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Preface

Assisted by the rapid and steady growth of available low-cost computer power, the use of
computers for discovering and designing new drugs is becoming a central topic in modern
molecular biology and medicinal chemistry. New effective methods provide access to an
always-increasing level of complexity in biomolecular recognition, thus expanding the
variety and the predictive power of approaches for drug development based on computa-
tional chemistry (Fig. 1).

liberbeamﬁtfnl ‘ A Compound Database

Landi ve Compofitis,
Das bnd;w:warm kunft sn oiftillicren die
w‘i"‘wmg“‘““”‘“""’;#”w .

*z p—" * 3|

aaasogt aaspngaigt

Statistical Wechanics
\ 4

Effective Drugs

Fig. 1. From medicinal alchemy to modern medicinal chemistry. Left the Liber de Arte Distillandi de Compositis by
Hieronymus Brunschwig described emerging methods to extract drugs through alchemical distillation (Johann Griininger
Publisher & Printer, 1512 circa; courtesy of the National Academy of Medicine, U.S.A.). Right. five hundred years later the
same long-standing problem is attacked by in silico distillation of large compound databases. Computers help
experiments along all phases of the extraction funnel: from preliminary molecule screening, trough drug discovery
and refinement, to inhibitor design based on statistical mechanics

In this volume of Methods in Molecular Biology we present robust methods for Compu-
tational Drug Discovery and Design, with a particular emphasis on method development
for biomedical applications. The goal is to offer an overview of highly promising themes
and tools in this highly interdisciplinary research field, together with the challenges calling
for new solutions in future research: from binding sites prediction to the accurate inclusion
of solvent and entropic effects, from high-throughput screening of large compound
databases to the expanding area of protein—protein inhibition, toward quantitative free-
energy approaches in ensemble-based drug design using distributed computing.
The application of physics-based methodologies—strongly coupled to molecular dynamics
simulation—is leading to a novel, dynamic view of receptor-drug recognition.
These concepts are progressively modifying the old dogma of single-structure-based
drug design into the concept of ensemble-based drug design, where conformational
diversity and selection play key roles. In this scenario, the current scientific literature is
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Vi Preface

often highlighting success stories and happy-end examples. However, the basis of this
success is often the back-stage, everyday research filled with ingenious and creative strate-
gies to bypass critical obstacles. Thus, this volume has the goal of presenting as well such
obstacles and practical guidance for the use of computational resources for researchers new
to these topics. Finally, this volume includes recent, successful examples of applications in
the description of receptor-drug interactions and computer-based discovery of new drugs
against human-lethal diseases, opening to future computer-based drug patents.

The reader will hopefully use this volume as an introductory manual for state-of-the-art
concepts and methodologies, as well as an advanced, specialized tool to design novel and
original research for public health.

Salt Lake City, UT, USA Riccardo Baron
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Chapter 1

A Molecular Dynamics Ensemble-Based Approach
for the Mapping of Druggable Binding Sites

Anthony lvetac and J. Andrew McCammon

Abstract

An expanding repertoire of “allosteric” drugs is revealing that structure-based drug design (SBDD) is not
restricted to the “active site” of the target protein. Such compounds have been shown to bind distant
regions of the protein topography, potentially providing higher levels of target specificity, reduced toxicity
and access to new regions of chemical space. Unfortunately, the location of such allosteric pockets is not
obvious in the absence of a bound crystal structure and the ability to predict their presence would be useful
in the discovery of novel therapies. Here, we describe a method for the prediction of “druggable” binding
sites that takes protein flexibility into account through the use of molecular dynamics (MD) simulation.
By using a dynamic representation of the target, we are able to sample multiple protein conformations that
may expose new drug-binding surfaces. We perform a fragment-based mapping analysis of individual
structures in the MD ensemble using the FTMAP algorithm and then rank the most prolific probe-
binding protein residues to determine potential “hot-spots” for further examination. This approach has
recently been applied to a pair of human G-protein-coupled receptors (GPCRs), resulting in the detection
of five potential allosteric sites.

Key words: Allosteric, Molecular dynamics simulation, Docking, Binding site, Drug design

1. Introduction

Structure-based drug design (SBDD) efforts are typically initiated
when a high-resolution crystal structure of the target protein
complexed with a small molecule is available. The co-crystallized
ligand is usually some form of the endogenous substrate /agonist
or a synthetic drug compound with affinity for the same binding
site. This region of the protein surface is referred to as the “active”
or “orthosteric” site and is highly conserved among closely related
proteins. Relatively recently however, it has emerged that there
are other “druggable” sites on the protein surface, which may be
bound by therapeutic small molecules and which are spatially
distinct from known active sites (1, 2). Such pockets are known

Riccardo Baron (ed.), Computational Drug Discovery and Design, Methods in Molecular Biology, vol. 819,
DOI 10.1007/978-1-61779-465-0_1, © Springer Science+Business Media, LLC 2012
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as “allosteric” sites, the binding of which can modulate function
through a variety of proposed mechanisms that perturb protein
dynamics (3). Some well-known FDA-approved allosteric drugs
include the protein kinase inhibitor Gleevec, the calcium-sensing
receptor modulator Cinacalcet, and the HIV-1 reverse transcrip-
tase inhibitor Etravirine. Allosteric drugs are attractive for numer-
ous reasons, perhaps the most powerful of which is their potential
for enhanced target specificity. The ability to better discriminate
between binding sites belonging to related targets is crucial in
reducing “off-target” activity related to certain harmful side
effects and is thought to be possible because allosteric sites are
less well conserved than orthosteric sites (4). It has also been
observed that hitherto identified allosteric compounds are struc-
turally more diverse than their orthosteric counterparts, suggest-
ing larger regions of chemical space are available for their design
and optimization (2).

Despite progress in the screening and identification of allosteric
drugs, the structural biology of their binding sites is still poorly
understood and there has consequently been a lack of SBDD
for such compounds. Considering advances in high-resolution
structure determination, the ability to computationally predict
potential allosteric sites from an unbound protein structure
would clearly facilitate the discovery of novel therapeutic com-
pounds and elucidate the binding of existing drugs.

A number of algorithms have been reported for the detection
of druggable binding pockets, given an atomic protein structure as
input (5, 6). These vary in complexity, ranging from a simple
shape-based representation of the protein surface, to the addition
of energy-based calculations, and to molecular dynamics (MD)
simulations performed in the presence of small molecules. In this
work, we elected to use the FTMAP algorithm (7), whereby a
panel of probe molecules is docked to the surface of a static
protein structure in order to expose potential high-affinity sites
for drug molecules. FTMAP combines extensive probe sampling
with an energy-based scoring function and has performed
very well in the reproduction of experimentally determined
protein-ligand complexes (7-9).

Perhaps one of the best recognized weaknesses in current small
molecule docking programmes is the static representation of the
target protein (10, 11), giving rise to the term “rigid-protein flexi-
ble-ligand.” While this compromise has been convenient for often
time-consuming docking calculations, it is a poor reflection of the
highly dynamic process of molecular recognition and our under-
standing that proteins exist in an ensemble of conformational sub-
states (12, 13). Furthermore, it has been noted previously that many
novel allosteric sites were not obvious from the unbound form of'the
protein (1), suggesting that such pockets may have a transient
character which may therefore elude predictions using experimental
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structures alone. A number of techniques have been proposed for
the introduction of flexibility into a static protein model for the
enhancement of molecular docking, varying from simple sidechain
modifications to full backbone mobility (14, 15). Here, we employ
all-atom MD simulation (16) of the target protein in explicit solvent
in order to sample new conformations that may reveal druggable
cavities. MD simulation ofters full protein flexibility in a realistic
solvent environment, such that dramatic rearrangements, which can
alter the topography, are possible. MD simulation has become a
popular method in the investigation of protein dynamics and has
successfully been integrated into virtual screening efforts to opti-
mize lead discovery (17).

In this work, we present a method for the discovery of poten-
tial novel drug binding sites, whereby the computational mapping
tool FTMAP is coupled with an MD-based ensemble of target
protein conformations. This approach has recently been used to
map a series of five potential allosteric sites on the surface of the
human B; and B, adrenergic receptors (BARs) (18) and was
inspired by the work of Landon et al. (19), who used a similar
technique with the influenza neuraminidase target. To illustrate
the method, we use the human B,AR and the retroviral HIV-1
reverse transcriptase (RT) as membrane-bound and water-soluble
examples of targets, describing how the ensembles are generated
and how the mapping results are combined.

2. Methods

2.1. Ensemble
Generation

In the following section, we describe the four main procedures
involved in our flexible-target mapping protocol, which have been
illustrated in Fig. 1. Acknowledging there is significant scope for
variation in the specific algorithms used to complete each step, we
describe one strategy and suggest alternatives in Notes 4.

The first step involves sampling the target protein’s conformational
landscape to obtain novel structures that are distinct from the initial,
experimental structure, and may expose novel druggable sites.
While many methods are available for biomolecular conformational
sampling (see Note 1), we have opted to use the widespread MD
simulation technique, which has been described elsewhere (20).
An MD simulation charts the time evolution of a protein structure
from its experimental starting conformation, essentially producing a
trajectory, or “movie” of protein motion with thousands of frames,
or “snapshots” that can be extracted for analysis. This is the
most time-consuming step in our protocol; however, the resulting
trajectory can have many applications in addition to the one



6 A. lvetac and J.A. McCammon

| 1. Ensemble Generation | I 2. Conformer Selection

Crystal Structure

MD Trajectory Ensemble Representative MD Conformers

| 3. Site Mapping 4. Hotspot Identification

Fig. 1. Overview of the four main stages of the flexible mapping procedure, with HIV-1 RT as an example. Input to the
procedure is a single experimental structure of the target and output is a ranked list of residues which may form

druggable binding sites.

2.2. Conformer
Selection

described here and there may already exist MD data for the target of
interest. In our work, we used the popular Gromacs MD simulation
package (21) together with the Gromos-96 biomolecular force-
field (22). To mitigate the well-known issue of incomplete sampling
of larger proteins, we have used a multi-copy approach (23),
whereby a series of simulations with different initial velocities are
carried out in preference to a single longer trajectory. For the RT
system we performed a series of four 30 ns simulations, and for the
B2AR system we performed a series of four 60 ns simulations
(for details on the MD setup protocol, please see ref. (18, 24)).
All simulations were performed in atomic detail and in the presence
of explicit water molecules, with the B,AR system including a phos-
pholipid bilayer. Both proteins were simulated in the absence of co-
crystallized ligands.

Perhaps one of the biggest challenges in the use of large structural
ensembles for protein-ligand docking is the selection of a subset
of the MD frames for analysis, given the intractability of using
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every single conformer. There is a wide variety of selection criteria
that can be used to categorize each frame, the choice depending
on the goal of the subsequent analysis (see Note 2). In our
protocol, we sought to dramatically reduce the size of each ensem-
ble and select a representative set of conformers that capture
diverse protein topographies. Inspired by techniques to eliminate
redundancy in large structural datasets used in virtual screening
(as discussed in (17)), we used the RMSD-based clustering
method provided by the “g_cluster” tool in the Gromacs package
(using the “gromos” method; see Note 3). By adjusting the cutoff
value for membership of each cluster, we were able to divide each
ensemble into approximately 20 clusters, the top 15 of which were
used in the subsequent mapping step. For each cluster, we took
the centroid member as the representative structure for mapping.
To illustrate the diversity of the MD-generated structures, the
15 representative conformers from the f,AR system are shown
in Fig. 2.

B,AR Cluster Representatives

Fig. 2. Conformational diversity of the MD ensemble. Fifteen representative structures of the B,AR, after RMSD-based

clustering.



8 A. Ilvetac and J.A. McCammon

2.3. Site Mapping

Given the reduced MD ensemble of 15 conformers, the next step is
to perform a search of druggable pockets on the surface of each.
While a number of algorithms are available for binding site predic-
tion (see Note 4), we elected to use the FTMAP algorithm (7),
inspired by encouraging correlations with experimentally solved
protein—ligand complex structures and previous work from our
group which used its predecessor, CS-Map (19). The FTMAP
software is provided as a web-based service (http:/ftmap.bu.edu),
whereby a typical protein can be mapped overnight, by simply
uploading the protein coordinates. The results of the mapping are
made available on the web server and include a PDB file which
contains the input protein structure, along with a series of probe
molecules which represent favorable binding sites for that probe
type. The probe molecules are locally divided into “consensus sites”
(assigned in the output PDB file by a unique chain identifier), which
can be considered clusters where multiple probe types bind well and
which may be indicative of a druggable site. Figure 3 shows example
FTMAP output structures, with a range of consensus sites distri-
buted over the protein surface, each containing varying types of
probe molecules. Another useful output file from the FTMAP server
contains the number of non-bonded interactions between protein
residues and probe molecules. We use this data to rank the protein
residues and determine which are the most popular probe interac-
tion sites over the entire ensemble.

Fig. 3. Examples of FTMAP output for individual conformations of the HIV-1 RT (a) and
B2AR (b). Bound probe molecules belonging to consensus sites are shown in black stick
representation.
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With FTMARP analysis performed on each member of the ensemble,
the next step is to combine the results and define local “hot-spots”
ofinterest, for further investigation. To achieve this, we simply rank
the protein residues by the average number of non-bonded interac-
tions they make with probe molecules across the entire ensemble.
Thus, residues that bind probe molecules in multiple different
protein conformations will be scored highly and those binding
only occasionally will score poorly. While residues binding probe
molecules infrequently in the dynamics of the protein may still be of
interest, we have decided to prioritize the most common sites
(see Note 5). In our previous work (18), we arbitrarily decided to
focus on the top 40 probe-interacting residues of B,AR, which
included a mixture of residues known to bind orthosteric ligands,
in addition to residues in new regions of the protein surface. By
analyzing the distribution of the residues, we were able to define a
series of five potential allosteric sites, which we then examined in the
context of existing experimental and structural data to support
a potential allosteric role. In Fig. 4, we show the top 40 probe-
interacting residues for both our example proteins, illustrating the
existence of clusters that may constitute new binding sites. For both
systems, we see that the known drug binding site is well identified, in
addition to a range of new, potentially druggable locations that are
not known to be currently targeted by drugs. Work to identify small
molecules binding at some of these sites is currently in progress.

a Known allosteric site b » _Known orthosteric site

o

Fig. 4. Hot-spot identification for the HIV-1 RT (a) and B,AR (b) systems. The top 40
probe-interacting protein residues are shown in black stick representation. For HIV-1 RT
we indicate the known binding site for the NNRTI class of allosteric inhibitors, while for
B2AR we indicate the known binding site for drugs targeting the orthosteric site. For
each protein, clusters of residues are found in novel regions of the protein surface,
which may be able to modulate activity of the protein and may therefore be amenable to
drug design.
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3. Conclusions

We have presented a method for the identification of potential
druggable sites on a protein of interest, which takes structural
flexibility into account through MD simulation. We have shown
in previous work that such flexibility exposes fragment binding
sites which were not visible in the experimental structure alone
and may thus lead to the discovery of new therapeutic com-
pounds. Given a series of sites detected by this method and
supporting evidence to fortify their candidacy as drug targets,
we suggest that virtual screening could next be used to identify
small molecules that bind at those sites. Compounds identified
with affinity for the sites could then be experimentally validated
using an appropriate assaying technique. In addition, a fragment-
based approach could be adopted, whereby bound probe mole-
cules could be “grown” or “linked” to form completely novel
high-affinity compounds.

4. Notes

1. A number of alternative techniques are available for the
computational modeling of protein dynamics and generation
of a diverse structural ensemble. In this work we have used
traditional all-atom MD simulation; however, we could have
equally used a Monte Carlo approach for conformational
sampling. Alternatively, a number of adaptations of classical
MD simulation have recently been proposed, which aim to
address sampling deficiencies and promise to generate more
diverse ensembles—these include accelerated MD (25), con-
formational flooding (26), and replica exchange (27).

2. The selection of representative protein conformers from the
MD ensemble is another area with scope for many different
methods and which could have substantial impact on the
results. Here, we have clustered MD snapshots by global
structural similarity, in order to extract a small set of diverse
topographies; however, other criteria could equally be used,
depending on the target. For example, snapshots could be
selected based on some measure of conformational energy or
based on certain known conformational changes that may be
important to protein function.

3. We clustered trajectory frames according to the RMSD of the
Co atoms of the core protein structure, so as to categorize
the conformers by global structural diversity and not bias the
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segregation to any local region. If there is a particular area of
interest targeted for druggability (e.g., a specific portion of
the protein surface), the subset of residues comprising this
region may be used in the clustering step instead.

. There are also a number of alternative algorithms to FTMAP

for the mapping of druggable sites on each protein conformer.
Many suggestions can be found in (6). It may be advantageous
to use a range of algorithms and define consensus sites that are
identified across different prediction methods.

. The hot-spot identification step is another area where different

approaches can be taken. Here, we have suggested the ranking
of probe-interacting residues by their mean performance
across the whole ensemble. However, there may be sites of
interest which are exposed relatively rarely in the dynamics
of the protein and which may therefore only be discovered
in one or a few representative conformers. We therefore rec-
ommend that the results from individual FTMAP runs are
examined for such “cryptic” sites.
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Chapter 2

Analysis of Protein Binding Sites by Computational
Solvent Mapping

David R. Hall, Dima Kozakov, and Sandor Vajda

Abstract

Computational solvent mapping globally samples the surface of target proteins using molecular probes—small
molecules or functional groups—to identify potentially favorable binding positions. The method is based on
X-ray and NMR screening studies showing that the binding sites of proteins also bind a large variety of
fragment-sized molecules. We have developed the multistage mapping algorithm FTMap (available as a server
athttp: /ttmap.bu.edu/) based on the fast Fourier transform (FFT') correlation approach. Identifying regions
oflow free energy rather than individual low energy conformations, FTMap reproduces the available experi-
mental mapping results. Applications to a variety of proteins show that the probes always cluster in important
subsites of the binding site, and the amino acid residues that interact with many probes also bind the specific
ligands of the protein. The “consensus” sites at which a number of different probes cluster are likely to be
“druggable” sites, capable of binding drug-size ligands with high affinity. Due to its sensitivity to conforma-
tional changes, the method can also be used for comparing the binding sites in different structures ofa protein.

Key words: Protein structure, Protein-ligand interactions, Binding site, Binding hot spots,
Fragment-based ligand design, Druggability, Binding site comparison, Docking

1. Introduction

The binding sites of proteins generally include smaller regions called
hot spots that are major contributors to the binding free energy, and
hence are crucial to the binding of any ligand at that particular
site (1). In drug design applications such hot spots can be identified
by screening for the binding of fragment-sized organic molecules
(2—4). Since the binding of the small compounds is very weak, it
is usually detected by Nuclear Magnetic Resonance (SAR by NMR
(3, 4)) or by X-ray crystallography (2, 5-8) methods. Results
confirm that the hot spots of proteins bind a variety of small mole-
cules, and that the fraction of the “probe” molecules binding to a
particular site predicts the potential importance of the site and can
be considered a measure of druggability (3, 4).

Riccardo Baron (ed.), Computational Drug Discovery and Design, Methods in Molecular Biology, vol. 819,
DOI 10.1007/978-1-61779-465-0_2, © Springer Science+Business Media, LLC 2012
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Consensus site

Fig. 1. Schematic figure of computational solvent mapping using two probes. Each circle and hexagon represents one of
the two probes. (a) Each probe is sampled around the surface of the protein to (b) find the minima where a probe clusters.
(c) The consensus site where two probe clusters overlap, but occupy slightly different positions.

Solvent mapping has been developed as a computational
analogue of the NMR and X-ray based screening experiments (9).
The method places molecular probes—small organic molecules
containing various functional groups—on a dense grid defined
around the protein, finds favorable positions using empirical free
energy functions, further refines the selected poses by free energy
minimization, clusters the low energy conformations, and ranks the
clusters on the basis of the average free energy (10). To determine
the hot spots, we find consensus sites, i.e., regions on the protein
where clusters of different probes overlap, and rank these sites in
terms of the number of overlapping probe clusters (10). This prin-
ciple is illustrated by the schematic figure (Fig. 1) for the case of
mapping a protein with only two probes (represented as circles
and hexagons, respectively), each forming a few clusters on the
protein surface. While the clusters overlap in the main consensus
site, the distributions of different probes may slightly differ, result-
ing in the arrangement shown in Fig. lc. Thus, in principle the
mapping can identify both the “hot spots” of the binding site
and the functional groups that tend to bind at specific locations
within it. The consensus site, binding the largest number of probe
clusters, is considered the main hot spot (10, 11). The number
of probe clusters at a particular consensus site (CS) correlates with
the importance of that site for binding (12). The main hot spot
and other hot spots within a 7 A radius predict a site that can
potentially bind drug-size ligands. These results can be used for
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the prediction of binding sites, and helped to better understand the
principles that govern the weakly specific binding of small molecules
to functional sites of proteins (13—-17). We have developed the
multistage mapping algorithm FI'Map (10), based on the fast Four-
ier transtorm (FFT) correlation approach. FTMap performs all steps
of the mapping algorithm, and is available as a server at http:/
ftmap.bu.edu/.

2. Software
Requirements

This method requires a molecular viewer for preparation of crystal
structures for mapping and analysis of results. This chapter
assumes that PyMol (http:/pymol.org), an Open Source molec-
ular viewer available on Windows, Mac OS X, and Linux, will be
used. Additionally, an Internet connection and web browser are
required to use the various servers throughout the method.

3. Methods

3.1. Finding a Protein
Structure

Computational solvent mapping techniques rely on the user to
provide the 3D structure of the protein. The vast majority of
published structures of proteins can be found in the Protein
Data Bank (PDB) in the PDB format. The simplest way to find a
structure is by searching the PDB website (http: /www.pdb.org)
for the name of the protein. The PDB also provides an “Advanced
Search,” where a sequence can be searched against the PDB using
BLAST (Fig. 2). The search by name relies on authors titling their
structure, paper, or chains in the protein with the same name a

Advanced Search Interface

[ Sequence (BLAST/FASTA/PSI-BLAST)

4r
—)

Structure Id |1ELA |
Chain Id A |
Sequence VVGGTEAQRNSWPSQISLQYRSGS

SWAHTCGGTLIRQNWVMTAAHCV
DRELTFRVVVGEHNLNQNNGTEQY -

VLI TA NPV ATV LA ACWITA

Search Tool BLAST H

Fig. 2. Advanced search interface for searching the Protein Data Bank (PDB) by sequence.
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3.2. Server
Submission

[ Experimental Method ¢

Search by the experimental method used to determine the str
NMR

Experimental [ X-RAY
Method

Has Experimental

Data

ar

AND

[ Has Ligand(s) - ]

Search based on whether or not the structure contains any fr

Has Ligands Yes %

Fig. 3. Refining a query in the PDB by presence of ligands and experimental method.

user uses in their search. Thus, it can often be advantageous to use
the sequence-based search.

For many proteins, there will be more than one structure in the
PDB. In general, the FTMap server produces better results from a
high-resolution unbound crystal structure. Having ligands in the
binding site often influences the shape of the site, sometimes dis-
turbing the ability to detect hot spots. An initial search on the PDB
website can be refined by whether the structure has ligands along
with the experimental method (Fig. 3). Additionally, the query
results can be sorted by resolution. Note though that the PDB
classifies many structures as having ligands even if they are unbound.
If a structure has an innate metal ion, or if cryoprotectants such as
glycerol are seen, the structure will be labeled as having a ligand,
despite not having a ligand in the binding site of interest.

The FTMap server is available for free use by academics at http: //
ftmap.bu.edu. After creating an account, you can submit jobs as
shown in Fig. 4. If you are using a structure from the pdb, you can
specify the pdb id and the chains. Note that HETATM records
within the pdb file are automatically stripped out. There are no
parameters for the majority of HETATMs from the PDB on the
server. The server does contain parameters for many common
metals though, such as iron, magnesium, and zinc. If you want to
include these, you should specify them as a chain by the letter “H”
for HETATM, tollowed by the residue name, and then by the chain
id. In Fig. 4, HZNA stands for the zinc from chain A of the protein.
If using an NMR protein, the model can be specified (see Note 1).

If a protein has been prepared as a pdb file for mapping, as in
preparing a single domain of a multidomain protein (see Note 2),
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Map

Job Name: [12caw/ zinc

Accepted PDB Input:
20 standard amino acids and RNA, ref: RN

Protein

PDBID: |12CA
Upload PDB

Chains: |A HZNA

Whitespace separate desired chains. Leave
chains blank to use all chains.

NMR Model:

v Advanced Options

Protein Mask: Browse...
1 PPl Mode

Map

Fig. 4. FTMap job submission interface.

Job Details: 1w50 bace

Download Map
Download Nonbonded Contact List

Download H-bonded Contact List

Fig. 5. FTMap job download interface.

this file can be uploaded by clicking on Upload PDB in the
interface. The chains can be specified as described above.

If you created a masking file (see Note 3), it may be uploaded
under Advanced Options.

Lastly, to look for binding sites in a protein—protein interaction
site, a special PPI mode has been incorporated into the FT' Map server.

After submitting a protein through the server, you should
wait for an e-mail informing you of job completion. Depending
on the load on the server, a job can take from 2 h to a full day.

After a job completes, three files will be available for download, a
pdb file containing the mapping, and two text files with counts of
nonbonded and hydrogen-bonded interactions to each residue on
the protein (Fig. 5).
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3.3.1. Analysis of Mapping

The pdb containing the mapping is specially formatted to be split
into multiple objects when loaded into PyMol. Additionally, it is
recommended to place the following code into a pymol startup
file. This code should be placed file named pymolrc.py in your
home directory on Windows (C:\Users\USERNAME)) or a file
named .pymolrc in your home directory on Mac OS X (/Users/
USERNAME/) or Linux (/home/USERNAME /). These func-
tions allow you to easily color clusters by rank, disable and enable
clusters, and rename the objects loaded in from an FTMap job.
This last task is especially important if loading multiple FT'Map
jobs into a single PyMol Session as the object names may
overwrite each other.

from pymol import cmd, util

def colorClusters():
util.cbac ('*.000.*")

util.cbap ('*.001.*")
util.cbay('*.002.*"
util.cbas('*.003.*"
util.cbaw ('*.004.*")
util.cbab ('*.005.*")
util.cbao ('*.006.*")
util.cbag('*.007.*")
util.cbam('*.008.*")
util.cbak ('*.009.*")

def disableClusters(rank='all"'):
if (rank == 'all'):
cmd.disable ("*.*.*")
else:
select = "*.%03d.*" % int(rank)
cmd.disable (select)

def enableClusters(rank='all'):
if (rank == 'all'):
cmd.enable ('*.*.*")
else:
select = "*.%03d.*" % int (rank)
cmd.enable (select)

def renameFTMap (protname) :
stored.clusters=[]
cmd.iterate('crosscluster* and index 1',
'stored.clusters.append (model) ")

for cluster in stored.clusters:
namepieces = cluster.split('.")
namepieces[0] = protname #set first element to protname
if (namepieces[-1] == "pdb"):
namepieces.pop ()
name = '.'.join(namepieces)
cmd.set_name (cluster, name)

cmd.group (protname+'_clusters', protname+'.*'")

cmd.set_name ('protein', protname)

cmd.extend
cmd.extend
cmd.extend
cmd.extend
cmd.extend
cmd.extend
cmd.extend
cmd.extend

'cc', colorClusters)
'colorClusters', colorClusters)
'de', disableClusters)
'disableClusters', disableClusters)
'ec', enableClusters)
'enableClusters', enableClusters)
'rf', renameFTMap)

'renameFTMap', renameFTMap)
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3.3.2. Analysis of Contacts

When the mapping is opened in PyMol, several objects are
created. The protein submitted for mapping is labeled “protein.”
The individual crossclusters from mapping are labeled “crosscluster.
rank.population.pdb.” Each crosscluster represents a location where
multiple different probe types clustered with a 4 A radius. These
locations are the hot spots for binding. In looking for a druggable
pocket, there should be a large population crosscluster (population
greater than 10) with several nearby crossclusters of lower popula-
tion. An example in Fig. 6a is the mapping of PDB 1w50, an apo
structure of B-secretase. The largest crosscluster, with population
19, is seen in a pocket surrounded by a variety of other crossclusters.
Drug-like molecules have been developed for -secretase, such as
the one shown in Fig. 6b, a submicromolar inhibitor (18) that uses
the hot spots defined by mapping.

If in analyzing the mapping, the majority of the results are
going into an area between two structural domains rather than a
well-defined pocket; the protein should be separated into the
individual structural domains to be mapped independently (see
Note 2). If the consensus site is in the location of a tightly bound
coenzyme, but other druggable sites are desired, a masking file
should be created to eliminate results in the region around the
coenzyme (see Note 3).

While visual examination of the mapping provides a large amount of
information that can be used for structural design of a molecule,
analysis of the provided lists of hydrogen-bonded and nonbonded
contacts made by probes in mapping can provide additional infor-
mation on specific residues to target. These files have four columns,
with the first three columns identifying the residue index, chain, and
residue type. The fourth column contains the number of hydrogen-
bond or nonbonded contacts, the top 2,000 results for each of the
probes in mapping formed with a particular residue. The file can be
sorted on this column using UNIX tools, as shown in Fig. 7, on Mac
OS X or Linux, or may be imported into a spreadsheet program such
as Microsoft Excel to be sorted. In Fig. 7, the results for the
mapping of PDB 1w50, an apo B-secretase, are shown. The top
two residues for hydrogen bonds are ASP 228 and ASP 32. These
residues were found to form hydrogen bonds to a large number of
fragments by Astex Therapeutics (19). The top two residues for
nonbonded contacts are Phel08 and Leu30, which are used
by the bulk of the submicromolar inhibitor shown in Fig. 6b.
The top hydrogen-bond and nonbonded contacts can provide
information of use in structure-based drug design.
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all

protein
crosscluster,000,0
cro

crosscluster, 002,
crosscluster,003,
crosscluster.00
crosscluster.(

crosscluster,

. YeYe) MacPyMOL

. 000,
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Fig. 6. Mapping of apo 3-secretase (1w50) showing a pocket that (a) contains a large crosscluster with smaller cluster
neighbors which (b) agree well with the binding of a submicromolar inhibitor (2ohu).
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$ sort —rnk 4 hbonded.lst | head -n 2

228 A ASP 2211
32 A ASP 1925
$ sort =rnk 4 nonbonded.lst | head -n 2
108 A PHE 60778
30 A LEU 53856

Fig. 7. Analysis of the top hydrogen-bonded and nonbonded contacts on Mac 0S X or Linux.

4, Notes

1. Many structures in the PDB have multiple copies of a protein
in a structure. Frequently crystals will have multiple copies of
a protein in an asymmetric unit, resulting in multiple chains
with the same sequence. If using a structure solved by NMR, a
number of models will be reported. In either case, there are
multiple different structures of the same protein. All these
structures submitted to the server, and the structure with
the largest consensus site population, that is the sum of the
populations of crossclusters in the binding site, should be
chosen for analysis after mapping.

2. The FTMap algorithm works best on single domains of
proteins. If a protein has multiple domains, each domain
should be mapped and analyzed independently. The PDB
website provides access to three different methods for
determination of protein domains, SCOP, CATH, and
PFAM, on the “Derived Data” tab for a structure. This data
relies on outside groups to update the data, so it frequently is
not available for the newest PDB structures, but both CATH
and PFAM can be searched by sequence to assign domains by
similarity to previously evaluated PDB structures.

Figure 8 shows the derived data for PDB lefv. Each
method assigned two domains to chain A of the structure
and a single domain to chain B. If you are interested in
mapping chain B, then you can proceed with the mapping,
but if you are interested in chain A, the structure should be
split into separate domains. The PDB does not provide infor-
mation on where the breaks between these domains occur.
This information must be obtained from the domain assign-
ment servers. CATH and PFAM have pages for each PDB on
their servers, showing the boundaries in the sequence
between the domains as shown in Fig. 9b, ¢c. SCOP provides
this information in their “SCOP parseable file” named dir.des.
scop.txt. This file can be searched using your favorite text
editor, or using grep on UNIX-like systems as shown in
Fig. 9a. While the three domain assignments disagree on the
exact domain boundary, they agree to within a couple
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' Derived Data

t Derived Data: SCOP Classification (version 1.75) &

Domain Info Class Fold
: diefval Alpha and beta Adenine nucleotide alpha
proteins (a/b). hydrolase-like.
dlefvb_ Alpha and beta Adenine nucleotide alpha
proteins (a/b). hydrolase-like,
dlefva2 Alpha and beta DHS-like NAD/FAD-
proteins (a/b) binding domain

t Derived Data: CATH Classification (version v3.3.0) &

Domain Class

1efvADl Alpha Beta
lefvAD2 Alpha Beta
1efvB0OO Alpha Beta

t Derived Data: PFAM Classification &'

Chain  PFAM Accession PFAM ID
A PF01012 [y ETF

A PFO0766 71 ETF_alpha
i B PF01012 [/ ETF

Fig. 8. Derived data for PDB 1efv, showing that each method assigns two domains to
chain A and a single domain to chain B.

as$ grep lefv dir.des.scop.txt_1.75

31633  px €.26.2.3 dlefval lefv A:20-207
31634  px c.26.2.3 dlefvb_ lefv B:
31728  px Ci31.1.2 dlefva2 lefv A:208-331

b pomain ID start Res Stop Res Name Length

1efvAD1 205 331 127
1efvAD2 20 204 185
c PDB UniProt

i 56t End (i Ban El

A 209 294 ETFA_HUMAN 209 294 ETF_alpha (PFO0766)
A 21 175 ETFA_HUMAN 21 175  ETF (PF01012)
B 26 190 ETFB_HUMAN 26 190 ETF (PF01012)

Fig. 9. Mapping of domains to sequences from (a) SCOP, (b) CATH, (c) PFAM.
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Fig. 10. Preparation of a protein domain for mapping in PyMol by (a) loading of the PDB, (b) showing the sequence,
(c) selection of the domain, and (d) saving of the selection object.

residues. FTMap will not be sensitive to which exact assign-
ment you use give or take a couple residues.

To submit the domains of chain A separately to FTMap,
PDB files of the individual domains must be prepared. The
simplest method for this is using PyMol. Once PyMol has
been launched, a specific protein from the PDB can be loaded
via Plugin->PDB Loader Service (Fig. 10a). To see the
sequence of this protein, the user should click on the S in
the lower right hand corner of the viewer (Fig. 10b). Portions
of the sequence can then be “selected” by clicking on the
sequence above the protein. In Fig. 10c, residues 20-204 of
letv have been selected, creating a selection object called
“sele.” This is shown on the protein as a large number of
dots, which can be seen to cover one structural domain of
the protein. Finally, the structure of the selected sequence can
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Fig. 10. (continued)

be saved by going to File->Save Molecule. . . and then select-
ing “sele” in the dialog (Fig. 10d). This can be repeated for
each structural domain.

3. Many proteins have strong binding sites that bind coenzymes,
but developers of molecules would rather their molecule bind
elsewhere. This is the case, for example, with kinase inhibitors
that bind outside the ATP-binding site. FTMap is able to
mask a region of a protein from mapping. That is, it will
prevent probes from going into that region of the protein.
FTMap uses a masking file in the PDB format of the
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Fig. 11. Creation of a mask in the ATP-binding region of a protein by (a) selection of the ATP analogue and (b) expansion
of the selection into the site.
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coordinates of residues on the protein where you do not want
the probes to bind. These files can be prepared using PyMol.
First, load your protein via the PDB Loader Service as shown
in Fig. 10a. In Fig. 11, we develop a mask for the ATP-
binding site of PDB 3A99. Right clicking on the ATP ana-
logue in the site brings up a menu where the analogue can be
selected by choosing residue->select (Fig. 11a). Once the
selection has been created, the selection can be expanded to
the atoms near the analogue by right clicking on the selection
and choosing actions->around->atoms within 8A (Fig. 11b).
This selection can then be saved by File->Save Molecule. . . as
shown in Fig. 10d.
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Chapter 3

Evolutionary Trace for Prediction and Redesign
of Protein Functional Sites

Angela Wilkins, Serkan Erdin, Rhonald Lua,
and Olivier Lichtarge

Abstract

The evolutionary trace (ET) is the single most validated approach to identify protein functional determinants
and to target mutational analysis, protein engineering and drug design to the most relevant sites of a protein.
It applies to the entire proteome; its predictions come with a reliability score; and its results typically reach
significance in most protein families with 20 or more sequence homologs. In order to identify functional hot
spots, ET scans a multiple sequence alignment for residue variations that correlate with major evolutionary
divergences. In case studies this enables the selective separation, recoding, or mimicry of functional sites and,
on a large scale, this enables specific function predictions based on motifs built from select ET-identified
residues. ET is therefore an accurate, scalable and efficient method to identify the molecular determinants of
protein function and to direct their rational perturbation for therapeutic purposes. Public ET servers are
located at: http: /mammoth.becm.tme.edu/.

Key words: Evolutionary trace, Protein design, Protein engineering, Function annotation,
Phylogenomics, Protein—protein interaction

1. Introduction

1.1. Basics The evolutionary trace (ET) is a phylogenomic method to identify
of Evolutionary Trace: important amino acids in protein sequences. The approach con-
Phylogenetic Residue ceptually mimics experimental mutational scanning: Whereas in
Variation the laboratory a sequence residue is deemed important when its

mutation changes the response of an assay, ET infers that a residue
is important when its variations during evolution correlate with
major divergences (1, 2). Thus, ET aims to measure the impact of
a residue not by its conservation or through its co-variations, but
rather by its associated evolutionary changes and the functional
perturbations and adaptation that they presumably represent.
The ET approach to measure the correlation between residue
and phylogenetic variations is still under refinement. But the basic

Riccardo Baron (ed.), Computational Drug Discovery and Design, Methods in Molecular Biology, vol. 819,
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Fig. 1. The Evolutionary Trace method. The proteins making up the multiple sequence
alignment are divided into groups based on the phylogenic tree. Each group has a
representative sequence with the invariant residues. The ET method extracts the relative
evolutionary importance of the residues in example where the top ranked residues are
marked 1, 2 and 3. These residues are then mapped onto the protein structure in order
to visualize functional site.

hypothesis is that residues that vary among widely divergent
branches of evolution are more likely to have a larger functional
impact than other residues that vary even among closely related
species (see Fig. 1). Taking initially an absolute view of variation
patterns (1), the ET rank #; of sequence residue 7 in a query
protein was:

71':1_’_25%7 <1>

where the summation is over the phylogenetic tree nodes (total of
N — 1 branches); N is the number of homologs in the multiple
sequence alignment. The value of §,, is equal to 0 if residue position
2 is invariant within the sequences making up node #, while ¢, is
equal 1 otherwise. The exact magnitude of #; is less important than
its relative percentile rank compared to all residues in the protein:
those with smaller percentile ranks being considered more impor-
tant. In practice, (1) ranks best the sequence positions that vary
among the most evolutionary divergent branches and that are also
invariant within small branches of closely related species.
Following this scheme, top-ranked ET residues (or ET residues
for short, usually defined as those residues ranked in the top 30th
percentile) can be singled out in a sequence or structure. As
expected, completely invariant residues are the most important
and highly variable one tend to be least so. However, top-ranked
residues can be surprisingly variable as long as these variations
are between rather than within large branches. Conversely, some
relatively invariant amino acids can be ranked poorly if the variations
they do exhibit are within small evolutionary branches. The phylo-
genetic tree therefore allows ET to infer which patterns of variations
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1.2. ET Refinements:
Phylogenetic-Entropy
Hybrid and Clustering
z-Score

are more or less important. Moreover, the use of the tree also
naturally takes into account the bias due to overrepresentation of
some branches, a difficult aspect for conservation or co-variation
approaches.

In practice, ET residues have remarkable structural and func-
tional properties:

e They cluster together spatially in the protein structure (3)

e These clusters map out on the protein surface possible functional
sites for catalysis or ligand binding (4)

e Internal clusters of ET residues presumably form the folding
core of the protein, and, in some cases, play a critical role in
allosteric regulation and specificity (5)

e Mutations directed to ET residues will alter function in a
variety of ways (6-8)

e Mimicry of ET residues leads to peptides with functional
properties (9)

e And in silico mimicry of top-ranked ET residues identifies
functional similarity (10, 11)

For example, this early version of ET detected functional resi-
dues and directed mutational studies into the molecular basis of
G protein signaling (12-14). One hundred mutations of the
Galpha-protein confirmed prior ET predictions of binding sites
to the G beta gamma subunits and to the G protein-coupled recep-
tor (15). Likewise, ET clusters of evolutionary important residues
in the regulators of G protein signaling (RGS) were subsequently
confirmed—one at an RGS-Galpha binding interface and another
that mediates c¢cGMP phosphodiesterase (PDE) interactions
(13, 14). Moreover, these early studies ET also guided the successful
transfer of function between RGS7 and RGS9 by mutationally
swapping a few, select ET residues. These results suggested therefore
that ET could identify a protein’s binding sites and its key residues.

A number of refinements were added to the basic ET algorithm to
increase its robustness. One issue addressed was the fact that (1)
leads to ET ranks that are over-sensitive to errors, gaps, insertions,
deletions and polymorphisms or natural variations among sequence.
Each of these may break the perfect patterns that ET searches for,
namely, variations between branches but invariance within them.
First, the Shannon Entropy (16) was introduced to measure
invariance within the individual branches. This led to a hybrid
entropy-phylogenetic method (17) called the real-value ET
(rvET) because it produces absolute ranks that are not whole
integers. By contrast, the original ET method and (1) yields
integer ranks and is now referred to as integer-value ET (ivET).
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To be clear, the Shannon Entropy, s;, for a given residue
position i is:

20
—> " fialn fia, (2)
a=1

where f;, is the frequency that an amino acid type, 4, appears in the
column containing residue position 7. This Shannon Entropy is
first calculated for the entire alignment, and then for every
subsequent node defined by the phylogenetic tree. Finally, the
rank p; of residue 7 is:

N-1

_,1 1 > ﬂl 174 3
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where f;, is the frequency of the amino acid of type a within the
sub-alignment of group g. The number of possible nodes in the
evolutionary tree is (N — 1) where N is the number of sequences
in the alignment. The nodes in the phylogenetic tree are num-
bered in the order of increasing distance from the root. A key
achievement of rvET (thereafter simply ET) is that it requires little
manual curation, and thus lends itself to large-scale automation
and allows for web server application.

A second important improvement quantified the notion of ET
residue clusters (1, 2). Studies on numerous proteins showed that
ET clusters were common and statistically significant (3), then
that they significantly overlapped functional sites (4), and finally,
that the extent of clustering was predictively correlated with the
extent of overlap (18). In other words, the clustering z-score is a
measure of ET quality such that it can be maximized in order to
optimize functional site predictions (19-21).

To derive the clustering z-score, the structure provides an
adjacency matrix between residues: A matrix element A;;is equal
to 1 if two amino acids (labeled zand y) are within 4 A of each other
and equal to zero otherwise. If a residue meets a given ET thresh-
old of importance, the parameter §; = 1. If that residue 7 does not
meet this importance cut-off, then §; = 0. With these definitions,
the cluster weight at a particular importance threshold is

L
w= Si8A;( i), (4)
i<j

where (j — 7) is a weighting function that favors residues that are
near in structure but far in sequence. Finally, the clustering z-score
is determined, as usual:

z=2 (5)
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1.3. ET Optimization
and Future Directions

1.4. Large Scale
Validation: Protein
Function Annotation

The average, (w), and standard deviation, ¢, in the ensemble
of random residue choices are found through repeated sampling
or analytically (18).

These improvements were experimentally tested in different
proteins through a number of protein engineering studies
that included: rewiring functional specificity (22), separating
functions (6), designing of peptide inhibitors and redesigning allo-
steric specificity (5) (see Notes 1-4).

A third generation of improvements originates from the fact that
the clustering among top-ranked residues can be treated as a
measure of ET quality. The greater the clustering z-scores the
better the “fitness” among the selection of sequences making up
the alignment, the phylogenetic tree and the 3D structure of the
protein. This held true when extended for selecting structures
among a set of decoy models of protein folds where the structures
closer to native (18) were more likely to be chosen. This idea was
also extended in order to select the most relevant sequences for ET
analysis. Specifically, a Metropolis Monte Carlo algorithm was
tested in 50 diverse proteins to choose sequences that maximized
the clustering z-scores. The greater these z-scores, the better the
clusters predicted functional sites (19). Another and structure-free
quality measure, Rank Information, can likewise identify problem-
atic “misfit” sequences during analysis (23). More recently,
multiple ET quality measures were formally defined, such that
maximizing their value optimizes the prediction of functional
sites and annotations (21). Together these studies further confirm
a quantitative relationship among evolutionary pressure (the ET
rank), the protein fold and functional site locations; and they point
to a common feature of ET quality: the rank distribution that best
reflects evolutionary history and functional pressures appear to
maximize “rank continuity,” namely the similarity of ET ranks
among structurally neighboring residues within the structure (21).

ET was also validated on a large scale in the context of protein
function prediction. This application is motivated by Structural
Genomics (SG) which solves many protein structures that cannot
be annotated by homology-based annotation transfer (24).
Since typically a few residues are essential for binding or catalytic
activities it may be possible instead to rely on local structural
similarities (25): different structures may perform similar bio-
chemical function if they share a common spatial organization of
experimentally verified functional motifs (26) or, lacking those,
key functional residues as defined by ET.

A series of technical studies developed these ideas into an
Evolutionary Trace Annotation (ETA) pipeline to predict the
function of novel protein structures. ET rankings proved useful
to define small structure-function motifs called 3D-templates (27),
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to identify meaningful geometric and evolutionary matches of
these templates to other protein structures based on reciprocity
(10), and voting plurality (28) in order to infer function in enzymes
and non-enzymes alike (10, 11). ETA was extensively benchmarked;
for example, its positive predictive value was 93% (10) in 1218 SG
enzymes (whose functions were described the first three digits of the
Enzyme Commission classification, EC numbers). ETA matches
further create a network of local structural and evolutionary simila-
rities among the entire structural proteome, in which edges between
protein nodes indicate reciprocal ETA matches (11), and such thata
diffusion algorithm can then transfer annotations globally over the
entire network. Every combination of protein and function receives
a confidence score, and the highest one defines the functional
prediction. This competitive annotation diffusion strategy yields
predictions at the most detailed (fourth) EC level. For example,
false positives fell fourfold, at 97% sensitivity, against a recent
method (29). On a large-scale SG set, accuracy rose 6% and false
positives fell twofold at 65% coverage, compared to ETA.

In practice, ETA predictions are being validated experimentally
(30). For example, ETA suggested carboxylesterase activity
(EC3.1.1.1) for a bacterial protein of unknown function (Uniprot
accession QI9IWQ5, gene name SAV0321, PDB 3h04 chain A)
found in a vancomycin resistant strain of the bacteria Staphylococ-
cus aureus (31). The ETA annotation was based on template
matches to three other carboxylesterases with only 10% to 13%
sequence identity to the query. In vitro biochemical assays then
showed that SAV0321 has carboxylesterase activity at alevel similar
to the positive control.

This work is notable for two reasons. First, it improves function
discovery in proteins of known structure by formulating reliable
hypothesis for efficient experimental validation. This supports the
general aim of SG, which is to inform on function through structural
knowledge. Second, since ET ranks, the 3D templates and matches
they define are at the heart of ETA, it provides a direct and proteomic
scale test of ET identification of key functional residues.

2. Methods

2.1. Functional Site
and Functional
Residue Predictions
by Evolutionary Trace

1. To ensure that only the most relevant proteins are analyzed, a
custom database of sequences removes from NCBI’s non-
redundant protein sequence database any sequence with
“synthetic construct,” “artificial,” “fragment” and “partial”
in the sequence header.

2. To identify homologs to the protein being traced, a BLAST
(BLAST Local Alignment Search Tool) (32) search is done
on the custom database. Typically, the default number of
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2.2. Protein Function
Prediction

by Evolutionary Trace
Annotation

homologs is limited to 500 sequences and the maximum
E-value threshold is set to 0.05 (see Note 5).

. Sequences with less than half the length of the query protein

are eliminated, as are those with greater then 98% or less than
28% sequence identity (see Note 6).

. A ClustalW alignment is generated (www.clustal.org) with

default parameters set at gap open penalty (10) and gap exten-
sion penalty (0.05). For the ET web servers (see Note 7). The
current ET code accepts MSF format.

. The alignment is rescanned for sequences that are too short.

After these are removed, the remaining sequences are then
aligned again.

. To generate an evolutionary tree, a pairwise sequence similarity

matrix is constructed and the UPGMA method is applied. Any
phylogenetic tree that represents the family of proteins can be
used as input into the ET code.

. Integer or rvET ranks are computed as described above:

sub-alignments that correspond to nodes in the evolutionary
tree are formed and (1), or (2) and (3) are applied (see Note 8).

. If'a structure is provided: structural clusters of highly ranked

residues in the query structure are identified and their statisti-
cal significance is measured as described in Subheading 3.2.
These clusters indicate likely functional hot spots and provide
a suitable hypothesis to direct mutational studies in order to
identify functional regions and determinants and drug target
sites.

. Direct visualization of ET results can be obtained via two

programs: the ET Viewer and the PyETV application (33).
ET servers and viewers are available at http: /mammoth.bcm.
tmc.edu/ETserver.html.

. rvET is applied to a query protein structure of unknown

function to rank the evolutionary importance of its residues.

. The first cluster with ten evolutionarily important surface

residues is identified. A residue is deﬁneod. to be on the surface
if its solvent accessibility is at least 2 A (2) as calculated by
DSSP (34).

. The six most evolutionarily important residues in that cluster

define the query template. Their alpha carbon coordinates
define the template geometry. If ties arise between candidate
residues, those closest to a point halfway between the center
of mass of the growing template are chosen.

. The template is allowed to vary in keeping with the side chain

variations found in multiple sequence alignment used by ET,
provided an amino acid appears at least twice.



36 A. Wilkins et al.

5. The templates are matched to target proteins of known struc-

ture and function (the current target set is 2008PDB90 (24)).
Functions are described by the Enzyme Commission (EC)
numbers (35) or Gene Ontology (GO) molecular terms (36).
Geometric matches are obtained hierarchically, employing a
distance cutoff of 2.5A (28). Finally, a root-mean-square-
distance (RMSD) is calculated.

. It is important to filter nonspecific geometric matches. First,

only those with RMSD below 2A are considered for further
analysis. Second, a support vector machine (SVM) chooses
matches that are both geometrically and evolutionarily signit-
icant (it combines RMSD and evolutionary similarity between
the template and the matched sites in the target structures).
Third, these steps are repeated by reversing the role of the
query and of the target structure in order to assess reciprocity:
reciprocal ETA matches between two protein structures are
much less likely to be due to chance. Fourth, all-against-all
matches enable to tally how often a query matches to different
proteins with the same function. A plurality rule is then
applied to transfer to the query the one function annotation
that is matched the most often. In the case of a tie, no
prediction is suggested.

. For GO annotations, ETA takes into account all known GO

terms and their parent terms for each match. ETA votes at
each GO depth in such a way that the most voted or tied terms
are considered to be predictions. Voting continues until a GO
term has no more child terms. Once a term or terms are
considered to be predictions, their child terms are also sug-
gested as predictions. In the voting procedure, self-matches
are excluded.

8. An ETA server is available at http: /mammoth.bcm.tmc.edu/

ETA

3. Tools

3.1. ET Servers

A summary of ET tools is reported in Table 1. There are a number
of servers that provide ET results:

1. The first server (http://mammoth.bcm.tmc.edu/ETserver.

html) requires the users to enter a PDB ID (e.g., 2phy).
The web output includes links that launch ETV and PyMOL
with which to view a structural mapping of every trace. This
output also packages zipped versions of all the files used or
generated by ET.
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Table 1
Available ET tools
Name/URL Type Purpose Input Output
Evolutionary Trace Results Web server Functional site  PDB ID ET analyses files
http: /mammoth.bem.tmc. prediction
edu/ETserver.html
Evolutionary Trace Report Web server Functional site  PDB ID or PDF report, ET
maker http: /mammoth. prediction Uniprot analyses files
bem.tme.edu/ accession
report_maker number
Evolutionary Trace Viewer Molecular Functional site  ET analyses 3D molecular
(ETV) http: /mammoth. viewer, Web prediction, (.etvx file), graphics, ET
bem.tme.edu/traceview application, visualization PDB ID analyses files,
Web server multiple
sequence
alignment,
evolutionary
tree
PyMOL ETV http: / Molecular Functional site  ET rank data, 3D molecular
mammoth.bem.tmc.edu/ viewer prediction, PDB, graphics
traceview,/HelpDocs/ visualization PyMOL
PyETVHelp/ scripts
pylnstructions.html
Evolutionary Trace Web server Functional PDB ID EC and GO
Annotation (ETA) server annotation annotations,
http: /mammoth.bem.tmc. 3D
edu/eta templates,
PDB matches

. The Evolutionary Trace Report Maker is a second server (37),

which produces a fully automated ET report in a pdf document
(http: //mammoth.bem.tmc.edu/report_maker). It pools data
on protein sequence, structure and elementary annotation from
several sources, and adds to that background inference on
functional sites and residues obtained from rvET. It requires
either a Protein Data Bank (PDB) identifier or a UniProt
accession number for a sequence. Report Maker utilizes HSSP
alignments when available.

. The “ET Wizard” server is accessible directly through the

evolutionary trace viewer (ETV), launched separately in the
“Utils” menu, and useful for generating user-controlled traces
(see below).
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3.2. Evolutionary
Trace Viewer:

A Tool to Run ET
and View Results

3.3. PyMOL ETV:

A High-Resolution

ET Viewer for Protein
Chains and Complexes

The ETV (38) (http://mammoth.bcm.tmc.edu/traceview) is a
one-stop environment to run, visualize and interpret ET predic-
tions of functional sites in protein structures. It is implemented in
Java and runs across different operating systems utilizing Java Web
Start Technology for self-installation.

1. A key ETV feature is an interactive molecular graphics display
that reads in the results of'an ET analysis in the form of an .etvx
file. This file is selected in the “File” menu command: “Open
ETV Results.” It produces a colored structural map of the ET
rank of every protein residue. Evolutionary and functional hot
spots become readily apparent in the form of structural clusters
of top-ranked residues, and the statistical z-score of these
clusters is shown. The threshold of percentile rank to color
top-ranked residues can be adjusted by moving a slider (hori-
zontal scrollbar) prominently shown on top of the graphics
window, or a rainbow coloring over all residues is also available
to display at once a heatmap of evolutionary importance.

2. A second feature of ETV is that the evolutionary tree used to
compute the ET rank of every residue can be viewed: select
“ET Tree” under the “View” menu.

3. Critically, an ET Wizard is integrated into ETV (under the
“Utils” menu”) to let users launch customized ET analyses.
The ET Wizard accepts either a PDB ID, or a PDB formatted
file provided directly by the user as input. Users may then also
choose to provide their own custom alignments or set of input
sequences. Alternately, they can allow the ET Wizard to build
its own alignments (see Note 9).

4. A database of pre-generated ET analysis results for all unique
chains in the PDB is maintained and regularly updated.

The ET Viewer (ETV) displays just one single chain at a time. Since
protein—protein interactions are an emerging target for design and
therapeutics, an alternative system was developed to trace multi-
protein interfaces. This PyETV (for PyYMOL Evolutionary Trace
Viewer) (33) provides a high graphics quality interface to map
evolutionary forces and identify functional sites in complexes.

1. The PyETV is a plug-in that builds on the popular and exten-
sible PyMOL molecular graphics package (39). Information
for its installation, and instructional videos, are available
at http://mammoth.bcm.tmc.edu/traceview/HelpDocs/
PyETVHelp/pylnstructions.html. PyETV is also integrated
into the web server http://mammoth.bcm.tmc.edu/
ETserver.html through web links to PyMOL scripts.

2. PyMOL (39) (www.pymol.org) is a versatile molecular
graphics package developed by Bill Delano to view, select,
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3.4. Evolutionary
Trace Annotation
Server: Automated
Function Prediction
in Protein Structures
Using 3D Templates

label, and perturb any number of structures or substructures
(such as groups of atoms or residues) in many ways (e.g.,
cartoon, surface, stereo etc.). Moreover, it is easily extended
with plug-ins—scripts that can add to PyMOL’s user interface
and can overlay complementary information to a protein
structure, such as electrostatics maps.

. Through the PyETV plug-in, any number of user-generated

and pre-generated ET analysis results can be mapped to any
number of structures and displayed in PyMOL. In particular,
predicted biological assemblies from PISA (40) and ET analy-
sis for each component in the assembly can be loaded directly
through PyETV using the “Assembly” tab. As with ETV,
PyETYV provides a colored structural map of the importance
of each residue in a protein.

. ETA analysis starts with the PDB code of the protein structure

of unknown function, including a 1-digit chain identifier.
Click “Submit.” An ET analysis then provides information
on the evolutionary importance of each residue. If this ET
analysis is cached, the server goes to step 2. If not, it launches
automatically a new trace with default parameters. One may
gain control over this process by uploading a custom ET
analysis that was run before through the ET Wizard. Clicking
“Browse” to locate such an ET file and “Upload” to submit it
to the ETA server (http://mammoth.bcm.tmc.edu/ETA).

. Next, the server predicts a functional site template by identifying

a cluster of evolutionarily important residues on the surface of
the protein, picking the six most important ones. It renders an
image of the template. This template can be explored in depth by
clicking on the image to download a PyMOL session file. The
template may be customized if alternate choices of residues are of
interest. Click “Submit Template” to continue with the analysis.

. The server next identifies possible amino acid types for each

template residue based on the multiple sequence alignment
used by ET. Each unique combination is listed, along with the
number of times it occurs in the alignment. Combinations
may be turned on or off using their check boxes. Custom
amino acid labels can also be added. Click “Find Matches” to
begin the template search.

. The results page contains GO and EC predictions based on

reciprocal matches (highly reliable) and non-reciprocal
matches (less reliable). The GO terms and EC numbers are
hyperlinked to web pages containing more information about
that GO term or EC number.
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4. Notes

. Rewiring functional specificity: Top-ranked residues were

exchanged to rewire transcriptional specificity in evolutionary
divergent helix-loop-helix proneural transcription factors
from the frog and the fly, and vice versa (22).

. Separating functions: Alanine mutations of ET-predicted

functional residues confirmed predictions of new functional
sites and led to selective loss of function in the Ku70,/80
heterodimer. One site was found to be responsible for
telomere maintenance and another site, that was structurally
diametrically opposite and facing the centromere, was respon-
sible for end-joining of double-strand DNA break repair (6).

. Design of peptide inhibitors: Helical peptides were engineered

to mimic ET-predicted sites composed mostly of solvent
exposed helices. The top-ranked residues were left intact
while the lesser-ranked amino acids were chosen to favor
helix formation. These peptides disrupted in vitro binding
among nuclear receptors (41) and, in another case, G protein-
coupled receptor phosphorylation by G protein receptor
kinase (9).

. Redesigning allosteric specificity: ET residues in the transmem-

brane domain of Class A GPCRs (42) were targeted for muta-
tions. Some selectively uncoupled beta-arrestin-mediated
signaling from G protein-mediated signaling (43). Others
rewired a dopamine receptor to become serotonin responsive
not by altering ligand binding specificity, but rather by altering
the response of the allosteric pathway to either ligands (5).

. ET analysis can be done for any reasonable set of sequences.

Typically 15-20 sequences are needed but this depends on the
validity and diversity of the set. When structural information is
known, HSSP alignments can also be an option.

. The parameters for filtering sequences were optimized for

better functional site prediction. They are often adjusted on
a case-by-case basis, for example, when studying an entire
tamily, it is important to ignore cut-ofts like sequence identity.

. For cases where homologues are close, the quicktree option in

ClustalW dramatically decreases computational time.

. In sequence analysis, gaps are treated as a 21°* amino acid.

This is simply a computational tool and has no relevance.

. In the ET Wizard tool, the user can control the number of

sequences to be included in the alignment, after a BLAST
search, and the thresholds for acceptable sequence identity
and sequence length.
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Chapter 4

Information Entropic Functions for Molecular
Descriptor Profiling

Anne Mai Wassermann, Britta Nisius, Martin Vogt,
and Jurgen Bajorath

Abstract

The identification of molecular descriptors that are able to distinguish between different compound
classes is of paramount importance in chemoinformatics. To aid in the identification of such discrimina-
tory descriptors, concepts from information theory have been adapted. In an earlier study, an approach
termed Differential Shannon Entropy (DSE) has been introduced for descriptor profiling to detect and
quantify compound database-dependent differences in the information content and value range distribu-
tion of descriptors. Because the DSE approach was intrinsically limited in its ability to select compound
class-specific descriptors by comparing data sets of very different size, this approach has recently been
extended to Mutual Information-DSE (MI-DSE). Herein, DSE, MI-DSE, and the Shannon entropy
concept underlying both information theoretic approaches are introduced and compared, and difterences
between their application areas are discussed.

Key words: Descriptor selection, Information theory, Mutual information, Shannon entropy,
Structure-activity relationships

1. Introduction

Literally thousands of computational descriptors of different
complexity and design are currently available to represent molecular
structures and properties (1, 2). Popular among these descriptors
are numerical property descriptors that express physicochemical
properties of molecules by means of scalar values. Such descriptors
are suitable as input for statistical and data mining methods.
Accordingly, property descriptors are frequently employed in diver-
sity analysis, representative compound subset selection, combina-
torial library design, and quantitative structure-activity relationship
(QSAR) investigations. However, the selection of a preferred set
of descriptors for a specific chemoinformatics application is usually
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a challenging task. Often descriptors are selected on the basis of
experience or chemical intuition, rather than systematic analysis.

A direct comparison of molecular descriptors of different design
and the information they contain is complicated by the fact that
these descriptors usually have different units and value ranges.
Therefore, for database profiling, descriptor selection approaches
that make use of the Shannon Entropy (SE) concept (3) have been
developed that quantify the information content of different
descriptors, regardless of their value ranges (4, 5). In order to
quantitatively compare descriptors for different data sets, an
extension of the SE approach termed Differential Shannon Entropy
(DSE) (6) was also introduced that detects intrinsic differences
between descriptor settings in compound databases by taking into
account both differences in the variability and value range distribu-
tion of descriptors. In previously reported DSE applications (6, 7),
descriptors were always compared for large data sets of comparable
size. However, the exploration of structure-activity relationships
and the identification of descriptors that capture compound-class
specific and biological activity-relevant information typically require
the comparison of a given compound activity class containing only a
few dozen or hundred molecules and a large database comprising
thousands or even millions of compounds. The DSE formalism
was shown to be insufficient for the comparison of data sets that
dramatically differ in size and hence it was further transformed into
mutual information analysis, termed Mutual Information-DSE
(MI-DSE), to reliably assess the class-specific information content
of descriptors (8). Herein, methodological details and applications
of SE, DSE, and MI-DSE are presented.

2. Methods

2.1. Shannon Entropy

In the following, we describe the SE concept, report details of the
DSE approach, and explain its transformation into the MI-DSE
approach. Furthermore, for all approaches, exemplary applica-
tions are presented. Values of all descriptors were calculated with
the molecular operating environment (MOE) (9).

Introduced in a landmark paper by Claude Shannon in 1948 and
originally developed for applications in digital communication,
Shannon entropy (3) is a concept from information theory to
quantify the average information contained in a “message.” In
the context of molecular descriptor analysis, the “message” is
simply the value of a descriptor calculated for a compound and
the SE is given by the average information content of all values of
this descriptor for a compound set. The information content of a
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Fig. 1. Descriptor histograms and corresponding Shannon entropies. Exemplary descriptor histograms based on 100,000
compounds randomly collected from the ZINC database are shown. Each descriptor value range is divided into ten
equally-sized bins. The value distribution for the descriptor “molecular weight” is shown in (a), the distribution for the
descriptor “number of iodine atoms” in (b). The “molecular weight” is an example of a high-entropy descriptor, whereas
the “number of iodine atoms” is an example of a low-entropy descriptor, as indicated by the reported Shannon entropy
(SE) values.

certain descriptor value depends on the frequency with which this
value occurs in a set of compounds and is calculated as the nega-
tive base 2 logarithm of its frequency of occurrence (or probabil-
ity) p; (i.e., —log,p;). Hence, the information content increases
with decreasing frequency of occurrence, which is rather intuitive
because a rare descriptor value obviously conveys more informa-
tion about a compound than a frequently occurring value. SE
defines the average information contained in a descriptor D and
is given by

H(D) = - pilog,pi, (1)
=1

where 7 corresponds to the number of possible values the descriptor
adopts. The higher H(D) becomes, the more information is
captured by the descriptor D (see Note 1).

To quantitatively compare the average information content of
different descriptors, a consistent data representation format for
their value distributions must be applied. Therefore, all descriptor
distributions are represented as histograms where the complete
data range of a descriptor is divided into the same number of
equally sized data intervals. Exemplary histogram representations
of value distributions and the corresponding SE are shown
in Fig. 1. For 100,000 compounds randomly taken from the
ZINC (10) database, value distributions of the descriptors
“molecular weight” and “number of iodine atoms” are reduced
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2.2. Differential
Shannon Entropy

to a discrete set of possible values by partitioning the range
between the minimum and maximum value into ten evenly spaced
data intervals. As can be seen, the descriptor “molecular weight”
varies greatly among the database compounds, whereas the
descriptor “number of iodine atoms” adopts the value of zero
for the vast majority of compounds such that they mostly fall into
a single bin. The differences between these distributions and their
information content are reflected by the calculated SE values of
2.48 for “molecular weight” and 0.05 for the “number of iodine
atoms.”

It is important to note that the value distribution of a descrip-
tor D usually depends on the set of compounds for which it is
calculated. Hence, in addition to comparing SE for different
descriptors, the information content of a descriptor for two dif-
ferent compound sets A and B can also be compared. For this
purpose, exactly the same bin definitions (i.e., partitions) must be
used to represent the value distribution for the two data sets.
Therefore, the range of values the descriptor adopts for the
union of sets A and B is determined and then divided into a
predefined number of equally sized bins. For example, the infor-
mation content of 92 molecular descriptors was systematically
compared for two databases containing synthetic or drug-like
compounds (4). Although, the most variable descriptors were
generally similar for the two databases, a number of descriptors
showed significant differences in entropy implying that their value
distributions differed between the two databases. However, the
comparison of SE for two databases only accounts for differences
in the variability of the corresponding distributions, but does not
provide information about the distribution overlap. However,
quantifying the overlap of descriptor value distributions for differ-
ent data sets is of high relevance for many applications in che-
moinformatics because descriptors with little overlap can be
utilized to distinguish between compounds from different
sources. In order to provide a rational basis for the identification
of such discriminatory descriptors that capture compound set-
specific information, the DSE formalism was introduced.

The DSE approach was designed as an extension of the SE
concept specifically for comparative analysis of molecular descrip-
tors in two different compound data sets in order to determine
how much compound set-specific information is contained in a
descriptor.

A descriptor value contains set-specific information if the
value distributions of the descriptor significantly differ for the
two compound data sets. By contrast, if value distributions for a
descriptor are very similar for two data sets, i.e., if each descriptor
value occurs with roughly the same frequency for both sets, then
the descriptor provides only very little set-specific information.
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Fig. 2. Descriptors with different discriminatory power. Descriptor histograms are shown for 10,000 compounds
randomly taken from the ZINC (light gray) or MDDR database (dark gray). Furthermore, for each descriptor, value
distributions for the two different data sets are overlaid. (a) Because histograms for the descriptor “kierA1” are distinct,
this descriptor contains class-specific information. (b) By contrast, histograms for the descriptor “GCUT_SMR_2” are
highly similar and hence this descriptor is unable to discriminate between these two data sets.

Examples for descriptors with different discriminatory potential
are shown in Fig. 2 where descriptor value distributions binned into
16 data intervals are compared for 10,000 ZINC and 10,000
MDDR (11) compounds. For all ZINC compounds, values for
the shape descriptor (topological index) “kierAl” fall into the six
lowest bins, with more than 60% of all values accumulating in the
third bin, such that the distribution becomes rather narrow.
Although this descriptor also preferably adopts low values for
MDDR compounds, the right tail of the MDDR distribution
shows that high descriptor values are obtained for a compound
subset. Because high descriptor values are exclusively detected for
MDDR compounds, the descriptor carries some set-specific infor-
mation. By contrast, for the adjacency matrix descriptor
“GCUT_SMR_2,” the distributions for ZINC and MDDR com-
pounds are almost identical. Accordingly, the descriptor is not dis-
criminatory with respect to the two datasets. This example
emphasizes an important point, namely that descriptors that are
information-rich for single data sets are not necessarily suitable to
distinguish between different sets.
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1. Calculation of histograms for databases A and B
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2. Calculation of class specific entropies

Ha(D) = 2.10 Hg(D) = 2.05

3. Calculation of the combined histogram
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4. SE calculation for combined histogram

Has(D) = 2.09
5. DSE calculation

DSE(D) = 2.09 - ((2.10 + 2.05) / 2) = 0.015

Fig. 3. Steps in DSE calculation. All steps involved in the DSE calculation are shown for
two hypothetical classes of same size, classes A and B. In this example, the value range
of descriptor D is divided into six bins. The figure was adapted from ref. (8).

DSE was introduced in (6) to numerically quantify the
discriminatory potential of a descriptor. Figure 3 reports the
steps that are involved in the DSE calculation for a descriptor
D and two compound sets A and B. First, for both sets, the
descriptor value distributions are represented as histograms
using a consistent binning scheme. From these two histograms,
the set-specific Shannon entropies Hy (D) and Hg(D) are calcu-
lated. Then, a single histogram accounting for the distribution of
the entire population of compounds from both sets is generated.
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Fig. 4. Assessment of discriminatory power by DSE. For the descriptor value distributions shown in Fig. 2, combined
histograms for MDDR and ZINC compounds are shown and corresponding DSE values are reported.

For this combined histogram, the frequency for a bin 7 is calcu-
lated according to the following equation:

_ @) mefi()

n-+m

fas(7) (2)

Here, » corresponds to the number of molecules in set A and
m to the number of molecules in set B. In addition, fa (7) and f3(7)
report bin frequencies for sets A and B. Based on the combined
histogram, Hag (D) is calculated. Finally, DSE is defined as

DSE(D) = Hag(D) —HA(D);LHB(D>. (3)

In Fig. 4, the combined histograms for the descriptor distri-
butions shown in Fig. 2 are reported. With its highly populated
third bin and right tail, the shape of the combined histogram for
the descriptor “kierAl” clearly reflects distinct characteristics of
the two underlying distributions. Since the MDDR and ZINC
distributions for the descriptor “GCUT_SMR_2” were highly
similar, it is not surprising that the combined histogram is also
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Fig. 5. Combined histograms for DSE and MI-DSE. Histograms for value distributions of the descriptor “GCUT_SLOGP_1”
are shown for the ZINC subset and an exemplary activity class, AC. The combined DSE histogram is shown in (a) and the
combined MI-DSE histogram in (b).

hardly distinguishable from the distributions of the individual data
sets. As reported in Fig. 4, “kierAl” and “GCUT_SMR_2” obtain
DSE values 0of 0.157 and 0.006, respectively. Hence, in this exam-
ple, DSE successfully quantifies how much set-specific information
is captured by the two descriptors. Previous applications of the
DSE measure include, for example, the identification of descrip-
tors that distinguished drug-like molecules from natural products
and synthetic molecules (6). Furthermore, DSE was also employed
to rank descriptors according to their ability to distinguish com-
pounds with different levels of aqueous solubility, and the
top-ranked descriptors were utilized to build a binary classifier
(7). In these DSE applications, compound data sets for descriptor
comparison were always of comparable size.

Recently, it has been demonstrated that the DSE concept is
insufficient to reliably select discriminatory descriptors for two
compound sets or classes of significantly different size (8).
In this case, the combined histogram is dominated by the value
distribution of the larger compound set, as illustrated in Fig. 5a,
where descriptor distributions for an activity class (AC) com-
prising 400 molecules (class A) and a ZINC subset of 100,000
compounds (class B) are shown. This situation is typical for the
identification of descriptors that capture activity class-specific fea-
tures, which generally requires the comparison of only a few dozen
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or hundred active compounds and a large database comprising
many thousands or even more “background” molecules (thought
to be inactive). Although the adjacency matrix descriptor
“GCUT_SLOGP_1” shows distinct descriptor value distributions
for the activity class and the ZINC subset, the combined histo-
gram largely resembles the descriptor distribution of the ZINC
compounds. Therefore, the SE calculated for the union of the two
compound classes (Hag(D)) is essentially equal to the SE calcu-
lated for the larger database (Hg(D)) such that eq. (3) can be
simplified to

Hy(D) — Ha(D)

DSE(D) ~ 3

(4)

Hence, the DSE for a descriptor D is now essentially deter-
mined by the difference between its SE values calculated for the
two compound data sets of different size. High DSE values are
obtained by descriptors that show much variability (high SE) in
the large data set, but only little variability (low SE) in the activity
class. Thus, for comparing descriptor values for compound data
sets of very different size, the original DSE concept is not applica-
ble in a meaningful way.

2.3. Mutual Therefore, MI-DSE (8) has been introduced as a descriptor selec-

Information-DSE tion method that is not influenced by the size of the compared
compound classes. Importantly, the combined histogram for sets
or classes A and B should not be dominated by the value distribu-
tion of the larger set. Therefore, bin frequencies are calculated as
follows:

fan(i) =TSl )

Here, the departure from eq. (2) should be noted where com-
pound classes were weighted according to their size. In this case, the
combined histogram is calculated based on normalized histograms
A and B. In the following we use the term normalized to distinguish
the combined histogram based on eq. (5) from the combined
histogram calculated according to eq. (2). A normalized combined
histogram for the descriptor “GCUT_SLOGP_1” is shown in
Fig. 5b. In contrast to the histogram in Fig. 5a, it is an unbiased
union of the descriptor distributions in both classes. Calculating
H (D) from the normalized histograms yields a modified DSE score:

Ha(D) 4+ Hg(D)
- 3 B, (6)

The approach is termed MI-DSE because of its conceptual
relatedness to the mutual information concept (see Note 2).
This extension of DSE has the added advantage of yielding

MI-DSE(D) = H(D)
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Fig. 6. Different descriptor rankings produced by DSE and MI-DSE. Histograms for value distributions of the descriptors
“atom information content,” “PEOE_VSA-1,” and “number (#) of triple bonds” are shown for the ZINC subset and an
exemplary activity class, AC. For each descriptor, calculated DSE and MI-DSE values are reported.

normalized scores within the range 0 to 1. A score of 0 indicates
that the descriptor distributions for compound classes A and B are
identical such that no class-specific information is captured by this
descriptor. A score of 1 indicates that the distributions are fully
disjoint and that the descriptor perfectly distinguishes class A
from B.

Differences between descriptor rankings produced by DSE
and MI-DSE are illustrated in Fig. 6. For the descriptors “atom
information content” (i.e., entropy of the element distribution in
a molecule), “PEOE_VSA-1” (a partial charge descriptor), and
“number of triple bonds,” value distributions are shown for the
ZINC subset and the exemplary compound activity class from
Fig. 5. According to MI-DSE, the descriptor “atom information
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content” is most discriminatory. For this descriptor, the distribu-
tion of the activity class is further shifted to the right compared to
the ZINC distribution. However, this descriptor is ranked last by
DSE which only assesses the difference of the SE calculated for the
two sets. Because the information content (SE) of the two distribu-
tions is essentially equivalent, DSE adopts a score of almost zero.
Accordingly, the highest DSE score is obtained for descriptor
“PEOE_VSA-1” for which the SE value for ZINC compounds is
higher than for the activity class because descriptor values for ZINC
compounds are more equally distributed. By contrast, MI-DSE cor-
rectly detects that the two value distributions for “PEOE_VSA-1”
largely overlap and hence considers this descriptor less discriminatory
than the descriptor “atom information content.” MI-DSE ranks
the descriptor “number of triple bonds” lowest because only few
compounds from both data sets contain triple bonds. Therefore, no
set-specific information is provided by this descriptor.

To systematically compare descriptor rankings produced by DSE
and MI-DSE and assess the extent to which they differ, value dis-
tributions for 170 descriptors were calculated for 168 target-specific
compound activity classes and then individually compared to the
corresponding descriptor distributions of a randomly collected
ZINC subset. For each activity class, DSE- and MI-DSE-based
descriptor rankings were generated. Spearman correlation coethi-
cients were then calculated to compare the corresponding rankings
(see Note 3). Regardless of the number of bins into which all descrip-
tor value ranges were divided, correlations between the two rankings
were usually not detectable (8), which emphasized the limited utility
of DSE for comparison of data sets of very different size.

3. Gonclusions

The SE concept can be applied to compare the information content
of different descriptors for the same data set or to assess differences
in descriptor variability for different compound classes. However,
in order to quantify the extent to which a descriptor is discrimina-
tory for two compound classes, the value range dependence of
the two corresponding descriptor value distributions must be
taken into account. This was first made possible for compound
data sets of similar size through the introduction of the DSE
approach. Moreover, the recently introduced MI-DSE enables the
comparison of descriptor value distributions for compound data
sets of any size. This is particularly relevant for the identification of
descriptors that capture activity class-specific information because
for this purpose, small compound classes must be compared to
much larger sets of database compounds.
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1. The Shannon entropy H(D) is maximal when all descriptor

values have the same frequency of occurrence, resulting in an
SE equal to log,(%). By contrast, H( D) is minimal and adopts
a value of 0 if all descriptor values are the same, i.e., if the
frequency of a particular descriptor value is 1.

. In information theory, a concept termed (average) mutual

information (12) answers the question of how much informa-
tion about a class Cis contained in the value of a descriptor D.
Formally, it is defined as the difference between the Shannon
entropy of the descriptor D and the conditional SE of the

MI(D, C) = H(D) — H(D|C)

H(D|C) quantifies the information content of D when class
Cis provided. For two classes A and B, H(D|C) is given as

H(D|C) = Hy(D) - Pr(C = A) + Hg(D) - Pr(C = B).

By setting Pr(C = A) = Pr(C = B) = 0.5 the mutual infor-
mation is transformed into eq. (6) for the modified DSE
approach and corresponds to the Jensen-Shannon divergence
(13) of two descriptor value distributions. Setting the individual
probabilities to 0.5 can be rationalized as an unbiased estima-
tion of the probability that a molecule belongs to one or the
other class and has the additional advantage (because of the
inequality MI(D, C) < H(C) = 1) that the MI-DSE score is

. The Spearman rank correlation coefficient is a measure of the

correlation between two data rankings. This coefficient does
not take into account the value or score of an object, but only
its ranking position, which sets it apart from the Pearson

4. Notes
descriptor D given the class C:
normalized to the value range 0 to 1.
correlation coefficient.
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Chapter 5

Expanding the Conformational Selection Paradigm
in Protein-Ligand Docking

Guray Kuzu, Ozlem Keskin, Attila Gursoy, and Ruth Nussinov

Abstract

Conformational selection emerges as a theme in macromolecular interactions. Data validate it as a
prevailing mechanism in protein—protein, protein-DNA, protein-RNA, and protein—small molecule
drug recognition. This raises the question of whether this fundamental biomolecular binding mechanism
can be used to improve drug docking and discovery. Actually, in practice this has already been taking place
for some years in increasing numbers. Essentially, it argues for using not a single conformer, but an
ensemble. The paradigm of conformational selection holds that because the ensemble is heterogeneous,
within it there will be states whose conformation matches that of the ligand. Even if the population of this
state is low, since it is favorable for binding the ligand, it will bind to it with a subsequent population shift
toward this conformer. Here we suggest expanding it by first modeling all protein interactions in the cell
by using Prism, an efficient motif-based protein—protein interaction modeling strategy, followed by
ensemble generation. Such a strategy could be particularly useful for signaling proteins, which are major
targets in drug discovery and bind multiple partners through a shared binding site, each with some—
minor or major—conformational change.

Key words: Protein-ligand interaction, Hotspots, Drug discovery, Conformational ensemble,
Protein interaction prediction, Protein interface, Prism

1. Introduction

Proteins are involved in all molecular processes in living cells
including metabolic, signaling, catalysis, viral entry, and regula-
tion; cellular dysfunction due to inhibition, or to nonnative
interactions of proteins can cause diseases (1, 2). Understanding
the molecular and cellular activities in vivo and controlling their
functions in disease requires analyzing the proteins, investigating
their interactions, and elucidating their functions. Identifying
protein interactions is important not only to understand how
cells work, but also to elucidate disease mechanisms, discover
effective drugs and figure out their effects on the entire cellular

Riccardo Baron (ed.), Computational Drug Discovery and Design, Methods in Molecular Biology, vol. 819,
DOI 10.1007/978-1-61779-465-0_5, © Springer Science+Business Media, LLC 2012
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network (3, 4) to forecast side effects. Several experimental
techniques (5), such as the yeast two-hybrid system (6), phage
display (7), protein arrays (8), and affinity purification (9), gener-
ate massive amounts of protein interaction data. Yet, despite
these, the complex nature of protein interactions is not entirely
understood (10). As more data become available, computational
methods which are able to analyze the large datasets are becoming
increasingly important to make sense of experimental observa-
tions and use them to predict additional interactions, functional
mechanisms, and protein and drug design.

Computational structural biology aims to introduce and apply
effective methods that predict not only which proteins interact but
also how they interact. Predictions of protein interaction can be
carried out using docking or knowledge-based approaches.
Although docking approaches are broadly used and are effective
strategies, they cannot be applied on proteomic scales. The compu-
tation times are prohibitively long, and in particular, for reliable
docking, additional biochemical data such as mutational informa-
tion about protein interactions should be provided; in their absence,
the number of false positive solutions can be astronomical and it is
very difficult to distinguish between native and nonnative predic-
tions (11). Knowledge-based approaches are faster compared to
blind docking methods. Because they decrease the solution space
by limiting possible orientations, the number of potential interac-
tions is smaller which also leads to relatively shorter timescales. This
enables knowledge-based methods to cope with large sets of data. In
knowledge-based approaches, templates derived from known inter-
acting proteins can be sequence-based (12-14), domain-based (15)
or interface-based (16, 17). It has been widely accepted that the
structure of the protein is evolutionarily more conserved than the
sequence (18). Thus, in principle, prediction algorithms which are
purely structure-based, where the methodology is completely inde-
pendent from any sequence homology, can work; and this holds
even in the absence of any sequence similarity. This is all the more so
for protein interfaces, which are often more conserved than the
overall structure (19). Analysis of the interfaces has shown that
even if the global structures and functions differ, proteins can bind
through similar interface architectures (20, 21). A structurally non-
redundant dataset of protein—protein interfaces can be clustered
into three types of groups according to the interface and global
structures of the interacting protein pairs (see Fig. 1) (20, 22, 23):
in Type I the interacting proteins have similar global structures and
functions. This is the most common and expected type. In Type 11
cluster members have similar interfaces; however, the global struc-
tures and functions are different. This type contains examples that
validate the paradigm that interface motifs can be conserved even in
the absence of global structural similarity (24, 25). In Type III,
only one side of the interface is similar and the surfaces of the
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Fig. 1. Examples of Type I, Il, and Il interfaces. The interfaces are highlighted with
boxes. (a) Members of Type | proteins use similar interfaces to bind each other. The two
glutathione S-transferase complexes are homologous (PDB identifiers: 10gs and 1b48).
(b) Members of Type | proteins are not related evolutionarily, but the interface structures
are similar. The two complexes, cytochrome C and neuropeptide/membrane protein are
examples of this type (PDB identifiers: 1bbh and 1rso). (c) In Type Ill, only one side of the
interface has similar architectures, the complementary sides are different (dynein light
chain 8, PDB identifier: 1f95AB; 4-oxalocrotonate tautomerase, PDB identifier: 10tfAE).

complementary partners are somewhat different. Hub proteins are
mostly clustered into this type; therefore, members of this cluster
may help in the characterization of hub proteins and shared binding
sites (23). From an energetic point of view, a subset of interface
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residues can act as “hot spots” (26). These residues contribute more
to the binding free energy of complexes; that is, they play a more
significant role in the affinity and stability of the interaction. There is
a strong correlation between hot spots and conserved residues on
structurally similar interfaces (27), which points to the importance
of hot spots in determining binding sites. Since hot spots contribute
most of the binding energy in the interaction, discovery of mole-
cules that bind to hot spots (1, 28), which can be small molecule
drugs (2,29, 30) or inhibitory peptides (31-33), has gained impor-
tance in drug design.

Understanding the mechanism of binding is expected to help
drug discovery, since it can lead to more eftective methodologies.
Over the years, Koshland’s “induced fit” scenario (34) has been
widely accepted as the binding mechanism. According to the
induced fit, binding of a protein to a ligand leads to a conforma-
tional change in the protein which is “induced” by the ligand and
culminates in a favorable, tight fit. More recently, an alternative
mechanism has been proposed, the so-called “conformational
selection and population shift” (35-39). This proposition
has been based on concepts derived from the free energy land-
scape (40). It argued that since proteins exist in solution in broad
ensembles, among the conformational states present in the
ensemble there should be some with binding sites matching the
shape (and chemistry) of the ligand. While the energy of these
states can be high, and thus they may be only sparsely populated,
the binding will stabilize them, with a subsequent “population
shift” toward these conformers, which maintains the chemical
equilibrium. Recently, considerable experimental and computa-
tional data have accumulated (41-43) validating the conforma-
tional selection and population shift scenario for a broad range of
binding events, and it has further been proposed to apply to drug
discovery (44). Currently, conformational selection is believed to
be the prevailing mechanism, with induced fit dominating in cases
where the concentration of the ligand is extremely high (45).
Of note, the timescales of induced fit are faster than those of
conformational selection and population shift; this is because a
shift in the population necessitates climbing barriers, and thus the
times depend on the barrier heights. Following binding, there is
an induced fit on a minor, local scale to optimize the interactions.
The question arises in which way such a mechanistic scenario can
help in drug discovery strategies. A reasonable way would be to
generate an ensemble of states, and dock these separately to the
small molecule drug. However this is an immensely complex task,
since it critically depends on the sampling. Since high energy states
also need to be considered, the sampling should not be confined
to low energy conformations. Drug discovery is usually aimed at
enzyme active sites; however, increasingly it also targets disruption
or modulation of protein—protein binding sites. While enzyme
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active sites are known, this is not the case for the protein binding
sites, where as we discussed above, data are available only for a
(relatively small) fraction of the interactions. For these cases,
combining prediction of protein—protein interactions and their
binding sites as a first step, coupled with ensemble docking
could be a strategy to consider.

Toward such a strategy, here we present a template-based
protein—protein interaction algorithm, Prism (Protein Interac-
tions by Structural Matching) (46,47, 78) integrated with Fiber-
Dock (Flexible Induced-fit Backbone Refinement in Molecular
Docking) (48). The Prism algorithm reveals possible interactions
among a group of protein structures based on known protein—
protein interfaces. Due to the existence of a limited number of
distinct binding motifs in nature (49), similar interface architec-
tures are shared among functionally and structurally different
proteins (20). The method, which is independent of sequence
data, utilizes structural and evolutionary similarity of a target
protein with partners of an already known interaction to predict
an interaction between two protein molecules. Although the
structural similarity is detected via geometrical alignment of struc-
tures, evolutionary similarity is approximated by the conservation
of hot spots. Besides the efficiency in prediction of protein inter-
actions on the proteome scale, the prediction algorithm can be
used to construct and analyze specific networks, such as the
human cancer protein—protein interaction network (50), or to
discover shared binding sites in hub proteins (51). Furthermore,
increasing interest in targeting protein—protein interactions (52,
53), especially hot spots in interfaces (54), for drug discovery
makes such a strategy particularly promising. Combining Prism
with FiberDock is a powerful alternative to guide pharmacological
research considering its ability to detect a potential interaction
between a drug and its target protein or of a target protein with
another protein in the network. Moreover, because the interacting
residues can be sequentially discontinuous (see Fig. 2), an algo-
rithm such as Prism which focuses on interfaces and is indepen-
dent of the order of the residues on the chain is advantageous.

2. Materials
and Methods

Prism attempts to predict protein—protein interactions based on
structural similarity of the proteins to the complementary sides
of a known interface. If it is known that there is an interaction
between proteins A and B, and protein A’ is structurally similar to
protein A and protein B’ is structurally similar to protein B,
it is claimed that A’ and B’ may interact with each other (46).
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Chain A v 4 \ Chain B

Chain B

75,76,78

Chain A

Fig. 2. A two-chain interface (a) An example of a two-chain interface (PDB identifier: 1fq3; chains A and B). Black
residues represent contacting residues which interact across the interface. Residues in their spatial vicinity (called
nearby residues) are in whitish gray. The remaining residues in the chains A and B are shown in gray. (b) The interface
consists of bits and pieces of each of the chains, and some isolated residues. The chain A side of the interface consists
of five contacting and 24 nearby residues. There are nine contacting and 17 nearby residues in the chain B interface.

Prism considers a potential binary interaction by querying
whether target interfaces structurally and evolutionarily comple-
ment each other in a way similar to template interfaces. Then, by
using FiberDock, flexible refinement of docking solution candi-
dates is performed by optimizing the side chain orientations.
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ig. 3. Flowchart summary of the prediction algorithm of Prism together with FiberDock.

Binding energy is also calculated for the refined structures. To
carry out such a protocol, the first step involves the availability of
target structures and generation of template datasets. A flowchart
summarizing the prediction algorithm is given in Fig. 3.

2.1. Template Dataset Al interfaces of two chain protein complexes available in the Protein
Data Bank (55) were extracted. Interfaces consist of interacting
residues between two chains and neighboring residues. Neighboring
residues are in the spatial vicinity of interacting residues and consti-
tute the scaffold of the interface. Two residues from two different
chains are considered as interacting if they are at a distance smaller
than the sum of van der Waals radii plus a threshold of 0.5 A. In
addition, a noninteracting residue whose Ca. is closer than 6.0 A to
the Ca of any interacting residue is marked as a neighboring residue.
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2.2. Target Dataset

2.3. Prediction
of Protein—Protein
Interaction

In order to obtain a nonredundant dataset, 49,512 two-chain
interfaces (as of February 2006) extracted in the first step were
clustered structurally following an iterative all-against-all struc-
tural comparison in a sequence order-independent way (20, 51).
8,205 clusters were obtained. Interface members of each cluster
are structurally similar to the representative interface. A cluster
should contain at least five nonhomologous sequences.

The template interface can be constructed in several ways: one
can use (1) all representatives (8,205) of the interfaces, or (2)
a subset of the representatives, for example, the heterodimeric
protein interfaces (1,036), or the nonobligate protein interfaces
(158 interfaces) (see Note 1). The type of reduction of the tem-
plate set is determined with respect to characteristics of the query
molecules. Computational hot spots are found by using the
HotPoint web server (56) (see Note 2). Prism then searches for
a potential interaction by comparing the surfaces of target pro-
teins to the partners of known template interfaces while account-
ing for evolutionary conservation.

Proteins in a target dataset are searched for a potential interaction
(see Note 3). The data of query proteins are extracted from the
PDB. Multimeric proteins are split into their monomers, and
homologous chains are counted only once (see Note 4). The
surfaces of the molecules are extracted by using the NACCESS
program (described in Subheading 2.3).

Prism suggests a possible interaction between two target proteins
A’ and B/, if protein A’ shares structural similarity with one side of
template interface I, which is extracted from a known interaction
between protein A and protein B, and protein B’ is structurally
similar to the other side of the interface I.

The surfaces of target proteins are extracted using the NAC-
CESS program (57) (see Note 5). NACCESS calculates the rela-
tive surface accessibilities (RSAs) of residues, which are the
percent accessibility with respect to the accessibility of the residue
type X in an extended ALA-X-ALA tripeptide (58). Residues
whose RSA values are greater than 15% are considered as surface
residues. “Nearby” residues are then added to the surface shell as
described above, but the threshold value is chosen as 5.0 A.
Structural similarity between target and template interfaces is
assessed using MultiProt (59, 60). MultiProt aligns the target
surface with each complementary partner of the representative
template interfaces and determines the common geometrical
cores between structures. MultiProt’s output is the ten best align-
ments for substructural matching of a target protein surface with a
template interface. Target surfaces should geometrically match
with 50% of the residues of the template chains if the template
chains contain at most 50 residues. This matching threshold is
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30% for the larger template chains. In addition, at least one
conserved hot spot should be correctly matched between the
template interface and the target surface (see Note 6). Moreover,
at least five pairs of matched residues from each side of the tem-
plate interface should be against each other in order to guarantee
the correct matching for the left and right partners (see Note 7).

Target proteins which pass the alignment process and match
with the partners of the same template interface are next checked
if it is physically possible for them to constitute a complex. If the
Co atom of a residue from one partner is at a distance shorter than
3 A to the Ca atom of a residue from the complementary partner,
those two residues are considered as clashing. A threshold of five
clashes makes the interaction physically impossible.

Finally, FiberDock (48) is used for flexible refinement of the
predicted complexes and for calculation of the energy of the
interaction. Steric clashes of side chains due to their orientations
are solved via conformational adjustment of the side chains and
the binding energy of the final transformed structures is calculated
(see Note 8). FiberDock ranks the docked solutions by the calcu-
lated energies. Hence, FiberDock checks if a potential interaction
estimated by Prism is favorable in terms of global energy.

3. Notes

1. The algorithm strictly depends on the template set. If there is
no similar motifin the template set, the algorithm cannot find
any similarity between the target protein and template struc-
tures; thus a potential interaction for target proteins cannot
be predicted. Therefore, choosing the right template set for
the target proteins is very important. User can also use his
own template set, but the data relating to the structures in
the template set should be added in PDB format. Although it
may seem as a disadvantage that outcome is a function of the
template set, the algorithm finds reliable results in a short
computation time if such motifs are available in the template set.

2. The HotPoint web server is used to find computational hot
spots. The PDB code of the input protein should be entered
or PDB files of the protein can be loaded. The interacting
chains are specified and the distance threshold to extract the
interface residues can be chosen as default value, which is
summation of van der Waals radii of two atoms plus 0.5 A,
or a value defined by the user. On the results page, contacting
residues are displayed with their features (residue number,
residue name, the chain that the residue belongs to, the
corresponding relative accessibility surfaces area values in the
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monomer and complex forms, a score for its potential to be a
hot spot, and the result of the prediction: hot spot or not).
The interface file in PDB format and hotspot prediction result
file as well as a link for visualization of the interactive 3D
model are also available on the result page.

. Target proteins should have structural data in the PDB.

However, artificial proteins can be searched for a potential
interaction if their structural data are added in PDB format.
The target set should not contain any DNA or RNA struc-
tures, since these kinds of structures are not computed for
interaction prediction.

. Homolog models are also compatible as target proteins. If a

protein contains homologous chains, these chains are repre-
sented by one of them in order to avoid redundancy. For
example, since laxc protein contains homologous chains A,
C and E, chain A is represented as 1axcACE.

. NACCESS computes the accessible surface area by rolling a

solvent probe on the given molecule. The radius of the solvent
probe is chosen as 1.4 A.

. If'a target protein has no hot spot, the algorithm cannot find

a potential interaction for this target protein. It is expected
that target proteins with any interface size have at least one
hot spot.

. If structures of two proteins are similar to each side of a

template interface, that is, one target protein has a surface
similar to one side of a template interface and the surface of
another target protein is similar to the other side of the same
template interface, it is expected that they can match with
each other. There should be at least five pairs of matched
residues from each side of the template interface which are
in contact with each other in order to predict that the two
target proteins can potentially interact.

. In the process of optimizing the predicted protein complex,

hydrogen atoms of molecules are also considered and the
orientation of the clashing interface residues is adjusted
according to the repulsive van der Waals forces. Then, Fiber-
Dock calculates binding energies. However, if the solution
cannot converge, the global energy cannot be computed.

4. A Drug Target:
Insulin Receptor

Mutations in protein kinases contribute to diseases or pathophysio-
logical states, including cancer, autoimmune disorders, cardiac dis-
eases, and inflammatory conditions (61). Therefore, recent effort
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Fig. 4. Insulin receptor tyrosine kinase domain complex with its substrate and its inhibitor (a) Molecular structure of free
insulin receptor tyrosine kinase domain (IR_TKD, black in transparent, PDB identifier: 1irk) and its complex with insulin
receptor substrate 2 (IR_TKD/IRS2, black/whitish gray, PDB identifier; 3bu3). Computational hotspots on IR_TKD are
shown with ball representation (light gray and dark gray). Dark gray balls are common hotspots of IR_TKD in IR_TKD/IRS2
and IR_TKD/Grb14 (b). (b) Molecular structure of insulin receptor tyrosine kinase domain complex with growth factor
receptor-bound protein 14 (IR_TKD/Grb14, black/whitish gray, PDB identifier: 2auh). Computational hotspots on IR_TKD
are shown with ball representation (light gray and dark gray). Dark gray balls are common hotspots of IR_TKD in IR_TKD/
Grb14 and IR_TKD/IRS2 (a).

increasingly focuses on inhibitor and small molecule drug design to
modulate these enzymes. The insulin receptor (IR) is a member of
the tyrosine kinase receptors. In addition to diabetes, it appears to
be related to Alzheimer’s disease and cancer (62-66).

IR exists on the surfaces of cells and interacts with insulin, the
hormone having a significant role in regulating the energy and
glucose metabolism in the body. Insulin receptor substrate
2 (IRS2) is one of the substrates of IR. The conformational change
of the insulin receptor tyrosine kinase domain (IR_TKD) through
binding to IRS2 is shown in Fig. 4a. In the figure, the molecular
structure of free IR_TKD is transparent black (PDB identifier: 1irk);
black and the whitish gray molecules represent the IR_TKD complex
with IRS2 (PDB identifier: 3bu3; black: IR_TKD, chain A; whitish
gray: IRS2, chain B). IR is inhibited by growth factor receptor-
bound protein 14 (Grbl4) and the molecular structure is given in
Fig.4b (PDBidentifier: 2auh; black: IR_TKD, chain A; whitish gray:
Grbl4, chain B). The beads shown in Fig. 4a, b represent the
computational hot spots of IR_TKD extracted by using the Hot-
Point web server (56). Dark gray beads (Leu''”!, Val''”? and
GIn'?°®) are the common hot spots of IR_TKD in receptor/sub-
strate (3bu3) and receptor/inhibitor complexes (2auh). Although
the interacting partners are different molecules and a different
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conformational change is observed following the binding, IR_TKD
interacts through the same hot spot residues. Interaction of both the
inhibitor and the substrate through the same hot spots indicates the
importance of targeting hot spots in drug discovery (53, 67). Several
studies have focused on the discovery of small molecules that bind
with drug-like potencies to hot spots at the interface (68-70).

5. Discussion
and Conclusions

Conformational selection and population shift is currently the
accepted paradigm for molecular recognition. The question
arises how to use it to improve experimental and computational
strategies. Here our focus is on docking. A knowledge-based
docking approach such as Prism, which follows a rationale that
if a binding site motif’is similar between two proteins it is likely to
interact with a common motif of a partner protein, implicitly
follows the conformational selection concept. As such, it can also
be used toward small molecule ligand and peptide docking. As
targets, above we focused on protein—protein interfaces. Our
approach considers two steps: in the first the pathways are mod-
eled to obtain their protein—protein interfaces. This is because
the PDB contains only a small fraction of the interactions. In the
second, ensembles would be generated, and candidate drugs
would be docked to representatives of the ensemble clusters.
Signaling proteins are particularly good targets: they are at the
crossroads of pathways and their binding sites can be shared by a
large number of partners (54). Drug binding will elicit allosteric
effects which not only will change the conformations of their
protein—protein binding sites elsewhere, but will also propagate
in the pathway.

Ensemble docking has been a strategy long in use, even if for
different consideration—to overcome the technical difficulties in
flexible docking. A quick literature search produces hundreds of
papers devoted to the subject; among these is the work by
Lorber and Shoichet (71) which to our knowledge is the first.
Conformational selection has also been used directly in docking
(72, 73). However, it is difficult to apply this concept on a
comprehensive scale. Docking of a large ensemble is currently
prohibitive, because of the timescales. Nonetheless, rapid sam-
pling methods (74) perhaps coupled with semiatomistic
approaches (75) or effective filters (76) or other useful strategies
(77), hopefully will eventually help in this endeavor which
mimics real life mechanisms.
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Chapter 6

Flexibility Analysis of Biomacromolecules
with Application to Computer-Aided Drug Design

Simone Fulle and Holger Gohlke

Abstract

Flexibility characteristics of biomacromolecules can be efficiently determined down to the atomic level by
a graph-theoretical technique as implemented in the FIRST (Floppy Inclusion and Rigid Substructure
Topology) and ProFlex software packages. The method has been successfully applied to a series of protein
and nucleic acid structures. Here, we describe practical guidelines for setting up and performing a
flexibility analysis, discuss current bottlenecks of the approach, and provide sample applications as to
how this technique can support computer-aided drug design approaches.

Key words: Flexibility/rigidity analysis, FIRST, ProFlex, Statics of biomacromolecules, Rigidity
theory, Constraint counting

1. Introduction

Biomacromolecules are inherently flexible and can undergo
functionally relevant conformational changes; these changes occur
on awide range of different amplitudes and timescales. The ability to
undergo conformational transitions becomes particularly pro-
nounced in the case of ligand binding to several pharmacologically
important protein or RNA structures (1), with prominent examples
being HIV-1 protease (2) or HIV-1 TAR RNA (3). From an experi-
mental perspective, main sources of information about dynamics of
biomacromolecules are crystallographic B-values, atomic fluctua-
tions derived from NMR structural ensembles, NMR relaxation
measurements, residual dipolar couplings, and H/D exchange
experiments (4, 5). From a theoretical or computational perspective,
characterizing the dynamics of proteins or nucleic acids is still
challenging.

Here, we present concepts from rigidity theory that allow
obtaining detailed insights into the intrinsic flexibility characteristics
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of biomacromolecules in a very efficient manner (6). For this, con-
straint counting is applied to a topological network representation
of the biomacromolecule. In the network, vertices represent atoms,
and edges represent covalent and noncovalent constraints (see
Fig. 1). Based on the accessibility of rotational degrees of freedom,
each bond is identified as either flexible or rigid. Furthermore, the
molecule is decomposed into rigid regions and flexible parts in
between them. Rigid regions are those parts of a molecule that
have a well-defined equilibrium structure and move as a rigid body
with six degrees of freedom. Thus, no internal motion is allowed
within a rigid region. In turn, flexible regions are hinge regions of
the molecule where bond-rotational motions can occur without a
high cost of energy.

The approach has been implemented into the FIRST (Floppy
Inclusion and Rigid Substructure Topology) (6) and ProFlex
(6, 7) software packages and has been thoroughly validated to
identify rigid clusters and collectively moving regions in protein (6)
and RNA structures (8). There are ample possibilities of applying
flexibility analysis in structure-based drug design, such as for dock-
ing or virtual screening approaches; these will be detailed below in
Subheading 6.3. Another noteworthy application of flexibility
analysis is data-driven protein engineering by identifying structural
features that impact protein thermostability (9, 10) and /or inves-
tigating the influence of mutations on protein flexibility and stabil-
ity (9, 11). That way experiments can be guided that aim at
optimizing thermostability of proteins and /or improving enzyme
activity (9, 12). Furthermore, the approach has been successfully
used to determine the change in protein flexibility upon complex
formation (11, 13), to probe the principle of corresponding states
on protein structures from mesophilic and thermophilic organisms
(9, 12), to compare the pattern of flexibility gain during unfolding
across different protein families (14-16), and to obtain insights
into the functional role of the ribosomal exit tunnel (17). The
approach usually takes a few seconds on proteins of hundreds or
thousands of residues (18) so that it can be efficiently applied to
large macromolecules, such as a virus capsid (19) or the ribosomal
complex (17, 20), too. Recent versions of the program are avail-
able for download or interactive use via the FlexWeb site at http: //
flexweb.asu.edu/ or the ProFlex site at http:/www.bch.msu.
edu/~kuhn/software /proflex.

2. Methods

In the following, we will first outline the concepts of flexibility
analysis based on a topological network representation of a
biomacromolecule. We will then describe the individual steps for
preparing an input structure, performing a flexibility analysis, and
visualizing the results.
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p'% g Supporting fully-flexible docking by:
il - identifying residues that can move
- generating structural ensembles for ensemble-based docking

Explaining molecular recognition processes by:
- analyzing ligand effects on protein flexibility/stability (entropy)
- investigating the role of mutants in resistance mechanisms

Fig. 1. Workflow of a flexibility analysis of a biomacromolecule based on constraint counting. A thrombin structure (PDB
code 1ETS) was taken as an example. (a) A PDB structure including polar hydrogen atoms is used as input.
(b) The biomacromolecule is modeled as a topological network. In this network, vertices represent atoms and edges
represent covalent and noncovalent bond constraints (strong hydrogen bonds (red lines), salt bridges (red lines), and
hydrophobic interactions (green lines)) (44). Then, each bond is identified as either part of a rigid region or a flexible link
in between. The resulting rigid cluster decomposition of the thrombin structure is shown in (c), where each rigid cluster is
depicted as a uniformly colored body. The left (right) picture shows the rigid cluster decomposition before (after) a phase
transition as determined using the cluster configuration entropy (6.2) (9, 12). The computed decomposition of the
biomacromolecular structure into rigid and flexible regions can be used in a subsequent step as input for coarse-grained
simulations (21, 22, 44), which explore the molecule’s mobility. Panel (d) shows an ensemble of thrombin conformers
generated by such a method, NMsim (21, 55), within a few hours of computational time. Finally, a flexibility index (6.3)
can be obtained, which is mapped in a color-coded fashion onto the thrombin structure (e). Overconstrained regions are
indicated by blue colors (f; < 0), rigid regions are represented in white (f; = 0), and flexible regions are shown in red
colors (f; > 0). The blowup in (e) shows the active site of thrombin together with a bound ligand and the S1, S2, and S3
subpockets. The flexibility index provides crucial insight into the binding site flexibility at the bond level. For example, the
60-insertion loop (Tyr60A-Trp60D) assumes different orientations in complexes with different inhibitors (56). In
agreement with this, residues Leu60 and Asp60E-Thr60I are identified to be flexible, which allows the movement of
the 60-insertion loop. Finally, potential applications of the approach to computer-aided drug design are listed in (f).
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2.1. Flexibility 1.
Analysis Based

on a Topological

Network

Representation

Constraint counting

For understanding the influence of covalent and noncovalent
constraints on the flexibility of biomacromolecules consider the
following. In 3D-space, a structure consisting of #z atoms has 37
degrees of freedom, six of which describe rotational and trans-
lational rigid body motions. The flexibility of the structure is
determined by the number of independent internal degrees of
freedom dof, which is given by subtracting six global degrees of
freedom and the number ofindependent constraints Cfrom the
overall number of degrees of freedom (1). Thus, with very many
(few) constraints present, the biomacromolecule is largely rigid

(flexible).

dof =3n—-6—-C. (1)

. Treatment of noncovalent constraints

As the flexibility of biomacromolecules is largely determined
by noncovalent interactions, the outcome of a flexibility anal-
ysis is mainly governed by the way hydrogen bonds (including
salt bridges) and hydrophobic interactions are modeled in the
network (see Fig. 1b). In general, hydrogen bonds are included
depending on their geometry and interaction energy. For
this, potential hydrogen bonds are ranked according to an
energy function that takes into account the hybridization
state of donor and acceptor atoms as well as their mutual
orientation (6). By tuning the energy threshold Eygp strong
hydrogen bonds can be distinguished from weaker ones.
Choosing Eyp = —0.6 kcal/mol corresponds to the thermal
energy at room temperature and so provides a natural choice
(6). Choosing Eyyg = —1.0 kcal /mol has also been reported in
the literature (21, 22) and is currently the default energy cutoff
for protein and nucleic acid structures in FIRST. (Note that
the default energy cutoft Egg = —0.1 kcal/mol in ProFlex.)

Rather than analyzing a biomacromolecule at a preset
Eyp value, one can also simulate a thermal unfolding of the
underlying topological network representation of the bioma-
cromolecule by successively removing hydrogen bonds in the
order of increasing strength. Monitoring the decay of the
network by the so-called cluster configuration entropy (2)
then allows to identify pronounced structural events during
the protein unfolding process:

H = —Zwyln W, (2)

where w, is the probability that an arbitrarily occupied site in
the network belongs to a cluster of size s (23) or s> (9). This
approach is useful if one aims at investigating changes in the
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network that are required for a transition to occur between a
structurally stable state, where a rigid core is still present
within the structure, and a largely flexible state, where this
core has ceased to exist (see Fig. 1c¢).

Hydrophobic interactions are considered between pairs of carbon
and/or sulfur atoms if the distance between the atoms is smaller
than the sum of the van der Waals radii (1.7 A for carbon, 1.8 A
for sulfur) plus a variable threshold Dyc. In most studies, Dy is
set to 0.25 (0.15) A in the case of protein (9, 12, 18) (RNA (17,
24)) structures.

A structure in protein database (PDB) format is required as input
for the flexibility analysis, as, e.g., obtained from the PDB, nucleic
acid database (NDB), or generated by homology modeling.

1. X-ray structures with high resolution allow for the most
consistent flexibility characterization. We recommend using
X-ray structures resolved to <2.5 A. Structures with resolution
>3.0 A usually do not allow modeling the underlying con-
straint network appropriately and should be regarded with care.

2. NMR structures are often deposited as ensembles of models
that agree with the experimental restraints. In those cases, we
recommend either to take the first structure of the ensemble
or to cluster all structures of the ensemble and choose the
structure closest to the centroid of the largest cluster. With
the latter approach, a structure that best represents the
ensemble is identified. Many methods are available for clus-
tering, among them the Multiscale Modeling Tools available
at http: /mmtsb.org/. NMR structures do not provide infor-
mation about solvation and ion-binding properties of the
structure and should therefore only be chosen when no
X-ray data are available.

3. Homology models: When no experimental structures are avail-
able, one is tempted to use molecular modeling techniques to
build a structure that can be subsequently used for flexibility
analysis. Since the quality of such model-built structures may
be low, special care has to be taken in preparing the structure
and analyzing the results.

4. In all cases, the quality of the input structure should be
checked with the help of the PDBREPORT database (25),
and no flexibility analysis should be performed on structures
labeled “bad.” In the case of statically disordered residues,
where two or more conformations are present in the PDB file,
only atoms of one conformation should be kept.
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2.2.2. Adding Hydrogen
Atoms and Assigning
Protonation States

2.2.3. Treating lons
and Water Molecules

2.2.4. Treating Ligands

2.3. Performing
a Flexibility Analysis

See Note 1 for comments on the sensitivity of the flexibility
analysis to the input structure.

In the case of X-ray structures or homology models, missing
hydrogen atoms have to be added. This can be done using the
Whatlf program (26), the REDUCE program (27), or the leap
program from the Amber package (28). In addition, for building a
proper hydrogen bond network, the orientation of Asn, Gln, and
His side chains might have to be corrected; this can be done with
the help of either the Whatlf or REDUCE programs or manually.
Finally, the protonation states of Asp, Glu, His, Lys, and Arg have
to be defined, e.g., either with the help of the H++ webserver (29)
or manually based on an inspection of the molecular environ-
ment,/hydrogen bond network these sidechains are embedded in.

Metal ions should be retained when they are part of the structure.
Especially, interactions with divalent ions such as Mg®* are known
to affect the conformational flexibility of RNA structures (30) and
should be considered in the flexibility analysis, together with
surrounding water molecules when available. Interactions
mediated by other structural water molecules, buffer ions, sub-
strates, or cofactor molecules should not be included unless their
influence on the flexibility of the biomacromolecule is to be
probed; accordingly, these species should be removed from the
structure. Unfortunately, water molecules and ions may be
wrongly assigned when interpreting the electron density (31).
Thus, we recommend evaluating this experimental information
critically if one wishes to include these species in the flexibility
analysis (see Note 2). While interactions between water molecules
or buffer ions and the biomacromolecule can be modeled as
noncovalent bonds in the topological network representation
(see below), interactions between metal ions and the biomacro-
molecule can be modeled as covalent bonds by inserting them
manually into the constraint network (12).

Depending on the aim of the flexibility analysis, a ligand molecule
can be either included or excluded from the topological network
representation. This can be used for computing changes in the
receptor flexibility upon ligand binding, which may provide a
structural explanation for observed changes in entropy (11, 32).
If the ligand is included in the flexibility analysis, care should be
taken to assign appropriate protonation states to the ligand’s
functional groups.

1. FIRST software
The FIRST software handles protein, RNA, and DNA structures
as well as ligands found in PDB entries. As for nonstandard
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nucleosides in tRNA and rRNA, the software can cope with the
most commonly occurring modifications of nucleosides such as
pseudouridine, where the C5 of uracil is covalently attached to
the sugar C1’, and methylation of the 2'O position of the ribose
sugar. In addition, methylated bases are generally considered if
the methyl-carbon atom matches one of the following names:
CM1, CM2,CM5, CM7, C5M, or C10. See Note 3 for further
comments on performing a flexibility analysis on RNA and DNA
structures.

The FIRST software provides many command-line
options for interfering with data input and output, and the
program flow. For a detailed discussion, the reader is referred
to the program’s manual. The three most important options
are related to the definition of noncovalent constraints for the
topological network representation. For the latest FIRST
version (v6.2), these are:

— The energy cutoff for hydrogen bonds Egp can be set via
the command line option “-E.” In general, we recommend
using the default Egp = —1.0 kcal /mol. As an alternative,
a “dilution” of the hydrogen bond network and, hence, a
thermal unfolding of the biomacromolecule can be
simulated via the option “-dill.”

— There are three options available for identifying hydropho-
bic constraints, which can be defined by the command line
flag “~H.” We recommend choosing “~H 1,” which applies
the most commonly used threshold for hydrophobic con-
tacts Dy = 0.25 (0.15) A for protein (9, 12, 18) (RNA
(17, 24)) structures, but no additional restrictions. In con-
trast, the default option for identifying hydrophobic con-
tacts in FIRST is “-H 3,” where Dy is set to 0.50 A (18).
Furthermore, in this case, a hydrophobic constraint is only
included into the network if (1) both atoms of the pair are
bonded to carbons, sulfurs, or hydrogens (as an indication
of a hydrophobic environment) and (2) a given atom does
not already form a contact with another atom of the residue
under consideration.

In summary, a typical FIRST v6.2 run for an input struc-
ture myPDB.pdb can be started with

:\> FIRST myPDB.pdb -E -1.0 -H 1

2. FlexWeb webserver
A webserver for flexibility analysis based on the FIRST
software is available for public use at http://flexweb.asu.
edu. The webserver prompts the user to submit the structure
in a PDB format. Hydrogen atoms are added automatically
using the REDUCE program (27). The user can modify the
energy threshold Eyg. After the calculation, the results can be
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investigated on the webpage or downloaded for further
analysis.

. ProFlex software

A further implementation of the constraint counting algorithm
is provided in the ProFlex software, which is available at http: //
www.bch.msu.edu/~kuhn/software /proflex. Although small
differences in modeling hydrogen bonds and hydrophobic con-
straints in the topological network representation exist as com-
pared to FIRST and FlexWeb, ProFlex also captures the
essential conformational flexibility of proteins. Using a proto-
nated PDB structure myPDB_wiH. pdb, a typical ProFlex run is
started by

:\> PROFLEX -h myPDB_wiH.pdb —e-1.0

where “—¢” denotes the energy threshold Egg for hydrogen bonds
and “~h” must be used in the case of a PDB file having hydrogens.
Again, a “dilution” of the hydrogen bond network and,
hence, a thermal unfolding of the biomacromolecule can be
simulated via the option “-nonh.”

Note that in the current implementation of ProFlex, a hydro-
phobic constraint between two carbon or sulfur atoms is
included into the network (1) using a distance threshold
Dyc = 0.50 A and (2) if both atoms are bonded to carbons,
sulfurs, or hydrogens. This corresponds to the flag “-H 2” in the
FIRST software.

. Generating the topological network representation using

Amber

The topological network representation of a biomacromole-
cule can also be generated using the ambpdb program of the
Amber suite (http: //www.ambermd.org) (28). This is partic-
ularly convenient if snapshots from a molecular dynamics
(MD) simulation are available in the “Amber restart file”
format, such as to perform flexibility analysis on an MD
ensemble of structures. Ambpdb converts a restart file into a
FIRSTdataset file, which is essentially a PDB file augmented
by information about covalent and noncovalent bonds. The
resulting topological network representation is almost identi-
cal to the one generated by FIRST if “-H 1” is specified and
no energy cutoff for hydrogen bonds is considered. In addi-
tion to the restart file, ambpdb requires an “Amber prmtop
file” that contains information about the topology of the
biomacromolecule. The FIRST dataset file is generated by

:\> ambpdb -first -p myPDB.prmtop < myPDB.restart >
myPDB_FIRSTdataset
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The prmtop file can be generated using the program xleap
of the Amber suite and a PDB file as input. As an advantage
over applying FIRST or FlexWeb directly to a PDB file, the
xleap /ambpdb route allows to also consider ligands that have
not yet been deposited in the PDB database. The resulting
network representation can serve as input to the FIRST soft-
ware. For this, use the file ending with “_FIRSTdataset” and
run FIRST via:

:\> FIRST myPDB_FIRSTdataset -E -1.0

The outcome of a flexibility analysis of a biomacromolecule can be
analyzed at different levels of detail. First, rigid cluster decomposi-
tions provide hints about movements of structural parts as rigid
bodies; second, flexibility characteristics at the bond level are
instructive for analyzing, e.g., binding site regions; finally, flexibility
characteristics of larger regions can be related to potential global
movements. That way, static properties of a biomacromolecule can
be linked to biological function and/or be used to support com-
puter-aided drug-design. See Note 4 for comments on comparing
results from a flexibility analysis to data from experiments.

1. Rigid cluster decomposition

A decomposition of the topological network into rigid clusters
(and flexible regions in between) is calculated by both, the
FIRST and ProFlex software. With the help of a Pymol script
generated by the programs, each rigid cluster can be visualized
as a uniformly colored body (see Fig. 1¢). That way, regions of
the biomacromolecule that are expected to have a well-defined
equilibrium structure (rigid clusters) can be distinguished
from flexible regions where bond-rotational motions can
occur without a high cost of energy.

2. Flexibility index
While the decomposition into rigid clusters and flexible
regions only provides a qualitative picture, a continuous quan-
titative measure is also available in terms of a flexibility index
f3, which is defined for each covalent bond . In ProFlex and
initial versions of FIRST, f; is defined as (3) (6)

in an underconstrained region

=

in an isostatically rigid cluster (3)

jo
Il
& O

— & in an overconstrained region

Q
~

In underconstrained regions j, f; relates the number of inde-
pendently rotatable bonds (F;) to the number of potentially
rotatable bonds ( Hj). Conversely, in overconstrained regions k
the number of redundant constraints (R;) is related to the
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overall number of constraints ( C;). Thus, f; ranges from —1 to
1, with negative values in rigid regions and positive values in
flexible ones; the index allows quantifying how much more
flexible (stable) an underconstrained (overconstrained) region
is compared to a minimally rigid region (13). For visualizing
the results, atom-based flexibility indices can be calculated as
average over f; values of covalent bonds the atom is involved in
(8, 13). For example, a flexibility index for C, atoms has been
calculated by averaging over the two backbone bonds (N-C,
and C,—C’), while a flexibility index for phosphorus atoms
has been calculated by averaging over the O5’-P and P-O3'
bonds (8, 13). The atom-based flexibility indices can be
visualized by a color-coded mapping onto the biomacro-
molecule’s atoms (see Fig. 1e) (13, 17). It is common to use
bluish colors for indicating overconstrained regions, reddish
colors for flexible regions, and green or white for minimally
rigid regions (6, 8, 17).

In recent versions of FIRST, a flexibility index g; is now
calculated according to (4):

F:
53 ! 3 inanunderconstrained region
]
gi= 0 _(6Vi—6) inanisostatically rigid cluster (4)
inan overconstrained region
6Vk(Vk— 1) _ (6Vk —6)
2

In underconstrained regions j, F; indicates the number of
independently rotatable bonds, E; is the number of edges
representing rotatable bonds, and B; is the total number of
constraints from rotatable bonds. In overconstrained regions
k, Vi indicates the number of atoms in that region. Note that
f; = . for bonds in underconstrained regions but f; # g; for
bonds in overconstrained regions. The latter must be consid-
ered when comparing flexibility analyses from different pro-
grams or program versions.

. Hydrogen bond dilution

By gradually removing noncovalent bonds from the constraint
network, the thermal unfolding of biomacromolecule struc-
tures can be simulated (12, 15). So far, hydrogen bonds and
salt bridges have been removed successively from the network
in the order of increasing strength. In contrast, the number of
hydrophobic contacts has been kept constant because the
strength of hydrophobic interactions remains constant or
even increases with increasing temperature. A hydrogen
bond dilution can be computed by FIRST using the “~dil 1”
option and by ProFlex using the “—nonh” option. The dilution
simulates a melting of the network and results in a hierarchy of
regions of varying stability (18). That way, information is
gained that complements the above flexibility indices.
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Furthermore, by applying indices from network theory
(33), the microstructure of a network, i.e., properties of the
set of rigid clusters generated by the bond dilution process,
and macroscopic properties of a network associated with the
rigid cluster size distribution, such as a transition from a
folded to an unfolded state, have been be analyzed in the
context of protein (thermo-)stability (9, 12). Calculating
these indices is possible within the Constraint Network Anal-
ysis (CNA) package (9, 12), which is a front-end to FIRST.
Such analyses may also become valuable for structure-based
drug design when it comes to estimating the eftect of ligand
binding on the structural stability of a receptor.

3. Notes

3.1. Sensitivity

of Flexibility
Analysis to the Input
Structure

Constraint counting on a topological network representation of
biomacromolecules provides a deeper understanding of the flexi-
bility characteristics of protein, RNA, and DNA structures down
to the atomic level in a computational time on the order of
seconds. Compared to MD simulations, the computational time
requirement for a flexibility analysis is several orders of magnitude
smaller. By now, there is ample evidence that a flexibility analysis
provides a picture of biomacromolecular flexibility that agrees
with MD results or data from experiments (6, 8, 9, 13). Still,
several methodological pitfalls exist, and improvements of the
topological network representation can be anticipated.

While atomic motions along a MD trajectory are governed by the
continuous spectrum of forces exerted by surrounding atoms, the
constraints in the topological network are “all-or-nothing”—a bond
is either present or absent. Especially in the case of noncovalent
interactions, one needs to distinguish forces sufficiently strong,
which are included into the network, from weaker ones, which are
excluded. In the case of marginally stable biomacromolecules, this
can lead to different experimental input structures showing signifi-
cant differences in flexibility predictions (C. Pfleger, E. Schmitt, H.
Gohlke, unpublished results): a region in such structures may switch
from flexible to rigid depending on the inclusion of a few (in the
extreme, a single) constraints. We thus recommend testing the
sensitivity of flexibility analysis by varying the energy cutoft for
hydrogen bonds Eyp and /or the criteria for inclusion of hydropho-
bic interactions, and repeating the flexibility analysis. Likewise, con-
formations extracted along a MD trajectory can also result in
different flexibility predictions (13, 34). When available, we thus
recommend performing the flexibility analysis on an ensemble of
input structures and then average the results (13). This is also
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3.2. Treatment
of Water Molecules

3.3. Treatment
of RNA and DNA
Structures

advantageous because it allows deriving a measure of significance for
flexibility predictions on the atomic level in terms of the standard
error of the mean. Ensemble-based flexibility analysis can be per-
formed using the CNA package.

Interactions mediated by structural water molecules are known to
affect the flexibility and stability of biomacromolecules. In most
flexibility analysis studies so far, water molecules have not been
included in the topological network, mainly due to the problem to
distinguish tightly bound water molecules from fast-exchanging
ones based on information from experiment. Results from MD
simulations can complement experiments in this respect (35).
However, by incorporating data from computationally expensive
MD simulations, the advantage of the highly efficient flexibility
analysis with computing times on the order of seconds even for
the large ribosomal subunit will be lost. Encouragingly, previous
findings showed only a negligible difference in the flexibility char-
acteristics of a protein—protein complex when structural waters
were considered (13). In addition, the influence of solvent on
structural stability is already implicitly considered by including
hydrophobic interactions as constraints into the network (9).

Recently, we adapted the approach to RNA structures by develop-
ing a new topological network representation for these macro-
molecules (8). The adaptation was necessary because the
structural stability of proteins, dominated by hydrophobic inter-
actions, and RNA structures, dominated by hydrogen bonds and
base stacking interactions, is determined by different noncovalent
torces. Although the new network parameterization already pro-
vides crucial insights into the flexibility characteristics of RNA
structures (8, 17, 36, 37), several improvements of the network
representation can be anticipated:

1. Base stacking interactions are known to be dependent on both
the type of the bases and the sequential context: (1) stacking
interactions in general increase in the order pyrimidine—
pyrimidine < purine—pyrimidine < purine—purine bases (38);
(2) stacking interactions are larger for sequences rich in G-C
rather than A-U base pairs (39, 40). Thus, differences in base
stacking interactions could be modeled by using varying num-
bers of constraints for the hydrophobic tethers. This approach
has not been pursued so far.

2. Another area of improvement in modeling nucleic acids
relates to the question how repulsive forces between nega-
tively charged phosphate groups can be included into the
topological network representation. Modeling repulsive
forces is difficult within the combinatorial approach followed
in the pebble game algorithm because this leads to one-way
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inequalities, where the constraint length cannot become
shorter but longer, compared to two-way equalities, where
the constraint length is fixed, used so far (41).

In regard to using the RNA parameterization for analyzing
DNA structures, one should notice that both types of molecules
express different flexibility characteristics in response to the pres-
ence or absence of the 2’0OH group (42). A recent MD study
revealed that the differences between flexibility and rigidity in
both types of nucleic acids are much more complex than usually
believed (43): RNA is very deformable along a small set of essen-
tial deformations, whereas DNA has a more degenerate pattern of
deformability. To date, no validation study for using FIRST on
DNA structures has been reported.

When comparing results from a flexibility analysis with data from
experiments, one needs to keep in mind that flexsbility is a static
property, which describes the possibility of motion. Phrased dif-
ferently, flexibility denotes the ability of a region to be deformed.
From the study of flexibility alone, however, no information is
available about the direction and magnitude of the possible
motions (44). In contrast, data from experiments, e.g., crystallo-
graphic B-values, or MD simulations, e.g., atomic fluctuations,
often report on the mobility of atoms. Unsurprisingly, results from
flexibility analysis and mobility information from experiment or
MD simulation must disagree in the case of a rigid, yet mobile,
body (such as a moving helix or domain).

Along these lines, one must take into account that flexibility
analysis is better suited to characterize biomacromolecular flexi-
bility that underlies longer timescale motions (45). While hydro-
gen/deuterium exchange experiments are frequently interpreted
in the context of such longer timescale motions, NMR §* order
parameters are generally associated with fast fluctuations in the ns
regime. Thus, results of a flexibility analysis and $* order para-
meters must be compared with caution.

There are many potential applications for flexibility analysis. Pre-
dicted flexibility characteristics of biomacromolecules can either
be linked to biological function, which is not in the focus of the
present review, or be used to support structure-based drug design.
The present challenge in structure-based drug design is that it is
not known in advance which conformation a target will adopt in
response to binding of a ligand or how to design a ligand for such
an unknown conformation (1). In this context, it is advantageous
that flexibility analysis provides rigidity and flexibility information
at various structural levels:

1. Flexibility characteristics at the bond level are instructive for
analyzing binding site regions. As such, flexibility analysis can
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be used to guide the sampling of protein main-chain flexibility
during ligand docking as proposed by Keating et al. (7).
In such a case, the identified hinge regions can be used as
input for the docking program FlexDock, which handles
hinge-bending motions of the receptor molecule during the
docking process (46). Similarly, a flexibility analysis will also
be helpful for identifying potentially flexible sidechains
in a binding site. This can be used for docking with Auto-
Dock4 (47), which allows to model as flexible only a few
sidechains of the binding site during the docking.

. By investigating ribosomal structures from different organisms,

we found characteristic flexibility patterns in the highly con-
served antibiotics binding pocket at the peptidyl transferase
center (PTC) for different kingdoms. These flexibility patterns
have been related to antibiotics selectivity (17). These findings
point to the importance of considering differences in the
degrees of freedom of binding regions upon complex forma-
tion, as such differences may entropically influence binding
processes. Furthermore, it shows that subtle differences in
binding site flexibility might need to be considered for a proper
assessment of the drugability of new putative binding sites.

. Flexibility characteristics of larger regions can be related to

potential global conformational changes and provide hints
about movements of structural parts as rigid bodies. By deter-
mining a hierarchy of regions of varying stabilities of the large
ribosomal subunit, we were able to propose a pathway of allo-
steric signal transmission from the ribosomal tunnel region to
the PTC (17). Remarkably, this prediction was later confirmed
by cryo-EM data of a stalled ribosome structure (48) and muta-
tion studies (49). This shows that the approach can be used to
detect coupling between two structural sites, which makes it
most interesting for identifying new allosteric binding sites.

. Finally, the rigid cluster decomposition can serve as input for

coarse-grained simulation methods (21, 22, 50-52), which
sample the conformational space of a biomacromolecule by
means of constrained geometric simulation (see Fig. 1d).
Ligands can then be docked into the ensemble of receptor
conformations, as was successfully demonstrated for the cyclic
peptide cyclosporine with its receptor cyclophilin (53) and
multiple ligands binding to HIV-1 TAR RNA (37). In both
cases, docking into an ensemble of simulation-generated
structures proved to be a valuable tool to cope with large
apo-to-holo conformational transitions of the receptor struc-
ture, thereby implicitly taking into account conformational
changes upon binding (54).
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Chapter 7

On the Use of Molecular Dynamics Receptor
Conformations for Virtual Screening

Sara E. Nichols*, Riccardo Baron*, and J. Andrew McCammon

Abstract

Receptors are inherently dynamic and this flexibility is important to consider when constructing a model
of molecular association. Conformations from molecular dynamics simulations, a well-established method
for examining protein dynamics, can be used in virtual screening to account for flexibility in structure-based
drug discovery. Different receptor configurations influence docking results. Molecular dynamics simulations
can provide snapshots that improve virtual screening predictive power over known crystal structures,
most likely as a result of sampling more relevant receptor conformations. Here we highlight some details
and nuances of using such snapshots and evaluating them for predictive performance.

Key words: Docking, Receptor structures, X-ray crystallography, Molecular dynamics

1. Introduction

Molecular docking algorithms are typically employed to determine
the binding modes of small organic molecules relative to a biomo-
lecular receptor and to evaluate a score related to their relative
binding affinity. The conformations and chemistry of the receptor
model affects the predictive performance of docking-based
approaches, as illustrated in Fig. 1. Receptors, usually proteins,
are inherently flexible and dynamic; this flexibility is coupled to
their function, and therefore important to consider when con-
structing a model. Currently, incorporating this receptor flexibility
into docking programs is difficult.

The following chapter will briefly present practical considera-
tions for the generation of molecular dynamics configurations
for virtual screening, implicitly incorporating receptor flexibility.
Different receptor conformations can lead to alternative relative
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Fig. 1. Schematic representation of virtual screening results from two different
receptors. Two different conformations of the same protein result in two different
ranked lists of possible compounds. Retrospective analysis, where compounds are
known to be true ligands or decoys, allows for assessment of accuracy based on the
conformation, using receiver operating characteristic (ROC) curves. Each point on
the curve represents accuracy depending on a user-defined threshold. The area under
the curve (AUC), which takes into account all thresholds enforced, is a metric that can be
used for nonarbitrary comparison of virtual screening predictive power.

orientations of the ligand and for virtual screening produce
alternative rankings of possibly active and inactive compounds.
Although a number of strategies to incorporate protein flexibility
have been developed in this context, defining protocols to select
receptor structures prior to docking is still difficult and greatly
influenced by the knowledge of the system being modeled.
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2. Methods

2.1. Molecular Docking
and Virtual Screening

2.2. Influence

of Receptor Structure
on Molecular Docking
Results

Associations between biomolecules play an important role in
signaling, catalysis, and transportation. The receptor, or host, is
most commonly the target associated with a disease-state; these
molecules are usually protein machinery and modifications in the
receptors’ activity can have positive therapeutic consequences.
The ligand, or guest, is a complementary molecule that transiently
binds the receptor; these compounds are usually small molecules,
but can also be larger biopolymers such as peptides. Contempo-
rary molecular docking algorithms are used to predict the “bind-
ing mode” of the ligand, defined as the conformation and
orientation relative to the receptor. The algorithm generates can-
didate binding modes, so-called “poses,” and scores them so the
user can have an idea of how likely the pose may be considered as a
realistic binding mode. Scoring involves evaluating various prop-
erties of the complex, the receptor and the candidate ligand pose,
and often represents an effective energy of binding. In a process
called virtual screening, the molecular docking scores are used to
rank many different ligands.

Most commonly, ensemble-averaged models of proteins deter-
mined by X-ray crystallography (crystal phase) or nuclear mag-
netic resonance (NMR) spectroscopy (liquid phase) are used as
receptor structures in docking. While ligand-bound and unbound
structures can represent important conformational changes of the
receptor upon association, these associations are not always ideal
for predictive docking of a new, ligand molecule, which may cause
alternative conformational changes. This is particularly relevant
for design and discovery of novel drugs using molecular docking
and virtual screening.

Difterent receptor structures, such as conformations of molecu-
lar complexes, present modified ligand interaction sites. Figure 2
visualizes an extreme case; a G-Protein Coupled Receptor
CXCR4 was crystallized with two different antagonists, one a
small molecule (PDB ID 30DU), one a peptide (30E0) (1).
While the backbones of the two crystal structures conformations
are very similar (see Fig. 2a), the pockets can vary in different size,
surface area (see Fig. 2d), polarity of the side chains that line the
binding site, similarity to the cocrystal ligand, as well as solvent
exposure. Virtual screening results are influenced by the PDB
structure chosen for screening because the fit of individual ligands
in the pocket is affected by even the most minor structural changes.

Difterent conformational changes captured with multiple
crystals present a hard but important decision for a molecular
modeler; which conformation should be used to predict other
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2.3. Using Sampling
Methods to Generate
Receptor Ensembles

Fig. 2. Binding site variations in ensemble-averaged crystal structures. (a) GPCR CXCR4
was recently cocrystallized with two different antagonists, yet backbone conformations
are relatively conserved; (b) 30DU in blues (middle panel) was cocrystallized with a
small molecule antagonist, 30EQ in oranges (lower panel) was cocrystallized with a
peptide antagonist; (c) surface representations of the binding sites with antagonists
shown in sticks; (d) side-view of binding-site surface areas and shapes.

bound conformations for docking or virtual screening? Should
more than one conformation be used or represented? For popular
disease target cases, such as HIV reverse transcriptase, many exper-
imental structures are available in the Protein Data Bank (2). It is
important to understand what structures are available for your
target of interest (see Note 1).

While ensemble-averaged configurations from experimental meth-
ods are insightful, modeling the physical dynamics of a biomole-
cule for a ligand-binding event is thought to ultimately allow for
better prediction of these types of associations, as it is a more
accurate representation of the microscopic interaction. Receptors
display an ensemble of configurations the ligand may bind. These
ensembles can be represented by conformations determined exper-
imentally from NMR, X-ray crystallography, or computationally
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Fig. 3. Workflow of structure-based virtual screening that attempts to incorporate flexibility of the receptor. Several steps
are feedback-mechanism loops as represented by double arrows.

using simulation methods such as Monte Carlo (MC) or Molecular
Dynamics (MD) simulation. Since incorporating full receptor flex-
ibility greatly expands search space, recent advances in this area
include attempts to model modest flexibility. Stochastic heuristics
including MC side chain sampling, user specified flexible regions,
as well as iterative minimization and side chain sampling are just
some of the recent implementations of receptor flexibility (3-5).
MD is a well-established method for characterizing protein
dynamics, and simulations of ligand-bound and unbound proteins
can provide insight on regions of flexibility, particularly important
to where a ligand might bind, as well as how different types of
ligands bind (see Note 2).

Using multiple target conformations from the aforemen-
tioned sampling methods also allows for modest incorporation of
important dynamics into modeling of the protein-ligand-binding
complex. Figure 3 represents a structure-based drug design
workflow that incorporates multiple structures into a virtual screen
of a chemical compounds. Generally, receptor structures are
collected and cognate ligands, or known cocrystallized ligands
for which the binding mode is determined, will be used first to
validate the docking algorithms; predicted binding modes can be
compared to crystal structure conformations. Validating that
known ligands rank highly among a database of possible ligands,
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2.4. Selection

of Biologically
Relevant Structures
for a Representative
Ensemble

2.5. Evaluation

of Enrichment

with an Ensemble
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NV
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v

Fig. 4. Alternative MD scenarios for extracting optimal snapshots important for ligand
virtual screening. The optimal configurations for binding of a specific ligand can be rare
or dominant or inexistent over the course of the simulation trajectory. Determining a
transferable metric or group of metrics allowing extraction of such optimal receptor
snapshot prior to virtual screening is an active area of research.

may also indicate that the algorithm is predictive. Knowledge
gained from these validation steps allows the user to manually
prune structures.

Once an ensemble of structures is chosen, cross-docking, or
predictive virtual screening can take place. Ligands, both potential
and known, are screened against the ensemble representation of
the receptor. Top hits can be further rescored with a variety of
protocols, such as those based on implicit solvent models or more
robust alchemical free energy methods (see Note 3).

The type of conformation that is relevant for binding is system
specific. Depending on molecular flexibility and binding proper-
ties, favorable protein-ligand complexes can form at varying time-
scales as depicted in Fig. 4 (see Note 4). MD snapshots can be
extracted from a trajectory at regular time intervals. However, this
often results in ensembles of structures containing highly redun-
dant structural information. Clustering algorithms can alleviate
computational costs by reducing the MD ensemble with no sig-
nificant loss of ensemble information (6, 7).

In practice, after the docking algorithm processes a set of
compounds, the top X ranking ligands are pursued further, while
the rest are discarded. Further pursuits include more accurate, time-
intensive rescoring calculations and eventual experimental validation.
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The top X ligands are thus deemed positives, and the discarded
negatives. If the activity of the compounds ranked is determined,
such classifications are either true or false, and a standard metric in
the field of decision theory, receiver operating characteristic (ROC)
can be used to systematically quantify the level of enrichment of a
virtual screening run (8). The area under the curve of an ROC plot
(AUCQC), as depicted in Fig. 1, is the probability the docking algorithm
will rank a randomly chosen active over a randomly chosen inactive,
and is a useful metric to compare different conformations of the same
receptor (see Notes 5 and 6). This approach is demonstrated in a
recently reported case study, which is used herein as an example (9).

Predictive power of HIV RT conformations from a total of
200 ns MD simulations, two bound and two unbound. These
were compared with 15 experimentally determined structures, ten
bound and five unbound, and then evaluated using ROC integrals
(AUC). RT catalyzes the transcription of the single-stranded RNA
viral genome into a double-stranded DNA form and is essential
for HIV replication. As a major drug target, RT is the subject of
substantial structural biology efforts, resulting in more than a 100
related crystal structures deposited in the PDB. The NNRTI
binding pocket is of significant pharmaceutical interest and was
suggested to be remarkably flexible, fluctuating between a “col-
lapsed” inhibitor-free state and an “open” inhibitor-bound state
(see e.g., Refs. (10, 11) and references therein). Moreover, the
NNIBP has been shown to bind to a broad range of NNRTIs,
which bear structurally diverse scaffolds, and were considered
representative of allosteric binding sites.

Docking ligand and assumed decoy compound sets to MD
trajectory snapshots result in a distribution of AUC values for each
of the four simulation ensembles owing to the diversity of the
conformational space sampled by the receptor (9). They allow for
the quantification of virtual screening predictive power, for exam-
ple, by comparison of bound versus unbound receptor ensembles.
MD AUC values were also compared with those from virtual
screening of the same compound library against X-ray crystallog-
raphy models Fig. 5.

Histograms of docking-predictive performance for MD
snapshots show general trends in predictive performance. Poorer
predictive power can be observed by comparing the bound systems
peaks of 0.76 and 0.78 AUC for a-APA and UC-781 bound
systems respectively and the unbound ensemble peak of 0.43 and
0.44 AUC for unbound simulations respectively, and it has been
previously suggested that bound receptors improve virtual screen-
ing predictive power compared with unbound receptors (12). While
bound conformations are markedly better than unbound conforma-
tions, it is interesting to note that a significant part (ca. 20%) of MD
snapshots were more predictive than the most predictive unbound
crystal structure. This example demonstrates the advantage of using
MD for sampling conformations amenable to docking (see Note 7).
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Fig. 5. Dependence of virtual screening predictive power on the receptor structure chosen prior docking. The predictive
power, measured as the area under the curve (AUC) of ROC plots is compared among MD snapshots and X-ray structures
for the bound (a) and unbound (b) HIV reverse transcriptase receptor. Results for MD snapshots are represented
as normalized histogram distributions, while those for crystal structures are represented as vertical lines, indicating
the average AUC (dashed vertical) and extrema of AUC values for the experimental ensemble (solid vertical lines), where n
is the number of structures in the ensemble.

3. Notes

1. It is important to understand what structures are available for
use regarding the target of interest. For some targets, such as
HIV reverse transcriptase, many wild-type and mutant struc-
tures have been deposited into the PDB, cocrystallized with a
variety of ligands and solved under different conditions. Search-
ing by sequence similarity to a crystal structure of interest can be
a quick way to find additional structures of the same target.

2. MD simulations can provide insight on regions of flexibility,
particularly where subtle differences may not be obvious.
Figure 6 illustrates one example of the varying residue flexibil-
ity from two 50 ns simulations of HIV reverse transcriptase
(RT) bound to different inhibitors, «-APA and UC-781
(9, 10). Differences in flexibility of various regions are
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Fig. 6. Different flexibility from inhibitor-bound simulations of the same target. Root-mean-square fluctuations (RMSF) of
the backbone Co atom positions from two different inhibitor-bound molecular dynamics simulations of HIV reverse
transcriptase (RT). (a) 50 ns sampling of RT bound to o-APA, (b) 50 ns sampling of RT bound to UC-781. Chemical
structures of the ligands are shown to the right.
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prominent but not intuitive, such as side chains around residue
275, which are more flexible when o-APA is bound.

3. While free energy alchemical methods have been shown to
estimate free energies of binding more accurately, results
depend highly on initial complex orientations. The ligand
pose generated from docking that is used to initialize a simu-
lation will influence the final results. For example, the Inde-
pendent Trajectory Thermodynamic Integration (IT-TT)
approach presented in Chapter 27, this volume uses replicates
to reduce dependence on the starting structures, and
improved statistics can be collected from such independent
free energy estimates. This is particularly appealing in view of
its easy implementation for distributed computing.

4. Sampling of optimal receptor configurations for ligand-binding
events can vary based on the system. MD trajectories can be
used to generate such configurations. Rare protein configura-
tions have been shown to be important for ligand binding
in FKBP (13). In other cases, the most dominant, frequent
protein configurations promote best binding conditions for a
variety of ligands (6, 14). In some cases, manual selection may
be relevant if a particular residue or residue cluster conforma-
tion is known to be of interest to the user, for example based on
experimental data available (15).
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5. Retrospective analysis of a docking algorithm can be quantified
with an ROC plot (8). The four categories of classified com-
pounds, true positive (TP), false positive (FP), true negative
(TN), and false negative (FN), determine the true positive
rate (i.e., the selectivity; (1)) and false positive rate (i.e., 1-
specificity; (2)) for a given receptor and a chosen threshold X.

TP/(TP + FN), (1)
1 — (IN/(FP +TN)). (2)

The ROC curve plots these metrics, as the threshold changes.
Figure 1 illustrates an example where the threshold is set to
select the top four compounds, while the selectivity and spec-
ificity for the two receptors is distinctly different. Perturbing
the threshold, represented by each point on the plot, then
generates different overall area under the curve (AUC) for the
two conformations of the same protein.

6. The ROC curves are a useful measurement to compare recep-
tors but are limited by dependence on ligand diversity and
protein model. While qualitatively interesting to compare
multiple systems, the integral of the ROC curve (AUC) is
not rigorous for comparing different receptors or different
libraries of compounds. Quantitatively, this metric should
only be used to compare the same receptor in different con-
formations or ensemble conditions.

7. Results from this RT case study suggest that MD conforma-
tions can improve virtual screening results compared to the
exclusive use of X-ray structures. Determining a general
system-independent protocol for mining important structures
prior to docking would be extremely useful (e.g., based on
particular properties of the binding sites like volume, etc.).
However, this is still challenging and might be possible only on
a system-dependent basis. Additionally, exploratory screening
using the AUC measurement on an MD ensemble may be
useful for identifying the best MD conformations prior to a
more extensive virtual screening computation, in a hierarchical
fashion, as suggested previously and schematized in Fig. 3.
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Chapter 8

Virtual Ligand Screening Against Comparative
Protein Structure Models

Hao Fan, John J. Irwin, and Andrej Sali

Abstract

Virtual ligand screening uses computation to discover new ligands of a protein by screening one or more
of its structural models against a database of potential ligands. Comparative protein structure modeling
extends the applicability of virtual screening beyond the atomic structures determined by X-ray crystal-
lography or NMR spectroscopy. Here, we describe an integrated modeling and docking protocol,
combining comparative modeling by MODELLER and virtual ligand screening by DOCK.

Key words: Comparative modeling, Virtual screening, Ligand docking

1. Introduction

Structure-based methods have been widely used in the design and
discovery of protein ligands (1—4). Given the structure of a bind-
ing site on a receptor protein, its ligands can be predicted among a
large library of small molecules by virtual screening (1, 5-11):
Each library molecule is docked into the binding site, then scored
and ranked by a scoring function. High-ranking molecules can be
selected for testing in the laboratory. Virtual screening methods
can significantly reduce the number of compounds to be tested,
thus increasing the efficiency of ligand discovery (12-16).

Many protein structures are relatively flexible, and can adopt
different conformations when binding to different ligands. Dock-
ing a ligand to a protein structure with current methods is most
likely to be successful when the shape of the binding site resembles
that found in the protein-ligand complex. Therefore, the protein
structure for docking is best determined in complex with a ligand
that is similar to the ligand being docked, by X-ray crystallography
or NMR spectroscopy. Induced fit and differences between pro-
tein conformations bound to different ligands limit the utility of
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the unbound (apo) structure and even complex (holo) structures
obtained for dissimilar ligands. The problem of the protein con-
formational heterogeneity is especially difficult to surmount in
virtual screening, which involves docking of many different
ligands, each one of which may in principle bind to a different
protein conformation (17).

An even greater challenge is that many interesting receptors
have no experimentally determined structures at all, especially in
the early phases of ligand discovery. During the last 7 years, the
number of experimentally determined protein structures depos-
ited in the Protein Data Bank (PDB) increased from 23,096
to 67,421 (November 2010) (18). In contrast, over the same
period, the number of sequences in the Universal Protein
Resource (UniProt) increased from 1.2 million to 12.8 million
(19). This rapidly growing gap between the sequence and struc-
ture databases can be bridged by protein structure prediction
(20), including comparative modeling, threading, and de novo
methods. Comparative protein structure modeling constructs a
three-dimensional model of a given target protein sequence based
on its similarity to one or more known structures (templates).
Despite progress in de novo prediction (21, 22), comparative
modeling remains the most reliable method that can sometimes
predict the structure of a protein with accuracy comparable to a
low-resolution, experimentally determined structure (23).

Comparative modeling benefits from structural genomics (24).
In particular, the Protein Structure Initiative (PSI) aims to deter-
mine representative atomic structures of most major protein families
by X-ray crystallography or NMR spectroscopy, so that most of the
remaining protein sequences can be characterized by comparative
modeling (http: /www.nigms.nih.gov /Initiatives /PS1/) (25, 26).
Currently, the fraction of sequences in a genome for whose domains
comparative models can be obtained varies from approximately 20%
to 75%, increasing the number of structurally characterized protein
sequences by two orders of magnitude relative to the entries in the
PDB (27). Therefore, comparative models in principle greatly
extend the applicability of virtual screening, compared to using
only the experimentally determined structures (28).

Comparative models have in fact been used in virtual screening
to detect novel ligands for many protein targets (28), including
G-protein coupled receptors (GPCR) (29-41), protein kinases
(42-45), nuclear hormone receptors, and a number of different
enzymes (14, 15, 46-57). The relative utility of comparative
models versus experimentally determined structures has been
assessed (17, 29, 42, 43, 58-60). Although the X-ray structure
of a ligand-bound target often provides the highest enrichment
for known ligands, comparative models yield better enrichment
than random selection and sometimes performs comparably to
the holo X-ray structure. Recently, we assessed our automated
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| Target sequence |

|

| Template search (3.1.1) |

|

| Target-template alignment (3.1.2) |

|

| Model construction (3.1.3) |

|
| Model selection (3.1.4) |
|
| Binding site preparation (3.2.1) |
|
| Database screens (3.2.2) |

|

Database prioritization
(Ligand enrichment) (3.2.3)

Fig. 1. The automated modeling and docking pipeline. Numbers in parentheses indicate
the corresponding section in the text.

modeling and docking pipeline (17) based on MODELLER (61)
for comparative modeling and DOCK (62, 63) for virtual screen-
ing. We demonstrated that when multiple target models are calcu-
lated, each one based on a different template, the “consensus”
enrichment for multiple models is better or comparable to the
enrichment for the apo and holo X-ray structures in 70% and 47%
cases, respectively; the consensus enrichment is calculated by com-
bining the docking results of multiple structures — for each
docked compound, the best docking score across all structures
was used for ranking the compound — thus, the ranking relied
on optimizing the protein conformation as well as protein-ligand
complementarity. Another similar criterion for ligand ranking was
also described (64).

The modeling and docking protocol is carried out in seven
sequential steps (Fig. 1). Steps 14 correspond to comparative
modeling: (1) template search finds known structures (templates)
related to the sequence to be modeled (target), (2) target-template
alignment aligns the target sequence with the templates, (3) model
construction computes multiple target models based on the input
alignment, (4) model selection identifies the best-scoring model.
Steps 5—7 correspond to virtual screening: (5) binding site prepara-
tion involves creating input files for generating spheres and scoring
grids used in docking, (6) database screening docks database mole-
cules into the binding site, and (7) database prioritization scores and
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ranks the docking poses of the database molecules. Comparative
modeling is carried out by program MODELLER that implements
comparative modeling by satisfaction of spatial restraints derived
from the target-template alignment, atomic statistical potentials,
and the CHARMM molecular mechanics force field (61). The
spatial restraints are combined into an objective function that is
optimized by a combination of conjugate gradients and molecular
dynamics with simulated annealing; this model-building procedure
is formally similar to structure determination by NMR spectroscopy.
Virtual screening is performed by the DOCK suite of programs
(63,65, 66). DOCK uses a negative image of the receptor — spheres
that fill the receptor site — to describe the space into which docked
molecules should fit. Docking poses are generated by matching the
atoms of a small molecule with the centers of the spheres. The
generated poses are evaluated using a grid-based approach in
which interactions between the docked molecules and the receptor
are precomputed at each grid point.

2. Materials

2.1. Software
for Comparative
Modeling

2.2. Database
for Comparative
Modeling

2.3. Software
for Virtual Screening

1. The MODELLER 9v8 program can be downloaded from
http: //salilab.org/modeller/.

2. A typical operation in MODELLER consists of (1) preparing
an input Python script, (2) ensuring that all required files
(e.g., files specitying sequences, structures, alignments) exist,
(3) executing the input script by typing’ mod9v8 input-script-
name’, and (4) analyzing the output and log files. A tutorial
for the use of MODELLER 9v4 or newer is available at
http: //salilab.org/modeller /tutorial /.

1. Sequence database (UniProt90) contains all sequences from
UniProt (clustered at 90% to remove redundancy), and can be
downloaded from http:/salilab.org/modeller,/supplemental.
html.

2. Template sequence database (pdball) contains the sequence
tor each protein structure in PDB, and can be downloaded
from http:/salilab.org/modeller /supplemental.html.

1. DOCK 3.5.54 (62, 63) is available under the UCSF DOCK
license  http://dock.compbio.ucst.edu/Online_Licensing,/
dock_license_application.html (see Note 1). Documentation
for DOCK 3.5 is provided at http://wiki.bkslab.org/index.
php/Image:Dock3_5refman.pdf.
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2.4. Docking
Database of Small
Molecules

2. Third party applications. DMS is a program that calculates the
solvent-accessible molecular surface of the protein binding
site (67), and can be downloaded at http:/www.cgl.ucsf.
edu/Overview/ftp/dms.shar. SYBYL is a commercial molec-
ular modeling program that can build and manipulate mole-
cules (68). In our study, SYBYL is used to add hydrogen
atoms to polar atoms in a protein receptor (in the PDB
format) that contains only non-hydrogen atoms; it can be
downloaded  from  http:/tripos.com/index.php?famil-
y=modules,General. DownloadPortal,Home. Delphi is a pro-
gram that computes numerical solutions of the Poisson-
Boltzmann equation for molecules of arbitrary shape and
charge distribution (69); a request for access to this program
can be made at http:/luna.bioc.columbia.edu/honiglab/
software /cgi-bin/software.pl?input=DelPhi.

1. The Directory of Useful Decoys (DUD) is a docking database
designed to help test docking algorithms by providing chal-
lenging decoys (70). DUD contains a total of 2,950 com-
pounds that bind to a total of 40 targets; in addition, for each
ligand, it also contains 36 “decoys” with similar physical prop-
erties (e.g., molecular weight, calculated LogP) but dissimilar
chemical topology. DUD can be downloaded from http://
dud.docking.org,/r2 /.

3. Method

3.1. Comparative
Modeling of Protein
Structures

3.1.1. Template Search

The automated modeling and docking pipeline will be illustrated
with one example taken from our benchmark study (17), adeno-
sine deaminase (ADA, EC 3.5.4.4). ADA is a metalloenzyme in
whose binding pocket one catalytic zinc ion is coordinated by
three histidine residues and one aspartic acid residue (71, 72).
The bovine ADA has been co-crystalized with a non-nucleoside
inhibitor (PDB code 1INDW). The DUD database was screened
against comparative models and the ligand-bound (holo) crystal
structure of the bovine ADA, to compare the utility of compara-
tive models and holo crystal structures for virtual screening.

First, a file with the bovine ADA sequence in the MODELLER
“PIR” format is prepared (Fig. 2; see Note 2). Then the ADA
sequence is scanned against all sequences in the PDB (stored in file
“pdball”) to identify suitable templates, with the MODELLER
“profile.build” routine (Fig. 3; see Note 3). In this example, one
holo structure (PDB code 1UIO) (73) with 85% sequence iden-
tity to the target and one apo structure (PDB code 2AMX) (74)
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>P1;ADA

sequence:ADA:::::::-1.00:-1.00
TPAFDKPKVELHVHLDGAIKPETILYYGKRRGIALPADTPEELQNIIGMDKPLTLPDFLAKFDYYMPATAGCRDA
IKRIAYEFVEMKAKDGVVYVEVRYSPHLLANSKVEP IPWNQAEGDLTPDEVVSLVNGGLQEGERDFGVKVRSILC
CMRIQPSWSSEVVELCKKYREQTVVAIDLAGDETIEGSSLFPGHVQAY AEAVKSGVHRTVHAGEVGSANVVKEAV
DTLKTERLGHGYHTLEDTTLYNRLRQENMHFEICPWSSYLTGAWKPDTEHAVIRFKNDQVNYSLNTDDPLIFKST
LDTDY(MTKKDMGFTEEEFKRLNINAAKSSFLPEDEKKELLDLLYKAYR/ . *

Fig. 2. File “ADA.ali” in the “PIR” format. This file specifies the target sequence. See the MODELLER manual for the
detailed description of the format.

from modeller import *
log.verbose()
env = environ(}

#-- Read in the template sequence database

sdb = sequence_db{env)

sdb.read(seq_database_file="pdball.pir', seq_database_format="PIR’,
chains_list="ALL")

#-- Write the sequence database in binary form
sdb.write(seq_database_file="pdball.bin’, seq_database_format="BINARY",
chains_list="ALL")

#-- Now, read in the binary database
sdb.read(seq_database_file="pdball.bin', seq_database_formar=BINARY",
chains_list="ALL"

#-- Read in the target sequence/alignment
aln = alignment{env)
aln.append(file="ada.ali', alignment_format="PIR/, align_codes='ADA"

#-- Convert the inpnt sequence/alignment into profile format
prf = aln.to_profile()

#-- Scan sequence database to pick up homologous sequences

pr.build(sdb, matrix_offset=-450, rr_file="${LIB }/blosum62.sim.mat',
gap_penalties_1d=(-500, -50), n_prof_iterations=5,
check_profile=False, max_aln_evalue=0.01, gaps_in_larget=False)

#-- Write out the profile
prf.write(file="search_templates.prf', profile_format="TEXT")

#-- Convert the profile to alignment
aln = prf.to_alignment{)

#-- Write out the alignment
aln,write(file="search_templates.ali', alignment_format="PIR")

Fig. 3. File “search_templates.py.” This script searches for potential template structures
in a database of nonredundant PDB sequences.

with 27% sequence identity are selected as templates (see Note 4),
to be used independently for calculating two models of ADA.

3.1.2. Target-Template For each target-template pair (i.e., ADA-1UIO and ADA-2AMX),
Alignment the target and template sequences are scanned against all sequences
in UniProt90 independently with the “profile.build” routine,
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>P1;ADA

gsequence:ADA:1::+350::::-1.00:-1.00
TPAFDKPKVELHVHLDGATKPETILYYGKRRGTALPADTPEELQNTIGMDKPLTLPDFLAK----FDYYMPATAG
CRDAIKRIAYEFVEMKAKDGVVYVEVRYSPHLLANSKVEPIPWN(AEGDLTPDEVVSLVNQGLREGERDFGVKVR
SILCCMR---HOPSWSSEVVELCKKYREQTVVAIDLAGDETIEGSSLFPGHVQAYAEAVKSGVHRTVHAGE---V
GSANVVKEAVDTLKTERLGHGYHTLEDTTLYNRLROENMHFEICPWSSYLTGAWKPDTEHAVIRFKNDQVNYSLN
TDDPLIFKSTLDTDYQMTKKDMGFTEEEFKRLNINAAKSSFLPEDEKKELLDLLYKAYR/ . *

>P1; 2AMX

structure:2AMY:38::365::::-1.00:-1.00

—————— PKVELHCHLDLTFSAEFFLKWARKYNLQPNMSDDEILDHYLFTKEGKSLAEFIRKAISVSDLYRD----
-YDFIEDLAKWAVIEKYKEGVVLMEFRYSPTFVSSSY - - - ——————— GLDVELTHKAFIKGIKNATELLNNKIH

VALTICISDTGHAAASTKHSGDFATKHKHD -FVGFDHGGRE-ID- - --LKDHKDVYHSVRDHGLHLTVHAGEDATL
PNLNTLYTAINILNVERIGHGIRVSESDELIELVKKKDILLEVCPISNLLLNNVKSMDTHPIRKLYDAGVKVSVN
SDDPGMFLSNINDNYEKLYIHLNFTLEEFMIMNNWAFEKSFVSDDVKSELKALYF----/ . *

Fig. 4. File “align.ali” in the “PIR” format. The file specifies the alignment between the sequences of ADA and 2AMX (A chain).

from modeller import *
from modeller.automodel import *

env = environ(}
env.io.hetatm = True

a = automodel(env, alnfile="align.ali’,
knowns="2AMX’, sequence="ADA")

a.starting model = 1
a.ending model = 500
a.make()

Fig. 5. File “build_model.py.” The script generates 500 models of ADA based on 2AMX
with “automodel” routine.

resulting in the target profile and the template profile, respectively.
Next, the target profile is aligned against the template profile with
the “profile.scan” routine (a sample script is given at http: //salilab.
org/modeller/examples/commands/ppscan.py). The resulting
alignment is presented in Fig. 4, for the 2AMX template
(see Note 5; the ADA-1UIO alignment is not shown).

3.1.3. Mode! Construction Once the target-template alignment is generated, MODELLER
calculates 500 models of the target completely automatically, using
its “automodel” routine (Fig. 5; see Note 6). The best model
(defined in Subheading 3.1.4) is then subjected to a refinement
of binding site loops (see Note 7) with the “loopmodel” routine
(Fig. 6). All three binding site loops were optimized simulta-
neously, resulting in 2,500 conformations of ADA (see Note 8).
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3.1.4. Model Selection

3.2. Virtual Screening
Against Comparative
Models

3.2.1. Binding Site
Preparation

from modeller import *
from modeller.automodel import *

env = environ()
env.io.hetatm = True

#-- Create a new class based on 'loopmodel' to define loop regions
class myloop{loopmodel);
def select_loop_atoms(self);
return selection(self.residue_range('66:A’, "74:A"),
self.residue_range("107:A', '121:A"),
self.residue_range("182:A', '192:A")

m = myloop(env,
inimodel="ADA B39990047.pdb’,
sequence="ada-loop’)
m.loop.starting_model = 1
m.loop.ending model = 2500
m.make()

Fig. 6. File “loop_model.py.” Input script file that generates 2,500 models with the
“loopmodel” routine.

When multiple models are calculated for the target based on a
single template (by “automodel,” and “loopmodel,” if there are
binding site loops), it is practical to select the model or a subset of
models that are judged to be most suitable for subsequent dock-
ing calculations (see Note 9). In this example, for each template,
we select the model with optimized loops that has the lowest value
of the MODELLER objective function (ada-loop.BL16340001.
pdb for 2AMX), which is reported in the second line of the model
file (see Note 10). The most suitable model can also be selected by
the Discrete Optimized Protein Energy (DOPE) (75), which is
calculated using the “assess_dope” routine (see Note 11).

As described in the previous section, a single comparative model
of bovine ADA is selected from models calculated based on the
2AMX template. Another model is selected from models based on
the 1UIO template. The DUD database is then screened against
each of the two models independently. We will only describe the
docking to the ADA model based on 2AMX.

Prepare input files for the automated docking pipeline. The file
containing the ADA model based on 2AMX is renamed to “rec.
pdb,” followed by (1) removing all lines that do not contain
coordinates of non-hydrogen atoms; (2) replacing “HETATM”
in the line containing the coordinates of the zinc ion by
“ATOM?”; and (3) removing all chain identifiers (see Note 12).
Next, the file “xtal-lig.pdb” is created, containing the binding site
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3.2.2. Database Screening

3.2.3. Database
Prioritization

specification in the same format as that of “rec.pdb”. In this
example, the ligand observed in the holo crystal structure of the
target is given in “xtal-lig.pdb”; this ligand is transferred into the
model by superposing the crystal structure on the model using
the binding site residues (see Note 13).

Automated spheves and  scoring grids gemeration. First,
the environment variable “DOCK_BASE” is defined to be the
“dockenv” directory of the DOCK 3.5.54 installation. Second,
file “Makefile” from “dockenv/scripts/” is copied to the current
working directory, which also contains the “rec.pdb” and “xtal-
lig.pdb” files. Third, file “.useligsph” is generated. Finally, com-
mand “make” is executed to generate the spheres and scoring
grids (see Note 14).

The DUD database contains 2950 annotated ligands and 95,316
decoys for 40 diverse targets (70); the DUD database is stored
in 801 DOCK 3.5 hierarchy database files (DUD 2006 version)
(63). Eight hundred and one sub-directories corresponding to
the 801 hierarchy database files are created. In each sub-
directory, two files are required for docking. One is file
“INDOCK?” that contains the input parameters for DOCK
3.5.54 (Fig. 7) (see Note 15). Another file, “split_database_in-
dex,” contains the location and name of the corresponding
database file. In file “INDOCK,” “split_database_index” is
given as the value for the parameter with the keyword “ligan-
d_atom_file.” Docking is performed by running the DOCK
executable “dockenv/bin/Linux/dock” in each sub-directory.
Two output files are produced: (1) the compressed file “test.
eell.gz” contains the docking poses of database molecules in
the extended PDB format and (2) the compressed file “OUT-
DOCK.gz” contains the docking scores for the database mole-
cules as well as the input file names and parameter values.

First, the conformations of database molecules are filtered for steric
complementarity using the DOCK contact score. The conformations

# INPUT

#

mode search
receptor_sphere_file ../sph/match2.sph
ligand atom file split database index
#

# MATCHING

#

distance tolerance
ligand binsize
ligand overlap
receptor binsize
receptor overlap

oM oo Mol
Wb Wk

Fig. 7. A section of file “INDOCK” containing some input parameters for DOCK 3.5.54.
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mol# id num matched nscored nhvy nconfs part.fecn Time

E id_num shape elect + vdW + polscl + apolscl = Total
106 C€03814312 773 145642 18 4536 662.0 0.24

E €03814312 121 -16.44 -18.51 7.06 4.77 -23.12
107 C03814313 825 98854 19 405 136.4 0.21

E C03814313 134 -50.06 -17.63 15.69 5.54 -46.46
108 C€03814313 825 101457 19 405 144.9 0.21

E C03814313 122 -48.88 -16.30 15.19 5.19 -44,80

Fig. 8. A section of file “OUTDOCK.gz” containing docking scores of two DUD molecules.

that do not clash with the receptor are then scored by the DOCK
energy function (the DOCK contact score is not included):

Escore = EvdW + Eelec + AGlig <1>

desolv?’

where E,qw is the van der Waals component of the receptor-ligand
interaction energy based on the AMBER united-atom force field,
Egec is the electrostatic potential calculated by DelPhi, and

AGgfsolv is the ligand desolvation penalty computed by solvmap,
as described in Subheading 3.2.2. For each ligand conformation,
the total energy and all the individual energy terms are written out
to file “OUTDOCK.gz” (Fig. 8; see Note 16). The single confor-
mation with the best total energy is saved in file “test.cell.gz” as
the docking pose of the database molecule. The docking pose of
one ADA ligand—1-deazaadenosine (PubChem ID: 159738,
ZINC ID: C03814313)—is shown in Fig. 11b. After the virtual
screening, the best total energy of each database molecule and the
corresponding molecule ID are extracted from the “OUTDOCK.
gz” files in all sub-directories. The molecules in the docking
database are ranked by their total energies. The top 500 ranked
molecules are then inspected visually. Molecules forming favorable
interactions with the receptor (e.g., a docking pose is similar to
the binding mode found in crystal structures of proteins in the
same family) can be chosen for subsequent experimental testing.

In this benchmark example, we can quantify the accuracy of
modeling and docking by computing the enrichment for the
known ADA ligands among the top scoring ligands:

(ligandselected/ z\]subset)
(ligandrotal/ Motal) ’

where ligand, is the number of known ligands in a database
containing Ny compounds and ligandgejecred 1S the number of
ligands found in a given subset of Nypser coOmpounds. EFg peet
reflects the ability of virtual screening to find true positives among
the decoys in the database compared to a random selection.
An enrichment curve is obtained by plotting the percentage of
actual ligands found (y-axis) within the top ranked subset of all
database compounds (x-axis on logarithmic scale). To measure the
enrichment independently of the arbitrary value of Nypser, We also

EFsubsct = (2>
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Fig. 9. The enrichment curve for virtual screening of the DUD database against the ADA
model based on 2AMX. The ligand enrichment is quantified by the logAUC of 40.3.

calculated the area under the curve (logAUCQC) of the enrichment
plot:

1
logAUC = —————
8 10,5100/
100 .
11gandsubset ( Mubset) }
« _oT Tt g [ elo , 3
; { ligand;al S10 Niotal ®

where 4 is arbitrarily set to 0.1. A random selection (ligandgejecteq/
ligandoral = Nsubset/ Nrotal) Of compounds from the mixture of
true positives and decoys yields a logAUC of 14.5. A mediocre
selection that picks twice as many ligands at any Ngpser as a
random selection has logAUC of 24.5 (ligandejecred/ligand oral
=2x Mubsct/z\]total; Z\]subsct/z\]total < 05> A hlghly accurate
enrichment that produces 10 times as many ligands than the
random selection has logAUC of 47.7 (ligandejecred,/ligand oral
= 10 X Nybser/ Niotal; Neubset/ Neotal < 01) In this Cxample, the
ADA model based on 2AMX yielded the logAUC of 40.3 (Fig. 9).
When multiple structures are available (either models or experi-
mental structures), consensus enrichment can be calculated
(Introduction).

4. Notes

1. The DOCK 3.5.54 source distribution contains four items:

the “dock”, the “dockenv” and the “test” directories, as well
as the “README” file. The DOCK source code and
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executable are in the “dock” directory. Scripts used in the
automated docking pipeline are in the “dockenv” directory.
The binary executable “dock” in “dockenv/bin/Linux/” is
used in the docking calculations.

. The target protein sometimes contains modified residues,

such as carboxylated lysine (KCX) and selenomethionine
(MSE). These modified residues need to be replaced by stan-
dard residues with similar physical and chemical properties (e.
g., KCX by glutamic acid and MSE by methionine).

. MODELLER script for template search.

The environ routine initializes the environment for the mod-
eling run, by creating a new environment object, called env.
Almost all MODELLER scripts require this step, because the
new environment object is needed to build most other useful
objects.

The sequence_db routine creates a sequence database
object sdb that is used to contain large databases of protein
sequences.

The sdb.read and sdb.write routines read and write a
database of sequences, respectively, in the PIR, FASTA, or
BINARY format.

The second call to the sdb.read routine reads the binary
format file for faster execution.

The alignment(env) routine creates a new “alignment”
object (aln). The aln.append routine reads the target sequence
ADA from the file ada.ali, and converts it to a profile object
(prf).

The prf.build routine scans the target profile (prf) against
the sequence database (sdb). Matching sequences from the
database are added to the profile.

. In general, a sequence identity value above ~25% indicates a

potential template, unless the alignment is too short (i.e.,
<100 residues). A better measure of the alignment signifi-
cance is the E-value of the alignment (the lower E-value, the
better; a conservative cut-off is 0.001). Besides the sequence
similarity, template structures can also be chosen on the basis
of other criteria, such as the accuracy of the structures (e.g.,
resolution of X-ray structures), conservation of active-site
residues, and presence of bound ligands.

. Different alignment methods vary in terms of the scoring

function that is being optimized. When the target-template
sequence identity is above 30—40%, different methods tend to
produce very similar alignments. When similarity decreases,
different methods tend to produce widely varying alignments.
An accurate alignment is indicated when different methods,
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such as MUSCLE (76), CLUSTALW (77) and T-coffee (78),
produce similar alignments.

6. Model building with the “automodel” routine.

In the input script build_model.py (Fig. 5), an automodel
object is first created, specifying the alignment file (“align.
ali”), the target (ADA), and the template (2AMX). The mod-
els are calculated by the “make” routine. Five hundred models
for ADA are written out in the PDB format to files called
ADA.B9990[0001-0500].pdb.

Ligands, ions, and cofactors in the template structures are
copied to the target models and treated as rigid bodies, using
the “BLK” functionality of MODELLER.

Models are computed by optimizing the MODELLER
objective function in the Cartesian space. The optimization
begins by the variable target function approach, deploying
the conjugate gradients method, followed by a refinement by
molecular dynamics with simulated annealing. The default
optimization protocol can be adjusted (a sample script is
given at http:/salilab.org/modeller /examples /automo
del/model-changeopt.py).

7. The binding site loops are defined as those binding site resi-
dues in the vicinity of the binding site that were not aligned to
the template structure. The binding site residues may be
chosen based on the prior experimental information (e.g.,
mutagenesis data) and/or sequence conservation within a
family of homologous proteins. In this study, binding site
residues are defined as the residues with more than one non-
hydrogen atom within 10 A of any ligand atom in the target
structure. Thus, three insertions in the ADA-2AMX align-
ment are defined as binding site loops (neighboring residues
within two positions of each insertions are also included)
(Fig. 4).

8. Loop optimization with the “loopmodel” routine. In the input
script “loop_model.py” (Fig. 6), the best-scoring model gen-
erated by “automodel” (ADA.B99990047 .pdb) is used as the
starting conformation, thus defining the loop environment.
Loop regions defined by the “select_loop_atoms” routine are
randomized, followed by optimization with a combination of
conjugate gradients and molecular dynamics with simulated
annealing. Two thousand five hundred models are written out
in the PDB format to files called ada-loop.BL[0001-2500]
0001.pdb. Calculating multiple loop models allows for better
conformational sampling of the unaligned regions. Typically,
for a single 8-residue loop, 50-500 independent optimiza-
tions are recommended (79).
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9.

10.

11.

12.

13.

14.

Most proteins are flexible, often adopting different conforma-
tions when binding to different ligands. Besides the single
best model, it might be helpful to select several sub-optimal
models that are structurally diverse (e.g., selecting the best
model from each conformational cluster of models). When no
target ligand is known, the docking database can be screened
against each of these representative models independently,
followed by combining the screening results. However,
when some target ligands are already known, the best single
model could be selected based on its ability to rank these
known ligands most highly in virtual screening.

The MODELLER objective function is a measure of how well
the model satisfies the input spatial restraints. Lower values of
the objective function indicate a better fit with the restraints.
Models (of the same sequence) can only be ranked by the
same objective function, consisting of the same restraints,
usually derived from the same alignment.

The DOPE is an atomic distance-dependent statistical potential
based on a physical reference state that accounts for the finite
size and spherical shape of proteins (75). By default, the DOPE
score is not included in the model building routine, and thus
can be used as an independent assessment of the accuracy of
the output models. DOPE considers the positions of all
non-hydrogen atoms, with lower scores corresponding to
models that are predicted to be more accurate. A sample script
for generating a DOPE score is given at http:/salilab.org/
modeller/examples/assessment/assess_dope.py.

All lines in “rec.pdb” should start with “ATOM.” If the
receptor contains a cofactor that has not been defined in the
DOCK force field, a dictionary of parameters needs to be
provided for the cofactor. “Structural” water molecules in
the receptor should be renamed as “TIP”.

The binding site can be specified either using a modeled
ligand or residues surrounding the binding pocket. In the
latter case, at least three binding site residues should be
defined in the file “xtal-lig.pdb”; the center of mass of these
residues defines the center of the binding pocket.

Eleven tasks are accomplished by “make” (Fig. 10). (1) Copies
of file “filt.params” (the input file for program FILT) as well as
the “sph” and “grids” directories (containing input files and
parameter files for sphere and scoring grids generation, respec-
tively) are copied from directory “dockenv/scripts/”. (2) Pro-
gram FILT located in “dockenv,/bin/Linux” is used to identify
binding site residues that are within 10 A of any atom in the file
“xtal-lig.pdb”. The result is stored in file “rec.site”. (3) Given
the receptor coordinates in “rec.pdb” and the binding site
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receptor structure {rec.pdb} |

FILT
| hinding site residues {rec.site) |"—| binding site information (xtal-lig.pdb) |
syavt DS |
| binding site surface (rec.ms) | PDBTOSPH
SPHGEN |
protonated receptor receptor-based spheres ligand-based spheres
(rec.crg) (sph) (match.sph)
makesphere1.pl makesphere2.pl
DelPhi spheres matching spheres
(match1.sph) {match2.sph)
DELPH! l makebox.p! l rec.pdb
electrostatic interaction (rec+sph.phi) | | grids box {box) |
DISTMAP l CHEMGRID l SOLVMAP
contact score vdW interaction ligand desolvation
{distmap) (chem vdw) {salvmap)

Fig. 10. Schematic description of the automated preparation of receptor binding site, including sphere and scoring grids

generation.

definition in “rec.site”, the solvent-accessible molecular surface
of the receptor binding site is calculated by the program DMS.
The result is written in the file “rec.ms”. (4) The program
SYBYLis used to add hydrogens on polar atoms to the receptor.
The atomic coordinates of the protonated receptor are written
to the file “grids/rec.crg”. All lines that do not contain atomic
coordinates are removed manually; all lines in “rec.crg” should
start with “ATOM?. (5) The program pdbtosph in “dockenv/
bin/Linux” is used to derive spheres from atom positions in
“xtal-lig.pdb”. The ligand-based spheres are stored in the file
“sph/match.sph”. (6) Spheres in contact with the binding site
surface are generated by the script “rec.ms” relying on the
program sphgen (80) in “dockenv/bin/Linux”. These recep-
tor-based spheres are stored in the file “sph/sph”. (7) Two perl
scripts “makespheresl.pl” and “makespheres2.pl” in “dock-
env/scripts” are used to generate spheres for the binding site
electrostatic potential calculation with DelPhi (DelPhi spheres,
named as “matchl.sph”) and the spheres required for orienting
database molecules in the binding site (matching spheres,
named “match2.sph”), respectively. For both scripts, the
ligand-based spheres “match.sph”, receptor-based spheres
“sph”, and the protonated receptor “rec.crg” need to be
provided as input files. DelPhi spheres occupy a greater volume
than the matching spheres (Fig. 11a). Spheres that are exposed
to bulk water should be removed by hand. (8) The perl script
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Fig. 11. (@) The matching spheres (dark grey) and DelPhi spheres (light grey) generated
for the binding site of the ADA model (cartoon) based on 2AMX. (b) The docking pose
(stick) and the 2D structure of one ADA ligand—1-deazaadenosine (PubChem ID:
159738, ZINC ID: C03814313)—as well as the matching spheres (light grey).

“makebox.pl” in “dockenv/scripts” is used to determine the
location and dimensions of the region in which the scoring grids
will be calculated. This region should enclose the volume that
the ligands are likely to occupy (described by “match2.sph”).
The resulting rectangular box is written out in the file “grids/
box”. (9) The contact score is a summation of the number of
non-hydrogen atom contacts between a database molecule and
the receptor (a contact is any intermolecular distance smaller
than 4.5 A), providing an assessment of shape complementar-
ity. The program distmap (66) in “dockenv/bin/Linux” pro-
duces the grids for contact scoring. Three files are required for
distmap, including the input file “INDIST”, the protonated
receptor “rec.crg”, and the volume of the grids “box”. The
contact grid is produced in the file “grids/distmap” by running
the command “distmap”. (10) The DOCK’s force field score is
the van der Waals interaction energy. The parameters are taken
from the AMBER united-atom force field (81). The program
chemgrid (66) in “dockenv,/bin /Linux” produces the grids for
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15.

force field scoring. The force field grid is written into the file
“grids/chem.vdw” by running the command “chemgrid”. All
receptor residues and atoms need to be defined in the parameter
files “grids/prot.table.ambcrg.ambH” and “grids/vdw.parms.
amb.mindock”, respectively. (11) The electrostatic potential
grid is generated by DelPhi (69). The receptor coordinates in
“rec.crg” and the Delphi spheres in “matchl.sph” are com-
bined into the file “grids/rec+sph.crg”. The DelPhi map is
calculated using a relative dielectric constant of 2 for the volume
defined by the receptor atoms and the spheres in the binding
site, and a relative dielectric constant of 78 for the external
solvent environment. The DelPhi grid is written to the file
“grids/rec+sph.phi” by running the command “./delphi.
com>delphi.log” in the “grids” directory. All receptor residues
and atoms need to be defined in the parameter file “grids/amb.
crg.oxt”. (12) The solvent occlusion grid is calculated by the
program solvmap, for subsequent calculation of the ligand
desolvation penalty (82). Three files are required for solvmap,
including the input file “INSOLV?”, the protonated receptor
“rec.crg”, and the volume of the grids “box”. The solvent
occlusion grid is written into the file “grids/solvmap” by run-
ning the command “solvmap”. The grid file “grids/solvmap”
should not contain any blank lines.

Several examples of file “INDOCK?” are provided in the
directory “dockenv/scripts /calibrate /”. A detailed description
of'the parameters used in INDOCK can be found in the manual
of DOCK 3.5. Here, we describe several parameters that are
often modified to achieve an optimal docking performance
(Fig. 7). The parameter “mode” should be specified as
“search”. In the “search” mode, DOCK generates positions
and orientations for each molecule in the database (virtual
screening). The parameter “receptor_sphere_file” specifies the
file that contains the matching spheres for ligand orientation in
the binding site. Matching spheres can be manually scaled or
relocated to achieve satistying sampling in the desired region (e.
g., catalytic residues suggested by experiments). During dock-
ing, sets of atoms from database molecules match sets of match-
ing spheres, if all the internal distances match within a tolerance
value in Angstroms specified by the parameter “distance_toler-
ance” (65). The choice of the tolerance value depends on the
reliability of the matching sphere sizes and positions, which in
turn is determined by the accuracy of the binding site confor-
mation. We suggest a tolerance value of 1.5 A when docking to
comparative models. The sampling of the ligand positions and
orientations is controlled by four parameters, including
“ligand_binsize”, “ligand_overlap”, “receptor_binsize”,
and “receptor_overlap” (65). “ligand_binsize” and “recep-
tor_binsize” define the width of the bins containing ligand



atoms and matching spheres, respectively. “ligand_overlap”
and “receptor_overlap” define the overlap between the bins
of ligand atoms and matching spheres, respectively. The
increase of either the width of bins or the overlap between
bins will result in more atoms/spheres in each bin. As a conse-
quence, a greater number of matches will be found. Extensive
sampling is achieved by setting the bin size for both ligand and
receptor to 0.4 A, and the overlap to 0.3 A.

As shown in Fig. 8, for each conformation of a database
molecule, two lines are written out in the file “OUTDOCK.
gz”. The scoring results are written in the second line starting
with the letter “E”, followed by the molecule identifier, con-
tact score, electrostatic score, van der Waals score, polar solva-
tion correction, apolar solvation correction, and total energy.
The total energy is a sum of contact score, electrostatic score,
van der Waals score, polar solvation correction, and apolar
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Chapter 9

AMMOS Software: Method and Application

Tania Pencheva, David Lagorce, liza Pajeva, Bruno 0. Villoutreix,
and Maria A. Miteva

Abstract

Recent advances in computational sciences enabled extensive use of in silico methods in projects at the
interface between chemistry and biology. Among them virtual ligand screening, a modern set of
approaches, facilitates hit identification and lead optimization in drug discovery programs. Most
of these approaches require the preparation of the libraries containing small organic molecules to be
screened or a refinement of the virtual screening results. Here we present an overview of the open source
AMMOS software, which is a platform performing an automatic procedure that allows for a structural
generation and optimization of drug-like molecules in compound collections, as well as a structural
refinement of protein-ligand complexes to assist in silico screening exercises.

Key words: 3D structure generation, Structure refinement, Virtual screening, AMMOS, AMMP,
Open source/free software

1. Introduction

Recent advances in computational sciences enabled extensive use
of in silico methods in projects at the interface between chemistry
and biology. Among them virtual ligand screening, a modern set
of approaches, facilitates hit identification and lead optimization
in drug discovery programs (1-3). Nowadays various in silico
methods can be employed for such purposes, i.c., drug-like prop-
erties’ predictions (4, 5), ligand-based virtual screening (i.c.,
chemical similarity search (6-8), pharmacophore search (9)), or
structure-based virtual screening employing docking and scoring
techniques (10-14). Most of these approaches require preparation
of the libraries containing small organic molecules to be screened
(15, 16) or refinement of the virtual screening results (17, 18).
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Here we present an overview of the recently developed
AMMOS (Automated Molecular Mechanics for in silico Screening)
software, which is a platform performing an automatic procedure
that allows for a structural generation and optimization of drug-like
molecules in compound collections, as well as a structural
refinement of protein-ligand complexes. AMMOS makes use of
the open source program AMMP [http:/www.cs.gsu.edu/
~cscrwh /ammp /ammp.html] and contains programs written
in Python and C. It consists of three packages: (1) DG-AMMOS
(19) performs generation of a single 3D conformation of small
drug-like molecules using distance geometry and molecular
mechanics optimization methods; (2) AMMOS_SmallMol (18) is
a package for structural optimization of compound collections that
can be used prior to ligand- or structure-based i silico screening;
(3) AMMOS_ProtLig (18) refines protein-ligand complex struc-
tures by using energy minimization. It performs an automatic
procedure for molecular mechanics minimization allowing different
levels of receptor flexibility—from rigid to fully flexible structures
of the protein.

The packages and source code of AMMOS are freely available
at  http: /www.mti.univ-paris-diderot.fr /en /downloads.html.
AMMOS runs on Linux and Mac OS 10.5 operating systems.
The three AMMOS packages can be downloaded in a tar.gz
format and subsequently uncompressed in a Linux shell. The
packages are supplied with manuals.

2. Methods

The overall structure of the AMMOS platform is shown in Fig. 1.
AMMOS consists of several programs developed in C and Python
and is based on the open source programs AMMP. AMMP is a full-
featured molecular mechanics, dynamics and modeling program
incorporating a fast multipole algorithm for efficient calculation of
long-range forces and robust structural optimizers (20). AMMOS
routines written in C transform the input files (PDB for proteins
and MOL2 for small organic molecules) to a specific “ammp”
format and create molecule template files, required by AMMP,
while the automatization of the procedure (Fig. 1) for a large
number of molecules is accomplished via a Python script.

The initial preparation of molecules, either small drug-like ones
or proteins, is performed by employing the program PREAMMP
(included in the package AMMP). Preparation of small molecules
consists of two steps: (1) creation of templates of the small
molecules required by PREAMMP; (2) running PREAMMP to
convert the templates into “ammp” format. The preparation of a
protein also involves two steps: (1) running PREAMMP to convert
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Fig. 1. Schematic diagram of the AMMOS platform.

2.1. DG-AMMOS
2.1.1. Algorithm

the protein from initial PDB to “ammp” format; (2) running
AMMP autolink to link all amino acid residues. Finally, AMMOS
platform ensures a conversion of the optimized structures from
“ammp” to PDB/MOL2 format and keeps track of the computed
energy values of the molecules, and any warnings that may appear
during the run. All output files are named automatically.

The implemented algorithms and practical details on installation
and running of DG-AMMOS, AMMOS_SmallMol and
AMMOS_ProtLig are described in the next sections.

DG-AMMOS uses Distance Geometry (DG) construction and
optimization via Molecular Mechanics to generate 3D conforma-
tion of small drug-like molecules (see Note 1). The input structure
files required for running DG-AMMOS are in MOL2 format and
are treated as topological only (2D), thus the input atomic coordi-
nates are explicitly set to zero prior to the generation of the 3D
conformation. The initial 3D conformations are constructed using
the distance geometry method GSDG (Gauss-Siedel Distance
Geometry) (21). The GSDG method, as implemented in AMMP
and employed in DG-AMMOS, takes into account bond, angle,
hybrid torsion, and nonbonded (point atom electrostatics and van
der Waals) potentials. The initial structure generated by GSDG
is corrected with molecular mechanics minimization via AMMP
leading to a structure with both reasonable geometry and self-
avoidance (see Note 3). For the minimization stage, DG-AMMOS
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2.1.2. Install and Run

2.1.3. Application Example

2.2. AMMOS_SmaliMol
2.2.1. Algorithm

applies conjugate gradient method with the AMMP force field
sp4 (20) developed on the basis of the UFF potential set (22).
The minimization protocol employs two subsequent steps with
the maximum number of iterations set to 500 and a convergence
value set to 0.02 kcal.mol ™ (these values can be adjusted by the user
if necessary in the script buzld_mol2_dgeom.ammyp in the directory
~DG-AMMOS/progs/vis_min/).

Users can install the package on his own computer by applying the
installation procedure. The makefile execution compiles
the source code automatically and generates executable files for
the programs AMMP, PREAMMP, and DG-AMMOS installed
into the directory ~DG-AMMOS/bin/. In the working directory,
where 3D generation computations will run, the compound col-
lection in MOL2 format and the input parameter file (see e.g., in
the ~DG-AMMOS/example directory) should be present. The
user has to edit this file to give the correct paths and name of
the compound library. To run DG-AMMOS one should type:

> DG-AMMOS.py input_parameter_file

The chart flow of the executable entirely automatic procedure
of DG-AMMOS for the generation of a 3D conformation of small
molecules, from the input file (the compound collection, see Note
2) to the output (the final created 3D conformation of com-
pounds), is shown in Fig. 2. The automatic procedure for a large
number of small molecules is accomplished via the wrapper script
DG-AMMOS.pywritten in Python. A routine mol2_to_templ_sp4.c,
written in C, creates a template file for each small molecule based
on the initial MOL2 file. The script build_mol2_dgeom.ammp
involves the protocol for the 3D structure generation performed
by AMMP via distance geometry and molecular mechanics meth-
ods. DG-AMMOS stores the coordinates of the created 3D struc-
tures, their energies, any warning that may appear during the DG-
AMMOS run, and finally “wrong” molecules in terms of high
energy, if any (see Note 3). The C routine ammp-to-mol2.c con-
verts the generated structures from “ammp” format to MOL2.

Figure 3 shows examples for 3D structures generated by
DG-AMMOS and optimized by AMMOS_SmallMol (see for details
Subheading 2) of five diverse small hit molecules shown to bind
protein targets. Such generated structures, with reasonable confor-
mations and energies, can be used for flexible ligand docking or to
be subjected for multiple conformation generation (see Note 5).

AMMOS_SmallMol performs an automatic procedure for energy
minimization of small molecule structures in chemical libraries for
virtual screening (see Note 4). The molecular mechanics minimi-
zation in AMMOS_SmallMol is based on two force fields available
in AMMP: sp4 (20) or sp5 (23). The entire procedure of
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Fig. 2. Schematic diagram of the DG-AMMOS procedure.

AMMOS_SmallMol, from the input of small molecules (in MOL2
format) to the final minimized structures (also in MOL2 format), is
shown in Fig. 4.

The input files required by AMMP for the minimization
procedures allow selection of the optimization method (by default
Conjugate gradient), and the number of iteration steps (by
default 2 x 500). The advanced user can select any optimization
method available in AMMP and specify the minimization para-
meters (i.e., number of iterations, convergence etc. can be adjusted

by the user if necessary in the script min_ligand.ammp in the
directory ~AMMOS_SmallMol/progs/vis_min/).
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Fig. 3.3D conformations generated by DG-AMMOS (in green) and optimized by AMMOS_SmallMol (in pink) for five
bioactive compounds (45-47). The energies are given in kcal.mol~". The figure was created using Pymol molecular
viewer. (For colour version of this figure, the reader is referred to the Web version of this chapter.)

2.2.2. Install and Run The package AMMOS_SmallMol consists of the programs
AMMP and PREAMMP; as well as the C programs source, Python
scripts and input files for protocols to energy minimize the 3D
structures of the small molecules. The source code is easily com-
piled, hence all executable files are automatically installed into the
directory ~AMMOS_SmallMol/bin/. In the working directory,
where AMMOS_SmallMol computations will run, the compound
collection in MOL2 format and the input parameter file (see e.g.,
in the ~AMMOS_SmaliMol/example directory) should be present.

The user has to edit this file to give the correct paths and the
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Fig. 4. Schematic diagram of the AMMOS_SmallMol procedure.

chemical library name. To run AMMOS_SmallMol for energy
minimization of small molecules one should type:

> AMMOS_SmallMol_sp4.py input_parameter_ file

The procedure could be employed for either sp4 or sp5 force
field (AMMOS_SmallMol_sp5.py tor sp5).

Input compound libraries must be in a standard MOL2 format
with 3D conformations with added hydrogen atoms and charges
(see Note 2). The script min_ligand.ammyp involves the protocol
for the molecular mechanics optimization (see Fig. 4). After running
of AMMOS_SmallMol, the minimized structures will be saved in
MOL2 format. Two files containing the energy of the molecules
before and after minimization, as well as some warning messages (if
they appear during the run) will be also available in the working
directory.



134 T. Pencheva et al.

2.2.3. Application Example

2.3. AMMOS_ProtLig
2.3.1. Algorithm

AMMOS_SmallMol can be applied for a structural optimization of
drug-like (see Fig. 3) molecules that could be helpful prior to dock-
ing or 3D ligand-based virtual screening (see Note 5). AMMOS_
SmallMol procedure for minimization of small compounds has been
previously applied (18) on a chemical library of 37970 molecules
taken from ChemBridge diversity set (http://chembridge.com/
chembridge) with a single conformer generated by Omega 2.0
(http: /www.eyesopen.com). The differences AE obtained between
the energies of the AMMOS_SmallMol minimized and initial struc-
tures generated by Omega have been shown to be up to 200 kcal /
mol (18). For 76% of the molecules AE has been obtained to be
lower than 50 kcal /mol, and for 4% of the compounds AE has been
higher than 100 kcal/mol. Overall, these results and assessments
demonstrate the efficiency of AMMOS in the structural refinement
of'a compound collection.

AMMOS_ProtLig performs an automatic procedure for energy min-
imization of protein-ligand interactions and can be applied on a huge
number of protein-ligand complex structures previously obtained
(see Note 6). The molecular mechanics minimization employed in
AMMOS_ProtLig is also based on the two AMMP force fields: sp4
and sp5. The chart flow of the entire procedure of AMMOS_ProtLig,
from the input of the protein (in PDB format) and predocked ligands’
databank (in MOL2 format) to the final databank of the minimized
protein-ligand complexes is shown in Fig. 5.

Overall, AMMOS_ProtLig follows a scheme similar to the
two packages described above. The main characteristics of
AMMOS_ProtLig is that it allows users to select the level of
protein atom flexibility during the optimization of the protein-
ligand complexes (see Fig. 5). Five different cases for protein
flexibility (scripts written in C) ensure the selection of active
(moving)/inactive atoms of the protein, while, in all cases, the
ligands are treated as flexible:

Case 1: All protein and ligand atoms can move

Case 2: Only the atoms of the protein side chains and of the ligand
can move

Case 3: Only the protein atoms inside a sphere (a user defined para-
meter in input_parameter_file) around the ligand and the
ligand atoms can move

Case 4: Only the atoms of the protein side chains inside a sphere
(user defined parameter) around the ligand and the ligand
atoms can move

Case 5: Only ligand atoms can move, while the whole protein is rigid

Additionally, AMMOS_ProtLig performs:

1. Conversion of the minimized protein from “ammp” to PDB
format;



2.3.2. Install and Run

9 AMMOS Software: Method and Application 135

Docked_ligands.mol2 file input params file

Receptor
Flexdbility.

Protein_min.pdb

Fig. 5. Schematic diagram of the AMMOS_ProtLig procedure.

2. Reranking of all minimized protein-ligand complexes according
to the calculated AMMP protein-ligand interaction energy;

3. In case of multiple docked conformers for a ligand, selection
of the best conformer for each ligand by means of the best
AMMP protein-ligand interaction energy.

AMMOS_ProtLig consists of the programs AMMP and PRE-
AMMP, as well as the C programs source, Python scripts and
input files for the AMMOS_ProtLig energy minimization proto-
cols. After compiling, all executable files will be automatically
installed into the directory ~AMMOS_ProtLig/bin/. In the working
directory where AMMOS_ProtLig computations will be ran, the
following files should be present: the protein target in PDB format,
the compound collection containing the predocked ligands in
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2.3.3. Application Example

MOL2 format and the input parameter file (see in the ~AMMOS_
ProtLig/example directory) that should be edited. To run
AMMOS_ProtLig for energy minimization of protein-ligand com-
plexes one should type:

AMMOS_ProtLig_sp4.py input_parameter_file

The complete automatic procedure could be employed for
either sp4 or sp5 force field (AMMOS_ProtLig_sp5.py tor sp5). By
analogy with AMMOS_SmallMol, experienced users can select
other optimization methods available in AMMP, as well as to
specify the minimization parameters (i.e., number of iterations,
convergence etc. can be changed in the script min_case*.ammp in
the directory ~AMMOS_ProtLig/progs/vis_min/).

After processing, the results are saved in a subdirectory with
suffix OUTPUT. The minimized ligands are saved in MOL2
format and the protein atoms that have been moved are kept in
a separate PDB file. The interaction energy before and after mini-
mization, as well as warning messages (if they appear during the
run) are also provided in the OUTPUT directory.

AMMOS_ProtLig has been validated on several protein targets of
completely different geometries and physicochemical properties of
the binding sites in terms of polarity and topology (14, 18). Here
we illustrate how AMMOS_ProtLig can be useful to improve the
enrichment of virtual screening experiments with an application on
coagulation factor X (FX) (PDB ID 1{0r, resolution 2.10 A). Our
test simulates a real-life virtual screening experiment on a relatively
large compound collection (about 38000 drug-like molecules
taken from the ChemBridge diversity set (http://chembridge.
com/chembridge) after filtering for drug-like properties (5) with
merged 9 known inhibitors of FX with available X-ray structures in
PDB (24). A two-step docking-scoring protocol (i.e., rigid-body
docking with MS-DOCK (25) and subsequent ligand flexible
docking with DOCK®6 (26) has been applied (see for the docking
protocol details (18)). Figure 6 presents the enrichment curves
obtained for FX before and after application of the AMMOS_
ProtLig minimization protocol in all five cases of protein flexibility
considered.

It is seen that 90% of the inhibitors of FX are retrieved in the
top 1% (0.07% in Case 1) of the proceeded database after
AMMOS_ProtLig, while after docking they appear in the first
15%. It can be noted that for FX the AMMOS cases 1, 2, 3, and
4 considering different levels of receptor flexibility achieve very
good enrichment results (see Note 7). Case 5 with a rigid receptor
does not show improvement as compared to the other docking
runs. Thus, for FX, small local receptor flexibility is sufficient to
refine the protein-ligand interactions in the complex (see Note 8).
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Fig. 6. Enrichment graphs after docking with DOCK6 and after AMMOS_ProtLig minimization for FX. The y-axis is the% of
retrieved actives vs. the percentage of the database screened (x-axis): enrichment results after ligand flexible docking
step with DOCKG (blue); enrichment results after rescoring employing AMMOS_ProtLig minimization in Case 1 (magenta),
Case 2 (green), Case 3 (red), Case 4 (brown) and Case 5 (dark green).

3. Notes

1. DG-AMMOS, which is the first package of the AMMOS plat-

form, is an efficient 3D structure generator engine that provides
fast, automated and reliable generation of 3D conformation of
small molecules. Its capabilities have previously been demon-
strated by comparing its performance to other free and commer-
cial programs for 3D structure generation (19, 27). Currently
DG-AMMOS is also employed in the on-line tool Frog2 (28)
that generates 3D structures by a graph decomposition of the
compound using an initial 3D structure rings library. Frog2
embeds the DG-AMMOS algorithm for “on the fly” generation
of missing rings and adds them to the initial ring library.

. DG-AMMOS and AMMOS_SmallMol require a library of

small molecules in protonated form. To speed-up the compu-
tations, atom partial charges can be assigned with the
Gasteiger-Marsili method using the OpenBabel package
(http: //openbabel.sf.net). Users can protonate small mole-
cules using the OpenBabel version 2.0.2 which applies simple
rules to add hydrogens at a given pH with the option “—p” or
to use the Hgene tool of the myPresto package (http:/
medals.jp/myPresto/index.html).
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3. Despite of the relatively good DG-AMMOS performance,

unrealistic structures can be generated by the employed dis-
tance geometry method that could not be corrected by using
gradient based optimization methods. If a very high-energy
strain remains after the optimization process, the structure of
this molecule is written into a separate file. Thus, the user
should pay attention to this point.

. AMMOS_SmallMol additionally refines 3D conformations of

drug-like molecules and can be applied on a huge number of
3D conformations pregenerated with DG-AMMOS or other
free (Frog (29), Frog2 (28), Balloon (30), etc.) or commer-
cial (Omega (http:/www.eyesopen.com), Corina (Corina
Molecular Networks), ContfGen (31), MED-3DMC (32),
see the recent review (9)) programs. It is worth noting that
AMMOS_SmallMol succeed to minimize molecules with very
high initial energies and to improve the geometries (18).

. DG-AMMOS and AMMOS_SmallMol facilitate the prepara-

tion of a compound collection prior to virtual high-throughput
screening. The two widely applied 2% silico approaches, struc-
ture- and ligand-based virtual screening, often require as input
chemical libraries with small molecules in 3D. Up to now,
experimental structural information obtained by X-ray crystal-
lography or NMR spectroscopy are still largely insufficient to
cover the over 50 millions compounds present in databases
worldwide. Thus, the need of computer-generated 3D molecu-
lar structures has clearly been recognized over the years. The
ligand-based virtual screening (machine learning and data
mining methodologies, 3D quantitative-structure-activity-rela-
tionship technologies (3D-QSAR), 3D pharmacophore based
screening and 3D similarity searching methods (7, 8, 33, 34))
applies input information from known active compounds (and
sometimes inactives) to identify diverse chemical compounds
having similar bioactivity or a common substructure or phar-
macophore. Regarding the structure-based approach, single 3D
structures of small drug-like molecules generated by DG-
AMMOS and optimized by AMMOS_SmallMol can be directly
used in a flexible ligand docking process or can be subjected to
multiple conformer generator packages, such as the free tools,
like Multiconf-DOCK (25) or Frog2 (28) for rigid-body
docking.

. AMMOS_ProtLig allows refinement of protein-ligand interac-

tions, and, depending on the level of protein flexibility, restores
to a different extent the interactions identified for instance in
the experimental structures of protein-ligand complexes stud-
ied. It can be applied on a huge number of protein-ligand
complexes pregenerated with existing docking programs
(see several reviews on main docking programs (11-13)).
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Today various docking programs, commercial or free for
academics, are available. Among the ones that are usually freely
available to academics and commonly used we can cite DOCK
(26), AutoDock (35), and the recently reported AutoDock-
Vina (36), while, for the commercial ones we note GOLD
(37), LigandFit (38, 39), ICM (40) and many others (13).

. AMMOS_ProtLig is known to offer solutions that assist iz

stlico screening projects such as improvement of the enrich-
ment after docking, especially when protein flexibility is
required, as seen here for coagulation FX. Further, an impor-
tant point to improve the enrichment results might be treat-
ing the desolvation due to ligand binding. Advanced users can
include several explicit water molecules in the binding site
during the minimization keeping in mind that in most of
cases water molecules are not included during the docking
process.

. We currently work on the optimization of AMMOS_ProtLig.

We should note that in some situations protein-ligand inter-
actions can induce large receptor conformational changes that
cannot be considered by molecular mechanics minimizations,
and other approaches like molecular dynamics (41, 42) or
normal mode analysis (43, 44) seem more appropriate to
take into account these phenomena. Thus, our goal in the
next version of AMMOS_ProtLig, which is under develop-
ment, is to enable the treatment of larger receptor conforma-
tional changes and an automated scheme that would take into
consideration of the desolvation effects.

Acknowledgement

We thank the financial supports from the INSERM and University
Paris Diderot. TP, MM and IP acknowledge the support of the
Bulgarian National Science Fund (grants No. DTKO02 /58 and

No. DO02/52).

References

1. Shoichet BK (2004) Virtual screening of
chemical libraries. Nature 432:862-86.

2. Villoutreix BO, Bastard K, et al (2008) In silico-

in vitro screening of protein-protein interac-
tions: towards the next generation of therapeu-
tics. Curr Pharm Biotechnol 9:103-12.

.Clark D (2008) What has virtual screening
ever done for drug discovery? Expert Opin
Druy Discov 3:841-85.

4. Vistoli G, Pedretti A and Testa B (2008)

Assessing drug-likeness—what are we missing?
Druy Discov Today 13:285-29.

. Lagorce D, Sperandio O, et al (2008)

FAF-Drugs2: free ADME /tox filtering tool
to assist drug discovery and chemical biology
projects. BMC Bioinformatics 9:396

.Downs GM and Willett P (1995) Similarity

searching in databases of chemical structures,



140

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

T. Pencheva et al.

In Reviews in  Computational Chemistry
(Lipkowitz KB, and Boyd DB, Eds.),
pp 67-117, VCH Publishers NY

. [http: /www.eyesopen.com ] ROCS software
.Sperandio O, Andrieu O, et al (2007)

MED-SuMolLig: A New Ligand-Based
Screening Tool for Efficient Scaffold
Hopping. J Chem Inf Model 47:1097-111.

. Schwab CH (2010) Conformations and 3D

pharmacophore searching. Drug Discovery
Today: Technologies 7:¢245-53.

Kuntz ID (1992) Structure-based strategies
for drug design and discovery. Science
257:1078-108.

Leach AR, Shoichet BK and Peishoff CE
(2006) Prediction of protein-ligand interac-
tions. Docking and scoring: successes and
gaps. | Med Chem 49:5851-585.

Bottegoni G, Kufareva I, et al (2009) Four-
dimensional docking: a fast and accurate
account of discrete receptor flexibility in
ligand docking. J Med Chem 52:397-40.
Sperandio O, Villoutreix BO and Miteva MA
(2010) Structure-Based Virtual Screening, In
In silico lead discovery (Miteva MA, Ed.),
Bentham Science Publishers

Pencheva T, Soumana OS, et al (2010)
Post-docking virtual screening of diverse bind-
ing pockets: comparative study using DOCK,
AMMOS, X-Score and FRED scoring func-
tions. Eur | Med Chem 45:2622-262.

Bologa CG, Olah MM and Oprea T (2006)
Chemical database preparation for compound
acquisition or virtual screening. Methods Mol
Biol 316:375-38.

Lagorce D, Sperandio O, et al (2010) Chemi-
cal libraries for virtual screening, In In silico
lead discovery (Miteva MA, Ed.), Bentham Sci-
ence Publishers

Huang N, Kalyanaraman C, et al (20006)
Molecular mechanics methods for predicting
protein-ligand binding. Phys Chem Chem Phys
85166-517.

Pencheva T, Lagorce D, et al (2008)
AMMOS: Automated Molecular Mechanics
Optimization tool for in silico Screening.
BMC Bioinformatics 9:438

Lagorce D, Pencheva T, et al (2009) DG-AM-
MOS: A New tool to generate 3D conforma-
tion of small molecules using Distance
Geometry and  Automated  Molecular
Mechanics Optimization for i silico Screen-
ing. BMC Chem Biol 9:6

Weber IT and Harrison RW (1997) Molecular
mechanics calculations on Rous sarcoma virus

protease with peptide substrates. Protein Sci
6:2365-237.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Crippen GM and Havel TF (1988) Distance
geometry and molecular conformations, Wiley,
New York

Rappé AK, Casewit CJ, et al (1992) UFF,
a full periodic table force field for mole-
cular mechanics and molecular dynamics

simulations. ] Am  Chem  Soc 114
10024-1003.
Bagossi P, Zahuczky G, et al (1999) Improved

parameters for generating partial charges:
correlation with observed dipole moments.
J Mol Model 5:143-15.

Berman HM, Westbrook J, et al (2000) The

Protein Data Bank. Nucleic Acids Res
28:235-24.
Sauton N, Lagorce D, et al (2008)

MS-DOCK: Accurate multiple conformation
generator and rigid docking protocol for
multi-step virtual ligand screening. BMC Bio-
informatics 9:184

Moustakas DT, Lang PT, et al (2000)
Development and validation of a modular,
extensible docking program: DOCK 5.
J Comput Aided Mol Des 20:601-61.

Lagorce D, Villoutreix BO and Miteva MA
(2011) Three-dimensional structure genera-
tors of drug-like compounds: DG-AMMOS,
an open-source package. Expert Opinion on
Druyy Discovery 6:339-51

Miteva MA, Guyon F and Tuffery P (2010)
Frog2: Efficient 3D conformation ensemble
generator for small compounds. Nucleic
Acids Res 38 Suppl:-W622-62.

Leite TB, Gomes D, et al (2007) Frog: a FRee
Online druG 3D conformation generator.
Nucleic Acids Res 35W568-57.

Vainio MJ and Johnson MS (2007) Generat-
ing conformer ensembles using a multiobjec-
tive genetic algorithm. J Chem Inf Model
47:2462-247.

Watts KS, Dalal P, et al (2010) ConfGen: a
conformational search method for efficient
generation of bioactive conformers. | Chem
Inf Model 50:534-54.

Sperandio O, Souaille M, et al (2009)
MED-3DMC: a new tool to generate 3D
conformation ensembles of small molecules
with a Monte Carlo sampling of the conforma-
tional space. Eur | Med Chem 44: 1405-140.
Verma J, Khedkar VM and Coutinho EC
(2010) 3D-QSAR in drug design—a review.
Curr Top Med Chem 10:95-11.

Renner S and Schneider G (2006) Scaftold-
hopping potential of ligand-based similarity
concepts. ChemMedChem 1:181-18.
Osterberg F, Morris GM, et al (2002)
Automated docking to multiple target



36.

37.

38.

39.

40.

41]1.

9 AMMOS Software: Method and Application

structures: incorporation of protein mobility
and structural water heterogeneity in Auto-
Dock. Proteins 46:34—4.

Trott O and Olson AJ (2010) AutoDock Vina:
Improving the speed and accuracy of docking
with a new scoring function, efficient optimi-
zation, and multithreading. J Comput Chem
31:455-46.

Verdonk ML, Chessari G, et al (2005)
Modeling water molecules in protein-ligand
docking using GOLD. ] Med Chem 48:
6504-651.

Venkatachalam CM, Jiang X, et al (2003)
LigandFit: a novel method for the shape-
directed rapid docking of ligands to protein
active sites. | Mol Graph Model 21:289-30.
Montes M, Miteva MA and Villoutreix BO
(2007) Structure-based virtual ligand screen-
ing with LigandFit: pose prediction and
enrichment of compound collections. Proteins
68:712-72.

Cavasotto CN and Abagyan RA (2004) Pro-
tein flexibility in ligand docking and virtual
screening to protein kinases. | Mol Biol
337:209-22.

Amaro RE, Minh DD, et al (2007) Remark-
able loop flexibility in avian influenza N1 and

42.

43.

44.

45.

46.

47.

141

its implications for antiviral drug design. J Am
Chem Soc 129:7764-776.

Miteva MA, Robert CH, et al (2010) Receptor
flexibility in ligand docking and virtual screen-
ing, In In silico lead discovery (Miteva MA,
Ed.), Bentham Science Publishers

Cavasotto CN, Kovacs JA and Abagyan RA
(2005) Representing receptor flexibility in
ligand docking through relevant normal
modes. J Am Chem Soc 127:9632-964.
Sperandio O, Mouawad L, et al (2010) How
to choose relevant multiple receptor confor-
mations for virtual screening: a test case of
Cdk2 and normal mode analysis. Eur Biophys
J 39:1365-137.

Segers K, Sperandio O, et al (2007) Design of
protein-membrane interaction inhibitors by
virtual ligand screening, proof of concept
with the C2 domain of factor V. Proc Natl
Acad Sci USA 104:12697-1270.

Montes M, Braud E, et al (2008) Receptor-
based virtual ligand screening for the identifica-
tion of novel CDC25 phosphatase inhibitors.
J Chem Inf Model 48:157-16.

Wells JA and McClendon CL (2007) Reaching
for high-hanging fruit in drug discovery at pro-
tein-protein interfaces. Nature 450:1001-100.






Chapter 10

Rosetta Ligand Docking with Flexible XML Protocols

Gordon Lemmon and Jens Meiler

Abstract

Rosettaligand is premiere software for predicting how a protein and a small molecule interact. Benchmark
studies demonstrate that 70% of the top scoring Rosettaligand predicted interfaces are within 2 ARMSD
from the crystal structure [1]. The latest release of Rosetta ligand software includes many new features,
such as (1) docking of multiple ligands simultaneously, (2) representing ligands as fragments for greater
flexibility, (3) redesign of the interface during docking, and (4) an XML script based interface that gives
the user full control of the ligand docking protocol.

Key words: Rosetta, Rosettaligand, Ligand, Docking, Small molecule, Flexible, Flexibility,
Interface

1. Introduction

Rosetta is a suite of applications used in protein modeling (2).
These applications have proven themselves in the areas of
protein structure prediction (3), protein-protein docking (4),
protein design (5), and protein-ligand docking (1). In 2006
Rosettalligand was introduced as premier software for modeling
protein/small molecule interactions. Rosettaligand samples
the rigid body position and orientation of the ligand as well as
side-chain conformations using Monte Carlo minimization.
Ensembles of ligand conformations and protein backbones were
used to sample conformational flexibility. The models produced by
Rosettaligand conformational sampling are evaluated with a scor-
ing function that includes an electrostatics model, an explicit orien-
tation-dependent hydrogen bonding potential, an implicit solvation
model, and van der Walls interactions (1). Default ligand-
centric score term weights are provided through “ligand.wts”
and “ligand_soft_rep.wts” (see the SCOREFXNS section of

Riccardo Baron (ed.), Computational Drug Discovery and Design, Methods in Molecular Biology, vol. 819,
DOI 10.1007/978-1-61779-465-0_10, © Springer Science+Business Media, LLC 2012
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e

Fig. 1. Multiple ligand docking. Black curve represents a protein interface. Square and circle represent two ligands.
Often multiple ligands, cofactors, water molecules, and ions interact with a protein in a synergistic manner to produce
the resultant interface structure. Using ligand docking software to dock each of these components separately (/eft) may
fail to capture protein induced-fit effects. Simultaneous docking of multiple ligands (right) with backbone and side-chain
flexibility improves modeling of interfaces—especially those with induced-fit effects.

Fig. 2). However we have found that optimizing these score term
weights for a particular class of protein/ligand complexes can
greatly improve predictions (see Note 1).

Rosettaligand was later enhanced to allow receptor back-
bone flexibility as well as greater ligand flexibility (6). Both ligand
flexibility and backbone flexibility were shown to improve self-
docking and cross-docking scores and lead to better performance
than the open-source competitor AutoDock. Ligand flexibility
was modeled by sampling ligand conformers and minimizing
ligand torsion angles. Backbone flexibility included selecting
stretches of residues near the ligand and sampling phi/psi angles
for those residues, using a gradient based minimization (6).
Libraries of ligand conformers can be generated using methods
presented by Kaufmann et al. (7). These features have enabled
Rosetta to excel in predicting how pharmaceutically relevant
compounds interact with their target (8).

In this chapter we present new features and enhancements
to Rosettaligand. Multiple ligands, cofactors, ions, and key
water molecules can now be docked simultaneously (Fig. 1).
User provided ligand conformations are now sampled during
docking, along with protein side-chain rotamer sampling. Inter-
face residue identities can now be redesigned during docking.
A new XML script format is used to describe the ligand docking
protocol (Fig. 2). This adds great flexibility for the user to
customize their docking study.
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This protocol will simply do low-reselution followed by high-resolution dacking.
It will also report the binding energy (ddg) and buried-surface area {sasa) in the score file,
<ROSETTASCRIPTS>
<SCOREFXNS>
<ligand_soft_rep weights=ligand_soft_rep>
<Reweight scoretype=hack_elec weight=0.42/>
</ligand soft rep>
<hard_rep weights=ligand>
<Reweight scoretype=hack_elec weight=0.42/>
</hard_rep>
</SCOREFXNS>
<LIGAND_AREAS>
<docking_sidechain chain=X cutoff=6.0 add_nbkr_radius=true all_atom_mode=true minimize_ligand=10/>
<final sidechain chain=X cutoff=6.0 add nbr radius=true all atom mode=true/>
<final_backbone chain=X cutoff=7.0 add_nbyr_radius=false all_atom_mode=true Calpha_restraints=0.3/>
</LIGAND_AREAS:>
<|NTERFACE_BUILDERS:>
<side_chain_for_docking ligand_areas=docking_sidechain/>
<side_chain_for_final ligand_areas=final_sidechain/>
<backbone ligand_areas=final_backbone extension_window=3/>
</INTERFACE_BUILDERS:-
<MQOVEMAP_BUILDERS>
«<daocking sc_interface=side_chain_for_docking minimize_water=true/>
<final sc_interface=side_chain_for_final hl_interface=backbone minimize_water=true/>
</MOVEMAP_BUILDERS>
<MCVERS>
single movers
<StartFrom name=start_from chain=X>
<Coordinates x=-1.731 y=32.589 z=-5.039/>
</StartFrom:
<Translate name=translate chain=X distribution=uniform angstroms=0.01 cycles=50/>
<Rotate name=rotate chain=X distribution=uniform degrees=360 cycles=1000/>
<SlideTogether name=slide_together chain=X/>
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<HighResDocker name=high_res_docker cycles=6 repack_every_Nth=3 scorefxn=ligand_soft_rep movemap_builder=docking/>

<FinalMinimizer name=final scorefxn=hard_rep movemap_builder=final/>
<InterfaceScoreCalculator name=add_scores chains=X scorefxn=hard_rep native="inputs/7cpa_7cpa_native.pdb"/>
compound movers
<ParsedPrctocol name=low_res_dodk>
<Add maver_name=start_from/>
<Add mover_name=translate/>
<Add mover_name=rotate/>
<Add mover_name=slide_together/>
</ParsedProtocol>
«<ParsedProtocol name=high_res_doclk>
<Add mover_name=high_res_docker/>
<Add mover_name=final/>
</ParsedProtocal>
</MCVERS>
<PROTOCOLS>
<Add mover_name=low_res_dock/>
<Add mover_name=high_res_dock/>
<Add mover_name=add_scores/>
</PROTOCOLS>
</ROSETTASCRIPTS>

Fig. 2. Ligand docking using rosetta_scripts compatible XML. This protocol will do low-resolution docking followed by
high-resolution docking. “Compound movers” group simple movers for clarity. The parameters in this protocol replicate

those used by Davis et al. (6).

2. Materials

Rosettaliigand is part of the Rosetta software suite for protein
structure prediction. Visit http: //www.rosettacommons.org,/ to
obtain a license, download the latest release, and read the manual
tor help installing the software. The information in this tutorial
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2.1. Preparation
of Protein PDB
Input File

applies to Rosetta version 3.2. Read the documentation about
how to run Rosetta executables using command line or flag file
options  (http: //www.rosettacommons.org,/manuals /archive /
rosetta3.1_user_guide /command_options.html). Read the tuto-
rial entitled “Dock Design Parser Application” (http://www.
rosettacommons.org,/manuals /archive /rosetta3.1_user_guide/
app_dock_design.html). This guide describes an XML format
that is now used for all aspects of ligand docking.

Assure that the protein PDB has at least one backbone heavy
atom present for each residue. Rosetta can add missing atoms to
incomplete residues. If a residue is completely missing use loop
building to add its coordinates. Follow the loop building tutorial
(http: //www.rosettacommons.org,/manuals /archive /rosetta3.1_
user_guide/app_loop.html). Assure that residues are numbered
in sequence. Rosetta will renumber residues if they are not. Assure
that each ligand, cofactor, water molecule, or ion you wish to dock
is assigned its own chain ID.

Rosettaliigand has been successful in comparative modeling (9),
where an experimental structure of the protein of interest is not
available. In this case, a sequence alignment is made between the
protein of interest and a homologous protein with similar sequence.
The three-letter codes in the PDB file of the homologous protein
are replaced with the three-letter codes of the protein of interest,
according to the sequence alignment and side chain conformations
are reconstructed using a rotamer library. If the protein of interest
has insertions, loop modeling is used to fill in missing density.

Since ligand docking only repacks side-chain residues within
the interface, we first repack all side-chain residues in the protein
using the same score function that will be used in ligand docking.
By optimizing unbound and bound protein structures using the
same scoring function, we ensure that predicted binding affinity is
based strictly on changes related to ligand docking. The following
XML code can be used for repacking the unbound structure
within rosetta_scripts.

<SCOREFUNCTION>
<hard_rep weights=ligand>
</SCOREFUNCTION>
<MOVERS>
<Repack name=repack score_function= hard_rep>

<MOVERS>
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2.3. Relevant
Command Line
or Flags File Options
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If you are starting with a ligand in PDB format, first convertit to .
mol or .mol2 format. Use <rosetta_source>/src/python/apps/
mol_to_params.py to generate a ligand params file and a ligand
PDB file with Rosetta atom types. The .params file describes
partial charges, atom types, bond lengths, bond angles, torsion
angles, and atom types for each residue. Append the atoms in the
generated ligand pdb file onto the end of the prepared protein
PDB file.

If you are interested in large-scale ligand flexibility, generate
conformations for your ligand using OpenEye’s Omega (http://
www.eyesopen.com/omega) or MOE (http: //www.chemcomp.
com). These conformations should be in one PDB format
separated by TER statements. Add the line “PDB_ROTAMERS
<location of PDB file with ligand conformations>” to the end of
your .params file.

If your ligand has more than 7 rotatable bonds or if over
100 conformations are required to fully cover the conforma-
tional space of your ligand, split it into several smaller fragments.
Specity split points at the bottom of your .mol or .mol2 file
before running molfile_to_params.py in this fashion: “M SPLT
<index 1> <index 2> where indices 1 and 2 correspond to the
atom number in the .mol or .mol2 file (the ATOM block line
number). molfile_to_params.py will generate a .params file for
each fragment.

Rosetta applications use a common set of options that can
be specified either at the command line or in a file. Not all Rosetta
options are relevant or accessed by each Rosetta application.
The options below are most commonly used with ligand docking.
An asterix signifies a required option.

1. —in:path:database <path to Rosetta database>. The Rosetta
database directory is downloaded from www.rosettacom-
mons.org and contains chemical descriptions of each amino
acid as well default score term weights.

2. —in:file:s <space delimited list of PDB files containing protein
and ligand(s)>. Alternatively use —in:file:list.

3. —in:file:list <text file with two or more PDB files listed on each
line>. This option is especially useful for processing batches of
proteins and ligands. PDBs on the same line are concatenated
for docking.

4. —in:file:extra_res_fa <space delimited list of .params files for
each ligand>. See Subheading 2.2 for preparation of these
.params files. Alternatively use -in:file:extra_res_path.

5. —in:file:extra_res_path <path to find .params files>. All files
in this directory that end with “.param” or “.params” will be
included in docking.
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6. —out:nstruct <number of models to produce per input
PDB>. See Note 2 on determining how many models to
produce.

7. —out:file:atom_tree_diff <name of output file>. In atom_
tree_output files only differences from a reference structure
are recorded. Since output models usually only differ within
the interface region, much less disk space is used by only
recording differences.

8. —parser:protocol <name of rosetta_scripts XML file>. This
file allows the user to customize each step of ligand docking.

9. —packing:exl, packing:ex2. These options provide larger
(more fine-grained) rotomer libraries for conformational
sampling of amino acid side chains. This can improve results
but also increases compute times.

3. Methods

3.1. StartFrom

3.2. Translate

The Rosettaligand protocol has been implemented as an XML
script used with rosetta_scripts. Instead of providing a separate
Rosettaligand executable, the user creates an XML script that
describes each of the pieces of ligand docking, and passes this script
to the rosetta_scripts executable. This provides a large degree of
flexibility to the user, and allows him or her to create novel
approaches to ligand docking. In this section XML scriptable com-
ponents directly related to ligand docking are described. Figure 1
combines these components into a complete ligand docking proto-
col that replicates the previously published protocol. Hundreds
of additional components that are not ligand-centric are available
and described in the rosetta_scripts documentation found in
the user guide. The XML components below are presented in
the order in which they would be used during ligand docking.

Provide a list of possible xyz starting Coordinates for your
ligand. One of these points is chosen at random and the ligand
specified by the chain parameter is recentered at this position.

<StartFrom name=(string) chain=(string) />
<Coordinates x=(float) y=(float) z=(float)/>

</StartFrom>

Randomly move the ligand up to a specified distance in any
direction from its starting position. If you are confident about
your ligand’s starting position and seek only to fine tune this
position, consider selecting from a gaussian distribution,
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where the specified angstroms represent one standard deviation
from the starting point. If the random translation lands the ligand
on top of another protein (as evaluated by the repulsive score
term), then try another random translation. Repeat this cycles
number of times before giving up and leaving the ligand at the
starting point.

<Translate name=(string) chain=(string)

distribution=[uniform|gaussian] angstroms=(float) cycles=(int)/>

Randomly rotate the ligand through all rotational degrees of free-
dom. Specify 360° for full rotational freedom. Cycles in this case
is much more complicated than seen in Translate. Perform up to
cycles random rotations of the ligand. Only rotations that pass
a Lennard-Jones attractive and repulsive score filter are stored. Also,
rotations that are close in RMSD to other rotations are not stored.
Once a minimum number of diverse structures are collected (this
minimum is 5 times the number of ligand rotatable bonds) one of
these structures is chosen at random as the starting structure. If no
structures passed the attractive and repulsive filter just select the
rotation with the best attractive and repulsive score.

This somewhat complicated rotation selection scheme is
designed to enrich for hard to find poses, which fit in tight cavities
for instance. By storing only rotations that pass an energy filter we
limit ourselves to rotations that are close to the protein but do not
clash with it. By storing only poses with a minimum RMSD from
each other, we increase the probability of selecting “hard to find”
poses (classes of similar ligand orientations that easily fit in the
interface are only stored once). If you prefer to accept the first
rotation, without filtering, just use cycles = 1.

<Rotate name=(string) chain=(string)

distribution=[uniform|gaussian] degrees=(int) cycles=(int) />

After an initial random positioning of the ligand, the ligand must
be moved into close proximity to the protein. S1ideTogether
moves the ligand toward the protein, 2 A at a time, until the two
collide (as evidenced by a positive repulsive score). The step size
is halved several times (1, 0.5, and 0.25 A) to minimize the
distance between the ligand and the protein. This step proves
to be crucial to Rosetta ligand docking. Without it interactions
between amino acid side chains and the ligand are rare.

<SlideTogether name="&string" chain="&string"/>

During high resolution docking, cycles of rotamer trials
(sampling of side chain rotamers, one side chain at a time)
and repacking (simultaneous sampling of rotamers for multiple
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3.6. FinalMinimizer

3.7. InterfaceScore
Galculator

side chains) are combined with small movements of the ligand(s).
The size of these movements is described by the high res_
angstroms and high_res_degrees options of LIGAND_AREAS
(see Note 3). LIGAND_AREAS are part of INTERFACE_BUILDERS
(see Note 4) which are part of MOVEMAP_BUILDERs (see Note 5).

The movemap_builder describes which protein residues
to include in rotamer trials, repacking, and minimization. If a
resfile is provided, interface residues are allowed to redesign
(change amino acid identity), according to instructions provided
in the specified file. Resfiles can also be specified through the
command line flag “-packing:resfile.” Resfile support allows pro-
tein interfaces to be optimized for particular ligands.

The user specifies how many cycles of docking and how
often to do a full repack (repack_every_Nth—only rotamer
trials occur in the other cycles). After each cycle the structure is
minimized. If minimize_ligand values were specified in
LIGAND_AREAS then ligand torsion angles are minimized as
well. Monte Carlo sampling is used with a Boltzmann criterion to
determine whether to accept or reject the new structure after each
cycle. If a tether_ligand value greater than 0 is specified in
LIGAND_AREAS, the ligand will be remain within the specified
distance (in angstroms). tether_ligand prohibits multiple
cycles of small translations in the same direction from moving the
ligand farther than desired.

<HighResDocker name="string" cycles=(int) repack_every_ Nth=(&int)

scorefxn="string" movemap_builder="string" resfile="string"/>

Minimize the structure of the docked protein/ligand complex.
This includes off-rotamer side-chain torsion angle sampling.
The movemap_builder specifies which residues to minimize.
If calpha_restraints were specified in LIGAND_AREAS then
backbone ¢/ angles are minimized as well.

<FinalMinimizer name=(string) chain=(string) scorefxn=(string)
movemap_builder=(string) >

</FinalMinimizer>

This component calculates a myriad of ligand specific scores and
appends them to the output file. After scoring the complex the
ligand is moved 1,000 A away from the protein. The model is
then scored again. An interface score is calculated for each score
term by subtracting separated energy from complex energy.
If a native structure is specified, four additional score terms are
calculated:

1. ligand_centroid_travel. The distance between the native
ligand and the ligand in our docked model.
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2. ligand_radious_of _gyration. An outstretched conformation
would have a high radius of gyration. Ligands tend to bind
in outstretched conformations.

3. ligand_rms_no_super. RMSD between the native ligand and
the docked ligand.

4. ligand_rms_with_super. RMSD between the native ligand
and the docked ligand after aligning the two in XYZ space.
This is useful for evaluating how much ligand flexibility was
sampled.

<InterfaceScoreCalculator name=(string) chains=(comma separated

chars) scorefxn=(string) native=(string) />

Figure 2 presents an XML script that replicates the protocol pre-
sented in Davis, 2009 (6). Because of the flexibility of ligand
docking through RosettaScripts, it is easy to customize this pro-
tocol. For instance high throughput virtual screening of libraries
of compounds can be accomplished by spending more time in low
resolution docking. Results from low resolution docking can be
filtering and used for high resolution docking. A variety of XML
elements not specific to ligand docking can also be included as
part of a docking study (see the Subheading 2).

A customized ligand docking protocol must take into con-
sideration the number of desired output models (see Note 2), and
the amount of time it will take to produce each model, given the
available hardware (see Note 6). Best energy output models
are then selected for further analysis (see Note 7), and used to
generate testable hypotheses about protein/ligand interactions.

4. Notes

1. Score Term reweighting.
The ligand weights specified in the database file “new.ligand.
wts” perform well on a benchmark of diverse protein/ligand
complexes. However results can be improved if weights are
optimized for the class of protein/ligand interactions one is
interested in. We recently used a leave-one-out analysis to
improve the correlation between experimental binding energy
and rosetta predicted binding energy for HIV-1 protease
mutants bound to various protease inhibitors. The leave-
one-out weight optimization improves the correlation coefhi-
ceint from 0.31 to 0.71.

2. How many models should I make?
The number of models one should make is largely determined
by how large of an interface one is sampling. For this reason
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carefully describing the size and shape of an interface can
save much compute time. By adjusting the angstroms
parameter of Translate and adding more StartFrom
Coordinates, a user can restrict sampling to a smaller area.
Another strategy is to create a limited number of models, then
cluster the results based on RMSD (see Subheading 4, step 4).
Select several low energy clusters for further analysis. Select
a model from each cluster. Use these models in ligand
docking studies, after decreasing the size of angstroms in
the Translate mover.

. LIGAND_AREAS.

LIGAND_AREAS describe parameters specific to each ligand,
useful for multiple ligand docking studies (Fig. 1). cutoff
is the distance in angstroms from the ligand an amino-acid’s
C-beta atom can be and that residue still be part of the inter-
face. all_atom_mode can be true or false. If all_
atom_mode is true than if any ligand atom is within cutoff
angstroms of the C-beta atom, that residue becomes part of
the interface. If false, only the ligand neighbor atom is used
to decide if the protein residue is part of the interface.
add_nbr_radius increases the cutoff by the size of the
ligand neighbor atom’s radius specified in the ligand .params
file. This size can be adjusted to represent the size of the ligand,
without entering all_atom_mode. Thus all_atom _mode
should not be used with add_nbr_radius.

Ligand minimization can be turned on by specifying a
minimize_ligand value greater than 0. This value repre-
sents the size of one standard deviation of ligand torsion angle
rotation (in degrees). By setting Calpha_restraints
greater than 0, backbone flexibility is enabled. This value
represents the size of one standard deviation of Calpha move-
ment, in angstroms.

During high resolution docking, small amounts of ligand
translation and rotation are coupled with cycles of rotamer
trials or repacking. These values can be controlled by the
high_res_angstrom and high_res_degrees values
respectively. Cycles of small ligand translations can lead to a
large translation. In some cases the ligand can “walk away
from the protein.” The tether_ligand option prevents
this by keeping the ligand close to its starting point before
the high_res_docking step.
<[name_of_this_ligand_area] chain="&string" cutoff=(float)
add_nbr_radius=[truel|false] all_atom_mode=[true|false] minimi
ze_ligand=[float] Calpha_restraints=[float]
high_res_angstroms=[float] high_res_degrees=[float]
tether_ligand=[float]/>
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4. INTERFACE_BUILDERS.

An interface builder describes how to choose residues that
will be part of a protein-ligand interface. These residues are
chosen for repacking, rotamer trials, and backbone minimiza-
tion during ligand docking. The initial XML parameter is
the name of the interface_builder (for later reference).
ligand_areas is a comma separated list of strings matching
LIGAND_AREAS described previously. Finally extension_
window surrounds interface residues with residues labeled as
“near interface.” This is important for backbone minimization,
because a residue’s backbone can’t really move unless it is part of
a stretch of residues that are flexible.

By specifying multiple ligand areas, multiple ligand dock-
ing is enabled. Simultaneous docking of multiple ligands,
cofactors, water molecules and ions may capture synergistic
effects overlooked by serial docking (Fig. 2).
<[name_of_this_interface_builder] ligand_areas=(comma separated

list of predefined ligand_areas) extension_window=(int) />

5. MOVEMAP_BUILDERS.

A movemap builder constructs a movemap. A movemap is a
2 x N table of true/false values, where N is the number of
residues your protein/ligand complex. The two columns are
for backbone and side-chain movements. The movemap
builder combines previously constructed backbone and
side-chain interfaces (see previous section). Leave out
bb_interface if you do not want to minimize the back-
bone. Theminimize_water option is a global option. If you
are docking water molecules as separate ligands (multi-ligand
docking) these should be described through LIGAND_AREAS
and INTERFACE_BUILDERS.

<[name_of_this_movemap_builder] sc_interface=(string)

bb_interface=(string) minimize_water=[true|false]/>

6. How long will this take to run:?

Of course this question depends on many factors: how fast
your computer is, how many processors you have access to,
how large is your protein? Increasing amino acid rotamers and
ligand conformers can increase run-time. Protein backbone
and ligand torsion angle minimization also add increase run-
time. We have found that the majority of the time is spent in
full-repack cycles of ligand docking. Table 1 shows average
times for modeling the interaction of Carboxypeptidase
A with a phosphonate inhibitor. The XML script in Fig. 1
was used with the exception of modifications shown in col-
umn headings.
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Table 1
Carboxypeptidase A was docked with a phosphonate inhibitor (PDB code: 7CPA)
. . Standard rotamers Extended rotamers (ex1, ex2)
Amino acid rotamers
Ligand conformations 1 10 100 500 1 10 100 500
rosetta_scripts startup 487 480 487 492 4.86 487  4.89 4.83
Only setup movers 5.81 5.73 5.76 5.72 5.71 5.77 591 5.72
Start From 584 580 580 5.72 5.88 5.74 5.76 5.80
Translate (5, 50) 6.05 6.04 588 5.84 5.94 6.04 5.83 5.85
Rotate (360, 1) 642 637 474 627 6.40 6.40 4.44 6.27
Rotate (360, 1,000) 76.32 4481 7842 4050 8294 4231 68.18 39.71
SlideTogether 5.85 5.98 5.88 5.84 5.85 5.91 5.81 5.87
HighResDocker 1 RT 792 787 7.89 785 8.32 8.29 8.35 8.35
+ MinimizeLigand 8.23 8.21 822 843 8.32 8.26 8.20 8.34
HighResDocker 1 FR 637 630 638  6.33 1193 11.85 12.00 11.81
+ Ligand flexibility 643 638 638  6.33 11.77 11.70 1191 11.84
FinalMinimizer 8.95 889 898  9.06 8.90 8.89 897 917
+ Backbone flexibility ~ 14.04 1426 14.32 13.92 14.04 1424 1416 12.26
AddScores 602 587 584 595 5.88 5.87 5.77 6.05
Combined 86.77 8720 95.88 83.35 104.19 9840 68.36 53.46

The ligand has 9 rotatable bonds. Each datapoint represents the average time in seconds for 10 runs. The
combined protocol uses rotate (360, 1,000), HighResDocker with ligand flexibility and 6 cycles of
packing (full repacks at cycles 1 and 4), and FinalMinimizer with backbone flexibility

7. How do I analyze my results?

When your docking study has finished you will have an
output file (specified by the —out:file:atom_tree_dift option)
which contains hundreds of models constructed and scored by
Rosetta. You can extract these models to individual
PDBs using rosetta_scripts. Prepare an XML script that is
essentially empty. Under <PROTOCOLS> include this line:
<Add mover_name=null/>. Run the XML script with the
following command line or flags file options:

(a) -in:file:atom_tree_diff <input file name>
(b) -in:file:extra_res_fa <names of .params files>
(c)

(

d) —database <directory of Rosetta Database>

—parser:protocol <name of XML file with null mover>
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You may only be interested in the best models by interface
score or by total score. You can list the TAGs of the models you
wish to extract at the end of the command line. These tags
are found in the atom_tree_diff output file after “POSE_TAG.”
You can search the file for lines that start with “SCORES.”
By sorting these scores you can find the lowest energy models.

You can also use the Rosetta Cluster application to group
your models by RMSD. Then you can choose one low energy
model from several low energy clusters for further analysis. See
the cluster documentation (http://www.rosettacommons.org,/

manuals/archive /rosetta3.1_user_guide /app_cluster.html) for

more information.
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Chapter 11

Normal Mode-Based Approaches in Receptor
Ensemble Docking

Claudio N. Cavasotto

Abstract

Explicitly accounting for target flexibility in docking still constitutes a difficult challenge due to the high
dimensionality of the conformational space to be sampled. This especially applies to the high-throughput
scenario, where the screening of hundreds of thousands compounds takes place. The use of multiple
receptor conformations (MRCs) to perform ensemble docking in a sequential fashion is a simple but
powerful approach that allows to incorporate binding site structural diversity in the docking process.
Whenever enough experimental structures to build a diverse ensemble are not available, normal mode
analysis provides an appealing and efficient approach to in silico generate MRCs by distortion along few
low-frequency modes that represent collective mid- and large-scale displacements. In this way, the
dimension of the conformational space to be sampled is heavily reduced. This methodology is especially
suited to incorporate target flexibility at the backbone level. In this chapter, the main components of
normal mode-based approaches in the context of ensemble docking are presented and explained, includ-
ing the theoretical and practical considerations needed for the successful development and implementa-
tion of this methodology.

Key words: Computer-aided drug discovery, Docking, High-throughput docking, Multiple
receptor conformations, Normal mode analysis, Receptor ensemble docking, Coarse-grained
representation, Elastic network model

1. Introduction

In silico methods are already a key component in the costly and
lengthy process of developing new drugs (1-3). The accurate
prediction of ligand—protein interactions is important in struc-
ture-based drug lead discovery and optimization, being also the
foundation of reliable docking algorithms. Target flexibility is a
very common phenomenon (4), and its consideration is crucial to
accurately describe the pose and interactions of a ligand within a
binding site. The implications of protein flexibility in drug discov-
ery have been already reviewed (5), and its impact in docking and
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high-throughput docking (HTD) has been assessed in several
studies (6-9) (cf. also refs. (4, 10-12) for a review).

The explicit consideration of target flexibility in docking poses
a serious challenge due to the high dimensionality of the confor-
mational space to be sampled, especially when docking is applied
in a high-throughput fashion. Early attempts to incorporate pro-
tein flexibility in docking include soft-docking (13) and partial
side-chain flexibility (14, 15). The use of multiple receptor con-
formations (MRCs) to perform receptor ensemble docking
(RED), either from experimental sources or in silico generated,
seems a straightforward approach, since it allows to incorporate
binding site structural diversity in the virtual screening process,
even at the level of backbone plasticity. For the latest develop-
ments in ensemble docking cf. refs. (4, 16).

Since more than a decade, normal mode analysis (NMA)
has been used to study functional motions (17), showing an
excellent correlation between them and global modes (17, 18).
Moreover, it has been shown that these global modes are charac-
teristic of the structural architecture, being insensitive to struc-
tural and energetical details. In a pioneering work, Tirion
showed that a simplified force-field with single parameter har-
monic potentials yields basically the same modes than using a
detailed force-field (the high frequency ones being excluded)
(19). This prompted the development of coarse-grained (CG)
representations, such as the elastic network models (ENM), in
which the protein is represented by nodes linked by springs
(20). In spite of the simplified representation, ENMs exhibited
excellent agreement with experimental data (cf. ref. (17) and
references therein). NMA furnishes an appealing approach to
generate MRCs by perturbing along the low-frequency modes
associated with collective mid- and large-scale movements, and
thus the dimension of the relevant conformational space could
be drastically reduced. This methodology is especially suited to
sample flexibility at the backbone level, where molecular dyna-
mics methods can be too expensive or even inefficient (21). The
use of NMA in the context of docking to account for protein
flexibility has proven to be both accurate and computationally
efficient (7, 21-31).

MRCs generation using NMA could be the method of choice
when very few experimental structures are available, or even none,
in this case starting from homology models (32) (cf. Note 1).
In this chapter, I present the key components of normal mode-
based approaches in the context of ensemble docking. Starting
with a theoretical overview of NMA, the different stages of the
process outlined in Fig. 1 are explained, while Subheading 3
covers theoretical or practical considerations for the successful
development and application of this methodology.
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Fig. 1. Overview of the normal mode-based approach to generate structurally diverse
receptor conformations to be used in ensemble docking.

2. Methods

2.1. Overview

The in silico generation of MRCs in the context of ensemble
docking is especially useful in cases where very few structures
have been experimentally solved, or if several were available, to
further expand the structural diversity of the set. The protocol to
generate alternative structures using normal modes and their use
in ensemble docking is outlined in Fig. 1. Once a structure of the
protein is selected, normal modes are calculated using a full-atom
or CG representation (such as ENM). The most important or
relevant modes to the area of interest—or just the few with lowest
frequency—are then selected, and used to perturb the structure of
the protein along the corresponding eigenvectors. If necessary,
optimization of the side chains could follow. Thus, a structural
ensemble of the protein is generated, from which a smaller repre-
sentative set (less than ten structures) is chosen. That set is used to
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2.2. Normal Mode
Analysis Theory

perform ensemble HTD ofa given compound library, followed by
scoring of compounds. A final stage of ranking follows, after
which some compounds are selected to advance to the bioevalua-
tion stage.

The potential energy of a system of N particles around stable
equilibrium can be approximated by

V(R) = V(R,) +Z( > 22<8R aR) ARjAR,,
(1)

where R = (713 71y, P12y - - - » PNa> PNy, PN2)>, AR; = R; — R;,, and
the subscript “0” refers to the equilibrium conformatlon At equi-
librium, the second term on the right-hand side (rhs) of eq (1)
vanishes, since each of the first derivatives is zero. The first term is
the value of the potential energy at equilibrium, which can be
arbitrarily chosen as zero. The 3N x 3 N matrix of the third term
on the rhs of (1) is called the Hessian H. Thus, near equilibrium,

o1&
V(R) = 3 Z ARHj AR,
7ok

= % (AR)"HAR. (2)

Within this second order approximation, the dynamics of the
system can be described by (33)

AR = Re[AQ (1)), (3)

where Q;(¢) = Q; exp(—iw;t), w;is the normal mode frequency,
the Q ;depend on the original positions and velocities, and A and
wj= (}]])l/2 (1 <5< N) are obtained by solving the eigenvalue
equation

HA = MAX (4)

subject to the orthonormalization condition A*MA = 1. Mis the
3N x 3N diagonal mass matrix with M3, = m;, for £ = 0, —1,
—2 (1 <5< N), and \ is the diagonal eigenvalue matrix.

Equation (3) defines a new set of generalized coordinates Q
called normal coordinates (33-35), in which both the kinetic and
potential energy are simple sum of squares of dQ ;/d¢ and Q 4,
respectively, without any cross term (see also Note 2).

The displacement along normal modes is expressed as

X=X+ nd (5)
k=1



2.3. Structure
Representation
and Normal Mode
Calculation

11

Normal Mode-Based Approaches in Receptor Ensemble Docking 161

where X and X, refer to the final and initial conformation, respectively,

Ay is the eigenvector associated with normal mode % (solution of
eq (4)), mis the total number of modes, and «;is the corresponding
scaling factor (see Note 3).

The protein structure to be used to distort along normal modes is
chosen based on availability. If bound and unbound structures
were available, the bound one might provide a more realistic
starting point for use in ligand docking (7, 24); however, choices
of unbound structures have been also reported (21, 26, 30).

In an all-atom representation, the structure should be mini-
mized prior to calculating the hessian elements, as it has been
assumed in deriving eq (2) (cf. also Note 4). The advantage of
using this representation is that the distortion of the structure
along normal modes is straightforward. However, since minimi-
zation usually deforms the initial structure (17), and global modes
only depend on protein topology, ENM approaches are usually
used, in which the system is represented as a network of masses
linked by springs. By construction, the system is in a global energy
minimum, with zero potential energy. The degree of coarse-grain-
ing is variable, being however very common to represent each
residue by one node situated at the C,. In other cases, up to five
masses were used to represent a residue (24): one for each main
atom of the backbone (C, N, and C,), one for Cg and the other
one for the rest of the residue. The nodes are linked by springs
according to a given cutoff, thus the network topology is inherited
from the original protein structure.

Developed from the seminal work of Tirion (19), the aniso-
tropic network model (ANM) (36) is widely used, in which the
potential energy of the network is given by

1 2
==Y Cu(Ry - R} 6
|4 pps 1 (R i) (6)

where the Cy;are the spring constants, and the Ry, are the intermass
distances. The sum includes all pairs of nodes within a given cutoft,
which has been identified as 18 A, provided the nodes are C, the
atoms (37). Regarding the spring constants, they can be taken as
exponentially decreasing with distance (38, 39), exponentially
decreasing with the interaction energy between the two residues
represented by the nodes (7), or constant (36). Although it has been
noted that stiffer spring constants for neighboring residues may
improve the agreement with experiments (7, 40), the influence of
specific spring constants on the modes is minimal (17).

Another variant of ENM, the Gaussian Network Model (GNM)
(20) assumes that fluctuations are distributed in a Gaussian fashion
around the equilibrium position. In this case, the potential energy of
the network takes the form
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and Receptor
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by Perturbing Along
Normal Modes

1 L L
V=3 ; Cu(Rp — Ry) o (R — Ry). (7)
Note that in the GNM, the potential depends on the inter-
node distance vector, while in the ANM (6), it depends only on
the length of that vector (see Note 5).
The next step is the actual calculation of normal modes. When
a full-atom representation is chosen, modes can be calculated
directly with programs such as AMBER (41) or CHARMM (42).
Whenever ENMs are used, modes can be calculated using in-house
programs, or through ad hoc websites (25, 37). The calculation
provides a set of Npor normal mode frequencies, where Npgr is
the number of degrees of freedom, and their associated eigen-
vectors (of Npor dimension). Sorted by increasing frequency,
the first six normal modes are zero, and correspond to rigid body
operations (three translational and three rotational); and the rest
Npor-6 modes correspond to internal degrees of freedom.

In the full-atom representation, distortion along normal modes is
straightforward according to eq (5) (30). In a CG representation,
such as ENM with nodes at the C, atoms, a parallel displacement
of the residue atoms according to their corresponding C, eigen-
vector will clearly deform the covalent geometry (see Note 6). To
avoid this, Cavasotto et al. minimized in dihedral space an ideal
residue chain tethered to the normal mode generated structured
through harmonic restraints (7). A recent method used for pro-
tein—protein docking (39), but which could be extended for
ligand—protein, is a modification of the CCD algorithm (43) in
order to preserve bond lengths and angles, perturbing only the
backbone ¢ and ¥ angles. Another CG approach represents the
backbone by the C,, C, and N atoms, and computes the normal
modes in dihedral coordinates (24), thus de facto preserving the
covalent geometry (see Note 7).

Since the system experiences the largest displacements along
the slowest modes, one is usually interested in low frequency
modes. It has been shown, however, that at least for several systems
the lowest normal modes (~20) are insufficient to properly
describe conformational changes (7, 24, 44) (see also Note 8).
This prompted the development of a “measure of relevance” p of
the normal modes (7, 24), to gauge those which are more con-
centrated in, or relevant to the site of interest. To this effect, each
mode p is applied to the original structure C’, obtaining two
conformations C"and C~, corresponding to «, positive and nega-
tive, respectively (cf. eq (5)). The magnitude of o, is chosen such
that the RMSD of the distorted structure with respect to the
original one C’ equals a predetermined threshold. The distorted
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structures C"and C™ are superimposed with C’ outside the site of
interest L, and the following deviations are computed:

1 =RMSD(C*,C™),,
7.3 = RMSD(C*, C’),,
15 = RMSD(C*, C") ,, (8)

where Land A refers that the RMSD are calculated on region Land
on the whole receptor, respectively. The measure of relevance p for
each mode is then defined as

_n max(72, 73) 9)
max(7y, 75)

Thus, only the most relevant modes (those with the highest
p values) are chosen to perturb the original structure and generate
an ensemble of diverse MRCs according to eq (5). This can be
accomplished by generating two structures per mode (24), or
using a linear combination of relevant eigenvectors (7). The use
of relevant modes was also recently employed to refine GPCR
histamine 3 (H3) receptor models (28).

When a CG representation is followed, the correct positioning
of the side chains constitutes an additional step. In the first applica-
tions of NMA to generate MRC:s for docking (7, 24), side chains
were positioned through a Monte Carlo with minimization (45)
full flexible ligand-protein docking (46, 47), in a similar way as in
the ligand-steered method, where the ligand is used to properly
shape and optimize the binding site (48, 49). Binding sites can be
selected based on ligand-receptor interaction energy, where the
solvation contribution was evaluated using a continuum solvent
model. Structures can also be selected based on their performance
on a small-scale HTD (48): models with the highest enrichment
are selected for RED. If necessary, the size of the MRCs ensemble
can be reduced by clustering the binding site area (48, 50).

The direct use of the first lowest s modes (s ~ 30) is also
possible, such as performed to refine docked ligand—protein com-
plexes using NMA (25), or in a recent work, where backbone
deformation was achieved through minimization along the ten
lowest frequency modes, and side chain flexibility accounted for
through a rotamer library (27). Sperandio et al. (30), using a full-
atom representation, generated an ensemble of conformation of
the CDK-2 protein kinase through distortion along the first
25 modes, until reaching a mass weighted RMSD of £2 A with
respect to the original conformation, followed by local energy
minimization. Extremely distorted structures were discarded,
and the rest was clustered to ensure structural diversity of the
binding site. A final set of five structures was selected through a
topology-based analysis using their in-house program GP_PASS,
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2.5. Receptor
Ensemble Docking

based on the PASS program (51). In another approach, three
modes were used to generate an ensemble of ~3,400 structures
of the p38 MAP kinase, in which the distortion was inversely
proportional to the frequency of the normal mode (21). Interest-
ingly, it was also shown that this methodology provided better
coverage of the ligand-bound conformational space than molecu-
lar dynamics in explicit solvent, in agreement with what has been
found for a larger set of proteins (52) (cf. Note 9).

Once the MRC have been selected, the compound library is in
silico docked to the structures in a sequential fashion, as if several
crystal (6, 53) or NMR structures (54) were used. Receptor
structures should be previously prepared according to the docking
tool of choice (for a review of available docking programs cf. refs.
(2, 55); see also Note 10). Once the HTD has been performed,
its results on different structures should be merged, and the best
rank (6, 7, 24), or score (30) per docked molecule should be kept.
From here, the selection of compounds for experimental evalua-
tion follows the usual path of single structure structure-based
virtual screening methods (56, 57) (cf. Note 11).

3. Notes

1. Generation of MRCs using NMA is especially useful to
explore the conformational space of backbone degrees of
freedom through slow modes. In this case, it has been
shown that it may outperform molecular dynamics (21, 52).

2. Matrix A in (4) produces a principal axis transformation in
which the hessian is diagonal. Cartesian coordinates have the
advantage of their simplicity, where the coordinates and velo-
cities of each particle can be described independently of the
others. Normal coordinates, instead, describe concerted or
collective motions of the system as a whole, in which particles
move with the same frequency w; for a given normal mode j,
and the associated potential energy term is proportional to ;?

(33, 34). Thus, large global displacements of the system—such

as domain or loop movements—are well described by low-

frequency modes, the use of which greatly reduces the
dimensionality of the problem.

3. Displacements along normal modes are meaningful as far as
the harmonic representation of the potential (2) remains valid,
i.e., for small displacements.

4. It should be stressed that NMA assumes the system to be in a
local energy minimum. Otherwise, the first derivative of the
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10.

11.

potential energy would not be zero, and (2) would not be valid.
In this context, ENM has the advantage over the all-atom repre-
sentation that by construction the structure is already in a local
minimum-in fact, a global one-so no further minimization is
necessary.

. Study of fluctuations revealed that better agreement with

experimental results might be achieved through GNM com-
pared to ANM (58, 59). It should be remarked that in ENM,
besides choosing the form of the potential (ANM or GNM,
for example, see (6) and (7), respectively), a choice of cutoff
and spring constants is necessary to completely characterize
the system and calculate the normal modes.

. When ENM are used, care should be taken to ensure that

distortion of the original structure along calculated normal
mode eigenvectors does preserve the correct covalent geometry.

. Modal analysis in internal coordinates (cf. ref. (24)) has the

benefit that small changes in those coordinates may corre-
spond to a significant displacement in distant parts of the
system.

. Asit has been already pointed out (7, 24, 44), in many systems

the few lowest frequency modes are not enough to map the
conformational flexibility of the binding site, while some of
those nodes represent collective modes not relevant to that
site. This poses the challenge of accurately selecting the modes
that are more important to map the conformational change of
the binding site in a way to keep the dimension of the confor-
mational space to a minimum. Thus, in cases where the lowest
modes are not the most appropriate to map conformational
changes, the most “relevant” or significant modes to the
region of interest are selected. These are the actual modes to
be used in generating the structural ensemble for HTD.

. The final selection of structures to be used in RED is usually

performed based on the calculation of ligand—protein inter-
action energy, topology-based analysis, or according to
the performance of the NMA-generated structures in small-
scale HTD. This choice is system dependent. In cases where
the energy function is not accurate enough to discriminate
the correct conformations, a topology-based approach could
be followed, or the validation through small-scale HTD.

It is usually convenient to relax the structures prior to docking
by performing local energy minimization using the force-field
of the docking program of choice, since likely the structural
ensemble is generated with a different force-field.

The final performance of the normal mode approach to RED
obviously also depends on the quality of the docking engine
and scoring function used, and should be understood and
analyzed in this context.
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Chapter 12

Application of Conformational Clustering
in Protein-Ligand Docking

Giovanni Bottegoni, Walter Rocchia, and Andrea Cavalli

Abstract

Protein-Ligand docking is a powerful technique routinely employed in structure-based drug design.
Despite many reported success stories, docking is not always able to provide an accurate and easily
interpretable prediction of the structure of the bound complex formed by a small organic molecule
and a pharmacologically relevant target. Cluster analysis can represent a versatile and readily available
postprocessing tool to be employed in combination with protein-ligand docking to simplify the evalua-
tion of the results and help to overcome present limitations of docking protocols.

Key words: Cluster analysis, Protein-ligand docking, Conformational sampling, Hierarchical-
agglomerative clustering, ACIAP

1. Introduction

1.1. Protein-Ligand Protein-ligand docking is a computational method that attempts
Docking to predict the three-dimensional structure of a complex formed by
a small organic molecule (the ligand) and a biological counterpart
(the receptor), providing, at the same time, an estimate of the
binding energy of the complex. Since the ground-breaking
attempts of the 1980s (1), docking is presently an established
technique fully integrated in structure-based drug design that
has been implemented in many different ways (2—4). However,
while differing in the details, all the adaptations consist of a very
similar stepwise procedure. First, a sampling algorithm generates
various conformations and orientations of the ligand within
the binding site, a specific region of the receptor previously
defined. Then, a scoring function quantifies the strength of the
receptor-ligand interactions of each calculated complex confor-
mation and ranks the solutions accordingly. While a large amount
of reported data suggests that docking predictions have reached a
fairly good level of accuracy, the method is still prone to errors (5).
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1.2. Trading Accuracy
for Speed

1.3. Reducing
the Size of
the Problem

The reliability of the method is hampered by the necessity of
generating both a meaningtul set of conformations of the bound
complex and the associated energetic profile in a reasonable
amount of computational time. Docking has to face what Carlson
and McCammon defined as “an unfortunate but necessary trade-
off between speed and accuracy” (6). In each step of the docking
protocol, several simplifications are introduced to speed the
calculations up. First, receptor’s degrees of freedom are usually
ignored and, despite their flexible nature, these macromolecules
are kept rigid during the simulations. Moreover, the binding site is
not usually described at a fully atomistic level but approximated by
a set of grid maps where the potentials felt by different probes are
calculated. These 3D regularly-spaced lattices consent to estimate
receptor-ligand interactions very efficiently, overcoming the expo-
nential dependency of the calculation time on the total number of
atoms in the system. Second, the size of the ligand conformational
space scales to the power of the number of roto-translational and
torsional degrees of freedom considered; for this reason, a com-
plete search becomes almost immediately unfeasible for a typical
drug-like molecule (7). Searching algorithms adopt a variety of
strategies and heuristics to limit the exploration of the ligand
conformational space only to the most probable regions. Despite
these limits and approximations, sampling engines are usually able
to provide at least one solution closely resembling the native pose
of the ligand (8). In fact, standard docking protocols, rather than
ending up pointing toward a single solution, often provide a
collection of possible binding modes. Both stochastic and deter-
ministic algorithms do not generally converge to the global energy
minimum, providing instead a list of possible solutions
corresponding to local minima or their approximations. Each
pose in the ensemble is then assessed by a scoring function and
assigned an estimate of its interaction energy. Ideally, the best
scoring pose corresponds to the binding mode actually adopted
by the ligand. However, this is not always the case. Again, scoring
functions currently employed are very fast but provide only a very
rough estimate of the actual binding energy (9, 10). More accurate
techniques, such as the path-based methods, are too time consum-
ing and do not represent a practical alternative (11).

When the predictions provided by the scoring functions cannot
be entirely trusted, further investigations become necessary.
However, more computationally demanding simulations and
experimental validations cannot be applied indiscriminately to all
predicted poses and it would be advisable to focus on a restricted,
yet representative, set of conformations. Cluster analysis (CA) is a
technique (or, more exactly, a collection of statistical techniques)
that can be applied to reduce the size of an ensemble with only
minor loss of information. CA assigns the elements of a set to
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1.4. Docked Poses
as a Gollection
of Observed Data

homogeneous groups according to a given definition of similar-
ity. In the final partitioning, each element is more similar to the
elements belonging to its group than to any other element
outside it. Since members of the same group are homogenous
by definition, one of them can be selected to represent all the
others. Historically, the application of CA in drug design has
been mainly limited to ligand-based drug design protocols (12).
In the absence of the target structure, these techniques build
predictive models by analyzing chemical and pharmacological
teatures of molecules already characterized. Most of the proper-
ties and descriptors used to extrapolate predictions are strongly
affected by molecular conformation. Recurring to conforma-
tional searches and CA, several meaningful and nonredundant
conformations can be obtained, increasing the chances of cap-
turing the bioactive one.

More recently, CA has been applied to organize the output of
ligand docking runs: docked poses can be considered as points in a
multidimensional space and their conformational similarities esti-
mated as Euclidean distances between points (13). In this way,
poses can be organized in clusters and only representatives pro-
ceed to additional analysis. Furthermore, the cardinality of each
cluster, i.e., the cluster population, provides useful information on
identifying the most favorable regions of the ligand conforma-
tional space within the binding site.

CA represents a very useful tool to bridge ligand docking
outcomes and more accurate, but time consuming, computational
techniques. Grazioso et al. included CA in a sequential method
that they used to validate the predictive power of a homology
model of the neuronal nicotinic acetylcholine receptor-ligand
binding domain (14). They docked several known agonists at
the model binding site and identified the rescoring protocol
providing binding energy predictions in closer agreement with
experimental data. Without CA, which was used to select the
most representative docked poses of each agonist, a systematic
rescoring of the large amount of generated data would have been
prohibitively demanding. Masetti et al. carried out three retro-
spective docking experiments to prove the usefulness of metady-
namics on characterizing pharmaceutically relevant drug-target
complexes (15). Reducing the size of the conformational ensem-
ble by CA, they were able to exploit metadynamics-based undock-
ing simulations to accurately discriminate the ligand native pose,
and characterize the binding event at an atomistic level. Colizzi
et al. implemented CA in SMD Toolbox, a combined computa-
tional protocol that they devised to separate active from inactive
compounds in analogues series (16). In a reported case study, they
generated 200 poses of a flavonoid inhibitor bound at the binding
site of an antimalarial target. After performing CA, they were able
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1.5. Introducing
Receptor Flexibility

to restrict the possible binding modes to the representative poses
of only two highly populated clusters. Further investigations
carried out by means of both plain and steered molecular dynam-
ics simulations on these two poses eventually led to the univocal
identification of the correct binding mode. Together, docking
and CA helped the rationalization of SARs in several drug dis-
covery programs recently carried out on acetylcholinesterase
(17-19), butyrylcholinesterase (20), anti-Alzheimer multitarget
molecules (21-25), Cytochrome P450 17 (26-29), aromatase
(30), HIV-1 integrase (31), and Dengue proteases (32).

CA can also be used in combination with ligand docking to
address the already mentioned issue of receptor flexibility.
A straightforward strategy to implement receptor flexibility in
docking runs is the so-called multiple receptor conformations
(MRC) docking (33). A standard docking simulation is iteratively
carried out on multiple receptor conformers and the results are
finally merged during a postprocessing step. Different binding site
conformations, obtained either by experimental techniques or by
computational means, such as a Monte Carlo procedure or a
molecular dynamics run (34), are usually processed in order to
get a nonredundant set. In fact, a smaller receptor conformational
ensemble ensures faster calculations and, reducing the amount of
generated noise, improves the results” quality (35-37).

Finally, as it emerges from the work of Kiviranta et al. (38) on
SIRT2 inhibitors and that of Kranjc et al. (39) on prion protein,
CA provides useful insights when applied to sets of docked poses
generated by means of an MRC procedure. In fact, the presence in
the same cluster of poses coming from different receptor confor-
mations points at a lesser importance of conformational fit in the
binding event under investigation.

2. Methods

2.1. Basic Steps
of Cluster Analysis

In the following, the main steps needed to perform CA over a
dataset of 7 objects (poses or conformations) are described.

1. Obtaining the data and representing them in matricial form,
X, usually according to the convention that different
columns host the attributes, such as heavy atom coordinates,
of different objects.

2. If necessary, standardizing the data, that is subtracting from
each element in every row 7 the average value along that same
row, ft,, and then dividing by the standard deviation of the raw
itself, ¢,.. Standardization is not always necessary and sometimes
it must even be avoided. In fact, it must be emphasized that
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standardization is an operation that act separately on every
attribute (i.e., atom coordinate or internal degree of freedom),
and therefore it does not preserve the shape, or even the chemi-
cal topology, of individual objects. This holds true also for small
molecules, unless only rigid translations are considered (see
Note 1).

3. Calculating the resemblance matrix R. The resemblance
matrix generally contains a measure of the dissimilarity
(or, equivalently, the similarity) between the objects that
compose the columns of the, possibly standardized, X matrix.
The symmetric nature of the similarity concept reflects in the
symmetry of the matrix, where only the lower (or upper)
triangular part can be used.

4. Performing the actual clustering procedure. Now the data are
ready to be clustered and several alternative clustering strate-
gies are available. Here, we will describe in some detail the
hierarchical agglomerative approach, which is one among the
most commonly adopted flavors of the method. It should be
pointed out that the role of CA is to discover an intrinsic
partitioning that already exists in the data and not to force
its creation. If no natural partitioning exists, because objects
are uniformly or randomly distributed in the considered
space, the application of CA will lead to artifacts. For this
reason, it is advisable to proceed to actual CA only after the
clusterability of the set has been assessed (see Note 2).

5. Reordering Xand R matrices so that similar objects are placed
in adjacent columns, to give the matricial representation a
more intuitive look. In this way the order of columns reflects
the order of the first agglomerative step of the clustering.

6. Estimating the information loss induced by the clustering
procedure, i.e., the discrepancy between the resemblance
matrix, more detailed, and the partitioning provided by the
CA, more intuitive but less precise. This can be accomplished
by deriving the so-called cophenetic matrix C, and then by
calculating the cophenetic correlation coefficient 7z - between
the nontrivial entries of R and C. A good correlation, say 7z,
¢ > 0.8, indicates that the clustering procedure did not appre-
ciably distort the similarity relationship between the original
elements. More details on cophenetic correlation are provided
in Note 3.

7. Setting a granularity level for the clusters. This is often called
“cutting the dendrogram”; one must decide how much
heterogeneity within a single cluster is tolerable. Evidently,
low tolerance leads to high number of clusters, and limits the
dimensional reduction of the problem. There are several
approaches available in the literature that try to automate
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2.2. Hierarchical
Agglomerative
Clustering

this choice, but in fact there is no absolute criterion to decide
how many clusters are enough to describe similarity (or
diversity) in a dataset. The answer is really a problem and
user dependent. A readily implementable cutting strategy is
discussed in Note 4.

8. Deciding which clusters further analyze. According to the
purpose of the clustering, i.e., whether one is seeking for a
reduced set of significant poses or rather for a set of confor-
mations as diverse as possible, one might want to keep the
representative only of the most populated clusters, as pre-
scribed by the Chauvenet criterion, or of as many as possible
of them, including singletons (i.c., outliers).

CA can be implemented in many different ways and the choice of
the exact procedure to adopt is not always straightforward. No
clustering method universally outperforms all the others and indi-
vidual performances are strongly affected by the nature of the data
to be partitioned, in particular the size of the dataset and the
dimensionality of the objects. Hierarchical agglomerative cluster
analysis (HACA) is considered a very robust procedure that can be
tuned to require a minimal level of user intervention. It starts with
a set of » unary clusters, where # is the number of objects, and
iteratively merges the two most similar clusters in the current
disposition. After » iterations, only one cluster containing all the
poses is obtained. “Hierarchical” means that clusters at a higher
level are union of clusters at lower levels, while “agglomerative”
means that clusters can merge but never break apart during the
formation process. Different criteria can be adopted to quantify
the distance between two objects. When docked poses are consid-
ered, the dissimilarity between poses can be easily represented by
their root mean square deviation (RMSD). Some relevant con-
siderations about dissimilarity measures are discussed in Note 5.
Having adopted a dissimilarity criterion for the objects still lets the
user free to decide how to define the intercluster distance. The
way the intercluster dissimilarity is evaluated is called linkage rule.
Four among the most widely used linkage rules are: single linkage,
average linkage (also known as Unweighted Pair Group Method
with Arithmetic mean, UPGMA), complete linkage, and the Ward
method (for further details see Note 6). HACA provides a discrete
representation of the dataset since each object belongs only to one
cluster and no overlap is possible. The main drawback of this
procedure is that it is quite demanding from the computational
point of view. In fact, depending on the specific linkage rule
adopted, the amount of time required scales between O(#?) and
O(n*), being » the number of elements to cluster. However,
assuming that the typical size of an ensemble of docked poses or
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Fig. 1. Typical structure of a dendrogram. In the abscissae object labels are present, while in the ordinate axis the
intercluster distance at a given clustering level is shown.

2.3. Which Clusters
Deserve to Be Further
Considered?

receptor conformations never exceeds 10° elements, HACA can
run on a modern CPU in a reasonable amount of time.

The complete output of HACA can be directly represented by
so-called “dendrograms” (see Fig. 1). Dendrograms are trees
where different clustering levels are shown and provide a visual
and more intuitive idea of the clustering process.

As already mentioned, the reasons and the contexts of performing
CA can be different; if the aim is just to get the most diverse
objects in a dataset, then all clusters deserve to be considered,
irrespective of their cardinality. In contrast, if] as it is most often
the case, only the most significant clusters are to be identified,
there are several rationales for privileging the most populated
ones. As described in ref. (13), most populated clusters have a
higher likelihood to include near to native binding poses when
these latter come from different docking algorithms. Moreover,
when docking algorithms rely on energy-based exploration
engines, such as Monte Carlo methods, large clusters are expected
to correspond to energy minima basins, and their representatives
to be quite stable conformations. To decide whether a cluster is
sufficiently populated or not, the so-called Chauvenet criterion
can be adopted. According to it, a cluster is significantly populated
it its cardinality is more than twice the standard deviation apart
from the average population value for that level of clustering.
Recently, the population of a cluster of docked poses has been
employed as an approximate, yet quite reliable descriptor of the
local energy landscape (40). In particular, large clusters have
been associated to the presence of favorable entropic basins.
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2.4. The Choice
of Cluster
Representative

2.5. Cluster Analysis:
Tools of the Trade

Considering the final partition as an estimate of a ligand configu-
rational integral, Chang et al. devised an approach to estimate the
contribution of the vibrational entropy to the binding energy.
Taking into account this entropic contribution, they were able
to significantly improve the results accuracy for a series of nucleo-
tides docked at the binding site of APS reductase (41).

If the dendrogram was pruned at a level that guarantees intracluster
homogeneity (although we must recall that the homogeneity
threshold might be arbitrary) then any member can be taken as a
cluster representative. When this is not the case, probably the safest
way to choose the representative is to identify its centroid. The
centroid of a cluster is the member which is most similar to the
arithmetic average of all the objects belonging to that cluster. Since
the objects we are referring to are molecular conformations or
binding poses, the arithmetic average of different objects may very
well not correspond to a plausible object, for example it may corre-
spond to a wrong chemical topology. The mentioned centroid
definition yields, among the actual conformations or poses present
in the cluster, the “closest” to the average one.

Several docking programs implement postprocessing clustering
approaches. In AutoDock (42), CA is carried out according to the
following algorithm: (1) ligand conformations are sorted according
to the predicted binding energy and appended to a list, (2) the best
scoring pose becomes the reference pose, it is assigned to a new
cluster, and it is eliminated from the list, (3) looping through the
remaining conformations, the RMSD from the best scoring pose is
calculated, (4) if the RMSD from the reference is within an arbitrarily
set threshold value, the pose is assigned to the same cluster of the
reference pose and eliminated from the list, otherwise it is skipped.
Upon reaching the end of the loop, if no pose is left, then the
partitioning is complete, otherwise the procedure starts back from
step (2). Some remarks seem somewhat relevant. The final result
depends on the initial order of the elements, so that, for instance,
the first element is always a cluster leader. Furthermore, this simple
adaptation of the nearest neighbor searching strategy to CA is known
to suffer from other severe limitations: (1) it yields good results only
when dealing with groups roughly equivalent in size and shape
(which might not be the case when considering docked poses), (2)
the clusters created during the first iterations tend to grow bigger
than those created later, and (3) the threshold distance dramatically
affects the partition outcome and implies a high level of user inter-
vention. GOLD (43) implements a HACA routine (rms_analysis)
based on the complete-linkage rule. ICM (44) standard docking
protocol returns a collection of possible binding modes (the “con-
formational stack”) already pruned by means of UPGMA clustering
based on an internal coordinates RMSD similarity criterion.
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ACIAP (Autonomous hierarchical agglomerative Cluster
Analysis based Protocol) is a standalone clustering tool speci-
fically conceived to cluster the output of docking runs and to
automatically provide a functional partitioning without any a
priori knowledge on the optimal threshold distance to cut the
dendrogram (45).

Docking algorithms usually consider a rigid conformation
for the protein target, neglecting fitting phenomena that might
be of crucial importance. To possibly overcome this limitation,
among other approaches, the Relaxed Complex Scheme (RCS)
makes use of long MD simulations of the apo structure of the
receptor (46). From these trajectories, several snapshots that
might resemble the binding conformations can be extracted. In
the first applications of RCS (47, 48), snapshots were extracted
at equal time intervals and adopted indiscriminately, while later
implementations strongly rely on CA to eliminate conforma-
tional redundancy and to reduce the computational burden
(49). The clustering algorithm implemented in advanced RCS
was first adapted to trajectories analysis by Daura etal. (50) and it
is here briefly summarized: (1) receptor snapshots are extracted
at 0.01 ns intervals for analysis; (2) the resemblance matrix is
calculated assessing the RMSD between snapshots after pairwise
superimposition of backbone heavy atoms; (3) for each structure
in the initial pool, the number of neighbors is determined; two
snapshots are considered neighbors if their RMSD is below an
arbitrarily set threshold (1 A, in this case); (4) the structure with
the highest number of neighbors is taken as the center of the first
cluster and removed from the pool; all its neighbors are assigned
to the same cluster and removed from the pool as well. The
procedure is iterated until all structures are assigned to a cluster.
This type of approach is biased, since it favors the most populated
clusters, and also results in many singleton clusters (i.e., cluster
populated by only one object). The same algorithm, together
with a HACA single linkage protocol and a nonbhierarchical
method called the Jarvis and Patrick algorithm (or %th nearest
neighbor), is also performed by g_cluster, an analysis tool
included in the software suite GROMACS (Groningen MAchine
for Chemical Simulation) (51).

Finally, several libraries for CA are available to develop custo-
mized scripts and applications in widely diffused programming
languages and meta-languages, such as C/C++, Fortran, Perl,
Python, Java, and Matlab (MathWorks Inc., Natick, MA, USA)
(52,53).
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3. Notes

1. When to perform standardization

In the context of protein-ligand docking, CA can be used in a
few slightly different flavors. According to the exact applica-
tion, it may or may not be correct to standardize the data
matrix.

The most frequent application is to partition docked
poses; here, the spatial Cartesian coordinates corresponding
to different poses are used as input for the algorithm and the
RMSD is adopted as a similarity criterion. The aim of this
application is to reduce size and redundancy in the docking
results identifying significant poses to be further examined
with more accurate tools. In this kind of application, neither
superimposition nor data standardization should be per-
formed.

A similar, although different, application for CA is the
conformational analysis of ligands; it can be applied to docked
poses or to sets of conformations of a compound generated by
computational means in solvent or in vacuo. The main differ-
ence between conformational analysis and the analysis of
docked poses is that the first aims at identifying significant
conformations assumed by the molecule, while the second is
focused on possible binding modes. In conformational analy-
sis, when the system is represented in Cartesian coordinates,
the dissimilarity between conformations is well represented
by residual RMSD after superimposition. Superimposition is
a procedure that makes a roto-translational fit in Cartesian
coordinates so to minimize the RMSD. When the system is
described in internal coordinates, one can still adopt as a
dissimilarity measure the Euclidean distance between the
representing vectors, although it is no longer proportional
to the corresponding RMSD. However, since in the internal
coordinates formalism variables are not homogeneous, a stan-
dardization procedure is needed.

In conformational analysis of the protein binding site,
different site conformations, obtained either by experimental
techniques or by computational means, such as a Monte Carlo
procedure or a molecular dynamics run, are processed in order
to get a reduced set of diverse conformations. In this applica-
tion, the backbone atoms of the available structures of the
binding site are first superimposed and then the RMSD between
the Cartesian coordinates is used to achieve a similarity score.
In this case, as in the first one described, standardization of the
data is not required.
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2. Clusterability assessment

To assess whether conformations show a natural tendency to
group into clusters, the set can be compared to a random distri-
bution. If the set deviates significantly from randomness, it
means that an underlying partitioning exists and CA will provide
meaningful results. A very simple and efficient way to test cluster-
ability is a modified version of a test originally developed by
Hopkins (54): the H* test. First, in order to lower the dimension-
ality of the problem, Principal Component Analysis is performed
over the matrix X and the original dataset is projected onto
the reduced space, L, induced by the first three principal compo-
nents. Then, a small number s of random points (between a
tenth and a twentieth of the number of objects) in Lis generated.
These points are normally distributed, with zero means, and their
projection over each principal component direction has the
same standard deviation as the corresponding principal compo-
nent of the dataset. Then, s samples are randomly drawn and
for each of them, as well as for each random point, the minimum
Euclidean distance to the members of the dataset is calculated,
and named D; for the samples, and V; for the points. This pro-
cedure is repeated for the number of samples and the H* value is
calculated as the following average:

H" = EJ:V;‘ i:%—#i:&
i1 P i1

Three cases can occur:

dataset

0.5 < H* < 0.6: the poses are homogenously distributed
H* — 0: the poses are regularly spaced

H* — 1: the poses show a natural tendency to cluster

CA should be carried out only in the last case. The absence of
regular or repetitive patterns in the outcomes of conforma-
tional analysis and docking simulations makes unlikely the
occurrence of the second case.

3. The cophenetic correlation coefficient
The clustering procedure can remarkably simplify a very
crowded dataset. However, this operation has a price: some
details in the similarity between dataset members are lost. A
possible way to estimate this degradation consists in recon-
structing the equivalent of the resemblance matrix after the
clustering has been performed. This can be done by exploiting
the dendrogram as prescribed: if one is interested in the
dissimilarity between elements labeled as 1 and 2 in Fig. 1,
one should follow the dendrogram up to the level where the
two branches join, this occurs at the upmost level,
corresponding to a dissimilarity of 0.8. It is interesting to
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note that this is the very same value one would obtain when
using the dendrogram to get the dissimilarity between any
element on the abscissae located between 20 and 30 and any
other of the remaining elements. According to this prescrip-
tion, one can fill a matrix with the same structure of the
resemblance matrix but containing the values obtained from
the dendrogram; this matrix is called the cophenetic matrix. If
R and C coincided, there would be no information loss.
Therefore, the Pearson correlation coefficient between the
lower triangular parts of R and Cis calculated as follows:

S Zi<j (Rij — K)(Ci,j - C)
R,C — OCROC ’

where

$=2 Ziq R;;/n(n—1)

and

or = \/2 > (R~ R /n(n—1)

are average and standard deviation for the dissimilarity values,
respectively, and similarly for the cophenetic matrix. Values of
rr,c close to 1 indicate a good preservation of the original
description, usually a threshold of 0.8 is accepted.

. How many clusters are in the dataset?

Once the dendrogram is formed, the crucial decision is to fix
the level of clustering more suitable to represent the dataset.
As it is natural for a hierarchical agglomerative approach, a
tradeoftf must be found between the overall number of clus-
ters and the intracluster dishomogeneity. This decision can be
made upon the previous knowledge that the user has of the
nature of the data or it can be conditioned by the resources, of
computational and /or experimental nature, available to post-
process the results of the clustering. In case an automatic
criterion is sought, here we will present the Kelley-Gardner-
Sutcliffe (KGS) penalty function (55) that can be used as an
automatic cutting rule for hierarchical cluster trees.

In the KGS approach, an average spread value is calculated
for each clustering level of the dendrogram, for simplicity of
representation, it is numbered with respect to the number of
clusters of the level:

1 &
AVSW = Z SMv
w M=1
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where wis the number of clusters at a fixed clustering level and
Syris the spread of the Mth cluster, defined as follows:

2 AMm AM
> duy

Su =
XM(XM - 1) m=1 g=m+1

When all average spread values are collected, they need to
be normalized so that they lie between 1 and » — 1. The
penalty P,, is therefore calculated as:

+w+ 1.

As expected, this penalty function is a balance between the
cardinality of the level and the intracluster mean distance. The
minimum value of the KGS function can be chosen as an
autonomous way (as opposite to a user driven way) to prune
the dendrogram. More details concerning the KGS penalty
function and its properties in the context of conformational
and docking analysis can be found in ref. (45).

5. Similarity assessments

The dissimilarity between docked poses can be intuitively
quantified if every atom of the molecule is represented as a
point in space. In this case, the dissimilarity between atoms
can be expressed by the Euclidean distance between the
corresponding points, and the dissimilarity between poses by
their RMSD. It is important to stress that this holds true if,
and only if, the vectors contain the Cartesian coordinates of
the atoms. RMSD can be easily calculated according to:

IS 2
RMSD = [ 2i=1%
n

where 7 is the number of atoms and 4; is the Euclidean
distance between the sth atoms pair. RMSD displays the
advantage of being very straightforward to understand and
immediate to calculate. However, despite its obvious interpre-
tation, RMSD does not fully encompass all the details of
protein-ligand interaction, and therefore can only be seen as
an approximation of the real dissimilarity measure between
two binding poses (56, 57). RMSD suffers from several major
flaws: first, it is very difficult to define standard RMSD thresh-
old of similarity since close values can assume very different
connotations in different systems. Second, RMSD provides a
synthetic indication of how much two poses are different but
does not provide any information on the different contribu-
tions to that difference. Finally, being a pure geometrical
measure, RMSD fails to capture subtle differences due to
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specific physical interactions between one or a few specific
atoms and the receptor. In this regard, several authors
proposed to shift the focus from ligand coordinates to 3D
information on the receptor-ligand interactions (58). This
information can be stored in 1D bit strings called Interaction
FingerPrints (IFP), where each bit accounts for the presence
or absence of predefined interactions. The distance between
IEPs can be considered an interesting alternative to RMSD to
express (dis)similarity between docked poses.

In specific circumstances, it may be useful to assign differ-
ent weights to different parts of the ligand while assessing the
distance between two conformations. For example, one might
want to downweight the contributions to RMSD of the atoms
interacting with a region of the binding site that is character-
ized by high B-factors or an approximate fit into the electron
density map (59). In other cases, specific ligand moieties
could be downweighted because these parts do not establish
any specific interactions with the receptor and protrude in the
bulk of the solvent. Finally, whenever clear indications are
available that a specific interaction, for example the formation
of coordination bonds with a metal cofactor, is the leading
force of the binding event, it can prove useful to increase the
weight of the atoms reasonably involved in that interaction.
In these cases, the RMSD equation can be expressed as

where 7 is the number of atoms, 4; is the Euclidean distance of
the /-th atom pair, and w; the weight assigned to the s-th pair.
Moreover, it can sometimes be useful to limit the distance
assessment, and thus clustering, only to a specific part of the
ligand while the rest of the molecule is completely ignored
(42). In this way, it becomes even possible to perform geo-
metrical CA on a heterogeneous set of compounds as long as
they share a common moiety. This latter case can be consid-
ered a special case of the previously described strategy in
which several atoms are assigned a weight equal to zero.

. Linkage rules

Single linkage (60), also known as nearest-neighbor distance
method, defines cluster dissimilarity as one of the closest pair
of objects:

AM,Q = (”lm,q)a

min
me{l,. b 0€{l 20}
where A is the intercluster distance, uppercase roman letters
indicate clusters, 4 is the RMSD-based dissimilarity measure,
and y is the cardinality of a cluster. A well-known drawback of
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the single linkage rule is the so-called “chaining” phenomenon:
clusters generated initially naturally tend to incorporate the
nearby conformations, therefore forming a “chain”; as a conse-
quence, there is a strong bias toward the first clusters to being
more populated than the others.

In the average linkage method, the mean dissimilarity
between all pairs of conformations is taken:

iZM

yMme 1 g=1

According to this definition, no object is privileged with
respect to the others, preventing “chaining” effect to occur.
In the complete-linkage method, the dissimilarity between
clusters is defined as the maximum distance between pairs of
objects:

AM’Q me{la""/M} qe{lv 7/Q}(d q)u

This linkage rule tends to generate a low number of
clusters of approximately the same size.

A different linkage rule refers to the Ward method, which
uses a dissimilarity definition based on the analysis of variance
(61). At each step, the merging of two clusters, among all of
the possible combinations, that minimizes the following sum
of squares is performed:
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This method tends to create a consistent number of small
clusters, but due to its agglomerative nature (i.e., due to the
fact that it never breaks existing clusters apart to reassemble in
a different composition), it does not guarantee that the global
minimum is reached. A comparative study seems to indicate
that the average linkage rule is to be preferred to both single
linkage and the Ward methods (13).

References
1. Kuntz, I. D., Blaney, J. M., Oatley, S. J., Lan- An overview of search algorithms and a guide
gridge, R., and Ferrin, T. E. (1982) to scoring functions, Proteins 47, 409—443.
A geometric approach to macromolecule- 3. Kitchen, D. B., Decornez, H., Furr, J. R.; and
ligand interactions, J Mol Biol 161, 269-288. Bajorath, J. (2004 ) Docking and scoring in vir-
2. Halperin, I., Ma, B., Wolfson, H., and tual screening for drug discovery: methods and

Nussinov, R. (2002) Principles of docking: applications, Nat Rev Druyg Discov 3,935-949.



184

4.

10.

11.

12.

13.

14.

15.

G. Bottegoni et al.

Taylor, R. D., Jewsbury, P. J., and Essex, J. W.
(2002) A review of protein-small molecule
docking methods, | Comput Aided Mol Des
16, 151-166.

. Kontoyianni, M., McClellan, L. M., and

Sokol, G. S. (2004) Evaluation of docking
performance: comparative data on docking
algorithms, J Med Chem 47, 558-565.

. Carlson, H. A., and McCammon, J. A. (2000)

Accommodating protein flexibility in compu-
tational drug design, Mol Pharmacol 57,
213-218.

. Welch, W.; Ruppert, J., and Jain, A. N. (1996)

Hammerhead: fast, fully automated docking
of flexible ligands to protein binding sites,
Chemistry & Biology 3, 449-462.

. Moitessier, N., Englebienne, P., Lee, D., Law-

andi, J., and Corbeil, C. R. (2008) Towards
the development of universal, fast and
highly accurate docking/scoring methods: a
long way to go, Br J Pharmacol 153 Suppl 1,
S7-26.

. Bursulaya, B. D., Totrov, M., Abagyan, R.,

and Brooks, C. L., 3rd. (2003) Comparative
study of several algorithms for flexible ligand
docking, J Comput Aided Mol Des 17,
755-763.

Cheng, T., Li, X., Li, Y., Liu, Z., and Wang, R.
(2009) Comparative assessment of scoring

functions on a diverse test set, J Chem Inf
Model 49,1079-1093.

Brooijmans, N., and Kuntz, I. D. (2003)
Molecular recognition and docking algo-
rithms, Annu Rev Biophys Biomol Struct 32,
335-373.

Yongye, A. B., Bender, A., and MartAnez-
Mayorga, K. (2010) Dynamic clustering
threshold reduces conformer ensemble size
while maintaining a biologically relevant
ensemble, Journal of Computer-Aided Molecu-
lar Design 24, 675-686.

Bottegoni, G., Cavalli, A., and Recanatini, M.
(2006) A comparative study on the application
of  hierarchical-agglomerative  clustering
approaches to organize outputs of reiterated
docking runs, Journal of Chemical Informa-
tion and Modeling 46, 852-862.

Grazioso, G., Cavalli, A., De Amici, M.,
Recanatini, M., and De Micheli, C. (2008)
Alpha?7 nicotinic acetylcholine receptor ago-
nists: Prediction of their binding affinity
through a molecular mechanics poisson-
boltzmann surface area approach, Journal of
Computational Chemistry 29, 2593-2602.

Masetti, M., Cavalli, A., Recanatini, M., and
Gervasio, F. L. (2009) Exploring complex
protein-ligand recognition mechanisms with

16.

17.

18.

19.

20.

21.

22.

23.

coarse metadynamics, J Phys Chem B 113,
4807-4816.

Colizzi, F., Perozzo, R., Scapozza, L.,
Recanatini, M., and Cavalli, A. (2010)
Single-molecule pulling simulations can dis-
cern active from inactive enzyme inhibitors,
Journal of the American Chemical Society 132,
7361-7371.

Piazzi, L., Cavalli, A., Belluti, F., Bisi, A.,
Gobbi, S., Rizzo, S., Bartoliniy, M.,
Andrisano, V., Recanatini, M., and Rampa,
A. (2007) Extensive SAR and computational
studies of 3-{4-[(benzylmethylamino)methyl]
phenyl}-6,7-dimethoxy-2H-2-chromenone
(AP2238) derivatives, Journal of Medicinal
Chemistry 50, 4250-4254.

Tumiatti, V., Milelli, A., Minarini, A., Rosini,
M., Bolognesi, M. L., Micco, M., Andrisano,
V., Bartolini, M., Mancini, F., Recanatini, M.,
Cavalli, A., and Melchiorre, C. (2008) Struc-
ture-activity relationships of acetylcholinester-
ase noncovalent inhibitors based on a
polyamine backbone. 4. Further investigation
on the inner spacer, Journal of Medicinal
Chemistry 51, 7308-7312.

Belluti, F., Piazzi, L., Bisi, A., Gobbi, S.,
Bartolini, M., Cavalli, A., Valenti, P., and
Rampa, A. (2009) Design, synthesis, and eval-
uation of benzophenone derivatives as novel
acetylcholinesterase inhibitors, European Jour-
nal of Medicinal Chemistry 44, 1341-1348.

Rivera-Becerril, E., Joseph-Nathan, D,
Perez-Alvarez, V. M., and Morales-Rios, M.
S. (2008) Synthesis and biological evaluation
of (—)- and (+)-debromoflustramine B and its
analogues as selective butyrylcholinesterase
inhibitors, Journal of Medicinal Chemistry 51,
5271-5284.

Bolognesi, M. L., Banzi, R., Bartolini, M.,
Cavalli, A., Tarozzi, A., Andrisano, V.,
Minarini, A., Rosini, M., Tumiatti, V., Berga-
mini, C., Fato, R., Lenaz, G., Hrelia, P., Cat-
taneo, A., Recanatini, M., and Melchiorre, C.
(2007) Novel class of quinone-bearing poly-
amines as multi-target-directed ligands to
combat Alzheimer’s disease, Journal of Medic-
inal Chemistry 50, 4882-4897.

Bolognesi, M. L., Cavalli, A., Valgimigli, L.,
Bartolini, M., Rosini, M., Andrisano, V., Reca-
natini, M., and Melchiorre, C. (2007)
Multi-target-directed drug design strategy:
From a dual binding site acetylcholinesterase
inhibitor to a trifunctional compound against
Alzheimer’s disease, Jowrnal of Medicinal
Chemistry 50, 6446-6449.

Piazzi, L., Cavalli, A., Colizzi, F., Belluti, F.,
Bartolini, M., Mancini, F., Recanatini, M.,
Andrisano, V., and Rampa, A. (2008) Multi-



24.

25.

26.

27.

28.

29.

12 Application of Conformational Clustering in Protein-Ligand Docking

target-directed coumarin derivatives: hAChE
and BACEI] inhibitors as potential anti-Alz-
heimer compounds, Bioorganic and Medicinal
Chemistry Letters 18, 423-426.

Rosini, M., Simoni, E., Bartolini, M., Cavalli,
A., Ceccarini, L., Pascu, N.;, McClymont, D.
W., Tarozzi, A., Bolognesi, M. L., Minarini,
A., Tumiatti, V., Andrisano, V., Mellor, 1. R,
and Melchiorre, C. (2008) Inhibition of ace-
tylcholinesterase, I*-amyloid aggregation, and
NMDA receptors in Alzheimer’s disease: A
promising direction for the multi-target-
directed ligands gold rush, Journal of Medici-
nal Chemistry 51,4381-4384.

Rizzo, S., Bartolini, M., Ceccarini, L., Piazzi,
L., Gobbi, S., Cavalli, A., Recanatini, M.,
Andrisano, V., and Rampa, A. (2010) Target-
ing Alzheimer’s disease: Novel indanone
hybrids bearing a pharmacophoric fragment
of AP2238, Bivorganic and Medicinal
Chemistry 18, 1749-1760.

Hu, Q., Negri, M., Jahn-Hoffmann, K.,
Zhuang, Y., Olgen, S., Bartels, M., Muller-
Vieira, U., Lauterbach, T., and Hartmann, R.
W. (2008) Synthesis, biological evaluation,
and molecular modeling studies of methylene
imidazole substituted biaryls as inhibitors of
human 17alpha-hydroxylase-17,20-lyase
(CYP17)-Part II: Core rigidification and
influence of substituents at the methylene
bridge, Bioorganic and Medicinal Chemistry
16,7715-7727.

Jagusch, C., Negri, M., Hille, U. E., Hu, Q.,
Bartels, M., Jahn-Hoffmann, K., Mendieta, M.
A. E. P. B, Rodenwaldt, B., MAViller-Vieira,
U., Schmidt, D., Lauterbach, T., Recanatini,
M., Cavalli, A., and Hartmann, R. W. (2008)
Synthesis, biological evaluation and molecular
modelling studies of methyleneimidazole sub-
stituted biaryls as inhibitors of human 17alpha-
hydroxylase-17,20-lyase (CYP17). Part I:
Heterocyclic modifications of the core struc-
ture, Bioorganic and Medicinal Chemistry 16,
1992-2010.

Hille, U. E., Hu, Q., Vock, C.,; Negri, M.,
Bartels, M., Muller-Vieira, U., Lauterbach,
T., and Hartmann, R. W. (2009) Novel
CYP17 inhibitors: Synthesis, biological evalu-
ation, structure-activity relationships and
modelling of methoxy- and hydroxy-substi-
tuted methyleneimidazolyl biphenyls, Euro-
pean Journal of Medicinal Chemistry 44,
2765-2775.

Hu, Q., Negri, M., Olgen, S., and Hartmann,
R. W. (2010) The role of fluorine substitution
in biphenyl methylene imidazole-type CYP17
inhibitors for the treatment of prostate carci-
noma, ChemMedChem 5, 899-910.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

185

Gobbi, S., Cavalli, A., Negri, M., Schewe, K.
E., Belluti, F., Piazzi, L., Hartmann, R. W.,
Recanatini, M., and Bisi, A. (2007) Imidazo-
lylmethylbenzophenones as highly potent aro-
matase inhibitors, Jouwrnal of Medicinal
Chemistry 50, 3420-3422.

Di Fenza, A., Rocchia, W., and Tozzini, V.
(2009) Complexes of HIV-1 integrase with
HAT proteins: Multiscale models, dynamics,
and hypotheses on allosteric sites of inhibition,
Proteins: Structure, Function and Bioformatics
76, 946-958.

Tomlinson, S. M., Malmstrom, R. D., and
Watowich, S. J. (2009) New approaches to
structure-based discovery of Dengue protease
inhibitors, Infectious Disorders - Drug Targets
9,327-343.

Totrov, M., and Abagyan, R. (2008) Flexible
ligand docking to multiple receptor conforma-
tions: a practical alternative, Curr Opin Struct
Biol 18,178-184.

Damm, K. L., and Carlson, H. A. (2007)
Exploring experimental sources of multiple
protein conformations in structure-based
drug design, J Am Chem Soc 129, 8225-8235.

Barril, X., and Morley, S. D. (2005) Unveiling
the Full Potential of Flexible Receptor
Docking Using Multiple Crystallographic
Structures, J. Med. Chem. 48, 4432—4443.

Bottegoni, G., Kufareva, 1., Totrov, M., and
Abagyan, R. (2009) Four-dimensional dock-
ing: a fast and accurate account of discrete
receptor flexibility in ligand docking, | Med
Chem 52, 397-406.

Rueda, M., Bottegoni, G., and Abagyan, R.
(2010) Recipes for the selection of experimen-
tal protein conformations for virtual screen-
ing, J Chem Inf Model 50, 186-193.

Kiviranta, P. H., Salo, H. S., Leppanen, J.,
Rinne, V. M., Kyrylenko, S., Kuusisto, E.,
Suuronen, T., Salminen, A., Poso, A.,
Lahtela-Kakkonen, M., and Wallen, E. A. A.
(2008) Characterization of the binding prop-
erties of SIRT2 inhibitors with a N-(3-phenyl-
propenoyl)-glycine  tryptamide  backbone,
Bioorganic and Medicinal Chemistry 16,
8054-8062.

Kranjc, A., Bongarzone, S., Rossetti, G.,
Biarnes, X., Cavalli, A., Bolognesi, M. L.,
Roberti, M., Legname, G., and Carloni, P.
(2009) Docking ligands on protein surfaces:
The case study of prion protein, Journal of

Chemical  Theory and  Computation 5,
2565-2573.
Xiang, Z., Soto, C. S., and Honig, B. (2002)

Evaluating conformational free energies: The
colony energy and its application to the



186

41

42.

43.

44.

45.

46.

47.

48

49.

G. Bottegoni et al.

problem of loop prediction, Proceedings of the
National Academy of Sciences of the United
States of America 99, 7432-7437.

. Chang, M. W., Belew, R. K., Carroll, K. S.,

Olson, A. J., and Goodsell, D. S. (2008)
Empirical entropic contributions in computa-
tional docking: Evaluation in APS reductase
complexes, Journal of Computational Chemis-
try 29,1753-1761.

Morris, G. M., Huey, R., Lindstrom, W.,
Sanner, M. F.; Belew, R. K., Goodsell, D. S.,
and Olson, A. J. (2009) AutoDock4 and
AutoDockTools4: Automated docking with

selective receptor flexibility, | Comput Chem
30,2785-2791.

Jones, G., Willett, P., Glen, R. C., Leach, A.
R., and Taylor, R. (1997) Development and
validation of a genetic algorithm for flexible
docking, Journal of Molecular Biology 267,
727-748.

Abagyan, R., Totrov, M., and Kuznetsov, D.
(1994) Icm - a New Method for Protein Mod-
eling and Design - Applications to Docking
and Structure Prediction from the Distorted
Native Conformation, Journal of Computa-
tional Chemistry 15, 488-506.

Bottegoni, G., Rocchia, W., Recanatini, M.,
and Cavalli, A. (2006) ACIAP, Autonomous
hierarchical agglomerative Cluster Analysis
based protocol to partition conformational
datasets, Bioinformatics 22.

Lin, J. H., Perryman, A. L., Schames, J. R.,
and McCammon, J. A. (2002) Computational
drug design accommodating receptor flexibil-

ity: the relaxed complex scheme, J Am Chem
Soc 124, 5632-5633.

Landon, M. R., Amaro, R. E., Baron, R.,
Ngan, C. H., Ozonoff, D., McCammon, J.
A., and Vajda, S. (2008) Novel druggable hot
spots in avian influenza neuraminidase H5N1
revealed by computational solvent mapping of
a reduced and representative receptor ensem-
ble, Chem Biol Drug Des 71, 106-116.

. Schames, J. R., Henchman, R. H., Siegel, J. S.,

Sotriffer, C. A., Ni, H., and McCammon, J. A.
(2004) Discovery of a novel binding trench in
HIV integrase, J Med Chem 47, 1879-1881.

Amaro, R. E., Baron, R., and McCammon, J.
A. (2008) An improved relaxed complex
scheme for receptor flexibility in computer-

50.

51.

52.

53.

54

55.

56.

57.

58.

59.

60.

6l.

aided drug design, J Comput Aided Mol Des
22, 693-705.

Daura, X., Gademann, K., Jaun, B., Seebach,
D., Van Gunsteren, W. F.; and Mark, A. E.
(1999) DPeptide folding: When simulation
meets experiment, Angewandte Chemie -
International Edition 38, 236-240.

Van Der Spoel, D., Lindahl, E., Hess, B.,
Groenhof, G., Mark, A. E., and Berendsen,
H. J. C. (2005) GROMACS: Fast, flexible,
and free, pp 1701-1718, Wiley Subscription
Services, Inc., A Wiley Company.

de Hoon, M. J. L., Imoto, S., Nolan, J., and
Miyano, S. (2004) Open source clustering
software, Bioinformatics 20, 1453-1454.
Kaufman, L., and Rousseceuw, P. J. (1990)
Finding Groups in Data: an Introduction to
Cluster Analysis., Wiley, New York.

. Hopkins, B. (1954) A new method for deter-

mining the type of distribution of plant indi-
viduals., Ann. Bot. 18,213-227.

Kelley, L. A., Gardner, S. P., and Sutclifte, M.
J. (1997) An automated approach for defining
core atoms and domains in an ensemble of
NMR-derived protein structures, Protein
Engineering 10, 737-741.

Cole, J. C., Murray, C. W., Nissink, J. W.,
Taylor, R. D., and Taylor, R. (2005) Compar-
ing protein-ligand docking programs is diffi-
cult, Proteins 60, 325-332.

Hawkins, P. C., Warren, G. L., Skillman, A.
G., and Nicholls, A. (2008) How to do an
evaluation: pitfalls and traps, J Comput Aided
Mol Des 22,179-190.

Marcou, G., and Rognan, D. (2007) Optimiz-
ing fragment and scaffold docking by use of
molecular interaction fingerprints, J Chem Inf
Model 47, 195-207.

Abagyan, R., and Kufareva, 1. (2009) The
flexible pocketome engine for structural

chemogenomics, Methods Mol Biol 575,
249-279.
Everitt, B. S., Landau, S., and Leese, M.

(2001) Cluster analysis, Arnold, a member of
the Hodder Headline Group, London.

Ward, J. H. J., and Hook, M. E. (1963) Appli-
cation of a hierarchical grouping procedure to
problem of grouping profiles, Educ. Psychol.
Meas. 23, 69-92.



Chapter 13

How to Benchmark Methods for Structure-Based Virtual
Screening of Large Compound Libraries

Andrew J. Christofferson and Niu Huang

Abstract

Structure-based virtual screening is a useful computational technique for ligand discovery. To systematically
evaluate different docking approaches, it is important to have a consistent benchmarking protocol that is both
relevant and unbiased. Here, we describe the designing of a benchmarking data set for docking screen
assessment, a standard docking screening process, and the analysis and presentation of the enrichment of
annotated ligands among a background decoy database.

Key words: Virtual screening, Molecular docking, Enrichment, Decoys

1. Introduction

Virtual screening has become an important computational tool
for the identification of potential lead compounds in the field of
drug discovery. Currently both ligand-based and structure-based
techniques are in development, and with the rapidly increasing
availability of protein structures, structure-based virtual screening
(i.e., molecular docking) is now one of the most practical techni-
ques to leverage target structure for ligand discovery (1-5). How-
ever, as new docking methods are developed it is critical to
evaluate these methods in a meaningful and unbiased way so
that their objective performance in potential ligand identification
may be compared in an “apples to apples” fashion.

The most practical use of the molecular docking approach is
to rank small molecules from a large chemical library (typically
containing hundreds of thousands or millions of compounds)
for complementarity to a macromolecular binding site. Ideally,
docking should be evaluated using three criteria: binding affinity,
docking pose fidelity, and database enrichment. Unfortunately,
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accurately predicting ligand binding affinities using the most
rigorous computational chemistry approaches is still very challeng-
ing in both theoretical and practical aspects, without mentioning
the many approximations involved in simple docking techniques.
Pose fidelity, the degree to which a docking method can reproduce
an experimentally derived ligand binding geometry within a speci-
fied root-mean-square deviation (RMSD) tolerance limit, is an
essential requirement and relatively straightforward to determine.
The final key to evaluating docking methods for the prioritization
oflarge compound libraries is enrichment. Enrichment is the ability
of a docking method to correctly identity binding ligands from a
large database of nonbinding “decoy” molecules. In order for
enrichment to be a meaningful measurement of a docking meth-
od’s usefulness, the benchmarking data set must be properly con-
structed and validated. Databases of randomly chosen molecules
lead to significant enrichment-factor bias. For example, work by
Verdonk and colleagues determined that simple differences in size
distribution between ligands and decoys can yield artificially good
enrichments results (6). Therefore, database molecules must have
similar physical properties to the annotated ligands so that achieved
enrichment is not merely a separation of simple physical properties.
However, these molecules must also remain chemically distinct so
that they do not themselves bind to the target.

The directory of useful decoys (DUD) (7), a database
containing 2,950 annotated ligands for 40 different targets, with
36 physically similar but topologically distinct decoy molecules
per ligand (for a total database of 98,266 molecules) was devel-
oped as a benchmarking set for molecular docking designed to
minimize bias, and is public and freely available online at http:/
blaster.docking.org,/dud/. While the DUD dataset itself is a use-
ful benchmarking set, it also provides an example of sow to create a
database for benchmarking structure-based virtual screening
methods. Additionally, it has stimulated a wide discussion on
how to properly design the virtual screening experiments and
effectively assess their performance (8-16).

Here, we will outline the criteria for the selection of target
proteins, discuss the method for the generation and preparation of
an unbiased database, and describe the procedure for carrying out
the benchmarking. Finally, we will discuss the analysis and presen-
tation of the results. While the focus here is on structure-based
approaches, work by Rohrer and Baumann has shown similar
concerns for ligand-based virtual screening (17).

2. Methods

The programs listed are not necessarily the only ones capable of
carrying out the specified task, but are merely the ones used as
example for demonstrating this procedure. The ZINC protocol
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2.1. Protein Target
Selection

and Structure
Preparation

2.2. Generation
of Benchmarking
Database

2.3. Three-
Dimensional
Compound Database
Construction

is used to demonstrate how to prepare the 3D compound
database (18). The DUD protocol is used to demonstrate how
to generate the property-matched but chemically distinct decoy
molecules (7). The DOCK3.5.54 program (19-21) and DOCK
Blaster protocol (22) are used to demonstrate how to perform a
robust docking screening.

1.

Select representative target proteins based on high quality
ligand-bound X-ray crystal structures from the Protein Data
Bank (23), with consideration to the availability of annotated
ligands (see Note 1).

. Identify cofactors, metal ions and structural waters in the

target protein, and treat them as part of the protein if they
are involved in ligand binding.

. Assign proper protonation states for binding site residues

(e.g., His, Cys, Lys, Asp, Glu) and optimize the orientations
for polar hydrogen atoms (see Note 2).

. Prepare the annotated ligands in the correct chirality form

(if known) and seed them among a large compound library
(see Note 3).

. Calculate feature key fingerprints using CACTVS (24), and

perform the fingerprint-based similarity analysis with the
program SUBSET (25) to exclude the database compounds
structurally similar to any given annotated ligand (see Note 4).

. Determine the key physical properties of the annotated

ligands and the remaining database compounds using Qik-
Prop (Schrodinger, LLC, New York, NY), and prioritize the
database compounds with QikSim (Schrodinger, LLC,
New York, NY) based on their physical similarity to the anno-
tated ligands (see Note 5).

. Divide the benchmarking data set into a training set and a test

set if necessary (see Note 06).

. Convert molecules to isomeric SMILES using OEchem

(OpenEye Scientific Software, Santa Fe, NM), then generate
initial 3D structures from SMILES using Corina (Molecular
networks GmpH) (see Note 7).

. Determine the protonation form at pH 7.0 and additional

protonation states and tautomeric forms in the biologically
relevant range of pH (e.g., pH 5.75-8.25) with LigPrep
(Schrodinger, LLC, New York, NY). Obtain a 3D model of
each protonation and tautomeric form using Corina, then use
AMSOL to calculate partial atomic charges and atomic deso-
lvation energies (21).
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2.4. Automated Virtual
Screening Pipeline
(see Note 9)

2.5. Analysis
and Presentation
of Screening Results

. Enumerate accessible conformations with Omega (OpenEye

Scientific Software, Santa Fe, NM).

. Combine AMSOL and Omega results into a single “flexibase”

format file using Mol2db (19) (see Note 8).

. Identify binding site residues within certain range (e.g., 12 A)

away from any heavy atom of the crystallographic ligand or
the residues used to define the site.

. Calculate the solvent-accessible molecular surface (26) of the

protein binding site with the program DMS (27) using a
probe radius of 1.4 A.

. Generate receptor-derived spheres with the program

SPHGEN (part of the UCES DOCK suite) (28), in combina-
tion with the ligand-derived spheres if necessary (see Note
10).

. Grid box dimensions are set to maximize the coverage of the

protein without exceeding two million grid points at a pre-
defined grid resolution. Four scoring grids are generated,
including an excluded contact grid, a van der Waals potential
grid, an electrostatic potential grid and a solvent occlusion
grid (21, 29, 30).

. Docking was performed with DOCK 3.5.54, a flexible-ligand

method that uses a force-field-based scoring function com-
posed of van der Waals and electrostatic interaction energies
corrected for ligand desolvation (19, 21, 29). Ligand confor-
mations are scored on the basis of the total docking energy
(Etor) (Eele + Eyaw—¢Giig-solv), Which is the sum of electro-
static (E..) and van der Waals (E,q,) interaction energies,
corrected by the partial ligand desolvation energy (¢ Giig-solv)
(21).

. Report tuned parameters and precise ligand and structure

details (see Note 11).

. Calculate the enrichment factor (EF) using the formula

EFsubsct = {ligandssclcctcd/Mubsct}/{ligandstotal/Ntotal}) with
particular emphasis on early enrichment (see Note 12).

. Plot receiver operator characteristic (ROC) curves (Fig. 1) for

sensitivity (Se), where Segupser = {ligandsseiected/ligands ogal} vs.
specificity (Sp), where Spgsupser = {(decoysiora—decoysseiected)/
decoysiora}, as Se (i.e., % of selected ligands) vs. (1-Sp)
(i.e., % of selected decoys) (see Note 13).

. Compare enrichment results for the “own decoy” subset to

the database as a whole (see Note 14).

. Report pose fidelity and scoring (see Note 15).
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Fig. 1. ROC plot for an example target protein in the DUD database. The y-axis may also be described as “true positives”
and the x-axis as “true negatives.” The x-axis is displayed on a logarithmic scale to better show early enrichment. “Own
decoy subset” refers to the subset of decoys generated for the annotated ligands of the target protein. Note that an
enrichment factor plot for a large database would appear similar to this, with “% of ranked database” on the x-axis.

3. Notes

1. Protein targets should be selected to represent a variety of
representative active site conditions in a comprehensive
benchmarking campaign, including but not limited to polar-
ity, hydrophobicity, shape, and cofactors, and should be
diverse enough to draw statistically robust conclusions. The
number of annotated ligands per target should be greater than
10, and should represent different structural classes of known
ligands (31, 32). Annotated ligands should be clustered
according to chemotype (13, 16).

2. Ideally, the target protein should be prepared as if the crystal
ligand was absent, as adjusting the protein to favor crystal
ligands is a source of bias.

3. In this work, decoy compounds were obtained from the
ZINC database (33). It is important that the database decoy
compounds are obtained from is a good representation of
chemical space, and can provide an adequate sample of
ligand-like nonbinding compounds. For example, if a target
protein primarily binds highly charged ligands, it is important
that the decoy set also contain a representation of highly
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charged nonbinders so that enrichment is more than a trivial
discrimination by molecular charge. Ideally, the ratio of decoys
to actives should be at least 10:1 for each target. However, a
decoy to target ratio of even 4:1 only increases the error by 11%
compared to an infinite number of decoys (34).

. In the original DUD protocol, compounds were selected

based on a Tanimoto coefficient (Tc) less than 0.9 to any
annotated ligand. Chirality duplicates were excluded. This
reduced the initial ZINC database of 3.5 million Lipinski-
compliant molecules to set of 1.5 million molecules topologi-
cally dissimilar to the 2,950 annotated ligands. A Tc of less
than 0.9 CACTVS type 2 fingerprints roughly corresponds to
a Tc less than about 0.7 for the widely used Daylight finger-
prints. However, a smaller Tc cutoff might be used to further
reduce the possibility of selected “decoy” molecules being
true ligands.

. In the original DUD protocol, molecular properties were

prioritized as follows: a weight of 4 was specified to emphasize
druglike descriptors (molecular weight, number of hydrogen
bond donors and acceptors, number of rotatable bonds, and
log P) ,and a weight of 1 was used for the number of important
functional groups (amine, amide, amidine, and carboxylic
acid). The rest of the physicochemical descriptors were
ignored (weight 0) during the similarity analysis procedure.
However, the molecular charge state is probably also an impor-
tant descriptor to be considered in molecular property analysis,
especially in the cases of treating highly charged ligands. While
these properties are by no means comprehensive, they may
serve as a guideline for the database construction.

. The Kubinyi Paradox (35) states that as retrospective prediction

is improved by adjusting a method, there is a tendency for that
method to make poorer predictions. This is because certain
virtual screening methods are being fit to the decoys as well as
the annotated ligands. Therefore, some portion of the database
should be set aside for testing to ensure that the method has not
been over-parameterized. It is important that this test set be
sufficiently different from the training set in order to determine
if the method is indeed over-parameterized (36).

. The choice of 3D model builder is important. For example,

CORINA and LIGPREP assign bond lengths with differences
of around 0.01-0.02 A, which results in measurable differ-
ences in enrichment (16). Annotated ligands should be
prepared for screening in exactly the same manner as decoy
molecules.

. DOCK3.5.54 implements a flexible docking algorithm by

presampling the ligand conformation on the fly, and then
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10.

11.

12.

13.

14.

assembles the ligand conformational ensemble using a
“flexibase” format file.

. This section primarily outlines the parameters for the auto-

mated docking procedure. In order to screen a large number
of ligands against multiple targets, it is important to automate
the docking procedure as much as possible. Most binding site
preparation, sphere or “hot spot” preparation, scoring grid
calculation, docking calculation and data analysis procedures
have been automated.

For large ligands spanning more than one pocket, specity the
part of the ligand most intimately involved in binding as a
fragment in an individual file that can be recognized as the
reference state for generating the docking spheres. Matching
spheres required for the orientation of the ligand in the bind-
ing site are obtained by augmenting the ligand-derived spheres
with receptor-derived spheres.

It is critical that all parameters for all docking methods be
reported so that the results may be independently verified.
Additionally, any changes to active ligand or target protein
structure, as well as a description of how any cofactors, metal
ions, or structural waters are treated, should also be reported.

In simple terms, EF is the ratio of binding ligands in the top x
% of the database ranked by the scoring method compared to
the ratio of binding ligands in the database as a whole. It is an
evaluation of the docking method compared to random selec-
tion (which corresponds to an EF of 1). For example, EF, is
the ratio of binding ligands in the top 1% of the ranked
database compared to the ratio of binding ligands in the entire
database. EF ., is the maximum EF. EF, ., and EF; represent
early enrichment. Early enrichment is important, as practically
speaking there will always be a limited number of potential
binding molecules that can be economically tested experi-
mentally.

ROC curves may be used to check for bias introduced in
enrichment plots when the ratio of binding ligands to decoys
grows large (37). Like an enrichment plot, the further away
from the diagonal the ROC curve is, the better the docking
enrichment. To check for size-dependent bias, generate an
ROC curve for a randomly selected subset of the database and
compared it to the ROC curve of the entire database.

“Own decoys” refers to the subset of decoys matched only to
the annotated ligands for a specific protein target. Performing
docking screens both on the entire database and the subset of
“own decoys” should be considered, as they present distinct
challenges to the docking method.
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15. A common RMSD cutoft for reporting pose fidelity is 2.0 A,

but this is by no means the only possible metric. Care must be
taken when optimizing a method for pose fidelity, as there is a
tendency for enrichment to fall as pose fidelity increases (38).
Although the RMSD threshold of 2.0 A is commonly
accepted as docking success, this measurement alone was
argued to be limited unless combined with interaction-based
measurements (39). If scoring is reported as a measure of
affinity, Pearson’s correlation and Kendall’s Tau should be
used, and a correlation with simpler measures such as cLogP
and hydrogen bond donors and acceptors should be reported
as well (40, 41).
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AGGRESCAN: Method, Application, and Perspectives
for Drug Design
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Abstract

Protein aggregation underlies the development of an increasing number of conformational human diseases
of growing incidence, such as Alzheimer’s and Parkinson’s diseases. Furthermore, the accumulation of
recombinant proteins as intracellular aggregates represents a critical obstacle for the biotechnological
production of polypeptides. Also, ordered protein aggregates constitute novel and versatile nanobioma-
terials. Consequently, there is an increasing interest in the development of methods able to forecast the
aggregation properties of polypeptides in order to modulate their intrinsic solubility. In this context, we
have developed AGGRESCAN, a simple and fast algorithm that predicts aggregation-prone segments in
protein sequences, compares the aggregation properties of different proteins or protein sets and analyses
the effect of mutations on protein aggregation propensities.

Key words: AGGRESCAN, Protein aggregation, Amyloid, Inclusion bodies, Protein misfolding,
Protein production, Biomaterials

1. Introduction

Protein deposition constitutes a major bottleneck during recombinant
protein production in microbial-cell-factories. This challenging prob-
lem impedes the commercialisation of peptide and protein based
drugs with important potential applications in biomedicine (1).
Also, protein aggregation is a major concern in the development of
therapeutic protein formulations since the presence of aggregates in
these solutions reduces effectiveness and may lead to severe immune
responses in patients (2, 3). Moreover, the formation of protein
aggregates, namely amyloid fibrils, has been associated with a growing
number ofhuman diseases, including Alzheimer’s disease, spongiform
encephalopathies, type I1 diabetes mellitus and Parkinson’s disease (4).
Thus, large efforts have been devoted during the past 10 years to the
development of new strategies addressed to reduce or avoid protein
deposition. Interestingly enough, an increasing number of studies
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suggest that protein-based nanomaterials formed by the ordered
aggregation of polypeptides may constitute an attractive alternative
to inorganic materials, since they can be assembled under mild aque-
ous conditions, are easiest to design and modify and less expensive (5).

The study of protein aggregation has revealed that the pri-
mary structure of a polypeptide strongly influences its aggregation
propensity and that point mutations may have a huge impact on
protein solubility (6). Furthermore, recent studies have demon-
strated that not all the residues of a polypeptide sequence are
equally important to determine its aggregation tendency since
there are specific regions or “Hot Spots”, that promote and direct
the protein deposition process (7, 8). Additionally, it has been
found that the residues flanking these aggregation-prone regions
act as “gatekeepers” modulating the aggregation potential of
these sequences (9-12). The knowledge accumulated in the past
10 years on protein deposition processes has facilitated the flour-
ishing of algorithms able to predict and characterise the aggrega-
tion propensity of proteins starting from its primary sequence. To
develop these approaches, researchers have employed a high diver-
sity of sources and premises coming from in vitro or in vivo
experimental data (6, 13), structural parameters (14) or biophysi-
cal properties of polypeptides (15). These computational appro-
aches have proved to be remarkably helpful in the design of
strategies to control protein deposition events (16, 17).
The increasing relevance of protein aggregation in biology, bio-
technology, biomedicine and nanotechnology, together with the
easy access to these bioinformatic tools and their overall accuracy
has resulted in a significant number of published works coming
from different research areas, that exploit these predictive tools to
gain insights on the self-assembly properties of structurally and
sequentially unrelated proteins or protein sets (18-24). This chap-
ter constitutes an exhaustive manual intended to assist researchers
in the use of one of such algorithms: AGGRESCAN (25) (http://
bioinf.uab.es/aggrescan/).

AGGRESCAN is a web-based software that locates “Hot
Spot” regions in a polypeptide sequence, calculates the effect of
sequential changes on the protein aggregation tendency and facil-
itates the evaluation of depositional differences between proteins
or protein sets. AGGRESCAN’s algorithm is based on experimen-
tal results obtained from the study of the aggregation of'a complete
set of mutants of amyloid B-peptide inside E. colz cytoplasm (26).
These mutants differ only in one residue located in a central Hot
Spot of this peptide. The correlation between each mutation and
the resultant intracellular aggregation permits to obtain a scale of
the intrinsic aggregation propensity for the 20 natural amino acids
when they were located in this crucial position (27). AGGRES-
CAN algorithm exploits this scale to evaluate the aggregation
propensity of each single protein residue according to its relative
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position in the polypeptide sequence (25). This scale reflects the
intrinsic aggregation properties of natural amino acids in biologi-
cally relevant environments and can be considered generic since
the aggregation of proteins with no sequential or structural rela-
tionship seems to be controlled by the same general rules (4, 6).

AGGRESCAN is an easy to use and fast web-server that
permits to analyse simultaneously the aggregation properties of a
large number of proteins, independently of their size (25). This
software provides graphs to facilitate rapid identification of the
distribution of aggregation-prone residues in a polypeptide
sequence. The outputs include tables and normalized values that
facilitate the evaluation and comparison of the aggregation prop-
erties of different related or unrelated proteins. The algorithm can
be employed in different applications ranging from the discreet
analysis of single proteins and their mutants (28) to the study of
the aggregation properties of whole proteomes (23). AGGRES-
CAN accuracy and applicability can be enhanced complementing
its results outputs with structural predictors (29) or using it in
tandem to other well established aggregation predicting programs
(16, 28, 30-32). Overall, AGGRESCAN; as well as alternative
aggregation predictive algorithms, are versatile tools that can be
employed for many different purposes:

Localisation of Hot Spots

1. To identify protein regions especially relevant for protein
aggregation and amyloidogenesis (32, 33).

2. To calculate the distribution of aggregation-prone regions in
individual proteins (34-36).

3. Toidentify target regions for the action of B-sheet breakers. -
sheet breakers are short peptides able to bind an amyloido-
genic sequence and disrupt the intermolecular network that
propagates the amyloid fibril conformation (37-39).

4. To identify sequential targets for small chemical compounds
or antibodies able to block protein aggregation in disease-
related processes.

5. To identify regions able to interact with excipients that would
reduce the aggregation of therapeutically relevant proteins
during storage and increase their shelf lite (40).

6. To find putative substrates for molecular chaperones (9, 41).

7. To provide information about the cytotoxic mechanism of a
protein (30).
8. To improve the solubility of therapeutic proteins (2).

9. To design short peptide sequences able to self-assemble into
ordered structures useful for nanotechnologic applications (5).
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Discrete analysis of sequences

. To identify gatekeeper residues and /or modify them in order

to modulate the aggregation propensity of the sequence they
flank (10-12).

. To redesign globular proteins in order to stabilize the native

conformation avoiding the occasional exposure of Hot Spots
(42).

. To redesign proteins in order to ensure their solubility in

pharmaceutical production (16, 17).

. To obtain a list of possible protective mutations able to avoid

protein aggregation (43).

. To predict how changes in the polypeptide sequence would

affect its aggregation propensity (15, 17).

. To design sets of peptides with a gradation of aggregation

propensities for specific purposes, such as studying the corre-
lation between deposition tendency and cytotoxicity (22).

Analysis of large data sets

. To identify common features between related proteins such as

polypeptides from the same structural or functional family or
those associated to conformational diseases (30, 44—46).

. To study how evolution modulates the sequence and compo-

sition of aggregation-promoting regions (9, 23, 47).

. Proteome screening to find new mutations with risk to induce

protein aggregation.

. To study the relationship between protein aggregation pro-

pensity and solubility (28).

. Toanalyse the similarities and differences between native intra-

molecular, native intermolecular and aberrant intermolecular
contacts leading to protein aggregation (29, 31, 48, 49).

. To study entire proteomes in order to obtain general rules

linking proteins aggregation propensity and their role in the
biology of the cell.

2. Methods

2.1. Front Page The AGGRESCAN initial screen includes links to understand
the basis on which it is implemented this web server (Fig. 1).
At the top, the user can retrieve the open access article where
the program was originally published, the help file and contact by
e-mail with the authors. The essential element of this screen is a
central window where the input information has to be introduced.
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AGGRESCAN

The Hot Spot Finder Help File Relerences

Prediction of "hot spots" of aggregation in polypeptides

Enter the peptide sequences in

>protA
AHQKLVFAEDVGSNKGAIIGLMVGG
>protB
AVILFVLVMAIASGGKGGQGKHDNE
>protC
LVDKQFAVNGASKGGAIGLMHEVGI

Fig. 1. AGGRESCAN front page. The AGGRESCAN front page displays different links and a main window to submit protein
sequences. In the central window there are written in FASTA format the sequences of three putative proteins (protA,
protB and protC) with equal amino acid composition but different residue arrangement.

At the bottom the user can find links to the web page of the
author’s institutions.

2.2. Selecting The user should type or past the amino acid sequence from the
and Entering protein or protein sets to analyse. The input sequence(s) must be
Polypeptide in one letter amino acid code consistent with FASTA format (50)
Sequences (see Note 1). Because AGGRESCAN can perform simultaneous

predictions for large protein sets the sequences should be named
individually to differentiate them from previous and subsequent
sequences (see Note 2). After introducing the required informa-
tion the user should press the submit! button to start the program
calculations.

2.3. The Output Screen  The output screen consists of four sections (Fig. 2). The top left
section corresponds to the name of the calculated AGGRESCAN
values and a link to the help file where the user can find a description
of each item (to know more about the AGGRESCAN values check
Notes 3 and 4). The result of each calculated parameter for all the
analyzed sequences is shown at the top centre together with links
to three graphs that illustrate the aggregation properties of the
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A D013 2047 0408 0389 B M 0S8 190157 1012 0967
E 0.0132.047 0409 0389 9 M 1.134 13.157 1.012 0.967
D 044500000000 0000 10 A 0ESI 3057 1012 0967 G -0.115 0.000 0.000 0.000
V -0.497 0,000 0.000 0000 11 0473 13.157 1.012 0967 A -0.620 0.0000.000 0.000
12 G0A47500000000 0000 12 A 0084 3057 1012 0967 12 5046600000000 0.000
13 $-029400000000 0000 13 S 0084131571012 0567 13 K -0466 00000000 0000
14 N 071900000000 0000 14 G-0466 00000000 0000 14 G -0.4660.0000.000 0000
15 K-0.62000000000 0000 15 G-0.566 00000000 0000 15 G-0.0430.0000000 0.000
16 G-0.196 0.000 0,000 0000 16 K-0614 0.0000000 0000 16 A 0.0361.7520000 0418
17 A 042853860598 0578 17 G-0.753 0.0000.000 0000 17 I 04191.7520000 0418
I8 | DS0853860598 D578 18 G753 00000000 0000 18 G 0.708 1.752 0.000 0418
19 1 089153860598 0578 19 Q-0.753 0.0000000 0000 19 L 0509 1.7520.000 0418
20 G D80 53860598 DS78 20 G853 00000000 0000 20 M -0.138 0.000 0,000 0000
21 L 103453860598 0578 21 K-1.113 00000000 0000 21 H 028803080000 0288

2

23

24

25

V 02950741 0000 0227
N -0.063 0.0000.000 0.000
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Sequence Name: protA protB protC Average over all sequences
@ Grphs: | P A B P A i P X
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@ NnHS: 8.000 4.000 0.000 4.000
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@) THSA: 7.433 13.157 0.000 6.863
Q TA: 2482 2437 0.364 1.518
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-1.303 00000000 0000 23 V 0.0870.3010.000 0080
s1.334 00000000 0000 24 G 007703010000 0.080
-1334 00000000 0000 25 I 007703010000 0080

23 V 0563 53860598 0578
24 G (W70 5586 0598 0S8
25 G 007053860598 0578

Fig. 2. Output screen showing the AGGRESCAN analysis of three putative proteins with equal composition but different
sequences. (a) AGGRESCAN value names and links to the help file (question mark). (b) Sequence names, links to
AGGRESCAN graphs and results of the analysis. (¢) Average values and ranking list. (d) Intrinsic aggregation propensity of
each residue (a4v) and their influence in a Hot Spot region (HAS, NHSA and a4vAHS). Hot Spot residues are shown in grey
colour (red in the online image). The protein sequences correspond to those in Fig. 1.

analyzed sequences more visually (see Note 3). The right section is
useful for the analysis of multiple sequences and includes the average
of each AGGRESCAN value in the complete dataset and a list of the
introduced sequences sorted by their “global protein aggregation
propensity average” (Na4vSS) (see Note 5). Under the AGGRES-
CAN values of each sequence, there is a list displaying the intrinsic
aggregation propensity of their residues according to its location in
the sequence (a4v) (see Note 3). There are also three contiguous
columns that indicate the contribution of each residue in the
sequence to Hot Spot regions (HSA, NHSA and a4vAHS) (to
know more about Hot Spots properties check Notes 2, 6 and 7).

As explained above, AGGRESCAN can be applied to perform
discrete or large sequential analyses (see Notes 4 and 5). In the
sections below it is described how to use the algorithm for these
purposes.
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Fig. 3. Role of protein sequence and composition on aggregation properties. Examples of graphs P (top) and A/N (bottom)
of three putative proteins with equal composition but different sequence (see also Figs. 1 and 2). The HST and a3v value
are shown as a black (blue on the online image) and grey (green on the online image) horizontal lines, respectively. protA

is an example of a protein wi

th the aggregation prone residues concentrated in one region. protB possess two

aggregation prone regions. proC has aggregation prone residues distributed along the protein sequence and conse-
quently AGGRESCAN does not detect any Hot Spot (there is no A/N graph). Despite these three proteins have identical
amino acid composition their different residue arrangement confers them different aggregation properties.

2.4. Targeted Analysis

When the objective is to study the aggregation properties of a
single protein, to compare it with a mutant variant, with a protein
from the same family or to redesign it modulating the deposition
tendency, the user should make use of AGGRESCAN individual
results. First of all, the three AGGRESCAN plots (Fig. 3) permit a
global and rapid examination of the distribution of aggregation
prone residues along the sequence and to localise Hot Spot regions
if they are present (see Notes 6 and 7). Specifically, graph P illus-
trates the aggregation tendency profile of every introduced
sequence. Graph A shows exclusively the area comprised by those
residues involved in a Hot Spot and graph A/N shows the same
area normalised by the protein length. This last plot allows the
comparison between proteins of different size. To know the exact
value of each single residue in the three graphs the user can exam-
ine the lists at the bottom of the screen (see Notes 2 and 6 and
Fig. 2). Data in column a4v is plotted in graph P, data in column
HSA is plotted in graph A and the values of column NHSA multi-
plied by a factor of 10? are plotted in graph A/N.
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Fig. 4. Example of designed mutations changing protein aggregation propensity. This image shows the AGGRESCAN
analysis of the Amyloid-3-peptide (WT) and a point mutant (F19D). (a) Graph A of the Amyloid--peptide. (b) Graph A/N of
the Amyloid-B-peptide. The arrow and dotted line indicate the size increment of the first Host Spot when comparing the
A and A/N graphs, this data suggest that despite this region comprises few residues it accumulates high aggregation
potential. (c) Graph A/N of the point mutant F19D. (d) AGGRESCAN values resultant from the analysis of the Amy-
loid-B-peptide (WT) and the point mutant (F19D). (e) Section of the amino acid value list comprising the residues of
Amyloid-B-peptide first Hot Spot. The Hot Spot residues are shown in grey (redin the online image). (f) The same section
of the list comprising the residues of the mutated peptide (F19D), in which no Hot Spot is now detected.

2.5. Detecting Hot
Spots and Modulating
Intrinsic Protein
Aggregation
Propensity

The aggregation properties of peptides and proteins are strongly
dependent on specific sequence regions whose aggregation ten-
dencies are particularly high. The comparison of graphs from
different polypeptides makes easy to detect regions differing in
aggregation propensity and permits to detect changes in the num-
ber or size of Hot Spots and thus to predict the effect of sequential
changes on aggregation (25) (see Notes 6 and 7 and Figs. 3 and 4).
To get more precise information about the residues contributing
to the detected Hot Spots they are highlighted in red in the
different lists (Fig. 2). Comparison of the Hot Spot area values
informs on the differential contribution of each Hot Spot to the
overall protein aggregation propensity (Figs. 3 and 4) (see Note 6).
This information can be used to forecast the effect of genetic
mutations on the depositional properties of proteins related to
conformational diseases (Fig. 4) or to find candidate sequences
whose chemical blockage by drugs might modulate the nucleation
of aggregation and thus be of potential therapeutic use. In addi-
tion, it can be used to generate more soluble variants of a protein
of biotechnological or biomedical interest like short signalling
peptides or antibodies (see Note 8).
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The sequence stretches with higher aggregation propensity
could be interpreted as target regions where modulate the overall
aggregation tendency of the protein (Fig. 4). To carry out virtual
sequential changes and then run the AGGRESCAN calculations is
a useful strategy to redesign a protein, for example, to reduce its
deposition propensity (Fig. 4) (see Note 8). The a3vSA value for
proteins of equal length and the Na4vSS value for proteins of
different size provides an estimation of the global protein aggrega-
tion propensity and therefore it is very useful to check how
these values are expected to change after a sequence modification
(see Note 4). It would be also useful to compare the AGGRESCAN
values obtained with those characteristics of different proteins
differing in conformation (see Note 9). This comparison could
indicate, for instance, if the aggregation properties of the polypep-
tide of interest resembles that of'a globular, a natively unstructured
or an amyloidogenic protein (25). The predicted aggregation
properties might be compared with those predicted for soluble
and insoluble data sets to test if it can be classified a priori in one
of these two groups (see Note 9).

To illustrate the application of the AGGRESCAN program for
detecting aggregation prone regions and modulating the aggre-
gation propensity of a particular protein sequence, Fig. 4 exem-
plifies a study performed with the Amyloid-B-peptide (AP)
associated to Alzheimer disease (51). According to AGGRESCAN
this peptide encloses two Hot Spots between residues 17-22 and
30—42 (25,27), these data could be obtained from the A and A/N
graphics, from the nHS value or counting up the groups of
residues coloured in red from the bottom lists (Fig. 4). The
comparison of A and A/N graphs shows that the 17-22 Hot
Spot, despite comprising fewer residues, has a global aggregation
propensity close to the complete 30—42 region. The Na4vSS value
is 6.4 and the a3vSA is 0.064 since both are positive values
(see Note 3) they indicate that this peptide has an aggregation
propensity greater than the average of all the proteins diposited in
the SwissProt database (see Subheading 14.7). In case that the
objective of the study consists in the reduction of Ap aggregation
propensity, the two detected Hot Spot regions are good candi-
dates to introduce specific sequence modifications (see Note 6).
Looking at Table 1 (see Subheading 14.4) we can select to change
a high aggregation prone residue from one of these Hot Spots by a
low aggregation one in order to decrease the deposition tendency.
In this way, the change of Phenylalanine 19 by Aspartic acid causes
the loss of the first Hot Spot and a concomitant reduction of the
a3vSA and Na4vSS values (Aa3vSA = —0.081 and ANa4vSS =
—8.6) (see Notes 2 and 4). In addition, the area values of THSA
and TA experience an important decrease (ATHSA = —3.821
and ATA = —3.59) suggesting a significant reduction of the over-
all protein deposition tendency. The lists under AGGRESCAN
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2.6. Detecting
Gatekeepers

Table 1

Relative experimental aggregation
propensities of the 20 natural amino
acids derived from the analysis

of Amyloid-g- peptide mutants

(26, 27)

Amino acid Value

b

1.822
1.754
1.594
1.380
1.159
1.037
0.910
0.604
—0.036
—0.159
—0.294
—0.334
—0.535
—-0.931
—1.033
—-1.231
—1.240
—1.302
—1.412
—1.836

O P e Hdk> 02 3 < - <

~

O ® z ® O X

values show how the presence of this new residue at position 19
promotes a reduction of the aggregation propensity on the entire
Hot Spot region (Fig. 4). In agreement with these predictions, it
has been experimentally observed that after 48 h of incubation the
wild type AP is able to form mature amyloid fibrils whereas, under
the same conditions, the mutant remains completely soluble (26).

Not only Hot Spots are important for protein aggregation but
also the residues flanking them, or gatekeepers, play a crucial role in
deposition modulating the self-assembly properties of aggregation-
prone regions (10-12). Accordingly, the presence of gatekepper
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2.7. Globular Proteins

residues with low aggregation-propenisty reduces Hot Spots
aggregational influence and, in vivo, favours the binding of chaper-
ones. Moreover, several mutations located in these regions have
been associated with the development of depositional diseases. It is
possible that a Hot Spot region would match with a structural
secondary element, would be involved in crucial intramolecular inter-
actions or would be part of the active site of a protein, in these cases
although the sequence of the Hot Spot cannot be directly changed,
the manipulation of the flanking residues might have exactly the
same effect on the local aggregation propensity. Increasing the pro-
portion of charged and/or hydrophilic residues in these regions
could help to improve the overall protein solubility.

Because AGGRESCAN is based on the experimental results
obtained with an aggregation-prone initially unstructured protein
(25-27), the data provided by the algorithm should be applied
essentially to aggregation processes starting from totally or par-
tially unfolded states in which the detected aggregation-prone
regions are expected to be accessible to solvent and free to initiate
the self-assembly process. However, the predictions of AGGRES-
CAN can be easily complemented, if available, with structural
information for the selected polypeptide (see Note 8) (29).
Overlapping of these data allows tracing the Hot Spots in the
native conformation of a globular protein allowing detecting
accessible aggregation-prone regions that potentially might start
depositional processes from initially structured conformations.
On the contrary, if a Hot Spot is located inside a secondary
structure element or buried in the hydrophobic core it will be
blocked by stable and often highly cooperative intramolecular
interactions and only destabilization of the overall protein confor-
mation would allow structural fluctuations able to result in its
exposition. Therefore, when we deal with globular proteins and
their mutants it turns to be very useful to analyse, together with
changes in the aggregation propensity, the effect of sequence
modification on the overall protein stability (see Note 8) (28).
Combining the prediction of amyloidogenic sequences and
protein-protein interaction patches wusing algorithms like
SHARP?2 (http: //www.bioinformatics.sussex.ac.uk/SHARP2) or
InterProSurf (http: //curie.utmb.edu/) it is possible to determine
the spatial coincidence between both regions (29). The so called
Interface Proximity Index (IPI) allows evaluating if the proximity
of'an aggregation-prone region to a given real interface is specific.
After the determination of the amyloidogenic sequences and the
interface, the number of residues in the aggregation-prone region
at less than 3 A from the interface and at less 3 A from a randomly
chosen protein surface (with the same size that the interface) that
does not include the interface are calculated. Each random surface
is generated by an aleatory selection of a number of solvent
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2.8. Characterisation
of the Aggregation
Properties of Protein
Sets

exposed residues equal to the number of residues constituting the
real interface. Usually, 100 random surfaces are generated for each
aggregation-prone region analyzed.

IPI = 1—-(SP/IP)

IP = Interface Proximity = nR/nHS

100
>~ nS/nHS
nS=1

100 ’

nR = number of residues in the aggregation-prone region at
less than 3 A from the interface.

nHS = number of residues in the aggregation-prone region.

nS = number of residues in the aggregation-prone region at
less than 3 A from a randomly chosen protein surface that
does not include the interface. An IPI < 0 indicates that the
aggregation-prone region is equally or less close to the interface
than to the rest of the surface. An IPI > O indicates that the
aggregation-prone region is closer to the interface than to the
rest of the surface.

We illustrate the utility of detecting the coincidence between
interaction and aggregation-prone region to understand the under-
lying causes of conformational diseases with the case of human
transthyrretin (TTR) (Fig. 5) an amyloidogenic protein, whose
mutation originates familial amyloidotic polyneuropathy. The
native protein is a homotetramer and presents five aggregation-
prone regions according to AGGRESCAN, three of them exhibit
high IPIs and 90% of the residues of four aggregating regions
are close to the two interfaces of the TTR tetramer suggesting
that mutations that destabilize the interface might interfere with
quaternary protein interactions resulting in the exposition of
previously hidden aggregation-prone regions. The stabilization of
existing interfaces in multimeric proteins or the formation of new
complexes in monomeric polypeptides might become effective
strategies to prevent disease-linked aggregation of globular proteins.

SP = Surface proximity =

Perhaps the best feature of AGGRESCAN is its ability to analyse
the aggregation propensity of large protein sets in a very fast way.
The most useful AGGRESCAN parameters for this type of studies
are the average values of the complete protein set as well as the
ranking list. The average data show the general aggregational
features of a selected protein group (25). These average values
permit to distinguish the properties of different protein sets and to
identify if a new polypeptide posses similar aggregation properties
than a previously analysed group and therefore to discard or
confirm its assignment to this group (23, 25).
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2.9. Inferring the
Biological Significance
of Protein Aggregation

Fig. 5. Interface proximity index (IPI) of aggregation-prone regions in the monomer of
human transthyretin. Aggregation-prone regions are coloured according to their IPI
values, which reflect their proximity to the protein complex interface. Dark residues
(red in the online image) correspond to aggregation promoting residues located at the
interface of transthyretin tetramer, whose exposition upon quaternary structure disso-
ciation might trigger the aggregation event.

There is also the possibility to contrast the different outputs
provided by AGGRESCAN with other characteristics of the pro-
tein set (see Note 9) (23). To facilitate this type of analyses
AGGRESCAN provides a text file, with the AGGRESCAN values
for each particular protein sequence and the average values of the
protein set, that can be copied and pasted into a spreadsheet (see
Note 5). The statistic analysis of these data might facilitate to
obtain general or evolutionary conclusions related with proteins
composition, sequence and their environment (23). Because, a
protein set is usually composed by polypeptides of different length
the user must use to this aim exclusively the normalised AGGRES-
CAN values (NnHS, AATr, THAr and Na4vSS) (see Note 4).

It is possible to employ AGGRESCAN to analyze complete
experimental or theoretical proteomes and search for protein
sequences with a special feature, for example high or low aggrega-
tion propensity, with the aim to identify new target sequences for
depositional diseases. In addition, the file provided by AGGRES-
CAN makes possible the comparison of the polypeptide aggrega-
tion properties with the information collected in functional
databases (23). For instance, the results obtained could inform
us about the relationship between protein aggregation propensi-
ties and biological function or cellular localization (23).
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=-0.3934

Fig. 6. Calculation example of an a3v window average (a4v).

3. Perspectives

We have presented the AGGRESCAN methodology for predict-
ing the aggregation propensities of peptide and proteins based on
their specific amino acid sequences. The described approach is
based on the assumption that the primary structure of a
protein determines its folding, misfolding and aggregation beha-
viours. Methods such as the one that we have described here
aimed to predict the most important regions for triggering aggre-
gation processes from unfolded, partially folded or globular states
polypeptide should assist the development of rational strategies
and drugs to modulate protein aggregation in biotechnology and
in conformational diseases, while allowing the design of highly
ordered arrays of proteins with potential use in nanotechnology.

4. Notes

1. Please be sure that the input sequences are in FASTA format
(50). If the sequences are not in this format an error message
indicating this problem will appear on the screen. Remember
that a “>” symbol before the sequences permits to identify
the names and differentiate them from the previous and
subsequent sequences. It is recommended to employ a word
processor to check that there are no letters different from
those corresponding to the 20 natural amino acids. This test
is crucial when large sequence sets are copied directly from
databases since they usually contain unidentified amino acids
labelled with an X. Whitespaces, enter and tab characters in
the sequences are ignored.

2. AGGRESCAN supports sequences length up to 2,000 resi-
dues and 100 characters for name entries. However, long
names should be avoided since they could disturb the
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visualization of the output. The sequence names must not
contain symbols, only numbers, letters and underscores (_)
are recognised.

3. Definition of AGGRESCAN output parameters:

Amino acid aggregation propensity value (a3v): This parame-
ter is the relative aggregation propensity of a particular amino
acid when placed at the first Hot Spot of AB (26, 27). This
value was calculated based on the aggregation in vivo of 20
different point mutants of this peptide fused with a fluorescent
reporter (26). To obtain the individual aggregation propen-
sities, the change in the aggregation relative to the wild type
peptide was calculated and normalised by the average change
of the 20 natural amino acids (27) (see Table 1). The a3v is
indicated in the AGGRESCAN plots as a green line.

a3y window average (a4v): This is the a3v average over a
sliding window that depends on the protein length (see
below). This average value is assigned to the central residue
of this window. The size of the sliding window (5, 7,9 or 11
residues) was trained against a database of 57 amyloidogenic
proteins with known Hot Spots. To avoid analysis problems
the program employs optimal window lengths relative to the
size of the analyzed protein. Accordingly, the finest predictions
were obtained using a window size of 5 for <75 residues, 7 for
<175, 9 for <300 and 11 for >300. These data indicate that
for long sequences large Hot Spots are required in order to
significantly influence the aggregation propensity, while short
stretches suffice for small peptides. A virtual residue is added to
each side of the sequence to incorporate the charge effects of
the polypeptide’s termini (NH3* and COO™. Accordingly,
the a3v of residue 0 (N- terminus) is the a3v average of the
basic residues (K, R, see Table 1) and the residue # + 1 (C-
terminus) is the a3v average of the acidic residues (D, E, see
Table 1). Provided that not possible to calculate an a4v value
for the oft-centre residues 1, 1-2, 1-3 or 14 of the selected
windows these residues receive the average value of the first
window ranging from residue 0 to residue 4, 6, 8 or 10,
respectively (Fig. 6).

Hot Spot Threshold (HST): The Hot Spot Threshold is a value
that indicates the average composition of a standard sequence
protein. Accordingly, an a3v value above the HST indicates
the existence of more aggregation prone residues than in a
typical protein and an a3v smaller than the HST the presence
of fewer aggregation prone residues. The HST value is —0.02
and it is calculated as the average of multiplying the a3v of
each natural amino acid by its frequency in the SwissProt
database. The HST is indicated in the AGGRESCAN plots
as a blue line.
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Hor Spor (HS): AGGRESCAN identifies as a Hot Spot those
sequence stretches of 5 or more uninterrupted residues with
an a4v larger than the HST and without any proline. Proline
residue is assumed as an aggregation breaker since its structure
destabilizes the [-sheet conformation characteristic of
ordered aggregates (52, 53).

AA: This is the name of the column that displays the amino
acid sequence of the protein.

Number of Hot Spots (nHS): This is the number of Hot Spots
that have been predicted to be in the analysed sequence.

Normalized number of Hot Spots for 100 residues ( NnHS): This
value is the nHS divided by the number of residues in the
input sequence and multiplied by 100.

adv average in the Hot Spot (a4vAHS): This value is the a4v
average in a given HS.

Total Area of the aggregation profile (TA): This is the area of
the AP graph, taking the HST as the zero axis, along the entire
input amino acid sequence, calculated with trapezoidal inte-
gration.

Area of the Aggregation Profile above the Hot Spot Threshold
(AAT): This is the area of the AP graph, above the HST, along

the entire input amino acid sequence, calculated with trape-
zoidal integration.

AAT per residue (AATr): This value is AAT divided by the
number of residues in the analysed sequence.

Hot Spot Area (HSA): This is the area of the AP graph, above
the HST, of a given HS calculated with trapezoidal integra-
tion. In the bottom lists, the HAS of a residue from a Hot
Spot is established equivalent to the HAS of all the Hot Spot.

Normalized Hot Spot Area (NHSA): This value is calculated as
the HAS divided by the number of residues in the input amino
acid sequence.

Total Hot Spot Arvea (THSA): This value is the sum of the HAS
of all the Hot Spots of the analysed protein sequence.

THSA per vesidue (THSA7): This value is calculated as the
THSA divided by the number of residues in the input amino
acid sequence.

a4y Sequence Sum (a4vSS): This is the sum of all the a4v values
obtained from the entire input amino acid sequence.

Normalized a4vSS for 100 residues (Na4vSS): This value is
obtained dividing a4vSS by the number of residues in the
input amino acid sequence and multiplying by 100.
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Aggregation Profile (P): This plot illustrates the a4v values of
the input amino acid sequence (red line). It includes the a3vSA
of the protein as a green line and the HST as a blue line (25).

Area graph (A): This graph shows the area of each HS along
the protein sequence (red line). If there is no HS an X will
appear instead of the graph.

Normalized- Avea graph (A/N): This diagram shows the
NHSA normalised for 100 residues of the analysed protein
(red line). If there is no HS an X will appear instead of the
graph.

4. All AGGRESCAN output values are useful for discrete

sequence analyses. However, to compare proteins with differ-
ent length the user must use the normalised ones (NnHS,
AATr, THAr and Na4vSS), they are also useful to compare
other protein characteristics with the associated deposition
propensity.
Accordingly, as shown in the example of Tots els anteriors
Amyloid-B-peptide, comencen amb majuscula. Aquest hauria
de comengar amb majascula (A). (see Subheading 5, Fig. 4) it
is possible to calculate:

ANnHS = NnHSg19p — NnHSwr =2.381 —4.762 = —2.381
AAATr = AATrp19p — AATrwr = 0.264 — 0.33 = —0.066
Aa3vSA =a3vSAgop —a3vSAwr =—0.021 —0.064 = —0.081
ANa4vSS = Na4vSSgiop — Na4vSSwr = —2.2 — 6.4 = -8.6

5. Na4vSS value corresponds to a global measure of the protein
aggregation propensity. Because it is normalised by the
sequence length it could be employed in any type of study.
Moreover, sorting protein sequences according to their
Na4vSS value permits to classify them by their global aggre-
gation tendency and it turns to be very useful to compare
between different protein characteristics or databases and the
predicted aggregation properties.

6. It is possible to find proteins that form aggregates in spite of
being devoid of any detectable Hot Spot (54 ). This takes place
when the residues with high aggregation propensity are
distributed along the protein sequence and not concentrated
in a specific region. Therefore, there is no sequence stretch
with the Hot Spot properties able to lead an ordered aggre-
gation process, although this does not necessarily means that
this process is avoided (54). In these situations the Na4vSS
and the a3vSA provide a value of the global protein residue
composition and indicate if the amount of aggregation prone
propensity is higher or lower than the average of a typical
protein. To redesign this type of proteins and reduce their
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aggregation propensity the user has to inspect the lists with
the information concerning to each residue carefully looking
for those residues with higher values. Reduce the amount of
residues with elevated aggregation propensity will decrease
the overall protein deposition tendency.

. The AGGRESCAN graphics together with the nHS, NnHS

and THSA values show how the Hot Spot regions are
arranged along the sequence and their relative contribution
to the protein aggregation propensity (Fig. 4). These data are
relevant since the number and specificity of the intermolecular
contacts formed during the deposition process would deter-
mine if the final aggregates would be ordered or amorphous
(25, 55). It is has been observed that amyloidogenic proteins
have globally low aggregation propensity and posses few Hot
Spots, however in general these regions accumulate a THSA
similar to other proteins with more aggregation prone regions
per sequence (25, 55) indicating that they have a higher
aggregation potential. Consequently, in amyloidogenic pro-
teins the Hot Spots act as preferential and obligatory nucle-
ation points from which the amyloid fibrillar structure could
be expanded leading to the formation of highly ordered
aggregates (25, 55). Accordingly, a point mutation in a HS
of an amyloidogenic protein generally has a critical effect on
the protein solubility (25). In contrast, a globally high aggre-
gation propensity or the presence of many aggregation prone
regions reduces the influence of each Hot Spot and the speci-
ficity of the contacts generated during the aggregation process
resulting in less structured deposits.

. The prediction of a decrease in the aggregation propensity

does not ensure full protein solubility when it is expressed
in vivo. There exist globular proteins that require denaturing
conditions to initiate the protein aggregation in vitro but
spontaneously form protein deposits inside the cell. This
phenomenon likely occurs because in the cell the protein
commonly suffers small thermal fluctuations that perturb
the structure to generate locally unfolded states able to initiate
aggregation processes (56). The acquisition of these locally
unstructured conformations from the native state depends
mostly on the protein conformational stability (56). In this
way, it has been observed that in vivo aggregation correlates
negatively with protein stability (28). As a result, when we
want to modulate globular proteins solubility in vivo it is
essential to analyse both their aggregation propensity and
their protein stability.

. The analysis of 5 different data sets has provided an average

value of each AGGRESCAN parameter for globular proteins,
natively intrinsically unstructured proteins, proteins which are
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Table 2
AGGRESCAN reference parameters for globular, natively unstructured, amyloido-
genic, soluble and insoluble proteins (25)

Set name Globular® Unfolded"® Amyloid® Ibs® Soluble®
a3vSA ~0.04 ~0.28 —0.12 ~0.02 —0.05
nHS 9.54 5.63 5.86 11.97 10.34
NnHS 3.89 2.06 2.89 3.50 3.35
AAT 29.94 18.21 24.51 41.27 34.43
THSA 25.58 14.97 21.26 36.00 29.61
TA ~5.17 ~60.95 ~26.42 ~5.00 ~5.55
AATY 0.12 0.07 0.13 0.13 0.12
THSAr 0.11 0.05 0.11 0.11 0.09
Na4vSS —4.26 —28.73 ~12.96 ~2.51 ~5.18

*Natively globular proteins: 160 proteins randomly selected from SCOP (the ASTRALA40 set)
PNatively intrinsically unstructured proteins: 51 proteins

“Amyloidogenic proteins: 57 proteins

4Proteins forming inclusion bodies when overexpressed in bacteria: 121 proteins

“Proteins which are soluble when overexpressed in bacteria: 38 proteins

soluble when overexpressed in bacteria, proteins forming
inclusion bodies when overexpressed in bacteria and amyloi-
dogenic proteins (25). These values provide a reference range
tor the AGGRESCAN parameters and permit to speculate
about the structural nature of the protein sequence studied.
The Table 2 shows the standard AGGRESCAN values for
these five groups. For instance, according to this table, it is
expected that a sequence with Na4vSS near to —28.73 and a
NnHS of 2.06 would correspond to an unfolded protein, one
with Na4vSS near to —4.26 and a NnHS of 3.89 to a globular
protein and one with Na4vSS near to —12.96 and a NnHS of
2.89 to an amyloidogenic protein.
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Chapter 15

ATTRACT and PTOOLS: Open Source Programs
for Protein—Protein Docking

Sebastian Schneider, Adrien Saladin, Sébastien Fiorucci,
Chantal Prévost, and Martin Zacharias

Abstract

The prediction of the structure of protein-protein complexes based on structures or structural models of
isolated partners is of increasing importance for structural biology and bioinformatics. The ATTRACT
program can be used to perform systematic docking searches based on docking energy minimization. It is
part of the object-oriented PTools library written in Python and C++. The library contains various
routines to manipulate protein structures, to prepare and perform docking searches as well as analyzing
docking results. It also intended to facilitate further methodological developments in the area of macro-
molecular docking that can be easily integrated. Here, we describe the application of PTools to perform
systematic docking searches and to analyze the results. In addition, the possibility to perform multi-
component docking will also be presented.

Key words: Protein-protein interaction, Flexible docking, Coarse-grained modeling, Binding inter-
face prediction, Normal mode analysis

1. Introduction

The majority of biological processes involve protein-protein interac-
tions. Since only a small fraction of real and putative protein-protein
interactions in a cell can be determined experimentally the realistic
prediction of protein-protein complex structures (protein-protein
docking) is of increasing importance. The ATTRACT program
(1-7) employs energy minimization in rotational and translational
degrees of freedom (+ potential conformational variables) of one
protein partner (ligand) with respect to the second protein (receptor).
It can be used as a stand alone program but has also been integrated
into the PTools molecular docking library. Flexibility of the partner
structures can be taken into account by representing flexible surface
side chains (and also loops) as multiple conformational copies.
The ATTRACT docking minimization employs a reduced or
coarse-grained protein model which is intermediated between a
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residue-based representation and full atomic resolution. Each residue
is represented by up to four pseudo atoms (two for the backbone and
up to two for each side chain) approximately accounting for the dual
character of some amino acid side chains (e.g., hydrophobic and
hydrophilic parts of a side chain). Small amino acid side chains (Ala,
Asp, Asn, Ser, Thr, Val, Pro) are represented by one pseudo atom
(geometric mean of side chain heavy atoms) whereas larger and more
flexible side chains are represented by two pseudo atoms (1, 8).

The repulsive and attractive LJ-parameters describe approxi-
mately the size and physico-chemical character of the side chain
chemical groups. Systematic tests of the model on “bound” protein
partners indicate that rigid-body-minimization of the experimental
complex structures yields energy-minimized complex structures with
an Rmsd (root mean square deviation) of the ligand protein from the
experimental position of ~1-2 A (1, 5, 8) which is comparable to
energy minimization using atomistic models. A schematic view of the
various steps to perform a docking search and the form of the energy
function to describe effective interactions between coarse-grained
centres is given in Fig. 1. The parameters have been systematically
optimized by comparing the ranking of near-native solution with
respect to non-native decoy complexes (8). The energy function
consists of pair-wise soft Lennard-Jones type functions and an
electrostatic interaction term with a distance dependent dielectric
constant (¢(7) = 157) for the interaction of charged residues. As
illustrated in Fig. 1 the scoring function differs from a standard
Lennard-Jones-type function in that it contains a saddle point instead
of'an energy minimum for certain types of pseudo atom pairs (those
that are repulsive).

For systematic docking studies one of the proteins (usually the
smaller protein, called the ligand protein) is used as probe and
placed at various positions on the surface of the second fixed
(receptor) protein. To select regularly spaced starting points a
probe radius that is slightly larger than the maximum distance of
any receptor atom from the ligand center is used. At each starting
position on the receptor protein various initial ligand protein
orientations are generated. The docking from each start
position consists of a series of energy minimizations of the ligand
protein with respect to the receptor protein. During the first
minimization a harmonic restrain between the center of the fixed
protein and the closest Ca-pseudo atom of the ligand protein can
be applied. This first minimization serves to generate a close
contact between the two proteins. For the subsequent energy
minimizations the ligand protein is typically free to move to the
closest energy minimum.

The original ATTRACT program was written in Fortran
together with a set of auxiliary programs to setup docking simula-
tions. The program is still used and further developments are
supported. Indeed, a number of flexible docking options such
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Fig. 1. (@) Schematic representation of the workflow for running docking simulations using ATTRACT. The protein partners
are first translated into a coarse-grained representation and ligand protein start positions are distributed over the surface
of the receptor protein. (b) Docking scoring function as implemented in ATTRACT and used for docking minimization and
scoring. (¢) In case of an attractive pair (continues line) an r~8/r®-Lennard-Jones-type potential is used (. distance
between coarse-grained centers). For a repulsive pair (dotted line) the energy minimum is replaced by a saddle point.

as the inclusion of soft normal mode directions as additional
variables during docking is so far only possible in the Fortran
version of the program. However, in order to facilitate future
methodological developments and to make it sufficiently flexible
for new functionalities it was recently embedded in the docking
library PTools (9) which relies on a modular, object-orientated
implementation based on Python/C++ coupling. The PTools
library has been designed in order to perform assembly tasks in
an efficient way and to ease developments without sacrificing
speed for correctness.

PTools can handle both coarse-grained as well as atomic
resolution representations of biomolecular structures. It can be
used for preparation, setup, running and analysis of docking mini-
mizations following the ATTRACT protocol. It can handle dock-
ing problems of two partners but also docking of multiple protein
molecules. Recent extensions include the prediction of putative
binding sites on proteins and the possibility of including this
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information during docking based on a reweighting of the inter-
action scoring function. It is also possible to perform protein-
DNA docking searches (5, 10). The workflow of using the Ptools
package and performing interface prediction as well as running a
systematic protein-protein docking run will be explained in the
Methods section.

2. Methods

2.1. Setting Up
a Docking Simulation
Using PTools

PTools can be used to perform docking searches but the library
contains also several methods and scripts to load and manipulate
structures (an overview is given in Fig. 2). An introduction to some
of these options is given in the Notes section (see Note 1 and 2).
As a default the PTools library includes the knowledge-based
coarse-grained force field used by the docking program
ATTRACT for protein-protein and protein-DNA docking. The
coarse-grained representation of the macromolecule can be gener-
ated by the “reduce.py” script. For the docking simulation on an
already known complex one can first load the PDB (Protein Data
Bank) file and split it into two partners, the receptor and ligand

Functions

Superposition
Aukamatic Dertvalive C:

= Python

Classes Scripts/Module

reduce.py: coarse grain |
atomic transformation

Womic
i
AlomSelection
T ranstormation Matnces
Forcefield :
ARTRCIF OO
WU —

Functions
Superposition

i Derivative Caleulath

{7

{1 {0

New C++ programs

New Python scripts Use Python Programs

User Level applications

Fig. 2. PTools architecture. The compiled C++ core is linked to the Python functionalities via Python bindings, which
allow correspondence between C++/Py classes and functions. The user can use python programs like “reduce.py,”
“Attract.py” and analysis tools. It is possible to construct new tools using the python language, or directly implement the

C++ code.
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proteins, respectively (see Note 2 for structure preparation). It is
possible to perform this process within a C++ program as a series
of method calls (compare Note 3 on PTools documentation):

Rigidbody prot (“1AY7.pdb”);

AtomSelection selA = prot.SelectChain (“A");
Rigidbody chainA = selA.CreateRigid();
AtomSelection selB = prot.SelectChain (“B”);
Rigidbody chainB = selB.CreateRigid();
WritePDB (chainA, “1AY7_lig.pdb”);
WritePDB (chainB, “1AY7_rec.pdb”);

These C++ commands can also be conveniently integrated
into a Python script (via the Python bindings) that can be adapted
for application to other protein docking cases.

prot = Rigidbody (“1AY7.pdb”)

chainA = prot.SelectChainId(“A")

chainB = prot.SelectChainId(“B”)
ligandProtein = chainA.CreateRigid()
receptorProtein = chainB.CreateRigid()
WritePDB(ligandProtein, “1AY7_lig.pdb”)
WritePDB (receptorProtein, “1AY7_rec.pdb”)

In the following we will only describe the Python coding for
the description of a protein-protein docking search. Of course,
instead of splitting a complex structure as described above the two
partner proteins can also be loaded separately. Using the “reduce.
py” script the two protein structures will be transformed into a
coarse-grained representation.

$ reduce.py -prot 1AY7_rec.pdb > receptor.red

$ reduce.py -prot 1AY7_lig.pdb > ligand.red

<

In the following the file extension “.py” indicates a Python
script (the $ sign indicates that a python script needs to be
invoked). The “.red” filename suffix can be used to easily distin-
guish reduced coordinates files from regular PDB files. The format
of the coarse-grained model is an extended PDB-format with
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2.2. Inclusion

of Experimental
and Bioinformatics
Data on Putative
Binding Region

additional columns for pseudo-atom type, charge, conformational
copy flag and re-weighting of interactions, respectively.

Although it is possible to perform a docking search without any
knowledge of the interaction surface regions it can be helpful to
include such information. In many protein-protein docking cases
there is some knowledge on putative binding regions on either one
or both protein partners available. It is possible to include this
additional data directly during the ATTRACT docking search.
This is achieved by giving each interaction a weight that can be
modulated by external data. The weight data is stored in an extra
column in the reduced PDB-file and can be generated within the
PTools approach. The standard weight for each interaction is 1 and
indicates that the original ATTRACT score is used. Weights of up to
2 can be used to linearly increase the contribution of'selected atoms.
Weights lower than 1 will decrease the interaction with those atoms.
It is possible to change weights on individual pseudo atoms, for
example, if there is experimental evidence for single residues parti-
cipating in binding. However, it is also possible to include predic-
tions from bioinformatics binding site prediction WEB servers.
This option is outlined for the metaPPISP-Server (11) which gen-
erates a consensus prediction from several binding site prediction
methods. In a comparative evaluation of binding site prediction
servers the metaPPISP-Server was among the top performing pre-
diction servers (11). The “metaPPISPprediction.py” python script
sends the protein files directly to the WEB-server (Internet connec-
tion and installation of the wget program required), waits for the
results and maps the prediction onto the original proteins. As a
result PDB files with the suffix “_predicted.pdb” will be written
with binding site probabilities in the range of 0.0-1.0 included in
the B-factor column of the PDB files.

$ metaPPSIPprediction.py —-rec 1AY7_rec.pdb -1lig 1AY7_lig.pdb

The binding site prediction can then be encoded as weights in
the coarse-grained protein representations:

$ predictionOnReduced.py -original 1AY7_rec_prediction.pdb -reduced
receptor.red
$ predictionOnReduced.py -original 1AY7_lig_prediction.pdb -reduced

ligand.red

A third option is to directly use a binding site prediction
method implemented in PTools based on electrostatic desolvation
profiles (12). The method is implemented in PTools as a series of
scripts to create input files and perform the necessary calculations.
It finally generates interaction weights for each atom according to
the prediction which can be used in the same way as described
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2.3. Performing
Systematic Docking
Using the ATTRACT
Docking Program

above to bias the docking towards solutions compatible with
predicted binding regions.

The ATTRACT docking program is implemented as a Python
script using the PTools library. This script is also provided with
the PTools package. Note, that it is also possible to use the
Fortran version of the ATTRACT program which uses the same
force field and input files. The Fortran version contains a few
options for including side chain and global flexibility based on
normal mode variables not yet implemented in the released
Python/C++ version. ATTRACT performs systematic docking
minimization of the interaction energy, the ligand (mobile part-
ner) being placed at regular positions and orientations around the
receptor surface (fixed partner) at a distance slightly larger than its
largest dimension. For each starting position, about 200400
initial ligand orientations are generated. Starting from each of
these geometries, an energy minimization (quasi-Newton mini-
mizer) is performed using translational and rotational degrees
of freedom of the ligand. Different Python scripts are provided
with the ATTRACT program to set up the input files needed by
the ATTRACT docking script (see Note 4 for an overview).
It requires a receptor and a ligand structure in coarse-grained
representation (see above), an input file (called “attract.inp,” see
Note 5 for further information) and a parameter file (“parmw.
par”). The parameter file contains all pair-wise effective radii and
repulsive as well as attractive Lennard-Jones type parameters to
setup the force field for the docking search (8). Finally, the
“attract.inp” file contains all the specifications required to process
the docking simulation (number of minimization steps, cutoff,
etc.). It is further explained in the PTools documentation and the
Notes section. Several minimizations (with decreasing cutoft) are
used and the pairlist to calculate the interactions is only generated
at the beginning of each minimization.

In order to perform a systematic docking search the Python
command “translate.py” (see Note 6 gives further information
about generation of starting points) needs to be invoked to gen-
erate regularly spaced starting points on the surface of one of the
protein partners (typically the larger partner which is also called
the receptor protein).

$ translate.py receptor.red ligand.red > translation.dat
The various orientations of the mobile partner protein (called
the ligand) are stored in the “rotation.dat” file which can also be

modified by the user. A systematic docking search can now be
started using the “Attract.py” script

$ Attract.py receptor.red ligand.red > Docking.out
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2.4. Analysis
of a Docking
Simulation

Attract docking simulations can be easily launched on
distributed supercomputers since a single run option is already
implemented in the PTools library. The option —t specifies which
starting position (corresponding to one line in the “translation.
dat” file) of the ligand should be considered for the docking
simulation. Attract can then be launched in a distributed mode
with selected tasks for individual docking runs. Output files can be
concatenated using a simple cat command. For example, starting a
docking search only from position 18 on the receptor surface (but
including all starting orientations) can be performed using the
following option:

$ Attract.py -t 18 receptor.red ligand.red > Docking_18.out

A systematic docking search typically results in a large number of
putative solutions which can be ranked according to the docking
score. For a search over the complete surface of the target receptor
protein the program needs ~6-15 h on a single CPU depending
on the size of the protein partners and the number of starting
arrangements (see Note 7 for possible failures of docking runs).
Depending on the number of available CPUs this can be dramati-
cally reduced if one employs the distributed run option explained
above. It is possible to cluster the docking solutions using the
“cluster.py” script, which can group nearly identical structures
without requiring a preselected number of desired clusters.
In the following command, the ouput file of the docking simula-
tion (“Docking.out”) and the protein ligand (“ligand.red”) in its
reduced form are used for the clustering analysis.

$ cluster.py Docking.out ligand.red > cluster.out

Each line of the clustering output file identifies a unique
structure (each solution is a unique combination of translation
and rotation), its energy and a weight representing how many
structures are found in this cluster. With the help of the
“Extract.py” script it is possible to extract single solutions and
write PDB-files from the output file of a systematic search by
indicating the appropriate translation and rotation number of
the docking solution ( Ntransand Nrot):

$ Extract.py Docking.out ligand.red Ntrans Nrot > B_Ntrans_Nrot.red

If the structure of the bound complex is known the quality of
the predicted complex structures can be evaluated by calculating the
Rmsd of the ligand protein or the interface Rmsd and the fraction of
native contacts of the docking solutions.
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2.5. Multi-Protein In addition to systematic docking searches on two protein partners

Docking Simulation itis possible to perform single docking minimizations on 2 or more
proteins after generating coarse-grained representations of each
protein. The sequence of necessary commands is given below:

A = AttractRigidbody ("A.red")

B

AttractRigidbody ("B.red")

Q
Il

AttractRigidbody ("C.red")

After loading the force field parameters,

forcefield = AttractForceFieldl ("parmw.par", 8.0)

the three proteins are added to the docking minimization run
using the AddLigand method (it is, in principle, possible to add
an arbitrary number of partner proteins):

forcefield.AddLigand (A)
forcefield.AddLigand (B)
forcefield.AddLigand (C)

The protein A is selected as fixed receptor protein using,
A.setRotation (False) # don't allow rotations and
A.setTranslation (False) # translations for unit A
and docking minimization is invoked by,
1lbfgs = Lbfgs(forcefield)
lbfgs.minimize (50) # minimizes for at most 50 steps

After minimization, the “Ibfgs” object contains the energy of
the minimized system as well as the final coordinates and other
variables of the docking system. The minimizer also stores the
different states of the system for each minimization step. The
commands for performing single docking minimizations with
multiple partners can be used in new scripts to implement system-
atic strategies for multi protein docking.

3. Notes

1. To use PTools make sure that the PTools directory is in the PATH
and PYTHONPATH of your session (e.g., set it to/my/ path/
to/prools and /my/ path/to/ ptools/ PyAttract, respectively).
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Remember to include the PTools library in newly created python
scripts.

. Protein structure files should be inspected and checked priov to

docking with respect to completeness of the structure. Missing
atoms or residues in the protein files should be added possibly
with the aid of external programs. Generally it is prerequisite that
the structure files are formatted correctly in the PDB-file format.

. For the Plools library extensive documentation is provided

which goes beyond the description given above. It includes
a tutorial describing every step from the compilation of the
library source code to full protein—protein and also protein—
DNA docking simulations. The C++ APl is also automatically
parsed by Doxygen (13) which generates the documentation
with an exhaustive description of every class and member
function within the library.

. In ovder to perform a systematic docking run the following files

need to be in the working directory: “attract.inp” (Attract
docking input file; see Note 5); “translate.dat” (stores the
starting placements of the ligand protein with respect to recep-
tor protein) (see Note 6); “rotation.dat” (stores a set of starting
orientations of the ligand protein); “parmw.par” (force field
scoring parameters for docking). In addition, a ligand reference
structure file, termed “standard.pdb” can be used by the pro-
gram for comparison with all docked structures (arbitrary file-
name in PTools with the --ref command option).

. The ATTRACT docking input file attract.inp is explained in

the PTools and ATTRACT manuals in detail. For performing
a docking search the file must be present in the working
directory. An example input file with detailed description is
given below:

4 0 O
0.00000 0.00000 0.00000 0.00050
3021100001 2500.00
302110000 1 1500.00
40 211 0 0 0 0 0 100.00

60 21 1 00 0 0 0 50.00

The first row in the input indicates the number of successive
minimizations (four in the case above), the two 0 s on the
first line indicate that no soft modes for receptor or ligand
are used. Second row: restraining coordinates for pushing the
ligand on the surface of the protein (usually the center
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coordinates of the receptor protein), the fourth term is the
force constant for the restraining potential (should not be
larger than 0.001 RT/A?).

The next 4 lines indicate the minimization conditions for
each of the four docking minimizations (the number of lines
must equal the number of minimizations chosen in the first
line). Each line consists of the following entries:

Column 1. number of EM steps

Column 2. minimization method ((1) steepest descend
(only used for testing), (2) variable metric)

Column 3. include rotational forces (if = 1)

Column 4. include translational forces (if = 1)

Column 5. include soft modes for receptor (if = 1)

Column 6. include soft modes for ligand (if = 1)

Column 7. number of ligand soft modes

Column 8. number of receptor soft modes

Column 9. add a restraining contribution (using parameters

from the second input line), (if = 1)

Column 10. cutoff radius (squared, means 100.0 corre-

sponds to a cutoft = 10.0 A)

The selectivity of the current energy function is opti-
mized for a short cutoff (rcut? = 50 A). A series of mini-
mizations (with decreasing cutoff) is necessary because the
pairlist to calculate the interactions is only calculated at the
beginning of each minimization (the variable metric mini-
mizer converges faster if one calculates the pairlist only
once). Note, that the option of including pre-calculated
normal modes as additional variables accounting for the
flexibility of binding partners is currently only available in
the Fortran version of the ATTRACT program.

6. Starting points for systematic docking are generated with the
translate.py script as described before and by default stored in
the “translate.dat” file. With the default settings starting
points are placed approximately evenly at the surface of the
receptor with a distance between starting points of approxi-
mately 7-8 A. Using the -d option this value can be changed
which also changes the number of docking runs. Adjusting
this parameter might be useful depending on the size of the
system or the available computation time. For example, if the
binding region is approximately known one can generate
starting points at increased density and subsequently elimi-
nates those beyond a cut oft distance from the known binding
region.

7. If Attract.py fuils to run ov stops with import ervor messages
make first sure that the PYTHONPATH is set correctly
and the PTools library is included in any new python script
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(see Note 1). If Attract.py still fails to run make sure all
necessary files are in the working folder (or in the PATH of
the session) (see also Note 4). Another source of errors can be
an incorrect format of pdb start structure files. It is always a
good idea to have a look at the reduced structures with a
visualization program before docking.

The PTools library has been developed and extensively
tested for Python versions 2.4 and 2.5. Some special imple-
mentations of python can lead to a “bus error” while trying to
import PTools libraries. This can be solved by using the
standard Python installed by the OS or if not available by

reinstalling a clean Python version 2.4 or 2.5.
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Chapter 16

Prediction of Interacting Protein Residues
Using Sequence and Structure Data

Vedran Franke, Mile Siki¢, and Kristian Vlahovicek

Abstract

Identifying hotspots responsible for protein interactions with other macromolecules or drugs provides
insight into functional aspects of the protein network, and is a pivotal task in systems biology and drug
discovery. Here, we present the protocol for the application of a machine-learning method — Random
Forest — to prediction of interacting residues in proteins, based on either the structural parameters or the
primary sequence alone.

Key words: Random Forest, Protein interactions, Prediction

1. Introduction

Protein interactions are an integral part and an underlying mechanism
of'almost all biological processes, ranging from the transmission of
intracellular information to control of the cell cycle and cell death.
With the ability to understand and therefore also successfully
predict mechanisms of protein interactions, comes the power to
alter these mechanisms through rational drug design and influence
the cellular phenotype (1).

However, the physicochemical properties governing the
interactions have made the design of small molecular inhibitors
very difficult. Crystallographic studies have shown that the protein
interfaces are predominantly almost planar surfaces (2, 3), without
very distinctive topological characteristics (in comparison to, €.g.,
enzyme active sites). Binding affinity between proteins is achieved
by multiple weak interactions over a large surface area, which the
small molecule often cannot emulate in order to achieve the
required binding specificity.

Riccardo Baron (ed.), Computational Drug Discovery and Design, Methods in Molecular Biology, vol. 819,
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Fortunately, Clackson and Wells (4, 5) have shown that not
all protein interactions are based on uniform, small energetic
contributions of widely dispersed residues. Using the growth
hormone system, they found that most of the binding affinity is
mediated by a small subset of interface residues, termed “hot
spots.” The discovery of “hot spots” removed the size constraint
interaction inhibitors needed to have in order to emulate most of
the interacting interface, thus making feasible the design of small
molecules that can modulate interaction properties. Experimental
determination of hot spot residues is still a laborious and time
consuming process, achieved by mutating individual interacting
amino acids to alanine in order to determine their contribution to
the binding overall binding affinity (alanine scanning mutagenesis,
alanine shaving, and residue grafting) (6, 7).

Currently, two different conceptual approaches exist to compu-
tational determination of hot spots: 7 siico alanine scanning, which
uses biophysical models to calculate the importance of binding
residues for the affinity of interactions, and advanced statistical
methods that use machine-learning algorithms to classify interface
residues into different functional categories. The advantage of
machine-learning methods over the biophysical models is that they
can discriminate between different residue types based only on
single structures and sequences, without the explicit need for solved
structures of protein complexes. Combining knowledge of hotspots
with the results of genome wide interaction studies can further
improve the process of rational drug design that could specifically
influence the cellular phenotype in pathological conditions.

Most of the currently available implementations of the algorith-
mic methods for prediction of interacting residues are reviewed in
(8-10).

The accuracy of each prediction method depends on several
factors: the dataset quality; the selection of features used for the
description of the individual residues, and the selection of the
machine-learning algorithm for classification and prediction.

Datasets used for prediction of interacting residues need to
contain structural data of high quality for the interacting amino
acid pairs to be unambiguously discernible — the positions of the
side chains must be precisely defined, and it is equally important that
the interactions are a result of biological contacts and not the result
of experimental bias. Although the RCSB Protein Data Bank is the
primary repository for structural data, the lack of manual curation
and a high redundancy of the data on the sequence level usually
require either preprocessing or the use of secondary databases for the
dataset construction. Structures containing biological assemblies
(and not asymmetric units) can be obtained from four sources:

1. Directly from PDB (11).
2. ProtBuD database (12).
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3. PQS server (13).
4. 3D Complex database (14).

The structural files from different databases relating to the same
protein complex have been shown to contain differences (15). Our
preference is the 3D Complex database. The database is manually
curated and the authors have corrected the original PDB formatted
files by renumbering residues and renaming all of the chains inside
each file, which facilitates computational tracking of residues during
the analysis. 3D Complex is connected to the PiQSi server (16),
which contains manual annotations of every structure from the 3D
Complex database, enabling easy filtering based on a number of
parameters (e.g., structure resolution, number of subunits, type of
quaternary structure, etc.).

Another request for the elimination of redundancy in the
database used for training is the choice of machine-learning algo-
rithm. Random Forest algorithm is sensitive to redundancy, and
therefore it is necessary to use culled datasets. Several resources
provide information that can be used to eliminate redundancy in
the structural dataset at the level of primary sequence:

1. PDB-data is clustered using the BLASTClust program on the
level of individual chains.

2. PDB-REPRDB (17)-a web server that enables the user to
filter the datasets on a number of parameters, and also pro-
vides nonredundant sets clustered based on sequence and
structure similarity.

3. Pisces (18, 19)—program that uses PSI-BLAST, which gives it
the power to detect distant homologues (between sequences
that have less than 40% sequence similarity)

4. PDB select (20)—a precompiled list of culled structures cut at
40% identity

The disadvantage of most of the databases is that they provide
culled lists of sequences that relate to chains in the PDB database,
which requires the user to extract the structural information from
PDB formatted files by hand. It is sometimes more advantageous
to make the culling by yourself~the standard software for cluster-
ing sequence data is BLASTClust from the NCBI BLAST Toolkit.
It requires only FASTA formatted input sequences.

All supervised machine-learning algorithms (e.g., Random
Forest, support vector machines, neural networks) require the
data to be described by a set of numerical or categorical variables
(called the feature vector), and a corresponding class to be
assigned to each instance in the dataset. The choice of variables
depends on the experimentalist, and the properties he considers to
be the most important for discriminating between different func-
tional categories (e.g., interacting and noninteracting residues).
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In view of prediction of interacting residues, variables represent
physicochemical, geometric, and conservational properties assigned
to each residue in the data set. Physicochemical and geometric
properties are usually calculated from structures with a number
of applications (21-23), while the level of conservation is obtained
from PSI-Blast (24) profiles or multiple alignments. AAindex is a
database of numerical indices representing various physicochemi-
cal and biochemical properties of amino acids and amino acid
pairs (25). It currently contains 544 amino acid indices in flat file
format that can be easily incorporated in feature vectors along with
calculated structural data using the R environment.

Random Forest algorithm is an ensemble classifier that uses
random subsampling of the variable space to construct multiple
decision trees, which result in a better predicive performance than
by using only a single decision tree model (26). Random Forest
algorithm has been shown to work well with high-dimensional
data (i.e., many features), it is not prone to overfitting (construc-
tion of a model that classifies accurately only elements from the
training set) and can take categorical descriptor variables (e.g.,
amino acid names without converting them to a numerical space).
It was successfully applied with comparable results to protein
interaction prediction (27). Together with the classification
model, the result of the training procedure is a list of variables
ranked by their “importance,” i.e., contribution to the ability
of the algorithm to discriminate between the functional classes.
Variable importance measure enables the user to further refine
their training procedure by selecting a subset of the most impor-
tant features.

As with any other machine-learning algorithm, the require-
ment for proper model construction is to use multiple sets for
classifier training and performance assessment. This is usually
done by cross-validation-random splitting of the training data
into several training and testing subsets. The accuracy of the
classifier is then visualized using the ROC curve.

Random Forest algorithm is implemented in several common
software applications: WEKA, R, Orange, or Rapid Miner
(28-31). The choice of software package depends on user’s profi-
ciency with specific computational tools. For users with less expe-
rience, we recommend the software with graphical user interface
(WEKA, Rapid Miner). For more proficient users we recommend
the R language for statistical computing. It is an integrated envi-
ronment that enables easy experimental setup without the need
for the knowledge of additional programming languages
(although knowing one of the high level programming languages
helps—Perl /Python/Ruby). The main advantage of using R
language as a platform for protein interaction prediction (over
the use of specialized web applications) is that it gives the user
the power to create custom data sets by integrating data from
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Fig. 1. An outline of the training and prediction processes covered in this chapter.

multiple sources. Vectorization capabilities of relational databases
and implementations of many machine-learning algorithms make
R our preferable choice for computational experiments. The over-
all procedure is outlined in (Fig. 1).

2. Software
and Data

To execute the protocol below, the user has to have a basic
working knowledge of the UNIX operating system (directory
and file operations, and regular expression) and the R language
for statistical computing (vector subsetting, iterative concepts,
installing packages). Additional packages for the R environment
are required:

— Bioconductor toolkit for handling biological data (http://
www.bioconductor.org/), which can be easily installed by run-
ning the following commands in the R interpreter:

source ("http://bioconductor.org/biocLite.R")
biocLite ()
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We will use the Biostrings library from the Bioconductor
package.

— randomForest  (http:/cran.r-project.org/web /packages /ran
domForest/) provides R with the machine-learning and classifica-
tion algorithm Random Forest (29).

— ipred (http:/cran.r-project.org,/web /packages/ipred /index.
html) package for the improvement of predictive models by
the use of nonparametric statistics.

The following additional software tools are used in the chapter:

— Protein Structure and Interaction Analyzer (PSAIA) (21)
(http: //complex.zesoi.fer.hr /PSAIA.html) is used to calculate
structure-based parameters for training and classification.

— BLAST NCBI toolkit (http://blast.ncbi.nlm.nih.gov/Blast.cgi?
CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=Down-
load) is used in the process of making the training set nonredun-
dant at the sequence level.

Methods presented in the chapter can be applied to any
user-selected sample of protein structures to derive classification
parameters. However, the examples shown here are based on the
collection of protein structure complexes, the 3D Complex database
(14) (http: /supfam.mrc-lmb.cam.ac.uk /elevy/3dcomplex /
Home.cgi).

All examples in the methods section were prepared on a
Linux-based operating system, but can easily be adopted to work
on any other common OS, like Microsoft Windows or MacOS.
The analysis takes approximately 30 h of processor time, with
maximum usage of 30 GB of working memory.

3. Methods

3.1. Data Set
Preparation

The main goal of this part is to prepare a nonredundant and
representative dataset for parameter extraction and Random For-
est classifier training. The user can either follow the protocol
above or use the existing structure collections (27).

1. Go to the 3D Complex database website (http://supfam.
mrc-lmb.cam.ac.uk/elevy /3dcomplex/Download2.cgi) and
download both partl and part2 of the complete dataset. You
can do that easily using the wget command in Linux OS.

wget http://supfam.mrc-
Ilmb.cam.ac.uk/elevy/3dcomplex/data/3Dcomplex
set partlI.tar.gz
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When the download is complete uncompress the archives using

tar —-xzf 3Dcomplex_set partl.tar.gz &
tar —xzf 3Dcomplex_set_partII.tar.gz &

and combine the two extracted folders together by moving the
contents of the second folder to the first folder

mv 3Dcomplex_set2/* 3Dcomplex_set/ &

On the same page you can find a FASTA formatted file
(seqres_V2.fa) that contains sequences taken from the SEQRES
field in the corresponding PDB structural files. The sequence
information will be used for removing redundancy from the
database.

2. Go to the download page of the 3D complex database (http:/
supfam.mrc-lmb.cam.ac.uk/elevy /3dcomplex /Download.cgi)
and check the following fields to be included in the output table:

Resolution

Is it a Homomer?

Is the QS a likely error?

Corrected symmetry

Corrected number of subunits

Save the given data into a textual file: struc.param.txt.

3. Run the R interpreter and read in the struc.param.txt file:

data =
read. table ('struc.param. txt',sep="\t',header=
T)

Select the subset of high quality structures that are going to
be used as a training set for the Random Forest classifier
(see Note 1).

data.subset = datal[data$resol <= 2.7 &
dataSpdb_error == 'NO' & data$ corrected_nsub
>= 2, ]

Save the table to a file named high.qual.data.txt and exit R.

write.table(na.omit (data.subset), file =
'high.qual.data.txt', quote=F, row.names=F,
col.names=F, sep='\t'")

quit ()

4. Using the following set of commands, copy the selected
subset to a new folder named Data:
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mkdir Data

cut -fl1 high.qual.data.txt | sed 's/"/cp
.\/3Dcomplex_set\//' | sed 's/$/.pdb
.\/Data/' > copy.data.sh

chmod 755 copy.data.sh

./copy.data.sh

By using the structure identifiers from the first column of the
high.qual.data.txt file, the second line of the code above con-
structs a series of commands that will do the actual copying,
and saves the commands into the copy.data.sh executable file.
Last two lines give the permissions to copy the files and
execute the copying.

. Using the Protein Structure Analyzer (PSA) calculate the

structural characteristics for each protein chain in the 3D
complex database (see Note 2).

/path_to_PSAIA/psa/psa.sh <config file> <input
file>

. Using the Protein Interaction Analyzer (PIA) designate inter-

acting residues (see Note 3).

/path_to_ PSAIA/pia/pia.sh <config file> <input
file>

. Cluster the protein sequences using the blastclust tool from

the NCBI BLAST toolkit.

To extract a subset of sequences from the seqres_V2.fa
file (from step 2), we will use the Bioconductor Biostrings
package.

Start the R interpreter and load the Biostrings package.

library (Biostrings)

Read in the FASTA file containing the protein sequences.

fasta = read.AAStringSet(file = './seqres_V2.fa',
format = 'fasta')
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3.2. Data Integration

Read in the table of selected structures.

data = read.table(file = 'high.qual.data.txt',
header = F)

Take a subset of sequences from the FASTA file that is present
in the high.qual.data.txt table.

fasta.subset = fasta[sub('.$','', names (fasta))
%$in% datal[,1]]

Write the results to a FASTA formatted file named high.qual.
data.fasta, and exit from R.

write.XStringSet (fasta.subset,

file='high.qual.data.fa', format = 'fasta',
width = 70)
quit ()

Run the blastclust application (see Note 4).

setwd (‘path to pia output folder’)

To be able to construct a model that can predict interacting amino
acids, we have to describe each residue in our dataset by a series of
numeric or categorical variables, and assign to each residue a class
based on its interaction status. This is done by integrating all of
the data we prepared in the previous steps.

First we will aggregate the data obtained as the output of
Protein Structure and Protein Interaction Analysers.

8. Start the R interpreter and change the working directory to
the PIA output folder.

setwd (‘path to pia output folder’)

9. Get the names ofall of the files in the folder, and create a variable
that will contain all of the contents (pia.data). The loop below
iterates through the interaction designator files and concate-
nates all of the files into the pia.data table (see Note 5).
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10.

pia.files = list.files()

pia.data = list()

for(i in 1l:length(pia.files)) {
pia.file = pia.files[1i]
cat ("Working on file:", pia.file, "\n")
pdb.id = unlist(strsplit(pia.file,

split="'_"))

pdb.id = ifelse(length (pdb.id)==5,
paste (pdb.id[1], pdb.id[2],sep="_"),
pdb.id[1])

pia = read.table(pia.file)

plia = read.table(file.path(pia.path,
pia.file), stringsAsFactors=F, header=T)
pia.data[[i]] = data.frame (pdb.id=pdb.id,

chain.id=as.factor (pial,1]), aa.num=pial,2],

aa=pial, 3], aa.status=pial,4])
}
pia.data = do.call (rbind, pia.data)

Now we do an analogous process for PSA output. Change the
working directory into the PSA output folder (using the
setwd() function), and aggregate all of the output into a

single table (see Note 6).

psa.files = list.files()

psa.data = list()

for(i in l:length(psa.files)) {
psa.file = psa.files[i]
cat ("Working on file:", psa.file, "\n")
pdb.id = unlist(strsplit(psa.file,

split='_"))

pdb.id = ifelse(length (pdb.id)==5,

paste (pdb.1id[1], pdb.id[2],sep='_"),
pdb.id[1])

psa = scan(psa.file, skip=7, what='list',
sep="\n")

psa = gsub('[I"]",'", psa)

psa = gsub ('"\\s+',"' ', psa)

psa gsub ('""\\s+','"', psa)

header = unlist(strsplit(psall], split='
psa = do.call (rbind,

strsplit(psa[2:length(psa)], split='\\s+'))

psa.datal[pdb.id]] = data.frame (pdb.id,
psal,c(l,7:ncol (psa))l)

11. Read in the output of the Blastclust application and select a
set of nonredundant chains that will be used to train the
Random Forest predictor. During the process we create the
data.subset table that is going to be used in downstream

analysis.
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3.3. Feature Vector
Construction Using
a Sliding Window
Approach

path = ‘path to blastclust ouput’
clusters = scan(path, what='list', sep='\n")
clusters= lapply(clusters, FUN =

function (x)unlist (strsplit(x, split="\\s")))
non.red.chains = unlist(lapply(clusters, sample,

1))
non.red.id = sub('.$', '', non.red.chains)
psa.data.subset = psa.datal[names (psa.data) %in%

non.red.id]
data.subset = do.call (rbind, psa.data.subset)
colnames (data.subset) = c("pdb.id", "chain.id",
"aa.num", "aa",
"total.ASA", "b.bone.ASA","s.chain.ASA",
"polar.ASA", "n.polar.ASA", "total.RASA",
"b.bone.RASA", "s.chain.RASA", "polar.RASA",
"n.polar.RASA", "Hydrophobicity")
data.subset =
data.subset[paste (data.subsetS$pdb.id,
data.subset$Schain.id, sep='"') %in%
non.red.chains, ]
data.subset[,5:ncol (data.subset)] =
apply(data.subset[5:ncol (data.subset)], 2,
as.numeric)

12. To classity each residue by interaction type, it is necessary to
make an intersection of the PIA output and the subset of the
data we created in the previous step. Creating a unique identi-
fier (see Note 7) for each residue in both tables will enable us
to assign values from the PIA table to the residues present in
the data.subset table.

pia.data.uniqg =

data.frame (aa.status=pia.data$aa.status,
uniqg.id=paste (pia.data$Spdb.id, pia.data$chain.id,
pia.data$Saa.num, sep='_"))

data.subset$unig.id = paste (data.subset$pdb.id,
data.subset$chain.id, data.subset$aa.num, sep='_"')
merged.data = merge (data.subset, pia.data.uniq,
by.x='uniqg.id', by.y='unig.id'")

merged.data = merged.datal[, -1]

Sliding window approach is a method of describing each element in
a biological sequence using properties of its immediate neighbors—in
our specific example, a feature vector for each residue contains not
only variables describing that specific residue, but also all of the
attributes of n residues around the residue of interest (where n is
defined by the size of the window). It is customary to use windows
ofodd length (e.g., 3,5, 7), so that there is no confusion as to which
residue is the central one in the window. There are two major
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downsides to the method. By concentrating on the middle residue
of the window, starting and ending residues of each sequence are
omitted, which can cause a loss of information. Also, a number of
structures are missing residues in the middle of their polypeptide
chain, resulting in an incorrect window assignment. This can lead to
false labeling of distant residues as neighbors and thus to construc-
tion of false feature vectors (see Note 8).

13. Each polypeptide chain is assigned a unique id composed of the
name of the corresponding PDB file and the name of the chain.
The resulting list is filtered for chains longer than ten residues.

merged.data$Suniqg.chain.id =
paste (merged.data[,1], merged.datal,2],
sep="_")
merged.data$aa.num =
as.numeric (as.character (merged.data$aa.num))
chains = unique (merged.data$uniqg.chain.id)
chains = chains[tapply(merged.data$uniqg.chain.id,
merged.dataSunig.chain.id, length) > 10]

14. Now iterate through each chain and construct the feature
vectors (we will use windows of length 5—window.size=5).
The class of the window is determined by the class of the
middle residue (e.g., If the window size is 5, then the clas-
s—interacting or not-interacting—is assigned to the third resi-
due, see Note 9). To ascertain that the residues in the table
are ordered in the same way as in their corresponding poly-
peptide chains, we explicitly reorder them by their residue

numbers.
window.size = 5
vectors = list()

for (i in chains) {
cat ("Working on chain:", i, "\n")

my.chain = my.chain[order (my.chain$aa.num), ]
my.chain = my.chain[,-c(1:2, ncol (my.chain)) ]
my.chain$aa = as.character (my.chain$aa)

windows = sapply(l: (ncol (my.chain) -
window.size+l),
function (x) seq(x,xtwindow.size -1))
a = apply(windows, 2,
function (x)my.chain[x,])
a = lapply(a, unlist)
vectors[[i]] = data.frame(do.call (rbind, a),
stringsAsFactors=F)

}

vectors = do.call (rbind, vectors)

15. Here we create an index of all of the windows that covered a
part of the sequence that contains a gap.
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vector.ind = apply(vectors|[,grep('aa.num',
names (vectors))], 2, as.numeric)
vector.ind = rowSums (t (apply(vector.ind, 1,
function (x) {x-min (x) })))==
ncol (vector.ind) * (ncol (vector.ind)-1) /2

And remove the columns from the table that we do not
use as predictor variables.

vectors = vectors[vector.ind, -c(grep('status',

names (vectors)), grep('aa.num',
names (vectors))) ]

aa.col = grep('”aa', names (vectors))
vectorsS$Sclass = vectors$aa.status3
vectors[,-(aa.col)] = apply(vectors[,-(aa.col)],

2, as.numeric)

The last two lines designate the class of the window as the
class of the middle residue (column aa.status3) and explicitly
convert all of the variables (except amino acid symbols) to
numbers.

16. To finalize the dataset, we need to reduce the number of
noninteracting windows in the table. This is done by down-
sampling of the noninteracting windows to the number of the
interacting ones.

vectors.interacting = vectors[vectorsS$class == 1,
]

vectors.noninteracting = vectors|[vectorsS$Sclass ==
0, 1

complete.features = rbind(vectors.interacting,
vectors.noninteracting[sample (1:nrow (vectors.
noninteracting),
nrow (vectors.interacting)),])

Random Forest algorithm is implemented in R language
in the randomForest package. To enable its use, load the
functions into the memory.

3.4. Random Forest

Training, Testing,

and Validation
library(randomForest)

17. A proper practice for working with machine-learning algo-
rithms is to separate your dataset into training and test sets.
We do that here by randomly assigning 80% of the instances
to the training set and 20% to the test set, and run the model
construction.
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3.5. Prediction

of Interacting
Residues in a New
Structure

complete.features$class =
as.factor (complete.features$Sclass)
num.of.instances = nrow(complete.features)

complete.features.train.ind =
sample (l:num.of.instances, trunc(0.8 *
num.of.instances))

complete.features.train =
complete.features|[complete.features.train.ind

,]
complete.features.test = complete.features|[-
complete.features.train.ind, ]

random. forest.model =
randomForest (y=complete.features.train$class,
x=complete.features.train[, -
ncol (complete.features.train)],
y.test=complete.features.test$class,
x.test=complete.features.test[, -
ncol (complete.features.test)], ntree=1000)

18. To validate the model we use the errorest from the ipred
package, which uses tenfold cross-validation to estimate the
error rate of the classifier (see Note 10).

error = errorest(class ~. , data =
complete.features, model=randomForest,
estimator="'cv', ntree=500)

To make the prediction of interaction residues on a new structure,
take the PDB formatted file and construct the feature vectors by
repeating steps 10-14 (without the aggregation of pia output, and
convert the psa.data list into a table using data.subset=do.call
(rbind.psa.data)) -> step 15 of the analysis. Then, using the
predict function on the trained model