Inside Accelrys Discovery
Studio (26), we used the “Find Similar Molecules by Fingerprints”
protocol with long range functional class fingerprint description
6 keys (FCFP 6 keys), and a Tanimoto distance coefficient to calcu-
late the similarity score. We kept the 33,000 compounds that were
similar to compounds from 11 structurally similar families deter-
mined to inhibit PHLPP. We also kept 10,000 compounds that
were similar to the seven most potent known inhibitors resulting
in 43,000 compounds to screen (14).

3.7. Docking

Calculations

With the two necessary components for VS, the structural model
of the receptor and a compound library, the user can now perform
docking to evaluate the compound poses in the active site
(see Note 6). The Virtual Screening Workflow in Maestro was
used to run the screens. The LigPrep (Ligand Preparation) pro-
gram was used to parameterize the ligands before the docking
(27). In this step, partial charges, tautomers, stereoisomers, and
protonation states are defined and included in the calculations.
Default parameters were used for the VS workflow except that
after the first stage (HTVS) only the top 20% of compounds were
selected for next stage, standard precision (SP), and again the top
20% of these were docked with extra precision (XP) (see Note 7).

3.8. Analyzing

the Results

Analysis of the results can be as simple as choosing compounds
based on their ranked order, which is based on the estimated free
energy of binding (docking score), given by the docking program.
However, it is important during the selection process to use
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discretion (see Notes 8 and 9). From our virtual results, we
suggested 80 compounds to be experimentally tested for
PHLPP inhibition. These compounds were selected because of
low free energy of binding scores (less than �10 kcal/mol), poses
deemed plausible by visual inspection, diversity, and availability.
See Fig. 2 for two examples of the poses generated by GLIDE
compounds that were strong hits in the VS and confirmed PHLPP
binders experimentally.

b c

a

Fig. 2. PHLPP2 phosphatase domain model structure. (a) The entire phosphatase domain homology model with the
approximate area which formed the docking grid for PHLPP2 lightly shaded, the rest of the phosphatase domain is darkly
shaded, the two Mn2+ ions are represented as dark orbs in the center of the image, and the dashed lines represent the
region enlarged in subsequent panels. (b, c) Docked poses of two hit molecules, which were verified as low mM inhibitors
of PHLPP2, compound 45586 (b), and compound 134145 (c), both in stick representation (a full color image is available
online or from the authors).
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3.9. Testing

Compounds

Experimentally

Asdescribed in Subheading2, the compoundswere tested for IC50s.
Of the compounds tested, 20 of the 80 showed an IC50 below
100 mM. This represented a 25% hit rate for our VS overall. The
docking software greatly improved the efficiency of screening but
still 3 out of 4 compounds did not inhibit PHLPP (see Note 10).

4. Notes

1. There are many docking programs available, including
GLIDE (28), Autodock (29, 30), GOLD (31), ehits (32),
and Surflex (33), just to name a few, and it is difficult to
determine which one is best to use. For this article, we used
GLIDE inside the Schrödinger Suite of molecular modeling
software. This software has a simple to use Graphical User
Interface, and a funneling scheme for docking, which removes
low scoring compounds rapidly, then scores the remainder
with higher accuracy. This allows for a great number of com-
pounds to be evaluated in a short amount of time, on a
desktop computer.

2. Crystal structures are often preferred because of the high reso-
lution that they are resolved at. As described, homologymodels
can be extremely useful structures for screening purposes (14).
Recently, molecular dynamics MD simulations have been
shown to be very useful for providing structural models.
Through MD techniques, receptor flexibility can be taken into
account in virtual screening procedures by using ensemble-
based screening or the relaxed complex scheme (34–36). Addi-
tionally, enhanced sampling techniques, such as Accelerated
MD simulations, can be used to identify new biologically rele-
vant conformational states of the receptor (37–43). These
states, which may represent low populated states in the MD
trajectory, are usually not captured by ensemble-basedmethods
and can be extremely important in the search for drug candi-
dates. A comprehensive review of ensemble-based screening is
available here (44).

3. Programs such as MODELLER are available to download,
and there are free web servers available like SWISS-MODEL
(45). All that is needed is the sequence of the protein or partial
sequence such as a given domain. The program will search for
similar proteins, for which there is a crystal structure available,
to base the structural model on and produce a structure file,
which can then be used in the docking program. Generally an
X-ray crystal structure is desired to begin a docking study,
however success is possible using homology models.
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4. PHLPPis fromtheProteinPhosphataseMagnesium/Manganese
dependent (PPM) family of phosphatases (46, 47). For exam-
ple, PP2Ca, our alignment model, possesses two manganese
ions in its active site (20). In this study we developed a number
ofmodelswithdifferentnumbersofMn2+ ionsbecausewewere
unsure of how many Mn2+ ions were present and where they
would be located in the structure. These structures were eval-
uated for their ability to determine true binding compounds as
determined by the experimental studies from decoy com-
pounds, and the best performer was chosen for further study.

5. In most of the cases, the size of the compound library is often
not an issue in the virtual screening. However, some com-
pound libraries, such as ZINC with over 13 million com-
pounds (48), are so large that virtual screening would take a
very long time. The cost per compound is also a major issue.
While many libraries can be obtained in silico for free, com-
mercial libraries charge a considerable fee for any compounds
purchased for experimental testing. The National Cancer
Institute (NCI) has a few targeted libraries and their com-
pounds can be obtained free of charge. Some distributers of
compounds make tailored libraries that may consist of frag-
ments, or libraries tailored to kinases or other proteins of
interest.

6. In general, docking programs generate poses of the compound
in the specified region of the receptor and perform a complete
3-dimensional search, creating numerous poses of the ligand
on the receptor. The next step is to evaluate these poses with a
scoring function and determine the best pose. GLIDE uses
a modified Chemscore (49) function to evaluate the poses
(28, 50) and produce an estimation of the free energy of
binding. Compounds are commonly ranked by this free energy
of binding, but may also be ranked by ligand efficiency, which
takes into account the size of the molecules in relation to their
free energy of binding.

7. HTVS (performs rigid ligand docking) is for screening large
libraries of compounds and is not as accurate as SP or XP (both
perform flexible ligand docking). Standard precision (SP) has
softer potentials and ismore forgiving than extra precision (XP),
which has harder potentials and is the most accurate and there-
fore time consuming (28, 50). HTVS and SP are used as pre-
liminary steps to funnel only good scoring compounds into
GLIDE XP. XP is meant to remove false positives, and was
used to generate the final docking scores in this project. XP
and SP are quite similar however they have different intended
uses. XPmay be used to get the highest enrichment factor in VS
or it may be used in lead optimization but may eliminate some
true binding compounds. SP is intended to forgive small
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imperfections in poses and should have a lower enrichment
factor, but has less of a propensity to eliminate true positives.
GLIDE software uses a funneling scheme to go through these
three docking levels so that the number of compounds docked
in the XP stage that use the most computer resources are mini-
mized (28) (see Fig. 1). Cutoffs to make it through the three
stages of docking should be determined based on library size,
and computer resources available. High cutoffs will increase
computational time, while low cutoffs may eliminate more hits
early on.

8. Often, it is necessary to eliminate compounds that do not
appear to be bound within the active site, or compounds
that are very similar to each other. When initially searching
for compounds with diverse backbones, it can be wasteful to
test many similar compounds before it is known which ones
work well. However, after confirmation of compound binding
(inhibition), similar compounds can be proposed in the
searching for higher affinity compounds. Structure-activity
relationship studies are also a good alternative. Before screen-
ing any compounds in vitro first examine the poses. Some-
times the docking algorithm will score compounds in
unreasonable poses. Be aware of the limitations involved in
all docking programs. The first thing to check is if the majority
of the molecule is in the binding pocket. It is important to
visually evaluate high scoring poses before the results are
accepted. In the case of PHLPP, we were able to determine
the mode of inhibition (competitive or noncompetitive) by
the pose generated by the docking software. Most compounds
we found virtually were noncompetitive and bound primarily
to a hydrophobic cleft adjacent to the metal ions.

9. Often, docking programs may score large compounds more
favorably than small compounds. Docking of very large flexi-
ble molecules is usually challenging because of the large num-
ber of rotatable bonds and hence should be analyzed carefully.
Ligand efficiency, which is equal to the free energy of binding
over the weight of the heavy atoms, will help indicate how
strong the interactions between the compounds and the tar-
get are while taking into account its size. Small molecules are a
good start for drug design campaigns because functional
groups may be added to optimize the physicochemical proper-
ties without compromising binding affinity or potency, during
medicinal chemistry development.

10. Again, owing to the limitations involved in all docking soft-
ware, it is vital to test the compounds experimentally for IC50s
before further work is invested to develop better inhibitors.
Numerous factors can result in inaccurate results in docking
calculations such as force field inaccuracies, not accounting for
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protein flexibility properly, poor description of solvation,
and entropic effects. On the other hand, the selection of
compounds to be tested experimentally may be hindered by
physical properties such as compound impurity, insolubility,
aggregation, or poor cellular entry. However, docking is one
of the most rapid and cost-effective ways to find compounds
that bind biomolecules despite the high rate of false-positives
and -negatives (36). If the docking software ranks certain
molecules well, it is likely that similar molecules will also be
ranked accurately. It is advisable to screen similar molecules to
known binders to find more inhibitors or higher affinity inhi-
bitors.
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Chapter 34

Molecular-Level Simulation of Pandemic
Influenza Glycoproteins

Rommie E. Amaro and Wilfred W. Li

Abstract

Computational simulation of pandemic diseases provides important insight into many disease features that
may benefit public health. This is especially true for the influenza virus, a continuing global pandemic
threat. Molecular or atomic-level investigation of influenza has predominantly focused on the two major
virus glycoproteins, neuraminidase (NA) and hemagglutinin (HA). In this chapter, we walk the readers
through major considerations for studying pandemic influenza glycoproteins, from choosing the most
useful choice of system(s) to avoiding common pitfalls in experimental design and execution. While a brief
discussion of several potential simulation and docking techniques is presented, we emphasize molecular
dynamics (MD) and Brownian dynamics (BD) simulation techniques and molecular docking, within the
context of biologically outstanding questions in influenza research.

Key words: Pandemic diseases, Computational biology, Influenza, Neuraminidase, Hemagglutinin,
Molecular dynamics simulations, Brownian dynamics simulations, Binding free energy estimates,
Docking, Antiviral design

1. Introduction

Computational investigations of influenza have repeatedly shown
that they are capable of adding significant insight into the struc-
tural dynamics and function of major components of the influenza
virus. They have also been extensively used in the rational design of
the two clinically administered antiviral drugs, oseltamivir (Tami-
flu) and zanamivir (Relenza), and a number of other inhibitors
(1, 2). The availability of numerous high-resolution X-ray crystal-
lographic structures for both of the virus’s major glycoproteins,
neuraminidase (NA), and hemagglutinin (HA), makes these
enzymes well-suited to investigationwith atomic-level approaches.
In addition, the time- and length-scales of biologically and medi-
cally relevant motions in these systems are accessible by several
simulation techniques, such as classical (3–10), steered, (11) and
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generalized Born molecular dynamics simulations (12, 13),
Brownian dynamics simulations (14), virtual screening (15–19),
and a range of free energy techniques, fromMM-PBSA and related
approaches (12, 20–25) to thermodynamic integration (26) and
free energy perturbation (27) (see Note 1).

In this chapter, we outline the major critical system setup
considerations when attempting to perform atomistic simulations
(e.g., molecular or Brownian dynamics simulations) and docking
calculations for both NA and HA. We focus exclusively on the
influenza type A pathogens, which are responsible for most of the
seasonal, epidemic, and pandemic disease outbreaks in humans.
Pandemic events are classified according to the World Health
Organization 6-stage scale (see Note 2), and there have been
four major pandemic influenza outbreaks in recent history since
the first recorded event in 1918. The causative strains include
H1N1, which caused the “Spanish Flu” pandemic in 1918 and
the “Swine Flu” pandemic in 2009; H2N2, which caused “Asian
Flu” in 1957; and H3N2, which caused “Hong Kong Flu” in
1968 (28). H5N1, which caused “Bird Flu” in 2004, H1N2,
H7N2, H7N3, H7N7, H9N2, and H10N7 are other influenza
A serotypes that have been found in humans but have not caused
any pandemics (see Note 3).

2. Materials

Neuraminidase (NA) and hemagglutinin (HA) are the two major
glycoproteins in influenza virions, which are present in the host-
derived lipid envelope in a HA:NA ratio of approximately 4–5:1
(29, 30). Together they perform a delicate balancing act between
host cell sialic acid receptor binding, performed by HA, and sialic
acid receptor cleavage, performed by NA, which facilitates viral
shedding (31). The choices of systems to investigate, i.e., compu-
tational “starting materials,” are numerous considering the wide
array of high-resolution atomic level structures presently available.

2.1. Neuraminidase As of December 2010, there are 77 publicly available influenza A
neuraminidase structures deposited in the protein databank (32),
consisting of NAs from both phylogenetically determined group-
1 (N1, N4, N5, N8) and group-2 (N2, N3, N6, N7, N9) ser-
otypes (33) (see Note 4). Structures from human and avian species
are represented (see Note 5), as are N1 structures from the 1918
to 2009 pandemic strains (see Note 6), and drug-resistant
mutants from both group-1 and group-2 strains (see Note 7).

Aside from the protein itself, one may endeavor to simulate
complexes of NA with various ligands. The natural substrates of
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NA are glycosides with a-linked terminal sialic acid (a.k.a. sialo-
sides). Sialic acid has been resolved in complex with group-2 NAs,
as have the clinically administered drugs (oseltamivir andzanamivir),
potential drug candidates (peramivir or BCX-1812), and various
lead compounds (many of which are sialic acid analogue
compounds) (see Note 8). Antibody-bound structures with wild-
type and escape-mutantNAs have also been deposited (seeNote 9).

2.2. Hemagglutinin At the time of writing, there are 75 hemagglutinin (HA) structures
from the Influenza A virus (IAV) deposited in the PDB, using the
Blast sequence search tool with the 2009 H1 chain A (HA1)
sequence from 3MLH (34), with low complexity region masked,
and an expectation value of 0.001. HA structures, like NA, are
classified into two groups based upon phylogenetic analysis (35):
so-called “group-1,” which consists of H1, H2, H5, H6, H8, H9,
H11–H13, H16, and “group-2,” constituted by H3, H4, H7,
H10, H14, H15. Of these, only three HA strains, H1, H2, and
H3, are known to infect humans; however, small human outbreaks
from avian subtypes H5, H7, and H9 have also been recorded
(36). Over 40 crystal structures of nonpandemic HA strains are
deposited in the PDB database (seeNote 10), representingmouse,
avian, swine, and human species (seeNote 11). Currently, there are
26 publicly available crystal structures of pandemic strain HAs,
representing all of the twentieth century pandemic events (see
Note 12).

In addition, a number of crystal structures of HA with their
human or avian receptor analogues have also been isolated. These
receptors include LSTa, LSTc, 6-SLN, 3-SLN, or monosacchar-
ides, such as sialic acid, which interact with the receptor binding
domain (RBD), as well as those which interact with the fusion
domain, such as tert-butyl hydroquinone (see Note 13). Finally,
six deposited HA structures are co-complexed with antibody frag-
ments, which provide platforms for potential vaccine design
(see Note 14).

3. Methods

After the specific NA and HA strains are chosen for investigation,
a number of structural features must be considered prior to
molecular-level simulation or docking. In this section, we outline
these considerations in detail for both major glycoproteins. The
goal is to facilitate the setup of the best possible biophysical
systems for use in all-atom investigations, and present potential
known pitfalls where appropriate.
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3.1. Neuraminidase The biologically relevant form of NA is a tetramer. The symmetric
4-subunit head, which contains the sialidase active sites, sits atop a
long, variable “stalk,” which is anchored to the viral particle
membrane via a hydrophobic segment of residues (37). Low-
resolution cryo-electron microscopy images suggest that the
stalk length is in the range of 100 Å (29). Although at least two
experimental studies have shown that stalk length is relevant to
NA function (38, 39), the lack of high-resolution structural infor-
mation for the stalk and sheer system-size has, to date, prohibited
the all-atom investigation of the full-NA structure. Instead, most
computational investigations have focused on either tetramer or
monomer forms of the head group itself (see Note 15).

NA requires calcium to function (40), although the calcium
ion is not required for the actual enzymatic glycosidase activity.
The calcium ion, which has been crystallized in a number of
structures, has been shown to play an important structural role,
as evidenced by its location behind a loop adjacent to the sialic acid
binding site. Free energy calculations performed with and without
the bound ion indicate that stability of residue Y347 and binding
of oseltamivir is affected by the presence of the calcium (41). It is
therefore critical to include the calcium ion in all-atom investiga-
tions of NA (see Note 16).

In addition to the calcium ions, the inclusion of explicit water
molecules is a major consideration for the investigator. This is
especially important in the large sialic acid binding cavity, which,
if left unoccupied, could undergo nonrealistic structural rearran-
gements. Several crystal structures show numerous buried water
molecules in the NA enzyme (see Note 17), and these should be
considered for use in homology modeling of the water molecules
into structures without such information. Alternately, one can use
water prediction programs, such as DOWSER (42), to attempt to
address where buried or bound water molecules may reside based
on water–protein interaction energies (see Note 18). A further
alternative is to restrain the protein during initial dynamics so that
the water molecules can penetrate into their proper positions,
before the protein is allowed to move and adapt its shape artifac-
tually in the absence of such stabilizing waters. This last alternative
is probably the least favored for atomic-level modeling since it may
be especially difficult for buried water molecules to reach their
proper positions in a reasonable simulation timescale.

Many studies wish to explore the basis of molecular recogni-
tion for bound substrates or small molecule ligands. In these cases,
one hopes there is available crystal structure information
with resolved electron density for the ligand(s) of interest (see
Note 19); in cases where there is no such information, docking
programs can be used to predict docked poses (see Note 20).
A common ligand of interest is oseltamivir (also called GS4071
or Tamiflu), which is a prodrug that is metabolized in the body
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after administration to its active form (see Note 21). It is the only
orally available, clinically used antiviral currently on the market,
and therefore, frequently included in all-atom simulations of NA.
With regard to ligand-bound simulations, it is also important to
consider the effect of explicit solvent or if implicit solvent treat-
ment could be employed. Ligands that are known to coordinate to
the NA active site through hydrogen bonds with water are not
well-represented with implicit solvent (see Note 22), and thus
should be avoided when continuum representations of solvent
are desired (13, 20).

As with any atomic-level simulation, protonation states of
titratable residues must be determined. The protonation states
of most residues can be assigned with standard protonation state
prediction programs, e.g., WHATIF (43) or PROPKA (44)
(see Note 23). Residue H274, which is a commonly found in
drug-resistant mutated strains to be H274Y, may be of special
interest and if so, should be treated more carefully (see Note 24).

Certainly one of the better-knownmajor pitfalls with studying
the group-1 enzymes involves the selection of the starting crystal
structure with regard to the topology of the active site area, and
especially, the conformation of the so-called 150-loop. The first
crystallographically resolved N1 structures (of the nonpandemic
H5N1) exhibited an altogether new cavity adjacent to the sialic
acid binding pocket, which was formed by an “open” conforma-
tion of the 150-loop (33) (see Note 25). The same study also
crystallized the H5N1 with a closed 150-loop conformation when
the enzyme was soaked with high concentrations of oseltamivir or
for longer soaking times. Very recent structural evidence of
the 2009 pandemic H1N1 clearly showed that it lacked the
150-cavity, despite being a classified as a group-1 NA (45). The
co-complex structural elucidation of a new inhibitor designed to
target the N1 150-cavity indirectly confirms, however, that the
2009 pandemic H1N1 is indeed susceptible to ligands that target
the open conformation of the 150-loop (46). Clearly, a better
understanding of the atomic-level control mechanisms for the
structural dynamics of the 150-loop is warranted; in the mean-
time, atomic-level investigations should carefully choose which
loop configuration is appropriate for any particular study
(see Note 26). Along these lines, NA has been used as a model
system for the development of ensemble-based virtual screening
experiments (15) (see Note 27) in a procedure known as the
relaxed complex scheme (47, 48). Similarly, higher-level binding
free energy calculations, such as free energy perturbation or ther-
modynamic integration, will be heavily impacted by motion in this
loop (see Note 28), and as such, extra caution in choosing
the initial starting structural configuration of the 150-loop is
warranted.
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Glycosylation is another possible consideration that we present.
Although glycosylation is generally believed to play a larger role
in HA function, N2 is known to have four glycosylation sites per
monomer (49), including a residue on the 150-loop (see Note 29).
Curiously, glycosylation at the 150-loop site has been shown to play
a role in neurovirulence inmice (50). To the best of our knowledge,
there have been no atomic-level computational investigations to
date that include bound sialoglycans on NA, yet, the development
of an improved generalizable carbohydrate force field, GLYCAM06
(51, 52), makes such studies more accessible.

3.2. Hemagglutinin Hemagglutinin (HA) is involved in the attachment of viral parti-
cles to sialosaccharides on host cell membrane lipids or surface
proteins. The RBD of HA is made up of the 190-helix (HA1
188–190), 130-loop (HA1 134–138), and the 220-loop (HA1
221–228), with a number of conserved residues for receptor
binding and species specificity (53). The terminal sialic acid is
often linked through a-2,3 or a-2,6 linkage to the galactose,
with the latter thought to be recognized by human influenza
HA. Glycan receptor binding affinity to HA is in the millimolar
range, but compensated by multivalent interactions (avidity)
between multiple HAs and glycan receptors (54). Crystal struc-
tural studies have revealed that sialic acid makes contact with
several conserved residues, e.g., Y98, S/T136, W153, H183,
L/I194 (H3 numbering), which exhibit more variations in HAs
from humans than from birds (55, 56). Furthermore, it is believed
that the larger RBD size of human H3, compared to RBDs
from avian H1 or H5, may be required to accommodate the larger
a-2,6 linked glycan receptors (57).

There is a growing recognition that the optimization of
molecular interactions in the HA systems may require significant
conformational adjustments of the participating proteins, ligands,
or substrates and carbohydrates (55, 56). Unfortunately, exten-
sive large-scale conformational changes are very difficult, if not
impossible, to sample in all-atom molecular level investigations of
HA. However, more local aspects of molecular recognition are
indeed tractable with such methods. In fact, while superimposi-
tions of pentasaccharides using known crystal structures offer
potential clues as to why a-2,3 or a-2,6 linkages may be preferred
for particular species (33, 58), the flexibility of both HA protein
and the bound glycans is largely undetectable in crystallography
studies. Atomic-level simulation techniques have the opportunity
to make significant contributions in the exploration of such areas.

A major outstanding question in HA biology pertains to how
HAs differentially recognize different host cell glycan receptors.
The pentasaccharides LSTa and LSTc, natural sialosides from
human milk, are convenient avian and human receptor analogues
to employ in such studies (55, 57, 58) (see Note 30). These two
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sialosides are often found in complex glycans on cell surfaces and
contain lactosamine (Gal2-GlcNAc3) and lactose (Gal4-Glc5)
units (see Note 31). Significant advances in carbohydrate force
field development have been made over the years, primarily by
GLYCAM06 (52, 59) for the AMBER force field (60), and
CSFF (61) and others (62–64) for the CHARMM force field
(65). The inherent flexibility that challenged crystallography and
limited earlier computational studies to short di- or tri-saccharides
(66–68) can now be examined in atomic detail.

The analysis of glycan structural dynamics must also be
considered carefully and in a manner that is slightly different
than the typical small-molecule ligand. In the context of glycan-
HA binding interactions, most of the glycan conformational
changes occur relative to their sialic-acid-1 (Sia1) units. Further-
more, it has been observed that Sia1 placement is relatively stable
in the HA RBD. Consequently, utilizing a global root-mean-
square-deviation (RMSD) alignment to analyze the glycan con-
formations is obviously inappropriate. Instead, aligning the glycan
trajectory frames on the heavy atoms (C and O) of the Sia1
pyranose ring in order to remove the overall rotation and transla-
tion was shown to be a viable approach (3, 69) (see Note 32).
As part of the glycan analysis, clustering of the resulting glycan
structures can also be considered (see Note 33).

Previously reported HA affinity for sialyl oligosaccharides usu-
ally has dissociation constants in the millimolar range (70–77), a
behavior often attributed to an enthalpy–entropy compensation
phenomenon (78, 79). The loss of entropy which offsets enthalpic
gain is interpreted in terms of conformational distortion and freez-
ing of flexible oligosaccharide ligands as well as solvent reorganiza-
tion accompanying binding. While the solvent-associated entropy
contribution is still the least-understood aspect, MD simulations
of the free and bound glycans make it possible to explore the
conformational energetics of the glycan-HA binding interactions.
We urge the reader to include estimates for entropic terms in their
studies wherever possible (see Note 34).

The biologically relevant form of HA is a trimer of hetero-
dimers. The configuration of the trimer indicates that the individ-
ual monomer units strongly interact with each other, and this
feature essentially requires all-atom studies to utilize the complete
trimer structure (see Note 35). Although studies of one monomer
of the RBD alone could be employed, they would neglect likely
important stabilizing interactions from neighboring units present
biologically. Protonation states of the protein residues must be
treated prior to simulation and this can be performed in an iden-
tical manner as described for NA (see Note 22).
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3.3. Molecular

Simulation

and Docking

Programs

As evidenced by the large number of published computational
molecular-level studies of the influenza glycoproteins (see Note 1),
there are numerous options for simulation and docking that can be
pursued. Unfortunately, it is not possible to list each program’s
input parameters with full detail in this chapter. To provide
both simplicity and usefulness, we present a brief overview of the
available computational techniques and refer the reader to the indi-
vidual references cited herein for explicit methodological details.

All-atom, explicitly solvated molecular dynamics simulations
for pandemic and potentially pandemic NA and HA complexes
have been carried out using a number of simulation software
packages, including NAMD2 (80), AMBER (81), GROMOS
(82), GROMACS (83), and DESMOND (84) (see Note 36).
Recently published manuscripts employing these programs pro-
vide explicit methodological details which can be referenced by the
reader, and include Xu et al. (69) andAmaro et al. (4), Chachra and
Rizzo (21), Lawrenz et al. (26), Kasson et al. (85), and Wereszc-
zynski and McCammon (27), respectively. In all cases, periodic
boundary conditions were applied in conjunction with particle-
mesh Ewald (PME) summation (86) to treat long-range electro-
statics. Nonequilibrium steeredmolecular dynamics simulations of
unbinding events in NA have been carried out using NAMD2 as
well (11). Implicit solvent generalized Born simulations of the NA
monomer and tetramer have been carried out using AMBER (13).
Brownian dynamics simulations to determine rates of association
between NA and sialic acid or oseltamivir (14) have been carried
out using the Brownian dynamics simulation package SDA (87).

As neuraminidase is one of the major antiviral drug targets in
influenza, it has been used extensively in docking and free energy
of binding studies, starting from the early 1990s (see Note 34).
Nearly every docking program available has published examples of
neuraminidase compounds, and the system is generally considered
among benchmark sets for molecular docking; examples of dock-
ing procedures for NA include AutoDock (15), GOLD (88),
DOCK (89), Surflex-Dock (90), and LigandFit (91), among
others (see Note 37). In addition to docking, binding free energy
estimates have been obtained using high-accuracy alchemical free
energy methods (26, 27) as well as less accurate, hybrid techni-
ques, such as MM-PB(GB)SA (13, 20, 21, 69) and linear interac-
tion energy (92) approaches.

4. Notes

1. Searching only the American Chemical Society’s journal
database for “neuraminidase molecular dynamics” retrieves
over 255 articles; a search for “hemagglutinin molecular
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dynamics” retrieves an additional 274. Given the wide range
of NA and HA atomic-level computational investigations, we
fully acknowledge that the references cited here are just a small
sampling of the rather sizeable number of publications in the
literature, and we apologize to the authors whose work we
have not been able to explicitly cite. We stress that citations
provided here are merely examples of the various computa-
tional techniques that have been explored, and that we do not
intend to be comprehensive.

2. http://www.who.int/csr/resources/publications/influenza/
WHO_CDS_CSR_GIP_2005_5.pdf.

3. http://www.cdc.gov/flu/avian/gen-info/flu-viruses.htm.

4. PDBs available at time of writing are: Group-1, pandemic (N1):
3CYE, 3NSS, 3B7E, 3BEQ;Group-1, nonpandemic (N4,N8):
2HT5, 2HT7, 2HT8, 2HTQ, 2HTR, 2HTU, 2HTV, 2HTW,
2HTY, 2HU0, 2HU4, 3CKZ, 3CL0, 3CL2; Group-2, non-
pandemic (N2, N6, andN9): 1BJI, 1F8B, 1F8C, 1F8D, 1F8E,
1ING, 1INH, 1INW, 1INX, 1INY, 1IVC, 1IVD, 1IVE, 1IVF,
1IVG, 1L7F, 1L7G, 1L7H, 1MWE, 1NCA, 1NCB, 1NCC,
1NCD, 1NMA, 1NMB, 1NMC, 1NN2, 1NNA, 1NNB,
1NNC, 1V0Z, 1W1X, 1W20, 1W21, 1XOE, 1XOG, 2AEP,
2AEQ, 2B8H, 2BAT, 2C4A, 2C4L, 2CML, 2QWA, 2QWB,
2QWC, 2QWD, 2QWE, 2QWF, 2QWG, 2QWH, 2QWI,
2QWJ, 2QWK, 3NN9, 4NN9, 5NN9, 6NN9, 7NN9.

5. One must be careful when selecting species-specific strains to
investigate. For example, representative N2 structures are
available from both Tern (avian, PDB identifier 1QWK) and
human (PDB identifier: 1NN2) isolates. Adaptation through
sequence mutations and alterations in glycosylation patterns
of NAs and HAs occurs over time in the host organism; as all
influenza infections in human are believed to be derived from
avian progenitors, this process is commonly known as “human
adaptation.” (93) N1 and N2 are the only subtypes of NA
currently known to circulate widely in humans.

6. Structures of the 1918 “Spanish flu” A/Brevig Mission/1/
1918 H1N1 are available as 3B7E, 3BEQ, 3CYE, and a
structure of the 2009 “Swine flu” A/California/04/2009 is
available as 3NSS.

7. Drug-resistant mutants of NA have been found to occur over
time in the population due to selective pressure. Structural
representations of select common drug-resistant mutations in
nonpandemic strains are: 3CKZ and 3CL0 (H274Y mutant in
H5N1 NA), 3CL2 (N294S mutant in H5N1 NA); 2QWJ,
2QWH, 2QWG, 2QWF, 2QWE, 2QWD, 2QWC, 2QWB,
2QWA, 1L7H (R292K mutant in Tern N9); and 1L7G
(E119G in Tern N9).
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8. A large number of ligand-bound NA structures are available in
the PDB database. Group-2 sialic acid-bound structures:
1MWE, 1W1X, 1W20, 1W21, 2BAT, 2C4A, 2C4L, 2QWB;
Group-1 oseltamivir-bound structures: 2HT7, 2HT8,
2HU0, 2HU4, 3CL0, 3CL2; Group-2 oseltamivir-bound
structures: 2QWH, 2QWK; zanamivir-bound structures:
2CML (group-2), 3B7E (pandemic 1918 N1), 2HTQ/
3CKZ (H5N1); Group-1 peramivir-bound structure:
2HTU; Group-2 peramivir-bound structures: 1L7F, 1L7G,
1L7H; Group-2 NAs with other lead compounds or sialic acid
analogues: 1BJI, 1F8B, 1F8C, 1F8D, 1F8E, 1ING, 1INH,
1INW, 1INX, 1INY, 1IVC, 1IVD, 1IVE, 1IVF, 1IVG,
1NNA, 1NNB, 1NNC, 1XOE, 1XOG, 2QWC, 2QWD,
2QWE, 2QWF, 2QWG, 2QWI, 2QWJ. Group-1 NA with
other lead compounds: 2HTW.

9. Antibody-bound NA structures are: 2AEP, 2AEQ, 1NCA,
1NCB, 1NCC, 1NCD, 1NMA, 1NMB, and 1NMC.

10. HA PDBs of nonpandemic strains available at the time of
writing are, Group-1 (H1, H5): 1RU7, 1RVX, 1RVZ,
1RUY, 1RV0, 1RVT, 3HTO, 3HTP, 3HTQ, 3HTT,
2WRH, 2FK0, 2IBX, 3GBM, 3FKU; Group-2 (H3, H7,
H14): 2VIR, 2VIS, 2VIT, 2VIU, 1HA0, 1HGD, 1HGE,
1HGF, 1HGG, 1HGH, 1HGI, 1HGJ, 1EO8, 1KEN,
1QFU, 3EYM, 1MQL, 1MQM, 1MQN, 1T18, 3M5G,
3M5H, 3M5I, 3M5J, 3EYJ, 3EYK.

11. As with NA, one must be careful in the selection of particular
strains to investigate due to the fact that isolates from several
species may have crystal structures. For example, H7 has been
isolated from both human (3M5G representing A/New York/
107/2003) and avian (1T18 representing A/turkey/Italy/02)
species. As species-specific features are likely to be present in
each of the structures (including specific residue mutations and
glycosylation sites), careful consideration of the actual strain
and/or structural source must be exercised prior to system
setup.

12. HA crystal structures from pandemic strains include: 1RD8,
1RUZ, 2WRG, 3GBN, 3LZF for 1918 pandemic H1; 2WR1,
2WR2, 2WR3, 2WR4, 2WR5, 2WR7, 2WRB, 2WRC,
2WRD, 2WRE, 2WRF, and 3KU3, 3KU6, and 3KU5 (very
high-resolution structures representing A/Japan/305/57)
for 1957 pandemic H2; 2HMG (representing A/HongKong/
19/68 (H3N2)) and 3HMG, 4HMG, 5HMG representing
A/Aichi/2/1968 (H3N2); 3M6S representing A/Darwin/
2001/2009 and 3LZG and 3AL4 representing A/California/
04/2009 for the 2009H1 pandemic.
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13. Co-complexes with various ligands are available in the PDB,
including, LSTa (1RVX, 1RV0, 3HTP, 1MQM, 2WR3,
2WRB); LSTc (1RVZ, 1RVT, 3HTQ, 1MQN, 2WR7,
2WRF); 2,3 sialyllactose (3HTT); tert-butyl hydroquinone
(3EYM); sialyl-N-acetyllactosamine (3M5H, 3M5I); and
sialic acid (4HMG, 5HMG).

14. Cocrystal structures of HA with antibody fragments are,
recombinant X31 H3: 1EO8, 1KEN, 1QFU; H5: 3FKU;
and 1918 H1: 3GBN, 3LZF.

15. Reference (13) shows that protein instabilities can arise when
studying NA in the monomer form as opposed to the tetra-
mer, due to the loss of stabilizing inter-subunit contacts. All-
atom investigations using the monomer NA are likely suffi-
cient when exploring dynamics on short timescales (less than
10 ns of classical molecular dynamics simulations) or docking
calculations, which generally focus on a particular binding
site. When performing longer timescale or implicit solvent
simulations, the tetramer form of NA should be utilized to
avoid the introduction of nonbiological structural artifacts.

16. Many of the NA X-ray crystallographic structures deposited in
the protein data bank do not have density information for the
bound calcium ion. High-resolution structures of group-1
and group-2 NAs with the bound calcium ions (e.g., group-
1: 2HTY, group-2: 2QWK) should be used to model the
calcium by homology when it is missing in a particular struc-
ture of interest.

17. A representative structure of a group-1 NA with explicitly
resolved water molecules is 2HTY, and for group-2, 2QWK.
These structures can be used to homology-model explicit
water molecules. The group-2 2QWK structure has a bound
oseltamivir ligand in the active site, and four water molecules
are shown to coordinate within 3 Å of the ligand. The 2HTY
structure is without substrate or bound ligand, and therefore
there are some differences in the water positions in the sialic
acid binding pocket. If homology modeling of the water
molecules is pursued in conjunction with a bound ligand,
one must remove water molecules that sterically overlap
with the atoms of the ligand.

18. DOWSER program information can be found at: http://
hekto.med.unc.edu:8080/HERMANS/software/
DOWSER/.

19. Structures with bound ligands have been presented in Note 8.

20. AutoDock (94, 95) is a freely available docking program
which has been shown to successfully replicate control ligands
bound to NA, with published parameters (15).
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21. One should be careful not to confuse the prodrug form (the
ethyl ester) with the active compound (acid). If studying the
drug in complex with NA, the active, acid form of oseltamivir
should be selected.

22. Sialic acid, 2-deoxy-2,3-didehydro-N-acetylneuraminic acid
(DANA), and zanamivir, have been shown to depend on
explicit water molecules in order to stabilize the bound con-
formation, and thus treatment with implicit solvent condi-
tions is ill-advised (20) The same study showed that
oseltamivir is able to retain the correct bound pose without
explicit water molecules.

23. A useful web service to predict relevant protonation states of the
protein residues at a user-defined pH is maintained by the
National Biomedical Computation Resource (NBCR)
PDB2PQR web service (http://nbcr.sdsc.edu/pdb2pqr) (96).

24. In most simulations with standard treatment, this residue is
predicted to be neutral and to have a proton on its epsilon
nitrogen.

25. It is standard practice in the NA field to use N2 numbering.
The 150-loop has been defined as residues 146/147–152.

26. The open 150-loop nonpandemic H5N1 structures are:
2HTY (ligand-free), 2HU0 (oseltamivir-bound). 2HU4 is
the same system with a closed 150-loop, which was deter-
mined during longer time soaks or under higher oseltamivir
concentrations. 3NSS presents the 2009 pandemic H1N1
crystal structure with a closed 150-loop. 3O9J and 3O9K
present N8 with an open 150-loop, in complex with two
inhibitors that bind to the 150-cavity.

27. In Cheng et al. (15), the resulting snapshots from both the
apo and oseltamivir-bound all-atom MD trajectories of N1
were clustered according to RMSD of a subset of 62 residues
lining the binding site area using the GROMOS++ analysis
software (97). The exact residues used in the clustering were
(N1 numbering): 117–119, 133–138, 146–152, 156, 179,
180, 196–200, 223–228, 243–247, 277, 278, 293, 295,
344–347, 368, 401, 402, and 426–441. When performing
RMSD-based clustering, several RMSD thresholds must be
tested in order to determine the optimal clustering cutoff,
which is generally chosen after evaluating the dependence of
the number of clusters on the cutoff values. An additional
metric that the user can examine is hydrogen bonding within
the cluster groupings; this adds “physical insight” into the
choice of cutoff and can also be used as a metric for guiding
the clustering cutoff choice. For the NA system, a range of
RMSD-threshold values from 1.0 to 1.5 Å were tested and
1.3 Å was ultimately chosen as the final cutoff value. The
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exact choice of cutoff is up to the user and may also depend on
other factors; e.g., if one plans to perform ensemble-based
virtual screening experiments with the resulting cluster repre-
sentative structures, the user may desire to choose the number
of clusters such that the majority of the trajectory is contained
in some computationally tractable number of structures. In
the case of the Cheng et al. study, the top three most domi-
nant clusters for both the apo and oseltamivir-bound simula-
tions represented over 60% of the trajectories.

28. Two recent papers have investigated the use of newmethodol-
ogies to effectively increase the sampling of the 150-loop with
respect to accurate ligand free energy of binding estimates.
Lawrenz et al. utilized a novel “independent trajectories”
approach to thermodynamic integration calculations, in
order to better account for 150-loop motion in N1-peramivir
co-complexes (26). Similarly, selectively applied accelerated
molecular dynamics was employed by Wereszczynski and
McCammon in conjunction with alchemical free energy trans-
formation techniques to enhance sampling of the 150-loop
and improve binding affinity estimates for an N1-oseltamivir
co-complex (27). Such novel approaches highlight the need to
address 150-loop sampling before reliable binding free energy
estimates can be obtained.

29. Asn residues 86, 146, 200, and 234 are glycosylated. Carbo-
hydrate units attached to Asn146 are of the complex type,
containing N-acetylglucosamine, N-acetylgalactosamine,
mannose, galactose, and fructose (49).

30. Complete LSTc can be extracted from the LSTc-H9 crystal
structure complex (PDB Code: 1JSI). LSTa is currently only
available in its trisaccharide (Sia1-Gal2-GlcNAc3) form in the
protein data bank crystal structures. The missing Gal4 and
Glc5 units can be added using the freely available Maestro
GUI (Schrödinger Inc.) or GlyProt (98).

31. It should be noted that although the final sialic acid linkage
presents an obvious difference between host species, there are
likely several other features that are relevant to species speci-
ficity. For example, based on a survey of available crystal
structures, a new parameter to define the topology adopted
by the long a-2,3 or a-2,6 linked glycans was suggested plays
a crucial role in HA-glycan specificity of recognition (56).

32. In the Xu et al. and Newhouse et al. studies, the RMSD was
measured on the heavy atoms of Gal2-Glc5 6-member pyra-
nose rings between the individual glycan trajectory and the
glycan MD starting structure.
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33. Clustering of glycan structural dynamics using hierarchical
average linkage clustering has been carried out by Xu et al.
(69) and Newhouse et al. (3). The glycan trajectories were
aligned via the Sia1-aligned residues and concatenated into a
single trajectory. In this case, the hierarchical average linkage
clustering method was chosen because of its superior perfor-
mance in producing clusters with the smallest within-cluster
variance and large between-cluster separation compared to
many other clustering algorithms (99). In Xu et al. (69) and
Newhouse et al. (3), a 3-cluster solution was selected for the
sake of simplicity. The structures of the glycan cluster repre-
sentatives and the cluster percent population can then be
extracted and analyzed. In addition, the agglomerative clus-
tering process and the RMS distances at which clusters were
merged can be illustrated through dendrograms.

34. Docking investigations and studies pursuing quantifiable free
energies of binding are much less common for HA and glycan
systems, likely owing to the many degrees of freedom in the
glycan receptor molecules. In fact, the few studies that have
utilized such techniques for oligosaccharide systems con-
cluded that entropic considerations of the glycans to estimates
of binding cannot be neglected (3, 69, 100).

35. If only the heterodimer is present in the HA crystal structure
of choice, a number of programs can be used to build the full
oligomeric state prior to simulation. For example, Chimera
(101) and VMD (102) are freely available programs that can
both be used to perform symmetry transformations from
monomer to trimer configuration using crystal record infor-
mation.

36. Of the available simulation packages, we note that NAMD2,
GROMACS, and DESMOND are made freely available to
academic researchers. In particular, NAMD2 has been
designed specifically for the simulation of large biomolecular
complexes, and thus often offers benchmark advantages when
parallel computing resources can be utilized. Since the tetra-
mer NA and trimer HA systems, when fully solvated, contain
over 120,000 atoms, this can be an important factor in simu-
lation software selection.

37. It should be noted that the choice of any molecular docking
package may be appropriate, as long as docking control
experiments with known actives are provided in each case.
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Chapter 35

Homology Modeling of Cannabinoid Receptors:
Discovery of Cannabinoid Analogues
for Therapeutic Use

Chia‐en A. Chang, Rizi Ai, Michael Gutierrez,
and Michael J. Marsella

Abstract

Cannabinoids represent a promising class of compounds for developing novel therapeutic agents. Since
the isolation and identification of the major psychoactive component D9-THC in Cannabis sativa in the
1960s, numerous analogues of the classical plant cannabinoids have been synthesized and tested for their
biological activity. These compounds primarily target the cannabinoid receptors 1 (CB1) and Cannabi-
noid receptors 2 (CB2). This chapter focuses on CB1. Despite the lack of crystal structures for CB1,
protein-based homology modeling approaches and molecular docking methods can be used in the design
and discovery of cannabinoid analogues. Efficient synthetic approaches for therapeutically interesting
cannabinoid analogues have been developed to further facilitate the drug discovery process.

Key words: GPCR, Binding, Energy calculation, Molecular dynamics, Agonist

1. Introduction

The history of Cannabis sativa as a therapeutic agent has been
well documented since 2737 BC (1) to its spread to India from
China (2) and to its inclusion into the US Dispensatory in 1854
(3). The isolation of D1-tetrahydrocannabinol (D9-THC, also
known as D1-THC) from C. sativa in 1964 (4) has since sparked
much synthetic study and, more recently, intense pharmacological
examination. As one of more than 60 cannabinoids found in
cannabis, (�)-D9-THC (see Fig. 1) is responsible for the famous
pyschoactivity of cannabis and its therapeutic effects. The discov-
ery of the cannabinoid receptors CB1 and CB2 and D9-THC
analogues that selectively bind to those receptors have necessi-
tated computer-aided drug design and a flexible synthetic pathway
with high yields and stereoselectivity (5, 6).
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Cannabinoids can be grouped into three classes: endogenous
or endocannabinoids (naturally occurring cannabinoids found
in the body), classical or natural (found in the plant species
Cannabis), and nonclassical or synthetic (see Table 1). Endoge-
nous cannabinoids, also known as eicosanoids, include ananda-
mide, 2-arachidonoyl glycerol ether, 2-arachidonoyl glycerol
(2-AG), N-arachidonoyl-dopamine (NADA), and virodhamine.
The natural cannabinoids are similar in structure but do not all
share the same bioactivity. These compounds have no significant
psychotropic effects compared to D9-THC, however, they may
have an impact on the effects of D9-THC (7). Synthetic cannabi-
noids include dronabinol (Marinol), levonantrodol, nabilone, and
HU-210. It should be noted that some synthetic cannabinoids do
not adhere to the typical structures found in the natural cannabi-
noids. More recently, intense pharmacological examinations have
been carried out. For example, nabilone (Cesamet, Veleant Phar-
maceuticals, Aliso Viejo, CA, USA) has been developed to sup-
press vomiting and nausea caused by chemotherapy and Marinol
(Solvay Pharmaceuticals, Brussels, Belgium) for stimulating appe-
tite in AIDS patients. Cannabinoids have therapeutic potential in a
number of pathologic conditions, including mood and anxiety
disorders, obesity and metabolic syndrome, movement disorders,
neuropathic pain, spinal cord injury, and multiple sclerosis (8).
Rimonabant, an antagonist of CB1, has been introduced to the
market to treat obesity. Although the side effects of rimonabant
severely limit the use of rimonabant and other CB1 antagonists,
the therapeutically potential of drugs targeting CBs is still very
high (9–11). CB1 drugs also have therapeutic potential in cancer,
stroke, atherosclerosis, myocardial infarction, glaucoma, and oste-
oporosis (8).

Cannabinoids primarily target the CB1 and CB2 receptors
but can interact with other proteins (12–14), and recent studies
show that cannabinoid analogues target new receptor families
(15, 16). CB1 receptor belongs to Class A (rhodopsin family)
G-protein coupled receptors (GPCRs), but no experimental struc-
tures are available. A powerful tool for cannabinoid analogue
design is use of structure-based approaches that require modeled
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Fig. 1. Structure and numbering system of (�)-D1-THC and (�)-D9-THC. Left : structure represents the monoterpenoid
numbering; Right : structure represents the formal numbering.
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Table 1
Cannabinoid classes and structures

Name Structure

Class: endocannabinoid

Anandamide O

N
H

OH

2-Arachidonoyl glycerol ether

O

OH

OH

2-Arachidonoyl glycerol

O

OH

OH

O

N-arachidonoyl-dopamine

N
H

O

OH

OH

Virodhamine

N
H

O

NH2

(continued)
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Table 1
(continued)

Name Structure

Class: classical/natural

Delta-6 tetrahydrocannabinol

O

OH
H

H

Cannabinol

O

OH

Cannabicyclol

O

OH

Cannabigerol OH

HO

Cannabichromene

OH

O

(continued)
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Table 1
(continued)

Name Structure

Class: nonclassical/synthetic

Dronabinol (marinol)

Racemic mixture of (±)-

D1-THC

O

OH

Levonantradol

NH

OO

O

H

HO
H

Nabilone

Racemic mixture of 

R,R 
S,S 
isomers

and

O

O

OH

HU-210

O

OH
H

H

OH

(continued)
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protein structures to predict the bound conformation and affinity
of CB1 ligands. Up to late 2007, the structure of bovine rhodop-
sin (17–19) was the only high-resolution structure of GPCRs
available as a template for homology modeling of CB1. Recently,
a growing number of GPCR crystal structures have been reported
and can be used for building new homology models; examples are
the structures for human b2 adrenergic receptor, turkey b1 adren-
ergic receptor, human adenosine A2A receptor, obvin opsin, and
cxcR4 chemokine receptor (18, 20–25).

GPCRs exist in a conformational equilibrium between active
and inactive states, but how the active and inactive states differ from
each other is not exactly known. The binding of agonists to a GPCR
may shift the equilibrium toward the active state, but some agonists
may prefer binding to the receptor in its active state. Natural canna-
binoids vary in their affinity and activity for the CB receptors, and
D9-THC is known as a receptor agonist. Whether D9-THC binds

Table 1
(continued)

Name Structure

CP-55,940

OH

OH

OH

WIN-55,212-2

O

N

O

N

O
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only to the active state of CB1 or whether can shift the protein from
an inactive to active state is unknown. However, having a model
structure that is in an active form ormoving toward an active form is
generally preferred in agonist drugdiscovery. AlthoughmostGPCR
crystal structures used as templates forCB1homologymodeling are
inactive, some structures encompass the structural features that have
often been attributed to active GPCR conformations (26, 27).
Therefore, after refinement and validation with known agonists,
the CB1 models obtained from inactive GPCR templates may be
considered active or toward-active structures.

State-of-the-art molecular docking methods are useful for
discovering new hits or leading optimization for computer-aided
CB1 drug discovery and CB1 model refinement. Molecular dock-
ing of chemical libraries involves two steps: (1) the docking pro-
cess aims accurately prediction of the pose of a compound within
the protein binding site in silico; and (2) the scoring stage aims to
score docked ligand–protein complexes by some measure to accu-
rately predict the experimental binding affinity of the ligand to the
target. Because more than one homology model is available from
modeling and refinement processes, protein flexibility and dock-
ing may be incorporated. A chemical library can be docked into
the protein to identify new binders and assist in modification of
new compounds to be synthesized.

The first successful attempt at the synthesis of D1-THC was
first reported by Gaoni and Mechoulam a year after they isolated
the compound from plant material (4). Patterned after the pro-
posed biogenetic pathway (28), citral was utilized (as opposed to
geraniol) with the lithium derivative of olivetol dimethyl ether to
afford a mixture thought to contain 3. (�)-Dimethyl cannabidiol
5 was obtained after tosylation through a proposed allylic rear-
rangement 4. 5 was demethylated at high temperatures with
methylmagenisum iodide resulting in (�)-cannabadiol (6) and
was subsequently converted to a mixture of (�)-D9-THC (7)
and (�)-D8-THC (8) by acid treatment (see Scheme 1). The over-
all yield for the synthesis was only 2%.

Taylor et al. shortly thereafter reported a one-step synthesis
(29) using citral and olivetol in 10% BF3 to give (�)-D8-THC (9)
in 10–20% yield and another compound later to be identified as an
isocannabinoid (10) (28). By using hydrochloric acid in ethanol,
Taylor was able to obtain the previously unsynthesized (�)-cis-D9-
THC in 20% yield along with a small amount of the trans isomer,
however was unable to separate the two isomers. Mechoulam and

Scheme 1. Mechoulam synthesis of (�)-D1-THC.
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coworkers were able to later modify Taylor’s synthesis by using 1%
BF3 in methylene chloride to give (�)-trans-D9-THC in a 20%
yield along with (�)-cis-D9-THC.12 Scheme 2 summarizes these
reactions.

In 1967, Fahrenholtz and coworkers reported an original
synthesis of racemic D9-THC and D8-THC (and subsequently
four of its isomers) in nine steps (30). Of particular interest was
the final step in which the regioselectivity of this reaction is due to
the formation of the phenolate ion and subsequent internal dehy-
drohalogenation, resulting in a 76:24 mixture of D9-THC:D8-
THC (see Scheme 3).

In 1997, Evans et al. reported the first asymmetric synthesis of
S,S-D9-THC using a bis(oxazoline)Cu(II) complex catalyzed
Diels-Alder reaction as the key step for the asymmetric induction
(31). Inspired by previous synthetic routes involving the use of
monoterpenes that function as a hypothetical dictation synthon,
the Evans group sought to create a chiral cycloadduct 12 from
achiral starting materials to serve as their dictation synthon. Total
synthesis of S,S-D9-THC (13) was accomplished in five steps with
an overall yield of 21% (see Scheme 4).

While the Evans’ synthesis was the first example of a stereospe-
cific route to a THC isomer, synthesis of the actual stereoisomer
found in cannabis (R,R-D9-THC) was not reported until 2007 by
Trost and Dogra (32). Trost’s retrosynthetic analysis includes
setting all of the stereochemistry from a single Mo-catalyzed asym-
metric allylic alkylation reaction.Use of this reaction and subsequent
transformations toward R,R-D9-THC occurred in 17 steps with a
31% overall yield (see Scheme 5).

Scheme 2. Taylor synthesis and Mechoulam modification toward (�)-D1-THC and isomers.

Scheme 3. Final step of Fahrenholtz synthesis of (�)-D1-THC.
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2. Materials

2.1. Computer Skills

and Programs

A typical desktop or laptop computer with 512 MB RAM and
500 MB free hard disk space is required. All web-based programs
run on computers with Microsoft Windows and Apple Mac OS. A
few modeling programs for fine-tuning CB1 models may need
Linux or Unix operating systems.

The first step of homology modeling methods begins with the
selection of suitable structural template(s) from the Protein Data
Bank (PDB; http://www.pdb.org). Web servers such as SWISS-
MODEL (http://swissmodel.expasy.org/) provide user-friendly
interface to search for templates (33–35). The server also provides
a template library, SWISS-MODEL template Library (ExPDB),
which is derived from the PDB. A wide variety of alignment
tools and homology modeling packages and servers such as T-
coffee (http://tcoffee.vital-it.ch/cgi-bin/Tcoffee/tcoffee_cgi/
index.cgi), MODELLER, Sybyl, Prime, and ICM, can be used
to develop a homology model based on the selected template(s)
(36). The results of alignment between our CB1 and the searched
templates could be visualized with the DeepView program
(http://www.expasy.org/spdbv/) (37). Accurate prediction of

Scheme 4. Evans synthesis of S,S-D9-THC.

Scheme 5. Trost-Synthesis of R, R-D9-THC.
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the loops remains one of the most difficult aspects in the homol-
ogy modeling. Software such as Prime may be used for loop
optimization. Molecular dynamics (MD) simulations may be
needed to fine-tune the modeled structures, especially for side-
chain and loop conformations. Several molecular simulation
packages such as Amber, Charmm, and Gromacs, provide energy
minimization and MD methods to optimize protein conforma-
tion or ligand–protein interactions (38–40). A popular molecular
graphics program VMD, which has a user-friendly interface to run
an MD program NAMD, can be used for simple molecular mod-
eling (41, 42).

2.2. Chemicals Materials include a traditional synthetic chemistry workbench: a
fume hood, balance, glassware, magnetic stirring apparatus, cool-
ing bath, nitrogen gas, and chromatographic apparatus as
described by Still et al. (43). Chemicals to prepare an authentic
sample of (�)-trans-D1-THC include olivitol, (+)-cis/trans-
p-mentha-2,8-dien-1-ol, anhydrous magnesium sulfate, BF3 ethe-
rate, sodium bicarbonate, methylene chloride, Florisil, ethyl ether,
and petroleum ether. All requisite environmental health and safety
requirements must be met throughout the synthesis and including
disposal of waste. It should be noted that natural cannabinoids are
collectively classified as DEA Schedule I drugs.

3. Methods

3.1. Building

Homology Models

of CB1

The following procedures involved use of the SWISS-MODEL
server to build CB1 models and can be broken down into the
following steps:

1. Identification and selection of structural template(s).

2. Target sequence and template structure(s) alignment.

3. Model construction.

4. Model quality evaluation.

These steps can be repeated until a satisfying CB1 model is
built.

3.1.1. Identification

and Selection

of Structural Template(s)

Experimentally determined structures of GPCRs are used as tem-
plates. The basic local alignment search tool (BLAST, http://
blast.ncbi.nlm.nih.gov/Blast.cgi) is used for sequence similarity
search. Before running the BLAST search, the human CB1 pro-
tein sequence (FASTA format) should be available. Here we used
the human CB1 (brain) sequence downloaded from the NCBI
protein database at: http://www.ncbi.nlm.nih.gov/protein.
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Templates that are close homologues of CB1 can usually be
identified from a gapped BLAST query against the ExPDB tem-
plate library extracted from the PDB (44). However, if no suitable
template is identified or the sequence identity is too low, then two
additional approaches can be used: the iterative profile blast,
whereby the template library is searched with use of PSI-BLAST
using an iteratively generated sequence profile, and the
HHSearch, whereby the CB1 sequence is searched against a tem-
plate library based on a hidden Markov model (44, 45).

Proteins with the best scores and/or sequence identities are
selected as templates. Here we selected one human b2 adrenergic
receptor (pdb code: 3KJ6; 26% sequence identity with the CB1
sequence) and human adenosine A2A receptor (pdb code: 3EML;
25% sequence identity with the CB1 sequence).

3.1.2. Target Sequence

and Template Structure(s)

Alignment

A critical step in constructing a good homologymodel is the initial
alignment between the CB1 sequence and the template structure
(s). Methods such as T-Coffee (http://www.ebi.ac.uk/Tools/t-
coffee/), ClustalW (http://www.ebi.ac.uk/Tools/clustalw2/),
MultAlign (http://multalin.toulouse.inra.fr/multalin/), and
SALIGN (implemented in the MODELLER package) can be
used for sequence alignment of membrane proteins (46–48).
Because properly aligning CB1may be difficult with use of a single
template for sequence alignment, we used several similar GPCR
sequences found by BLAST search for multiple sequence align-
ment of CB1 to generate a more accurate sequence alignment and
thus a better model (see Note 1). The primary focus of multiple
sequence alignment is to identify transmembrane regions that
are highly conserved within several related sequences. Therefore,
we used six protein sequences for multiple sequence alignment.
(PDB codes for 3KJ6, human b2 adrenergic receptor; 3EML,
human adenosine A2A receptor; 2RH1, human b2 adrenergic
receptor; 2R4R, human b2 adrenergic receptor; and 1F88, bovine
rhodopsin; 1U19, bovine rhodopsin.) An example is shown in
Fig. 2. From CB1 domain assignment, the CB1 sequence
RPDQARMDIRLAKTLVLILVVLIICWGPLLAIMVYDVF

Fig. 2. Sequence alignment of CB1. Top: Alignment with PDB template code 3KJ6; bottom: multiple sequence alignment.
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should be helix 6. If only one template, PDB 3KJ6, is used, the
helix 6 is separated into two parts, but the use of more GPCRs
sequences successfully avoids this problem.

3.1.3. Model Construction Results of multiple sequence alignment are submitted in a CLUS-
TALW format to the SWISS-MODEL Alignment Mode, and
users must provide a PDB code. The server pipeline builds a
model based on the alignment result and an email is sent when
the results are available. Two models based on different temples
are shown in Fig. 3.

Figure 3 shows that use of different templates may result in
very different structures. Figure 3b illustrates more reasonable
transmembrane domains, but the structure in Fig. 3a does not
have well-defined helices. To improve the model, one can build
seven transmembrane helices individually and then assemble each
fragment (see Note 2). The server provides methods for predict-
ing secondary structures which are useful for constructing the
CB1 models; examples are InterProdomain Scan, PsiPred for
secondary structure prediction and DISOPRED for disorder pre-
diction. Figure 4 shows the helix 2 from two models that are not
yet good models, with the final helix structure based on predicting
the length of the helix, as well as further alignment with only helix
2 and not including the whole protein. Regions that cannot be
modeled well with standard homology modeling can also be used
with the protein threading methods to build the structure. Servers
are available for the protein threading, e.g., WURST: http://
www.zbh.uni-hamburg.de/wurst/ (49).

Fig. 3. Homology models of CB1. (a) A homology model built on the basis of PDB template 3KJ6; (b) a homology model
built on the basis of the PDB template 3EML.
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In most cases, side-chain and loop conformations need to be
modeled in a further step after thebackbone is constructed. SCWRL
is a widely used program for adding side-chains to a protein back-
bone based on a backbone-dependent rotamer library (50).
The program has a library that provides lists of chi1-chi2 pairs for
residues at given phi-psi values, and explores these pairs to try to
minimize possible conformation clashes. Other programs, such as
OPUS-Rota, apply similar ideas for adding side-chains (51).

3.1.4. Model Quality

Evaluation

Evaluation of the quality of the final model(s) is a crucial step in
homology modeling and can be assessed using Ramachandran
maps and with programs such as Procheck, Whatcheck, and
QMEAN implemented in the SWISS-MODEL web server
(52–54). The model can be further validated by docking a
known binder into the binding site and checking whether the
model contains protein–ligand contact suggested by experiments.
For example, experimental mutation studies suggested that resi-
due Lys3.28 forms important interactions with D9-THC. If such
interactions are missing, then the model should be further refined
as described in the following section.

3.2. Modification,

Refinement, and

Validation of CB1

Models

Because evidence shows that all GPCRs share a common fold, the
seven transmembrane helices are relatively easier to model by
using standard protocol in the SWISS-MODEL server or the
MODELLER program. Moreover, a recent study of 105 ns MD
simulations of the CB1 receptor embedded in a lipid bilayer
revealed that the helical bundle structures of the CB1 receptor
retain a structure similar to the overall X-ray structure of GPCRs
(55). However, long loops and side-chains may need further

Fig. 4. Modeled structures of helix 2 based on PDB codes 3EML and 3KJ6, and the final
helix structure based on predicted helix 2 region.
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refinement, especially for the residues near the ligand binding site
(see Note 3). To obtain a more accurate structure, one can embed
a homology model in a pre-equilibrium lipid bilayer combined
with a water box to model and refine the protein in a more realistic
environment. Standard minimization and equilibrium procedures
can be carried out and the entire system can be sampled by MD
simulations. Although programs such as GROMACS and NAMD
provide tools for membrane protein modeling, some technical
details depend on systems (40, 41). Moreover, because the system
is huge, the MD simulations need to be run in a large cluster.

A solution to avoid high demand of computer time and time-
consuming setup, one can focus on residues near the binding site
by relaxing the atoms near the binding site and fixing most parts of
the transmembrane helical domains during the MD simulations. To
optimize CB1 side-chain and backbone conformations for a known
binder, a compound such as D9-THCmay be docked into the bind-
ing site and then the MD simulations can be carried out for the
ligand–protein complex. The VMD program provides an NAMD
graphic interfacewithwhich users can easily fix atoms, addwater, and
run energy minimization and MD simulations. To avoid unrealistic
in vacuo Coulombic interactions, if a ligand is not present in the
binding site, programs can be used to add a water box near the
binding site or a desired number of waters can be added manually
into the binding site. Standard simulation procedures such as
assigning parameters to the protein and ligands can be found in
NAMD, VMD, and AMBER manuals (http://www.ks.uiuc.edu/
Research/vmd/, http://www.ks.uiuc.edu/Research/namd/ and
http://ambermd.org/doc11/Amber11.pdf).

3.3. Structure-Based

Drug Screening:

Docking and Scoring

Methods

Once the CB1models are validated, docking methods can be used
in drug discovery for finding lead compounds, lead optimization,
and scaffold hopping. A wide variety of docking methods are in
use for virtual screening, and some, such as DOCK and AUTO-
DOCK, are free of charge for academic researchers (56, 57). CB1
presumably has a large binding pocket and is reasonably flexible,
because structurally very different ligands, such as endocannabi-
noid and natural cannabinoids, can bind tightly in the binding
site. Although some programs may allow protein side-chains to
move during the docking process, the backbone is held fixed. As a
result, if CB1 adapts to a significantly different conformation
upon ligand binding, the docking program cannot capture it.

In considering protein flexibility, more than one CB1 struc-
tures, especially different models refined by different classes of
ligands or structures with different backbone conformations, can
be considered for docking. After each docked pose is available, a
scoring function ranks the best energy pose of each ligand. Eval-
uating docked compounds by different scoring functions has
received much attention recently (58). Top-scoring compounds
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are usually subjected to ad hoc evaluation, such as formation of
specific van der Waals contacts and ligand–receptor hydrogen
bonds. This extra stage also helps compensate for intrinsic defi-
ciencies in the scoring function and in knowledge-based ligand
design.

In the absence of experimental 3D structures of the ligand-CB1
complex, known binders are docked into CB1models to predict the
ligand–receptor complex structure, gain a better understanding of
the ligand binding determinants, guide compound modification,
lead optimization, and develop virtual combinatorial libraries.
Chemical databases such as the National Cancer Institute (NCI)
andZINCdatabase, can also be used for virtual screening to identify
new leads or scaffolds. Instead of screening thousands of com-
pounds, an NCI diversity set of about 1,500 compounds represent-
ing the broader chemical space of the 140,000 in the full NCI
database may be docked for the initial screen. 3D structures of the
ligands should be prepared before docking them into CB1. The 3D
structures of ligandsmaybe available inwebpages such asPubChem
http://pubchem.ncbi.nlm.nih.gov/ and sd or mol files can be
downloaded. The Olson Laboratory also distributes the NCI diver-
sity set formatted for use in AutoDock (59). If 3D structures are not
available, 2D structures can be drawnwith tools such as ChemDraw
and converted to 3D structures. Of note, a 2D to 3D converter may
not result in reasonable energy minima of ligands which are needed
for docking, particularly ligands with flexible ring conformations
(see Note 4). As a result, conformational search methods such as
Vconf canbe used to generate anoptimized ring conformation (60).

3.4. Synthetic Tools

for Cannabinoid

Analogues

The synthesis of authentic (�)-trans-D1-THCcan be preparedmost
easily using the method of Razdan (61). A round-bottom flask is
charged with a magnetic stir bar, methylene chloride (as solvent,
adjusted to 0.1Mw/r to olivitol), 1 equivalent of olivitol, 1 equiva-
lent of (+)-cis/trans-p-mentha-2,8-dien-1-ol, and 2 equivalents
anhydrous magnesium sulfate. The solution is stirred using a mag-
netic stirplate, cooled using an ice-water bath, and kept air-free via
manipulating under nitrogen gas environment. BF3 etherate is
added (1% based on the volume of methylene chloride) and the
reaction allowed stirred for 1.5 h. The reaction is quenched with a
solution of aqueous sodium bicarbonate and the resulting organic
phase is isolated using a separatory funnel. The organic layer is dried
over anhydrous magnesium sulfate, and volatiles removed under
reduced pressure to afford a crude product as a viscous oil. Pure
THC can be isolated by chromatography on Florisil using graded
eluent mixtures ranging from pure petroleum ether to 2:98 ethyl
ether : petroleum ether. The reported yield is ca. 30%.
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4. Notes

1. The CB1 sequence should have high similarity with a template
sequence. If not, multiple templates need to be selected for
multiple sequence alignment for better alignment results.

2. Because CB1 is a huge protein, building a good homology
model by considering the whole protein, including helices
and loops together may be challenging. The target CB1
sequence can be split into smaller fragments. For example,
one or two transmembrane helices with a connecting loop can
be considered as a fragment. Alignment and secondary struc-
ture determination can involve use of the sequences of each
fragment to obtain a better model. Then, fragments can be
assembled on the basis of the selected templates. Note that
the helical bundles have similar topology, so the transmem-
brane domains are relatively easy to assemble. Other tools
described in Subheading 2 might be needed for constructing
extracellular domains.

3. A common problem is that flexible loop regions are missing in
crystal structures. In addition, the extracellular regions may
be less conserved between CB1 and other GPCR templates.
Protein threading, loop prediction, and MD simulations can
be used to build the flexible parts.

4. Natural cannabinoids such as D9-THC, have ring structures
with different stereoisomers. When preparing ligands for
docking studies, attention must be paid to use a correct
conformation of stereoisomer because docking programs
change only the conformations of the rotatable bonds but
not the ring conformations.
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Chapter 36

High-Throughput Virtual Screening Lead to Discovery
of Non-Peptidic Inhibitors of West Nile Virus NS3 Protease

Danzhi Huang

Abstract

The non-structural 3 protease is an essential flaviviral enzyme and therefore one of the most promising
targets for drug development against West Nile virus infections. In this chapter, we discuss in detail the
computational methods used in the previous two docking campaigns which lead to the discovery of non-
peptidic low micromolar inhibitors. Not only an X-ray structure but also an alternative conformation
generated frommolecular dynamic simulations is used in the in silico screening. Moreover, unique scoring
schemes are developed based on the properties of the binding site of the protein.
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1. Introduction

West Nile virus (WNV) are worldwide-spread global threats
transmitted by mosquito bites and there are no specific antiviral
treatments that can prevent or cure this infection. The non-struc-
tural 3 protease (NS3pro) is one of the most promising targets for
drug development against flaviviridae infections because it is
responsible for cleavage of the viral polyprotein precursor and
plays a pivotal role in viral replication (1,2). The catalytic activity
of NS3pro is significantly increased by the presence of a 47-residue
region of the non-structural cofactor 2B (NS2B) (3). Three X-ray
structures of WNV NS2B-NS3pro in complex with inhibitors
have been solved: with the substrate-based tetrapeptide benzoyl-
norleucine-lysine-arginine-arginine-aldehyde (Bz-Nle-Lys-Arg-
Arg-H, PDB code 2FP7) (4), with the tripeptide inhibitor
2-naphthoyl-Lys-Lys-Arg-H (PDB code 3E90) (5), and with
bovine pancreatic trypsin inhibitor (BPTI, PDB code 2IJO) (6).
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The binding pocket is open and very shallow with the catalytic
triad (His51-Asp75-Ser135) located at the cleft between the two
b-barrels.

Recently published efforts on inhibitor development against
WNV proteases focused mostly on peptidomimetics (7,8) and
only few non-peptidic compounds have been reported (9–11)
leaving open space for further investigation aimed at viral chemo-
therapy. Most of the reported active compounds have charged
moieties, with the guanidino group being the most frequent.
They include a class of D-arginine based 9-12 mer peptides (8),
tetrapeptide aldehyde inhibitors (7), and five non-peptidic guani-
dino compounds reported by Ganesh et al. (9). Non-charged
inhibitors include a series of 8-hydroxyquinoline (11) and some
uncompetitive inhibitors (10).

In the previous docking studies, we first identified a small-
molecule inhibitor of WNV NS2B-NS3pro by high-throughput
docking into the X-ray structure (12). Given the intrinsic plasticity
of the WNV NS2B-NS3pro structure, in a second in silico screen-
ing campaign we decided to take into account the protein flexibil-
ity by using a structure generated with molecular dynamic (MD)
simulation (13). In the following sections, we will discuss the
computational approaches applied in the both studies.

2. Theory: Our In
Silico Screening
Approach

Our docking approach mainly consists of four steps which are
briefly overviewed in the following four subsections.

2.1. Decomposition

and Identification

of Molecules

Decomposition and identificationofmolecules (DAIM) is a program
used for automatically decomposition of a ligand into fragments and
the choice of the anchor fragments for fragment-basedflexible ligand
docking (FFLD) (14). The major rules are listed here.

1. All atoms in a fragment must be connected by rigid or termi-
nal bonds.

2. Large fragments are preferred since there are more steric
constraints for large entities, as a consequence these should
be positioned first.

3. Cyclic fragments are preferred because they usually are more
rigid than acyclic moieties.

4. Since the fragments should be involved in the most significant
interactions, those that contain hydrogen bond donors and
acceptors are selected. Charged groups usually do not make
such good anchors, since they tend to be positioned at the
borders of the binding site, which are more exposed to the
solvent. (However, there are exceptions as in the case of
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thrombin, where a very favorable electrostatic interaction is
provided by a charged aspartic acid in the specificity pocket).

5. Fragments that are close to the center of the molecule are
omitted, especially if they have a high number of substituent
groups. Such “central” or “scaffold” fragments will hardly
ever form significant interactions.

6. Finally, fragments should not overlap (i.e. one atom should
not be part of two fragments), since this would mean that
there are no rotatable bonds in between, so their relative
position can not be changed.

The DAIM rules for fragment identification and selection of
the three most suitable fragments for flexible docking by SEED-
FFLD can be exemplified with the molecule XK263 (Dupont
Merck, Fig. 1).

In principle, there are three fragment types that could be
chosen: naphthalene, benzene and the cyclic urea in the center.
The largest fragment would be the cyclic urea. However, accord-
ing to rule 5, this is not a good choice as it is the core fragment and
has four substituents. Furthermore, it is the most flexible of the
three types, which is another point against its choice. The remain-
ing two types are aromatic and thus a recommended choice
(rule 1). Finally, DAIM selects two naphthalenes and one benzene
and not vice versa (rule 2).

2.2. Solvation Energy

for Exhaustive Docking

The docking approach implemented in the program solvation
energy for exhaustive docking (SEED) (15) determines optimal
positions and orientations of small to medium-size molecular
fragments in the binding site of a protein. Apolar fragments are
docked into hydrophobic regions of the receptor while polar
fragments are positioned such that at least one intermolecular
hydrogen bond is formed. Each fragment is placed at several
thousand different positions with multiple orientations (in the
order of 106 conformations) and the binding energy is estimated
whenever severe clashes are not present (usually about 105 con-
formations). The binding energy is the sum of the van der Waals

Fig. 1. XK263 (Dupont Merck) is a nanomolar inhibitor of HIV-1 aspartic protease (PDB
accession code of the complex: 1HVR). Fragments selected by DAIM for SEED-FFLD
docking are bold. Curly arrows denote rotatable bonds.

36 High-Throughput Virtual Screening Lead to Discovery. . . 617



interaction and the electrostatic energy. The latter consists of
screened receptor-fragment interaction, as well as receptor and
fragment desolvations.

2.3. Fragment-Based

Flexible Ligand

Docking

The flexible-ligand docking approach FFLD uses a genetic algo-
rithm and a very efficient scoring function (16). The genetic
algorithm perturbations affect only the conformation of the
ligand; its placement in the binding site is determined by the
SEED anchors and a least square fitting method (17). In this
way the position and orientation of the ligand in the binding site
are determined by the best binding modes of its fragments previ-
ously docked using an accurate energy function with electrostatic
solvation (18). The scoring function used in FFLD is based on van
der Waals and hydrogen bond terms and does not explicitly
include solvation for efficiency reasons. Solvation effects are
implicitly accounted for as the binding mode of the fragments
are determined with electrostatic solvation.

2.4. Evaluation

of Binding Free

Energy with LIECE

The linear interaction energy with continuum electrostatics
(LIECE) approach was introduced and tested first on aspartic
proteases (19) and further validated on other proteins
(12,20,21). The essential idea of linear interaction energy models
is that the free energy of binding can be calculated by considering
only the end points of the thermodynamic cycle of ligand binding,
i.e., bound and free states. For this purpose, one usually calculates
average values of interaction energies from molecular dynamics
(MD) simulations of the isolated ligand and the ligand/protein
complex (22,23). In this way, the free energy of binding can be
approximated by

DGbind ¼ 1

2
hEelecibound � hEelecifree
� �

þ a hEvdWibound � hEvdWifree
� �

; (1)

where Eelec and EvdW are the electrostatic and van der Waals
interaction energies between the ligand and its surroundings.
The surroundings are either the solvent (free) or the solvated
protein (bound), and the hi denotes an ensemble average sampled
usually by explicit water MD simulations. We have suggested that
it is possible to avoid the MD sampling by replacing it with a
simple energy minimization, and postprocessing of the minimized
structures by a rigorous treatment of solvation within the contin-
uum electrostatics approximation (19).
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3. Methods

3.1. Preparation

of the WNV

NS2B-NS3pro

Structure for Docking

and MD Simulation

The coordinates of WNV protease in the complex with the
tetrapeptide aldehyde inhibitor Bz-Nle-Lys-Arg-Arg-H were
downloaded from the PDB database (PDB entry 2fp7 (4)). All
water molecules were removed (Note 1). The spurious termini at
the segment missing in the X-ray structure (residues 28–32 in
chain B) were neutralized by the �COCH3 group and the
�NHCH3 group at the N-terminus and C-terminus, respectively.
Side chains of aspartates and glutamates were negatively charged,
those of lysines and arginines were positively charged, and histi-
dines were considered neutral.

3.2. Conformation

Selection By Fragment

Docking into Multiple

MD Snapshots

MD simulation is used to explore the intrinsic protein flexibility
and the selection of a representative conformation by fragment
docking (see Note 2). For sampling, the protein molecule was
immersed in a water sphere and MD simulations were performed
using the stochastic boundary potential (24). Solvent molecules
beyond 20 Å from Ser135 g oxygen atom were deleted, leaving
160 residues in contact with the water sphere. The simulations
were prepared and conducted using CHARMM (25,26) and the
CHARMM22 force field (27) and the TIP3Pmodel of water with
a default value of 12 Å for the non-bonding truncation threshold.
Before starting the production run, the minimized structure was
heated to 300 K during 0.4 ns. Equilibration at 300 K was also 0.4
ns long while the production run was 1 ns. During the production
run 100 snapshots were saved every 5,000 steps (i.e., every 10 ps)
for evaluating the binding energy of three molecular fragments
(benzene, methylguanidinium, and 2-phenylimidazoline)
observed in several WNV NS2B-NS3pro inhibitors.

3.3. Preparation

of the Compound

Libraries

For the first docking, the compounds were selected by applying
strict filtering criteria from the iResearch database (ChemNaviga-
tor Inc., 2006) using Filter v2.0.1 (OpenEye Scientific Software,
Inc.). For this selection, only the compounds that had at least five
hydrogen bond donors or at least one positive charge were taken
into account. From a library of over 6 million molecules, only
11,715 compounds met these criteria. Of these compounds,
5,882 are neutral, 4,198 have one positive charge, 1,503 have
more than one positive charge, and the remaining 132 com-
pounds have negative charge(s). For the second docking, the
compounds were selected from the September 2006 version of
the ZINC library (28). About 4.37 million compounds from the
ZINC library were first clustered based on molecular similarity
calculated by the program DAIM (14) using the leader clustering
algorithm and a threshold of the Tanimoto coefficient of 0.996.
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Cluster representatives with molecular weight smaller than 250 g
mol�1 or with less than two hydrogen bond donors were dis-
carded. Final preparation of compounds for docking included
the assignment of CHARMm atom types, force field parameters
(29), and partial charges (30,31), and energy minimization with a
distance-dependent dielectric function.

3.4. High-Throughput

Docking and Pose

Filtering

The fragment-based docking of the database (of clustered and
prefiltered compounds) consists of four consecutive steps: (1)
Decomposition of each molecule of the library into mainly rigid
fragments by the programDAIM (14), (2) fragment docking with
evaluation of electrostatic solvation (18,32) by the program
SEED (15,33), (3) flexible docking of each molecule of the library
using the position and orientation of its fragments as anchors by
the program FFLD (16,34), and (4) LIECE scoring and final
filtering of poses (see Note 3). The docked poses were minimized
in CHARMM with distance dependent dielectric function
EðrÞ ¼ 4r. In the first study, poses forming at least three hydrogen
bonds with the protein were further selected and evaluated by
LIECE (see Notes 4 and 5). A total of 22 compounds were
selected based on their LIECE score, number of hydrogen
bonds formed and visual inspection. In the second study, the
two following filters were applied: (1) ratio of van der Waals
interaction energy and molecular weight more favorable than
�0.09 kcal g�1, (2) at least four intermolecular hydrogen bonds.
Moreover, a script implemented in CHARMM was used to weed
out poses with unlikely binding modes. This script identified
unfavorable interactions between the small molecule and the pro-
tein, e.g., a hydrogen bond donor (acceptor) closely interacting
with another donor (acceptor) within distance of 3.5 Å, or a polar
group buried in a hydrophobic cavity (see Note 6). About 69,790
poses (14%) of 7,057 compounds (38%) passed the filter of unfa-
vorable interaction. Finally, a total of 480 poses (of 178 com-
pounds) passed all filters and were visually inspected. No scoring
function was used in ranking the compounds. Five compounds
were selected for experimental tests.

4. Notes

1. The PDB structure 2FP7 is used as it has a highest resolution
(1.68 Å). All the water molecules and inhibitor have been
removed. The inhibitor forms a covalent bond with the pro-
tein, the ester bond between the residue (Ser135) and inhibi-
tor are also removed. The resulting empty valency is filled with
a hydrogen atom.
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2. Three fragments are used for the conformation selection. The
methylguanidinium group is present in the compounds
reported by Ganesh et al. (9), as well as in several tetrapeptidic
aldehyde inhibitors (Arg side chain) (7). The 2-phenylimida-
zoline group is part of low micromolar inhibitors recently
described by Bodenreider et al. (35). Benzene is the most
frequent fragment in the known drugs (36) and in large
databases of available compounds (more than 40% of com-
pounds in the ZINC library have a benzene) (14).

3. The protein conformation selection is based on the docking of
the three fragments and their SEED energies (15,33). A
conformation accommodating the three fragments with very
favorable SEED energies are selected for the high-throughput
docking (13).

4. The inhibitor binding site contains 19 hydrogen bond accep-
tors. Furthermore, there are five aspartate side chains in (or
very close to) the S1–S3 pockets, and most of the previously
discovered peptidic and nonpetidic inhibitors have at least one
positive charge. The focused library generated in the first
docking is expected to have higher chances to bind.

5. Number of intermolecular hydrogen bonds between mole-
cules and the protein is used as a critical rule for filtering
unfavorable poses. This rule is derived based on the properties
of the binding site as mentioned previously.

6. A LIECE model is developed based on the 37 peptidic inhi-
bitors (IC50 values ranging from 0.4 to 463M, with at least
two positive charges) (7) that are synthesized in the same
laboratory and tested all with the same enzymatic assay. A
three-parameter model with decomposed electrostatics is
used in this study

DG ¼ 0:078DEvdW þ 0:051DECoul þ 0:045DGsolvat; (2)

where DEvdW is the intermolecular van der Waals energy,
DECoul is the intermolecular Coulombic energy in vacuo,
and DGsolvat is the change in solvation energy of inhibitor
and protein upon binding. The parameters is obtained by
least-squares fitting and generate small root mean square of
the error in the energy (0.63 kcal mol�1) and large cross-
validated q2 (0.66).
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