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Preface

Biomarkers are indicators of disease occurrence and progression. Biomarkers can be

used to predict clinical responses to treatments, and in some cases they may represent

potential drug targets. Biomarkers can be derived from solid tissues and bio-fluids. Also

they can refer to non-molecular risk or clinical factors, such as life-style information and

physiological signals. Different types of biomarkers have been used in clinical practice to

detect disease and predict clinical outcomes.

Advanced laboratory instruments and computing systems developed to decipher the

structure and function of genes, proteins and other substances in the human body offer a

great variety of imperfect yet potentially useful data. Such data can be used to describe

systems and processes with diverse degrees of accuracy and uncertainty. These limita-

tions and the complexity of biomedical problems represent natural obstacles to the idea

of bringing new knowledge from the laboratory to the bedside.

The greatest challenge in biomarker discovery is not the discovery of powerful

predictors of disease. Nor is it the design of sophisticated algorithms and tools. The

greatest test is to demonstrate its potential relevance in a clinical setting. This requires

strong evidence of improvements in the health or quality of life of patients. This also

means that potential biomarkers should stand the challenge of independent validations

and reproducibility of results.

Advances in this area have traditionally been driven at the intersection of the medical

and biological sciences. Nevertheless, it is evident that current and future progress will

also depend on the combination of skills and resources originating from the physical and

computational sciences and engineering. In particular, bioinformatics and computational

biology have themission to bring newcapacities and possibilities to understand and solve

problems.

The promise of new advances based on the synergy of these disciplines will also

depend on the growth and maturation of a new generation of researchers, managers and

policy makers. This will be accomplished only through new and diverse training

opportunities, ranging from pre-college, through undergraduate and post-graduate, to

post-doctoral and life-long education.



One of the crucial challenges for bioinformaticians and computational biologists is the

need to continuously accumulate a great diversity of knowledge and skills. Moreover,

despite the fact that almost everyone in the clinical and biological sciences would agree

on the importance of computational research in translational biomedical research, there

are still major socio-cultural obstacles that must be overcome. Such obstacles mirror the

complexity and speed of unprecedented changes in technology, scientific culture and

human relations.

Bioinformaticians and computational biologists have a mission that goes beyond the

provision of technical support or the implementation of standard computing solutions.

Theirmission is to contribute to the generation and verification of new knowledge, which

can be used to detect, prevent or cure disease. In the longer term, this may result in amore

effective fight against human suffering and poverty. This demands from us a continuous

improvement of skills and changes in attitude. Skills and attitudes that can prepare us to

cooperate and lead in this endeavour.

This book aims to support efforts in that direction. It represents an attempt to introduce

readers to some of the crucial problems, tools and opportunities in bioinformatics and

biomarker research. I hope that its content will at least serve to foster new conversations

between and within research teams across disciplines, or even to help to recognize new

value and purpose of ongoing interactions.

xviii PREFACE



1 Biomarkers
and bioinformatics

This chapter discusses key concepts, problems and research directions. It provides an

introduction to translational biomedical research, personalized medicine, and biomar-

kers: types and main applications. It will introduce fundamental data types, computa-

tional and statistical requirements in biomarker studies, an overview of recent advances,

and a comparison between ‘traditional’ and ‘novel’ molecular biomarkers. Significant

roles of bioinformatics in biomarker research will be illustrated, as well as examples of

domain-specific models and applications. It will end with a summary of expected

learning outcomes, content overview, and a description of basicmathematical notation to

be used in the book.

1.1 Bioinformatics, translational research
and personalized medicine

In this book, the termbioinformatics refers to the design, implementation and application

of computational technologies, methods and tools for making ‘omic’ data meaningful.

This involves the development of information and software resources to support a more

open and integrated access to data and information. Bioinformatics is also used in the

context of emerging computational technologies for modelling complex systems and

informational patterns for predictive purposes. This book is about the discovery of

knowledge from human molecular and clinical data through bioinformatics. Knowledge

that represents ‘biomarkers’ of disease and clinically-relevant phenotypes.

Another key issue that this book addresses is the ‘translational’ role of bioinformatics

in the post-genome era. Translational research aims to aid in the transformation of

biological knowledge into solutions that can be applied in a clinical setting. In addition,

Bioinformatics and Biomarker Discovery: “Omic” Data Analysis for Personalized Medicine Francisco Azuaje
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this involves the incorporation of data, knowledge and feedback generated at the clinic

into the basic research environment, and vice versa, back and forward.

Bioinformatics, and related fields within computational biology, contributes to such

objectives with methodologies and technologies that facilitate a better understanding

of biological systems and the connections between health and disease. As shown in the

next chapters, this requires the analysis, visualization, modelling and integration of

different types of data. It should be evident that this has nothing to do with ‘number

crunching’ exercises or information technology service support. Bioinformatics is at

the centre of an iterative, incremental process of questioning, engineering and

discovery. This in turn allows researchers to improve their knowledge of the subtle

relation between health and disease, and gives way to a capacity to predict events rather

than simply describe them. Bioinformatics then becomes a translational discipline,

that is ‘translational bioinformatics’, a major player in the development of a more

predictive, personalized medicine.

Hypotheses about biological function and disease are typically made at the ‘wet

laboratory’. However, in a translational biomedical context, it is at the ‘bedside’ where

medically-relevant questions and requirements may be initially proposed and where

biological samples (fluids and solid tissue) are acquired frompatients. This, togetherwith

a diverse range of data about clinical responses and life-styles, provides the inputs to

different information platforms and processes. The resulting biological samples are

processed in the laboratory to extract different types of molecular data, such as DNA

sequences and the expression of genes and proteins. These questions and information

are expanded, redefined and explored by biologists and bioinformaticians in close

cooperation with clinical researchers.

Computational approaches and resources are required at both the clinic and the

laboratory. This is not only because informatic infrastructures and large-scale data

analysis are routinely required in these environments, but also because bioinformatics

can directly specify and address questions of scientific and clinical relevance. In the post-

genome era, this requires provision of alternative views of phenomena that goes beyond

the single-gene, hypothesis-driven paradigm. Figure 1.1 illustrates examples of key

aspects in the dialogue between the clinical, laboratory and computational research.

Within biomedical translational research, bioinformatics is crucial for accomplishing

a variety of specific challenges: From the implementation of laboratory management

systems, drug target discovery, through the development of platforms for supporting

clinical trials, to drug design. This book will focus on computational and statistical

approaches to disease biomarker discovery. This includes the detection of disease in

symptomatic and asymptomatic patients, the prediction of responses to therapeutic

interventions and the risk stratification of patients.

1.2 Biomarkers: fundamental definitions and research principles

Abiomarker is ‘a characteristic that is objectivelymeasured and evaluated as an indicator

of normal biological processes, pathogenic processes, or pharmacologic responses to a

therapeutic intervention’ (Biomarkers Definitions Working Group, 2001). According to

this definition, biomarkers can be divided into three main types: ‘Type 0’ represents

biomarkers used to estimate the emergence or development of a disease; ‘Type 1’
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includes biomarkers that predict the responses to therapeutic interventions; and ‘Type 2’

represents biomarkers that, in principle, could be used as surrogate clinical endpoints in

the course of clinical trials. An alternative classification that is commonly used in cancer

research specifies two main types of biomarkers: predictive and prognostic biomarkers

(Simon, 2008). The former refers to biomarkers used to predict therapeutic responses,

and the latter refers to biomarkers for disease classification or risk estimation. This book

will follow the categorization proposed by the US NIH Biomarkers DefinitionsWorking

Group.

On the basis of their application to the detection of disease, three main classes of

biomarkers may be specified: screening, diagnostic and prognostic biomarkers. Screen-

ing biomarkers are used to predict the potential occurrence of a disease in asymptomatic

patients. Diagnostic biomarkers are used to make predictions on patients suspected of

having the disease. Prognostic biomarkers are applied to predict the outcome of a patient

suffering from a disease. Most of the advances reported to date in the literature refer to

diagnostic and prognostic biomarkers. This may be partly explained by the challenges

posed by screening studies regarding the definition of complex phenotypes, independent

evaluations and reproducibility of findings, and the lack of evidence showing their

advantage in comparison with traditional disease risk factors.

Biomarkers can also be seen as indicators of functional and structural changes in

organs and cells. Such changes may be associated with either causal factors (disease

drivers) or consequences of normal and pathological events. Thus, biomarkers can be

used to predict and monitor molecular changes relevant to the current development or

future emergence of diseases, complications or responses. Moreover, biomarkers can

Clinical questions and requirements

Clinic

Sample extraction

Phenotype data acquisition

Computational research

Data pre-processing, feature extraction
and selection

Statistical analysis

Predictive modelling

“Wet” Laboratory

Refined / new hypotheses

Sample processing

Molecular (“omic”) data generation

Hypotheses

Figure 1.1 The dialogue between clinical, laboratory and computational research environments

in the context of translational biomedical research. Examples of typical tasks and applications
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also be considered as potential therapeutic targets, for example when their causal role in

disease is demonstrated.

Clinical tests based on biomarkers have been applied formore than fifty years, but their

potential applications for disease detection, patient stratification and drug discovery has

expanded since the beginning of the twenty-first century. More recently, the discovery of

novel biomarkers using genome-scale and different types of ‘omic’ data has become a

crucial goal in both academia and industry. This interest has been driven in part by

biomarkers’ potential to predict disease states. Also biomarkers can facilitate a more

comprehensive and deeper understanding of biological systems in the context of health

and disease. Moreover, biomarkers can be used to guide the development of new

therapies. For example, it has been suggested that biomarkers may reduce the time and

costs of phase I and II clinical trials. This may be possible thanks to their potential as

clinical endpoint substitutes (or surrogate endpoints), which are needed for assessing

treatment safety and effectiveness.

The discovery of biomarkers is based on the following research principle: The

comparison of physiological states, phenotypes or changes across control and case

(disease) patient groups (Vasan, 2006;Gerszten andWang, 2008).At themolecular level,

such differences can be reflected in the differential activity or concentrations of genes

proteins, metabolites and signalling pathways. Thus, biomarker discovery typically

relies on the idea that those molecular species (i.e. gene, proteins, etc.) that display the

greatest changes across phenotypes may be reported as potential biomarkers.

A traditional approach to discovering biomarkers for screening, diagnostic or prog-

nostic purposes consists of the analysis of a single gene or protein and the identification of

its ‘abnormal’ values, based on hypotheses biased toward specific biological processes or

pathways. In general there are three traditional methods for identifying abnormal

biomarker values: identification based on reference thresholds, based on discrimina-

tion thresholds and based on risk thresholds (Vasan, 2006). In the first approach the

distribution of biomarker values in a reference group that approximates the general

population is estimated and abnormal values are defined using extreme values on the

basis of percentile thresholds. For example, a protein concentration value above the

99th percentile value can be considered abnormal and an indication of disease or

clinical outcome. Discrimination thresholds can be defined after comparing the

distribution of biomarker values between patient groups (e.g. control vs. disease)

in terms of their differences or overlaps. For instance, a protein concentration

value greater than 100 pg/mL may be associated with a specific clinical complication

or disease. A discrimination threshold would aim to maximize the capacity of

distinguishing between these groups. The approach based on risk thresholds aims to

detect biomarker values that would be associated with a (disease or response) risk

increase beyond a critical point on follow-up. For example, a systolic blood pressure

value below 115 mmHg may be defined as ‘desirable’, as a value above this limit is

linked to an increase of the risk of vascular disease.

Independently of their categorization, application domain or discovery approach, a

fundamental objective in biomarker research is to detect a disease, response or

complication at an early stage to aid in the selection of a treatment strategy. Such a

prediction process should be sufficiently non-invasive, reproducible and inexpensive. In

some clinical areas another important quality criterion is to maximize the predictive

specificity (or reduction of false-positive rates, for example low rate of control patients
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incorrectly assigned to a pathological condition). This optimization is important because

even relatively small false-positive rates can lead to unnecessary and expensive

diagnostic or treatment procedures. In other areas the cost of missing a potential ‘true

positive’ prediction of the disease is the main priority. Therefore, the selection and

interpretation of prediction quality indicators are domain-specific, and may require the

combination and optimization of different clinically-meaningful indicators. Chapters 2

and 3 include more detailed discussions on the evaluation of biomarkers and prediction

models.

These prediction tasks will also directly influence the capacity to offer a more

personalized management and treatment of patients. Moreover, it has applications in

the assessment of therapeutic efficacy and toxicity. These prediction models can aid in

the selection of those patients for whom treatment could offer an optimal benefit, and

which could in turn reduce unnecessary therapy on patients with a better expected

clinical outcome. Overall, this may directly contribute to the reduction of treatment and

hospitalization costs.

1.3 Clinical resources for biomarker studies

Biomarker research relies on two main types of data acquisition strategies (Pepe et al.,

2001): Retrospective and prospective studies.

Retrospective studies.These studies are based on clinical samples collected before the

design of the biomarker study, and before any comparison with control samples have

been carried out. After a pre-determined period of follow-up, clinical outcomes or

phenotypes are specified, and case and control samples are compared. Biomarker

discovery based on retrospective studies looks back at past, recorded data to find

evidence of marker-disease relationships.

Depending on the study objectives, the control samples may be derived from healthy

populations or from those subjects that did not show the positive clinical outcome under

study (e.g. individuals who did not develop the disease, die or show complications).

These studies may involve the identification of biomarkers to distinguish between

patients at first time of consultation, or as a function of time (i.e. several clinical

evaluation times) before determining the predictive capacity of the biomarkers. These

studies also require investigations on the classification ability of covariates (other

predictive cofactors), for example standard biomarkers or life-style information. Com-

parisons of multiple combinations of potential biomarkers with traditional biomarkers

are fundamental. There is no universal standard for defining the length of follow-up

times, which will be specific to clinical purposes, resource and biological constraints and

economic costs. Matching of case-control samples on the basis of individual-based

characteristics is important, as well as matching of subjects on the date of study

enrolment when possible. Different classification quality indicators and techniques may

be used to estimate the predictive or classification capacity of the biomarkers (Chapters 2

and 3). For instance, different prediction quality indicators, corresponding to the

different follow-up periods can be estimated and compared for different classification

models. The main goal is to identify those prediction models capable of identifying

patients with the clinical outcome at a number of months (or years) after the biomarkers

are measured.
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Prospective studies. In this type of study, the biomarker-based prediction or

classification model is applied on patients at the time of patient enrolment. Clinical

outcomes or disease occurrence are unknown at the time of enrolment. Thus, selected

subjects are followed during a pre-determined period time, that is prospective studies

look forward in time. At the end of such a period, information about the clinical

outcomes is acquired and analysed to assess the prediction or discrimination capacity

of the biomarkers.

In some applications, such as the independent validation of a new biomarker model in

a real clinical setting, those patients testing positive would undergo further diagnostic or

prognostic procedures. This will allow the estimation of themodel capacity to detect true

positive cases, disease stage and other characteristics. In addition, these studies would

not only drive the classification or risk assessment of patients, but also the selection of

treatments.

In a biomarker development project, prospective studies typically follow the com-

pletion of retrospective studies in order to further evaluate the clinical potential of the

proposed biomarkers and prediction models. Although more expensive and time-

consuming, prospective studies are considered a less biased andmore objective approach

to collecting and analysing data for biomarker discovery.

1.4 Molecular biology data sources for biomarker research

Traditional and large-scale molecular biology generates data needed to reflect physi-

ological states in modern biomarker discovery. The availability of new data sources

originating from different ‘omic’ approaches, such as genomic variation and mRNA

expression analysis, are allowing a more systematic and less biased discovery of novel

biomarkers in different clinical areas. Moreover, some of such new biomarkers are

orthogonal, that is biomarkers with relatively low statistical, biological or clinical

dependencies between them.

Major sources ofmolecular data for biomarker discovery are (Vasan, 2006;Gersztenand

Wang, 2008): DNA-based variation studies (Chapter 4), gene expression or transcrip-

tomics (Chapter 5), protein expression and large-scale proteomics, and the measurement

of metabolite and small molecule concentrations (metabolomics) (Chapter 6).

In genomic variability studies, a key discovery approach is the analysis of single-

nucleotide polymorphisms (SNPs) in cases versus control subjects. Variants with

potential screening, prognostic or diagnostic potential have been proposed based on

the analysis of candidate genes and genome-wide association studies (Chapter 4) in

different medical areas, including cancer and cardiovascular research. However, the

independent validation or reproducibility of these results has been proven to be more

difficult than anticipated. Examples of recent advances include SNPs biomarkers

for early-onset of myocardial infarction and premature atherosclerosis (Gerszten and

Wang, 2008).

In some areas, such as cardiovascular research, the discovery of disease biomarkers

using gene expression analysis has been traditionally limited by the difficulty in

obtaining tissue samples. Different studies using cardiomyocites in culture, in vitro

models and tissue extracted from transplant patients have suggested a great variety of

potential diagnostic and prognostic biomarkers, for example mortality in patients with
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heart failure. The development of less invasive techniques based on peripheral blood

gene expression profiling represents a promising approach in this and other medical

domains (Chapter 5).

Proteomics and metabolomics have become promising technologies for biomarker

discovery. These technologies enable the analysis of the clinically-relevant catalogues of

proteins and metabolites (Chapter 6). Metabolites are sets of biochemical substances

produced bymetabolic processes (e.g. sugars, lipids and amino acids). These approaches

represent powerful complementary views of the molecular state of a cell at a particular

time. Amajor challenge is the diversity of cell types contributing to the human proteome

and metabolome (e.g. plasma proteome) and the low concentration levels of many of the

proteins suggested as disease biomarkers. On the other hand, it has been suggested that

the size of the humanmetabolomemight be represented by a relatively small set (�3000)

of metabolites (Gerszten and Wang, 2008).

Independently of the types of ‘omic’ resources investigated, there is the possibility that

the molecular profiles or patterns observed in the potential biomarkers may not be true

reflections of primary molecular events initiating or modulating a disease. Instead, they

may reflect a consequence of downstream events indirectly caused by the studied

pathology at later stages.

Modern biomarker discovery research aims to extract information from these re-

sources, independently or in an integrated fashion, to design predictivemodels of disease

occurrence or treatment responses. The integration of different types of clinical and

‘omic’ data also motivates the extraction of biological knowledge from diverse distrib-

uted repositories of functional annotations and curated molecular pathway information

(Ginsburg, Seo and Frazier, 2006; Deschamps and Spinale, 2006; Camargo and Azuaje,

2007) (Chapter 7). This, in turn, promotes the implementation of advanced predictive

integration-based approaches (Chapter 8), that is biomarker-based models of disease or

treatment response that combine quantitative evidence extracted from different data

sources (Camargo andAzuaje, 2008; Ideker and Sharan, 2008). These tasks are facilitated

through significant computational advances accumulated over the past 20 years in

connection with information standardization, ontologies for supporting knowledge

representation and exchange, and data mining (Chapter 9).

1.5 Basic computational approaches to biomarker discovery:
key applications and challenges

Advances in computational research and bioinformatics are essential to the management

and understanding of data for biomarker discovery. Examples of such contributions are

the storage (including acquisition and encoding), tracking (including laboratory man-

agement systems) and integration of data and information (Azuaje, Devaux andWagner,

2009a, 2009b). Data integration involves the design of ‘one-stop’ software solutions for

accessing and sharing data using either datawarehousing or federated architectures. This

has allowed a more standardized, automated exploration, analysis and visualization of

clinical and ‘omic’ data using a great variety of classic statistical techniques andmachine

learning (Azuaje, Devaux and Wagner, 2009a, 2009b).

Biomarker discovery from ‘omic’ data also relies on exploratory visualization tools,

data clustering, regression and supervised classification techniques (Frank et al., 2004;
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Camargo and Azuaje, 2008). Feature selection (Saeys, Inza and Larrañaga, 2007) also

represents a powerful approach to biomarker discovery by exploiting traditional

statistical filtering (e.g. statistical analysis of multiple hypotheses) or models ‘wrapped’

around classifiers to identify powerful discriminators of health and disease (Chapter 3).

The resulting significant features can then be used as inputs to different machine learning

models for patient classification or risk estimation, such as neural networks and support

vector machines (Chapter 3).

Other important challenges for bioinformatics are the relative lack of data together

with the presence of different potential sources of false positive biomarker predictions,

including experimental artefacts or biological noise, data incompleteness and scientific

bias (Ginsburg, Seo and Frazier, 2006; Azuaje and Dopazo, 2005; Jafari and Azuaje,

2006). This further adds complexity to the task of evaluating the predictive capability

of disease prediction models, particularly those based on the integration of multiple

biomarkers.

A key challenge in biomarker development is the reduction of experimental

variability and noise in the data, as well as the accomplishment of reproducibility at

the different stages of sample acquisition, measurement, data analysis and evaluation.

Potential sources of experimental variability are related to sample extraction, data

storage and processing. This may result in inter-laboratory variability driven by factors

such as diversity of reagents, experimental platforms and protocols. Recommendations

and standards have been proposed by technology manufactures and international

community groups, which define practices for sample handling, quality control and

replication.

Apart from minimizing variability related to experimental factors, it is crucial to

address patient- and data-related sources of variability, such as intra- and inter-

individual variability. Such variability may be caused by factors ranging from age,

gender and race to drug treatments, diet or physical activity status. Depending on the

suspected factors influencing these differences, prediction model stratification or

statistical adjustments may be required. Standards and recommendations for support-

ing better reproducibility of data acquisition (e.g.MIAME) and analysis (e.g. replicate

and pre-processing procedures) have also been proposed by manufacturers and the

international research community (Brazma, Krestyaninova and Sarkans, 2006).

Additionally, the accurate and sufficient reporting of biomarker studies, for example

diagnostic accuracy results, has motivated the development of specific community-

driven guidelines (Chapter 10).

Research in bioinformatics shares the responsibility to lead efforts to standardize and

report biomarker study results, to provide extensive prediction model evaluation, and to

develop advanced infrastructures to support research beyond the ‘single-marker’ anal-

ysis approach. There is still a need to develop more user-friendly tools tailored to

biomarker discovery, which should also be able to operate in open and dynamic data and

user environments. Despite the availability of ‘generic’ bioinformatic tools, such as

statistical analysis packages and platforms for the design of machine learning systems,

the biomarker research community will continue requiring novel solutions to deal with

the requirements and constraints imposed by the translational research area. Table 1.1

reflects the diversity of computational technologies and applications for biomarker

discovery. It shows how different requirements and problems are connected to specific

fields and technologies.
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From a data analysis perspective, biomarker discovery can be seen as an iterative,

incremental process (Figure 1.2). Differential pattern recognition, classification, asso-

ciation discovery and their integration with diverse information resources, such as

functional pathways, are central to this idea. The main expected outcomes, from a

translational research perspective, could be new diagnostic or prognostic kits (e.g. new

biochips or assays) and computational prediction systems for screening, diagnostic and

prognostic purposes. The validity and potential clinical relevance of these outcomes will

depend on the successful implementation of evaluations using independent samples.

Moreover, the applicability of new biomarkers, especially multi-biomarker prediction

models, will also depend on their capacity to outperform conventional (or standard)

markers already incorporated into the clinical practice.

Bioinformatics research for biomarker discovery also exploits existing public data and

information repositories, which have been mainly the products of several publicly-

funded initiatives. Different approaches have shown how novel biomarker discovery

based on the integrative data analysis of different public data sets can outperform single-

resource (or single site) studies, and provide new insights into patient classification and

Table 1.1 Examples of key computational technologies and applications for biomarker discovery.

Circles inserted in cells represent a significant connection between a bioinformatics technology or

research area (columns) and applications relevant to biomarker discovery research (columns)

Stat ML GNT IV KE SD SM

Estimation of significant

relationships/differences

between patients

. . .

Selection of optimum

biomarker sets

. . .

Integrated access to data and

information

. .

Integrated analysis of data and

information for prediction

modelling

. . .

Laboratory information

management and tracking

systems

. .

Biobanks . .

Literature search and mining .

Data and information

annotation

. . .

Discovery infrastructures,

automated distributed

services

. .

Patient classification and risk

score assessment

. .

Stat: Statistical analysis including hypothesis testing, ML: Statistical and machine learning, GNT: Graph and

network theory, IV: Information visualization, KE: Information and knowledge engineering and management,

including natural language processing, SD: Software development and Internet technologies, SM: Complex

systems modelling including simulation tools.
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processes underlying a disease (Camargo and Azuaje, 2008; Butte, 2008a, 2008b).

Currently different online projects and repositories freely offer genomic variation data

(e.g. human genomic polymorphisms), gene expression (e.g. public repositorieswith raw

public data), proteomics (e.g. plasma proteome, antibodies), and human health-specific

pathways (e.g. metabolic, signalling and genetic interactions) (Mathew et al., 2007).

Chapter 9 will review relevant bioinformatic infrastructures, information resources and

software tools for supporting biomarker discovery. Chapters 8 and 10 will discuss the

analysis of multiple public data and information resources.

1.6 Examples of biomarkers and applications

Molecular biomarkers are measured in biological samples: solid tissues, blood or other

fluids. In the area of cardiovascular diseases, for example, a typical clinical situation for

the application of biomarkers is when a patient presents severe chest pain. This would

trigger questions such as: Is this patient experiencing amyocardial infarction or unstable

angina? If the patient is experiencing a myocardial infarction, what is the likelihood that

this patient will respond to a specific therapy? What is the amount of myocardial

damage? What is the likelihood of a future recurrence? What is the likelihood of

progressing to heart failure or death in the near future? Protein biomarkers, for instance,

may be applied to help doctors to answer these questions.

Samples (known clinical classes)

Prior knowledge

''Omic'' data

Differences between (sample) classes

Integrative, predictive modelling

Potential biomarkers, classification and
prediction models

Independent validations

Diagnostic or prognostic systems

Figure 1.2 A typical biomarker discovery framework

10 BIOMARKERS AND BIOINFORMATICS



In principle, new biomarkers will be of clinical value only if the following factors can

be demonstrated: predictive or classification accuracy, reproducibility, their acceptance

by patient and clinician, high sensitivity and specificity, direct relation with changes in a

pathology or clinical conditions, and measurable impacts in patient management.

However, depending on the type of application, some of these (and other) factors will

be more or less relevant. In screening applications, high predictive performance quality

(e.g. overall accuracy, sensitivity and specificity) and relative low costs could be themost

critical factors. These factors are also important in diagnostic applications of biomarkers,

together with other factors, such as high tissue specificity and potential to be applied at

point-of-care setting. In some prognostic applications, quality indicators such as

specificity and sensitivity may be less critical than the reduction of intra-individual

variation. Chapter 10 provides a more detailed discussion on the assessment of clinical

relevance in biomarker research.

The increasing availability of large-scale data sources originating from diverse ‘omic’

approaches, such as genomics and transcriptomics, are allowing a more systematic and

less biased discovery of novel disease biomarkers in different clinical areas. Figure 1.3

illustrates relevant examples of biomarkers from the cardiovascular research area, which

are based on different types of ‘omic’ approaches and technologies.

Examples of diagnostic cardiovascular biomarkers incorporated into clinical practice

are the brain natriuretic peptide (BNP) for heart failure, and troponin I and troponin T for

myocardial infarction (Gerszten andWang, 2008). In addition, it has been suggested that

these biomarkers also have prognostic applications. Examples of potential screening

biomarkers include those that may be associated with inflammation (e.g. C-reactive

protein and interleukin-6), thrombosis (e.g. fibrinogen) and other vascular complications

(Gerszten and Wang, 2008). However, it is important to stress that their clinical utility

still remains a topic of exploration and discussion. The capacity of novel prediction or

classification models, based on the combination of novel biomarkers, to outperform

traditional biomarkers has not been widely demonstrated. For instance, a report from

the Framingham Heart Study evaluated the predictive capacity of several molecular

markers of death and cardiovascular complications. This investigation concluded that

multi-marker prediction models can only add a moderate improvement in prediction

performance, in comparison with (single-marker) conventional models. However,

these relative small effects may also account for an over-emphasis put on standard

quality indicators for sample classification without adequately considering other

measures and design factors, such as specific prediction goals and sample class

imbalances (Chapter 3).

Genetic variation

Locus on 9p21 CXCL 12 CRP ST2 BNP, NT-
ProBNP

Atherosclerosis

MRP14 MMPs (e.g.
MMP9)

Myocardial infraction Cardiac remodelling or heart failure

Biological source

Biomarkers

Cardiovascular
disease

Gene expression Protein expression

Figure 1.3 Examples of cardiovascular biomarkers and their relationship to different ‘omic’

technologies and diseases (Vasan, 2006; Gerszten and Wang, 2008)
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Another potential obstacle is that the majority of reported biomarkers may be biased

towards well-studied functional pathways, such as those linked to inflammation and

cholesterol synthesis in the case of cardiovascular biomarkers (Gerszten and Wang,

2008). Moreover, multi-marker models may be based on correlated biomarkers, which

may in turn reduce the classification ability of themodels. In the datamining andmachine

learning areas it is well-known that, for classification purposes, the combination of

several correlated predictive features is less informative than the combination of fewer

uncorrelated (or orthogonal) biomarkers. These difficulties and limitations are also found

in other medical areas.

Natriuretic peptides have become the major prognostic reference in heart failure

diagnosis, prognosis and treatment planning (Maisel, 2007). In particular, BNP and NT-

proBNP have become powerful indicators of heart failure in acute dyspnoea patients and

of clinical outcomes in advanced heart failure. The correlation between their patho-

physiology and heart failure is strong enough to allow, for example, effective treatment of

some patients through the exogenous administration ofBNP.Thus, this is an example of a

biomarker that satisfies some of the key requirements in biomarker discovery: biomar-

kers should not only represent strong indicators of disease, but also they should be useful

for the early detection and treatment of the disease. BNP levels have also been used to

indicate admission in emergency units, level and types of treatments, aswell as prognosis

during treatment. For example, low BNP levels in patients under treatment may call for

the application of additional treatments (Maisel, 2007).

However, natriuretic peptides have not been widely adopted for robust, accurate

patient stratification or for the early detection of heart failure onset. For example, strong

correlations between some levels of BNP (e.g. 100–400 pg/ml) and clinical outcomes

may not always be possible to observe, and there are important level overlaps between

different clinical groups (Maisel, 2007).Moreover, for patient classification or screening,

there is no conclusive evidence on how this information may consistently be applied to

improve classification sensitivity or specificity in comparison to more traditional

methods. This is another reason to explore the potential of multiple biomarkers

integrated by advanced statistical analysis and machine learning techniques.

Recent advances in the use of multiple biomarkers include the prediction of death

from cardiovascular disease in the elderly (Zethelius et al., 2008). In this example,

protein expression biomarkers relevant to different functional pathways, such as cell

damage and inflammation, improved risk prediction in comparison to traditional

clinical and molecular biomarkers, such as age, blood pressure and cholesterol. The

proposed and reference prediction models were based on traditional survival analysis

during a follow-up period of more than 10 years, and were comparatively evaluated

using standard indicators of predictive quality (Chapters 2 and 3).

1.7 What is next?

The next chapters will discuss the analysis of different types of ‘omic’ data for identifying

and evaluating disease biomarkers, including diagnostic and prognostic systems. It will

offer principles and methods for assessing the bioinformatics/biostatistics limitations,

strengths and challenges in biomarker discovery studies. Examples of studies and

applications based on different techniques and in several clinical areas will be explained.
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Descriptions and discussions take into account the diverse technical backgrounds and

research roles of the target readership. A major objective is to increase the awareness of

problems, advances and possible solutions. But also we expect that it will facilitate a

more critical approach to designing, interpreting and evaluating biomarker studies. The

book targets users and designers of bioinformatic technologies and applications.

Similarly, it can benefit biologists and clinical researchers with an interest in improving

their knowledge of how bioinformatics can contribute to biomarker discovery. Readers

will benefit by learning about: (1) key requirements and diversity of data resources

available for biomarker discovery in different clinical domains; (2) statistical and data

mining foundations for identifying, selecting and evaluating biomarkers and prediction

systems; (3) major advances and challenges in bioinformatics and biomarker research;

(4) computational and statistical requirements for implementing studies involving

different types of biomarkers; (5) major bioinformatic advances and approaches to

support biomedical translational research; and (6) the integration of ‘omic’ data and prior

knowledge for designing and interpreting prediction models.

Although the book will emphasize examples of problems and applications in

cardiovascular and cancer research, the computational solutions and advances discussed

here are also relevant and applicable to other biomedical areas. Some of the chapters will

be complemented by short commentaries from highly esteemed researchers to provide

alternative views of biomedical problems, technologies and applications.

This book will focus on how fundamental statistical and data mining approaches can

support biomarker discovery and evaluation. Another key aspect will be the discussion of

design factors and requirements for implementing emerging approaches and applica-

tions. The book will not deal with specific design or implementation problems related to

pharmaceutical research and development, such as the assessment of treatment responses

in drug clinical trials. However, many of the design and evaluation techniques covered

here may be extended to different problems and applications.

The next two chapters are ‘foundation’ chapters, which will provide readers with the

knowledge needed to assess the requirements, design tasks and outputs of disease

biomarker research. These sections also introduce some of the most relevant compu-

tational approaches and techniques for ‘omic’ data analysis. This will be followed by

detailed discussions of methodologies and applications based on specific types of ‘omic’

data, as well as their integration for biomarker discovery. Such chapters will reflect the

‘how’ and ‘what’ aspects of these research areas. Chapters 9 and 10 will focus on the

critical assessment of key bioinformatic resources, knowledge gaps, and challenges, as

well as emerging and promising research directions. These final sections will underscore

the ‘why’ and ‘when’ aspects of problems and applications. Thus, one of themain goals is

to focus on fundamental problems, common challenges across information types and

clinical areas, and design principles.

At this point, it is necessary to introduce basic mathematical notation and terminology

to facilitate the understanding of the techniques and applications. Formost statistical and

machine learning analyses, it will be assumed that data sources can be, at least to some

extent, represented as data matrices. Capital letters in bold will be used to refer to this

type of resources. For example, D represents a data set with m� n values, with m

representing the number of rows, and n representing the number of columns inD. A row

(or column) can represent samples, biomarkers or other ‘omic’ profiles, which will be

represented by bold and lower case letters. For example, s represents a vector ofm values,
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with biomarker values extracted from a single patient. References to individual data

values will be expressed by using lower case letters. Subscripts will be used to refer to

specific vectors (e.g. samples or biomarkers) or values. The term ‘class’ will be used

to refer to specific phenotypes, patient groups or biological processes. When using

networks to represent data, a network node will represent a biological entity, such as a

gene or potential biomarker. A network edge, linking two or more nodes, encodes any

biologically-meaningful relation, such as different types of functional interactions.

It is evident that time and publication space constraints would not allow one to cover

all major methodologies, tools and applications in detail. However, the content of the

chapters have been selected to avoid, or at least reduce, methodological bias or

preferences for specific data mining techniques or algorithms. This is particularly

relevant when one considers the speed of progress in computational and data analysis

research. Therefore, the book structure has been shaped bymajor (‘omic’) data types and

problems, rather than specific techniques.

Although a spectrum of data mining techniques for biomarker discovery will be

introduced in Chapter 3, the book does not intend to offer a detailed coverage of specific

algorithms or techniques. Emphasis will be put on design and evaluation requirements

and questions, interpretation of inputs and outcomes, adaptation and combination of

approaches, and advanced approaches to combining hypothesis- and discovery-driven

research.
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2 Review of fundamental
statistical concepts

This chapter offers a brief introduction to basic statistical knowledge for helping the

reader to design and interpret disease biomarker discovery studies: Statistical error types,

data sampling and hypothesis testing for numerical and nominal data, odd scores, and the

interpretation of other statistical indicators. This includes parametric and non-parametric

techniques for comparing groups and models, which is a basic approach to detecting

potential biomarkers in large-scale ‘omic’ studies. This chapter also explains different

predictive evaluation techniques: traditional measures, techniques for classification and

numerical predictions, and an introduction to the application of receiver operating

characteristic curves and related methods.

2.1 Basic concepts and problems

Although we assume that the reader has some basic experience in statistical analysis, the

first half of this chapter offers a quick overview of fundamental definitions and

terminology that will be used in subsequent chapters.

A key approach to biomarker discovery research is to compare cases vs. control

samples to detect statistical differences, which could lead to the identification and

prioritization of potential biomarkers. Control and case samples are commonly obtained

before treatment or before knowing its classification (e.g. diagnosis, prognosis). Control

samples are obtained from healthy patients, untreated patients, or from patients who did

not experience the specific clinical outcome under analysis. The pairing or matching of

control and case patients is a strategy to prevent irrelevant factors to confound the

observed associations or predictions. In this scheme the control and case groups are

formed by selecting pairs of samples (e.g. patients) sharing common characteristics that

Bioinformatics and Biomarker Discovery: “Omic” Data Analysis for Personalized Medicine Francisco Azuaje
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may represent confounding factors. Irrelevant or confounding factors may refer to

molecular, clinical or environmental variables that are not directly related to the disease.

In relatively small groups of samples, careful sample matching between the compared

groups is recommended instead of random samplings of the populations. The random

assignment of individuals to small case and control groups may generate statistically

detectable differences on the basis of factors such as age, sex, and different life-style

factors. Chapter 4 offers a more detailed discussion on population stratification and

confounding factors.

Important design factors to be considered in the implementation of biomarker

discovery also include the potential confounding effects of drug treatments on the

population under study, the relative lack of data, and the presence of spurious findings

due to insufficient statistical evaluation. Multi-stage studies are recommended

to improve the quality of potentially significant predictions and to reduce costs

(Chapter 4). Thus, investigations carried out on relatively small sample groups from

carefully selected cohorts typically precede larger and more heterogeneous studies.

In biomarker discovery, researchers regularly need to characterize data on the basis

of patient groups, pathologies, clinical responses and molecular function. Different

statistical descriptors can be used to summarize such characteristics and differences.

Such descriptive statistics are later used to make and test hypotheses about the patient

populations and potential biomarker sets under study.

The properties of interest, for example molecule concentrations and values of clinical

risk factors, can be represented by either discrete or continuous (numerical) values and

are commonly referred to as variables or features. Discrete features can represent

nominal and ordinal data. The former refers to categories with no particular order, such

as gender, yes/no values. The latter refers to categories that reflect some meaningful

ordering, such as prognostic classes encoded by disease grades or low-medium-high

labels. The selection of descriptive statistics, hypothesis testing procedure and prediction

models depend on the type of feature investigated.

Discrete or categorical data are typically summarized by using frequency descriptors:

absolute, relative or cumulative. Continuous features can be represented by measures

of centrality (e.g. mean, median, mode), and dispersion measures (e.g. standard

deviation, variance). Dispersion measures describe the variation of the data around

measures of centrality. For more detailed descriptions of these and related measures, as

well as of basic data display techniques, the reader is referred to (Glantz, 2001) or

(Larson, 2006).

Based on descriptive statistics one can estimate properties that are representative of a

population. The main goal of estimation from data is to approximate such properties,

such that they can be seen as representative of a general population, for example the

population of patients with a disease, or the population of patients that respond positively

to a drug. Typically, researchers make point or single-value estimates (e.g. themean) and

confidence interval (CI) estimates. A CI represents a range of values around a point

estimate with a specific level of confidence. In this case researchers typically report the

95% CI that would include the true value of the statistical parameter being estimated.

When analyzing relatively large data sets, the 95% CI is almost twice the standard error

(SE) of the point estimate (1.96 times SE). For instance, at the 95%CI one can say that the

true value of the mean in a population is above (or below) the mean value estimated from

the data samples by an amount equal to 1.96 times SE. The SE can also be estimated from
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the data available. Where does the 1.96 come from? This number and �1.96 are the

values at which 95% of the area under the standard normal distribution is obtained. Thus,

different confidence levels will produce different confidence intervals around the

parameter estimated.

In biomarker discovery, estimates are commonly needed for analyzing a single or two

(or more) populations. A typical application in the latter scenario involves control and

case population samples. A case class may represent a specific disease or treatment

response. Moreover, it is necessary to specify whether such populations are independent

(i.e. different patients from different groups), or paired populations (e.g. each patient

provides samples under different conditions or at different times). Answers to these

questionswill guide the selection of estimation and hypothesis testingmethods. Table 2.1

summarizes how to compute point and CI estimates for different types of data and typical

comparison scenarios, using means and proportions. For more detailed discussions, the

reader may refer to (Glantz, 2001) or (Sullivan, 2006).

Estimates of central points and dispersion are used to compute statistical scores for

different hypothesis testing applications (next section), for example the t statistic

for comparing means in a microarray analysis and the x2 statistic for comparing

proportions of phenotype categories in genotype-phenotype association studies. These

statistic values are used to estimate probability, P, values that can be interpreted to reject

or accept a hypothesis. In this case, P is an estimate of the probability that the observed

estimates (or differences) are statistically detectable at a particular significance level (a).
To put it another way, P is an estimate of the probability of observing, by chance, a

statistic value (e.g. t statistic) as large (or larger) as the observed statistic value.

These P values are obtained from probability tables that are tabulated for different

statistical distributions, degrees of freedom (df) and test directionality. The df are

determined by the number of groups compared and the number of samples. The terms

Table 2.1 Estimation of means, proportions and confidence interval (CI) for typical comparison

scenarios and different data types in biomarker research

Data type Estimation scenario Estimated value CI

Numerical,

continuous

Single population Mean M � v� SEðMÞ

Numerical,

continuous

Two independent

populations

Mean differences ðM1�M2Þ � v� SEðM1�M2Þ

Numerical,

continuous

Paired populations Mean differences Md � v� SEðMdÞ

Discrete Single population,

two categories

Proportion

differences

Pt� v� SEðPtÞ

Discrete Two independent

populations

Proportion

differences

ðPt1�Pt2Þ � v� SEðPt1�Pt2Þ

M: estimated mean, Pt: estimated proportion of category studied. Subscript indices are added to M and Pt to

represent different groups. SE: standard error of the mean, mean difference or proportion analysed (between

parentheses), v: statistic value from the data distribution (e.g. the t distribution) associated with the required

confidence level. In the example presented above v¼ 1.96 for a 95%confidence.When using discrete data, v can

be obtained from the Z distribution, for example.Md: mean difference in paired data. Additional information,

including the calculation of v and SE values, can be obtained in (Glantz, 2001; Sullivan, 2006).
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one-tailed (or one-sided) and two-tailed (or two-sided) are used to define test direc-

tionality. A two-sided test means that the null hypothesis (see below) is rejected if the test

statistic falls on either side (tails) of the data distribution considered. Estimates of P

values also depend on several assumptions about the data distribution modelling the

problem and the characteristics of the populations under study (e.g. assumption of equal

variances between the sample groups).

A statistical ‘significance’ analysis requires the researcher to specify a null hypothesis

and an alternative hypothesis before making any calculations. The null hypothesis, Ho,

typically refers to the absence of effects or differences in the problem investigated. For

example, there is no difference between healthy and disease group on the basis of age.

The alternative hypothesis,Ha, is the hypothesis that the researcher aims to demonstrate.

Thus, the P value from a hypothesis testing procedure estimates the probability of

obtaining the observed statistic value under the null-hypothesis.

The correct or wrong rejection of the null hypothesis (or acceptance of the alternative

hypothesis) defines Type I and II errors, which are commonly used to interpret the

predictive quality of a particular hypothesis testing procedure or prediction algorithm. If

the null hypothesis is incorrectly rejected then a false positive prediction is reported, that

is a Type I error. If the null hypothesis is false and one fails to reject it, then a false

negative prediction has been made, that is a Type II error. Table 2.2 illustrates these error

types in the context of a typical hypothesis testing study, such as the comparison of a

control and experimental group on the basis of a biomarker concentration value. Note

that the interpretation of these errors can also be applied to classification problems, such

as biomarker-based classification of patients belonging to two different diagnostic

classes. Table 2.3 illustrates this scenario. In multiple-hypotheses testing applications,

the false discovery rate is introduced by some procedures to estimate the proportion of

incorrect rejections of null hypotheses (false positives) that the researcher is willing to

consider amongst the rejected hypotheses.

Table 2.2 Definition of error types in the context of a typical hypothesis testing study, such as the

comparison of a control and experimental group on the basis of a biomarker concentration value.

TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative

Null hypothesis is true Null hypothesis is false

Null hypothesis rejected Type I error (FP) TP (correct prediction)

Null hypothesis not rejected TN (correct prediction) Type II error (FN)

Table 2.3 Definition of prediction errors in a typical diagnostic (or classification) application.

TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative

Disease absent Disease present

Biomarker predicts presence of disease FP TP (correct prediction)

Biomarker predicts absence of disease TN (correct prediction) FN
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2.2 Hypothesis testing and group comparison

Hypothesis testing is the process of inferring conclusions about data based on the

application of statistical tests. These procedures offer answers to questions such as: Are

there any significant differences between control and case patients on the basis of a

specific biomarker value? Does the mean age in this population significantly differ from

35 years? The outcomes of a statistical testing procedure are statistic andP values, which

estimate the strength of a hypothesis (Ha) in relation to the null-hypothesis (Ho). This

allows the researcher to make inferences about a population based on the dataset

(sample) available.

As pointed out in the previous section, the researcher should first of all define specific,

mutually exclusive, null and alternative hypothesis. The former is commonly defined to

specify the lack of effects, differences or associations in a study. The latter specifies the

characteristic or finding that the researcher aims to demonstrate. Consider the example in

which a group of case subjects,D, with a disease is compared to a control group,H, on the

basis of the concentration value of protein, protY. In this case the researcher may want to

report potential significant differences between these patient groups to support the

hypothesis that protY could be a diagnostic biomarker of the disease. If we use themeans

of the protein concentration values to describe each group,Ho can be expressed as: ‘there

is no detectable difference between the groups,D andH, in terms of their respectivemean

protY concentration values’. On the other hand,Ha establishes that ‘there is a potentially

important difference’.

As in the case of a jury trial (Davis andMukamal, 2006), one can only rejectHo, or fail

to reject it, based on the evidence available. But if the researcher cannot reject Ho (e.g.

high P values suggesting no significant difference), this does not mean that Ho is

necessarily true. As pointed out above, the researcher has to define a significance level in

advance, which is usually equal to 5% or P¼ 0.05, to indicate the probability of

(incorrectly) rejecting Ho when Ho is actually true (i.e. a false positive prediction).

The previous section revised the different types of errors that may occur when

rejecting or failing to reject a true Ho. This now can be complemented with the concept

of ‘power’ of the statistical test, which is the probability of correctly rejectingHo. Thus,

the power of a statistical test is defined as (1�b), where b is the probability of making a

false-negative prediction. One can also say that b represents the probability of failing to

reject Ho when Ho should actually be rejected (a Type II error). For instance, a study in

which one fails to reject Ho when a strong association between the biomarker and the

disease is actually present.

In summary, before applying a hypothesis testing procedure, the researcher should

specify in advance: hypotheses (Ho and Ha), the level of significance, statistical

assumptions, and test directionality (e.g. two-sided). The method of analysis selected

depends on the research problem.Two key factors that need to be considered are the types

of data and comparisons. For both discrete and numerical data, typical applications

include one- and two-sample analysis, with the latter including tests for paired and

independent samples. Table 2.4 provides an overview of test selection criteria for

different studies and data types. Mathematical details of these and other tests are

explained in (Glantz, 2001; Davis and Mukamal, 2006; Gauvreau, 2006), including

different examples from biomedical research.
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2.3 Assessing statistical significance
in multiple-hypotheses testing

The hypothesis testing procedures reviewed above are applied to problemswhen a single

variable is estimated and compared against a reference or across sample groups. In a

typical biomarker discovery study a key challenge is to detect potentially significant

differential responses or behaviours, such as differential gene expression, in a large set of

variables (i.e. potential biomarkers) across control and cases groups. The number of

variables could range from hundreds to thousands in a typical ‘omic’ biomarker

discovery investigation. This type of analysis is referred to as multiple-hypotheses

testing. This addresses the problem of underestimating the P values obtained from the

hypothesis testing of each variable independently.

In a multiple-hypotheses testing procedure involving, for example, n genes, one

would test each gene independently for differences between two groups using a

significance level, a. If the resulting Pi value, for gene i, is smaller than a, one can

reject theHo, and argue that there is a detectable or ‘significant’ difference between the

compared groups in terms of gene i. But note that every time that a test is independently

performed on each gene one is also admitting that there is a possibility that an error will

be made. For example, 5% of the time when a¼ 0.05. Now, it is clear that the more

genes one analyses, the greater the possibility of reporting false positive predictions.

For example, if a¼ 0.05 and n¼ 100, onewould expect that at least five genes could be

found to be significantly differentially expressed when actually they are not, that is

when Ho should not be rejected. Hence, if n genes are tested in the same biomarker

discovery investigation, one would expect that some of the genes detected as

‘significant’ will actually be false positives. Thus, corrections or adjustments have

to be made to these values to reduce the possibility of finding spurious findings. The

multiple-hypotheses testing problem can be addressed through the estimation of

the family-wise error rate (FWER), and the false discovery rate (FDR).

Table 2.4 Examples of test selection criteria for different studies and data types (Glantz, 2001).

In one-sample analysis, the mean (or proportions) observed in a single group of patients, for

example, is compared to a reference value. An example of comparison of independent samples is

the analysis of two groups of different patients in terms of a single biomarker concentration value.

Paired samples are analyzed when, for example, differences in a biomarker value are measured in

the same group of patients, before and after the application of a treatment

Data type Comparison type Compared measure Key tests

Numerical 1-sample Mean z-test, t-test

Numerical Independent samples Mean t-test

Numerical Paired samples Mean Paired t-test

Nominal 1-sample Proportions z-test for proportions

Nominal Independent samples Proportions Chi-2 (x2)
Nominal Paired samples Proportions McNemar’s test

Ordinal Independent samples Ranks Mann-Whitney rank-sum test

Ordinal Paired samples Ranks Wilcoxon signed-rank test
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Suppose that we aim to implement g statistical tests on a set of g potential biomarkers.

Thus, one is testing g potential null hypotheses,Hoi, i¼ 1, . . ., g. The FWER is defined as

the probability of making false positive predictions (type I errors) amongst the g

hypotheses. Multiple-hypotheses testing corrections based on the FWER calculation

can be implemented through single-step and step-down methods. In the former category

all of the P values are corrected by applying the same adjustment to all the biomarkers.

The best known and simplest single-step correction procedure is the Bonferroni

correction. In this method the corrected Pi value, correctPi, is equal to Pi� g, and one

rejects those hypotheses where correctPi<a.
Step-down methods by Holm (step-down Bonferroni) (Ewens and Grant, 2005) and

Westfall, Young andWright (1993) are less conservative thanBonferroni’s corrections in

the sense that more potential detectable differences may be detected, that is more

hypotheses are rejected, by applying different adjustments to the different biomarkers. In

theHolm correctionmethod, thePvalues are ranked from the smallest (top) to the largest

(bottom), and they are corrected as follows. The topPj value is corrected bymultiplying it

by g (i.e. correctPj¼Pi� g), the secondPj value is corrected bymultiplying it by (g� 1),

the third Pj value is corrected by multiplying it by (g� 2), and so on, until no more

hypotheses can be rejected.

The Westfall and Young method offers more statistical power than Bonferroni and

Holm’s method, but it implements a permutation procedure to estimate the distribution

of P values. As in the other methods, P values are calculated and ranked for each

biomarker using the observed data. A permutationmethod generates a ‘pseudo-dataset’

by randomly shuffling samples across the (control and case) groups in the original data.

New randP values are estimated for all the biomarkers in this pseudo-dataset, and the

minimum randP value is retained and compared to each of the observed P values in the

original dataset. This process is repeated thousands of times, and the corrected P

value, correctPj, for gene j, is the proportion of pseudo-datasets where the minimum

randP value was smaller than the observed P value. More details about the mathe-

matical implementation of these methods can be found in (Ewens and Grant, 2005) and

(Glantz, 2001).

FDR methods for multiple-hypotheses testing aim to increase the power of statistical

testing in comparison to FWER methods. But instead of simply allowing the possible

occurrence of more false positives or of controlling the FWER, FDR methods estimate

(or control) the number of potential false positive predictions that onewould be prepared

to accept. Thus, in a typical microarray data analysis involving thousands of genes, the

researcher can have an estimate of how many genes would be false positive predictions,

out of those found to be differentially expressed. For example, suppose that 20 000 genes

were analyzed and that the statistical test reported 100 genes as differentially expressed,

then a FDR¼ 50% indicates that 50 out of those 100 genes are expected to be false

positive (‘significant’) predictions.

The original procedure for estimating FDRwas proposed by Benjamini and Hochberg

(1995).As in the FWERmethods, the FDRcorrectionmethod requires the estimation of a

P value for each gene, that is g tests under g independent, null hypotheses. ThesePvalues

are ranked from the smallest to the largest value, with ranking values i¼ 1, . . ., g. The
largest P value is not corrected. Subsequent P values are corrected by multiplying by g

and dividing them by their corresponding ranks. The Ho is rejected for those corrected

values that fall below the significance level, a.
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In order to address some of the limitations of this procedure, such as statistical

assumptions about independence that are difficult to justify (Ewens and Grant, 2005),

several techniques based on distribution-free or permutation methods have been

proposed. One such permutation-based method for estimating the FDR is the Signif-

icance Analysis of Microarrays (SAM) proposed by Tusher et al. (2001), which have

become a well-known analysis tool in the microarray research community. As input,

this method accepts a data matrix, D, encoding the expression levels of g genes across s

samples, belonging to two classes. The outputs are a list of differentially expressed

genes and an estimation of the FDR. For each gene, a statistic value, d, similar to the

t-statistic, is estimated (Tusher et al., 2001; Ewens and Grant, 2005). Samples in D are

permuted and a number, numPer, of random permuted datasets are obtained. Each

dataset can be identified by an index, per: 1. . .numPer, with the original dataset

representing the first dataset, per¼ 1. In each permutation, a d statistic, dper(i), for each

variable, i¼ 1, 2, . . ., g, is calculated. For each permutation, the genes are ranked

according to their corresponding d values from the largest (top first) to the smallest

(bottom). These ranked lists of dper(i) values represent the columns in a matrix of

d values derived from each permutation and variable. Note that a row, i, in this matrix

will not necessarily correspond to gene i. Average d values, davg(i) from the entries in

the ith row are calculated. This is followed by the calculation of the difference between

the d(i) values from the original data and davg(i) for each gene. The SAM procedure also

introduces the parameter, D, to define when a gene, i, should be considered as

potentially ‘significant’. Thus, if the difference between a d(i) and davg(i) is greater

than D, one can state that the gene is differentially expressed. Larger D values will tend

to reduce the number of false positives, while small D values will generate larger

numbers of false positives.

The FDR is estimated based on a permutation procedure. First, for each permutation,

SAM estimates the number of genes with a dper(i) value below the critical value a, or

greater than critical value b. The former value refers to the largest negative value,

dper(i), amongst those genes defined as (significantly) differentially expressed. The

latter is the smallest positive value, dper(i), from the set of differentially expressed

genes. The average of such numbers is calculated over all the permutations. This

average value divided by the actual number of genes defined as ‘significant’ in the

original data gives the approximation of the FDR. Additional mathematical details of

the calculation of this and related versions of the procedure are available in (Ewens and

Grant, 2005).

Recent research has discussed possible limitations and misinterpretations of com-

parisons of different studies based on FDR analysis. For example, it has been suggested

that prediction inconsistencies across different gene expression data investigations, but

using identical data, could be prevented by reporting additional statistical information,

such as probability and expression ratios (Higdon, van Belle and Kolker, 2008).

Moreover, it has been suggested that more consistent interpretations may be obtained

by avoiding the use of pre-defined FDR thresholds. Other researchers (Jiao and Zhang,

2008) have argued that the standard permutation methods may overestimate the FDR,

and have proposed variations of the test to address this problem. Comprehensive

mathematical coverage of techniques for multiple-hypotheses testing can be found in

the works of Dudoit and van der Laan (2008), which illustrate different applications

using genomic data.
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2.4 Correlation

The correlation between two variables (e.g. between-biomarkers, or biomarker-

outcome) reflects the level of association between the variables. Such an association can

be computed using parametric and non-parametric techniques. The former assumes that

the variables can be jointly modelled with a normal distribution. The latter does not make

this assumption, and is based on the idea of comparing the value ranks of the variables.

Correlation techniques will typically detect linear associations between the variables.

They tell the researcher whether the variables vary in a similar fashion. If two variables

are perfectly (positively) correlated, this means that when one shows larger (or smaller)

values the second will also follow the same tendency. Correlation values range from�1

through 0 to 1, indicating perfect negative, no association and perfect positive correlation

respectively.

The Pearson correlation coefficient, r, is the most commonly applied correlation

method. The mathematical formula of this parametric method combines information

about the degree of dispersion of the variables (around their means) independently and

the co-variation between the variables. A non-parametric version is offered by the

Spearman rank correlation coefficient. If parametric assumptions are satisfied, the

Spearman coefficient may not be as powerful as Pearson’s in detecting existing

associations. Data transformations, such as log transformations of the variable values,

may facilitate clearer visualization of correlation. Correlation values may be reported

together withP values, which are used to interpret the strength of the observed value, that

is an estimate of the probability of observing such a correlation value by chance.

Mathematical details and other examples using biomedical data are explained by Glantz

(2001) and Crawford (2006).

Figure 2.1 illustrates correlations between two variables. In each graph, hypothetical

values generated by two biomarkers (ordinate axis) observed across 10 samples (or time

points) are compared. Lines linking data points were included to facilitate visualization.

The top graph is an example of a positive correlation. In this case the Pearson correlation

coefficient, r(biomarker 1, biomarker 2), is equal to 0.97. The bottom graph depicts a

negative correlation, with Pearson correlation coefficient, r(biomarker 2, biomarker 3)¼
�0.65. In both examples stronger correlations are obtained when using the Spearman

correlation (0.99 and �0.80 respectively). Figure 2.2 offers alternative displays of the

association between these variables without incorporating information about sample

number (or time dimension). Each scatterplot also includes a linear regression line fitted to

the data, which estimates the linear association between two variables. The following

section will further discuss regression analysis.

2.5 Regression and classification: basic concepts

Regression and classification applications are at the centre of most biomarker discovery

investigations. In regression analysis one is interested in estimating quantitative associa-

tions between one dependant variable and one (or more) predictors. Dependent variables

may represent a reference biomarker, an indicator of disease or any variable measuring a

clinical response. Predictor variables or features may represent the potential novel

biomarker(s) under investigation. There is a great variety of techniques for estimating the
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optimal mathematical function (or model) to infer the values of a dependant variable

using sets of features as inputs to the function. The next chapterswill include examples of

regression applications in biomarker discovery using different techniques from tradi-

tional statistical analysis and machine learning. However, a comprehensive coverage of
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Figure 2.1 Correlations between two variables. Top graph: is an example of a positive

correlation, with Pearson correlation coefficient¼ 0.97 and Spearman correlation¼ 0.99. Bottom

graph: negative correlation, with Pearson correlation coefficient¼�0.65 and Spearman

correlation¼�0.80
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regression techniques and their mathematical implementation are outside the scope of

this book. Relevant papers and books have been published by Glantz and Slinker (2001)

and Crawford (2006).

In the case of linear regression, the association between the dependant and predictor

variables is estimated by fitting a linear function of the form: y¼b0 þ bixi, . . ., bnxn,
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Figure 2.2 Alternative displays of the association between the variables compared in Figure 2.1.

Each scatterplot includes a linear regression line fitted to the data, which best estimates the linear

association between two variables
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where b0 is a constant value that represents the intercept of a (two-dimensional)

regression function, bi are the regression coefficients (the function slope in a two-

dimensional regression scenario), y represents the Dependent variable, and xi rep-

resent the different predictors. This mathematical expression may be complemented

by including residual errors that estimate the error incurred in predicting y based on

the resulting regression equation. Figure 2.2 shows examples of linear regression

involving two variables. Each example graphically presents the linear function that

can be used to predict the Dependent variable (ordinates) on the basis of a predictor

(abscissa). In the top panel, for instance, the value of ‘Biomarker 2’ can be calculated

as follows: (Biomarker 2)¼ 29 þ 2.9� (Biomarker 1). The coefficients can be

estimated using different techniques, such as the least-squares method, which is the

most used option in standard regression analysis (Glantz and Slinker, 2001; Crawford,

2006).

In classification applications one is interested in predicting a class, category or any

research-meaningful label using sets of input features. Typical examples include the

classification of patients into high and low risk on the basis of a number of potential

biomarker values. In general there are two main categories of classification approaches:

supervised and unsupervised classification. In the former category all the data need to be

labelled prior to the analysis, that is the class labels need to be known in advance prior to

the construction of a classification model. After the model has been built, ‘unknown’ or

‘unlabelled’ samples can be classified. In the area of unsupervised classification,

information about sample classes is not analyzed or incorporated into the model

construction process. Such information may be used to interpret the results and discover

potentially relevant associations between groups of samples. Traditional data clustering

falls into this category. In the next chapters the reader will find different applications in

which clustering is used as part of exploratory data analysis or to support the search for

potential biomarkers. Extensive literature on clustering algorithms and applications in

bioinformatics has been published over the past 15 years in many journals, such as

Bioinformatics and BMC Bioinformatics. Works by Teuvo Kohonen are recommended

resources to obtain deeper insights into the problem of clustering for data visualization

and classification (Kohonen, 2000). The next chapter will overview different datamining

concepts, problems and approaches that emphasize the application of supervised

classification.

2.6 Survival analysis methods

Survival data are obtained from studies in which the variable of interest is the time of

occurrence of an event, such as death, a complication or recovery. In this case the time

variable is referred to as the ‘survival time’ of an individual over a period of time. The

occurrence of an event is also sometimes referred to as a ‘failure’. This is an important

source of information for many prognostic biomarker discovery investigations. These

analyses estimate quantitative associations between potential biomarkers (and other

features) and an event in a group of patients.

Censoring is a fundamental concept for understanding survival analysis. This term is

used to define cases inwhich the survival times are not known exactly. This occurswhen a

patient does not experience a failure before the end of the investigation, or when the
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patient withdraws from it. An understanding of the meaning of the survival and ‘hazard

functions’ is also essential to interpret survival data analysis.

The survivor (or survival) function, S(t), describes the survival rates of the population

sample under study. It is an approximation of the probability that a patient will survive (or

experience an event) after a specific time, t. The hazard function, h(t), indicates the

potential failure rate at time t, given that a patient has survived until this time. In survival

analysis publications both functions are typically reported with the survivor function

represented by a ‘step function’ (Figure 2.3). At time t¼ 0, S(0)¼ 1, as no patient has

experienced an event and the probability of surviving just after t¼ 0 is equal to one. For

other times, t, the S(t) values are estimated by calculating the proportion of patients

surviving past time, t, that is a cumulative proportion of surviving patients at each time.

The estimation of a survivor function can be carried out through the Kaplan-Meier (KM)

method (Rao and Schoenfeld, 2007; Kleinbaum and Klein, 2005a). Figure 2.3 illustrates

a hypothetical example in which the survivor functions of two patient groups, who

undergo different treatments, are compared. A key method for comparing surviving

curves, as well as for testing the hypothesis of no differences in terms of survival times, is

the ‘log-rank test’.

The hazard function, h(t), can have different shapes according to the characteristics

of the population investigated. For example, it will have a constant value, l, for all times,

t, in a group of healthy subjects. It will be a decreasing curve in the case of a group of

individuals recovering from surgery, or an increasing curve when describing a patient

group with a malignant disease. The most used hazard model is the Cox proportional
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Figure 2.3 Kaplan-Meier analysis: Hypothetical example in which the survivor functions of two

patient groups, who undergo different treatments, are compared
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hazards model, which is defined by the following function (Rao and Schoenfeld, 2007;

Kleinbaum and Klein, 2005a):

hðt; xÞ ¼ hoðtÞexpðb1x1 þb2x2 þ . . . þbkxkÞ
Where ho(t) is the baseline function, ‘exp’ is the exponential function, x is the vector of

predictor variables, xi. The parameters bi are estimated by the maximum likelihood

method from the data under analysis (Kleinbaum and Klein, 2005a).

Hazard ratios are used to make predictions about the hazard of an individual in

relation to the hazard of a different individual. To illustrate its meaning, suppose that x1
is the only variable under investigation. This variable may represent a risk factor, with

binary values 0 and 1 encoding the absence and presence of the risk factor respectively.

The hazard ratio for subjects with x1¼ 1 in relation to those patients with x1¼ 0 is

equal to exp(b1). In general, hazard ratios are estimates of relative risk, that is the risk

ratio between an experimental (e.g. treatment group) and a control group. The Cox

model is also used to estimate survival curves that adjust for the predictor variables

included in the model. Like the KM curves, adjusted survival curves are step functions.

Readers interested in a comprehensive description of survival analysis may refer to the

works by Kleinbaum and Klein (2005a), which include practical examples using

different statistical packages.

2.7 Assessing predictive quality

The quality of the predictions made by a biomarker-based model can be estimated by

different quantitative indicators. The predictive ability of regression models can be

summarized by error indicators, such as absolute errors, the mean squared error, or the

root-mean-square error between the real and predicted values. In the case of classifi-

cation awider range of indicators are available that can be applied to different biomarker

research applications. This section concentrates on prediction quality indicators for

classification applications.

Each potential biomarker or prediction model can be assessed on the basis of its

capacity to distinguish between experimental (case) and control subjects. This can be

done by estimating their true-positive rate (TPR), that is the proportion of case samples

that are classified as positive predictions, and the false-positive rate (FPR), that is the

proportion of control samples that are incorrectly detected as positives. These and

other indicators are derived from the basic error measures defined in Table 2.3. Based

on such measures, one can define different global indicators of quality, as shown in

Table 2.5.

Sensitivity and (1-Specificity) are synonyms for TPR and FPR respectively. When a

biomarker produces continuous numerical scores (e.g. concentration values) different

prediction thresholds (PT) can be defined to assign a sample to the positive class. That is,

a sample is assigned to the positive class if, for example, the biomarker concentration is

above a PT value. In this case a receiver operating characteristic (ROC) curve can be used

to visualize the predictive ability of the biomarker (or combination of biomarkers

integrated into a model) for different PT values (Swets, 1988). Each point on a ROC

curve represents the TPR vs. FPR for a specific PT value. For example, if the output of a

prediction model is a biomarker concentration value from 0 to 10, one could define PT
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values at 0.5, 1, 1.5, . . ., 10. Thus, for each PT value the tested samples are classified,

overall TPR and FPR are calculated and the resulting points are plotted.

ROC curves offer advantages over other statistical indicators, such as frequency-based

scores: its scale-independence and the capacity to visualize FPR and TPR for different

PT regions. The closer a ROC curve is to the upper and left axes of the plot, the more

powerful the prediction capacity of the model under analysis. The closer a ROC curve is

to the diagonal line connecting the upper-right and lower-left vertices of the plot, the

poorer the performance of the model, that is the closer to a classification performance

driven by chance.

Based on the (TPR, FPR) pairs obtained for different PT values, a ROC curve can be

approximated by two main statistical techniques: Parametric and non-parametric

(Shapiro, 1999). In the former case, one assumes that the data follows a specific

statistical distribution (e.g. normal), which is then fitted to the observed test results to

produce a smoothROCcurve.Non-parametric approaches involve the estimation of FPR

andTPRusing the observed data only. The resulting empirical ROC curve is not a smooth

mathematical function, but a continuous series of horizontal and vertical steps.

Table 2.5 Definition of important indicators of classification performance

Indicator Definition Meaning

True positives TP Number of positive cases correctly

classified

True negatives TN Number of negative cases correctly

classified

False positives FP Number of negative cases

incorrectly classified

False negatives FN Number of positive cases

incorrectly classified

Accuracy Acc¼ (TP þ TN)/

(TP þ TN þ FP þ FN)

The proportion of all cases

correctly classified

Sensitivity (Recall) Sensitivity¼TP/(TP þ FN) The proportion of true positive

cases correctly classified

Specificity Specificity¼TN/(TN þ FP) The proportion of true negative

cases correctly classified

Likelihood ratio

(Positive class)

LR (þ )¼ Sensitivity/

(1� Specificity)

The likelihood of correctly

predicting a positive case in

relation to making the same

prediction in a negative case

(ruling-in disease)

Likelihood ratio

(Negative class)

LR (�)¼ (1� Sensitivity)/

Specificity

How likely a prediction model will

label a truly positive case as a

negative case in comparisonwith

a truly negative case (ruling-out

disease)

Precision Precision¼TP/(TP þ FP) The proportion of positive

predictions that are actually

positives.
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Figure 2.4 illustrates a ROC curve obtained from predictionsmade on a testing dataset

based on the numerical outputs generated by a hypothetical biomarker. If one evaluates a

classification model (e.g. a classifier integrating multiple biomarkers) that generates

numerical prediction scores for each class (e.g. probability values), one can use the scores

produced for the positive class to define the PT values and estimate the different (TPR,

FPR) value pairs (Figure 2.5). Figure 2.6 illustrates the comparison of (non-parametric)

ROC curves derived from two classifiers independently tested on 400 samples in a

hypothetical prediction analysis (200 samples/class). In this example, the classification

model ‘Csf-1’ outperforms the model ‘Csf-4’ across all the prediction thresholds. The

Figure 2.4 Example of ROCcurve obtained from testing data consisting of 10 samples, 2 classes:

Presence and absence of a disease, and a prediction model based on the concentration values

derived from hypothetical biomarker (Bio. conc.). Plots generated by the ROC calculator of Eng

(2006) at Johns Hopkins University, using a curve-fitting parametric technique

Figure 2.5 Example of ROCcurve obtained from testing data consisting of 10 samples, 2 classes:

Medical complication and recovery, and a hypothetical classificationmodel that assigns samples to

classes according to numerical scores or probabilities. Plots generated by the ROC calculator of

Eng (2006) at Johns Hopkins University, using a curve-fitting parametric technique
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plots in Figures 2.4 and 2.5 were generated with the ROC calculator of Eng (2006), using

a curve-fitting parametric technique. TheROC inFigure 2.6was generatedwith the StAR

system (Vergara et al., 2008).

Once different biomarkers or prediction models have been evaluated individually, one

should compare them on the basis of a quality indicator, for example a statistical test or

the area under the ROC curve (Shapiro, 1999). This will allow one to rank the different

models and establish priorities for subsequent analyses. If many potential biomarkers are

being analyzed independently, it is also important to take into account the possibility of

observing significant differences by chance only. Therefore, this type of analysis should

include adequate adjustments or corrections, as well as estimations based on cross-

validation (Chapter 3).

The area under the ROC curve (AUC), also known as the c-statistic, can be used to

summarize predictive accuracy. To simplify, the AUC actually represents the prob-

ability that, given a pair of case and control samples randomly chosen, the case and

control samples will be correctly classified as case and control samples respectively. It

can also be defined as the probability of correctly ordering the risks of a pair of low and

high risk samples (Pepe, Feng and Gu, 2007; Pepe, Janes and Gu, 2007). AnAUC value

of 0.5 is obtained when the ROC curve corresponds to the performance of a random

classifier. The perfect accuracy is obtained when AUC¼ 1. As in the estimation of the

ROC curves, there are different parametric and non-parametric ways to estimate

Figure 2.6 Comparison of (non-parametric) ROC curves derived from 2 classifiers indepen-

dently tested on 400 samples (200 samples/class). Plots were generated by the StAR system, at

Pontificia Universidad Católica de Chile (Vergara et al., 2008)
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the AUC (Shapiro, 1999). For example, the non-parametric estimate of an AUC can be

implemented with the Wicoxon rank-sum test (Zou, O’Malley and Mauri, 2007).

Because theAUC is a globalmeasure of predictive quality for a full range of PT values,

and because ROC curvesmay intersect when comparing different models, the analysis of

partial AUC values may facilitate a more objective interpretation. This will allow the

researcher to concentrate on differences found in sections of the PT scale or for specific

sample sub-groups (Zou, O’Malley and Mauri, 2007). Researchers have also demon-

strated that precision-recall curves may provide a more accurate view of the predictive

quality of a model when dealing with highly imbalanced or skewed datasets (Davis and

Goadrich, 2006). An imbalance dataset is one in which the number of control samples is

much larger than the number of case samples, or vice versa. Other researchers have also

argued against the idea of over-emphasizing the importance of AUC values to compare

predictionmodels. For instance, it has been shown that relatively strong biomarkers may

have limited impact on changes in the AUC despite their capacity to significantly

contribute to make better predictions (Cook, 2008). Pepe, Feng and Gu (2007) and Pepe,

Janes and Gu (2007), have argued that AUC values are not relevant to a real clinical

context due to the notion of pairing samples that it represents, and should not be used as

the main evaluator of prediction quality in biomarker studies. In any case, it is important

to evaluate models using different indicators that may reflect the impact of the models at

the individual and population levels. Pepe, Feng and Gu (2007) and Pepe, Janes and Gu

(2007) recommend an interpretation of AUC estimates in conjunction with a closer look

at sensitivity and specificity results. Recent research also suggests that there is a need to

include more graphical displays of predictive quality, including ROC curves, in primary

diagnostic studies and systematic reviews (Whiting et al., 2008). Different methods for

estimating predictive quality have been extensively reviewed by Shapiro (1999), Cook

(2008) and Pepe (2008).

In numerical risk assessment applications, calibration and reclassification evaluation

methods are recommended. Calibration analysis focuses on the estimated probabilities

or risk scores generated by a model. It compares the ‘observed’ and ‘predicted’ risk

values in a group of patients (Cook, 2008). In a calibration model sub-groups of patients

are defined to make these comparisons. The observed risk can be approximated by

calculating the observed risk proportion within these sub-groups. For example, sub-

groups can be defined by different user-defined intervals and deciles of estimated risk

values (Cook, 2008). In a reclassification analysis the risk scores estimated by the

compared models are grouped into different clinically-relevant categories. For example,

four risk score categories can be defined as: below 5%, between 5% and 10%, between

10% and 20%, and larger than 20%. Given a reference model, RM, and a new prediction

model, NM, a reclassification analysis compares the percentages of patients re-classified

or assigned to different categories by NM in comparison to RM. The percentage of

patients reclassified by NM provides the basis for estimating the potential prediction

impact of this model (Cook, 2008).

2.8 Data sample size estimation

Biomarker discovery studies require careful planning and design. Samples are selected

from relevant groups, standard experimental protocols are followed, and different
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randomization or data sampling procedures may be required. An estimation of the

number of samples aims to ensure that enough data are acquired to allow the detection of

statistical differences when such effects are indeed present in the population. Undersized

and oversized studies can have major implications, not only in terms of economic costs.

Costs involving unnecessary or potentially dangerous exposures to treatments and

ethical conflicts may also arise.

Sample size estimation can be donewith different commercial and free software tools.

In the latter category, the programs developed by Lenth (2000) andDupont and Plummer

(2008) are recommended, which cover different applications and study designs.

The estimation of the optimal sample size of a biomarker study is a complex problem.

Traditional sample size estimation techniques based on statistical significance tests may

be useful references, but may be shown to be inaccurate in some biomedical studies.

Other authors have suggested the use of computer-based simulations involving synthetic

data, which recreate some of the characteristics of the real classification problem under

consideration. Independently of the sample size estimation approach selected, the aim is

to determine the number of samples required to meet basic assumptions about the data,

hypothesis testing procedure to be applied and study outcomes. Sample size estimation

should be seen as a context- and study-dependent problem.

One such approach to sample size estimation is based on the analysis of the

statistical power of a hypothesis testing procedure. To do this, the user is typically

required: (a) to specifyH0 andHa, (b) to specify a hypothesis testing procedure, (c) to

define the desired significance level, (d) to specify the effect size required to reject

the hypothesis (e.g. expected difference between means), and (e) to estimate input

parameters needed (e.g. group variances) to analyze the statistical power and deter-

mine the sample size meeting these specifications. Hence, the estimated sample size is

the minimum number of samples required in each group to satisfy these assumptions

and conditions (Lenth, 2001).

There is no standard or application-independent methodology to determine the above

input parameters (Eng, 2003). In the case of the desired power, it is common to define a

power of 0.80, with higher values increasing the estimated sample sizes. The definition of

these parameters requires inputs from different researchers in a team. Meaningful

estimates may also be obtained by looking at previous published research or by

implementing pilot studies. In some teams, some researchers may be tempted to let

the bioinformatician or biostatistician do the ‘number crunching’ by themselves.

Nevertheless, the estimation of input parameters and targets should be carefully

discussed by all the researchers with key responsibilities in the project. Bioinformati-

cians and biostatisticians can facilitate the determination of such values by posing

questions to the wet lab scientists and managers in terms of expected scientific findings,

costs and losses (economic and those incurred due to lack or excess of power), and upper

bounds for sample sizes. Lenth (2001) offers practical advice on how to support study

planning and communication for different scenarios, including those severely con-

strained by low budgets and management decisions. Sample size estimation requires

close cooperation between statisticians and domain experts, and may involve asking

many questions about the goals of the study, sources of variation, and the need for

actually estimating sample sizes.

Different authors have presented formulae for estimating sample sizes in different

types of experimental situations, goals, hypothesis testing techniques and requirements
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(Eng, 2003). For example, diverse formulae have been recommended for different

experimental microarray designs (Dobbin and Simon, 2005). Many of these approaches

concentrate on the analysis of power involving individual genes. Such an approach is

also, in principle, a valid starting point in studies involving multiple biomarkers and

classification problems (Dobbin and Simon, 2005). However, in the case of classification

models involvingmultiple biomarkers as inputs features, the ‘optimal’ sample size is also

related to the optimal number of inputs (Hua et al., 2005). And these factors will in turn

depend on the classification model and data distribution under study.

A meaningful approach to estimating sample sizes in microarray studies involving

multiple-hypotheses testing is the interpretation of previous findings derived from

similar designs. Page et al. (2006) developed the PowerAtlas to allow researchers to

estimate statistical power and sample sizes based on the interpretation of previous studies

showing similar experimental characteristics. The PowerAtlas contains hundreds of

experiments from the Gene Expression Omnibus (GEO), and allows users to specify the

characteristics of their studies, and to select published datasets that satisfy the selection

criteria. The analysis of previous studies and determination of sample sizes are based on

the concepts of Expected Discovery Rate (EDR) and the proportion of true positives

(PTP) (Gadbury et al., 2004). These concepts are used by the PowerAtlas to guide the

user in the selection of appropriate sample sizes. The EDR is the average power for all

genes expected to be differentially expressed in the study. The PTP refers to the

proportion of genes detected as differentially expressed amongst the set of genes truly

differentially expressed in the data.

2.9 Common pitfalls and misinterpretations

Table 2.6 presents examples of commonpitfalls andmisinterpretations of basic statistical

concepts in biomedical research, in general, and in the biomarker discovery literature, in

particular. Guidance and key resources for further learning are provided for each aspect.

These problems range from misunderstandings of fundamental definitions (e.g. statis-

tical ‘significance’ and the meaning of P values), misinterpretations of the purpose of

statistical analysis (e.g. the meaning of sample size estimation outcomes), through the

inadequate interpretation of different prediction quality indicators (e.g. accuracy inter-

preted as precision, and vice versa), to the lack of good practices in reporting prediction

results.

One of the greatest challenges is to improve the understanding of the meaning of

hypothesis testing results. For example,many researchersmake excessive use of the term

‘significant’ without properly considering both statistical and research domain contexts.

In this case, any findings that generate P values below 0.05 are automatically defined and

reported as ‘significant’. Researchers may often be tempted to ignore those findings

falling above this threshold, because they are simply ‘not significant’. The key is to

understand the meaning of the parameters and outcomes of a hypothesis testing

procedure and to interpret them in the context of the goals, limitations and characteristics

of the investigation. Another common mistake is to believe that a P value represents the

probability of ‘not significance’, or the probability that the null hypothesis is true.

Researchers should at least remember that P values actually measure the strength of the

evidence found against the null hypothesis. Moreover, hypothesis testing results with
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P values falling below the level of 0.05may not always represent strong evidence against

the null hypothesis.

Another possible incorrect conceptual interpretation is to interpret a sample size

estimation procedure as the prediction of the number of samples needed to ‘obtain

significance’ or to ensure ‘significant results’. Also it is wrong to assume that statistical

analyses are not sensitive to assumptions about the data and the study design under

consideration. In addition, it is important to ensure that in all discussions there is a clear

separation between the concepts of correlation or causation. Researchersmay be tempted

to conclude that causal relationships can be discovered solely on the basis of relatively

high correlation values, especially when such evidence appears to support their

expectations, hypothesis or previous research. Correlation and causal associations are

different concepts. Although the former may be seen as a necessary condition to observe

the latter, they can never be seen as synonymous definitions even in cases of very strong

correlation.

Another concern is the possibility to misinterpret the meaning of P values associated

with correlation estimations. Researchers should not interpret a correlation as very strong

Table 2.6 Examples of common pitfalls and misinterpretations of basic statistical concepts

Aspect Problem Key resource

Hypothesis testing What significance really

means? Misinterpretation

of P values

Sterne and Davey Smith

(2001); Glantz (2001)

Hypothesis testing Approximations of P value

ranges are reported only.

Sufficient information on

statistic values and

techniques applied is not

presented

Glantz (2001)

Hypothesis testing P values are not adjustedwhen

testing multiple hypotheses

Dudoit and van der Laan

(2008)

Sample-size

estimation

Incorrect interpretation of

estimates, lack of

understanding of the need

for size estimation in study

planning

Davis and Mukamal (2006)

Correlation Linking correlation to

causation, misinterpretation

of P value

Glantz (2001)

Risk indicators Linking odds ratios to relative

risks

Davies, Crombie and

Tavakoli (1998)

Classification

quality indicators

Inadequate interpretation of

accuracy, precision,

sensitivity, and specificity

Table 2.4

Classification

quality indicators

Misuse of AUC values Shapiro (1999), Cook (2008),

Pepe (2008)
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or ‘significant’ simply because the P value associated with the correlation falls below a

significance value of 0.05. Such P values actually assess the possibility that the observed

correlationvalue can be obtained by chance alone orwhen there is no actual correlation in

the population, independently of whether the researcher considers it as a large or small

correlation value.

When interpreting AUC values, researchers should bear in mind that this indicator is

not a synonym of sensitivity or of the overall rate of samples correctly classified by a

model. Moreover, there is a need to avoid an over-emphasis on AUC values as the most

relevant indicator of predictive quality. The reporting of different quality indicators and

judicious context-based interpretations should be given careful consideration.

Researchers should also consider the potential implications or sources of misunder-

standing when interpreting indicators of the size of an effect, such as odds ratios (Glantz,

2001), which aim to estimate the effects of exposures or treatments in control-case

studies. For example, it has been demonstrated that odds ratios may overestimate an

effect size when odds ratios are interpreted as relative risks (Davies, Crombie and

Tavakoli, 1998). The use of odds ratios to approximate relative risks may be misleading

in studieswith large effects on patient groupswith high initial risks (Davies, Crombie and

Tavakoli, 1998). On the other hand, it has been shown that odds ratios would not

underestimate the relative risk in studies showing reductions in risk, that is odds ratios

smaller than one (Davies, Crombie and Tavakoli, 1998).
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3 Biomarker-based
prediction models:
design and
interpretation
principles

This chapter will introduce key techniques and applications for patient classification and

disease prediction based on multivariate data analysis and machine learning techniques,

such as instance-based learning, kernel methods, random optimization, and graphical

and statistical learningmodels.An analysis of prediction evaluation,model reporting and

critical design issues will be provided. This chapter will also discuss feature selection for

biomarker discovery.

3.1 Biomarker discovery and prediction model development

Disease classification and risk prediction models are typically based on multivariate

statistical models involving different predictive factors. These models can be imple-

mented withmathematical functions, non-parametric techniques, heuristic classification

procedures and probabilistic prediction approaches. However, multi-biomarker predic-

tion models may not always be strongly correlated with a disease or phenotype, or may

not fully reflect inter-individual variability associated with the prediction output.

Bioinformatics and Biomarker Discovery: “Omic” Data Analysis for Personalized Medicine Francisco Azuaje
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Moreover, the directed incorporation of biomarkers from relatively well-studied func-

tional pathways may introduce bias and may not account for the functional interdepen-

dence and diversity inherent in complex diseases.

Typical examples of clinical classification systems based on biomarkers are: classi-

fication of healthy vs. diseased patients, the classification of survival/death outcomes,

and the prediction of poor/good prognosis after therapeutic intervention. In a typical

prediction model design problem,m independent samples or observations are available,

which are described by n random variables. Each sample can be encoded by a feature

vector xi consisting of n feature values, xi,j, i¼ 1, . . ., m; j¼ 1, . . ., n. The features may

represent gene expression values, clinical risk factors or the intensity values from

proteomic or metabolomic data. Additionally, each sample, xi, is associated with an

outcomevalue yi, whichmay encode a continuous or discrete value, such as disease status

or survival time. As defined in Chapter 2, the type of outcome to be predicted defines the

type of prediction task or model to be selected: either regression or classificationmodels.

A summary of relevant statistical and machine learning methodologies that can be

applied to construct regression and classification models is presented below, together

with discussions on their strengths and limitations for biomarker discovery.

A prediction model offers a rule (e.g. mathematical function, algorithm or procedure)

that uses information from x to predict y in each observed sample. But more crucial, the

goal is to use this model to predict the unknown outcome, yk, for any observed xk sample.

Predictive generalization is the capacity to make accurate predictions of unknown

outcomes, yk, for different (testing) samples, xk, outside the set of samples, xi, used for

building the prediction model. When this capacity is not achieved, the model is said to

have over-fitted the learning or training dataset. Thus, the goal is to build a model that

maps the input to the outcome information space with maximum generalization

potential.

Independently of the prediction task,model development typically involves twomajor

phases: Model learning (sometimes also referred to as training) and model evaluation

(or testing). The learning phase allows the construction of the prediction models using a

learning data set. This phase allows the ‘learning’ of the data characteristics and concept

to be classified by fitting a mathematical representation or model to the training dataset.

The predictive performance derived from the training phase is not always a reliable

indicator for model evaluation purposes. Moreover, an ‘over-fitting’ of the model to the

training data will likely result in a lack of predictive generalization in subsequent

evaluations.

3.2 Evaluation of biomarker-based prediction models

Cross-validation (CV) and independent validation are the major approaches to estimate

model prediction performance. These approaches may use different quantitative in-

dicators of predictive quality as introduced in Chapter 2, such as P values, AUC values,

sensitivity, specificity, and so on.

CV comprises the selection of disjoint and randomly selected training and testing

datasets, which are used formodel training and testing independently. This data sampling

and model construction process can be repeated several times using independent

training-testing partitions. Overall performance is estimated by aggregating the perfor-
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mance originating from the different training-testing iterations. Despite the validity and

robustness of this methodology, overestimation of predictive performance may be

obtained when dealing with small datasets. Sub-optimal CV may be even more

critical in prediction models that combine feature selection and classification. When

reporting evaluation results involving multiple models, which can be based on different

techniques or input features, it is crucial to report all the relevant evaluations

implemented.

Independent validation consists of evaluating a prediction model on a completely

different dataset, which should be independently generated and derived from a different

set of biological samples. Limitations, constraints and key design factors should be

carefully considered before its implementation. For example, it is essential that different

teams participate in the data generation and analysis independently. Validation samples

should also be independent from those used in the model construction (and CV).

Moreover, as in the case of CV, the reporting of independent evaluations should be

detailed and sufficient to facilitate unbiased interpretation and reproducibility. CV and

independent validation may be seen as complementary methodologies in biomarker

discovery research, with the former preceding the latter.

The best known data sampling techniques for estimating model predictive perfor-

mance are: the traditional hold-out method, k-fold CV, leave-one-out CV and

bootstrapping.

In the hold-out method a single learning-testing partition is defined using a pre-

determined proportion of samples in each set, for example two-thirds of the data are used

for building the model (learning) and one-third is used for testing the model.

The k-fold CVmethod randomly assignsm samples (i.e. observations, patients) to one

of k data partitions of equal size. In each learning-test iteration, the model is built using

(k� 1) partitions, and is tested on the remaining partition. The overall prediction

performance indicator (e.g. based on accuracy or AUC values) may be estimated as

the average of the performance values obtained from each test fold.

The leave-one-out CV (LOOCV) is a version of the k-fold CV.Givenm samples (cases

or patients), a classifier is trained on (m� 1) samples and tested on the case that was left

out. This learning-testing process is repeated m times, until every sample in the dataset

has been included once as a testing sample. The model predictive performance is

estimated using the prediction results from the m test predictions.

The traditional bootstrap method is based on the idea of generating a training dataset

by sampling with replacementm times from the availablem cases (Efron and Tibshirani,

1993). The classifier is trained on this bootstrap dataset and then tested on the original

dataset. This process is repeated several times, and the estimation of the prediction

model’s performance is based on the average of these test estimates. Several versions of

the bootstrap have been proposed (Good, 2006), such as the leave-one-out bootstrap,

the 0.632 bootstrap and the 0.632þ , which display different levels of bias and robustness

in different application domains (Efron and Tibshirani, 1997).

The selection of a data samplingmethod for predictionmodel performance assessment

is a context- and application-dependent problem. However, there is agreement that the

hold-out method should be avoided. This is because of the highly biased and inexact

estimations that this method produces, independently of the prediction model or

algorithm applied. Recent empirical research has confirmed that the LOOCV tends to

generate estimations of prediction performance with small bias, but with elevated
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variance. It has been suggested that the LOOCV and 10-fold CV may offer both the

smallest bias and lowest mean square error in classification problems using different

approaches (Molinaro, Simon and Pfeiffer, 2005). But also it should be noted that in

general the more data available, the less significant the differences amongst these

methods in terms of their capacity to estimate the ‘true’ prediction performance of a

model.

3.3 Overview of data mining and key biomarker-based
classification techniques

There is no universally accepted definition of the term ‘data mining’. However, there is

agreement that it refers to the application of different computational and statistical

techniques to support knowledge discovery based on a better understanding of the data.

Thus, the main goal of data mining is to make data meaningful. In the biomarker

discovery context, this means the identification of more powerful and biomedical-

meaningful biomarkers. Data mining also offers tools for the interpretation and

evaluation of the resulting models and predictions, as well as the methods for supporting

the implementation of prediction explanation mechanisms.

Different statistical and computational learning approaches can be used in biomarker

data mining (Hastie, Tibshirani and Friedman, 2001). The difference between

data mining and traditional statistical data analysis is that the former aims to identify

unknown patterns, relations and meanings that could not be obtained by applying

traditional statistical methodologies alone. Therefore, data mining is seen as an area

that combines different approaches originating from different fields, ranging from

statistical data analysis, computational intelligence and information visualization,

amongst others.

Different problems require the application of different approaches and specific

predictionmodels. Key selection factors that need to be considered could be the capacity

of the method to deal with incomplete or missing data, or with different types of data

(e.g. categorical or numerical data only or both), and the computational costs involved in

implementing and deploying themodels (Bellazzi andZupan, 2008). In biomarker-based

decision making support, it is also important to consider the potential of a method to

allow the user to interpret prediction outcomes at different levels: visualization, natural

language, graphical or probabilistic, and so on.Moreover, it is evident that any biomarker

discovery process should allow the development of prediction models with a general-

ization capability, that is the ability to make ‘correct’ predictions when tested on unseen

or unlabelled samples.

A brief introduction to some of the best known techniques for biomarker discovery and

classification is presented here. This includes some of the most used data mining

techniques for classification and regression tasks in different application domains,

according to a 2006 poll that involved the opinions from data miners from academia

and industry (poll results available at www.kdnuggets.com). Deeper descriptions of

their implementation, as well as their applications in biomarker discovery studies in

different biomedical areas and using different types of ‘omic’ data, will be illustrated in

the next chapters. Chapter 9 discusses bioinformatic infrastructures, including software

packages, for biomarker data mining.
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Decision trees

Decision trees allow hierarchical representations of the relationships between features in

a dataset, such as potential diagnostic biomarkers (Breiman et al., 1984; Quinlan, 1993).

Such relationships and the values of each feature allow the model to classify new

samples or cases. Before discussing the construction of decision trees, let’s first overview

how these structures are used to make specific predictions on a hypothetical

testing dataset. Figure 3.1 illustrates a decision tree obtained from a training dataset

consisting of four biomarkers: gene X, protein Y, clinical risk factor Z and protein Y2;

and two hypothetical diagnostic classes: C1 and C2. The ‘nodes’ represent

predictive features and specific feature values. The ‘leaves’ contain the samples that

are classified under a specific category, which satisfy the different feature value

conditions that are obtained by traversing the tree from the root node to the leave. In

this example the nodes are represented by solid-line rectangles, and the leaves by dashed-

line rectangles. Hence, each tree node represents a question about features values, whose

answer will in turn allow the selection of the next node in the tree, from the top to the

bottom.

This collection of questions-answers allows one to transverse the tree through a path

that starts at the ‘root node’ and ends at one of the nodes without children nodes, that is

the tree leaves. Typical questions include inequality questions, such as ‘is the value of

feature y greater than c?’, or questions involving more complex logical or mathematical

combinations of features. In Figure 3.1, each leaf indicates the percentage of samples

that fall into the leaf and that belong to the different classes under investigation.

This information allows one to make predictions on new samples based on a majority

vote or a probability distribution over the classes predicted. Thus, a sample is assigned to

the class associated with the leaf reached. Note that different graphical representations

can be used in different publications and software tools.

Expression value of
gene X > 0.5

Clinical risk factor Z is
present

Concentration value
of protein Y2 < 0.3

Concentration value
of protein Y > 0.7

C1: 100%

C2: 60%C1: 80%

C2: 75%C1: 100%

yes yes

yes

yes

no

no

no

no

Figure 3.1 A decision tree obtained from a training dataset consisting of four biomarkers:

gene X, protein Y, clinical risk factor Z and protein Y2; and two hypothetical diagnostic classes:

C1 and C2
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Suppose that two new samples, s1 and s2, are represented by a vector encoding the

expressionvalue of geneX, the concentrationvalue of proteinY, the clinical risk factor Z,

and the concentration value of metabolite Y2. And suppose that these samples have the

following feature values:

s1 : ð0:6; 0:8; absent; 0:2Þ

s2 : ð0:2; 0:1; present; 0:4Þ
The first case will be assigned to the class C1 because in this sample the expression

value of X is greater than 0.5 and the concentration value of Y is greater than 0.7. This

means that s1 falls into the left-most leaf, which groups amajority of samples that belong

to C1 (100% of the samples in this leaf). Sample s2 is assigned to class C2 because in this

sample the expression value of X is not greater than 0.5, the clinical risk factor is present

and the concentration value of Y2 is not lower than 0.3. Thus, this sample falls into the

leaf in which the majority (60%) of its samples belong to class C2.

The construction of a decision tree from a training dataset is based on the principle

of data partition with regard to each feature and the satisfaction of different

classification criteria. The main idea is to generate a node every time specific values,

that is ranges or intervals, from a given feature maximize a classification criterion.

A recursive partition process, starting with the selection of a root node, ensures that

all samples in the training dataset will be assigned to one of the tree leaves. A question is

assigned to each node (feature) if it allows a relative good split of samples in the training

dataset. An optimum partition is selected based on measurements of ‘heterogeneity’ or

‘impurity’ of the class distribution associated with each putative new node. Two of the

best known measures of impurity are entropy and the Gini index. Several decision

tree construction algorithms are available, which differ in the way they infer and

refine the tree structure or in how they evaluate prediction quality. Different versions

based on theC4.5 algorithm, such as See5 and theCARTalgorithm (Breiman et al., 1984;

Quinlan, 1993), are available in public and commercial data mining packages

(Chapter 9).

As in the case of other data-driven prediction models, an important challenge is to

prevent a decision tree from over-fitting the training data. In decision trees this may be

prevented by limiting the size or complexity of the resulting tree. A typical approach to

‘tree pruning’ consists of stopping tree growth, that is node splitting, when additional

questions do not contribute to an increase of node purity above a pre-determined

threshold value. Decision trees can also be adapted to regression applications. Recent

research have also shown the advanced predictive capability of ensembles of decision

trees, known as random forests, in different molecular profile classification applications.

Alternative explanations andmore detailed introductions to tree construction algorithms

authored by Witten and Frank (2005) and by Kingsford and Salzberg (2008) are

recommended.

Random forests

Random forests represent an approach to classification based on the randomized

construction and predictive integration of multiple decision trees (Breiman, 2001).

Such a diversity of decision trees is obtained by training different trees on modified
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versions of the original training dataset. These training datasets can be generated by

sampling with replacement from the original training data. Diverse trees can also be

generated by selecting only a small, random subset of features during the construction of

each tree. This diversity of trees and predictions for each sample is the key to contribute to

a reduction of the likelihood ofmaking incorrect classifications. Random forests exploits

the assumption that the greater the prediction agreement between ‘experts’ (i.e. diverse,

well-trained decision trees) with different views of the same problem, the greater the

chances of making good predictions.

Logistic regression

Logistic regression is a member of the family of generalized linear models (Kleinbaum

and Klein, 2005b). Logistic regression is commonly used in classification problems

involving binary responses or outcomes, such as the presence or non-occurrence of

a disease. In this technique a ‘logistic function’ is fitted to the data (Kleinbaum and

Klein, 2005a, 2005b). The resulting mathematical function is then used to estimate the

risk of clinical outcomes or to predict prognostic categories of new samples based on sets

of biomarkers. The fitted logistic function includes different regression coefficients

associated with each biomarker. These coefficients also offer a quantitative estimation of

the strength of the independent association between a biomarker, such as a risk factor,

and the prediction outcome under investigation.

Artificial neural networks

The application of artificial neural networks for biomedical decision support has been

extensively investigated over the past 30 years. It includes a great variety of prediction

techniques inspired in basic concepts and mechanisms observed in natural neural

networks (Hastie, Tibshirani and Friedman, 2001; Russell andNorvig, 2002). In general,

the construction of these models requires the definition of ‘network architectures’ and

‘learning parameters’. The former refers to the structure of the networks: number of

processing units (neurones), connections between them, number of layers of processing

units, number of inputs and outputs, and the types of mathematical functions used by the

network to process inputs and signals in the network. The user is required to select

learning parameters that are used to initiate and guide the training of the network, such as

the number of training epochs.

The network training can be implemented by using different standard algorithms

according to the network type and prediction goals. One example of such algorithms is

the ‘back-propagation’ algorithm, which is applied to train ‘feed-forward multilayer

perceptron’ networks (Hastie, Tibshirani and Friedman, 2001). These algorithms use the

training data to find a set of optimal parameters, for example weights associated

with each input or signal processed by individual neurones, which best fit the input

data (e.g. biomarkers) to the space of class values. Neural network training involves

multiple steps of input presentation, output evaluation andmodel parameter adjustments.

As in the case of other data classification techniques, the resulting prediction model is

ready to be tested on an independent, testing dataset, and its predictive performance can

be estimated by using CV.
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Support vector machines

Support vector machines currently represent some of the most powerful classification

models. A great variety of applications to the classification of gene expression profiles and

other types of biomedical data have been reported in high-impact factor journals in

bioinformatics, biotechnology and biomedical sciences. Their popularity has been

consolidated, in part, by their proven capacity to learn accurate prediction models and

to deal with the ‘curse of dimensionality’ in different applications (Mjolsness and

DeCoste, 2001; Hastie, Tibshirani and Friedman, 2001). These techniques are based on

the principle of finding an optimal, linear separation of samples belonging to different

classes, typically two classes, through the definition of a ‘hyperplane’ (Boser, Guyon and

Vapnik, 1992). An optimal hyperplane is defined as the hyperplane that maximizes the

separation between samples from different classes and its own separation to the nearest

class-specific group of samples. The set of samples that is closest to the optimal

hyperplane are known as the ‘support vectors’. Thus, the support vectors definemaximum

margin hyperplanes. In practice, linear separation is not always possible and classification

errors cannot be prevented. To address this requirement, a support vector machine defines

a ‘soft margin’, which allows some samples to be misclassified, that is the samples are

allowed to fall into the ‘wrong side’ of the separating hyperplane. The soft margin is a

parameter that can be controlled by the user. This selection aims to estimate a margin size

flexible enough to keep margin violations (classification errors) to the minimum.

Another problem is that in some datasets not even the introduction of a soft margin

would allow an optimal linear separation due to the presence of many overlapping areas

or mixtures of samples from different classes. Support vector machines aim to overcome

this obstacle by transforming the original input data (e.g. set of biomarkers) into a higher-

dimensional feature space. This transformation is implemented by applying non-linear

mathematical functions on the original data. These mathematical functions are known as

the ‘kernels’. Examples of non-linear kernels are polynomial with degree greater than 1

and radial functions. In some applications this projection into a higher-dimensional space

facilitates the identification of hyperplanes that may be used to approximate a linear

separation between the samples.

For example, a dataset that could not be linearly separated on a one-dimensional space

may be projected into a two-dimensial space to achieve the desired discrimination.

Nevertheless, the higher the dimensionality of the resulting transformation, the higher

the number of potential solutions that can be found to separate the data, that is the

classification problem becomes harder to solve due to the curse of dimensionality

(Noble, W.S., 2006a and Noble, D., 2006b). Thus, if a dataset is transformed by using a

very high-dimensional kernel function then it is likely that any hyperplane solution will

over-fit the data, that is the separation boundaries between samples will be very specific.

The selection of the optimal kernel may be a complex and time-consuming task.

Software packages allow the user to choose a kernel from a list of well-known options.

The optimal kernel may be selected by simple trial and error, or guided by the results

obtained from CV procedures.

Figure 3.2 illustrates the concepts of hyperplane, support vectors and linear separation

using a hypothetical example of diagnostic classification. Figure 3.3 (top) shows a

dataset consisting of samples described by a single feature, that is one-dimensional

space, which could not be linearly separated by a single hyperplane. A typical example
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Maximum margin
hyperplanes

Control sample Disease group sample

Optimal hyperplane

Figure 3.2 Visualization of a hypothetical diagnostic classification of samples using the support

vectormachine technique. Samples are linearly separated with an optimal hyperplane. The support

vectors are indicated with dashed circles

1-D

2-D

f (x )

Biomarker value (x)

Data transformation

Optimal hyperplane

Biomarker value (x )

Figure 3.3 Linear separation of samples after transformation of the original dataset (1-dimen-

sional space, with x representing the values of a hypothetical biomarker) into a 2-dimensional

space, using a polynomial function f(x)
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could be a dataset in which each patient is described by a single biomarker value, which

in its original form does not provide sufficient information to detect non-linear relation-

ships. This figure also explains how the transformation of this dataset into a higher-

dimensional space (two-dimensional), using a simple polynomial function, would aid in

the linear separation of the data and a more accurate classification.

Naı̈ve Bayesian classifier

Based on the assumption of statistical independence between features given the class to

be predicted, the na€ıveBayesian classifier estimates the probability that a sample belongs

to the classes under consideration (Jensen and Nielsen, 2007). These predictions are

based on the calculations of different conditional probabilities relating features values

and classes in the (training) data, for example the probability that a sample belongs to

‘class A’ given that the ‘feature x’ has a value equal to 0. In the test mode, and under

the conditional independence assumption, this technique allows the calculation of the

probability values that a given sample given its feature values belong to each of the

classes investigated. These estimations are based on the multiplication of the corre-

sponding conditional probabilities calculated using the training set, which are stored in

probability tables assigned to each feature. The sample is assigned to the class that reports

the highest conditional probability. This technique has been widely applied to different

domains and has been used as a benchmark classifier in different applications (Witten and

Frank, 2005). A na€ıve Bayesian classifier only takes into account conditional depen-

dencies between features and the class to be predicted. This makes the na€ıve Bayesian
classifier the simplest type of Bayesian network model.

Bayesian networks

Bayesian networks can be used to represent the distribution of joint probabilities across

the different variables or features describing a classification problem (Jensen and

Nielsen, 2007). Such a structure of joint probabilities is inferred using a training dataset,

which later can be used to estimate probabilities linking specific features and class

values. In these networks a node represents a feature (variable), and the arcs linking the

nodes represent statistical dependencies between the features. A network is fully defined

by the different conditional probability distributions representing between-feature

relationships. Bayesian networks take advantage of the concept of conditional inde-

pendence to provide more compact statistical model representations (i.e. less complex

network structures). If two features are said to be independent given the state of a third

variable, such as the diagnostic class, then the two features are said to be ‘conditionally

independent’.

Bayesian networks can be applied to features characterized by both discrete and

continuous numerical variables. The learning of the statistical parameters of a model

(i.e. conditional probability distributions) can be implemented by searching for the set of

parameters that maximizes the likelihood that the training data are derived from (or fitted

to) the model (Jensen and Nielsen, 2007; Needham et al., 2007).

Several algorithms exist to infer the structure of these networks from a training dataset.

Themain idea is to find a structure of nodes and arcs thatmaximizes classification criteria

given the different samples in the training dataset. The learning algorithm searches,
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scores, and selects ‘good’ structures (Needham et al., 2007). Thus, a network construc-

tion process can be implemented using different variations of search algorithms, such as

greedy search procedures and genetic algorithms (Witten and Frank, 2005).

Networks can also be constructed based on manual or expert-driven approaches,

which apply prior knowledge about between-feature relationships relevant to the

classification problem under investigation. Once the network structure and correspond-

ing probabilistic model have been specified, ‘unseen’ or test samples can be used as

inputs tomake predictions. Several commercial, free and open-source software packages

are available to assist in the development and evaluation of Bayesian networks, one of

which is introduced by Witten and Frank (2005). Jensen and Nielsen (2007) offer a

comprehensive analysis ofBayesian networks including theirmathematical foundations.

Shorter introductions by Witten and Frank (2005) and Needham et al. (2006, 2007) are

also recommended.

Instance-based learning

Instance-based learning classifiers include a variety of algorithms based on the idea of

processing previous (training) cases and their (correct) classifications to make predic-

tions on new samples (Hastie, Tibshirani and Friedman, 2001). Given a test sample, the

goal is to search the training set to retrieve the ‘most similar’ samples to the test sample.

Based on these ‘nearest neighbours’, a prediction ismade based on the classes assigned to

the retrieved cases. One prediction approach consists of using the majority class (or a

weighted function) of the ‘k-nearest neighbours’ to the sample being tested. This

category of classifiers is known as k-nearest neighbour models. Different types of

instance-based learners are available, which differ in the way they estimate similarity

between test and training cases, in the procedure employed to define neighbourhoods,

and in the class prediction methodology applied (Witten and Frank, 2005). Instance-

based learners are also referred to as ‘lazy learners’ as there is no prediction model

construction or learning prior to the processing of test instances.

Table 3.1 summarizes major strengths and limitations of the techniques overviewed

above to aid the researcher in making a goal-driven, problem-specific selection.

3.4 Feature selection for biomarker discovery

The filtering and selection of predictive features is fundamental to assist in the

identification of potential biomarkers. A key reason is that the construction of prediction

models using a large number of input features will prevent prediction generalization due

to the noise and the low discriminatory power associated with the majority of such

features. Of special importance are those techniques used in combination with class-

membership labels or specific classification models. Unlike different methods for data

visualization or transformation, such as principal component analysis (PCA) (Ringn�er,
2008), feature selection techniques preserves the original representation of the input

data.

Feature selection in biomarker studies is important not only because it can signif-

icantly reduce the dimensionality of the biomarker space, but also because it can offer

both quantitative and qualitative insights into the relative (biological or statistical)
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Table 3.1 Examples of strengths and weaknesses of key biomarker data mining techniques

Technique Strengths Limitations

Decision trees Interpretation of predictions is

intuitive and graphically

explained to the user. Fast

computing performance when

predicting new samples.

Different types of data can be

processed, including mixtures

and missing values.

Large trees or trees with leaves

with highly segmented data

may produce unreliable

predictions. Very sensitive

to the size and composition of

training datasets. Larger trees

may be neededwhen increasing

classification complexity.

Logistic regression Mathematical model easy to

interpret in terms of risk scores

and coefficients relating

markers and responses.

Poor performance when features

are correlated. Large datasets

may be required for multi-

variable prediction models.

Artificial neural

networks

Powerful modeller of non-linear

relationships, noisy and

complex classification tasks.

Prediction model or outcomes

may be difficult to interpret or

explain. Problems involving

many inputs may require large

amounts of data. Sensitive to

selection of learning

parameters. Standard models

cannot deal with missing data

and some of them may be

computationally intensive

during training.

Support vector

machines

Powerful prediction performance

for complex classification

problems. Relatively robust to

learning parameter selection.

Different types of data can be

processed or combined in a

single model.

Model implementation difficult

to explain or predictions

unsuitable for human

interpretation. Selection of

learning parameters and kernel

function can be problematic

in some applications.

Na€ıve Bayesian

classifier

Simple to implement and

interpret.

Poor prediction performance

when input features present

multiple dependencies.

Significant amounts of data are

needed to provide accurate

estimates of probabilities.

Bayesian networks Prediction performance robust to

small perturbation of training

data. They can be used to

encode background or expert

knowledge, and can deal with

different data types and

missing values. Graphical

representation of the model

facilitates interpretation of

predictions and model.

In applications comprising a large

number of features, the

automatic inference of network

structure and underlying

probabilistic model can be

computationally intensive and

sensitive to data composition

and the inference algorithm

selected. Prediction performance

can be highly sensitive to

estimation of prior probabilities

and distribution assumptions

used to build the model.
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relevance of specific potential biomarkers in a classification task, such as putative

biomarker-specific risk scores or weights. This section overviews feature selection

methods for supervised classification applications, that is problems in which the class

labels for each sample are known in advance.

A great variety of feature selection techniques and applications have been reported for

bioinformatics and biomedical informatics applications. They can be organized on the

basis of the search methodology implemented to find relevant features or the set of

optimal features for a given application and dataset. The main categories of feature

selection algorithms are: filter, wrapper, and embedded techniques.

Filter methods are implemented independently of any classification technique and are

used to identify potentially relevant features based on statistical information extracted

from the data. Standard statistical testing of multiple hypotheses falls into this category

(Chapter 2), as well as different techniques that assess the relevance of features based on

relationships observed between the features and the class values under investigation.

Wrapper approaches are implemented in combination with a specific classification

model. That is, the search and feature selection process is ‘wrapped around’ a

Table 3.1 (Continued)

Technique Strengths Limitations

Instance-based

learning

Relatively robust to dataset size

and noise. Models and

predictions easy to interpret.

Search and retrieval of cases from

the training set may be

computationally expensive.

Some applications may be very

sensitive to the selection of the

classification parameters such

as the number of k-nearest

neighbours and the similarity

metric selected.

Random forests Apart from some of the main

advantages offered by standard

decision trees, it implements

embedded feature selection

(see next section), show

reduced risk of over-fitting,

requires minimum user

intervention.

Risk of biased feature selection.

Feature selection may be

sensitive to the choice of

relevance metric (Strobl et al.,

2007). Feature selection

applications can generate

multiple solutions, that is

feature set instability. In some

applications a large number

of trees may be required to

achieve generalization, and

classification performance

may be sensitive to the size

of the trees implemented

(Statnikov, Wang and

Aliferis, 2008).
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classification algorithm. The feature selection process will then depend on the prediction

performance obtained by a sub-set of features when used as inputs to a specific

classification technique. The search of relevant predictive features can be performed

by implementing different deterministic and randomized search algorithms (Saeys,

Inza and Larrañaga, 2007). The evaluation of the classification performance based on a

sub-set of features can be based on different criteria, such as overall accuracies, AUC

values, and so on. Embedded techniques implement search and selection of features as

part of the predictionmodel building process, that is they are integrated into the classifier

construction process. This is the case of algorithms based on decision trees, Bayesian

approaches and support vector machines.

Examplesoffilter approaches aremultiple-hypotheses testingprocedures (Section3.2)

based on the application of parametric tests (e.g. t-test,x2 test), non-parametric tests (e.g.

rank-based tests, permutation-based correction procedures), and information theoretic

measures such as mutual information (Cover and Thomas, 1991; Steuer et al., 2002).

Filter approaches aim to detect statistically detectable differential patterns between

samples derived from different classes or populations.

More advanced approaches consider possible between-feature and feature-class

associations or correlations to find optimal subsets of predictive features. It is known

that classification performance can be deteriorated by using highly correlated input

features. Thus, a well-known feature selection approach consists of finding a sub-set of

features with minimal between-feature correlation and maximal correlation between

each feature and the class values (Hall, 1999). The correlation-based feature selection

(CFS) method is one example, which estimates between-feature and feature-class

dependencies (including non-linear correlations) by applying information theoretic

concepts (Cover and Thomas, 1991).

The best known approaches towrapper applications are ‘sequential forward selection’

and ‘sequential backward elimination’ (Kohavi and John, 1997), whose searchmethod is

deterministic. In the forward selection algorithm, the search process starts with no

features followed by the incremental incorporation of new features according to their

contribution to the improvement of overall classification performance. The backward

elimination process searches for the optimal subset of features by first considering the

complete set of features followed by the incremental elimination of features that do not

contribute to an improvement in classification performance. An example of randomized

feature search in wrapper techniques is the application of evolutionary computation

methods (Kohavi and John, 1997; De Jong, 2006) and randomized hill climbing

algorithms (Skalak, 1994). Amongst the members of the evolutionary computation

category, genetic algorithms can be wrapped around different types of machine learning

techniques, such as support vector machines and k-nearest neighbours models, to guide

the search for an optimum sub-set of features that maximize classification performance

based on different CV schemes.

The method of ‘shrunken centroids’ proposed by Tibshirani et al. (2002) is perhaps

one of the best known examples of embedded feature selection in gene expression

studies. This method, also known as PAM, implements a feature selection procedure that

is embedded in a ‘nearest-centroid’ classification algorithm, which is a member of the

family of instance-based learners. Samples in a training dataset are used to estimate the

overall and the class-specific ‘centroids’ in the dataset. A centroid could be defined as a

vector encoding the mean values of each feature in the dataset. In the testing mode, a
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sample is assigned to the class with the nearest centroid to the tested sample. Feature

reduction occurs when the distance between the class and the global centroids is reduced

by an amount predefined by the user. The stronger this shrinkage, the closer the class

centroidswill move to the global centroid.When for a given feature the distance between

the global and a class distance is reduced to zero, the user is in fact detecting irrelevant or

non-differentially expressed features, which become part of the set of features

eliminated.

Table 3.2 presents a brief guide on the strengths and limitations of different feature

selection approaches. The reader is also referred to reviews published by Guyon and

Table 3.2 Examples, strengths and limitations of major feature selection techniques relevant to

biomarker discovery research

Type Strengths Limitations Examples

Filter Computationally

inexpensive, easy to

implement and adapt

to different application

domains. Faster and

more robust than

wrapper approaches.

Independent of choice

of classifier. Some

approaches can model

feature relations.

Methods based on

standard univariate

analysis or multiple-

hypotheses testing

ignore between-feature

or feature-class

dependencies. Features

selected may be less

suitable or powerful

when used as inputs to

different classifiers.

Multiple-hypotheses

testing procedures.

Information theoretic

approaches (Steuer

et al., 2002).

Correlation-based

feature selection

(Hall, 1999).

Wrapper Feature relationships or

dependencies can be

considered. Domain-

specific classification

models and

performance are taken

into account.

Potential over-fitting.

Selection bias if

learning-testing phases

are not properly

implemented or

isolated. Some

approaches, such as

those based on random

optimization, may be

computationally

intensive. Selectionmay

be very sensitive to data

sampling, that is less

robust and unstable than

filter approaches.

Sequential forward

selection, backward

elimination, hill

climbing, genetic

algorithms (Kohavi

and John, 1997).

Embedded Less computationally

intensive than wrapper

techniques. Feature

dependencies are

taken into account.

Fully integrated into a

specific classification

learning model.

Constrained to

classification model

applied. In the presence

of insufficient data or

relatively unnecessary

model complexity, there

may be a significant risk

of over-fitting.

Decision trees, Bayesian

methods, selection

based on support

vector machines, PAM

(Tibshirani et al.,

2002; Guyon and

Elisseeff, 2003).
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Elisseeff (2003), which provide a detailed analysis about algorithm implementation, and

by Saeys, Inza and Larrañaga (2007), which discusses some of their applications in

bioinformatics.

The relation between the number of optimal features and sample size represents

another major question in biomarker classification problems. As in the case of sample

size estimation in traditional hypothesis testing (Chapter 2), with univariate or multi-

variate models, this relation is complex to estimate and depends on the scope and context

of the application. Moreover, ‘universal’ estimation tools could not be feasible because

optimal sample and feature set sizes will depend on the classification technique studied

and the statistical distribution of the features and classes. However, it is important to have

an idea about potential optimal relations using, for example, comprehensive knowledge-

based evidence or approximations based on previous studies. In the case of microarray

data studies, Page et al. (2006) offer a Web-based system to aid researchers in the

estimation of optimal sample sizes based on published research. But this database does

not explicitly consider the influence of the number of features and types of classification

models. Hua et al. (2005) performed large-scale analyses of feature-sample size

estimations using synthetic and real microarray datasets, as well as different classifi-

cation techniques of diverse complexity. The main outcome of their research was a

collection of 3D surface maps that depict the relation between classification error,

number of samples and number of features for different classifiers, learning parameters,

datasets and data constraints (e.g. between-feature correlations). Although extreme

caution should always be exercised in the presence of ‘rules-of-thumb’ or ‘universal’

solutions, this type of resources can be valuable tools to assist researchers in the

understanding of problem requirements and identification of potential approaches.

3.5 Critical design and interpretation factors

The problem of selection bias (Ambroise and McLachlan, 2002) has been reported as a

major pitfall in recent advances in biomarker discovery and ‘omic’ data analysis when

wrapper or embedded feature selection is performed. This problem refers to an overes-

timation of the prediction performance when the model learning phase is not completely

separated from the testing phase. A typical scenario is the classification-based selection of

predictive features (e.g. a wrapper approach) using all the data available, followed by the

evaluation of the best classifier (and the most relevant features) through CV.

In order to obtain unbiased and accurate estimates of prediction performance the data

used to select features should not be used to test the resulting classifier. That is, feature

selection based on the application of a specific classificationmodel should be considered

as part of the model building process. In practice, the relative lack of samples available

for building, testing and independently validating prediction models may make the

prevention of selection bias a difficult task. Nevertheless, it is important to correct this

bias by implementing a classification CV procedure that is external to or independent of

the biomarker selection process (Ambroise andMcLachlan, 2002). This also means that

the (wrapper or embedded) feature selection should be implemented during the training

of the classification model, at each stage of the CV procedure.

This concern for reduction of bias also applies to situations in which the prediction

model requires the selection of optimal learning parameters, which are specific to the
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model, through CV. Examples of such learning parameters are the shrinkage parameter,

D, in the PAM method (Tibshirani et al., 2002), or the complexity parameter, C, in a

support vectormachine. Varma and Simon (2006), for instance, demonstrated that biased

estimates of prediction performance can be obtained when incorrectly using CV on a

model whose learning parameters were actually obtained (or tuned) using CV. The

recommendation is to perform the search for optimal learning parameters as part of each

CV stage.

An example of this approach, in the case of the shrunken centroids method, is to

perform LOOCV with nested 10-fold CV (in each training partition) to select learning

parameters. Given N samples, one sample is left out and the shrinkage parameter, D, is
selected on the remaining N� 1 samples based on 10-fold CV, that is the optimum D is

selected if it generates the maximum classification accuracy based on the 10-fold CV.

The resulting classifier is tested on the left-out sample, and the process is repeated until

the LOOCV is completed (Varma and Simon, 2006).

The prevention of major drawbacks and pitfalls in the design and interpretation of

biomarker-based prediction models depends on a solid understanding of the research

context and its limitations, as well as on a clear definition of research prediction goals,

and the potential relevance of model inputs and their associations. Another key factor is

the specification of evaluation and outcome acceptability criteria prior to the data

acquisition and prediction model investigation.

A multi-disciplinary approach is important to answer questions regarding the type of

representations ofmodels and predictions, and the types and domain-specificmeaning of

prediction uncertainty indicators, for example prediction quality error indicators,

confidence measures. In some applications predictive accuracy may be the most

important factor to assess the potential relevance or validity of biomarker model. In

other cases, its interpretability and robustness to data availability and definition of

learning parameters may be more crucial. For instance, given that two prediction models

offer similar classification performances, key questions are: which model is easier to

understand? Which one allows the user to have a better assessment of its reliability?

(K€onig et al., 2008; Bellazzi and Zupan, 2008). Moreover, different modelling or

classification approaches may represent valid solutions based on different criteria. In

this case one may give priority to relatively less complex solutions, or to those based on

assumptions relatively easier to justify or verify, such as assumptions relating to

statistical distributions of the data or potential dependencies between features.

Recent critical reviews of the literature relevant to biomarker discovery based on

microarray data have highlighted major flaws and limitations (Dupuy and Simon, 2007).

Despite recent advances, the lack of or inadequate strategies for multiple-testing still

deserves more careful consideration (see Chapter 2). Or at least there is still a need to

remind researchers of the importance of clearly stating null hypotheses and correction

strategies inmultiple-testing applications. Dupuy and Simon (2007) also consider that, at

least until 2007, many researchers were still making spurious claims about relationships

between data clusters and clinical outcomes due to biased estimations of feature-class

associations. The problem of overestimating predictive capability is also found in

supervised classification applications through selection bias as pointed out above.

A detailed description of these flaws and recommendations to address them, with an

emphasis on microarray-based cancer biomarker studies, was published by Dupuy and

Simon (2007).

3.5 CRITICAL DESIGN AND INTERPRETATION FACTORS 53



More on evaluation

In order to prove the clinical usefulness and validity of newly discovered biomarkers, it is

important to report its predictive performance in comparison to traditional prediction

models. The latter are typically based on markers already available in routine clinical

practice. This also involves comparisons against models that combine traditional and the

proposed biomarkers. It has been recommended that these evaluations should be

implemented on datasets that are independent from the datasets used during the ‘novel

biomarker’ discovery phase. Another important evaluation criterion is that the traditional

biomarkers (alone) should produce prediction performances consistent with their known

clinical performance or those obtained in previous research. Furthermore, correlations

between traditional and proposed biomarkers should be minimized.

Which indicators are more informative? It depends on the goals and potential error

costs of the application. For example, in an application involving the screening of an

uncommon disease (or complication) in asymptomatic individuals, a high specificity

may be preferred. In this case the cost of incorrectly classifying a healthy patient will be

higher than the cost of missing a (rare disease) positive case. Moreover, this type of

application will also include different diagnosis confirmation tests. A different focus

would be required in the diagnosis of a relativelymore common, life-threatening disease.

In this situation, the cost of missing a true positive prediction outweighs the cost of

mislabelling a negative case (i.e. predicted as diseased when the patient is actually

healthy). Therefore, in this case biomarkers or prediction models capable of generating

higher sensitivities should be preferred.

Several quantitative indicators may also be applied to prediction models that produce

numerical outcomes (e.g. risk scores). These indicators aim to assess the quality of the

predicted values for the prediction of clinical events (expected events) in comparison to

the actual events observed in a population.Different probabilistic approaches can be used

to estimate predictive quality on the basis of uncertainty, confidence or reliability, as in

the case of Bayesian classifiers. In some traditional, single-biomarker applications,

higher (or lower) biomarker values are linked to increased (or decreased) risk levels.

Such associations are quantified, for example, using hazards and odds ratios (derived

from survival analysis), as well as probabilistic estimates of biomarker-disease asso-

ciation strength. Caution should be exercised when interpreting these indicators in

studies involving one biomarker only. For instance, a high hazard ratio for a single

biomarker-disease association does not guarantee a good classification performance for

different predictive thresholds. This is because the biomarker value distributions of

individuals from different clinical groups (control vs. disease) will always have some

overlap. Therefore, significant associations between (single) biomarkers and clinical

condition may be used as evidence to define risk factors, but not to suggest strong

prediction capability by itself, even after accounting for confounding factors. But

independently of the required outcome representation, prediction technique, predictive

feature combination method or evaluation technique, a key challenge is to show how the

new or proposed prediction model can outperform conventional or standard prediction

models.

The selection of evaluation metrics and procedures is as critical as the selection of

patient samples and classificationmodels. Chapter 2 introduced some of these indicators,

together with key strengths and challenges present in this area. Although, the adaptation
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of known or ‘generic’ predictive accuracy indicators to specific purposes in different

areas has been proposed (Swets, 1988), it is important to consider, above all, themeaning

and possible interpretations that such methods may represent in a specific context

or application. In the case of widely used techniques, such as the ROC curves andAUC, it

is important to recognize their limitations and mathematical meaning (Chapter 2) to

preventmisuses and biased comparisons between predictionmodels (Cook, 2007, 2008).

Moreover, when comparing different prediction models or biomarkers, the demonstra-

tion of the statistical ‘significance’ of their differences or relations is not sufficient to

prove the validity of a new biomarker model (Pencina et al., 2008).

Despite its limitations and misinterpretations in the clinical context (Chapter 2), ROC

curves and AUC will continue to be considered as valuable tools or criteria to assess

discrimination capability in biomarker studies. This could be the case especially in

studies with extreme (very large or very small) differences in performance between

prediction models (Pencina et al., 2008), or with small datasets (Pepe et al., 2008a,

2008b). Nevertheless, it is important to consider other indicators, for example those

based on a closer look at sensitivity/specificity values (Pepe, Feng and Gu, 2007; Pepe,

Janes and Gu, 2007; Pepe et al., 2008a, 2008b), which reflect alternative predictive

quality properties and context-specific requirements. Moreover, it has been shown

that standard methods for prediction performance evaluation can be both biased and

inaccurate (Wood, Visscher and Mengersen, 2007). Therefore, the calculation

and interpretation of different indicators in the light of context-specific study goals and

requirements is recommended.

The top of the class

The selection of techniques for implementing prediction models is context-dependent,

and involves the analysis of previous research in related application domains. As pointed

out above, different techniques may exhibit shared advantages and limitations, which

may guide the selection of potential solutions. Moreover, it is important to implement

benchmark or baseline techniques to support the evaluation of new or alternative

solutions, as well as their application to reference biomarkers, especially those currently

applied in the clinical environment. Comparative analyses commonly require the

application of known reference algorithms, such as na€ıve Bayesian, or more advanced

approaches, such as support vector machines and random forests. The latter options are

currently known as two of the most powerful classification models across different

application areas (Statnikov, Wang and Aliferis, 2008).

Recent empirical evaluations using microarray biomarkers in cancer classification

showed that support vector machines can outperform random forests in different design

and application settings, including those in which these techniques are used for

automated biomarker selection (Statnikov, Wang and Aliferis, 2008). On the other

hand, other studies have shown that in multiple-class classification problems, advanced

models, such as support vector machines, may display a poorer performance depending

on critical design choices. Support vector machines, which were originally designed to

deal with two-class problems, can be combined to form ensembles of classifiers that can

be used to predict multiple classes according to binary classification schemes. This

strategymay comprise the combination of multiple one-versus-one or one-versus-others

individual classifiers. Comprehensive comparative evaluations of different multi-class
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methodologies for the molecular classification of cancers has shown, for instance, that

the predictive performance of multi-class support vector machine models may be

sensitive to the selection of the two-class model combination scheme (Statnikov

et al., 2005). Diverse or inconsistent predictive performances might also be obtained

with relative minor variations in learning conditions, such as the number of samples,

feature selection method and composition of the input features, even for the same

classification model (Pirooznia et al., 2008).

Apart frommodel selection bias, the problem of sample collection bias may represent

another obstacle to obtaining accurate estimates of prediction performance and to

supporting independent validations. Ransohoff (2005) and Ressom et al. (2008), for

instance, have reported that bias can occur if the experimental and control samples are

obtained, stored and processed using different methodologies or experimental protocols.

Such artefacts or analytical variability may explain the ‘significant’ differences found in

statistical analysis.

It is also important to stress that biomarker data mining and prediction model

implementation should be seen as incremental, iterative and interactive processes.

Prediction model design, including classification implementation and/or feature selec-

tion, is typically preceded by multiple steps of data pre-processing, visualization and

exploration (Azuaje and Dopazo, 2005). The latter two stages may involve different

unsupervised analytical tasks, such clustering-based visualizations. Recent advances

include several techniques based on matrix decomposition (Schachtner et al., 2008),

such as independent component analysis and non-negative matrix factorization. These

techniques may also be applied to extract predictive features, which can represent inputs

to subsequent supervised biomarker data mining tasks (Pascual-Montano et al., 2006). It

is very likely that the combination of different exploratory data analysis tools (Witten and

Frank, 2005; Montaner et al., 2006; Mej�ıa-Roa et al., 2008) and prediction model

implementation engines will continue to be a driving force in biomarker discovery.

However, there is still a need to develop integrated, user-friendly infrastructures and

solutions tailored to biomarker discovery (Chapter 9).
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4 An introduction to the
discovery and analysis
of genotype-phenotype
associations

This chapter presents an introduction to genomic data and approaches to biomarker

discovery:DNAvariationmarkers and genome-wide association analysis. Itwill introduce

fundamental concepts, such as linkage disequilibrium, the Hardy-Weinberg equilibrium

and genetic interactions. The characteristics of the data and technical requirements will be

discussed. This will include discussions on recent advances in cardiovascular and cancer

research, concentrating on: (a) biomedical findings and clinical applications, (b) statistical

and data mining methodologies applied, and (c) strengths and limitations. Chapter 9 will

offer additional information on databases and software relevant to genome-wide asso-

ciation studies.

4.1 Introduction: sources of genomic variation

Alleles and genotypes represented in statistically detectable high rates in a population

sample may be seen as factors that confer greater susceptibility to a particular disease

or clinical response. Moreover, these loci may be strongly associated with other

(phenotypically-neutral) loci, that is in linkage disequilibrium, which may also be

over-represented in the population sample. Thus, one of themain objectives of genotype-

phenotype association studies is to identify statistically detectable differences between

phenotype-specific groups of individuals (e.g. between cases and controls) on the basis of

their genotypes (Li, 2008). In recent years, a significant amount of investigations on
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putative (genomic variation) biomarkers have been reported. For example, as of January

2009, more than 200 publications reportingmore than 900 SNPs-phenotype associations

in more than 70 common diseases had been published (El-Omar, Ng and Hold, 2008;

Hindorff et al., 2008).

The main types of genotype-phenotype association studies are: candidate-gene and

genome-wide association studies. The former are hypothesis-driven studies involving

genes for which there is evidence of a possible association with a disease or clinical

outcome. This commonly requires the sequencing of the gene in case-control groups and

the search for variants that differentiate these groups. Genome-wide association studies

are based on the unbiased investigation of variants across most of the genome.

Potential genomic variation-based biomarkers can be initially predicted by finding

strong genotype-phenotype associations in a specific population sample. Two important

sources of DNAvariation are SNPs and gene ‘copy number variation’ (CNV). Figure 4.1

illustrates these concepts. SNPs are sequencevariants involving a single nucleotide. SNPs

can affect gene expression and protein function by altering not only protein-encoding

regions, but also non-coding (intronic or regulatory) regions. Variations detected in non-

coding areasmay have important functions in the development of biomedical phenotypes.

Such variations could actually alter gene expression and splicing (Hardy and Singleton,

2008;Altshuler, Daly andLander, 2008). Thismotivates additional research, for example,

on the potential causative roles of variations found in highly-conserved non-coding

regions (Hirschhorn and Daly, 2005). This may be particularly difficult because some of

these regulatory sequences may be found far from the coding regions.

A DNA locus may be defined as polymorphic if at least two variants (e.g. alleles A

andG) can be found in the locus, and if the frequency of themost commonvariant is less

than 99% (Landegren, Nilsson and Kwok, 1998). Examples of SNPs-disease associa-

tions include a variety of SNPs connected to susceptibility tomyocardial infarction and

coronary artery disease, such as variants found in the genes ALOX5AP, LTA4 and

LGALS2 (Topol et al., 2006). Several polymorphisms in Toll-like receptor genes have

been documented and associatedwith the risk of gastric and prostate cancers (El-Omar,

Ng and Hold, 2008). An increasing number of replicated associations in different

medical areas have been reported (Hindorff et al., 2009).

Figure 4.1 Major sources of genomic variation: SNPs and CNVs
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CNVs comprise genomic variations in which blocks of DNA are missing or

duplicated (Figure 4.1). Thousands of CNVs have been reported in different popula-

tions, and international organizations and consortia are cataloguing patterns of CNVs

in different diseases. Different potentially-significant associations between CNVs and

disease have been reported in several cancers, schizophrenia, autism, body mass

index, Chron’s disease and retinoblastoma (Couzin, 2008). Despite these advances

there are still many questions unanswered about the origin, effect and medical

relevance of such associations. For example, are these CNVs inherited or spontane-

ous? Are they actually connected to other genomic variables? Moreover, recent

efforts, such as those implemented by the Wellcome Trust Case Control Consortium

(Couzin, 2008), have found that the key to understanding the connection between

CNVs and disease may not entirely lie in the calculation of differential representations

of the same CNVs between disease and control groups, but in the identification of

disease-specific CNVs. This would suggest that efforts should go beyond the esti-

mation of the number of common CNVs in healthy and disease groups, and that more

attention should be given to the problem of finding out where these CNVs actually

occur in each group.

Advances in genotyping technologies, the availability of public databases and the

development of the International HapMap Project (The International HapMap Con-

sortium, 2005, 2007) have facilitated the implementation of genome-wide association

studies. Genome-wide association studies have so far mainly focused on the identi-

fication of SNPs-phenotype associations involving common variants at the SNPs

(Donnelly, 2008). This is because the power to predict associations is reduced by the

frequency of the less common variant at a particular SNP, that is rare variants are

more difficult to detect. Apart from this limitation, rare variants are difficult to detect

because genomic-variation information encoded in databases and tagging approaches

(Section 4.2) have focused on more common variants (Hirschhorn and Daly, 2005).

Moreover, the majority of SNPs-phenotype associations discovered to date are not

likely to represent disease causative or functional mutations (Altshuler, Daly and

Lander, 2008). Instead, theymay only encode a ‘proxis’ for the actual phenotype driver

or causal agent. The next section discusses the fundamental concepts behind these

relationships. A significant proportion of the investigations reported to date have

focused on genomic variants found in protein coding regions. The challenge is that

many of the SNPs with disease causative properties may not be found in protein-

encoding regions of the genome, that is they effect function at the gene regulation level.

Genotype-phenotype associations can be used to build risk assessment and phenotype

classification models. Different data encoding the relevant genomic variations can be

applied as inputs to these models. Moreover, different risk assessment, treatment

selection and classification models can be implemented by combining information from

genotype-phenotype associations with environmental and traditional risk factors. In this

case, one of the challenges for bioinformatics is to find effective and meaningful ways to

aggregate these information types based on existing and novel statistical and machine

learning methodologies (Chapter 3). It has been suggested that risk scores and classi-

fication power of models based on recent association studies may be underestimated

because most causal variants have not been identified yet (Donnelly, 2008). On the other

hand, one deals with the problem of making sense of a great variety of weak genotype-

phenotype associations (e.g. with odd ratios <2). Therefore, independently of the
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identification of causal associations, another important challenge is to integrate such

‘weak biomarkers’ to improve both our understanding and prediction capability in

complex diseases (Loscalzo, 2007).

4.2 Fundamental biological and statistical concepts

Hardy-Weinberg equilibrium

A genomic locus is in Hardy-Weinberg equilibrium (HWE) when the two alleles in

an individual have been randomly acquired, that is the two alleles are statistically

independent. HWE is expected to be observed in populations without a history of

significant migration, ethnic admixture or inbreeding. For a particular SNP, deviations

from theHWEcan be detected by statistically testing the hypothesis that the population is

in HWE. For dominant and recessive alleles ‘A’ and ‘a’ respectively, a population meets

the conditions of HWE if the genotype frequencies are: p2 (for genotype AA), 2pq

(for genotype Aa), and q2 (for genotype aa). Where p is the frequency of A and q is

frequency of a. These frequencies define the ‘expected’ genotype frequencies under

HWE. Thus, the HWE hypothesis can be tested by comparing the genotype frequencies

observed, O, in the population sample against the expected genotype frequencies, E.

This can be done by applying hypothesis testing procedures for categorical data

(Chapter 2), such as the x2 (Chi-2) and Fisher’s exact tests. The x2 statistic, for example,

is calculated as: x2 ¼ P
i
ðOi �EiÞ

Ei
, with i : 1, 2, 3, with 1 degree of freedom. The HWE

hypothesis is rejected if the resulting statistic is greater than the value required for a given

significance level. That is, a departure fromHWE is detected if the correspondingP value

is below a significance level, for example P¼ 0.001. These analyses may be supple-

mented by the graphical visualization of the P values obtained from all the SNPs

investigated. One option is to use log quantile-quantile plots of the P values, in which

deviations from the diagonal line, y¼ x, highlight loci with departures from the HWE

(Balding, 2006).

Departures from HWE (i.e. HWD) in random samples have been commonly used as

indicators of errors in experimental work: errors in assays, genotypes or data acquisition.

Hosking et al. (2004), for example, found associations between genotyping errors, as

well as the detection of non-specific SNPs, and deviation fromHWE. On the other hand,

other studies have shown that genotyping errors may not generate significant departures

from HWE (Cox and Kraft, 2006), and indicate that the most effective method to detect

these errors is the verification of genotypes by re-sequencing or independent genotyping.

Deviations fromHWE have also been suggested as indicators of inbreeding, selection

and population stratification (Balding, 2006). As an approach to data quality assessment,

researchers typically exclude SNPs from subsequent analysis, when they deviate from

HWE at a significance level around 0.0001 in the control group (Ziegler, K€onig and

Thompson, 2008). For example, in a recent genome-wide study that linked six new loci to

cholesterol and triglycerides (Kathiresan et al., 2008), a significance level of 0.001 was

used to exclude SNPs from analyses.

On the other hand, researchers have suggested that a locus inHWD(i.e. departure from

HWE)may represent a marker of disease susceptibility heterogeneity, which could be in

linkage disequilibrium with other susceptibility loci (Nielsen et al., 1998). Thus, tests
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reporting departures fromHWEat amarker locusmay offer useful evidence in the search

of key biomarkers.

Also, as Nielsen et al. (1998) explained, HWD should not be expected to be found in

disease models in which the alleles act in a multiplicative way to increase susceptibility.

However, a greater amount of HWD should be expected if the effects of the alleles

deviate frommultiplicative interactions. Wittke-Thompson, Pluzhnikov and Cox (2005)

have discussed the problem of distinguishing genotyping errors from other possible

causes of HWD, and concluded that significant departures fromHWE can be expected in

relatively small samples of patients.

Linkage disequilibrium and haplotypes

Neighbouring genomic variants or alleles are often correlated because of their shared

evolutionary history, that is they have been passed from generation to generation in a

common block of DNA. Such a correlation means that it would be possible to infer an

allele at a particular SNP based on the allele observed at a neighbouring SNP (Altshuler,

Daly and Lander, 2008). This correlation is known as ‘linkage disequilibrium’. Thus, in

the presence of linkage disequilibrium there is no need to genotype all variants (including

the causal variant) to detect potentially relevant associations. This allows researchers to

reduce the size of their genome-wide association studies. If in subsequent investigations

(e.g. validations) more SNPs are typed in the genomic region of interest, then it would be

possible, in principle, to detect the potential causal SNP by finding the SNP showing the

strongest association with the phenotype studied (Donnelly, 2008).

Figure 4.2 shows snapshots obtained from a graphical analysis of linkage disequi-

librium in chromosomes 20. It illustrates correlations between different SNPs found in a

specific region of this chromosome. The colour-coded triangle shown is a correlation

matrix that links the SNPs found in this region, with darker cells highlighting strong

correlations between pairs of SNPs. Figure 4.3 presents the outcomes of a similar

analysis focused on the gene MMP1 on Chromosome 11. In this example the figure

highlights a block of strongly correlated SNPs.

Figure 4.2 Graphical analysis of linkage disequilibrium in chromosomes 20. The triangle shown

is a correlationmatrix that links the SNPs found in this region,with darker cells highlighting strong

correlations between pairs of SNPs. Analysis implemented with Haploview (Barrett et al., 2005)
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Groups of polymorphisms in strong linkage disequilibrium can be used to define

‘haplotypes’ (Altshuler, Daly and Lander, 2008), which represent most of the genomic

variation within a specific chromosomal region. Haplotypes comprise DNA regions

located between recombination hotspots, that is haplotypes consist of stretches of DNA

that tend to be inherited together from generation to generation (Musunuru and

Kathiresan, 2008).

Most of the genome can be characterized by regions of strong linkage disequilibrium

and most chromosomes include one haplotype (Hirschhorn and Daly, 2005). Thus,

researchers can in principle identify all relevant SNPs-phenotype associations based on

the identification of a few SNPs within a haplotype. This assumption and the estimations

of the number of haplotypes have allowed researchers to argue that a ‘genome-wide’ scan

of 500 000 SNPs can be used to cover more than 90% of SNPs-related variation in the

human genome (Loscalzo, 2007;Hardy and Singleton, 2008) in non-African populations

(Kruglyak, 2008). Haplotypes can also be used as inputs to phenotype prediction models

based on statistical and machine learning (Malovini et al., 2009). Figure 4.4 illustrates a

hypothetical example of the identification of three haplotypes, which are detected in a

sample of 10 DNA sequences and 3 SNPs.

Two of the best known measures of linkage disequilibrium, for two-locus haplotype

data, are the D0 and r2 measures (Li, 2008). These measures are based on the observed

Figure 4.3 Graphical analysis of linkage disequilibrium focused on gene MMP1 on Chromo-

some 11. Analysis implemented with Haploview (Barrett et al., 2005)
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frequencies of the alleles from the two markers studied, and can be implemented by

different software tools, such as Haploview (Barrett et al., 2005) and PLINK (Purcell

et al., 2007). It has been suggested that D0 can overestimate the amount of linkage

disequilibrium even in the presence of a very rare allele (Balding, 2006). Because these

are two-locus measures, researchers have to adapt them to estimate linkage disequilib-

rium over specific chromosomal regions. One typical approach is to calculate the average

of the different (pairwise) measures over the region of interest. The colour-coded

visualization introduced above has become a standard methodology to assess within-

region relationships and to support the detection of haplotype blocks (Figures 4.2

and 4.3).

The estimation of linkage disequilibrium allows researchers to select a small number

of SNPs as representatives of the genomic variation encoded in the genome or in a larger

set of SNPs under investigation. This task is referred to as ‘tagging’. This is an important

task to aid in the reduction of the amount of SNPs to be typed in a large-scale association

study. Similarly, it can also assist researchers in focusing their analyses on a relatively

small subset of SNPs already typed in a population sample, or in the imputation of

additional SNPs without having to perform additional genotyping (Musunuru and

Kathiresan, 2008). One typical tagging approach consists of the analysis of the r2 values

for all the pairs of SNPs. From each pair of SNPs, one of the SNPs is excluded from

subsequent analyses if, for instance, the pair shows r2> 0.9.

With the development of next-generation sequencing technologies linkage disequi-

librium and haplotype analyses will be eventually replaced by the large-scale genotyping

of all known common SNPs (Kruglyak, 2008). New genotyping technologies will also

address some of the limitations of analyses based on the assumption of linkage

disequilibrium and haplotypes. For example, the phase 2 of the HapMap project found

that the assumption of indirect association-mapping based on linkage disequilibrium

does not hold for approximately 1%of all SNPs (The International HapMapConsortium,

2007). Thismeans that such SNPs are ‘untaggable’ and require direct genotyping in order

to explore phenotypic associations.

Figure 4.4 Illustration of the concept of haplotypes. Three hypothetical haplotypes are identified

in a sample of 10 DNA sequences and 3 SNPs

4.2 FUNDAMENTAL BIOLOGICAL AND STATISTICAL CONCEPTS 63



4.3 Multi-stage case-control analysis

The implementation of multi-stage association studies is motivated by the need to:

(a) reduce the rate of false positive predictions, (b) reduce the rate of false negative

predictions, and (c) reduce the cost of genotyping large population samples. The first

phase typically involves the genotyping of a relatively large number of SNPs in a

relatively small population sample. This phase aims to filter as many potentially

irrelevant associations as possible, while trying to maintain an adequate level of

statistical power (Hirschhorn and Daly, 2005). This is achieved by using relatively

modest (or relaxed) statistical significance levels when testing the multiple hypotheses

(see below). Subsequent phases are implemented to validate the resulting associations,

that is the markers that passed the first stage are analyzed in independent population

samples. In these phasesmore individuals are incorporated into the case-control groups

and more stringent significance levels are selected. Common practices include the

application of different genotyping techniques and the involvement of independent

research groups in the different phases. This is useful to aid in the reduction of spurious

associations and to improve the scientific credibility of the validations (Hirschhorn and

Daly, 2005). In the initial stage of a two-stage (or multiple-stage) association analyses,

cross-validation procedures (Chapter 3) could be useful tools to support the assessment

of the potential relevance and validity of the predicted associations. This has been

suggested as a valid alternative to independent validation in the exploratory phases of a

genome-wide association study (Loscalzo, 2007).

An example of a two-stage association study can be illustrated by a project that aimed

to detect SNPs associated with breast cancer in the Spanish and Finnish populations

(Milne et al., 2006). In the first phase, the genotype frequencies ofmore than 640 SNPs in

111 genes were analyzed in 864 breast cancer cases versus 845 control individuals. This

initial set of SNPs was selected by focusing on known cancer-related genes and variants

selected by tagging. The first stage reported 10 SNPs as significantly differentially

observed in the two groups with a (nominal) P value below 0.01, without further

corrections for multiple testing. In stage 2, the SNPs derived from stage 1 were analyzed

in larger case and control groups. Out of these 10 SNPs, one SNP (on intron 1 of ERCC4)

was associated with breast cancer protection after correcting for multiple testing. This

SNP reported a P¼ 0.04 after Bonferroni correction. These results were also supported

by a permutation-based correction procedure.

Figure 4.5 illustrates a hypothetical two-stage association study, with typical analytical

steps and outputs. In this figure, the amount of data (individuals and SNPs) included in

each stage is graphically reflected on the size of the data symbols shown on the right-hand

side. Note that additional stages can be implemented between these stages.

4.4 SNPs data analysis: additional concepts, approaches
and applications

The basic approach to finding genotype-phenotype associations is to apply statistical

hypothesis-testing procedures. The null hypothesis to be tested is that there is no

detectable difference between two populations, such as two groups of patients belonging

to two diagnostic classes, on the basis of the genotype frequencies (i.e. genotype
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proportions) observed in each group. As explained in Chapter 2, this may be done on

a 2� 2 contingency matrix, with the 2 groups vs. 2 genotypes (homozygous and

heterozygous genotypes); or on a 2� 3 contingency matrix if the comparison requires

the inclusion of the 2 homozygous genotypes separately. The Chi-2 and Fisher’s exact

tests are the typical tests applied in this task (Chapter 2). In one example, associations

between a polymorphism in the MHC2TA gene and cardiovascular mortality after

myocardial infarction were detected by applying the Chi-2 test to patient and control

groups consisting of thousands of individuals (Lindholm et al., 2006). The Fisher’s exact

test is recommended when the expected frequency of any of the genotypes studied is

smaller than five. Odds-ratios (Chapter 2) are also commonly reported to illustrate

differences between groups on the basis of their genotype frequencies.

The application of statistical analysis, including the selection of between-group

comparison procedure, depends on the genetic model being tested: Dominant, recessive

or additive models. Given alleles ‘A’ and ‘a’, in the dominant model one is interested in

comparing the (dominant) homozygous genotype (AA) versus the other genotypes (Aa

and aa). In the recessive model, one compares the (recessive) heterozygous genotype

(aa) against the genotypes AA and Aa. The additive model assumes the combined, linear

effect of the three genotypes (Ziegler, K€onig and Thompson, 2008).

Case-control comparison
and detection of potential
markers, e.g. SNPs

Case-control comparison
of candidate markers
selected above

Genotype-phenotype associations

Stage 2

Stage 1

Statistically
significant markers,
selection based on
optimistic
significance values
e.g. P < 0.01

Amount of case-
control individuals

Amount of potential
markers investigated

Statistically
significant markers,
corrections for
multiple testing

Figure 4.5 Overview of main steps and outputs in a typical two-stage association study.

Hypothetical example comprising the comparison of case and control groups on the basis of

SNPs. The amount of data (individuals and SNPs) studied in each stage is graphically reflected on

the size of the data symbols shown on the right-hand side
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Apart from statistical hypothesis testing, more advanced genotype-phenotype asso-

ciation modelling can be implemented based on classification models, in which the

inputs represent the different genotypes for a particular SNP and the phenotype is the

class to be predicted (e.g. diagnostic class). Different statistical and machine learning

techniques, such as logistic regression and support vector machines (Chapter 3), can be

applied for this purpose. These techniques can also be adapted to association studies

involving phenotypes measured on a continuous numerical scale. For example, recent

studies that linked new loci to cholesterol (Kathiresan et al., 2008; Willer et al., 2008)

applied multivariable linear regression (Chapter 3) models in which lipid concentration

values represented the phenotype or outcome to be estimated.

Multivariable statistical and machine learning models allow the incorporation of

genotype information derived from multiple SNPs, as well as environmental exposure

factors and traditional biomarkers. Moreover, potential ‘epistatic interactions’ may be

explored, as further discussed in Section 4.6. However, note that multiple-SNPs models

may have little impact on (or deteriorate) phenotype predictions if there is a single causal

variant. Tagging and different feature selection procedures (Chapter 3) are also useful to

improve the prediction performance of multiple-SNPs models. The former can be

applied to problems with a large number of SNPs. Feature selection (Chapter 3) is

recommended to reduce the number of highly-correlated SNPs. Because haplotypes

capture the correlation structure of SNPs, they can also be used to model the inputs to

phenotype classification models (see below).

Apart from genotyping errors, such technical artefacts and inadequate standardization

of experimental protocols, population stratification represents an important source of

confounding in association studies. Population stratification refers to the existence of

different sub-groups within a population, which differ in terms of disease prevalence or

other genotype-phenotype distinguishing features. The problem posed is that (false)

positive predictions (i.e. differences, associations)may be detected between case-control

groups, which are actually explained by the presence of stratification. The definition of

well-matched case-control groups is an effective strategy to prevent large-scale strat-

ification (Hirschhorn and Daly, 2005).

Different techniques have been proposed to detect stratification based on statistical

hypothesis testing procedures and comparisons involving genomic control proce-

dures (Balding, 2006). One such approach is based on ‘null SNPs’. A null SNP is a

SNP with no true association with the phenotype investigated. A genomic control

procedure can be based on the application of the Armitage test (Glantz, 2001), which

is another method for comparing categorical data (Chapter 2), to each of the null

SNPs. The parameter l is defined as the empirical median of the obtained Armitage

test statistics divided by its expected value, under the Chi-2 distribution with 1 degree

of freedom. If l> 1, then population stratification is likely to be present (Balding,

2006). This is because one should expect no, or few, null SNPs associated with the

phenotype.

Population stratification may also be identified by implementing visualization-based

exploratory analysis of the null SNPs. This can be done, for example, by applying

unsupervised learning techniques or principal component analysis to identify sub-

groups of similar individuals, or clusters, within the population sample. It has been

suggested that these approaches may be more reliable than simply using information on
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geographical origin or ethnicity as criteria for inferring stratification (Balding, 2006;

Altshuler, Daly and Lander, 2008).

The problem of missing genotypes or incomplete data in SNPs data analysis is not

uncommon. Typically, SNPs are excluded if their total missing frequency across the

groups studied is greater than 2% (Ziegler, K€onig and Thompson, 2008). Nevertheless,

different algorithms are available to implement missing data estimation, such as those

based on likelihood estimates for single imputations, multiple imputation based on

random sampling, regression models and nearest neighbour methodologies (Balding,

2006). For instance, missing data can be estimated based on the genotypes observed at

neighbouring SNPs. Another approach is to make an estimation based on the genotype

observed in another individual, whose genotype is similar to the neighbouring genotype

in the individual with the missing value.

The size of the human genome and the diversity of genomic variantsmake the problem

of multiple-hypotheses testing a critical issue. Such a complexity means that in theory

any SNP is unlikely to be associated with any given phenotype. The concepts and

techniques introduced in Chapter 2 can be applied to this area, but special attention

should be given to the satisfaction of underlying assumptions and application constraints.

For instance, the Bonferroni correction could be a very conservative approach when

dealing with highly-correlated SNPs. This is because the between-variable statistical

independence assumption of the Bonferroni correction is not satisfied. Therefore, the

FDR and permutation-based approaches may be more suitable choices in this situation

(Chapter 2). However, the Bonferroni correction would represent a viable and relative

accurate methodology if the corrections are based on the ‘effective number’ of

independent marker loci, rather than on the total number of variations tested. The

effective number of independent loci can be estimated by different approaches based on

the concept of linkage disequilibrium between markers and the observed genotypes

(Nyholt, 2004; Li and Li, 2005; Gao, Starmer and Martin, 2008). Gao, Starmer and

Martin (2008), for example, used a matrix of correlations between SNPs to calculate the

effective number of independent tests. Their procedure is based on the extraction of the

principal components (Ringn�er, 2008) of the correlation matrix. Statistical corrections

based on this method have shown a performance similar to that obtained from

permutation-based procedures and do not require specific statistical assumptions, such

as HWE (Gao, Starmer and Martin, 2008).

The PLINK software tool (Purcell et al., 2007) allows the analysis of hundreds

of thousands of SNPs (and CNVs) for thousands of individuals. It offers different

algorithms for summarizing data, hypothesis testing and association analysis.

Moreover, PLINK offers powerful solutions to correct for multiple-hypotheses

testing and population stratification (Chapter 2). PLINK also allows the analysis

of potential (non-random) genotyping failure. Using a typical genome-wide asso-

ciation study dataset consisting of 100 000 SNPs and more than 300 individuals,

PLINK can load, filter and implement a complete association analysis in less than

one minute (Purcell et al., 2007). Statistical analysis options include HWE tests,

estimation of inbreeding coefficients for each individual, and various statistical tests

to detect differences between groups, such as the Chi-2, Fisher’s exact and Armitage

trend tests. Bonferroni and FDR methods are also offered for multiple-testing

corrections (Chapter 2).
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4.5 CNV data analysis: additional concepts, approaches
and applications

Specific CNVs have been associated with common Mendelian and complex disorders,

such as colour blindness, Charcot–Marie–Tooth disease, lupus, human immunodefi-

ciency virus, Parkinson’s disease, mental-retardation syndromes and Alzheimer’s

disease (Lupski, 2007). There is already strong evidence to indicate that many CNVs

can be used to explain an important proportion of common phenotypic variation in

humans, which may also be accounted for their roles in differential gene expression

(Freeman et al., 2006).

Different DNA chip technologies allow researchers to measure changes in copy

numbers of specific parts of the genome, which opens up new possibilities to study the

effect of specific deletions, insertions and duplications on disease susceptibility (Carter,

2007). As in the case of SNPs, a major challenge for bioinformatics is to improve the

power and reliability of inferred associations between CNVs and specific phenotypes

using different data analysis methodologies.

In a pioneering study, Redon et al. (2006) completed a first version of the human CNV

map based on the analysis of DNAvariation in 270 individuals in four populations with

European, Asian and African ancestry. SNPs genotyping arrays and clone-based

comparative genomic hybridization were used to scan for CNVs in these DNA samples.

The resulting CNV map consisted of 1447 overlapping and adjacent variable regions,

which included hundreds of genes, disease loci and other functional elements represent-

ing about 12% of the genome. Two important findings derived from this and other recent

studies are that many of these CNVs are strongly inter-related through linkage disequi-

librium, and that different populations exhibit major differences in copy numbers.

In a more recent study, Perry et al. (2008) applied a high-resolution, array-based

comparative genomic hybridization platform to analyze the genomic DNA sequences of

30 individuals from the HapMap project. Their study focused on known CNV regions

and showed that the size of 1020 of these regions, out of 1153, had been overestimated

in previous studies (Perry et al., 2008). Moreover, they found that approximately 8% of

the CNV regions observed in different individuals can be characterized by a complex

organization of smaller CNVs nested into larger ones. Such informational diversity

and complexity of emerging findings underline the key roles that advanced applications

of pattern recognition and statistical analysis will play in CNV analysis in the near

future.

Advanced machine learning approaches are already contributing to the application of

CNV information to novel diagnostic and prognostic models. Using CNV data acquired

with array-based comparative genomic hybridization, Rapaport, Barillot andVert (2008)

proposed a supervised classification methodology based on support vector machines

(Chapter 3), which was tested on different cancer datasets. Domain knowledge was

incorporated into the classifiers to aid in the reduction of the feature relevance search

space and the complexity of the resulting models (Chapter 3). Such domain knowledge

was encoded in the form of prior hypotheses about the potential relevance or redundancy

of the different genomic regions represented in the datasets. This research suggests that

related methodologies can be successful in the CNV-based classification of individuals

and in the identification of potential clinically-relevant chromosomal regions.
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4.6 Key problems and challenges

As discussed in Chapters 2 and 3, the accurate definition of phenotypes, as well as the

construction of case and control datasets, is a critical factor that can affect the outcomes

of a biomarker discovery study. This may become even more problematic in late onset

diseases, such as cardiovascular diseases, because an individual initially assigned to the

control group may eventually become a case in the future. Moreover, it has been

suggested that the use of invasive or cutting-edge techniques for defining phenotypes

may result in a selection bias towards asymptomatic patients (Topol et al., 2006). These

problems in turn make association studies more difficult to reproduce as the definition of

case-control inclusion criteria may vary. Emerging advances in diagnostic technologies,

such as imaging, can contribute to a more accurate and meaningful definition and

categorization of phenotypic classes in different diseases.

The estimation of the optimal number of samples in genome-wide association

studies depends on the biomedical problem and population under investigation, as

well as on other experimental factors, such as tagging selection strategy. Fortunately,

there are techniques available to estimate sample size and statistical power in genome-

wide association studies using representative sets of genotyped and tagged SNPs.

These estimations also take advantage of information publicly available, such as that

generated by the HapMap project, and information about linkage disequilibrium in the

data investigated. Based on such approaches, researchers have shown that statistical

power is directly proportional to increases in sample sizes, as expected. Moreover, it

has been observed that tagging and the selection of tagged SNPs can influence these

estimations (Klein, 2007). Also it has been suggested that statistical power may

be improved by genotyping more individuals at fewer SNPs, rather than having more

SNPs genotyped for fewer individuals. An example of a statistical power estimation

technique (with software publicly available) was proposed by Klein (2007), who

defined three main analysis steps. First, for each genotyped SNP, the best tag SNP is

identified. Second, the statistical power for detecting associations for each of the SNPs

is computed. And finally, the average power over all the SNPs analyzed is used to define

the global statistical power of the study. An introduction to sample size estimation and

statistical power is given in Chapter 2.

Machine and statistical learning techniques are becoming useful tools to support

the discovery of significant genotype-phenotype associations (Ziegler, K€onig and

Thompson, 2008). For example, Malovini et al. (2009) used Bayesian networks to

infer SNPs-phenotype associations and for classification of samples in a hypertension

dataset. Their key contribution was a strategy that integrates multiple SNPs (observed

in the same gene) into a single ‘meta-variable’. The potential of this methodology was

demonstrated by comparing its classification performance against Bayesian networks

built on the relevant (original) SNPs and on haplotypes independently. The estimation

of the prediction performance was done with a hold-out methodology (Chapter 3), and

the mean accuracy of all the methods implemented was under 65%. Another example

that illustrates the potential of machine learning is the application of decision trees

and random forests (Chapter 3) to explore associations between SNPs and risk in

cancers. In a case-control study, Xie et al. (2005) detected associations between

oesophageal cancer risk and 61 SNPs, which allowed classification of samples with

an overall accuracy and sensitivity above 85%. The proposed methodology also
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comprised missing-SNP imputation, classification performance estimation through

10-fold cross-validation and the assessment of the relative statistical significance of

the SNPs.

As discussed above, the integration of biomarkerswith relativeweak associationswith

a phenotype is a key requirement in studies based on genomic variation data. One reason

is that a genomic variant with a relative weak marginal effect may be clinically relevant

under different genetic or environmental contexts (Altshuler, Daly and Lander, 2008).

Moreover, it is important to investigate potentially relevant between-marker associations

that may be responsible for disease pathogenesis or risk reduction. Such relationships

between allelic markers are known as epistatic interactions (Cordell, 2002). These

associations and their relation to specific phenotypes have been investigated using

different statistical and machine learning approaches (Loscalzo, 2007). Examples

include applications in which information derived from multiple SNPs is used as the

input to classification models, such as principal component analysis (Gauderman et al.,

2007) and neural networks (Curtis, 2007). Mechanic et al. (2008) developed the

Polymorphism Interaction Analysis tool (PIA), which implements different techniques

for estimating the potential relevance of different combinations of SNPs in relation to

specific biological pathways and disease status. This system has been applied to explore

gene-gene and gene-environment interactions in cancer research (Mechanic et al., 2008).

PIA can be seen as a feature selection system (Chapter 3), which scores the classification

power of combinations of user-defined SNPs based on the statistical analysis of

genotype-phenotype tables constructed from the population sample. Such tables de-

scribe the (9� 2) possible relations between the observed genotypes and phenotypes

(Mechanic et al., 2008).

The diversity of types of interactions (biomarker-biomarker, biomarker-disease) and

the systems-level complexity emerging from such relationships suggest that the appli-

cation of network-based approaches (Chapter 7) will play a major role in future

genotype-phenotype association studies. But independently of advances in computa-

tional prediction methods, the greatest challenge will be the demonstration and inter-

pretation of the biological relevance of the epistatic interactions identified (Cordell,

2002; Hirschhorn and Daly, 2005).

Recent progress in the development of bioinformatics resources for supporting

genome-wide association studies includes graphical visualization-based approaches.

An example is Goldsurfer2, which allows the detection of global and local patterns based

on hierarchical representations of the data and the integration of multiple views. Golden

Helix (2009) is another software tool that offers different solutions to implement

genome-wide analysis of SNPs and CNV data based on graphical and interactive

visualization of informational patterns, such as linkage disequilibrium. Further advances

in this direction are expected in the near future, and will take advantage of open-source

and extensible software models, as well as of more robust statistical analysis methods

(Buckingham, 2008).

Future advances in bioinformatics and their potential contributions will depend on the

availability of larger datasets, better quality of assays of genomic variation relevant to

both common and rare variants, as well as more detailed and standardized definitions of

phenotypes.

As discussed in Chapters 2 and 3, the assessment of the classification or predictive

capability of emerging biomarker models is crucial for the development and deployment
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of a new generation of clinical decision-support tools based on ‘omic’ data. Different

concerns and caveats, such as the misuse or misinterpretation of the AUC (Chapter 3),

also apply to the specific context of genomic variation research (Pepe and Janes, 2008).

Recent discussions orientated to genotype-phenotype association research confirm the

importance of using diverse, context-dependent model evaluation measures for clinical

prediction, risk assessment and disease classification (Pepe and Janes, 2008).

The reproducibility of genotype-phenotype association studies will continue to be

both a crucial requirement and challenge. Despite the fact that many of the associations

reported to date have not been successfully validated, and that there is no general

agreement on what represents a replication study, important advances to address these

challenges have been recently accomplished. For instance, the NCI-NHGRI Working

Group on Replication in Association Studies (2007) has defined a checklist and specific

recommendations to guide the reporting and replication of genotype-phenotype asso-

ciation studies. This covers different aspects: reporting of study design, data access,

genotyping and quality control procedures, reporting of results, implementation of

replication studies, and recommendations for reviewers to assess the relevance of new

findings. Examples of specific recommendations are the need to use a second exper-

imental platform to evaluate or validate associations, and the reporting of associations

involving markers in strong linkage disequilibrium with the markers putatively asso-

ciated. Furthermore, the importance of disseminating negative association results and

sufficient information on the implementation of the replication study has been under-

lined. This working group has also offered recommendations of direct relevance to

bioinformaticians. This includes the detailed reporting of several aspects, such as

departures from Hardy-Weinberg equilibrium, assessment of potential population

stratification, data displays and documentation ofmethodologies. Chapter 10will further

discuss challenges and recommendations for reporting biomarker studies.
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Guest commentary on
chapter 4: Integrative
approaches to
genotype-phenotype
association discovery
Ana Dopazo
Genomics Unit, CNIC, E-28029, Madrid, Spain

This commentary focuses on the utility of integrative genomics approaches for refining

our understanding of genotype-phenotype associations, specifically through the use of

global gene expression analyses as a complementary approach to DNAvariation studies

for the identification of new clinical biomarkers.

As discussed in Chapter 4, over the last few years, new approaches to geneticmapping

have yielded great progress towards the mapping of loci involved in susceptibility to

common human diseases. However, although improved genetic mapping and the amount

of DNAvariance explained will continue to grow in the coming years, many of the genes

and mutations underlying these findings still remain to be identified and the genotype-

phenotype correlation inmost diseases, bothmonogenic and common complex diseases,

has yet to be well characterized.

Thus, although comprehensive genome-wide DNA analyses are now possible and

additional work is underway, this only represents a first step forward towards a better

biological understanding and clinical applications. To pursue this challenging task there

is room for useful tools such as genome-wide expression studies. Indeed, although
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association methods can define regions in the genome containing the genetic variants

underlying pathological processes and other phenotypes, on their own they provide little

insight into the functional variants and/or mechanisms underlying the phenotype.

However, transcriptional profiling technologies potentially allow not only the interpre-

tation of functional effects of DNA variants, but also the description of functionally

important variants (Stranger and Dermitzakis, 2006). In this regard, transcription level is

a quantitative phenotype that is directly linked to DNA variation (genotype). Although

DNA polymorphisms located outside of coding regions may have no known or evident

functional effects, they may directly modify gene transcript abundance through cis-

regulatory regions or by altering transcript stability or splicing.

Furthermore, several studies have described the genetic basis of transcriptional

variation and have shown not only that gene expression is a heritable trait (Dixon

et al., 2007), but also that degrees of differentiation can be found at the level of gender

(Lawniczak et al., 2008) and within and between populations (Zhang et al., 2008).

Furthermore, current robustness of genome-wide methodologies for studying gene

expression has enabled transcriptome studies on an unprecedented scale and mRNA

abundance can be measured consistently in human tissues and cell lines, as further

discussed in Chapter 5 of this book. Although the potential of transcriptome analysis by

ultra-high-throughput sequencing is currently being explored, microarray technology is

today the most widely used methodology for transcriptome analysis and several

thousands of papers describing data from expression microarrays are published each

year. Today the technology is considered a robust one, and several publications have

demonstrated that good reproducibility can be achieved across laboratories and plat-

forms. It has also been demonstrated that fold change results from microarray experi-

ments correlate well with results from assays such as quantitative reverse transcription

PCR. Furthermore, and although microarray expression data analysis continues to be a

challenging step, basic standards have been established in this area over the last few years

and points of consensus have emerged about the general procedures that warrant use and

elaboration.

Within medicine, microarray-based gene expression profiling has been used success-

fully for cancer diagnostics. The clinical utility of array-based gene profiles has been

evidenced by studies showing that cancer gene-expression signatures may affect clinical

decision-making in, for instance, breast cancer and lymphoma management (van’t Veer

et al., 2002). In this regard, it is worth mentioning that since the initial applications of

expression microarray technology in the field of cancer, more than a decade ago, the US

Food and Drug Adminitration (FDA) issued in February 2007 its first approval of

a multigene prognostic test, the MammaPrint, based on gene expression patterns.

MammaPrint, developed by the Amsterdam-based company Agendia, uses a 70-gene

signature to classify women with breast cancer into ‘low’ and ‘high’ risk of metastasis

(Couzin, 2007). Integrative genomic studies have already shown their potential in the

oncology field. A recent review by Witte (2009) discusses how GWA studies and

expression array results can together refine our understanding of prostate cancer genetics,

and have implications in the screening and treatment of this disease.

The relativematurity of transcript-profiling techniques has also led to their integration

into the field of cardiovascular biomarker discovery. Aiming to explore the systems

biology of cardiovascular diseases by generating usefulmolecular genetic ‘signatures’ of
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different types of diseases, gene expression analyses have been performed onmyocardial

tissue to identify specific patterns in cardiac hypertrophy, myocardial infarction and

different forms of heart failure (Gerszten and Wang, 2008). However, and in contrast to

the relatively easy availability of tumour samples, the validation and application of

transcriptional approaches to the identification of new cardiac biomarkers in humans is,

clearly, limited by the availability of the relevant tissues: the heart and blood vessels. As

an alternative, the use of blood as a tissue surrogate has proved successful in an increasing

number of gene expression studies (Kang et al., 2006) and has received increasing

interest from other biomedical areas (Chapter 4).

Blood transcriptomic approaches to study cardiovascular diseases have been

performed using RNA from whole blood, from different cell-types of fractionated

blood and from immortalized blood cells. As shown in Chapter 5 of this book, there

are an increasing number of examples in the literature of the use of this non-invasive

source of clinical material and of how the peripheral blood transcriptome can

dynamically reflect system-wide biology. Overall, it represents a convenient,

rigorous and high-throughput method of gene expression profiling. It is quite

significant that, despite the delay in the application of emerging genomic technol-

ogies in the cardiovascular arena in comparison with cancer research the FDA

approved AlloMap for marketing in August 2008. AlloMap is a non-invasive test

based on molecular expression techniques for heart transplant patients. This test,

which is developed by the Californian company XDx, measures white blood cell gene

expression values of 20 different genes related to the immune system. This molecular

signature helps clinicians to monitor (post-surgery) heart transplant patients for

potential organ rejection, which is a significant risk for patient survival. AlloMap is

the third multigene-expression test cleared by the FDA after Agendia’s MammaPrint,

approved in February 2007, and ‘Tissue of Origin’, a microarray-based test from

Pathwork Diagnostics approved in July 2008. Tissue of Origin determines the type of

cancer cells present in a malignant tumour.

Advances in human genome annotations, marked improvements in gene expression

technologies, with the inclusion, for instance, of genome-wide level detection of

alternative transcripts and decreased cost of high-throughput experiments, is acceler-

ating our knowledge of human genome-wide transcription in the context of genomic

organization. Overall it is clear that disease susceptibility is mediated by changes in gene

expression, and that the study of these changes can help us to identify pathways in which

genetic variation contributes not only to common diseases, but also to rare monogenic

disorders. Global transcriptome studies of DNA mutation carriers can help decipher the

biological basis of disease (Oprea et al., 2006).

Beyond integrative genomic studies, the identification of new biomarkers will

depend not only on the complementary power of genetics and transcriptional profiling,

but also on proteomics and metabolomics. This will be a long journey and an arduous

transition from the research environment to routine clinical practice. However, there is

no doubt that the current trend of new technologies to systematically assess variation in

genes, RNA, proteins and metabolites will impact different areas of clinical practice

and will contribute to personalized medicine. Despite ongoing advances, the major

challenge is how to integrate different types of data into a comprehensive ‘systems’

view of disease in humans.
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5 Biomarkers and gene
expression data
analysis

This chapter will introduce gene expression data analysis in the context of biomarker

discovery. Fundamental statistical concepts and problems for disease classification and

prediction model design will be reviewed. This will be followed by a discussion of

recent advances and applications in different medical application domains. The content

will be guided by the following topics: (a) biomedical findings and clinical applications,

(b) statistical and data mining methodologies applied, (c) strengths and limitations.

5.1 Introduction

Changes in gene expression can be measured by different types of techniques ranging

from smaller to large-scale approaches, and differing in terms of their reliability and

genome coverage: Northern blotting, real-time polymerase chain reaction (RT-PCR),

serial analysis of gene expression (SAGE), multiplex PCR and different types of DNA

microarrays. These tools allow the detection of differentially expressed genes, up- or

down-regulated genes in relation to specific clinical conditions or functional pathways.

These studies may also be expanded by follow-up or validation studies using additional

gene expression data measured with alternative experimental platforms, or by the

implementation of other ‘omic’ approaches, such as proteomic approaches. The large-

scale acquisition of gene expression data has allowed the design of different biomarker
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models for diagnostic and prognostic applications in cancer, cardiovascular diseases

and other pathologies.

Most of the early biomarker discovery studies in this area consisted of the comparison

of two classes of samples to detect statistically important differences in gene expression,

andwhich aimed to support the prediction of disease emergence or progression (Quacken-

bush, 2006). van’t Veer et al. (2002) reported a pioneering study on the application of

biomarkers based on gene expression profiling for supporting the prediction of clinical

outcomes.Themain goal of this studywas to discover a set of biomarkers to classify (same

stage) cancer patients according to their response to therapy. The result was a set of

70 genes, whose expression profileswere powerful enough to infer the clinical outcome in

young individuals.

Significantly differentially expressed genes have been traditionally used as the starting

point of different biomarker discovery and validation investigations. In principle, such

differential patterns can be directly used as potential biomarkers if their association

with the phenotype investigated offers enough discriminative power. Their applicability

may be enhanced when the gene expression patterns are strongly correlated with

the expression of proteins, especially those that can be measured in the blood or other

fluids. Traditional gene expression analysis for cancer and cardiovascular biomarker

discovery has comprised the profiling of in vitro or in vivo tissue from tumours,

explanted hearts or biopsies. More recently, the application of whole-blood or plasma-

based gene expression profiling has been proposed as a novel alternative to biomarker

discovery.

In the areas of cardiovascular diseases, advances in gene expression analysis have

allowed the identification of a variety of potential biomarkers, such as those useful to

distinguish between ischaemic and non-ischemic heart failure, and between hypertro-

phic and dilated cardiomyopathies (Kittleson and Hare, 2005; Rajan et al., 2006). Gene

expression profiling has also allowed the identification of putative biomarkers of

atherosclerosis, atherosclerotic lesions, plaque rupture, vascular stress and vascular

remodelling. More recently, the gene expression analysis of peripheral blood cells has

become a promising approach to identifying powerful biomarkers and less-invasive

diagnostic techniques, as well as to assessing treatment effects and dissect keymolecular

mechanisms involved in the development of coronary heart disease (Patino et al., 2005;

Chittenden et al., 2006). The systematic analysis of gene expression patterns identified in

tumour samples has also allowed researchers to propose several novel biomarkers

associated with different tumour types and responses to treatments (van’t Veer and

Bernards, 2008). Moreover, gene-expression biomarkers have enabled the identification

of sub-classes of cancers and prognostic signatures in breast and lung cancers. The

combination of microarrays and genomic variation analysis through sequencing of

diverse genes (Chapter 4) has enabled a more detailed characterization of individual

cancers (Sawyers, 2008).

Examples of commercially available biomarker systems based on gene expression

data are MammaPrint, Oncotype DX and the H/I test (van’t Veer and Bernards, 2008).

MammaPrint, by Agendia, is a 70-gene signature for breast cancer prognosis; Oncotype,

by Genomic Health, consists of 16 gene-expression biomarkers for predicting the

recurrence of breast cancer patients treated with an aromatase inhibitor; and the H/I

test, by AviaraDx, is a 2-gene signature that is used to estimate the risk of recurrence and

response to therapy of breast cancer patients.
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5.2 Fundamental analytical steps in gene expression profiling

Advances in experimental technologies for measuring the abundance of messenger

RNA have triggered important changes in theway data are stored, organized, retrieved,

analyzed and shared in the laboratory and clinical environments. Most of the gene

expression data analysis techniques in biomarker discovery research are based on

widely-investigated methodologies and tools developed in the areas of statistical

analysis, computational intelligence and data mining over the past 40 years. However,

domain- and user-specific requirements, constraints and goals have more recently

motivated the development of new methodologies, tools and resources specifically

tailored to gene expression data analysis.

The majority of the early studies reported potential biomarkers extracted from

clustering analysis, such as different versions of hierarchical clustering (Quackenbush,

2006). However, currently the main role of unsupervised classification analysis

(Azuaje, 2003;Wang, Zheng and Azuaje, 2008) may be better defined as an approach

to exploratory data analysis, which is typically followed by supervised classification

modelling (Azuaje and Dopazo, 2005). Because of this, as well as their general

applicability to different diagnostic and prognostic applications, this chapter will

focus on problems, techniques and advances based on supervised learning models

(Chapter 3).

Figure 5.1 summarizes a typical biomarker discovery process based on gene

expression data analysis. Genome-wide gene expression measurements in tissue or

fluid samples with known phenotypes (e.g. metastasis vs. non-metastasis, pathology

vs. control) can be obtained using different gene expression profiling techniques and

Samples from
tissues or fluids

Genome-wide
expression

measurement

Data pre-
processing

Exploratory analysis Gene filtering

Supervised learning models

Cross-validation and
independent evaluations

Figure 5.1 Major phases and procedures for biomarker discovery based on the analysis of gene

expression profiles
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platforms. Data pre-processing includes different steps of normalization and filtering.

Normalization procedures are applied to transform the data into a format that is

compatible or comparable between different samples or assays, as well as to level

potential differences caused by experimental factors, such as labelling and hybridization.

Data filtering procedures are also needed to exclude genes or samples according to

user-defined criteria, such as the exclusion of genes with very low variance across

sample groups or of those genes with little correlation with the class to be predicted

(Quackenbush, 2006).

The resulting dataset can be represented by a datamatrix, whose rows and columns can

represent the genes and samples under analysis respectively. Under this data represen-

tation scheme, a row would represent a vector of expression values associated with a

particular gene across the different samples (e.g. tumour samples), and a column would

represent a vector with the expression values of the genes from a specific sample or

patient. Standard data visualization procedures include colour-coded representations of

absolute or relative expression levels. In such procedures a colour spectrum can range,

for instance, from green through black to red. This colour scale can be used to reflect the

range of gene expression values observed in a dataset: from the lowest negative (down-

regulation) to the maximum positive (up-regulation) values.

After performing standard normalization and pre-processing procedures, a typical

analysis task is to determinewhich genes can individually be used to distinguish between

two groups of individuals. This can be done by applying, for instance, several hypothesis

testing approaches using different expression or fold change thresholds and several

criteria for making multiple-hypotheses testing corrections (Chapter 2). This phase can

also be supported by exploratory data analysis based on unsupervised classification

(clustering) and visualization. Different filtering approaches (Chapter 3) can also be

applied to further remove uninformative, highly noisy or redundant genes for subsequent

analyses. This is commonly followed by the implementation of a variety of supervised

classification techniques, including those that can be used to perform ‘wrapper’ and

‘embedded’ feature selection (Chapter 3). Despite different efforts to compare many of

the supervised classification techniques commonly applied (Li, Zhang and Ogihara,

2004a; Pirooznia et al., 2008; Statnikov et al., 2005; Statnikov,Wang andAliferis, 2008),

there is no single approach that can be considered as the ‘best solution’ to the great

diversity of biomarker research applications based on gene expression profiling. For

additional guidance on design factors and selection criteria the reader may refer to

Chapter 3.

The classification or predictive capability of the resulting models is estimated by

cross-validation, followed by different independent validation phases (Chapter 3). In

practice, this biomarker discovery process relies on the analysis of gene expression data

together with multiple sources of information, including literature, as well as curated

functional annotations (e.g. Gene Ontology terms) and disease-related pathways stored

in different external public and commercial databases. Figure 5.2 depicts such an

integrative view of gene expression analysis for biomarker discovery, in which prior

knowledge is used to: (a) describe potentially relevant genes and processes, and (b) to

estimate the potential biological and clinical relevance of the outcomes. The best known

example of this approach is the statistical detection of Gene Ontology (GO) terms,

mainly biological processes, significantly represented in a set of genes differentially

expressed across case-control groups (Al-Shahrour et al., 2006). The typical approach
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identifies sets of genes overrepresented in a specific functional category (Goeman and

B€uhlmann, 2007) using statistical tests, such as those based on 2� 2 contingency tables

and different methods for multiple-hypotheses testing corrections (Chapter 2).

Data pre-processing steps are essential for dealingwith the following problems: digital

re-formatting, data encoding, missing data, filtering and data transformation. The latter

includes different procedures for re-scaling, normalizing and standardizing the data.

These procedures are fundamental to assure data integrity and quality prior to their

integrative analysis and modelling (Azuaje and Dopazo, 2005). Data exploration and

statistical analyses are in practice implemented through several iterations. This allows

researchers to focus their attention on smaller sets of potentially novel and interesting

data patterns (e.g. groups of samples or gene sets). This in turn is useful to confirm initial

hypothesis about the relevance of the features available and to guide future experimental

and computational analysis. This can be achieved by the application of different data

reduction, mapping and visualization-based techniques (Azuaje and Dopazo, 2005). As

explained in Chapter 2, the implementation of statistical analysis tasks is fundamental to

characterize major differences between groups of patients, such as presence vs. absence

of a disease, or other clinically-relevant sub-classes. This can require the application and

interpretation of parametric and non-parametric hypothesis-testing tasks for different

types of data (e.g. numerical, nominal).

The resulting groups of genes and associations derived from initial exploratory phases

are analyzed by the combination of information extracted from publicly or commercially

available data sets, annotated functional databases and published papers. These tasks aim

to: (a) estimate the potential relevance of the identified genes and relationships; (b) to

discover other significant genes and relationships (e.g. gene-gene or gene-disease) not

Microarray data Phenotype or clinical data

Data pre-processing

Statistical and exploratory analyses

List of potential
relevant genes

Significant patterns
and moleculer-clinical

data relationships
External databases

and knowledge bases

Supervised learning models based on gene expresion patterns

Novel biomarkers, disease-related processes and pathways

Scientific literature
databases

Figure 5.2 A typical example of the integration of gene expression data analysis with prior

knowledge to support the identification, characterization and evaluation of potential biomarkers
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found in previous data-driven analysis steps. Some of the external databases and tools

that can support these tasks are: human gene annotation databases (including those

annotated to the GO), metabolic pathways databases (e.g. KEGG), gene-disease

association extractors from public databases (e.g. Endeavour), and functional catalo-

gues. These tools are further discussed in Chapters 8 and 9.

These information sources can be explored, integrated and exploited through different

open-source software platforms, such as Cytoscape andGEPAS (Chapter 9). Large-scale

data mining and information extraction from published papers, such as those indexed in

Medline, can also be implemented by combining the application of human expert-driven

verification and different advanced text mining tools, such as iHOP (Hoffmann and

Valencia, 2005), PreBIND (Donaldson et al., 2003) andChilibot (Chen and Sharp, 2004).

The combination of the resulting data- and knowledge-driven findings, patterns or

predictions provide a selected catalogue of genes, pathways and (gene-gene and gene-

disease) relationships relevant to the phenotype classes investigated. The analysis and

integration of this diversity of gene expression-based analysis outcomes can also be seen

as part of a systematic, integrative data mining process that requires the incorporation of

diverse and functionally-related information resources (Chapter 8). Such iterative,

incremental discovery processes also aims to computationally generate and experimen-

tally validate new hypotheses about the biological roles of new biomarkers or their value

as potential therapeutic targets.

5.3 Examples of advances and applications

Microarrays may be used to measure the level of expression of thousands of genes in

parallel indifferent samples types and specific experimental conditions. In cancer research

these technologies have been widely investigated for supporting molecular classification

of different types of tumours and responses to treatment (Azuaje and Dopazo, 2005;

Montero-Conde et al., 2008).Within the area of cardiovascular diseases, their application

for aiding in the understanding of heart failure (HF) in non-ischemic, inherited (dilated

and hypertrophic) cardiomyopathies has received relatively more attention (Barth et al.,

2006; Rajan et al., 2006; Wittchen et al., 2006) in comparison to ischaemic (post-

myocardial infarction) heart failure (Stanton et al., 2000). Furthermore, research in theHF

area has mainly focused on the study of end-stage HF (Tan et al., 2002; Sanoudou et al.,

2005; Benjamin and Schneider, 2005; Frankel et al., 2006).

The application of microarray technologies has helped to provide new insights into

known disease-related processes or to determine novel molecular mechanisms relevant

to the development of HF (Tan et al., 2002; Seo, Ginsburg and Goldschmidt-Clermont,

2006; Wittchen et al., 2006; Heidecker et al., 2008). The involvement of cytoskeleton-

related genes, as well as genes relevant to energy production, contractility, cell cycle

control, immunology and apoptosis, has also been associated with different stages of HF

(Grzeskowiak et al., 2003; Liew, 2005). For example, modifications in gene expression

patterns connected to energymetabolism have been consistently observed across dilated

(DCM), hypertrophic (HCM) and ischaemic cardiomyopathies (ICM) (Kittleson et al.,

2004; Sanoudou et al., 2005; Sharma et al., 2005). In addition to these molecular

pathways and genes, recent studies have shown significant roles of protein translational,

matri-cellular and immunological mechanisms in end-stage HF (Sharma et al., 2005).
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Other studies have confirmed the down-regulation of immune response genes in DCM as

prominent indicators of HF (Nian et al., 2004; Barth et al., 2006).

Microarrays have also been applied to distinguish gene expression profiles of ICMand

non-ICM (Kittleson et al., 2004). It has been shown that gene expression profiling can

accurately predict cardiomyopathy etiology, which also supports the application of

microarray technologies for HF prognosis. The comparison of multiple studies indicates

that, although different etiologies underlying HFmay be characterized by common end-

stage patterns of gene expression, it is also possible to identify unique patterns directly

correlatedwith the etiology or the severity of the disease (Nanni et al., 2006; Heidecker

et al., 2008). These technologies have also been successful in finding statistically-

detectable differential changes of gene expression in coronary artery disease, such as

those observed between atherosclerotic vs. non-atherosclerotic samples (Archacki

et al., 2003; Patino et al., 2005).

Major alterations of gene expression patterns in response to myocardial infarction

have been identified in rat models ofMI (Stanton et al., 2000). More than 200 genes have

been shown to be significantly differentially expressed in response to MI in the left

ventricle and intra-ventricular septum, in comparison to samples obtained from normal

samples.More compact and robust sets of genes have been proposed for the classification

of different HF etiologies (ICM and DCM) and normal hearts (Barth et al., 2006). Such

signatures include the deregulation of genes encoding brain natriuretic peptide (BNP),

BNP-related, sarcomeric structural, cell cycle, proliferation and apoptosis proteins in

cardiomyopathy.

The biomarkers presented above were identified mainly by applying statistical

hypothesis testing procedures (Chapter 2), including multiple-hypotheses testing, based

on traditional parametric methods, such as the t-test and ANOVA, applied to relatively

small sample sets (<100). This can be seen as a defining feature of a ‘first generation’ of
gene expression-based biomarker studies in different biomedical areas. This gaveway to

relatively more powerful and reliable biomarker selection and classification techniques,

such as SAM (Chittenden et al., 2006; Popper et al., 2007), PAM (Wang et al., 2007),

decision trees (Huang et al., 2008), random forests (Boulesteix, Porzelius and Daumer,

2008) and support vector machines (Montero-Conde et al., 2008). These and related

statistical and machine learning techniques were introduced in Chapters 2 and 3.

Blood cells represent a novel and promising source of molecular information, which

can be assessed through microarray data analysis. The ability of blood RNA to reflect

molecular and physiological states of solid tissues and organs in humans have been

demonstrated (Liew, 2005; Moore et al., 2005). The predictive potential and applica-

bility of this resource is rooted in the fact that there is a continuous dynamic interaction

between blood cells and the body organs. This interaction may induce subtle changes in

the gene expression patterns of the blood cells, which actually mirror physiological

modifications or stimuli at the tissue or organ levels.

This strongly indicates the relevance of biosignatures extracted from blood RNA as

potential ‘biosensors’ to estimate, for example, the presence or future onset of a disease.

It has been estimated that blood cells can express approximately 80% of the genes

encoded in the human genome (Liew et al., 2006). A similar proportion of genes

expressed in different organs, including the heart, have also been detected in peripheral

blood samples (Liew et al., 2006). Diagnostic or prognostic applications of blood cell

gene expression profiling have been evaluated in a diverse range of diseases, such as
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coronary heart disease (Ma and Liew, 2003), hypertension (Bull et al., 2004), Kawasaki

disease (Popper et al., 2007), development of collateral circulation in patients with

coronary heart disease (Chittenden et al., 2006), different types of cancer (DePrimo

et al., 2003; Montero-Conde et al., 2008), lupus (Bennett et al., 2003), hepatitis C virus

infection (Huang et al., 2008) and neuronal injuries (Tang et al., 2003).

Eady et al. (2005), for instance, demonstrated that transcript levels for the majority of

genes in peripheral blood cells are consistent within samples from the same individual,

and that variation between healthy individuals may be statistically detectable or

‘significant’. Also their study showed that between-individual differences in expression

profiles can be explained by sex, age and bodymass index.Another important conclusion

was that gene expression profiles obtained from an individual can be comparatively

stable over time. Eady et al. (2005) arrived at these conclusions after analyzing gene

expression profiles with hypothesis testing procedures (t-test, ANOVA) and multiple-

hypotheses testing corrections based on the Bonferroni and FDR methods (Chapter 2).

The potential clinical significance of approaches to detecting blood-derived bio-

signatures is enhanced when one takes into account that blood sample extraction is

relatively non-invasive and inexpensive in comparisonwithmany traditional procedures,

such as biopsies. Thus, blood sample gene expression profiling represents a feasible

substitute for solid tissue samples, such as those directly obtained from tumour or heart

tissue, which can significantly accelerate translational biomedical research and the

implementation of more advanced clinical decision-support systems.

Early contributions in this area have gone beyond the application of the typical t-test

and hierarchical clustering approaches, and incorporated more rigorous methodologies

to implement multiple-hypotheses testing and supervised classification. One such an

example was the demonstration that peripheral blood mononuclear cells from patients

during acute ischaemic stroke show differentially perturbed gene expression profiles

(Moore et al., 2005). Following the application of t-tests and corrections for multiple-

hypotheses testing based on Bonferroni and FDR methods (Chapter 2), the PAM

algorithm (Chapter 3) detected a set of 22 genes as potential strong predictors of stroke.

The classification model construction process was implemented on samples from stroke

and healthy individuals (20 samples in each group). The classification model was

subsequently validated on an independent cohort of similar sample size, and resulted in

sensitivity and specificity values around 80%.

5.4 Examples of the roles of advanced data mining
and computational intelligence

Some of the examples introduced above are based on the application classification and

prediction models originating from the area of data mining and computational intelli-

gence, as introduced in Chapter 3. Different schemes that integrate these models with

traditional statistical analysis, such as the multi-stage, serial application of filters prior to

machine learning classification, have been reported in the literature. These advances aim

to address typical design obstacles, such as the curse of dimensionality and the availability

of noisy or incomplete datasets.

An example of the application of a hybrid ‘learning’ methodology was based on the

combination of ‘partial least squares’ data dimensionality reduction (PLS) and random
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forests (Boulesteix, Porzelius and Daumer, 2008). This approach also integrated gene

expression and clinical information, such as traditional prognostic factors, to demon-

strate the added prediction value of gene expression information in cancer prognostic

applications. In this example, random forests were built on reduced datasets obtained

from the microarray and clinical datasets independently. The authors demonstrated how

microarray-based biomarkers can add significant predictive value in comparison to or in

combination with traditional clinical biomarkers. Another multi-stage filtering and

classification methodology was reported by Huang et al. (2008) to predict the treatment

response of patients infected with the hepatitis C virus. The outcomes of several

statistical hypothesis-testing techniques, such as the t test, Wilcoxon test and SAM

(Chapter 2), were combined to detect lists of differentially expressed genes between

‘good’ and ‘poor’ response groups. The resulting genes were used to construct a decision

tree-based classifier (Chapter 3).

Gene expression profiles measured with microarrays in peripheral blood cells have

also been linked to the occurrence of thoracic aortic aneurysm (TAA) based on the

combination of traditional statistical analysis and machine learning techniques. For

example, Wang et al. (2007) proposed a gene expression signature that can accurately

detect individuals at risk of developing this pathology. A 41-gene classification model

achieved overall classification accuracy above 75%. An independent validation of the

model on gene expression data acquired with real-time PCR reported similar results.

Wang et al.’s methodology (2007) can be summarized as follows. The model training

phase (Chapter 3) enabled feature selection and classification model construction based

on multiple-hypotheses testing and the PAM algorithm (Chapters 2 and 3). The dataset

consisted of 61 samples: 36 TAA patients and 25 controls. The data acquisition and

standard pre-processing phase resulted in more than 16 000 genes, which were subse-

quently analyzed for ranking purposes based on a bootstrap sampling method and the

t-test. In this gene ranking (multiple-hypotheses testing) process, multiple datasets were

randomly generated from the (training) data by sampling with replacement (Chapter 3)

and the t-test was applied to each of these partitions. For each data partition, Wang et al.

(2007) selected and recorded the top 500 genes on the basis of their corresponding

P values. An overall gene ranking procedure can be conducted by looking, for example,

at the frequency of the ranked genes across all the partitions or at the average rank of

each gene.

Based on this method,Wang et al. (2007) obtained a list of around 100 genes that were

differentially expressed between TAA and control classes. These genes then represented

the input to the PAM technique that selected a set of optimal features for classification,

using 10-fold cross-validation on the complete training dataset (Chapter 3). The resulting

PAM-based 41-gene classifier reported overall (10-fold cross-validation) classification

accuracy, sensitivity and specificity above 75%. This classifier was tested on an

independent dataset consisting of 33 samples (22 TAA and 11 controls), and reported

similar classification performance results.

5.5 Key limitations, common pitfalls and challenges

These emerging and future advances strongly motivate and require the application of

advanced data analysis techniques and tools. New research directions are also needed to

5.5 KEY LIMITATIONS, COMMON PITFALLS AND CHALLENGES 85



augment the quality and range of applications ofmicroarray technologies. Thiswould not

only demand adeeper understanding of the underlyingmechanismsof health anddisease,

but also the identification of novel diagnostic and prognostic biomarkers. However, the

current state of the area also highlights fundamental limitations and obstacles to the full

realization of the benefits promised by these technologies and advances. Key experi-

mental challenges are the complexity and cost of extracting samples from heterogeneous

tissue, aswell as the possible inability to represent alternate splicing, post-transcriptional

modifications and reflect the activity of specific cellular localizations. The level of noise

and variation of data in real-world applications can also be influenced by errors and

inconsistencies in sample and assay handling, as well as differences in intra- and inter-

laboratory experimental conditions and assay processing protocols (Simon, 2006).

From a computational research point of view, inconsistent and relatively insufficient

statistical analyses, may represent major sources of false positive predictions (Ginsburg,

Seo and Frazier, 2006; Azuaje and Dopazo, 2005; Jafari and Azuaje, 2006). The

heterogeneity of sample sources and experimental protocols may also strongly deteri-

orate or confound the observed responses or behaviours (Ginsburg, Seo and Frazier,

2006). Furthermore, there is a need for applying more accurate and reliable methods for

measuring or defining phenotypic classes (Chapter 10).

Important limitations created by the biological and statistical nature of gene expres-

sion data should be considered when designing models and interpreting results. Major

challenges and obstacles include the fact that gene expression levels may significantly

vary not only between disease states, but also between the samples defining these groups.

In addition, important variations between samples can be actually influenced by

experimental factors, such as the selection of ‘controls’ for data normalization in

different experimental microarray analysis platforms (Tanriverdi and Freedman, 2008).

Potentially spurious differences in expression profiles may also be explained by the

origin of the biological samples analyzed, rather thanmolecular effects directly related to

a disease or phenotype. For instance, it has been reported that for the same biomedical

study important differences may be observed between datasets obtained from whole-

blood and leucocyte samples (Tanriverdi and Freedman, 2008). It has been shown that,

when these two gene expression data acquisition methods are compared, seemingly

‘significant’ differential expression patterns may be determined by the biological source

of the RNA, and not by the actual processes or disease conditions under comparison

(Feezor et al., 2004).

The power of biomarkers for the prediction of responses to treatments, such as cancer

therapies, can be limited by the fact that some treatments may produce very subtle

changes in gene expression and because specific responses may be driven by multiple,

subtle variation patterns at theDNA level (Chapter 4). Thismotivates the investigation of

novel computational advances to support the implementation of classification and

prediction models based on heterogeneous data inputs, such as the combination of

gene expression and genomic variation data. Also, it has been suggested that hundreds of

samples are required to discover potentially useful gene expression signatures for drug

response prediction (van’t Veer and Bernards, 2008). In cancer research, the inclusion of

metastatic cancer patients undergoing multiple treatments may represent another major

problem because of the difficulty in establishing specific treatment-response associa-

tions. These challenges require context-specific decisions in connection to the selection

of patients, therapies and clinical settings (van’t Veer and Bernards, 2008).
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The problems associated with multiple-hypotheses testing, the curse of dimensionality

and the relative lack of data will continue receiving special attention as critical design

factors (Chapter 2). This will be required despite the variety of ‘standard’ approaches and

software tools available, and the increasing ‘awareness’ of such problems in the life and

medical sciences research communities. In some cases, perceived limitations may be

easily addressed by improving reporting practices or providingmore detailed information

about experiments and biomarker models (Chapter 10). However, in some cases there are

still reasons to be concerned about the soundness of computational and statistical

methodologies applied (Simon, 2006). Researchers should continue improving practices

to reduce predictive bias and model over-fitting through the correct application of cross-

validation approaches. The latter should include a clear separation of training and testing

(and evaluation) phases with regard to the datasets selected. This and other problems

related to selectionbiaswere discussed inChapter 3. Themain application principle is that

the data used to build a classification model, which may also include a ‘wrapper-based’

feature selection phase, should not be used to test the model or estimate its predictive

performance. An example of the correct application of this fundamental practice is

provided by Asgharzadeh et al. (2006), who applied nested cross-validation (Chapter 3)

to build, optimize and evaluate a classification model for patients with metastatic

neuroblastoma.

Chapters 2 and 3 reviewed available options for estimating and reporting model

accuracy or prediction performance, which are suitable to gene expression-based clas-

sification techniques. If the desired outcome of a biomarker study is the development of

newdisease classificationor clinical outcomeprediction systems, then researchers should

move beyond the idea of simply listing ‘significance’ statistics. This requires placing

emphasis on fundamental properties relating to the discrimination, classification or

prediction capability showed by the computational models built with such biomarkers.

Appropriate cross-validation and independent evaluation of models on the basis of key

factors, such as sensitivity and specificity (Chapter 2), should be seen as the crucial ‘tests’

tobepassedbyanewdiagnosticorprognosticmodel.Thus, researchersshouldavoidover-

emphasizing the potential ‘significance’ ofP values or regression coefficients associated

with the inputs of a statistical model, that is individual biomarkers (Simon, 2006).

The relative lack of gene expression data and the underlying biological complexity of

diagnostic and prognostic models, together with the increasing availability of annotated

information in the form of functional pathways and networks, are triggering the

development of new biomarker selection and classification methods based on the

integration of gene expression and network information. Important advances, to be

reviewed in more detail in Chapters 7 and 8, have been based on the idea of searching for

signalling pathways or protein complexes showing high differential expression activity

in relation to specific phenotypes. A typical approach consists of focusing on those

pathways with ‘high differential expression scores’, such as those based on t-statistics,

between case and control samples (Lee et al., 2008). Thus, the genes participating in such

‘perturbed’ pathways can be selected as the inputs to subsequent analyses or classifi-

cation models based on different machine learning techniques. These approaches may

not only outperform computational models based on gene expression data only, but also

offer alternative insights into themolecularmechanisms underlying the pathogenesis and

development of diseases or responses to therapies.
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With the ability to measure simultaneously the expression levels of thousands of genes

in a single experiment, global gene expression profiling technologies such as micro-

arrays and serial analysis of gene expression (SAGE) offer significant advantages in

the search for new biomarkers. However, the massive amounts of genome-wide

expression data generated pose a great challenge for data mining and analysis. It

has been shown that traditional statistical and classification techniques are not

sufficient to address some fundamental issues in the search of novel and meaningful

biomarkers. For example, one common practice is to apply statistical tests to score

genes on the basis of their associationwith specific clinical outcomes and then to select

the top-ranked genes as biomarker candidates, whichmay result in the identification of

a set of highly correlated biomarkers. Gerszten and Wang (2008) argued that, in order
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to achieve a significant improvement in predictive performance, new orthogonal

biomarkers associated with new disease pathways are needed. Unsupervised cluster-

ing techniques and recent advances in network-based analysis offer great benefits in

this endeavour.

Unsupervised clustering approaches

Clustering is the process of partitioning a set of data items into clusters, such that similar

items are grouped into the same cluster, whereas items in separate clusters are more

dissimilar.Clustering techniqueshaveattractedagreatdealofattention ingeneexpression

analysis because they can detect previously unknown classes in large high-dimensional

data. As shown by D’haeseleer (2005) and others, data clustering is often one of the first

steps in a typical gene expression analysis.

The recognized significance of unsupervised clustering has triggered many efforts to

design accurate ad hoc clustering algorithms. In the past decade, numerous clustering

algorithms have been proposed, such as: hierarchical clustering, k-means and self-

organizing maps (SOM). However, due to the heterogeneity and complexity of gene

expression data, none of the currently available clustering algorithms has consistently

outperformed the others. Thus, researchers typically apply different clustering models

and compare outcomes in order to generatemoremeaningful and reliable results. To ease

this burden, a number of interactive, integrated clustering and visualization platforms

have been published. Recent effort includes the AMIC@Web service (Geraci, Pellegrini

and Renda, 2008), which provides a uniform and highly interactive interface to several

clustering algorithms for gene-expression data.

It is worth noting that most of the current available clustering packages mainly focus

on the analysis of gene expression data obtained from microarray experiments. Clus-

tering analysis of SAGE data, for example, has received less attention. There are two

important differences between SAGE and microarray data. Unlike microarrays, which

are restricted to the analysis of previously characterized genes, SAGE allows for the

detailed examination of all the transcripts present within a cell without full knowledge of

gene sequences. Also, the generation of SAGE data is governed by a different statistical

model. Unlikemicroarray data, it has been shown that the number of a specific SAGE tag

observed in a specific SAGE library approximately follows a Poisson distribution

(Wang, Zheng and Azuaje, 2008). Thus, the application of currently available clustering

techniques with traditional distance measures, such as the Pearson correlation and

Euclidean distance, to analyze SAGE data may not be appropriate. This has motivated

several efforts towards the design of novel clustering algorithms specially tailored to

SAGE data analysis.

Examples of new clustering algorithms for SAGEdata are the PoissonHC and PoissonS

techniques (Wang, Zheng andAzuaje, 2008). The basic philosophy behind these efforts is

to incorporate Poisson statistics-based similarity measures into the learning process of

currently available clustering algorithms, such asHierarchical clustering andSOM.These

techniques consider an important property of SAGE data: the expression levels of highly

expressed tags tend to be more accurate and reliable than those of the weakly expressed

tags. A review of current advances in clustering approaches to SAGE data analysis can be

found in Wang, Zheng and Azuaje (2008).
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In the development of clustering approaches to biomarker discovery, another funda-

mental issue is to evaluate the quality of clustering results to ensure that the biomarkers

identified are at least statistically reliable. Examples of techniques for clustering

evaluation include the development of various cluster validity indices and class-

representation statistical tests, which mainly rely on indicators derived from the data

under study, such as the hypergeometric distribution-based test.

While these data-driven evaluation methods have been implemented in gene expres-

sion analysis with varying success, it is evident that they are not sufficient to determine

whether the clustering outcomes may be biologically meaningful. Recent years have

seen a growing trend towards the incorporation of prior biological knowledge, such as

functional data and biochemical pathway maps, to assess the quality of the outcomes

derived from clustering analysis of gene expression data. A comprehensive review of

these applications was provided by Khatri and Dr�aghici (2005).

Module-based approaches

The outcomes of traditional methods of gene expression analysis are lists of potentially

relevant genes, whose relationships are inferred from the data under consideration.

Though successful in many areas, such a methodology exhibits several limitations that

hinder its performance. For example, because the analyses are carried out at the gene

level, they are sensitive to the inherent noise that exists both in the sample population and

in different data acquisition stages. Segal et al. (2005) argued that simply listing genes

associated with certain types of diseases is far from the identification of the biological

processes in which these genes are involved and the causal mechanisms that might give

rise to diseases.

In an attempt to extract high level and more interpretable expression patterns

associated with disease phenotypes, several studies have utilized ‘gene modules’ as

the basic building blocks to study diseasemechanisms at themolecular level. Instead of

examining the expression profile of each gene in isolation, the idea is to analyze the

joint behaviour of a set of genes and to organize them into ‘higher-order modules’, in

which sets of genes act in concert to perform a specific function (Segal et al., 2005). It

has been demonstrated that such a module-level analysis can offer a better under-

standing of the molecular basis of human disease development and progression (Segal

et al., 2005).

Apart from examining transcriptional changes in genes or functional modules for the

identification of disease biomarkers, recent contributions include the integration of gene

expression data with genomic and proteomic data. One example is the combination of

gene expression data with human protein interaction networks. Taylor et al. (2009)

recently examined the ‘dynamic structure’ of human protein interaction networks to

determine whether changes in the organization of the interactome can be used to predict

patient outcomes. In the context of cardiovascular diseases, Camargo and Azuaje (2008)

integrated gene expression analysis with a protein-protein interaction network to

investigate potential biomarkers of dilated cardiomyopathy (DCM). The main outcome

of their studywas a set of integrated, potentially novel DCM signature genes, which may

be used as reliable disease biomarkers. The reader is referred to Chapters 7 and 8 which

discuss these approaches in more detail.
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Final remarks

The relative lack of robust statistical analysis and the heterogeneity of data sample

sources and experimental protocols represent important challenges to discovering

clinically-relevant and reproducible biomarkers. This motivates the design of new

computational methods that go beyond the analysis of top-ranked genes (Ein-Dor

et al., 2006). This also means that new biomarker candidates may originate from lists

of genes that are not necessarily differentially expressed, and that their behaviour should

be analyzed at different network levels.

Module-based gene expression analysis has already provided important insights into

the biological mechanisms underlying various diseases. However, there is a need to

incorporate temporal and spatial information into such network-based analyses. It has

been shown that the full potential of module-based analysis may not be realized without

studying the dynamic organization of biological networks (Taylor et al., 2009). This will

benefit from the development of new integrative bioinformatic platforms that go beyond

the ‘single-marker’ analysis paradigm (Azuaje, Devaux and Wagner, 2009).
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6 Proteomics and
metabolomics for
biomarker discovery:
an introduction to
spectral data analysis

This chapter will begin with an introduction to proteomics and metabolomics: Funda-

mental definitions, problems and key applications, with an emphasis on data obtained

from spectral analysis of clinically-relevant samples. This will be followed by a

discussion on the characteristics of the data and information generated in these areas,

and of key approaches to biomarker discovery in proteomics and metabolomics. An

introduction to feature transformation and selection will be provided, which comple-

ments the content of Chapter 3. The chapter will conclude with an overview of key

computational resources and a discussion of current challenges and emerging research

directions. The overview of resources will be complemented by Chapter 9.

6.1 Introduction

Proteomics and metabolomics have become promising technologies for the discovery of

biomarkers in different complex multi-factorial diseases, such as cancers (Abate-Shen

and Shen, 2009) and cardiovascular diseases (Sabatine et al., 2005). These areas refer to

the analysis of the clinically-relevant catalogues of proteins and metabolites. These

approaches may represent powerful complementary views of the molecular state of the

Bioinformatics and Biomarker Discovery: “Omic” Data Analysis for Personalized Medicine Francisco Azuaje
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cell at a particular time. One of the major challenges is the diversity of cell types

contributing to the human proteome and metabolome (e.g. measured in the plasma) and

the low concentration levels of many of the proteins suggested as potential disease

biomarkers.

The wide range of biomedical applications of proteomics and metabolomics means

that there is a continuous growth of the volumes and complexity of these data, which will

require advanced algorithms, methodologies and software for data analysis, manage-

ment and visualization (Radulovic et al., 2004). This in turnwill need the development of

new approaches to information representation and modelling, and advanced tools for

data reusability and interoperability (Cannataro, 2008).

The aim of proteomics is to identify and quantify all proteins expressed in a cell at a

given time or under specific biological conditions. Metabolomics is the study of the

products of metabolism, such as sugars, lipids and amino acids. The metabolome is

defined as the complete set of metabolites found in the human body. Such metabolites

represent molecules that are smaller than proteins, RNA and DNA molecules. Small

molecules typically refer to molecules with mass smaller than 1500 Daltons (Da)

(Wishart, 2007). A related area is ‘metabonomics’, which places emphasis on the

systemic changes of complex systems through time (Nicholson and Lindon, 2008). But

commonly the terms metabolomics and metabonomics are used interchangeably.

Proteomics and metabolomics share many computational problems, requirements

and challenges with other key ‘omic’ areas, such as genomics and transcriptomics.

Biomarker discovery based on any of these data types depends on the availability of

software and data analysis techniques for selecting relevant features, classification and

management in the presence of the curse of dimensionality and multiple data formats

(Chapter 3). Moreover, progress in biomarker discovery is driven by statistical and

machine learning techniques, knowledge management and integrative software

infrastructures.

This chapter focuses on major data mining tasks required for disease biomarker

discovery based on spectral data, which can originate from proteomic or metabolomic

experiments. Special emphasis will be given to computational problems, concepts and

‘generic’ approaches to analying spectral data, which can be common, or easily

adapted, to both areas. Key limitations and requirements of techniques and applications

are also discussed.

6.2 Proteomics and biomarker discovery

Proteomic databases, biomarkers and applications have been reported to classify patients

on the basis of different phenotypes or medical conditions. Biomarker discovery using

proteomics has traditionally relied on the identification of differentially expressed

proteins using control (e.g. healthy, good treatment response) and case (e.g. disease

conditions) samples secreted in serum, plasma or solid tissue (Anderson, 2005;

Peacock et al., 2008). Examples of technologies for identifying or measuring protein

expression are: Western blotting, 2-dimensional gel electrophoresis, antibody arrays,

mass spectrometry and nuclear magnetic resonance (Section 6.4). Amongst them, the

most widely applied technique is mass spectrometry (Webb-Robertson and Cannon,

2007). In practice, different combinations of experimental technologies (Section 6.4)
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may be required for extracting proteomic spectral data from different types of tissue and

fluid samples. These experimental technologies have allowed the generation of large sets

of proteomic data from human tissue, seminal fluid, urine, blood, and cell lines (Duncan

and Hunsucker, 2005; Peacock et al., 2008).

Over recent years proteomics research has developed two main experimental direc-

tions: The identification of peptides/proteins in samples, and the understanding of

physiology and pathology based on large-scale datasets. The former task has been

based on the search and retrieval of similar peptide/proteins from databases and de novo

predictions (Webb-Robertson and Cannon, 2007). The latter includes protein profiling

that aims to discover biosignatures, for example from urine or plasma samples, capable

of differentiating between disease and control groups (Duncan and Hunsucker, 2005).

The main phases involved in a typical biomarker discovery process based on mass

spectrometry are: (a) sample preparation, separation and labelling; (b) experiment

implementation and data acquisition; (c) spectra pre-processing; (d) peptide/protein

identification (database or de novo sequencing) and quantitation; and (e) pattern

discovery and classification (Cannataro, 2008). The latter two tasks, (d) and (e), do

not require sequential implementation: the implementation of these tasks actually will

depend on the study goals and resources. For instance, pattern discovery and classifi-

cation are suitable for large-scale analysis of potentially novel biomarkers described by

sample fingerprints or signatures. This phase is challenged by the need to implement

sound and robust data dimensionality reduction, transformation or selection (see below),

in which the number of features representing each sample is much larger than the total

number of samples available (Chapter 3).

Data pre-processing includes signal filtering, baseline subtraction, normalization,

noise reduction, peak extraction, dimensionality reduction and transformation, and data

exploration (Veltri, 2008). The first five tasks are commonly implemented using

commercial software embedded with the data acquisition equipment. The other pre-

processing tasks may be implemented by combining a variety of commercial and public

software tools.

Database search methods have become the traditional method for peptide/protein

identification, and an increasing number of advanced databases and search algorithms

are becoming available to augment the accuracy of identification tasks, together with

greater reduction of false positive rates. The database search approach to peptide

identification requires a database of known organism-specific peptides, which is used

to match an unknown spectrum in the experimental samples under investigation. Thus,

the ‘most similar’ spectra in the database is used to infer the peptide to be associated

with the experimental spectrum based on different ‘matching’ or ‘scoring’ metrics.

When different matching spectra are found in the database, a ‘spectrum model’ can be

estimated to be compared with the experimental spectrum (Webb-Robertson and

Cannon, 2007). Different types of information are used to estimate between-spectra

similarity, such as peak intensities and correlations between the spectra. The inference of

spectra models can also be obtained from average probability values, individual

probability values associated with each ion in a spectrum, or peak occurrence patterns

detected by statistical learning approaches (Webb-Robertson and Cannon, 2007). These

techniques together with advances in data compression are improving the capacity of

matching unknown peptides to sets of studied sequences stored in different databases.

For supporting the identification of proteins in proteomic database search methods
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(Section 6.3), there are several commercial and non-commercial systems that mainly

query publicly-available databases (Veltri, 2008). However, these and other

applications are becoming available as modules of integrated solutions that are being

developed to implement the different phases of the proteomic data management work-

flow (Section 6.8).

As expected, the association of an experimental spectrum with a peptide using the

database search approach depends on the availability of known peptides accurately

represented in the database. Moreover, its performance will be deteriorated in the

presence of novel proteins, mutations, complex mixtures of proteins and experimental

(sequencing) errors. De novo peptide identification aims to address these difficulties

(Veltri, 2008). This approach is based on the assumption that a spectrum is encoded by a

set of ions that can be used to estimate, in principle, the mass of the peptides. This,

together with information on the distance between the ion peaks, can be used to estimate

the peptide composition. In practice, these methods generate information on partial

sequences only due to low mass accuracy and incomplete fragmentation of peptides in

the experimental sample (Webb-Robertson and Cannon, 2007). Methods based on

statistical learning, graph theory and optimization algorithms have been used for de

novo peptide identification (Dancik et al., 1999; Chen et al., 2001; Heredia-Langner

et al., 2004; Webb-Robertson and Cannon, 2007). Graph theoretic methods represent

peaks and mass differences as network nodes and edges respectively, and peptide

identification is done through network path analysis (Dancik et al., 1999; Chen

et al., 2001). Optimization methods aim to match an experimental spectrum (from the

unknown protein) with an amino acid sequence by means of the maximization (or

minimization) of an optimization (or fitness) function. Different fitness functions and

optimizations algorithms, for example genetic algorithms (Heredia-Langner et al.,

2004), have been proposed. A disadvantage of de novo identification methods is that

they may retrieve incomplete or partial sequence information. Database identification

methods also tend to bemore user-friendly (or understandable) and to offer more options

to constrain the search space.

As discussed in Chapter 5 in the case of gene expression analysis, the circulatory

system offers a great source of potential disease biomarkers because peripheral blood

serum and plasma contain a great variety of relatively abundant proteins that may reflect

diverse physiological (or pathological) states of different organs and body responses.

This potential is enhanced due to the relatively less-invasive nature of these tests.

Moreover, different studies have demonstrated that tissue-derived proteins can also be

directly measured in plasma by mass spectrometry (Hanash, Pitteri and Faca, 2008).

Even before the era of large-scale proteomics, plasma- and serum-derived proteins

provided important diagnostic and prognostic biomarkers for different cardiovascular

pathologies (Arab et al., 2006), such as BNP (Chapter 1), and cancers (e.g. prostate-

specific antigen). A variety of protein biomarkers relevant to ovarian, pancreatic and

colon cancers can be measured in serum by today’s proteomic profiling technologies

(Hanash, Pitteri and Faca, 2008), and it is very likely that in the short term new

biomarkers will be discovered in other medical areas, such as neurological disorders,

using large-scale proteomic approaches. The combination of different experimental

platforms, together with more advanced computational methods for feature extraction,

transformation and selection, aremaking it possible to detect novel and sensitive proteins

differentially expressed across control and pathological states.
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6.3 Metabolomics and biomarker discovery

Initial estimates of the size of the human metabolome indicate that there are a few

thousand endogenous metabolites, that is those synthesized by enzymes encoded in the

human genome (Wishart et al., 2007). Through metabolomics, researchers aim to

improve their understanding of the mechanisms distinguishing health and disease, and

of differential responses to treatments (e.g. side-effects, effectiveness) (Abate-Shen and

Shen, 2009). This is motivated by the fact that metabolites can reflect important

changes in the activity of genes and proteins, with small changes at the gene or protein

levels having larger effects on the concentration of metabolites (Pearson, 2007). Two

examples of the application of metabolite measurements in modern, routine clinical

practice are the analysis of cholesterol and glucose levels for diagnostic purposes in

heart disease and diabetes. Such an ‘early’ introduction in traditional health care

enhances the translational research potential of post-genome-era metabolomics (Van

and Veenstra, 2009).

The search for disease biomarkers would be greatly supported by the availability

of information cataloguing the majority of metabolites. Despite ongoing efforts

(see below) that have collected, described and stored thousands of human

metabolites and their associations with different diseases in databases (Abate-Shen

and Shen, 2009), this has become a task more complex than many researchers

anticipated. One reason is that the number of metabolites in the human body

varies according to the source of the samples (e.g. urine, blood) and the methodology

used to detect the metabolites. Moreover, one has to distinguish between the great

variety of metabolites produced by the human body and those generated by gut

bacteria, food and drugs (Pearson, 2007). Important variations can also be affected

by gender, age, the time of sample acquisition, dietary preferences (e.g. vegetarians

vs. meat eaters), different environmental factors (e.g. stress and anxiety) and bio-

geographical origin of the patient (Van and Veenstra, 2009). Because of this, in

some studies, patients are required, for example, to fast and abstain from smoking

prior to sample collection (Mayr, 2008). Moreover, it has been shown that

differences in the storage time of the samples may influence sample classification

(Mayr, 2008).

As with genomic variation studies (Chapter 4), researchers can investigate

metabolite profiles using targeted and large-scale approaches (Section 6.6). Targeted

studies focus on a relatively small set of metabolites specified in advance by the

researchers. Large-scale (or pattern discovery-oriented) approaches require the discov-

ery and analysis of massive sets of ‘fingerprints’ represented by complex peak spectra

(Sections 6.5 and 6.7).

The analysis of spectral data from metabolomic studies comprises several pre-

processing, management and classification tasks, which require the application of

different software tools and statistical methods. Before feature extraction and selection

procedures are implemented (Section 6.7), data normalization using different algorithms

is performed as part of the pre-processing phase. Data normalization can be seen as a

domain- and platform-specific problem because of the existence of different sources of

experimental variation or error. The two main families of normalization methods for

metabolic profiles are: Traditional statistical techniques for data scaling, and normal-

ization based on reference compounds (Sysi-Aho et al., 2007). The former normalizes
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each sample in relation to thewhole dataset and can be based, for instance, on themedian

of intensities or the maximum likelihood method. Normalization based on reference

compounds is implemented through rules that reflect chemical properties relating a

sample to a reference compound. For instance, an optimal normalization factor for each

metabolite measurement can be computed based on the variability of multiple reference

compounds (Sysi-Aho et al., 2007).

Several commercial and public software systems are becoming available, which

provide automated implementation of pre-processing, management, visualization and

classification tasks (Shulaev, 2006). However, there is a lack of tools to offer compre-

hensive and integrated solutions covering the range of major data analysis and inter-

pretation phases required in metabolomics research (Shulaev, 2006).

A significant proportion of published studies from cancer and cardiovascular research

(Mayr, 2008) have reported the application of procedures to transform the original data,

mainly through principal components analysis (Section 6.7), into a reduced set of

variables to describe the samples. This is typically followed by different types of

classification approaches, such as those introduced in Chapter 3. As in the case of gene

expression research (Chapter 5), these tasks are enhanced by the application of tools to

study the involvement of pathways and functional annotations in a specific set of

metabolites (Section 6.8 and Chapter 9).

Examples of potential clinically-relevant metabolites for cancer diagnosis and

prognosis include lactate, nucleosides and lipids, which are commonly detected at

higher concentrations in different tumours (Van and Veenstra, 2009). Plasma metabolite

biomarkers for coronary artery disease, myocardial ischemia, heart failure and lipo-

protein profiling are examples of diagnostic and prognostic applications in cardiovas-

cular research (Sabatine et al., 2005; Mayr, 2008). In the case of lipoprotein profiling,

concentration differences between small low-density and high-density lipoproteins may

be used to detect insulin resistance or possible associations with the progression of

diabetes (Mayr, 2008).

A recent investigation demonstrated the potential of metabolomic profiles

obtained from tissue, urine and plasma for the identification of prostate cancer patients

with risk of metastasis (Sreekumar et al., 2009). Sreekumar et al. (2009) combined

liquid-and-gas-chromatography-based mass spectrometry (Section 6.4) to profile more

than 1100 metabolites in 262 samples: benign prostate, prostate cancer and metastatic

disease. Amongst the potential prognostic biomarkers identified, sarcosinewas shown to

be strongly elevated during cancer progression leading to metastasis. More important,

their research demonstrated that differential levels of sarcosine can be detected in urine.

Metabolites differentially present across the clinical categories were detected with the

Wilcoxon rank-sum test (also known as the Mann–Whitney test) and false discovery

rates were estimated with permutation tests (Chapter 2). A variety of well-known

bioinformatics tools were applied to support data visualization and interpretation:

hierarchical clustering, heat maps and mapping of the differential metabolites onto the

KEGG and Oncomine Concept Map databases (Chapter 9). Classifications of indepen-

dent samples were implemented using the concentration values of sarcosine only.

The predictive power of this biomarker was estimated by computing AUC values

(Chapter 2). Sarcosine outperformed the biomarker currently used in clinical practice,

prostate-specific antigen (PSA), with AUC values around 0.70 for different clinical sub-

groups of patients.
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6.4 Experimental techniques for proteomics and metabolomics:
an overview

There are two major technologies for proteomic and metabolomic analysis: Nuclear

magnetic resonance spectroscopy (NMR) and different versions of mass spectrometry

(MS), which offer complementary advantages in terms of the amounts and types of

samples required, capacity to detect smaller metabolites and sensitivity. For example,

tandem mass spectrometry (TMS) allows a precise determination of proteins and

metabolites in a wide range of complex fluids (e.g. serum and plasma). In this technique

a first MS step is implemented, peptide peaks are selected, and a second MS run is

implemented on the fragments of this peptide (Veltri, 2008).

NMR can be used to detect metabolites that contain a ‘NMR nucleus’, that is

molecules with an odd number of both protons and neutrons (Mayr, 2008). Based on

the property of ‘spinning motion’ of the nucleus around its axis, such nuclei produce

NMR signals that are detected by NMR. These signals are represented by the frequency

spectra associated with the NMRnuclei found in the sample investigated. The separation

of nuclei frequencies from a reference frequency is defined as the ‘chemical shift’. Such a

separation of frequencies allows the identification of the different molecules in the

sample. The spectra are graphically represented with the frequencies plotted in decreas-

ing order across the abscissas axis, and with the relative concentration of nuclei reflected

by the peak intensities displayed on the ordinate axis.

A key advantage offered byNMR is that themetabolite extraction and analysis process

allows the preservation of samples (e.g. tissues). Other important advantages offered by

NMR spectroscopy are its relatively high reproducibility and capacity to discover

unknown metabolites (Van and Veenstra, 2009). However, NMR techniques are more

suitable to detect metabolites in high concentrations. This lack of sensitivity (i.e. less

powerful for the analysis of low-abundance metabolites), in comparison to MS tech-

niques, has been presented as one of the major limitations of NMR approaches (Shulaev,

2006;Mayr, 2008). Figure 6.1 shows an example of a typical NMR spectrum captured by

a metabolomics experiment (Parsons et al., 2007).

MS estimates the mass-to-charge ratio of ions found in the sample molecules, for

example metabolites. The resulting spectral graphs also include peak intensities that

reflect the concentration of the different ions. MS approaches can also take advantage of

prior separation of the molecules through chromatography techniques: gas chromatog-

raphy (GC) and liquid chromatography (LC). These separation techniques are needed to

reduce the complexity of the sample and to maximize the capture of information from

different compounds (Shulaev, 2006; Veltri, 2008). MS-GC is probably the most widely

applied proteomic approach to biomarker discovery in cancer research (Hanash, Pitteri

and Faca, 2008). To further improve coverage, sample fractionation can also be followed

by independent analyses of the resulting fractions or analyses that focus on protein

subgroups, for example glycosylated proteins (Hanash, Pitteri and Faca, 2008).

Other types ofMS-based techniques (Veltri, 2008), which have beenwidely applied to

proteomics research, are: MALDI-TOFMS (matrix-assisted laser desorption/ionization

time of flightMS), and SELDI-TOF (surface-enhanced laser desorption/ionization time-

of-flight MS). In metabolomics, MS techniques offer higher sensitivity and coverage of

metabolites than NMR. Another important advantage, in the case of the GC-MS
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techniques, is the availability of a good number of databases containing mass spectral

data on metabolites (Shulaev, 2006). Detailed information about these techniques can be

found in (Domon and Aebersold, 2006).

6.5 More on the fundamentals of spectral data analysis

Spectrometric experimental techniques and subsequent data analysis allows the deter-

mination, modelling and classification of chemical compounds, including small mole-

cules and proteins, based on their molecular weights. In the case of a mass spectrometer,

it separates ions on the basis of theirmass to charge ratio values. Thus, the standard output

of a spectrometric experimental analysis is a sequence of value pairs: intensity vs.mass to

charge ratio (m/z). Such a plot is known as the ‘spectrum of the sample’. A spectrum

graphically illustrates the amount and mass values of the molecules detected in the

sample. Figure 6.2 shows an example of a mass spectrum obtained from patients with

venous thromboembolism (VTE) (Ganesh et al., 2007).

The main objectives of spectral data pre-processing are to remove experimental

artefacts, reduce noise, and to ensure that the spectra originating from the different

samples can be compared on a common data scale. Different pre-processing steps

are required depending on the type of experimental technology, research objectives and

the statistical characteristics of the spectral data obtained. For instance, typical steps

involve quality control, baseline corrections, normalization, peak extraction and reduc-

tion procedures, which can be followed by different peak clustering steps for exploratory

purposes (Barla et al., 2008; Veltri, 2008). However, additional data dimensionality

reduction may be considered as a task downstream from pre-processing because of its

Figure 6.1 Example of a typical NMR spectrum from a metabolomics experiment. The plot

shows the NMR spectrum of a sample of mussel adductor muscle. Adapted from Parsons et al.,

2007, under the terms of the Creative Commons Public Domain

100 PROTEOMICS AND METABOLOMICS



direct connection to classification and other analytical tasks (Section 6.7). Peak selection

during pre-processingmay be guided by different criteria: A peak value should be higher

than a user-defined threshold value, it must have the highest intensity in relation to its

nearest neighbouring peaks, or a peak value should be greater than a value defined by a

signal-to-noise ratio (Barla et al., 2008). As in the case of other ‘omic’ data domains, one

should expect that pre-processing may significantly influence the outcomes of subse-

quent analytical phases, for example classification performance. In the case of proteomic

data analysis, there is evidence illustrating how the choice of different data pre-

processing and feature extraction techniques can affect the prediction performance of

diagnostic classifiers in investigations involving synthetic and real biomedical data

(Barla et al., 2008).

An important pre-processing procedure in large-scale profiling investigations consists

of dividing the resulting spectrum into a number of regions or ‘bins’, that is spectrum

binning (Wishart, 2007). Binning allows ‘representative’ spectral values to be defined for

each bin. In aMS experiment thismeans that, given a subset of k peaks defined by pairs of

spectrum (intensity,m/z) values, the spectrum peaks included in a binwill be represented

by a single peak. For example, the intensity value of a representative peak can be defined

as the sumof the intensities of thek peaks, and the correspondingm/z value can be chosen

from the set of m/z values defining the bin, for example the median value (Veltri, 2008).

Binning simplifies the computational complexity of subsequent data analysis and

allows the researcher to focus on areas of specific interest to the investigation. For

example, only those intensity peaks falling into a particular bin are selected for further

data reduction or visualization tasks (Section 6.7). Therefore, binning can be seen as both

a feature extraction procedure and a basic data dimensionality reduction method. Note

that despite such a ‘binning’ process, the selected region of the spectrum may consist of

thousands of intensity peaks. Therefore, this can be seen as a pre-selection step prior to

the application of different feature reduction and transformation techniques (Chapter 3,

and Section 6.7).

6.6 Targeted and global analyses in metabolomics

Targetedmetabolomic analysis aims to identify and quantify a relatively small number of

chemical compounds (metabolites) in a sample. This requires researchers to know the

identities and structures of the (target) metabolites of interest (Shulaev, 2006). Targeted

Figure 6.2 Example of mass spectrum from a proteomics analysis. The plot shows the average

spectra from 38 patients with venous thromboembolism (VTE). Adapted fromGanesh et al., 2007,

under the terms of the Creative Commons Public Domain
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analyses are typically based on the analysis (i.e. matching) of its spectral data in relation

to a database of reference spectra of known compounds. This is equivalent to the database

search approach to protein identification introduced above. The targeted approach also

assumes that the spectrum generated for a specific samplewill be the spectral product of a

mixture ofmetabolites, that is the sumof individualmetabolite-specific spectra (Wishart,

2007). In the case of NMR this means that the metabolites found in the sample are

expected to have unique chemical shift patterns, that is two compounds are unlikely to

have the same fingerprint of peak (intensity) values and morphologies.

Themethodological principles of targeted analysis can be applied to problems studied

with different experimental platforms, for example different types of MS-based tech-

niques and NMR. However, targeted analyses will be constrained by the size and quality

of available databases (Section 6.8).

The main outcomes of a targeted analysis are the identity and concentration values of

the metabolites found in different samples. Researchers can apply many of the statistical

and machine learning techniques discussed in Chapter 3, as well as those introduced in

Section 6.7. In this scenario, the inputs to the different feature reduction, selection and

classification techniques may be the concentration values of the metabolites and

information describing their identity or categorizations.

Global, large-scale metabolomomic analyses include studies of metabolomic

‘fingerprinting’ and metabolite profiling (Shulaev, 2006). It does not aim to identify

and quantify target metabolites defined a priori. This approach is applied to detect

profiles or bio-signatures that can be used to characterize metabolic processes in a

particular sample, that is metabolic ‘fingerprinting’. Different data mining techniques

can be applied for data feature selection, pattern visualization and classification.

Applications of this approach to biomarker discovery have used different versions of

MS and NMR. The global measurement of the levels of a group of metabolites in a

sample is known asmetabolite profiling (Shulaev, 2006).Metabolite profiling can also be

useful to support the functional characterization of genes with unknown phenotypic

effects at the transcriptional regulatory levels, but whose changes or effects may be

reflected on the concentration levels of metabolites (Shulaev, 2006).

6.7 Feature transformation, selection and classification
of spectral data

The curse of dimensionality makes the reduction of data dimensionality an essential

analysis phase in disease biomarker discovery (Chapter 3). In proteomic and metabo-

lomic research a typical dimensionality reduction process aims to filter out thousands of

potentially irrelevant spectral features. As further explained above, these features encode

sample spectrum peaks, for example intensity values corresponding to molecular

weights, associated with different peptides or compounds. Chapter 3 provided introduc-

tions to feature reduction and selection in the context of supervised classification. This

section will further discuss these problems in the context of spectral data analysis, which

can be applied to diverse proteomic- and metabolomic-based biomarker investigations.

Researchers apply a data transformation method for feature reduction with the aim to

map data from a dimensional space of size p (i.e. each sample described by p features), to

a transformed space of size q, with q< p. Principal component analysis (PCA) is awidely
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applied statistical technique for feature (dimensionality) reduction and sample visual-

ization based on feature transformation. PCA has become a basic tool to support data

analysis in biomarker studies based on proteomics and metabolomics. It aims to reduce

the original set of features (intensity peaks in the case of spectral data) by means of its

transformation. Such a feature transformation is done by linearly combining the original

features to generate a new set of (transformed) variables. The outcome of a PCA is an

optimal transformation of features that preserves the information encoded in the original

data.

A disadvantage of PCA, and of other data transformation-based dimensionality

reduction methods, is loss of interpretability, as the original set of features is replaced

by a set of transformed variables. Also note that this and other techniques introduced in

this section may not be recommended for the specific purpose of identifying molecules.

They are more suitable to detect global differences and similarities between samples,

which in turn may allow sample classification based on clinically-meaningful classes.

In part this is because traditional feature selection techniques, for example those based on

the reduction of co-linearity between features or the statistical testing of multiple

hypotheses, may cause the loss of important information required for molecular

identification.

The transformation obtained by a PCA aims to explain or preserve the variance

observed in the original dataset. Given the original dataset,X, composed of p features and

n samples, the PCA finds a matrix,W, of p� q values, which maximizes the variance of

the matrix resulting from the product, X�W. This is equivalent to projecting the original

data onto a new set of vectors defined by the rows of W, which are called the principal

components. The principal components are actually the eigenvector values obtained

from the covariance matrix, Cx ¼ 1
n�1

X �XT . Hence, the optimization problem consists

of estimating a matrix W that can best represent X. This is commonly done by

implementing the ‘singular value decomposition’ technique of the matrix X (Ringn�er,
2008; Hilario and Kalousis, 2008). The output of a PCA indicates the relevance of the

obtained principal components. This ranking is expressed in decreasing order on the

basis of the capacity of the principal components to capture the variance of the original

dataset. In this way the first principal component will account for the greatest percentage

of the (original data) variation, followed by the second principal component, and so on.

An alternativeway to explain PCA is presented as follows, using a simple hypothetical

example. Suppose that our dataset consists of n samples, each one described by three

features (e.g. representing spectral peaks or gene expression values): v1, v2 and v3. As

explained above, PCA will create new variables, the principal components, which are

linear combinations of the original data features. This means that the principal compo-

nents, PC, can be represented as: PCi¼ ai,1v1 þ ai,2v2 þ ai,3v3, for the ith principal

component, and with a1, a2 and a3 representing different, constant values for each

principal component. Thus, each sample can be represented by k principal components,

whose values are computed with this linear mathematical function, and in which v1, v2
and v3 represent the original feature values representing a given sample.

A PCA can reduce the feature dimensionality to n features without any important loss

of variation information. Further reductions can support the production of visual displays

or provide the inputs to relatively less complex classifiers (Ringn�er, 2008), that is small

number of inputs. Thus, each sample can be represented by a small number of principal

components instead of thousands of values. In practice, researchers concentrate on
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reduced sets of principal components, for example focus on the first twoor three principal

components. Following this procedure, PCA allows one to producevisual displays (in 2D

and 3D) of the samples based on the resulting principal components that best describe the

data. This visualization can in turn suggest potentially relevant areas or patterns, that is

clusters grouping clinically-meaningful sample categories, which can be subsequently

analyzed with more advanced clustering or supervised classification techniques.

Examples of the crucial role of PCA in the development of (proteomic and metabo-

lomic) diagnostic or prognostic models across different biomedical areas have been

reported. A new diagnostic tool for African trypanosomiasis was proposed based on the

PCA reduction of the dimensionality of original blood mass spectra from different

patients (Papadopoulos et al., 2004), which originally consisted of hundreds of features,

that is spectrum intensity peaks. The resulting principal components represented

diagnostic signatures, which were used as inputs to classification models capable of

identifing infected patients. Different variations of PCA can be implemented to meet

application-specific requirements or to exploit available information. For example,

Jansen et al. (2004) adapted PCA to include weights reflecting the experimental error

of repeated measurements of NMR. Their weighted PCA first estimated the variation of

replicated measurements in a sample. Lower variation values reflect lower experimental

errors. The resulting variation values were then used to define weights for each

measurement, with lower variation values defining larger weights (i.e. ‘more relevant’

or ‘reliable’ measurements). This was followed by the computation of principal

components. The authors showed how this weighted PCA can provide alternative views

to those provided by traditional PCA (Jansen et al., 2004).

Different techniques widely applied in the areas of biomedical signal processing and

engineering (S€ornmo and Laguna, 2005;Clifford, Azuaje and McSharry, 2006) can also

be used for proteomic andmetabolomic spectral feature extraction and reduction, such as

the Fourier and wavelet transforms. These techniques allow the representation of the

original spectra as a linear combination of basis mathematical functions. Such analyses

will also generate a set of transformed features (e.g. wavelet coefficients) that can be used

for further exploratory analyses and classification model construction. In feature

dimensionality reduction applications researchers can select those transformed features

that meet user-defined numerical criteria. For instance, wavelet coefficients with values

above a specific threshold are selected to represent a biosignature for classification

purposes. In a recent investigation Alexandrov et al. (2009) proposed a feature selection

and classification framework for diagnosing colorectal cancer based on the wavelet

transformation. Using high-resolutionmass spectrometry they generated proteomic data

obtained from cancer and control serum samples. The original spectra data were

transformed using discrete wavelets and those coefficients that showed significant

discriminatory power were selected for subsequent analyses. Discriminatory power

was estimated by standard parametric and distribution-free hypothesis-testing proce-

dures (Chapter 2). Themost relevant wavelet coefficients were then used to train and test,

through cross-validation (Chapter 3), support vector machine classifiers. Independent

evaluations of the best models were carried out on datasets generated by the MALDI-

TOF technique. Remarkably, the classification accuracy, sensitivity and specificity of

these evaluations were above 95%.

These feature reduction or transformation methods are unsupervised approaches

because they only use the data obtained from the samples without reference to their
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corresponding diagnostic or prognostic classes. Supervised dimensionality reduction

techniques have shown their potential in different proteomic and metabolomic applica-

tions. Examples of widely-applied supervised feature reduction techniques are Fisher’s

Linear Discriminat Analysis (LDA) and the Partial Least Squares (PLS)method (Hastie,

Tibshirani and Friedman, 2001). LDAprojects the original data onto a transformed space

described by c-1 dimensions, where c represents the number of samples classes (Hilario

and Kalousis, 2008). The traditional PLS method is a regression technique (Chapter 3),

which can be adapted to classification problems and implements a reduction of the

original data feature dimensionality (Boulesteix and Strimmer, 2006). PLS, as PCA,

comprises the identification of linear combinations of input features, which optimize the

variance of the data. But unlike PCA, PLS achieves this together with the maximization

of the correlation of the transformed features and the class variable. The applications of

PLS andLDA, aswell as their combinationwith other datamining approaches, have been

explored in different biomarker discovery domains, including cancer research (Purohit

and Rocke, 2003; Hilario and Kalousis, 2008).

The multiple-hypotheses testing procedures introduced in Chapter 2 can also be

applied, as in the case of gene expression analysis (Chapter 5), to the reduction of features

in proteomics and metabolomics. They include different parametric and non-parametric

tests: t-test, F-ratio, Chi-2 and Wilcoxon rank test, which have supported the identifi-

cation of potentially novel diagnostic and prognostic biomarkers across different

biomedical domains (Hilario and Kalousis, 2008). Information-theoretic approaches,

such as mutual information (Steuer et al., 2002), have also been proposed for feature

filtering in proteomic research (Hilario et al., 2003).

Methods traditionally applied to gene expression data, such as SAM (Chapter 2) and

the centroid shrinkage method (Chapter 3) can also in principle be applied to proteomic

or metabolomic data. Different applications have indicated their potential to support

biomarker discovery in these areas. An example, brought by the creators of the centroid

shrinkage method-based PAM technique (Chapter 3), is the classification of mass

spectrometry data using the ‘peak probability contrasts’ method (Tibshirani et al.,

2004). They illustrated its application using mass spectra data from an ovarian cancer

investigation, which allowed them to propose a set of seven spectral peaks as potential

biomarkers from a pre-processed set of 192 peaks.

Other techniques proposed for the reduction, visualization and classification of

different types of spectral data include the Soft IndependentModelling of Class Analogy

(SIMCA)method, the application of PCA prior to linear discriminant analysis (DA), and

Partial Least Square-DA (PLS-DA) (Holmes et al., 2000; Smith and Baert, 2003;Wilson

et al., 2005; Wishart, 2007). SIMCA is a feature reduction technique that differs from

traditional PCA in the sense that automated sample clustering and classification is

included, based on a training phase and cross-validation (Chapter 3). Unlike PCA, PLS-

DA can also be directly used for supervised classification of samples. Although PLS-DA

exploits some of the principles of PCA, it uses information about the clinical or

phenotypical categorization of samples in a training dataset. This guides both

the reduction of the feature dimensionality and the clustering of the training samples.

The resulting model can then be applied to assign classes to unknown samples in a test

dataset.

In general, feature selection techniques, including thosewrapped around or embedded

into different classification models, can also be applied to feature dimensionality
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reduction, the discovery of potential biomarkers and classification of proteomic and

metabolomic data. Examples include correlation-based filtering methods, algorithms

based on instance-based learning, algorithms embedded into support vector machines,

and evolutionary computation techniques for finding optimal sets of features. Saeys, Inza

and Larrañaga (2007) and Hilario and Kalousis (2008) provide brief introductions to

several examples of the application of these supervised feature selection techniques to

spectral data dimensionality reduction and classification in different biomedical areas.

The reader may also refer to Chapters 2 and 3 for an introduction to different

unsupervised and supervised feature selection techniques.

Different machine learning approaches, ranging from k-nearest neighbours and

decision trees to support vector machine models (Chapter 3), have been reported for

the design of novel diagnostic and prognostic systems based on proteomic and meta-

bolomic data. Recent comparisons, for instance, using proteomic data suggested that

support vector machines, with different kernels and feature selection methods, can

produce the highest classification performances amongst some of the best known

classification approaches (Barla et al., 2008). However, more conclusive evidence of

the power of the selected biomarkers and classification models through independent

model evaluations is needed (Chapters 1 and 10).

6.8 Key software and information resources for proteomics
and metabolomics

Metabolomic databases (Wishart, 2007) are being developed to support data mining of

metabolites in the context of different biological processes and phenotypes across several

organisms (Chapter 9). Advances are required to enhance the application of these

databases to large-scale metabolite characterization studies in the context of health and

diseases. This will require the integration of information on metabolites, pathways,

networks, and cellular localization, as well as spectral data derived from different

experimental technologies. Examples of metabolomic databases are the Human

Metabolome Database (HMDB) (Wishart et al., 2007), METLIN (Smith et al., 2006)

andGolm (Kopka et al., 2005). Amongst these examples, theHMDB is probably themost

comprehensive resource for supporting biomarker discovery research. It stores diverse

types of chemical, spectral, clinical, genomic and phenotypic data for thousands of human

(endogenous and exogenous) metabolites (Wishart, 2007; Wishart et al., 2007).

‘Generic’ laboratory information management systems can be applied to support

metabolomic and proteomic research, but more domain-specific solutions are necessary

for data acquisition, tracking and management tasks. These systems are also essential to

implement sample tracking, storage and processing, as well as daily laboratory man-

agement (e.g. research notebooks) in large-scale projects. Examples of laboratory

information management solutions specific to metabolomics are the SetupX (Scholz

and Fiehn, 2007) and Sesame (Markley et al., 2007) systems. SetupX is a Web-based

laboratory information management system compatible with XML information-

encoding, with access to a metabolic annotation database and capable of supporting

MS data acquisition and visualization tasks (Wishart, 2007). Sesame is a Java- andWeb-

based system, which can be applied to both MS and NMR data acquisition and

management (Wishart, 2007).
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Examples of the development of integrated, open-source software systems (also see

Chapter 9) to meet the demands of the proteomic and metabolomic data analysis

workflow include the MZmine project (Katajamaa, Miettinen and Oreši�c, 2006). This
computing platform-independent software allows the incremental addition of new

algorithms and methods tailored to different types of MS problems and applications.

MZime is freely-available and can process raw data in different formats. It offers

different tools for data visualization (e.g. 2D and 3D plots of spectra), peak detection and

selection, and a small number of statistical analysis options (e.g. PCA). Another example

of integrated software for the analysis of proteomic and metabolomic is the DOME

system (Mendes, 2002; Shulaev, 2006). Research groups performing investigations in

these areas can install DOME to store, visualize andmanage data from different projects.

DOME is a Web-based client-server application, and implements several data analysis

algorithms, such as data clustering and PCA.

Apart from MZime, other tools, such as Pep3D (Li, Zhang and Ogihara, 2004a; Li

et al., 2004b), Msight (Palagi et al., 2005) and msInspect (Bellew et al., 2006), can be

used for the automatic detection of MS peaks and their association with known

peptides/proteins (Veltri, 2008). Other examples of tools offering interactive (2D and

3D) visualization of spectral data derived from different types of MS-based platforms

are JDXview (Haider, 2008) and SpectraViewer (Cannataro et al., 2007), which also

support different output and graphics formats. JDXview can display spectral

data originating from MS and NMR experiments and encoded in different formats

(Haider, 2008).

Examples of interactive software tools for supporting the visualization, identification

and annotation ofmetabolites areMetaFIND (Bryan et al., 2008) andMetaboMiner (Xia

et al., 2008). Based on the outputs generated by different feature selection techniques,

MetaFIND can implement post-processing tasks that aid the user in the identification of

peaks and metabolites. Apart from offering different interactive displays of feature

values, this system supports the assessment of correlations between features (including

those initially excluded by the feature selection algorithms) and the estimation of feature

relevance based on value changes across samples. MetaboMiner is a tool that focuses on

the automated identification of metabolites from spectra generated by two-dimensional

NMR, which is a high-resolution NMR technique. The identification of metabolites is

done through the comparison of their 2D-NMR-derived spectral patterns and a database

of reference patterns associated with hundreds of pure compounds. This freely-available

tool provides different interactive visual displays of spectral images, database searches

and compound lists.

6.9 Gaps and challenges in bioinformatics

In the case of directed biomarker studies in metabolomics, a greater characterization of

the humanmetabolome is needed. Existing experimental platforms for the measurement

of metabolites may also constrain bioinformatic advances. This is because there is

evidence that analyses based on spectra peak intensities or areas, that is the current

‘standard’ analytical approach, may suffer from lack of accuracy and precision (Van and

Veenstra, 2009). As in other areas of ‘omic’ biomarker discovery, metabolomics requires

a more accurate and standard definition of phenotypes. This is essential if bioinformatic
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researchers are to contribute advanced computational diagnostic and prognostic models.

A crucial challenge is to define ‘normal’ or ‘reference’ metabolite concentrations or

signatures, which in turn is needed to define labels for implementing classification

models. In particular, what is the ‘normal’ intra- and inter-individual range of metabolite

concentrations? A problem is that it has been shown that the ranges that can be used to

define ‘normal’ may be large and highly variable (Van andVeenstra, 2009). For instance,

using urine samples obtained from women, Xu et al. (2005) showed that normal

oestrogen metabolite concentration levels can vary 10- to 100-fold between individuals,

and this is influenced by their menstrual status.

Research in bioinformatics will be required to establish quantitative links between

biomarkers and specific phenotypic traits, such as the sizes of the tumours to be detected

or of the areas affected by cardiac injury. Lutz et al. (2008) proposed a mathematical

model that estimated the minimum tumour sizes required to make accurate diagnosis

using two biomarkers. This type of model could be extended or adapted to include other

biomarkers provided that sufficient prior physiological knowledge is available for the

biomarkers. Moreover, it could be applied to support the selection and prioritisation of

early diagnosis systems (Lutz et al., 2008) based on their (phenotypic trait) detection

sensitivity.

Advances in proteomics and metabolomics will also depend on the availability of

unambiguous definitions of molecular entities. This is a problem that the genomics

community have been tackling for years. Even the definition of ‘metabolite’ on the basis

of amaximummolecularweight threshold (e.g.<1500Da)may be subject to revisions as

significant advances are accomplished. The evolution of community-driven data stan-

dards and vocabularies will hopefully address this obstacle. The use of XML-based data

representations of proteomic data has been promoted by the proteomics community

(Veltri, 2008). These formats allow spectral data to be represented in a compressed

version together with metadata. In this case, metadata can describe different aspects of

data acquisition and analysis: information about experimental platforms, operational

details, sample descriptions, research notes and interpretations, description of data

manipulation procedures, and so on.

The development of the next generation of integrated databases for proteomics and

metabolomics will be greatly supported by advances in data encoding and compression.

For instance, and as in other areas relating to information retrieval, clustering-based

strategies can be applied to generate spectra prototypes representing groups of similar

samples, which could significantly accelerate data search, retrieval and analysis. This is

what Frank et al. (2008) recently implemented to speed-up searches in a public MS

database consisting of more than 10 million spectra. Furthermore, they showed that this

clustering-driven strategy, which is based on the application of a hierarchical clustering

algorithm, can reduce the number of irrelevant hits to the databases. This open-source

system is available online to allow users to create queries to the database using their own

data (Frank et al., 2008).

The need for standard nomenclatures and accurate phenotype definitions will demand

from existing and emerging bio-banking projects the development and integration of

formal representations of translational knowledge, such as biomedical ontologies. In the

case of phenotypic representations, ontologies and information models with specific

applications in bio-banking will also require to be associated with gene and protein

expression patterns (Van and Veenstra, 2009).
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As in other biomarker discovery areas based on ‘omic’ research, further advances in

the representation and sharing of information for reproducing analyses, computational

models and results are needed (also refer to Chapter 10). This not only refers to the

publication of more detailed and accurate supplementary information sections in

journals, but also to standards or protocols for digitally encoding proteomic and

metabolomic experimental and analytical data. The latter particularly refers to infor-

mation required for biomarker discovery and validations.

Experimental design and downstream bioinformatic analyses need to carefully

consider possible sources of variability and errors, which may facilitate the detection

of spurious associations or reductions of the false discovery rate. For instance, in the case

of plasma biomarker analysis, different factors may contribute to the identification of

statistically ‘significant’ relations that may have nothing to do with the disease under

investigation. Examples of such factors are: differences in experimental procedures,

variability in storage conditions, population stratification (e.g. by sex, age or diet), aswell

as physiological differences caused by inflammation, metabolic states or chronic disease

(Hanash, Pitteri and Faca, 2008).

Most of the biomarker discovery investigations reported to date are based on the

application of ‘generic’ data analysis techniques originating from statistics and machine

learning, with univariate andmultivariate filtering and feature transformation algorithms

as the main approaches to data visualization and classification. This and the availability

of larger (and more complex) datasets will motivate the design of new algorithms and

methodologies tailored to more specific data- and user-driven requirements in proteo-

mics and metabolomics. For instance, the different algorithms required in the spectral

data pre-processing phase are commonly implemented independently using a combi-

nation of public and commercially-available software. The latter includes software that is

embedded into the spectrometry instrument. It has been suggested that more integrated,

domain-specific approaches are required to account for thevariability associatedwith the

experimental equipment and different individuals, including intra- and inter-sample

variability (Ghosh et al., 2008).Moreover, as in the case of gene expression data analysis,

researchers are aware of the importance of implementing and analyzing experiments in

replicate (Ghosh et al., 2008).

Future advances will also depend on the availability of user-friendly software tools for

data retrieval, analysis and integration. The latter is also motivated by the need to

combine different analytical approaches and experimental technologies. There are many

opportunities for advanced computational approaches to filtering, classifying and

interpreting metabolomic data, including algorithms based on machine learning (see

accompanying guest commentary). Most of the work in metabolomics and disease

biomarker discovery reported to date hasmainly relied on classical statistical techniques,

such as PCA.Moreover, themajority of the applications in proteomics andmetabolomics

have concentrated on binary classification problems, that is the analysis of two clinically-

relevant groups. However, advances to deal with multi-class prediction problems are

underway (Oh et al., 2008). Also there are indications that these areas aremoving rapidly

to meet some of the requirements and challenges posed by the era of systems biology

(Van Dien and Schilling, 2006; Drake and Ping, 2007).
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Guest commentary on
chapter 6: Data
integration in
proteomics and
metabolomics for
biomarker discovery
Kenneth Bryan
Cancer Genetics, Royal College of Surgeons in Ireland,
Dublin, Ireland

Advances in both proteomics and metabolomics analyses over recent years have added

greatly to our genome-wide view of transcription provided by the advent of microarray

gene expression analysis. With proteomics, the first step in the expression of the

phenotype, the transcriptome, can now be augmented with information on post-

transcriptional regulation. Indeed recent advances in our understanding of post-

transcriptional regulation have made measurement of this stage of expression more

relevant than ever. Small, regulating RNAs known asmicroRNAs (miRNA), have now

been shown to be critical regulators of translation for many proteins and to be involved

in the progression of many diseases, including multiple forms of cancer (He and

Hannon, 2004). These advances further enforce the assertion that transcription alone

does not determine phenotype and that further information on downstream processes
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are needed to complete the picture. Even after translation a protein may require

additional post-translational modification, activation or co-factors before it can

perform its designated function.Metabolomics, the globalmeasurement ofmetabolites

and small molecules within a cell or bio-fluid, has recently come of age thanks to

advances in experimental platforms (Goodacre et al., 2004). Metabolomics may be

viewed as a way to measure the final effect of many proteins. For example, one end

effect of the peptide hormone insulin is an increase in glucose levels in the cells of the

body. The transcription, splicing, translation and post-translational modifications as

well as its successful binding to its trans-membrane receptors are all required before

glucose levels in the cell are affected. In a sense the ultimate success or failure of this

process can only be determined by metabolite detection.

Proteomic and metabolomic views of cellular processes reveal additional links in the

chain of events that leads to phenotype expression, any of which may be a key biological

marker of disease or potential drug target. How best to integrate these diverse data

sources to produce an improved global model that provides further insights into

biological systems is still largely an open question.

Data integration and feature selection

From a machine learning perspective, proteomics and metabolomics data provide

heterogeneous views of the biological system. These alternative views may share some

or all data objects (experiments, samples) and may harbour common or unique

information about the relationships between these objects. How we integrate data from

multiple views depends on the extent to which labels are available (whether it is an

unsupervised, supervised or semi-supervised task) and the specific questions we want to

ask of the data. Should we be satisfied that the samples in our study are fully and

accurately labelled we may proceed directly to questions such as: ‘What are the most

pertinent feature variables (genes, proteins, metabolites, etc.) across the various data

views that discriminate between sample classes (e.g. healthy vs. disease), and how do

these translate into a biological explanation?’

However, if we have unknown or ambiguous sample labels or are curious perhaps

about the existence of sub-types within a sample class we may choose to re-examine the

model in an unsupervised or semi-supervised manner prior to pursuing the

above question. The goal is then to construct an integrated model of the biological

system under study, as defined by feature information frommultiple data views, which is

superior and more complete than a model generated from any individual data view.

Traditionally, integration of such alternative data views was treated as a way to create

a more robust consensus model of the underlying system supported by objects and

object relationships shared across all views with disagreements largely disregarded

(Pavlidis et al., 2002). Although data integration began in this vein, technological

advances enabling improvements in data quality has meant that it may now seem

overzealous to discard information solely because it is not compatible across all views.

The increases in quality, reproducibility and resolution of NMR spectroscopy in recent

years are a perfect example of such advances in the area of metabolomics data analysis.

Furthermore, the provision of complementary information is one of the benefits of

examining a phenomenon frommultiple perspectives via data from alternative sources or
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multiple platforms. For example, the discrimination of a disease sub-class with a single

amino acid mutation may not be possible in proteomics data view but the downstream

effects of its impaired function may become apparent within the metabolomics view.

Taking the consensus approach in building an integrated global model may lead to such a

sub-class and potential biological marker being overlooked.

Interestingly the increasing quality and number of data sources available across

biological domains has been mirrored by recent efforts in machine learning at producing

improved global models from multiple heterogeneous data sources (Berthold and

Patterson, 2004). For example the PICA (parallel integration clustering) algorithm is

a novel cluster analysis approach which supports the simultaneous integration of

information from two or more sources with a view to building an improved global

model (Greene, Bryan and Cunningham, 2008). Again such algorithms attempt to

combine multiple views synergistically, producing integrated models that reveal more

information about a system than those derived from individual views alone. Once we

have built a satisfactory global model we may then assign class labels, examine the class

discriminating feature variables and identify bio-markers and potential therapeutic

targets.

In data representations, domain variables such as mRNA, amino acids or proteins

may be represented by one or more measurable variables or features and the

extraction of the set of most informative features with regard to our model is known

as feature selection. It is interesting to speculate how standard feature selection

methods might be extended to benefit from a model learned from multiple views. One

might simply employ a wrapper approach to ascertain the most important features for

class discrimination. Wrappers exist in many forms but the essential premise is the

same, to evaluate the relevance of features by assessing their impact on the model

accuracy. Co-inertia analysis (CIA) is an interesting approach that can currently be

applied to identify class discriminating features across two data views (Culhane,

Perri�ere and Higgins, 2003). CIA works by finding dimension reduction representa-

tions of the two datasets, using PCA for example, that are maximally similar. The

parallel assessment of features across MS and NMR analysis (Walsh et al., 2007) and

proteomics and gene expression (Fagan, Culhane and Higgins, 2007) data have been

performed using CIA. As opposed to building an improved integrated model, this

form of data integration focuses on simultaneous feature selection and elucidation of a

biological explanation.

Once a set of class discriminating features has been established, identifying the

specific bio-marker (genes, proteins, metabolites, etc.) that these features represent can

be far from straight forward, especially if an investigation is high-throughput and

exploratory in design. Apart from the fact that the nature of some features may be

unknown (novel protein or spectral peak), in some cases featuresmay not map directly to

domain variables. In NMR spectroscopy for example a single metabolite may be

represented by multiple spectral peaks. In such a case an investigator may be faced

with the prospect of extracting and identifying one or more metabolite signals from a

large set of retrieved features, many of which may be collinear. Post-feature selection

analysis applications such as MetaFIND (Bryan, Brennan and Cunningham, 2008)

(Walsh et al., 2007) may aid the investigator in bridging the gap between class

discriminating features and biological explanation. Once a promising set of peaks has

been identified by mass spectrometry or NMR it may be referenced against standard
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annotated signals for metabolites contained within online databases. The Human

Metabolome Database (HMDB), for example, allows a user to query an unknown

metabolite for annotations using the spectral peaks coordinates (Wishart et al., 2007).

Successful integration of data from various experimental sources to construct a more

accurate global model is critical to furthering our understanding of the underlying

biological processes and the identification of significant features. This integrative

approach should better promote the discovery of the fundamental causes in disease

models, as opposed to detection of ancillary or downstream effects. Biomarkers derived

from such models may provide more promising drug targets across various levels of

biological systems.

The era of high-throughput analysis is gradually progressing into one of multi-view

learning and data integration in which investigators are striving to make full use of

multiple data views derived fromdiverse sources and alternative experimental platforms.

Recent parallel developments in machine learning and biological domains will certainly

aid this development. However, cross domain collaborations, which involve sharing of

experimental data, knowledge and software applications, need to be continually culti-

vated if the area of data integration is to progress. Encouragement from publishers for the

online provision of complete datasets from biological researchers and practical usable

applications from bioinformaticians would certainly aid advances. The barriers to data

integration and its rewards are gradually being removed; the data, skills and collaboration

infrastructures are all available, with an added dash of communal will this area has a

bright future.
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7 Disease biomarkers and
biological interaction
networks

This chapter begins with an introduction to biological networks in the context of health,

disease and biomarker discovery, as well as major analysis assumptions and method-

ological principles. Basic statistical concepts used to analyze the structure of networks

and to discover biomedical relevant knowledge are defined. This is followed by an

overview of the main approaches to representing and inferring biological networks. An

introduction to key network-based approaches to biomarker discovery using different

types of ‘omic’ information is presented. The last part of the chapter includes a more

detailed discussion of representative examples of methods and applications, and of

current limitations and challenges in this area. The next chapter will cover some of the

approaches and examples discussed here in greater detail.

7.1 Network-centric views of disease biomarker discovery

The availability of increasing amounts of diverse ‘omic’ datasets together with the need

to discover complex, clinically-relevant andmore subtle associations between genes and

disease have motivated the application of network-based biomarker discovery meth-

odologies. In this approach a network typically consists of a set of nodes and edges,

which represent the biological system components and interactions between the com-

ponents respectively. Examples of network nodes are genes, proteins, drugs and diseases.

The edges may encode different types of physical interactions (e.g. protein-protein,

protein-DNA interactions) and gene regulatory associations (e.g. co-expression relation-

ships). An edge is also sometimes used to describe a known or putative link between a
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gene and a disease, or between a gene and a drug. Thus, in general, network edges reflect

a functional similarity or relation between genes or proteins, which are particularly

relevant to the disease or biological processes under investigation.

Network-based approaches to biomarker discovery have been proposed in several

medical areas ranging from different types of cancers (Chuang et al., 2007; Xu et al.,

2008), diabetes (Keller et al., 2008), cardiovascular diseases (Camargo and Azuaje,

2007), asthma (Lu et al., 2007), infectious diseases (Suthram, Sittler and Ideker, 2005),

immunity (Raza et al., 2008) and ageing (Chen et al., 2008a). The typical products of

such investigations are: descriptions of the properties of networks in a specific pheno-

type, identification of pathways or processes significantly perturbed or deregulated in

disease states, list of biomarkers, and the extraction of sub-networks with potential

predictive applications with respect to specific phenotypes.

In a typical biomarker discovery approach using gene expression data, genes are ranked

on the basis of the discriminative capacity of a gene (or genes) in relation to different

classes, such disease vs. health or case vs. control. Different classification and prediction

models can be implemented based on the expression levels of these markers. Despite the

advances demonstrated by the use of expression-based biomarkers, this prediction and

classification approach deals with important obstacles, such as the heterogeneity of tissue

samples and expression and genetic variability across patients and sub-populations (Lee

et al., 2008). Information extracted from biological networks, such as signalling or

protein-protein interaction networks, can be used to classify samples based on the

‘activity’ or ‘behaviour’ of these networks, rather than only using the expression levels

of lists of genes shown to be differentially expressed across phenotypes or patient groups.

The combination of different types of ‘omic’ data has been proposed to understand

complex functional relationships and pathological responses in systems implicated in

cardiovascular diseases (Bennett, Romanoski and Lusis, 2007; Camargo and Azuaje,

2007). For instance, Gargalovic et al. (2006) identified modules of genes relevant to

inflammation based on differential responses of human endothelial cells to oxidized lipids.

These modules represented highly interconnected genes, which were used to suggest

potential new functional roles for different genes in important processes, such as unfolded

protein responses (Gargalovic et al., 2006; Bennett, Romanoski and Lusis, 2007).

Keller et al. (2008) proposed a gene expression network model to study diabetes

induced by obesity. Based on the analysis of gene co-expression networks related to

obesity, strain and age, they identified modules of genes linked to the emergence of

diabetes. One such module was composed of genes implicated in cell cycle regulation,

which may be used to predict diabetes. These modules were detected based on the

analysis of the correlations of differentially expressed genes in different tissues.

Significant associations between the co-expression network modules and specific

biological processes were established through the statistical assessment of Gene

Ontology terms found in the modules. The islet cell cycle module consisted of 217

genes and exhibited expression patterns associated with age. A principal component

analysis (Chapter 3) of the expression data from this module showed an obesity-

dependent increase of gene expression. The identification of network modules was

implemented through amethod originally proposed by Zhang andHorvath (2005) for the

analysis of weighted gene co-expression networks.

Network-based approaches to disease knowledge discovery also facilitate the

explicit representation of relationships involving environmental determinants and
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disease-modifying genes and processes. This type of approach may also be useful to

visualize and analyze complex relationships in diseases characterized by multiple

genotypes underlying a common phenotype, as well as disorders in which a common

genotype can influence different phenotypes (Loscalzo, Kohane and Barabasi, 2007).

Network-based approaches also show potential to aid researchers in distinguishing

between genes and processes that represent drivers or initiators of systemic perturbations

from those that simply reflect downstream generic responses or effects. This is especially

important in biomarker discovery research, as researchers are interested in identifying

early indicators of systemic perturbation or disorder. This in turn opens possibilities for

finding biomarkers with potential disease causative roles and that may be further

investigated as potential therapeutic targets.

Figure 7.1 depicts a hypothetical example of the investigation of disease and

biomarker discovery based on biological networks and other related sources of infor-

mation. Thick arrows are used to indicate the transfer of information or outputs generated

by each analysis task, and are numbered to show the order of a typical sequence of tasks.

In a first phase, different types of resources can be analyzed to extract and infer networks

Node

Cluster or
module

Biological network

Edge or link

Pathways and modules

(4)
(3)

(2)

(1)

“Omic” datasets;
information resources;
annotated knowledge

Inter-source relationship and
properties

List of biomarkers

Network-based bio-signatures

Prediction and classification
models

Figure 7.1 Overview of a typical approach to investigating disease and discovering biomarkers

using network-based information. Thick arrows represent transfer of information or outputs, and

are numbered to indicate the order of a typical sequence of tasks: (1) Different types of ‘omic’ data

sources, literature databases, ontology-based information repositories and curated annotations of

gene-gene, gene-protein or gene-disease interactions are analyzed to extract and assemble net-

works of biological interactions relevant to a particular phenotype. (2) Relevant sub-networks can

be extracted from the network on the basis of their potential predictive value. (3) Sub-networks

may be further analysed based on their relationships with different information sources. This

analysis may generate different types of outputs and testable predictions depending on the goals of

the study and available resources
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of biological interactions relevant to a particular phenotype or clinical response.

Examples of information resources are: different ‘omic’ datasets, literature databases,

ontology-based information repositories and curated annotations of gene-gene, gene-

protein or gene-disease interactions. Basic statistical properties (e.g. clusters of nodes)

that describe the structure of the network can be used to guide the search for potentially

relevant biomarkers, processes or pathways. In a second phase, potentially relevant sub-

networks may be extracted from the network on the basis of their possible predictive

value, for example enrichment of functional processes or co-expression coordination

patterns. This can be followed by another analysis phase in which the sub-networks are

further dissected and interrogated based on their relationships with different information

sources, such as gene expression profiles obtained from case-control groups. This

discovery framework may generate different types of outputs and testable predictions

depending on the goals of the study and available resources, for example list of potential

biomarkers or network-based signatures for distinguishing between phenotypes.

7.2 Basic concepts in network analysis

A great variety of statistical concepts and indicators can be used to summarize structural

properties of a node, groups of nodes or a full network. Amongst them: the degree,

diameter, the clustering coefficient, the shortest path length, the characteristic path length

and betweeness, are widely used to infer biologically relevant properties (Table 7.1).

The degree refers to the number of connections or interactions of a node. The

clustering coefficient of a node is the proportion of possible connections between the

neighbours of the node that are actually observed for a given node, that is a measure of

the connection density around a node. The shortest path length of a pair of nodes in the

network is the shortest distance that separates the two nodes. The diameter of a network is

the length or distance of the longest of all shortest paths between a pair of nodes in the

network. The characteristic path length of a network is the average value of all shortest

path lengths between all nodes in the network. The betweenness of a node quantifies the

number of non-redundant shortest paths passing through the node. For more detailed

Table 7.1 Basic statistical descriptors of network structure

Statistic Definition

Degree Number of connections or interactions of a node

Clustering coefficient The proportion of possible connections between the neighbours

of a node that are actually observed for a give node

Shortest path length The shortest distance (length) separating any pair of nodes

Characteristic path length The average value of all shortest path lengths between all nodes

in the network

Diameter The length (i.e. number of nodes or interactions) of the longest of

all shortest paths between a pair of nodes in the network

Betweenness The number of non-redundant shortest paths passing through a

node
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mathematical descriptions and biological interpretations of these and other concepts, the

reader may refer to Barab�asi and Oltvai (2004) and Dong and Horvath (2007).

Random and scale-free networks are important categories of networks in the study of

biological systems (Barab�asi, 2003). In a random network the nodes are connected to

each other by chance. This also implies that the probability (or frequency) distribution of

the number of edges per node follows a Poisson distribution. In a scale-free network, the

probability, P, of the number of connections per node obeys a power law distribution.

This distribution function can be expressed as PðkÞ ¼ k�g , where k represents the

number of edges per node (degree) and g is the slope of the function [log P(k)]. In

comparison to an exponential distribution, a power law distribution decreases more

slowly. In the case of network analysis, a power law distribution describing the number of

connections per node (i.e. a plot of the degree values vs. the numbers of nodes with a

specific degree value) also implies that a minority of nodes in the network will be highly

connected (hubs), and that the majority of the nodes will have small numbers of

connections (Albert, 2005). More detailed discussions about the mathematical meaning

and biological interpretations of scale-free and other types of networks can be found in

(Barab�asi, 2003; Wagner, 2005; Csermely, 2006).

A ‘network module’ typically represents a group of highly connected nodes, which

may be functionally similar or interrelated. A basic computational approach to detect

potential modules consists of the clustering of nodes on the basis of their connectivity

patterns in the network. Examples of biological-relevant network modules are protein

complexes or signalling pathways. In biological systems functionalmodules do not act in

isolation. They act in an integrated, cooperative fashion. Such an integration of modules

enables a hierarchical organization of complex biological networks, that is specialized,

relatively smaller modules can be combined to form larger modules with different

functional roles. A comprehensive discussion about the automated detection of clusters

is outside the scope of this book. Readersmay refer to Rives andGalitski (2003) or Bader

and Hogue (2003) for descriptions of algorithms.

7.3 Fundamental approaches to representing
and inferring networks

Networks of gene-gene, gene-protein or protein-protein interactions can be assembled by

using information (manually or automatically) extracted from the literature or by directly

applying automated inference algorithms on large-scale experimental data, such as

microarray data. Large sets of curated interactions can also be obtained from different

public and commercial databases available on the Web (Chapter 9). Different strategies

for the inference or representation of molecular interactions based on the analysis of

experimental data, such as gene expression data, are introduced as follows.

Given a matrix, X, of gene expression values, a ‘gene co-expression network’ can be

constructed by estimating the similarity or association between pairs of genes, xi and xj,

and by graphically connecting those pairs of genes whose similarity values satisfied a

pre-defined quantitative criterion. For instance, the Pearson correlation coefficient,

cor(xi, xj), can be used to estimate similarity between the genes. And a correlation

threshold value, ct, can be applied to establish a connection between a pair of genes in the

network, that is a link is established if cor(xi, xj)> ct. The full set of between-gene
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correlation values can be encoded as an adjacency or correlation matrix, of size m�m,

where m represents the number of genes in the expression dataset.

In an ‘unweighted’ network the edges connecting the nodes are defined with a ‘hard

threshold’, that is a constant threshold value, ct, is used for all pairs of nodes. Different

methods for building weighted networks based on the application of ‘soft thresholds’

have also been proposed (Dong and Horvath, 2007).

Partial correlation coefficients (parCor) can also be computed to estimate relation-

ships between genes and to construct co-expression networks (Sch€afer and Strimmer,

2005; Keller et al., 2008). In contrast to the standard Pearson’s correlation, the parCor

between two variables (e.g. genes), xi and xj, estimates the correlation between the

variables when the effects of all other variables in the dataset are considered or adjusted

for. In this method, a correlation would be observed when there is an actual ‘direct’

relationship between the two genes, that is the correlation is not due to their possible

joint dependence on a third gene. A nonzero parCor(xi, xj) would mean that there

is a conditional dependence between genes xi and xj, considering all other genes.

A parCor(xi, xj)¼ 0 indicates that the two genes are conditionally independent.

Networks of interactions between transcription factors and their corresponding targets

can be inferred by applying information theoretic approaches. In an information

theoretic approach interactions between pairs of genes are detected by estimating their

mutual information (MI) (Chapter 3).MI values above a minimum MI threshold would

indicate an interaction between two genes. As in the case of correlation coefficient

thresholds, one may define constant (hard) thresholds a priori or ‘soft’ thresholds using

statistical analysis (Margolin et al., 2006).

Different data sampling procedures, such as bootstrap (Chapter 3), can be imple-

mented to construct and evaluate the networks inferred fromdata. For instance, Lim et al.

(2009) generated 100 bootstrap datasets, which were used to infer 100 bootstrap

networks. A ‘consensus’ network was then generated, which included the interactions

most frequently detected by the different bootstrap networks.

The ‘synergy’ between a pair of genes with respect to a specific phenotype, for

example disease or clinical outcome class, is another information theoretic measure that

can be used to infer gene-gene interaction networks (Anastassiou, 2007). The synergy,

Syn(gi, gj,C), is defined as: MI(gi, gj;C)� [MI(gi;C) þ MI(gj;C)], where gi and gj
represent the expression profiles (vectors) of the genes and C represents the binary

random variable encoding the presence or absence of a phenotype (Watkinson et al.,

2008). This measure allows the detection of potential cooperative effects or interactions

of the pair of genes within a common biological process or pathway. Two genes are

defined as ‘synergistically’ related to a phenotype if the resulting synergy is greater than

zero (Watkinson et al., 2008). Thus, to infer a network associated with a particular

disease one can select pairs of genes whose synergy values are positive and statistically

detectable. The statistical significance of synergy values can be estimated by imple-

menting permutation tests (Chapter 2) on the gene expression data matrix.

7.4 Overview of key network-driven approaches
to biomarker discovery

A significant diversity of approaches to discovering disease biomarkers and understand-

ing complex relationships in the context of biological networks have been explored
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(Ideker and Sharan, 2008). These approaches are based on different analysis assumptions

and principles (Table 7.2).

The idea that global and local structural properties of a network can provide insights

into disease-related roles of genes and proteins have been investigated using different

types of networks, together with additional sources of ‘omic’ information. For instance,

Wachi, Yoneda andWu (2005) studied the differential expression of genes in lung cancer,

and found that highly connected and central genes in a network of protein-protein

interactions tend to represent genes up-regulated in cancer samples. Based on the

analysis of the position of genes in networks associated with different types of cancer,

Jonsson and Bates (2006) reported that genes with relevant roles in different cancers tend

to show more interacting partners than non-cancer-related proteins.

Linking information from different ‘omic’ resources to protein networks can also

provide new insights into system-based mechanisms underlying a disease or response.

For instance, Goh et al. (2007) investigated relationships between protein interactions

and gene co-expression across different diseases, which allowed them to conclude that

known disease-related genes tend to encode proteins highly connected between them.

Another example of network-based information integration to support the understanding

of complexmolecular mechanisms and responses leading to pathological conditions was

proposed by Lu et al. (2007). They assembled a network of curated molecular inter-

actions implicated in the allergic response in asthma. Differentially expressed genes

obtained from microarray data analysis were projected onto the network to assess

correlations between topology and biological functionality. Key findings of this research

included the observation that highly connected network nodes tend to be less differen-

tially expressed in comparison to nodes located in the periphery of the network (i.e. nodes

of low connectivity). Moreover, they showed that potential disease-causing genes may

encode neither essential nor highly connected proteins.

Camargo andAzuaje (2007) reported similar findings using gene expression data and a

global protein-protein interaction network implicated in human heart failure. They found

that highly connected proteins are not necessarily encoded by genes significantly

differentially expressed. In addition, genes that are not significantly differentially

expressed may encode a diversity of hubs and peripheral proteins. In many cases

network hubs appear to be weakly correlated with interacting partners. Moreover, hubs

tend to be engaged in ‘higher-level’ biological processes (as defined by the Gene

Ontology), while peripheral nodes tend to be involved in more specific disease-related

processes. These and other investigations in different biomedical domains support the

notion that biomarkers with potential disease-causing roles may exhibit diverse con-

nectivity and expression patterns. Thus, a gene does not have to be either a hub or

significantly differentially expressed to represent a highly influential functional com-

ponent in key processes driving health or disease.

Another important analysis principle in the analysis of disease networks is that

the network neighbours of a disease-causing gene tend to have similar roles in either the

same or similar disease. For example, Oti et al. (2006) applied this notion to the

prediction of disease-associated genes in pathologies characterized by known causative

genes and by additional knowledge about the potential involvement of other related

genes. They showed hownewdisease-causing genes can be predicted by analyzing genes

found in a significant genetic locus, andwhich encode proteins that interact with proteins

encoded by genes known to be causative factors of the disease. Lage et al. (2007)
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Table 7.2 Representative examples of investigations of the application of network-based approaches to understanding disease and discovering novel

biomarkers

Study

Key analysis assumptions or

principles Key findings or conclusions Reference

Differential expression of genes in

lung cancer

The connectivity degree of genes in

a functional network can give an

indication of the disease-related

roles of these genes

Highly connected and central genes

in a network of protein-protein

interactions tend to be genes

up-regulated in cancer samples

Wachi, Yoneda and Wu (2005)

Analysis of the network position of

genes in different cancers

Global topological properties of a

network can provide insights

into disease-related roles of its

genes.

Genes with relevant roles in

different cancers tend to show

more interacting partners than

non-cancer proteins

Jonsson and Bates (2006)

Investigation of relationships

between protein interactions

and gene co-expression across

different diseases

Information obtained from

different resources can provide

new insights within a network

context

Known disease-related genes tend

to encode proteins that interact

between them.

Goh et al. (2007)

Identification of relationships

between gene expression and

functional network data in

human heart failure

Global topological properties of a

protein-protein interaction

network together with other

information resources, for

example gene expression and

function annotation, can guide

the selection of prognostic

biomarkers.

Highly connected proteins are not

necessarily encoded by genes

significantly differentially

expressed; genes that are not

defined as significantly

differentially expressed may

encode proteins with many

interacting partners; genes

encoding network hubs may

exhibit weak co-expression with

the genes encoding their

interacting protein partners.

Camargo and Azuaje (2007)

Prediction of disease-related genes

in diseases characterized by

The network neighbours of a

disease-causing gene tend to

New disease-causing genes can be

predicted by looking at those

Oti et al. (2006)
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known causative genes and the

existence of additional

incomplete knowledge about the

potential involvement of other

related genes

have similar roles in either the

same or similar disease.

genes found in a significant

genetic locus and which have

protein interactions with

proteins encodedby genes known

to be causative of the disease.

Analysis of a phenome-interactome

network of protein complexes

implicated in genetic disorders

Neighbouring proteins in a network

display similar roles in a disease,

including causative roles.

If a group of candidate proteins are

members of a complex

composed of proteins known to

play key roles in similar diseases,

then these candidate proteins

will also tend be involved in a

similar disease.

Lage et al. (2007)

Characterization of genes

implicated in body weight based

on genetic and gene co-

expression network analysis

Sub-networks of interactions can

represent important functional

modules relevant to the

emergence or progression of a

disease.

Sub-networks of genes in a co-

expression network can consist

of many genes with strong

associations with physiological

traits.

Ghazalpour et al. (2006)

Analysis of a network of functional

interactions relevant to breast

cancer.

Sub-networks of interactions can

represent important functional

modules relevant to the

emergence or progression of a

disease.

The interconnecting neighbours of

proteins known to be associated

with breast cancer can represent

factors relating to cancer

progression.

Pujana et al. (2007)

Identification of key processes

underlying cancer phenotypes

using biological pathway

analysis

The level of activity and

relationships between genes or

proteins in a sub-network can be

used to distinguish between

phenotypes

Gene expression data can be used to

‘score’ known, curated protein

pathways, which can be used to

predict cancer outcome.

Efroni, Schaefer and Buetow

(2007)

Network-based classification

of breast cancer metastasis

The level of activity and

relationships between genes or

proteins in a sub-network can be

used to distinguish between

phenotypes.

The expression levels of sub-

networks extracted from a

protein-protein interaction

network can be used to predict

metastasis.

Chuang et al. (2007)
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presented another example of the strategy of analyzing network neighbours for

knowledge discovery purposes. They analyzed a ‘phenome-interactome’ network of

protein complexes implicated in genetic disorders. Their study demonstrated that if a

group of candidate proteins are members of a complex composed of proteins known to

play roles in similar diseases, then these candidate proteins will also tend to be involved

in a similar disease.

The idea that sub-networks of interactions can represent important functionalmodules

relevant to the emergence or progression of a disease has also been studied. For instance,

Ghazalpour et al. (2006) showed that sub-networks of genes in a co-expression network

can include many genes displaying strong associations with specific physiological traits.

This was found through the analysis of genetic and gene co-expression networks

implicated in body weight. Based on the analysis of a network of functional interactions

relevant to breast cancer, Pujana et al. (2007) found that the network neighbours of

proteins known to be associated with breast cancer can also be related to cancer

progression.

An extension of the previous strategy consists of the estimation of the ‘level of activity’

of sub-networks of genes or proteins to distinguish between phenotypes. Efroni, Schaefer

and Buetow (2007) identified key processes underlying cancer phenotypes using this

strategy together with extensive analysis of biological pathways. They showed how gene

expression data can be used to ‘score’ known curated protein pathways, which in turn can

be used to predict cancer outcomes. In a network-based classification of breast cancer

metastasis, Chuang et al. (2007) demonstrated that ‘expression level’ measures of sub-

networks extracted from a protein-protein interaction network can be used to accurately

predict metastasis. The next chapter will offer a more detailed description of this and

related examples of (network-driven) integrative data analysis.

7.5 Network-based prognostic systems: recent
research highlights

The analysis of gene networks and expression profiles provided the basis for the

discovery of functional mediators and pathways relevant to prostate cancer in a study

reported by Erg€un et al. (2007). This analysis was implemented with an algorithm called

‘mode-of-action by network identification’ (MNI), which was originally reported by

di Bernardo et al. (2005). The MNI-based approach began by inferring a global network

of gene regulatory interactions from a (training) gene expression dataset related to

diverse biological processes or pathologies. This network was then used to detect genes

in a test dataset, which appeared to be altered in a specific phenotype, for example disease

class. This was followed by a gene ranking procedure that aimed to identify (test) genes

whose expression patterns did not adequately match the inferred global network model.

The rationale is that such inconsistencies may be indications of phenotype-specific

perturbations on these (test) genes (Erg€un et al., 2007).

In Erg€un et al. (2007) the training dataset used by the MNI algorithm comprised 1144

microarray expression profiles originating from 13 research projects in different cancer

areas, such as breast and prostate cancer. The test dataset consisted of expression data

from prostate cancer samples only: non-recurrent primary vs. metastatic samples. The

samples in this test dataset were then queried against the network inferred by the MNI
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algorithm on the training dataset. The idea was to find genes whose expression patterns

did not fit the globalmodel of expression regulation extracted frommultiple cancer types.

This allowed the researchers to focus on genes that can be defined as prostate cancer-

specific candidates. Thus, those genes representing ‘inconsistent’ profiles in relation to

the global network were retrieved and ranked. This (test) gene expression-network

matching and ranking process was carried out within each prognostic category, that is

potential biomarkers were retrieved from the two patient groups independently. This

approach enabled the authors to propose the androgen receptor gene (AR) and the AR

pathway as potential key mediators of metastasis in prostate cancer.

Watkinson et al. (2008) applied the concept of synergy of gene pairs to estimate their

involvement in a specific disease (Section 7.3). In this approach a pair of genes

displaying a high synergy (with respect to a specific phenotype) indicates that these

genes participate in a common biological pathway associated with the phenotype. Thus,

synergy can be used as an estimator of the functional relation of two genes, or of their

‘cooperative’ effects, in the context of a specific phenotype, such as the presence of

disease.

Lim, Lyashenko and Califano (2009) discovered potential upstream ‘master reg-

ulators’ of breast cancer, which were shown to provide better predictive power and

robustness than other expression signatures when tested on both their original and

independent datasets. This is especially significant given the difficulties of previous

studies, including works published in prestigious journals, to meet the challenges of

independent (follow-up) validation studies.Moreover, this also addresses the problem of

biomarker set instability, that is the little agreement between sets of biomarkers found in

different studies relating to the same clinical problem. The latter can be observed in two

studies that identified gene expression signatures in breast cancer patients to predict

progression tometastasis (van deVijver et al., 2002;Wang et al., 2005), butwhich shared

only one gene in common.

The ideas explored by Lim, Lyashenko and Califano (2009) and others in relation to

the discovery of ‘driver’ biomarkers can be explored by applying algorithms that infer,

for example, transcriptional factors from gene expression data. The ARACNe algorithm

is one example of such algorithms (Basso et al., 2005), which have been experimentally

validated using different types of cells. In Lim, Lyashenko and Califano’s study (2009),

ARACNe detected transcription factors involved in induction or suppression of genes

associated with differential prognosis in breast cancer, based on the analysis of two

published datasets (van de Vijver et al., 2002; Wang et al., 2005). The network obtained

from one of these datasets (van de Vijver et al., 2002) was interrogated by a Master

Regulator Analysis (MRA) procedure. Given two phenotypes, the MRA identifies

transcription factors that may be used to explain the differences observed in the two

phenotypes. The main outcome of the MRA is a set of phenotype-specific ‘master

regulators’ (MRi) and corresponding regulons or transcriptional targets (Ri). The MRA

tests whether the regulons activated by the transcription factors are significantly

represented in the genes over-expressed in one of the phenotypes (e.g. the samples in

the case group). Similarly, it tests whether the genes inhibited by the transcription factors

are statistically overrepresented in the genes that are down-regulated in the case group. In

Lim, Lyashenko and Califano’s study (2009), the set of MRi genes were subsequently

evaluated as inputs to support vector machine classifiers using the two datasets

independently. It should be noted that the sets of regulons found with this analysis

7.5 NETWORK-BASED PROGNOSTIC SYSTEMS: RECENT RESEARCH HIGHLIGHTS 125



overlapped with the set of biomarkers derived from the original study by van de Vijver

et al. (2002).

Based on the analysis of ‘pathway activity levels’ extracted from each patient,

Lee et al. (2008) proposed a classification method based on the mapping of gene

expression data onto different biological pathways, which was shown to outperform

traditional methods in different disease classification applications. They defined

the ‘activity level’ as a measure that summarizes the levels of gene expression of

‘condition responsive genes’ (CORGs) found in a biological pathway. In a given

pathway, the CORGs are the sub-set of genes that allow an optimal discrimination of

the phenotypes studied based on their combined expression values. Thus, the resulting

biomarkers represent sub-sets of functionally-related, phenotype-specific genes. This

method is described as follows.

The investigated pathways were obtained from the MsigDB resource (Subramanian

et al., 2005): 472 metabolic and signalling pathways derived from 8manually annotated

databases and 50 clusters of co-expressed genes originating from different investiga-

tions. For a given gene set,G, within a particular pathway, the discriminative score S(G)

is equal to the t-test statistic obtained onG for the phenotype classes considered. S(G) is

actually based on the t-statistic obtained on the average expression values of the genes in

G(Lee et al., 2008). Other authors have proposed alternative methods to estimate the

activity of a pathway based on principal component analysis (Bild et al., 2006), means

and medians (Guo et al., 2005), and gene-class correlation values (Tian et al., 2005).

For each pathway, Lee et al. (2008)mapped the expressionvalues of each gene onto its

corresponding gene (protein) in the pathway, and searched for a sub-set of genes that

could be used to differentiate between the samples of the phenotypes investigated. The

output of this search is a set of genes with amaximal S(G) in the pathway. These genes in

turn represented the CORGs. These CORGswere identified by ranking the t-test statistic

values of the different candidate sub-sets. The initial member of a CORG set, G, is the

gene with the largest t-test score in the pathway. In subsequent iterations, the gene with

the next largest t-test score is added to G. The search is ended when, for a new gene

addition, S(G) cannot be increased.

Another approach to network-based classification of phenotypes or clinical outcomes

consists of looking at structural changes in interaction networks that can be linked to

functional properties. This can include the detection of inter- or intra-module hub

proteins that are co-expressed with interacting partners in specific cells, tissue types or

phenotypes. In this scenario, for instance, the modification of networkmodularity can be

associated with specific clinical outcomes for patient classification. Taylor et al. (2009)

applied this strategy by first identifying hubs in networks of annotated protein-protein

interactions extracted from the literature and different experimental resources. Using

large-scale gene expression data, they estimated the level of co-expression of these hubs

and their interacting partners. Such a co-expression analysis helped them to define inter-

and intra-modular hubs. Inter-modular hubs tend to display low co-expression with their

interacting partners. Intra-modular hubs exhibit stronger patterns of correlation with

their interacting partners.

With the analysis of these network and expression data, Taylor et al. (2009) concluded

that intra-modular hubs are more functionally similar with their interacting partners in

comparison to inter-modular hubs. Also their results indicated that inter-modular

hubs tend to reflect tissue-specific molecular mechanisms. Thus, their research showed
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that these types of hubs exhibit structural features that are linked to their functional

roles in organizing and modulating protein networks. Moreover, they found that

mutations of inter-modular hubs are associated with cancer phenotypes, and that such

associations are more frequent in comparison to those found in intra-modular hubs

(Taylor et al., 2009).

Taylor et al. (2009) also examined the statistical differences in the average (Pearson)

correlation coefficients displayed by hub proteins and their interacting partners in two

groups of cancer patients: good and poor clinical outcome. This reported 256 hubs with

statistically detectable changes in correlation values across good and poor outcome. A

closer look at these results suggested, for instance, that the loss of coordinated co-

expression of groups of genes associated with the BRCA1-associated genome surveil-

lance complex (BASC) can be a driving mechanism leading to poor clinical outcome

(Taylor et al., 2009). Automated classification of patients was then implemented as

follows. First, they estimated the co-expression of hubs with their interacting partners.

Second, they identified hubs with expression correlations that significantly differed

between the prognostic classes (survival vs. death groups). Using this information they

implemented classificationmodels based on an algorithm known as ‘affinity propagation

clustering’ (Frey and Dueck, 2007). The goal was to predict 10-year survival of patients.

Through a fivefold cross-validation procedure and ROC curves (Chapters 2 and 3), they

demonstrated that their network-based classification strategy can outperform commer-

cial prognostic systems based on gene expression data only.

7.6 Final remarks: opportunities and obstacles
in network-based biomarker research

The knowledge extracted from different types of molecular networks can provide the

basis for the discovery of novel biomarkers, functional pathways and processes, which

can guide the implementation of more meaningful diagnostic, prognostic and treatment

response prediction systems. In different health and pathological conditions it has been

shown, for instance, that proteins encoded by genes with disease-related genomic

mutations can be grouped into common pathways, complexes or processes. This has

been demonstrated through the analysis of experimentally- or computationally-inferred

networks. Also it is known that gene products functionally associated with a specific

phenotype may be found as interacting partners in clusters of network nodes, which can

represent protein-protein interactions or co-expression relationships.

The comparative analysis of protein networks derived from humans and pathogens is a

promising approach to understanding infection and defence mechanisms (Ideker and

Sharan, 2008). The identification of interactions and pathways distinguishing pathogens

(i.e. viruses, bacteria or parasites) and hosts can facilitate protein target identification and

drug development. Other important pharmacological applications in other biomedical

areas involve the analysis of networks describing chemical-genetic interactions, and

protein-protein interaction networks integrated with drug-drug interaction networks

(Ideker and Sharan, 2008).

The difficulties in identifying robust gene expression biomarkers may be explained by

differences and quality issues regarding sample extraction and processing, microarray

technologies and data analysis. Nevertheless, these factors do not fully explain this lack
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of stability and reproducibility. Lim, Lyashenko and Califano (2009) argued that the

main reason is that most prognostic and diagnostic signatures discovered to date

represent ‘passengers’, rather than ‘drivers’ of disease.

This explanation is supported by the notion that most of the biomarkers reported in the

literature tend to represent highly-differentially expressed genes, which in turn tend to

represent genes located ‘downstream’ from the primary (somatic or inherited) factors

driving the prognostic outcomes. Furthermore, because of the large and complex

interrelationships defined by regulatory networks, such ‘downstream’ genes tend to be

unstable or highly variable in terms of expression patterns. The higher the complexity of

this regulatory interplay, the larger the number of co-regulators and noise influencing the

processes causing the differential expression observed in the ‘passenger’ genes. Lim,

Lyashenko and Califano (2009) and others have also pointed out that this can be seen, for

example, in the case of oncogenes and tumour suppressors, which do not tend to be the

most differentially expressed genes.

This makes network-based approaches a promising solution to support the discovery

of ‘driver’ agents of disease. This may comprise, for instance, genes and products

responsible for initiating the cascade of transcriptional responses leading to differential

expression patterns across phenotypes or patient groups.

The sparseness and incompleteness of available human network information will

continue to be one of the major challenges for the advancement of network-based

approaches to biomarker discovery and beyond. There is also a need to accumulatemore,

better quality and less biased datasets describing different types of interactions in

different clinical conditions, tissues or cell types. Moreover, there is still a need for

alternative computational methodologies and tools to collect, assemble, visualize and

analyze these networks in the context of translational biomedical research.

Many of the network-based approaches published to date are based on the inference of

structural properties and relationships. It has been shown that the knowledge of the

interactome of humans and other organisms not only remains incomplete, but also biased

(Hakes et al., 2008). This represents a crucial problem, despite advances in experimental

approaches and the increasing amounts of data deposited in the literature and curated

databases. Biases may be caused by differences in the data acquisition and processing

procedures of these datasets. These biases can distort the structure of a network.

Therefore, it is necessary to consider both the incompleteness of knowledge and potential

sources of bias when making interpretations based on the topology of molecular

networks. Hakes et al. (2008) argued that researchers generally accept that molecular

networks can miss large numbers of interactions, and that many of the reported

interactions may represent false positives. However, problems related to data sampling

bias have received relatively less recognition. Interactome networks can be biased

toward proteins from similar cellular environments and toward highly expressed

proteins. Moreover, these networks may be biased toward the study of proteins that

aremore ancient ormore evolutionarily conserved. In the case of high-quality collections

of molecular interactions, another potential source of bias is that proteins included in

curated interactions tend to be the ones that have been more studied as potential disease-

related or essential proteins.

Hakes et al. (2008) explained that current interaction networks are rough approxima-

tions or samples of the ‘complete’ networks investigated. They also asserted that even if

this sampling was truly random, the incompleteness of the resulting networks would be
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significant. Additionally, sampling biases would generate larger differences between the

“complete network” and the sub-sample network actually analyzed. Using different

published interactome datasets, Hakes et al. (2008) demonstrated that global statistical

descriptors and topological properties can be significantly affected by data handling and

selection. The authors recommend caution whenmaking conclusions about the structure

of molecular networks and that more attention should be given to the identification of

potential sources of biases.

Another area that deserves greater attention is the study of the tissue specificity of

protein interaction networks. Most of the human interaction networks reported to date

represent approximations of ‘global’ interactome networks. Such networks include very

limited information about where and when the interactions occur. The analysis of

dynamic interaction networks in unicellular organisms has been studied through the

integration of protein-protein interaction and gene expression data in the context of

different cellular states or conditions. Examples of this research in yeast are the

identification of co-regulated interaction modules (Ihmels et al., 2002) and the inves-

tigation of cellular conditions under which interactions occur (Luscombe et al., 2004).

More recently, Bossi and Lehner (2009) identified human tissues in which different

protein interactions can occur based on the analysis of gene expression data. One of the

key conclusions of their study was that there are abundant interactions between proteins

that are globally expressed and those proteins that appear to be expressed in specific

tissues only. For instance, they showed that most tissue-specific proteins tend to interact

directly with proteins implicated in fundamental cellular processes. Moreover,

‘housekeeping’ proteins also tend to have many tissue-specific interactions (Bossi and

Lehner, 2009). This and future research about the dynamic behaviour of protein

interaction networks in the context of different tissue types will be required to have

a deeper understanding of the mechanisms underlying health and disease, and to guide

the search for potential biomarkers.
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Discovery of novel molecular biomarkers of disease has recently become a major

research topic in translational research thanks to the coming of the genomic era. Because

of its biological and economical importance, biomarker discovery has been strongly

supported by US government agencies as well as funding agencies in other countries. In

the blueprint for the genomic era proposed by Francis Collins and colleagues in the US

National Human Genome Research Institute (NHGRI) in 2003, most of the grand

challenges in the applications of genomics to health are much related to biomarker

discovery, including identification of disease causal markers at the gene, locus, network

and pathway levels, prediction of disease susceptibility and drug response, early
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detection of illness, and development of powerful new therapeutic approaches to disease

(Collins et al., 2003). As described in Chapter 7, network-based approaches using

different types of ‘omic’ data or their combination have been extensively applied to the

biomarker discovery in many diseases such as cancers, cardiovascular diseases, and

diabetes. The ‘omic’ data that have been recruited in biomarker discovery includes

protein-protein interactions, protein-gene interactions, gene expression and co-expres-

sion, disease gene and phenotype relationships, and gene-environment interactions.

These biological datasets have been generated during the past two decades by taking

advantage of the revolutionary high-throughput technologies of genomics, epigenomics,

transcriptomics, and proteomics, and the wide-spread proliferation of biology-oriented

databases and computational mining tools. Despite the well known incompleteness and

high false positive rate in the ‘omic’ datasets, analyses using these datasets by systems

biology approaches have provided many important insights into the molecular mechan-

isms of diseases.

Here I discuss three current trends in biomarker discovery in complex disease. First,

complex diseases such as cancers and psychiatric disorders are likely caused by many

genes, each of which may contribute a small risk but likely interact with other genes and/

or interact with environmental factors. It is now clear that disease prediction by using

individual biomarkers is limited in many cases (Rifai, Gillette and Carr, 2006). Alter-

natively, a panel of genes or proteins is needed to accurately detect the perturbation of the

biological systems that cause the disease. At present, there is a strong trend towards

integrating the data from various genetic studies and their related biological information

in the cellular systems so that promising candidate biomarkers can be screened by

enriched evidence and at the systems biology level. Second, investigators are applying

pathway-based analysis for the enriched disease-causal information from independent

large-scale or genome-wide genetic data, such as emerging genome-wide association

studies (GWAS). The third trend is to integrate the disease-related pathways and

networks (i.e. pathway crosstalk) for complex disease studies.More details are discussed

below.

Integrative approaches to biomarker discovery

A tremendous amount of effort has been expended in the past two decades to identify

genes influencing susceptibility in complex diseases, such as schizophrenia and

Alzheimer’s disease. The identification of potential complex disease susceptibility

genes is expected to accelerate because of many GWA studies using large datasets

currently complete or in progress. Concurrently, across a variety of complex disorders

and traits, there is a strong trend towards the integration of data frommultiple sources and

the use of these integrated data to generate lists of prioritized candidate biomarkers at the

systems level. This strategy has recently been effectively applied in the discovery of

candidate biomarkers in many diseases such as cancers and major psychiatric disorders

(Lin et al., 2007; Le-Niculescu et al., 2009). For example, theNiculescu group in Indiana

University developed a convergent functional genomics (CFG) approach, which inte-

grates functional (e.g. gene expression), genetic (e.g. linkage and association studies),

and tissue and fluids (e.g. blood, postmortem brain) data, and then applied a Bayesian

strategy for cross-validation and prioritization of biomarker genes. They applied this

132 GUEST COMMENTARY ON CHAPTER 7



strategy in almost all major psychiatric disorders such as schizophrenia, bipolar disorder,

alcoholism, and mood disorder. In their most recent study, they identified blood

biomarkers for mood disorders. These biomarker genes were found to be involved

in myelination and growth factor signalling pathways (Le-Niculescu et al., 2009).

Similarly, Sun et al. (2009) developed a multi-dimensional evidence-based gene

prioritization approach for complex diseases. To demonstrate this approach, Sun

et al. integrated evidence-based genetic data from thousands of association studies,

more than 25 genome-wide linkage scans, meta-analysis of gene expression and high-

throughput literature search. The prioritized candidate genes were then used to construct

gene networks. Subsequent analysis identified a few small schizophrenia-specific sub-

networks that are enriched in genetic signals from independent GWA studies. The follow

up experiments verified that some of the genes in the sub-networks are significantly

associated with schizophrenia. These sub-networks provide candidate network-based

biomarkers for schizophrenia.

One example of the application of integrative approaches to cancers was described in

Lin et al. (2007). In that study, multi-dimensional integrative analysis based on sequence

similarity, functional annotations, protein-protein interactions, and molecular pathways

was performed to identify functional groups and pathways that are enriched for

mutations relevant to both breast and colorectal cancers. The framework provides an

efficient approach for biomarker discovery in cancers.

With many genes having been found associated with different complex diseases and

the recent availability of the human interactome and whole molecular networks (e.g.

constructed by the Ingenuity Pathway System), investigators have started to construct

disease-specific networks. For example, Jin et al. (2008a) constructed a prostate cancer-

related network (PCRN) by searching for prostate cancer genes in the Ingenuity Pathway

Systems and protein-protein interactions in the Human Protein Reference Database

(HPRD). We recently constructed a schizophrenia-related molecular network by com-

bining the sub-networks and pathways in which schizophrenia candidate genes are

known to be involved. This is the first molecular network model of psychiatric genetics.

In cardiovascular diseases, Jin et al. (2008b) built a cardiovascular-related network using

an integrated knowledge, network-based biomarker discovery scheme. In their scheme,

they integrated data from mass spectrometry (MS) and network and pathway (Uniprot,

KEGG, and HPRD) data. They demonstrated that candidate network-based biomarkers

can be more accurate in classifying different groups of patients than single biomarkers.

Pathway-based analysis of GWA data

Genome-wide association studies test many thousands to more than onemillion markers

at a time. They are unbiased, hypothesis-free, and aimed at the discovery of novel

disease-casual variants. Under the hypothesis that many genes contribute a small risk to

complex disease, the detection of single biomarkers at the genome-wide significance

level is often challenging, especially for neuropsychiatric disorders. In schizophrenia,

the only published GWA study failed to identify genes to be significantly associated with

schizophrenia at the genome level. However, pathway-based analysis of GWA data is

emerging as a useful tool. It assumes that markers underlying a disease or phenotype are

enriched in genes belonging to the same pathway. One popular pathway analysis method
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for GWA data is based on the gene-set enrichment analysis (GSEA) algorithm originally

developed for microarray data analysis (Wang, Li and Bucan, 2007). It defines sets of

genes based upon common biological attributes (e.g. Gene Ontology terms or biological

pathways) and measures the degree of overrepresentation or ‘enrichment’ of each gene

set amongst nominally disease-associated markers. So far, pathway-based analyses have

been quickly applied to many diseases such as Parkinson disease, Axon guidance,

multiple sclerosis, bipolar disorder, and Crohn disease. All these studies could identify

biologically important pathways related to the corresponding disease.

Pathway-based analysis can be applied to other genome-wide data too. For example, a

genome scan meta-analysis (GSMA) of the 32 genome-wide linkage studies for

schizophrenia has been just completed. A follow-up pathway analysis of the resulting

candidate genes identified myelin-related pathways implicated in schizophrenia

(Rietkerk et al., 2009).

Integrative analysis of networks and pathways

Given the complex nature of biological systems,more than one pathwaymay be involved

in any given complex disease. Two or several pathways or networks may interact with

each other to cause the disease. This is very likely because functional important proteins

(e.g. TP53) may be involved in multiple pathways. Therefore, besides the identification

of specific pathways/networks, investigators may take a further step by exploring the

interaction and crosstalk between pathways that are related to a disease. This integrative

or pathway crosstalk analysis has been applied in cancer genes (Lin et al., 2007; Li,

Agarwal and Rajagopalan, 2008). We recently applied this approach to schizophrenia.

We first identified 24 schizophrenia-related pathways. Then, we developed a statistical

method to evaluate whether the schizophrenia-related proteins (nodes) and their inter-

actions (links) were significantly shared between any pair of schizophrenia-related

pathways. Based on the pathways that are shared, we constructed a network of cross-

talking pathway. We found that neurotransmitter-related pathways are strongly in

crosstalk, which suggest the neurotransmitter hypothesis of schizophrenia.
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8 Integrative
data analysis for
biomarker discovery

This chapter focuses on the combination of different types of information and prediction

models for biomarker discovery. The importance and application of integrating different

types of data and computational approaches will be discussed. Methodologies and tools

for integrating and analyzing different data sources will be introduced. Examples of

approaches to supporting the identification of biomarkers for disease classification and

the prediction of clinical outcomes will be provided.

8.1 Introduction

The combination of multiple biomarkers derived from different clinical and molecular

data sources have been proposed to improve diagnostic and prognostic performance in

different research areas, especially in cancer and cardiovascular research. For example,

traditional risk factors (such as age, gender and blood glucose concentration) have been

combined with protein expression biomarkers (such as different molecules implicated in

inflammation processes) to improve the prediction of recurrent cardiovascular events in

comparison to traditional risk factors (Blankenberg et al., 2006).

In a traditional integrative approach to disease prediction model design, the different

biomarkers are independently discovered prior to the integrative modelling task.

Typically they are selected as inputs to these analyses based on prior knowledge, that

is newmodels are investigated based on the combination of known traditional risk factors

or novel molecular biomarkers, whose computational predictive quality and potential
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clinical relevance have already been reported elsewhere. This is the case of the example

pointed out above. An alternative integrative approach in the ‘omic’ era comprises the

combination of different data and information sources or computational techniques to

discover and prioritize new biomarkers, as well as to implement novel prediction

methodologies. Moreover, under this framework the predictionmodel discovery process

does not have to be a priori biased by strong user- or domain-driven assumptions about

between-biomarker or biomarker-outcome relationships. This chapter puts emphasis in

this latter strategy based on different types of ‘omic’ datasets and information, compu-

tational learning and statistical techniques, and knowledge bases.

A key rationale for model integration is that different prediction models, such as

classifiers, built on different data sources or using different techniques can potentially

provide complementary information about the data to be classified. This capacity to offer

complementary or alternative vistas of the same problem also means that the different

subsets of misclassified or incorrectly predicted samples by these models will overlap

partially. The main idea behind the integration of data and models for biomarker

discovery and disease classification is to achieve consensus or better predictions based

on the combination of several ‘opinions’ provided by different ‘experts’. These experts

can be seen as relativeweak predictors or descriptors of the problem under consideration.

Their individual assessments are also based on incomplete, noisy and often ambiguous

information.

The areas of computational intelligence and data mining have contributed different

integration schemes, algorithms and applications that have been shown to outperform

models based on single data sources in a wide variety of problem domains. An important

condition highlighted in these investigations is that the data sources and resultingmodels

to be integrated should be as diverse as possible (Kittler et al., 1998). In practice, this can

be achieved by building models using different types of clinical and molecular data

representing different levels of ‘omic’ complexity or organization, by using different

feature sets or by sampling different training datasets. Another strategy consists of

extracting predictions from specific models according to their application context or

prediction capability in relation to local constraints, class-specific conditions or data

subsets (Kittler, 2000; Hastie, Tibshirani and Friedman, 2001).

A variety of integration strategies based on different types of data and machine

learning techniques have also been studied for the implementation of ‘ensembles’ of

classifiers (Kittler et al., 1998). For instance, majority or weighted voting can be

implemented to generate integrated predictions in situations when only class labels are

available. When the predictions are defined by continuous values, for example prob-

abilities or risk scores, linear combinations andmeanvalues can be calculated to produce

the integrated predictions. Model integration applications may comprise different single

models built on a single dataset or different datasets encoded by a common input

representation or feature set format, such as different gene expression datasets from

different populations but measured on the same genes. In this case predictive diversity

may be accomplished by generating models based on different algorithms (e.g. support

vector machines, neural networks and instance-based learners) or based on the same

technique with different designs (e.g. neural networks trained with different learning

parameters, topologies, architectures or evaluation requirements). Another typical

scenario in the implementation of integrated prediction models is to build diverse

models trained on different datasets assumed to be independent or weakly correlated
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(Kittler, 2000), whichmay also be derived from different types of data. An example is the

integration of gene expression and genomic variation datasets originating from the same

group of patients.

In general, one may define five major types of approaches to data and prediction model

integration for biomarker discovery research on the basis of the integration strategy

implemented. In thefirst categorymodels are constructed based on the aggregation, suchas

union or intersection, of different features at the input level. In this case the integration

is done before any classifier or prediction model is trained. In a second family of

approaches different models are generated from a single dataset or homogeneous data

sources, such as a single gene expression dataset ormultiple expression datasets measured

on the same genes, followed by the integration of the resulting models to obtain fused or

global prediction outcomes. A third category involves the integration of different or

heterogeneous data sets during the construction of the predictionmodels. This can be done,

for example, as part of data pre-processing or feature encoding tasks. Another family of

approaches consists of combing different heterogeneous datasets, information sources and

the resulting prediction models in a parallel fashion. Examples of approaches assigned to

this category also include the combination of heterogeneous ‘omic’ data types or datasets

annotated to different, but inter-related, phenotypes. The fifth major methodological

category includes the multi-stage, serial integration of multiples datasets or prediction

models. These major categories are graphically illustrated in Figure 8.1.

Figure 8.1 A categorization of approaches to data and model integration for biomarker discovery

and prediction on the basis of the integration strategy implemented. (a) Model based on data source

aggregation at the input level; (b) integration ofmodels based on homogeneous data sources; (c) data

integration at the model level; (d) multiple heterogeneous data and model integration; (e) serial

integration of sources and models. D: data or information source. M: Prediction model. Arrows

represent transfer of information
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A categorization of approaches to data and prediction model integration in disease

biomarker discovery research can also be defined on the basis of the outcome repre-

sentation or visualization methodology applied. In general, one can identify two major

types of strategies: Component- and network-centric strategies. A component may refer

to any single biological or clinical concept, such as a protein or gene biomarker. In the

network-centric approach the resulting outcomes,models or predictions are visualized as

networks of components. A network can be associated with different levels of com-

plexity, such as a pathway or other functional interaction network (Chapter 7). Nodes

may represent different types of biological system components. Edges within such

networks can represent different types of functional relations, such as regulatory or

protein-protein interactions. The component- and network-centric strategies are graph-

ically depicted in Figure 8.2.

The next sections will discuss these strategies in more detail with relevant examples

and in the context of biomarker discovery, prioritization and biomedical knowledge

discovery. Although these categories can partially overlap or it may be possible to assign

some of these examples to different approach categories, the main objective is to

highlight the most representative design and application attributes that link these

examples to a particular category.

Figure 8.2 A categorization of approaches to data and model integration for biomarker

discovery and prediction on the basis of the prediction encoding and visualization implemented.

(a) Component-centric approach; (b) Network-centric approach. Component refers to any single

biological or clinical concept, such as a protein or gene biomarker.D: data or information source.

M: Prediction model. N: Network-based representation of resulting outcomes, models or

predictions. A network can be associated with different levels of complexity, such as a pathway

or different functional interaction networks. Nodes may represent different types of biological

system components. Edges within such representations can represent different types of func-

tional relations, such as regulatory or protein-protein interactions
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8.2 Data aggregation at the model input level

This category includes prediction models that process inputs representing diverse

features or prediction factors. The features can represent different measurements,

biomarkers and types of molecular and clinical data. This can also mean that a patient

is represented by a set of predictive features measured with different experimental

protocols or instruments, but which are aggregated into a single input, for example a

vector of values, to make predictions. Within this category, we can also include

classification models based on biomarkers previously discovered in different studies

independently. This in turn means that new measurements of such biomarkers are made

on a specific patient cohort to construct the new ‘integrated’ prediction models.

Blankenberg et al. (2006) illustrate a typical example in which known biomarkers of

cardiovascular disease: nine biomarkers of inflammation, microalbuminuria and N-

terminal pro-brain natriuretic peptide (NT-proBNP), were measured in more than 3000

individuals. The main goal was to detect significant associations between sub-sets of

these genes and different cardiovascular outcomes, such as myocardial infarction and

death, over 4.5 years of follow-up. The research concluded that the combination of NT-

proBNP and traditional risk factors (e.g. age, cholesterol and glucose levels) could

improve the clinical outcome prediction capacity in comparison to models based on

traditional biomarkers only.

The automated selection and prioritization of known diagnostic and prognostic

biomarkers has also been investigated by other authors, such as Mamtani et al.

(2006). In the context of binary diagnostic classification and using different types of

‘omic’ data, they aimed to demonstrate how predictive performance could be improved

based on the combination of the most powerful biomarkers discovered in previous

investigations. The proposed methodology can be summarized by the following

sequence of analysis phases. In a first phase, the AUC value (Chapter 2) from each

biomarker was estimated independently. This information represented the basis for the

calculation of a ‘performance index’, which was used to compare the individual

predictive quality of the different biomarkers. In the second phase, and based on the

set of top biomarkers, an optimized sub-set of biomarkers was selected by stepwise

multiple linear regression (Chapters 2 and 3). This sub-set of biomarkers represented the

inputs to the third phase: the implementation of a classification model based on a linear

discrimination function, and its subsequent validation.

The automated prioritization of biomarkers has also been researched by Aerts et al.

(2006) and others, but in the context of multiple, heterogeneous information sources.

Moreover, unlikeMamtani et al.’s (2006) approach, Aerts et al. (2006) developed aWeb-

based system that can be applied to prioritize (potential novel) candidate biomarkers.

Section 8.5 offers a more detailed description of this example.

8.3 Model integration based on a single-source
or homogeneous data sources

Prediction models trained on extended datasets assembled through the combination

of samples derived from independent studies, including those publicly available on
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Web-based resources (Chapters 9 and 10), can potentially improve diagnostic and

prognostic applications in comparison with models based on single datasets generated

at a single laboratory. Also, it is known that different models built on independent

datasets (e.g. several gene expression datasets only) can incorporate different sets of

biomarkers with little overlap between them. Moreover, models based on different

biomarker sets can show similar classification performance when tested on the same

(independent) dataset (Ein-Dor et al., 2005; Fan et al., 2006; Zhang et al., 2007a).

Different (known and unknown) confounding factors in each dataset also represent a

major problem for the predictive integration of these datasets. Examples of typical

confounding factors are lymph node status in cancer patients, diabetes or metabolic

complications in control or case groups in cardiovascular research, and differences

between datasets in terms of ethnic or bio-geographical origins. This means that the

biomarker information obtained from a dataset may not be directly applicable to or

harmonized with other datasets that include patients with diverse demographical and

clinical backgrounds. Thus, an important task prior to the integration of samples

originating from independent studies is to detect and control for potential confounding

factors. Standard strategies to deal with this challenge include the design of prediction

models specific to sub-populations and the inclusion of large, diverse datasets (Zhang

et al., 2007a). These problems may equally apply to some applications based on other

integrative approaches, such as the integration of multiple heterogeneous datasets.

A study by Zhang et al. (2007a) addressed the problem of integrating independent

microarray datasets for building prognostic models. The classification problem was the

prediction of outcomes in breast cancer patients (disease recurrence vs. good prognosis)

using published microarray data. A lack of clinical information or metadata about the

microarray datasets, aswell as the lack of evidence about potential sources of bias in each

dataset, did not facilitate the detection of confounding factors prior to the integration of

the samples into a single gene expression dataset. Zhang et al. (2007a) created training

datasets using the samples obtained from two independent microarray datasets, but

which represented the same classification problem. The integration was performed after

implementing standard expression normalization within each dataset independently: the

median and standard deviation of the expressionvalues for each geneweremade equal to

zero and one respectively. The resulting predictionmodels were subsequently tested on a

third independent dataset. This relatively simple integration approach produced prog-

nostic models of higher overall classification accuracy in comparison to models built on

single datasets.

This category also includes data mining approaches to identify potentially relevant

relationships or data patterns for supporting disease biomarker discovery. Such relation-

ships can be used, for instance, as inputs to subsequent prediction model design tasks or

to reduce the cost and complexity of future data acquisition and analysis. An example of

this type of approach was reported by Alterovitz et al. (2008), who integrated protein

expression data obtained from different types of bio-fluids and tissue samples. This

investigation allowed them to detect direct associations between tissue proteins and

unknown counterparts measured in peripheral fluids, that is it determined which fluid

biomarkersmight be used as proxies to tissue biomarkers. This knowledge is particularly

important because peripheral or circulating biomarkers, such as those measured in blood

or urine, are easier and cheaper to obtain than those extracted from solid tissue or organ

biopsies. Associations between solid tissues and fluids were estimated by calculating
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their ‘relative entropy’ (Hastie, Tibshirani and Friedman, 2001) in the context of

phenotypes, functions and drugs. Relative entropy allows one to estimate the similarity

between two distributions or datasets, in this case: tissues vs. fluids. Lower entropy

values indicate higher similarity between the two sources. In the case of Alterovitz

et al.’s study (2008), a set of fluid biomarkers was considered informative or repre-

sentative of a set of solid tissue biomarkers when their relative entropy scores were

significantly greater than the score obtained from randomly-selected biomarker sets. The

latter including the same number of biomarkers as found in the original set of fluid-

derived biomarkers. Relative entropy values were estimated using the frequency of

functional annotation terms found in the biomarker sets under comparison. Thus, this

type of analysis enables the identification of inter-source commonalities beyond themere

identification of ‘overlapping’ biomarker sets. Alterovitz et al. (2008) carried out this

integrative data analysis on 16 solid tissue and 10 fluid (proteome) datasets. Functional

information of the proteins was extracted from the GO, and the Online Mendelian

Inheritance in Man database (OMIM, 2009) was used to map proteins to diseases.

Protein-drug associationswere derived from an ontology based on the Pharmacogenetics

and Pharmacogenomics Knowledge Base (PharmGKB) (Hewett et al., 2002).

The integration of multiple microarray datasets for the discovery of potential novel

biomarkers has also been investigated in the context of protein-protein interaction

networks, extensive literature data mining and cardiovascular research. Camargo and

Azuaje (2008) demonstrated the predictive capability of classification models inferred

from such an integrative analysis process, in comparison to single-source prognostic

systems based on biomarkers known to be relevant in dilated cardiomyopathy (DCM).

Datasets stored in the GEO (Gene Expression Omnibus) database were used to assemble

expanded training sets for biomarker identification analysis and classification model

implementation, as well as to define independent validation datasets. The datasets

consisted of samples assigned to the classes: DCM and non-DCM patients. After dataset

harmonization and standardization, potential relevant features were selected through

SAM and PAM analyses (Chapters 2 and 3). This process was also implemented on the

original datasets independently.

The set of features detected by the SAM and PAM analyses were used to query the

scientific literaturewith textmining software. This allowed the identification of known

and potential novel associations between these genes and DCM. Using different

training and validation datasets, the prediction models obtained from the aggregation

of samples from different datasets outperformed the classifiers constructed on the

original studies independently. Amongst the genes derived from the integrated

analysis of datasets (including SAM-, PAM- and literature-derived markers), the set

consisting of differentially-expressed genes without known involvement in DCM

provided some of the highest classification performance using support vector machine

models (Chapter 3). Moreover, its classification performance was better than that

obtained with models based on known biomarkers only.

New functional characterizations of the different sets of genes were provided and

interpreted in the context of a (curated) global network of protein-protein interactions

implicated in DCM-related processes. Different topological and functional analyses of

this network allowed the identification of additional potential biomarkers. Furthermore,

this network-based analysis showed that the proteins encoded by genes suggested as

potential biomarkers tend to be peripheral components of the network. This finding may
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corroborate that the selection of biomarkers was not biased towards well-studied (richly

interconnected) genes. Additionally, it suggests that the discovered biomarkers may

represent downstream response components, which reflect the effects of systemic

perturbations leading to the emergence or progression of the disease.

Xu et al. (2008) proposed an alternative approach to discovering prognostic bio-

markers from (independently-generated) microarray datasets, which is driven by gene

expression data clustering for the identification of disease-specific co-expression net-

works. One of the keyoutcomes of their researchwas amodule consisting of genes linked

to tumour suppression. Although such associations have been previously established for

these genes, Xu et al. (2008) were also able to characterize their coordinated interplay at

the transcriptional regulatory level. In addition, they also moved beyond the idea of

detecting gene-gene relationships through the calculation of co-expression between pairs

of genes.

Using 32microarray datasets derived from12 tissue types (cancer types) and 23datasets

from non-cancer tissues, their integrative prediction methodology was implemented

through the following tasks (Xu et al., 2008): (1) A network of differential co-expression

was generated, (2) the resulting network was analyzed in terms of different co-expression

properties and topological attributes, and (3) network modules strongly linked to specific

cancer types were predicted and characterized. In the co-expression network, a node

represented a gene, and an edge linking two genes indicated that the genes were frequently

co-expressed in the cancer datasets. The analysis of ‘co-expression dynamics’ (Xu et al.,

2008) was done through the calculation of ‘second-order expression similarity’ values

between the genes across the different datasets. The co-expression between two genes, a

and b, in a single dataset is a first-order measure of expression similarity (Chapter 2).

Second-order expression similarity estimates the correlation of two pairs of genes, such as

(a and b) vs. (c and d), across multiple phenotype-specific datasets. In this way second-

order similarity analysismay support the identification of co-expressed genes that may not

be found by standard co-expression analysis. Using hierarchical clustering, Xu et al.

(2008) then proceeded with the identification of second-order clusters, which enabled the

discovery of phenotype-specific modules, that is modules that tend to be more active in a

specific type of cancer. Thus, these modules provided a collection of biomarkers and a

description of their coordinated transcriptional behaviour in specific types of cancer.

8.4 Data integration at the model level

As discussed in Chapter 3, support vector machine models offer many advantages

for the implementation of powerful classification systems using different types of

data. This makes single (or ensembles) of support vector machine models parti-

cularly suitable for heterogeneous data integration. Furthermore, this type of model

allows the combination of diverse features as part of the model’s intrinsic feature

representation schemes. To put it another way, high-dimensional features originating

from different data sources and encoded in different formats can be simultaneously

combined into a single classification model without actually aggregating the original

features at the input level (i.e. simple aggregation of values into a single input

vector), or without the need to implement multiple models built on the different

datasets independently. On the other hand, this does not imply that such traditional
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integration strategies cannot be implemented using support vector machine-based

models.

Daemen et al.’s (2009) illustrated the integration of different types of ‘omic’ data,

such as gene expression and CNV data, using a support vector machine to predict

outcomes in rectal and prostate cancers. Instead of combining datasets at the input level

or implementing a serial analysis of these datasets, their approach directly integrates

the different features within the mathematical model of the support vector machine.

The different features originating from the diverse datasets were processed ‘equally’

within the model, as part of the selection of the most relevant features. This integration

strategy and alternative versions requires the transformation of each dataset into a

‘kernel matrix’ (Lanckriet et al., 2004). This is a fundamental processing step as the

integration of datasets is performed at this level.

Recall that the support vector machine model maps a dataset X, composed of n

samples and m features, from its original input space of size m into a feature space of

higher-dimensionality, q, (with q>m), based on a mathematical function known as the

kernel function (Chapter 3). The kernel function calculates the inner product between all

pairs of samples in X. The resulting values are stored in the kernel matrix, which has a

size of n� n values. Thus, each dataset, independently of their number of features and

characteristics, can be represented by a common data representation format using the

kernel matrix. This harmonized data representation within the support vector machine

model is what allows the integration of the datasets in a straightforward fashion.

Daemen et al.’s (2009) study integrated the different datasets by computing a single,

integrated kernel matrix, whose values were computed by summing up the multiple

source-specific kernel matrices. Moreover, their integration approach applied a linear

kernel function that generated normalized values to ensure that the different kernel

matrices, representing the different types of ‘omic’ sources, included valuesmeasured on

the same scale.

In Daemen et al.’s study, the integrative prediction approachwas implemented using a

variant of support vector machine: The ‘weighted least squares support vector machine’

(LS-SVM). In comparison to other versions of support vector machine models, the LS-

SVM has been shown to be faster and relatively easier to implement. But more

importantly, the LS-SVM is particularly suitable for unbalanced two-class prediction

problems, that is applications in which the number of samples belonging to one of the

classes is much larger than in the other class. The LS-SVM addresses this problem

through the estimation of class-specific weights that are assigned to each sample in the

dataset under analysis.

8.5 Multiple heterogeneous data and model integration

An example of the combination of information extracted from electronicmedical records

(EMR) and gene expression datasets was reported by Chen et al. (2008b). The EMR

contained more than 1 million measurements from hundreds of laboratory tests con-

ducted in a hospital. The goal of their investigation was to discover new biomarkers of

human maturation and aging. First, the absolute count of lymphocytes was found to be

strongly associatedwith aging. This was possible throughmultiple comparisons between

groups of individuals on the basis of the data from their clinical laboratory tests. Several
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diseases, such as asthma and diabetes, were then ranked according to the levels of

change of this biomarker observed in each disease. Gene expression datasets associated

with these diseases were obtained from the GEO database (Chapter 9), and were

analyzed to identify genes whose expression profiles were correlated with the levels of

change of the clinical biomarker. Thus, this integration strategy identified sets of genes

that were strongly correlated with changes in the clinical biomarker of aging, that is the

absolute count of lymphocytes, includingmany genes known to be implicated in ageing

processes.

Based on the assumption that similar phenotypes can be caused or mediated by

functionally-related genes, the Web-based platform Endeavour (Aerts et al., 2006;

Tranchevent et al., 2008) enables the prioritization of a list of candidate genes based on

their functional similarity with a list of (training) genes known to be implicated in the

disease investigated. Similarity is estimated between candidate and training genes using

information encoded in several public information repositories, such as ontology-based

functional annotations, protein-protein interactions and gene expression datasets. The

calculation of similarity scores between candidate and training genes is done through

different metrics adapted to the different types of data associated with a gene and stored

in the databases, for example ontology-derived terms, continuous numerical data and

sequences. This integrative approach to gene prioritization can be seen as a powerful

exploratory engine for biomarker discovery and selection, which can guide subsequent

(more focused) discovery phases. Endeavour automatically generates gene rankings

based on the functional similarity scores estimated in the context of each information

source. Based on these repository-specific scores, Endeavour also generates a global

prioritization of genes based on an integrated score, that is the fusion of the ranking

scores derived from the different sources. A key feature of Endeavour is the application

of order statistics to integrate the different source-specific ranking scores. This method-

ology allows the combination of the different scores computed for each gene even in the

face of missing values. This is particularly relevant as it contributes to the reduction of

potential bias toward the most studied genes.

In some applications themain inputs to the biomarker discovery processmay comprise

multiple independent datasets describing the same type of ‘omic’ information (e.g.

microarrays), but which can be associated with different, yet interrelated, phenotypes

(e.g. aetiologies, disease subtypes). Moreover, it is possible that such datasets have been

measured in different types of tissues or organs. Predictive integration strategies in this

type of scenario are important because they may reveal commonmolecular mechanisms,

biomarkers and potential treatment target across different (interdependent or interrelated)

pathologies.This could enable researchers to answer questions such as:Are there common

biomarkers or molecular processes that can predict the occurrence or progression of heart

failure of different aetiology, such as cardiomyopathies and ischaemic heart disease? Are

there shared mechanisms, biomarkers or therapeutic targets relevant to metastasis across

different types (or sub-types) of cancers?

Ptitsyn, Weil and Thamm (2008) addressed the second question by analyzing public

microarray data obtained from colorectal and breast cancer samples. Their results

suggested that regardless of the tissue of origin or cancer type, metastatic tumours

exhibit significant perturbations in energy metabolism, cell adhesion, antigen presen-

tation and cell cycle regulatory pathways. In addition, their study showed that oxidative

phosphorylation is significantly diminished in metastases in relation to solid tumours.
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Ptitsyn,Weil and Thamm’s investigation (2008) began by selecting a relative large set of

potential differentially-expressed genes in the different datasets. This was followed by

the detection of biological pathways and processes overrepresented in this gene list. This

was done with different public and commercial biological information repositories and

software tools (Chapter 9). This analysis identified 19 pathway maps and 6 clusters of

functionally-related genes differentially perturbed in metastatic vs. non-metastatic

tumours. Amongst these processes and pathways, oxidative phosphorylation and

different types of cellular and extracellular remodelling were identified. Different

visualization displays of pathways and processes conserved in metastatic tumours in

different cancer types were provided. This aided in the identification of potential

therapeutic targets for the prevention of metastasis. The authors suggested, for instance,

that the therapeutic targeting of glycolytic pathways may represent a useful preventive

strategy due to thewide conservation of perturbations in bioenergetic pathways observed

in different metastatic tumours.

The problem of discovering biomarkers shared by different diseases has also been

recently investigated by Dudley and Butte (2009). In contrast to Ptitsyn, Weil and

Thamm’s (2008) study, Dudley and Butte (2009) aimed to identify disease-specific

protein biomarkers, which can be used to improve the sensitivity of prediction models.

Their methodology comprised the integration of protein and gene expression data from

biofluids across different diseases using a network-based approach. Blood plasma and

urine biomarker networks were independently assembled. The former displayed rela-

tionships between gene expression-based profiles and blood plasma proteins in 136

diseases. The urine biomarker network encoded information associating gene expres-

sion-based profileswith proteins detectable in urine in 127 diseases. The gene expression

datasets for the different diseases were obtained from the GEO. The PubMed records

accompanying each GEO dataset were analyzed to extract MeSH terms, which were

then used to extract disease concepts from the Unified Language System (UMLS)

(Bodenreider, 2004). This process, together with text mining techniques, allowed each

GEO dataset to be automatically annotated to a disease and to the tissue or biological

substance of origin, and to extract control samples where available. The latter is

particularly important as only microarray datasets including both disease and control

samples were considered for subsequent analyses. The automated harmonization of

(platform-specific) microarray probe identifiers and Entrez GeneID identifiers was

carried out with the AILUN system (Chen, Li and Butte, 2007). The collection of

human blood plasma proteomes was derived from the HUPO Plasma Proteome

Project (PPP) (Omenn et al., 2005). The proteomic data from urine was acquired from

the Max-Planck Unified (MAPU) Proteome Database (Zhang et al., 2007b) and the

Urinary Exosome database (Pisitkun, Shen and Knepper, 2004).

In the resulting networks, nodes represented genes, proteins and diseases. An edge

between a gene (protein) and a disease indicated that the gene (protein) was differentially

expressed in the disease. Dudley and Butte (2009) found that more than 80% of putative

protein biomarkers can be associated with multiple disease conditions, that is disease-

specific biomarkers may only be found in a small subset of the proteomes measured in

biofluids. This finding indicates that the search for disease-specific protein biomarkers in

biofluids can be more complex than has been anticipated.

The large-scale integration of gene expression and SNPs data from genome-wide

association analysis (Chapter 4) has also been recently investigated to guide the
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identification and validation of newdisease biomarkers. For instance, Chen et al. (2008b)

showed that highly differentially expressed genes tend to encode DNA variants asso-

ciated with disease. This type of investigation can be useful to help researchers to

prioritize candidate SNPs in genome-wide association studies. Chen et al. (2008b)

demonstrated this application by ranking SNPs related to (type 1 and type 2) diabetes.

Moreover, based on the analysis of highly differentially expressed genes, Chen et al.

(2008b) were able to ‘re-discover’ several known gene-disease associations and to

distinguish true positive from false positive disease markers in different genome-wide

association studies and diseases. In this investigation the microarray datasets were

obtained from the GEO. The SNPs-disease associations were obtained from the Genetic

Association Database (Becker et al., 2004) and the Human Gene Mutation Database

(Stenson et al., 2003). The relationship between SNPs and gene expression was detected

by means of the ‘differential expression ratio’ (DER). For a given gene variant, the DER

was defined as the number of GEO datasets in which the gene containing the variant was

found to be differentially expressed, divided by the number of GEO datasets that

included the gene.

8.6 Serial integration of source and models

The combination of clinical and protein expression data based on a serial integration

scheme (Figure 8.1e) was implemented to predict early mortality of patients undergoing

kidney dialysis (Knickerbocker et al., 2007). This idea was motivated by the lack of

single traditional clinical and molecular markers capable of accurately predicting the

outcome, that is death within the first 15 weeks of treatment initiation. These predictions

are important as they can guide the definition of priorities for kidney transplantation and

adaptation of dialysis treatment, such as treatment frequency or dosing. Using clinical

data only, the prediction model proposed by Knickerbocker et al. (2007) begins with the

classification of patients into two major classes: low and medium-high risk. Those

patients assigned to the medium-high risk class represented the inputs to a risk

stratification module based on protein expression data only. Their proof-of-concept

study included data from 468 patients, who were assigned to the classes: survival and

death after initiating dialysis. Amongst those patients, 208 died and 260 survived within

15 weeks of initiating the treatment. The protein expression data were acquired from 14

cytokines and other blood proteins with suspected roles in kidney disease. Eleven

demographical and physiological variables, such as gender and blood pressure, repre-

sented the clinical dataset. As part of an exploratory phase, exhaustive search in logistic

regression models was implemented to identify sub-sets of features in each dataset

independently. Age, diastolic blood pressure, serum albumin and the method used for

vascular access in the patient were the most relevant features observed in the clinical

dataset. In the protein expression dataset, three cytokines were highlighted as poten-

tially relevant biomarkers: angiogenin (Ang), interleukin-12 (IL-12) and vascular cell

adhesion molecule-1 (VCAM-1). These subsets of features were then analyzed using

other data mining techniques prior to their integration. Subtle, non-linear associations

between each of these features and the outcome of interest (the log-odds of death) were

investigated using mathematical polynomial functions known as ‘splines’. These

models and relationships provided the basis for the serial integrative prediction
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analysis. Indeed, the serial analysis approach was not proposed a priori, but was

actually motivated by the non-linear relationships observed between the clinical and

molecular biomarkers and between the biomarkers and the outcome. Thus, cytokine

levels were shown to be most powerful for the assessment of patients classified by the

clinical biomarkers as being at higher risk of death. When the clinical biomarkers

identified a low risk patient the cytokine levels did not bring additional predictive

information. This is an example of how integrative data analysis can guide the design of

novel classification strategies tailored to specific patient sub-groups.

The success of an approach to the integration of heterogeneous data sources can also be

assessed by its capacity to outperform single-source prediction models (e.g. standard

clinical data only), to avoid over-fitting to a particular type of data (e.g. a microarray

dataset is not particularly favoured in the integration strategy), and to deal with different

types of data (e.g. clinical categorical data and continuous numerical gene expression

data). Another important challenge in heterogeneous data integration is the detection of

potential redundancies or dependencies between molecular and clinical biomarkers.

Relatively more attention has been given to this problem in the context of feature

selection in single-source, high-dimensional datasets (e.g. gene expression data).

However, small sets of clinical variables and much larger sets of ‘omic’ features may

be strongly correlated between them or redundant for predictive purposes. This is

because different ‘omic’ features may directly influence clinical variables or vice versa,

and because unknown (or unobserved) systems-level mechanisms may actually influ-

ence many of these features in common.

Boulesteix, Porzelius andDaumer (2008) offered an example of an approach designed

to address these challenges based on a serial, multi-step integration of data sources and

machine learningmodels. They aimed to demonstrate the advantages of or the conditions

under which microarray data can contribute additional predictive power to applications

involving traditional clinical features. Basically, their approach consisted of multiple

steps of data dimensionality reduction and classification (Chapters 3 and 6) applied to

microarray and clinical data.Moreover, one of the data sourceswas used to ‘pre-validate’

the classification model built on the other dataset. Feature dimensionality reduction was

first performed on a (learning) gene expression dataset. The resulting features were

aggregated with a (learning) dataset of clinical features to build a classifier, M. In a

second phase, a test gene expression dataset was ‘re-encoded’ using the results (weights)

of the transformation procedure performed on the learning gene expression dataset. This

transformed (gene expression) testing dataset was fused, through input vector aggre-

gation, with the test dataset of clinical data. The classifier M was then applied to make

predictions using the resulting integrated test dataset. The partial least squares technique

(Chapter 6) was applied for dimensionality reduction and random forests for classifi-

cation (Chapter 3).

A pioneering example of the discovery of sub-network biomarkers for prognostic

applications was reported by Chuang et al. (2007). They used network information not

only to build the prediction models, but also to represent the outputs generated by these

models. They demonstrated that their approach could outperform systems based on lists

of (gene) biomarkers.Moreover, their research suggested that network-based biomarkers

could be more robust and reproducible than traditional methods in the classification of

metastatic and non-metastatic breast tumour samples. One reason to explain this

predictive power and robustness is that many important drivers of metastasis do not
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actually show differential expression patterns between metastatic and non-metastatic

tumours. The gene expression data analyzed was obtained from two independent,

previously-published investigations involving breast cancer patients (van de Vijver

et al., 2002; Wang et al., 2005).

Chuang et al. (2007) assembled a protein-protein interaction network consisting of

more than 12 000 proteins and more than 57 000 interactions. This information was

obtained from different public datasets representing experimental and computationally

predicted interactions, together with curated literature-derived interactions. The first

analytical phase involved the projection of the expression values from each gene onto its

corresponding protein in the network. A search algorithm was used to detect sub-

networks with gene expression patterns (changes) statistically associated with the group

ofmetastasis patients. Before doing this, two basic questions needed to be answered: how

to summarize the match between a patient and a sub-network? How to score the

classification potential of a sub-network on the basis of the patient-network matching?

For a given sub-network, the expression values from a patient (corresponding to the

proteins in the sub-network) were averaged. In this way, for each candidate sub-network,

each sample (patient) was represented by a unique ‘activity score’. These score values

were then used to compare the two phenotypes (metastatic and non-metastatic breast

tumour samples) using statistical techniques, such as the t-test or mutual information

coefficients. Therefore, the resulting statistic values, such as t-statistics or mutual

information coefficients, could be used to describe (and rank) the classification potential

of the different sub-networks. The statistical significance of the discriminatory capacity

of a sub-network can be estimated by comparing the observed classification potential

scores with those obtained from sub-networks randomly generated. Under Chuang

et al.’s (2007) approach, different standard classifiers, such as logistic regression or

support vector machines, can be implemented. In this scenario, each sample can be

represented by its activity scores derived from the different discriminatory sub-networks.

Another example of the combination of interactome and gene expression data was

illustrated by an approach proposed by Mani et al. (2008). Their goal was the

identification of genes implicated in the oncogenesis of B-cell lymphoma. At the core

of this framework was the ‘interactome dysregulation enrichment analysis’ (IDEA)

algorithm, which combines information extracted from networks of molecular interac-

tions together with gene expression profiles. The molecular network information was

extracted from the B-cell interactome (BCI) database (Lefebvre et al., 2007). BCI

includes different types of transcriptional, signalling and protein complex interactions

occurring in the human B cell. The IDEA-based integrative discovery framework

consisted of two phases implemented serially. First, a large collection of gene expression

data from normal, tumour and experimentally-modified B-cells was used to discover

relevant phenotype-specific interactions in the BCI database. The aim was to find

interactions exhibiting significant gains or losses of gene expression correlation in

relation to a specific phenotype. Loss-of-correlation (LoC) and gain-of-correlation

(LoC) information for each pair of interactions was then used to estimate statistical

enrichment of LoC/GoC in groups of interactions. This allowed, in the final step, the

ranking of the genes according to the LoC/GoC enrichment observed in their interaction

neighbourhoods. LoC and GoC values were estimated by calculating the mutual

information (Steuer et al., 2002) between pairs of genes with regard to a specific

phenotype, such as a cancer class. The outputs of this procedure were sets of molecular
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interactions that were significantly deregulated or perturbed in a specific pathology

or clinical condition. Thus, such perturbed (pathway-specific) genes might be used not

only as biomarkers of disease or treatment response, but also as potential therapeutic

targets.

The problem of finding unique or disease-specific biomarkers can also be explored

within an integrative framework consisting of multiple analysis stages implemented

serially, and using a single type of ‘omic’ data as the initial input to this framework. An

example of this approach was provided by Yang et al. (2008) with different gene

expression datasets. Yang et al.’s (2008) biomarker discovery procedure began with the

detection of extracellularly over-expressed genes in relation to normal cells, and in

different types of tumours: prostate, breast, lung, colon, ovary and pancreas. This was

followed by a filtering stage that focused on the selection of biomarkers expressed in

blood (serum or plasma) and known to be involved in human cancers. The third analysis

phase determined common biomarkers shared by every pair of cancer type investigated.

The outcome of this phase guided the implementation of the final phase: the identification

of unique (blood-borne) biomarkers for each cancer type. The over-expressed geneswere

obtained from the Oncomine database (Rhodes et al., 2007), and the second filtering

phase was implemented with the Ingenuity Pathway Analysis (IPA) system (2009). The

pair-wise comparison of datasets to identify common biomarkers reported sets of 20 to

134 genes. The final analysis stage identified sets consisting of 3 to 59 genes representing

potential tumour-specific biomarkers. These types of methodology and findings, and the

ones reported by Ptitsyn, Weil and Thamm (2008) and Dudley and Butte (2009)

(Section 8.5), may provide comprehensive and powerful insights into the search for

more specific and sensitive biomarkers.

8.7 Component- and network-centric approaches

This categorization is suggested here to distinguish between integrative data analysis

approaches on the basis of how they represent their predictions or discovery outcomes,

that is biomarkers or classifications.

In the component-centric approach the main outcomes of the biomarker discovery

process typically consist of a list of biomarkers, whose relationships or interactions (at any

level of biological complexity) are not explicitly displayed in the prediction model or

associated with the data originating from each patient at prediction time. However, it is

evident that component-centric approaches can also make use of network-based infor-

mation or techniques at any stage during the biomarker discovery process for different

purposes. For example, networks of gene-gene, protein-protein or gene-disease associa-

tions can be used to organize or filter available knowledge, to guide the search of sets of

potential biomarkers, or to generate the inputs to machine learning algorithms (Ptitsyn,

Weil and Thamm, 2008; Camargo and Azuaje, 2008; Dudley and Butte, 2009).

In the network-centric approach the predictions made on a specific sample explicitly

use or display information about relevant functional relationships between biomarkers.

Within this category we can also include procedures in which the main outcome of the

biomarker discovery process is a network or set of networks associated with specific

clinical classes, conditions or patients. Examples of typical network-centric approaches

are described in (Xu et al., 2008; Chuang et al., 2007; Mani et al., 2008).
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Notwithstanding the demonstrated power and success of the component-centric

approach, there is a growing interest in the application of network-centric methodologies.

One reason for the investigation of the latter in biomarker and drug target discovery is that

key functional genes or proteins, as well as key mediators of communication, do not

necessarily have to be differentially expressed in thephenotypes investigated.On the other

hand, those genes showing statistically detectable differential expression do not always

play key regulatory or control roles. For instance, in cancer, many genes encoding

important genetic mutations may not be identified by analyzing differential gene

expression. Nevertheless, these genes may have potential causative roles in the disease

or can act as interconnecting components between genes, which can show differential

expression patterns or more subtle functionally-relevant changes in expression. Also this

may explain the robustness and reproducibility of network-based approaches in com-

parison with traditional gene expression bio-signatures. The latter tend to be highly

variable across populations samples and independent studies. This may be, in part,

explained by the possibility that many differentially-expressed genes could mainly

represent downstream effectors or reactors of disease (Chuang et al., 2007). In contrast,

the patterns of expression changes in genes with significant influence in the emergence or

progression of a disease may be more subtle than anticipated.

8.8 Final remarks

The integration of multiple datasets and knowledge resources has become a fundamental

means to achieve more meaningful and powerful prediction and classification models.

This is motivated in part by the complexity of common diseases, which can be associated

with many ‘omic’ and environmental factors of small effects or a few factors of relative

larger effect. On the other hand, our capacity to incorporate more features and datasets

into biomarker discovery and prediction model design has significantly increased the

possibilities to detect spurious relationships or decrease our capacity to reproduce

potential novel findings. Although some authors have recently suggested that compu-

tational power is becoming a ‘bottleneck’ in the development of integrative data analysis

for biomarker discovery (Tang et al., 2009), there are probably greater fundamental

concerns, such as those relating to the selection and quality assessment of the data

sources. Also there is a need to incorporate expert and domain-specific knowledge to

guide model construction and interpretation. Moreover, this also presents challenges

from the educational and scientific culture perspectives. As part of a new generation

of translational researchers, computational biologists and bioinformaticians will be

required to develop a broader understanding of experimental technologies, of domain-

specific assumptions and background knowledge, and of the general process of hypo-

thesis generation and validation in the context of multiple information integration (Tang

et al., 2009; Chapter 10).

Other important research questions that also deserve further investigation in bio-

informatics and biomarker discovery include: How could the error distribution or

predictive capability of individual models be used to select problem- and data-specific

integration strategies? How can data pre-processing affect or enhance integrated

prediction performance? How is feature selection related to integrated prediction

capability according to different data types or formats and integration strategy? How

152 INTEGRATIVE DATA ANALYSIS



can user-driven knowledge be exploited to guide the selection of data sources and

integration strategy?

Tables 8.1 and 8.2 summarize the major types of approaches and investigations

reviewed in this chapter, together with recommended reading. As pointed out above, this

categorization may overlap in different aspects, and an approach could be assigned to

multiple categories. The main goal was to reflect the diversity of problems, applications

Table 8.1 Relevant examples of approaches to data and model integration for biomarker

discovery, based on the type of integration strategy implemented

Approach

Typical examples and

applications Recommended reading

Models based on data

source aggregation at

the input level

Integration of different

biomarkers previously

discovered in independent

investigations. Integration

by aggregating features into

a single input vector.

Standard multi-variable

prediction models.

(Blankenberg et al., 2006;

Mamtani et al., 2006;

Sawyers, 2008)

Integration of models

based on homogeneous

data sources

Analysis of multiple gene

expression datasets for the

identification of potential

novel biomarker sets;

combination of predictions

from different models

trained on the same dataset.

(Zhang et al., 2007a; Hanash,

Pitteri and Faca, 2008; Xu

et al., 2008)

Data integration at the

model level

Different sources, including

heterogeneous data types,

are combined using

information encoding or

manipulation procedures

provided by a specific

classification technique,

such as kernel methods.

(Lanckriet et al., 2004; De Bie

et al., 2007; Daemen et al.,

2009)

Multiple heterogeneous

data and model

integration

Diverse datasets

(independently generated

or representing different

‘omic’ data types) or their

corresponding prediction

models are integrated in a

parallel fashion.

(Aerts et al., 2006; Chen et al.,

2008b)

Serial integration of source

and models

Multiple analysis of different

sources are implemented

sequentially, the outcomes

of one stage represent the

inputs to the next analysis

phase.

(Knickerbocker et al., 2007;

Mani et al., 2008)
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and solutions, as well as to highlight the most relevant design and methodological

features characterizing a particular approach or investigation.

This chapter also showed that the application of integrative data analysis can support

our understanding of the complex relationships (or overlaps) between different diseases.

This has been motivated by evidence indicating important connections, at different

‘omic’ levels, between several diseases previously thought to be ‘dissimilar’. Some of

such apparent differences may have been the product of the application of traditional

techniques for disease definition and classification, such as the analysis of anatomical

features or symptoms (Dudley and Butte, 2009). The identification of novel inter-disease

relationships is particularly important to aid in the search of biomarkers highly specific to

a single disease or clinical condition, which in some cases may represent a major

requirement for assessing their potential clinical relevance. On the other hand, the

identification of biomarkers shared by different disease sub-types may be useful to

facilitate the discovery of novel therapeutic targets. These targets could be relevant in the

prevention or delay of pathological processes shared by different disease sub-types, such

as metastasis in different cancer types (Ptitsyn, Weil and Thamm, 2008).

Table 8.2 Relevant examples of approaches to data and model integration for biomarker

discovery and prediction, based on the output encoding and visualization scheme implemented

Approach

Typical examples and

applications Recommended reading

Component-centric approach The main outcome of the

discovery process is a list of

biomarkers, such as genes

or proteins. This is obtained

independently of the

specific discovery strategy

implemented or resources

investigated, including

network-based techniques.

(Aerts et al., 2006;

Knickerbocker et al., 2007)

Network-centric approach The main outcome of the

biomarker discovery

process are global, class- or

patient-specific networks of

interacting components.

(Chuang et al., 2007;

Mani et al., 2008)
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Guest commentary
on chapter 8: Data
integration: The next
big hope?
Yves Moreau
Katholieke Universiteit Leuven, ESAT/SCD,
B-3001 Leuven-Heverlee, Belgium

There is no doubtmolecular markers are invaluable for diagnosis, prognosis, and therapy

selection and follow-up in numerous pathologies. In fact, many of the classical

diagnostics lab measure molecular markers. Examples include oestrogen and proges-

terone receptors and HER2/ErbB2 in breast cancer or the genetic markers BRCA1 and

BRCA2 in familial breast cancer. For the sake of concreteness, I focus on breast cancer as

one of the most active areas for complex molecular models, but it applies to many other

pathologies. (An example is a statistical or machine learning model combining measure-

ments from multiple molecular markers.)

What has changed in the past decade is the capacity to measure the genome and

transcriptome genome-wide and the proteome andmetabolome on a large scale. This has

led to the expectation that unprecedented insight into the molecular mechanisms of

complex pathologies and superior predictive models were just around the corner. The

results so far have been humbling at best. . . For example, in breast cancer the main

classification of breast tumours remains that based on the oestrogen and progesterone

receptor status and theHER2/ErbB2 status.While somemore complexmodels are taking

hold, such as the 70-gene signature of van’t Veer and colleagues (Cardoso et al., 2008) or

the 21-gene assay of ONCOTYPE-DX (Paik et al., 2004), they have certainly not
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revolutionized our understanding of breast cancer and only improved incrementally its

management. It could even be reasonably argued that complex molecular models do not

outperform more classical clinical models (Ed�en et al., 2004).

Part of this disappointing state of affairs is explained by the fact that the process of

translating such molecular models into effective clinical tools is a long and challenging

process. For example, the relevance of the oestrogen and progesterone status to breast

cancer goes back to the early 1970s and that of HER2/ErbB2 to the mid-1980s, which

demonstrates themeagre record of classical biomarkers strategies, or rather the difficulty

of the task, so that there is certainly room for improvement. Complex models are hard to

validate and in fact require large clinical trials, such as the MINDACT trial for breast

cancer (Cardoso et al., 2008). Tough economic realities will thus limit the number of

models that will make it into clinical practice. However, we can expect that models will

slowly but steadily hobble through the development pipeline and that an increasing

number of clinically relevant models will become available over time.

There is, however, a number of challenges specific to complex molecular models.

First, a truly clinically relevant outcome needs to be addressed.When buildingmolecular

models, we are faced with the complexities of the molecular data and the limitations in

the annotation of outcomes. Complex models are ‘sample hungry’ and access to many

samples may be a real challenge forcing us to predict surrogate outcomes (for example,

response to chemotherapy instead of the more relevant ten-year survival). There is a risk

that the model will not be effective when we try to redesign it for the outcome of actual

interest. Second, a basic assumption of most statistical and machine learning predictive

modelling is that the data to which the model is applied are drawn from the same

distribution as the data from which the model was designed. This assumption is

essentially self-evident except it is almost never true in clinical practice! Differences

in sample handling from lab to lab and patient populations across clinics almost

guarantee that this basic assumption cannot hold. The problem of dealing with such

messy data is challenging and has been given only limited attention, yet it should be a

priority. Simpler models based on only a few well-characterized variables and put

together and refined over time by clinical experts have robustness implicitly built in.

Third, another key reasonwhymodels based on ‘omics’ data have found it challenging to

outperformmodels based on clinical data (which will actually often contain a number of

key molecular markers) is that such clinical data are often a close reflection of the

phenotype. While ‘omics’ data have been hailed for their potential to unravel the

molecular cascades underlying a phenotype, itmay not necessarily translate into superior

predictive power. For example, why try to predict the invasiveness of a breast tumour

from transcript levels when you can directly measure whether it has invaded the satellite

lymph nodes next to the breast? By contrast, a strong example of molecular model is for

the staging of breast tumours.While staging based on histopathology is difficult formany

tumours, leveraging proliferation as the key biological process for staging has led to a

significant improvement of breast tumour management (Loi et al., 2007).

Two major goals that can be tackled with molecular models are discovery and

prediction. In discovery mode, the goal is rather to identify molecular cascades and

key biomolecules implicated in the disease process. We can view this also as a gene-

centric point of view. In prediction mode, the goal is rather to predict a clinical outcome

with robust accuracy (not necessarily the same as highest accuracy).We canview this as a

patient-centric point of view. These two activities are not strictly separate and flow into
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each other. In practice, wewill probably start from fairly complex discovery models and

slowly extract the key aspects of those models to build simple robust predictive models.

This may not mean that the predictive models are reduced to only a few markers, but

probably to only a few sets of interrelated markers (often called modules) because

modules are likely to provide a more robust measurement of the state of a cascade than

the best performing single marker.

This chapter addresses integrative strategies for modelling across multiple types of

‘omics’ data (genotyping, copy number, epigenetics, binding, transcriptomics, prote-

omics, and metabolomics). With the increasing availability of ‘omics’ data, we may be

tempted to ‘throw everything but the kitchen sink’ at these difficult problems.

Can we expect any true improvement from complex data integration or is it rather a

matter of raising the stakes when playing a losing hand? An unfavourable aspect of the

problem is that the collection of multiple data types in a clinical context is likely to

remain extremely challenging for a long while. Even if the cost of the underlying

technology decreases rapidly, sample handling across multiple platforms will remain a

significant bottleneck. A possible breakthrough would be if next-generation sequencing

made it possible to produce multiple types of data from a single sample (genotyping,

copy number, epigenetics, binding, transcriptomics) in a highly automated fashion.

Except if such a breakthrough occurs, complex integrative models are more likely to be

useful for discovery than for prediction.

On a more positive note, in integrative models there are actually two key aspects that

provide a new angle of attack to the problem: (1) availability of multiple types of

hopefully complementary data that give us a more comprehensive view of the biological

phenomenon, and (2) a network approach to the problem. First, an important aspect of

learning frommultiple types of data for gene-centric discovery is that it can be carried out

using different biological samples for different data types (in patient-centric prediction,

this would probably make little sense). This provides much additional statistical power

for discovery. Second, the network and module view is likely to help to significantly

reduce problems with false positives. While the scale of ‘omic’ measurements make it

difficult to distinguish relevant markers from irrelevant ones, significant modules of

highly interconnected genes are likely to be truly relevant. Moreover, we can often

associate molecular roles to such modules, which add an important semantic level to the

model and makes them more likely to be accepted in clinical practice. It is one thing to

identify a loose set of genes predictive of tumour prognosis and another to state that this

set represents the activity of the key process of proliferation. This has already been the

aim of cluster analysis, with mitigated results, but it is likely to be more successful via

network analysis because network sparseness makes for tighter patterns.

Finally, an intriguing observation about the serial integration presented in this chapter

is that it is somewhat reminiscent of differential diagnosis, which is central to medicine.

Essentially, differential diagnosis is a decision tree where each node consists of one or

more clinical observations or tests and leads to a final refined diagnosis. It applies also to

therapy decisions. Little of that is currently reflected in our predictive models. Relevant

clinical models for multiple data types may eventually very much resemble such

procedures. For example in breast cancer: To which of the basic classes does a tumour

belong? For a tumour of this particular class, does it carry this specific mutation? For a

tumour of this class with the mutation, does it show, for example, a strong immune

response? In this case, select this particular treatment. Each question is best addressed by
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looking at a different type of data, which makes integrative analysis essential. Such

models would fit tightly with clinical practice where physicians need to make and

communicate informed decisions to patients whose health is at stake.

This chapter discusses current strategies for integrative analysis from this discovery to

prediction. We can expect a long road before such sophisticated models truly affect

clinical practice, but by leveraging complex data in a structured way we can ultimately

expect an important clinical impact. Even if the resulting clinical models eventually

appear a lot simpler, complex strategies are likely to speed up their design. Even if

omniscient ‘omics’modelsmay still be a longway off, wemust recognize that any robust

significant improvement of the clinical management of a pathology is a major medical

advance that will affect the lives of thousands or millions of individuals and we should

aim for that.
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9 Information resources
and software tools for
biomarker discovery

This chapter will discuss key information resources, software tools, data exchange

approaches, analysis workflow platforms and bioinformatic infrastructures for supporting

biomarker discovery research. Different open- and closed-source systems relevant to

biomarker discovery will be introduced. Other key topics to be discussed are: knowledge

bases for guiding the search and evaluation of new biomarkers, and extensible and

integrative software systems for assisting different tasks in biomarker discovery research.

It will also present examples of relevant investigations, solutions and applications in

biomarker discovery.

9.1 Biomarker discovery frameworks: key software
and information resources

The great diversity of molecular and clinical information resources not only demands

more advanced data analysis techniques, but also flexible infrastructures to share and

interconnect these resources and tools. This requires the design of efficient, more reliable

and extensible software, as well as mechanisms to deploy both human- and machine-

readable information resources and analysis services. Such infrastructures also require

global, national and regional initiatives to promote human collaboration through

sustainable bio-computing platforms and innovation networks. Bioinformaticians and

computational scientists have responsibilities that go beyond the implementation and/or

operation of data acquisition, tracking, storage and statistical analysis systems. They are

also required to contribute to a variety of research support and knowledge discovery
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tasks. This involves, for example, new computational tools for predicting new biomar-

kers using seemingly unrelated information resources, simulation systems to predict

responses to external interventions, and the development of comprehensive well-

organized knowledge bases to aid in drug target and biomarker discovery.

Despite recent progress, many biologists and clinicians currently do not have full

access to key resources and tools needed to implement integrative, quantitative and

predictive analyses of multiple types of information. Applications such as the combi-

nation of different datasets, including those originating from different ‘omic’ resources,

to establish functional or diagnostic associations may require specialized training in data

mining and software development. This chapterwill discuss current and emerging efforts

to facilitate access to information, software tools and other analytical resources relevant

to the discovery and evaluation of biomarkers. Many of these efforts have been inspired

or guided at some level by different principles of openness and collaboration.

The major components of a ‘translational bioinformatics’ infrastructure, also known

as cyberinfrastructure (Stein, 2008), are data resources, computational tools and

applications that are interconnected via communication platforms, services and proto-

cols. Figure 9.1 illustrates a hypothetical example of a translational bioinformatics

infrastructure, which facilitates data access and analysis, knowledge generation and

exchange, and research cooperation. Examples of data resources, tools, and collaborative

initiative will be presented in subsequent sections. Note that the access to local and

external resources and systems should be as transparent and flexible as possible to the

researcher. Independently of the sophistication and diversity of resources, as well as the

collaboration levels, these components rest on and are driven by the existence of a cross-

disciplinary human force. This requires not only human resources to install andmaintain

resources, but also the active participation of physical and computational scientists and

engineers in the development or adaptation of new tools and applications. The costs of

deploying, adapting and sustaining infrastructures can be reduced by implementing

Figure 9.1 Major components of a user-centric infrastructure for translational bioinformatics

research
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leading-edge technologies for sharing and optimizing informatic resources, such as

computing grids and open-source software. Nevertheless, one cannot overstate the

importance of fostering the formation of well-trained and coordinated research teams

with the ability to work in both top-down and bottom-up management scenarios, as well

as in inter-disciplinary and inter-institutional projects.

The communication infrastructure required to link these resources is more than

physical devices, protocols and network connectivity. This also includes layered

informational structures and platforms that implement the syntactic and semantic

communication between the above resources (Stein, 2008). Syntactic integration

involves the use of common data formats for different types of data and applications.

Semantic integration refers to standards and technologies that allow machines to

interoperate and ‘understand’ the context and meaning of the information. Such a

semantic understanding would allow, for example, the unambiguous application of

biomedical terms or concepts with multiple possible interpretations across disciplines.

9.2 Integrating and sharing resources: databases and tools

Tables 9.1–9.4 offer examples of representative public data resources derived from

research in genomic variation, gene expression, proteomics and interactomics. Table 9.5

includes examples of key initiatives to support a more intelligent exchange, sharing and

integration of ‘omic’ data and information relevant to biomarker discovery research.

Such standards, recommendations and checklists are already reflected in most repre-

sentative databases, and will continue driving future advances in resource integration or

interoperability. Table 9.6 presents additional examples of information resources de-

signed for specific disease domains. Table 9.7 highlights relevant examples of projects

and tools based on open-source software. These examples highlight a diversity of efforts,

technologies and purposes in supporting both basic and translational biomedical

Table 9.1 Examples of public genomic variation databases

Source Data type Access

COSMIC Somatic mutations in cancer www.sanger.ac.uk/genetics/

CGP/cosmic/

dbSNP SNPs, short deletions www.ncbi.nlm.nih.gov/SNP/

GeMDBJ Genome Medicine Database

of Japan, SNPs

gemdbj.nibio.go.jp

HapMap SNPs snp.cshl.org

Pan Asian SNP Database SNPs pasnp.kobic.re.kr/

Progenetix CGH, SNPs www.progenetix.net

Recurrent Chromosome

Aberrations in Cancer

Chromosome aberrations cgap.nci.nih.gov/Chromosomes

SKY/M-FISH and CGH

Database

CGH www.ncbi.nlm.nih.gov/sky/

SNP500Cancer SNPs snp500cancer.nci.nih.gov/

The CNV Project Data Copy number variation www.sanger.ac.uk/humgen/cnv/

CGH: Comparative genomic hybridization. SNPs: Single nucleotide polymorphisms.
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research. However, there are still significant gaps to be addressed for enabling large-

scale, integrative access and analysis of disease-specific, clinical and molecular infor-

mation sources (Mathew et al., 2007).

Recent research (Stein, 2008) has indicated that the bioinformatics infrastructure

required to support biological and biomedical research, in general, has advanced in terms

of efforts for data and information sharing. However, integrative bio-computing infra-

structure of tools and applications, as well as greater syntactic and semantic intercon-

nectivity across them and information sources, are still in their infancy and will require

significant investments of technological and human resources. For example, despite the

Table 9.2 Examples of public gene expression data resources

Source Description Access

ArrayExpress Expression profiles from curated

experiments

www.ebi.ac.uk/microarray-as/ae

CIBEX Search and browsing of different

datasets

cibex.nig.ac.jp/

GEO Gene Expression Omnibus, curated

data browsing, query and retrieval

www.ncbi.nlm.nih.gov/geo

GeMDBJ Genome Medicine Database of Japan,

Affymetrix expression data

gemdbj.nibio.go.jp

microRNA.org microRNA targets and expression data www.microrna.org

Oncomine Cancer gene expression profiling and

analysis tools

www.oncomine.org

SMD Stanford Microarray Database,

multiple-organisms data query

and analysis tools

genome-www5.stanford.edu

Table 9.3 Examples of public proteomic data resources

Source Description Access

PRIDE Protein and peptide identifications www.ebi.ac.uk/pride

OPD Open Proteomics Database, mass

spectrometry-based proteomics data

bioinformatics.icmb.utexas.edu/OPD

HPPP Plasma Proteome Project, proteomic

data from human serum and plasma

www.hupo.org/research/hppp

GeMDBJ Genome Medicine Database of Japan,

proteomics data in cancer research

gemdbj.nibio.go.jp

GPM The Global Proteome Machine, tandem

mass spectrometry data from different

organisms

www.thegpm.org

HPR Human Protein Atlas, expression and

localization of proteins in human

normal and cancer cells

www.proteinatlas.org

PeptideAtlas Multi-organism compendium of

proteomic data

www.peptideatlas.org
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availability of different online databases and software, the work conducted by many

translational biomedical researchers on a daily basis still depends on multiple time-

consuming manual or semi-automated tasks. A major reason is that researchers need to

select and to query different resources (e.g. disparate databases and packages), followed

Table 9.4 Examples of public molecular network databases in humans

Source Description Access

BioCarta Search and visualization of signalling

pathways

www.biocarta.com

BioGRID Curated datasets of physical and genetic

interactions

www.thebiogrid.org

CellMap The Cancer Cell Map, cancer-related

signalling pathways

cancer.cellmap.org/cellmap

HPRD The Human Protein Reference

Database, annotated protein

interaction information

www.hprd.org

KEGG Kyoto Encyclopaedia of Genes and

Genomes, metabolic pathways

www.genome.jp/kegg

REACTOME Database of core pathways and reactions www.reactome.org

WikiPathways Open, community-driven platform of

curated biological pathways

www.wikipathways.org

Table 9.5 Examples of public initiatives in information standardisation, exchange and

harmonization

Project Description Access

MIBBI Minimum Information for Biological and Biomedical

Investigations, access to checklist development

projects and their products, ‘one-stop shop’ of

minimum information checklists

www.mibbi.org

GO TheGeneOntology, controlled vocabulary to describe

gene and gene products, several databases anno-

tated to the GO

www.geneontology.org

MAGE MicroArray and Gene Expression Data, data formats

for storage and exchange

www.mged.org

PSI initiative HUPO Proteomics Standards Initiative, standards for

data representation in proteomics

www.psidev.info

BioPAX Data exchange formats for biological pathways:

metabolic pathways, molecular interactions, sig-

nalling pathways gene regulation and genetic

interactions

www.biopax.org

CDISC Clinical Data Interchange Standards Consortium,

standards to support the acquisition, exchange,

submission and archive of clinical research data and

metadata

www.cdisc.org
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Table 9.6 Examples of public, disease-specific databases.a

Project Description Access

AlzGene Genetic association studies performed

on Alzheimer’s disease phenotypes

www.alzforum.org

EPConDB Information about genes relevant to di-

abetes, pancreatic development and

beta cell function

www.cbil.upenn.edu/EPConDB

GOLD.db Genomics of Lipid-Associated Disor-

ders Database

gold.tugraz.at

NEIBank Ocular genomics and annotated eye

disease genes

neibank.nei.nih.gov

T1DBase Type 1 Diabetes Database, different

types of data on susceptibility and

pathogenesis

t1dbase.org

KinMutBase Registry of disease-causing mutations in

protein kinase domains

www.uta.fi/imt/bioinfo/KinMutBase

aTables included above also offer examples of cancer-related databases.

Table 9.7 Examples of relevant projects based on open-source software development

Project Description Web site

Bioconductor Statistical analysis of ‘omic’ data www.bioconductor.org

BioMart Database integration system for large-

scale data querying

www.biomart.org

BioMOBY Support for automatic discovery and

interaction with different biological

databases and analytical services

www.biomoby.org

BIRN Distributed virtual community of shared

resources to support disease-oriented

research

www.nbirn.net

caBIG Integrated network of standards,

resources and tools supporting

cancer research

cabig.nci.nih.gov

Cytoscape Extensible platform for the visualization

and analysis of biological networks

and other ‘omic’ data

cytoscape.org

Galaxy Web portal for searching, querying and

visualizing information stored in

different remote databases

g2.bx.psu.edu

Taverna Graphic environment for designing and

executing workflows, which allows

the integration of different online

software tools

taverna.sourceforge.net

Weka Software platform for the implementa-

tion and evaluation of several data

mining algorithms

www.cs.waikato.ac.nz/�ml/weka
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by the independent filtering and aggregation of resulting outcomes prior to an

‘integrated’ interpretation. Moreover, most of the existing databases, analysis systems

and Web services mainly rely on ‘data-centric’ solutions (Stein, 2008). This means that

these resources have put greater emphasis on data access applications. Moreover, many

of them are not sufficiently user-friendly and deserve improvements to support a more

flexible design of integrative tasks, including the visualization and integration of

resources and analysis outputs.

Recent advances in the development of integrative, community-driven information

and knowledge resources include annotation systems based on the ‘Wiki’ principles of

online publication and editing of information. One example isWikiPathways (Table 9.4)

that offers collections of different biological pathways in humans and other species.

These pathways can be annotated and edited by the scientific community through

different user-friendly, graphical tools integrated into the system.

Current and future progress in the integration of multiple, heterogeneous information

resources will be supported by Web services and Semantic Web solutions (Stein, 2008).

Web services exploit standards for describing the capability of applications and for

invoking them when needed. Aside from such standards (e.g. Web Services

Descriptor Language, WSDL, and the Simple Object Access Protocol, SOAP), there

are collections of open-source software libraries and applications that allow developers

to create, search and run Web services in different applications. Two of the best

known Web service development systems in bioinformatics are the Globus toolkit

(Sotomayor and Childers, 2005) and BioMOBY (Wilkinson and Links, 2002). Unlike

Web services, Semantic Web applications do not define a strong distinction between

data and the procedures applied to these data (Stein, 2008). Rather, they encode all

resources and applications as pieces of information, whose relationships are

explicitly defined with ontologies and exploited by ‘reasoning engines’ or ‘reasoners’.

However, the incorporation of Semantic Web applications into practical or routine

applications in bioinformatics is still the subject of intensive investigation and

discussion.

A successful story in the application of advanced software development, together with

the latest technology in knowledgemanagement andWeb services, is the Taverna project

(Oinn et al., 2004; Hull et al., 2006). It allows researchers to design sequences of diverse

bioinformatic analyses using both public and proprietary resources under a graphical and

interactive environment. The Taverna system implements bioinformatic workflows: The

automated search, calling, integration and execution of bioinformatic applications on

user-selected data. This requires from the user aminimum of knowledge of the operation

of the resources, such as statistical analysis techniques and their location. This system is a

product of the myGrid project, which involves the cooperation of different universities

and research centres in theUK.Taverna can be run on any computer and operating system

with Java and an Internet connection, and the user does not have to install additional

applications or databases.

The BioMart system (Fern�andez-Su�arez and Birney, 2008) is a Web-based platform

that supports the user-driven integration of online databases. Based on a list of databases

pre-selected by BioMart, such as UniProt and Reactome, a user can select the primary

resource to be queried together with specific search filters and criteria. The outcomes of

this search can then represent the input to a secondary, domain-specific application,

which is also selected by the user. For example, a user may integrate a pathway database
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search with a search for proteins constrained by GO terms or other functional attributes.

BioMart plugins have also been incorporated into other software, such as Taverna.

9.3 Data mining tools and platforms

Most existing software tools cannot be easily integrated with other solutions, or are

difficult to adapt or extend. TheCytoscape (Shannon et al., 2003) project is an example of

how to overcome the isolationist approach to software development and sharing. It offers

a core platform for visualizing and analyzing different types of biological networks.

Cytoscape is built on software development principles and methods that allow the

incremental, open incorporation of new tools, software functionality or analytical

techniques. This means that Cytoscape is based on a ‘plug-in’ architecture. The

Cytoscape core system offers a diverse tool set for graphical visualization, manipulation,

editing and topological analysis of different types of biological networks. It allows the

importation and exportation of network data files in different formats, and can be used as

an interface to different integrative data analysis tasks, including those requiring gene

expression data, GO-based annotation analysis and text mining. Plugins for the quan-

titative simulation of biochemical pathway models and network clustering are also

available. One of the most powerful functionality features offered by Cytoscape is the

interactive integration of biological networks and gene expression data, which allows the

user to load data, set visual properties of nodes and connections, and analyze functional

and structural patterns (Cline et al., 2007).

The Bioconductor project (Gentleman et al., 2004) offers an open-source platform for

the analysis andmanagement of different types of ‘omic’ data. Bioconductor is primarily

based on the R programming language. Therefore, users need to install R to allow the

installation ofBioconductor and its default set of software packages. Bioconductor offers

several software packages that operate as add-on modules under R. Statistical analysis

packages for DNAsequence,microarray, SAGE and SNPs data are available (Gentleman

et al., 2005). Some data integration systems, such as BioMart, offer options to establish

direct interactions between Bioconductor and different online databases (Fern�andez-
Su�arez and Birney, 2008).

The availability of software tools to assist in the analysis and interpretation of genome-

wide association studies is gradually expanding (Buckingham, 2008). Most of the

existing public or open-source tools tend to focus on SNPs data, but new solutions

tailored to the analysis of copy-number variations will become increasingly available.

The development of the next generation of tools face different challenges ranging from

themassive sizes of these datasets, computing and graphic-processing power constraints,

and the relative lack of computing-efficient statistical tests to filter spurious associations.

Moreover, many of the existing tools may present significant usage barriers to those

researcherswho do not have a strong background in statistical analysis or bioinformatics.

However, recent advances are addressing these and other requirements, such as the

development of more interactive, visualization-driven software packages. Goldsurfer2

(Pettersson et al., 2008) is a Java-based interactive and user-friendly graphical tool that

can support different analytical steps in genome-wide association studies, including

quality control and statistical analysis. This system can be applied to datasets including

hundreds of thousands of SNPs and thousands of samples (Pettersson et al., 2008).
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Future advances in this area will comprise integrative data analysis approaches to the

detection of biomarkers and functional pathways based on genomic variation, gene

expression and protein network data. Moreover, these approaches will be designed to

operate under open-source, extensible software platforms, such as the Cytoscape system

(Buckingham, 2008).

Other examplesofwidelyapplied tools that coverdifferent stepsof ‘omic’data analysis

are the Gene Expression Profile Analysis Suite (GEPAS) (Montaner et al., 2006), Weka

(Frank et al., 2004) and the UCSCCancer Genomics Browser (Zhu et al., 2009). GEPAS

focuses on the analysis of microarray data and their interpretation with different

distributed biological information resources. GEPAS enables a Web-based, automated

implementation of different analytical tasks: ranging from data pre-processing, through

clustering and supervised classification, to functional annotation based on the GO and

biological pathway databases. It offers different user-friendly options for finding differ-

entially expressed genes using several statistical analysis techniques, feature filtering

based on feature-class or feature-survival times correlations, and methods for the

combined analysis of gene expression and genomic copy number variation data.

Weka is an open-source, machine learning workbench (Witten and Frank, 2005) that

has been applied to different biomedical research domains, including several biomarker

discovery applications (Frank et al., 2004; Azuaje, 2006). Weka provides not only a

comprehensive collection of data pre-processing and supervised classification algo-

rithms, but also different interfaces: the Explorer, the Knowledge Flow and the

Experimenter, which assist the researcher in the development and evaluation of different

types of applications. The Knowledge Flow, for example, offers a graphical interface

based on a process-oriented design approach, in which the different data mining

components can be selected and combined in an interactive workflow of components

and information.

The UCSC Cancer Genomics Browser (Zhu et al., 2009) enables the integrative

visualization and analysis of different types of genomic and clinical data. For instance,

users can create different genome-wide graphical displays and statistical analyses of

DNA variation and gene expression data. This can be done together with an interactive

selection of clinical features from different samples and disease types. Visual displays,

such as heatmaps, can be zoomed and linked to the UCSC Genome Browser (Karolchik

et al., 2008) to retrieve additional information. The UCSC Cancer Genomics Browser is

not limited to cancer-related data. Moreover, the system can be used as a public Web-

based browser or as a locally-installed application.

A novel approach to supporting ‘omic’ data mining of potential disease biomarkers is

offered by the Endeavour system (Tranchevent et al., 2008), which is based on the idea of

prioritizing genes that are implicated in specific biological processes or diseases. A

typical applicationwould involve a training dataset of genes known to be associated with

a specific disease, which is used to automatically build different predictionmodels based

on different ‘omic’ data sources in different organisms. The resulting models are applied

to a user-defined testing or query dataset. Endeavour automatically ranks the query genes

in relation to the training dataset using different quantitative prioritization scores. This

system incorporates more than 50 public data resources to build the prediction models,

and has supported biomarker discovery research in obesity and type II diabetes, amongst

other areas (Tranchevent et al., 2008). Chapter 8 presented a more detailed discussion of

the Endeavour system.
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9.4 Specialized information and knowledge resources

The availability of a diverse range of tools, data resources and applications presents users

with another big challenge:How to keep track of existing solutions?How to compare and

select the most appropriate application-specific options? Resource categorization and

integration frameworks represent a valid approach to tackling this problem. One such

system is the iTools framework (Dinov et al., 2008), which provides a system for the

cataloguing, classification and integration of different computational resources across

different application domains and bio-computing infrastructures.

This type of integrated bioinformatic frameworks may be accessed by both humans

and computing systems to search, compare, display and assess collections of resources.

Moreover, these systems may facilitate a more efficient communication between

developers, scientists and policy makers, as well as innovative ways to support

accountability and evaluation of resources. In the case of iTools, an important feature

is the capability to allow users to populate and manage the content of its integrated

resource environment (Dinov et al., 2008). The iTools framework also offers support for

the integration of software plugins, including Web-crawlers and browsers.

The integration of bioinformatic resources is also constrained by the lack of structured

information and knowledge across application domains and disciplines. As discussed

above, Semantic Web approaches may contribute to a more intelligent and user-friendly

navigation, management and interpretation of information in the systems biology era.

TheSemanticWeb is based on the idea of exploiting common formats to support resource

integration at different information processing levels. For example, different efforts are

currently under way to offer biomedical data in well-structured formats based on

ontologies, as well as prototypes of decision support systems that explore new functional

features unavailable in the current Web (Ruttenberg et al., 2007). However, the

development of the Semantic Web tailored to translational biomedical research will

continue to be constrained by the lack of semantically annotated information resources

(including scientific publishing), the limited scalability of existing Semantic Web-

compliant applications, and the need to develop methodologies to assess the origin and

generation methods of information and knowledge resources, that is their provenance

(Ruttenberg et al., 2007). On the plus side, concrete applications in different biomedical

research areas are being developed (Ruttenberg et al., 2007), and advanceswith regard to

patient identity processing, system security and networking infrastructures will continue

to grow in the near future (Winter et al., 2007).

9.5 Integrative infrastructure initiatives and inter-institutional
programmes

Two important examples of large-scale cooperative efforts for the development of

integrative bioinformatics infrastructures are the Biomedical Informatics Research

Network (BIRN) and the Cancer Biomedical Informatics Grid (caBIG) in the US. These

projects use Web service technologies to interconnect multi-disciplinary, geographical-

ly-distributed teams and bio-computing resources. TheBIRN (BIRN, 2008;Keator et al.,

2008) is a virtual community of shared resources and collaborative tools for biomedical

research. This initiative coordinates the implementation of open-source software tools
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and applications for data acquisition, analysis and management, which are shared under

the BIRN infrastructure. BIRN also comprises a repository of freely-accessible data and

metadata, with an emphasis on biomedical imaging, which supports data annotation,

visualization and querying. As part of BIRNs efforts to support flexible and scalable

resource integration, different biomedical ontologies and knowledge management

collaborative tools have been developed. Such resources cover different aspects in

neuroanatomy, behaviour and cognitive research, and experimental protocols. Any

research group can connect to the BIRN bioinformatics infrastructure by installing a

‘BIRN rack’, which is a software installation and deployment system designed to

facilitate the incorporation of new end-points or end-users.

The caBIG (2008) offers a bio-computing infrastructure that supports research

collaborations in the cancer community, including researchers, physicians and patients.

caBIG’s main goal is to facilitate new advances for the diagnosis, treatment and

prevention of cancer based on an integrative, collaborative environment of information

and computing resources. This has required investments in the development of shareable

software tools and platforms, ontologies and knowledge sharing standards. However,

caBIG has given priority to the idea of open-source development and reuse of existing

tools and resources to conceive domain-specific solutions. One of the resulting con-

tributions of caBIG has been its support for the development of ‘The Cancer Genome

Atlas’ (TCGA). The caBIG project has also supported the development of a bioinfor-

matics platform for sequence and expression data analysis, the geWorkbench system.

The geWorkbench (2008) uses a plugin architecture that offers different tools for data

analysis and their interaction with other packages, such as the BioConductor and

Cytoscape systems. The caGrid is the network of Web services deployed by caBIG.

The Early Detection Research Network (EDRN) is an initiative of the US National

Cancer Institute, which aims to support the incorporation of new molecular diagnostics

and biomarkers into personalizedmedicine of cancer patients. This network offers aWeb

site and different resources to inform and coordinate efforts in biomarker research

(EDRN, 2008). Similarly, based on public-private partnerships, the EDRN aims to

support studies, including trials, to validate biomarkers for the early detection of cancer,

risk assessment and their application as surrogate endpoints.

A catalogue of recent projects and funding initiatives, which are being developed in

the European Union (EU), related to bioinformatic infrastructures and biomarker

research has been produced by Marcus (2008). Different databases, tools and services

are being developed as part of the EU Framework Programme, which promotes

collaborative research between the public and private sectors. Examples of recent

advances include new resources for distributed computing, in silico modelling toolkits,

text mining and prototypes of systems biology ‘toolboxes’, which tend to focus on the

study of different model organisms. Significant contributions are also represented by

efforts to integrate bio-computing resources and human expertise, such as the European

Bioinformatics Grid and the European School of Bioinformatics (Marcus, 2008).

9.6 Innovation outlook: challenges and progress

Significant advances in terms of information resource integration in specific research

areas have been accomplished over the past 10 years. The next transformative phase to
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accelerate translational research, in general, and biomarker discovery, in particular, will

comprise other levels of integration. These new levels should include software tools,

applications and findings across and within disciplines. There is evidence that, at least in

the near future, disciplines will continue developing their information sharing, man-

agement and reasoning capabilities in relative isolation through advances in Grid

computing, open-source software development and knowledge representation (Stein,

2008). New advances will also depend on the maturation of emerging technologies, such

as the SemanticWeb, and the further development of a culture of electronic collaboration

and information sharing. The latter does not only involve data and software utilities, but

also hardware and knowledge in the form of annotations andmachine-readable literature

collections.

As depicted in Figure 9.2, a crucial goal is to integrate different prediction models.

Thus, advanced bioinformatic infrastructures should provide tools to support the

implementation of four main tasks: Data exploration and selection; model design and

implementation, model evaluation and selection; and validation studies. As discussed

above, advanced bioinformatic infrastructures will continue to be developed as open,

extensible software workbenches (Figure 9.3). Such integrated, extensible platforms

may consist of a ‘core system’ and an ‘application (plug-in) system’. For instance, a core

system may comprise: (a) a set of generic software components; (b) a prediction model

discovery engine; and (c) a validation and application engine. The generic software

components allow fundamental tasks, such as input/output data manipulation. The

prediction model discovery engine can include application-independent components

to allow the selection of prediction models, their design and evaluation and output

documentation. The validation and application engine should provide generic compo-

nents for importing and exporting independently-evaluated models. Under such an

integrated, extensible software framework, a second major system component is the

application plug-in system, which can allow the incremental integration of tools, such as

Figure 9.2 An example of a typical biomarker discovery data analysis workflow within an

integrated bioinformatics framework
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classification models and information management methods. Therefore, this system

architecture can allow the independent implementation of plug-ins and their integration

into the infrastructure without requiring the end-user to directly modify the existing

software code.

Figure 9.4 presents a simplified view of a minimum set of resources, tools and

outcomes that are required in the development of a bioinformatic infrastructure for

supporting biomarker discovery and evaluation. Moreover, such building blocks are

required to achieve different degrees of integration and coordinated communication at

different levels. This type of framework can shape the development of different

applications relevant to biomarker discovery and evaluation in different biomedical

domains, including support for potential drug target identification and clinical trials.

Also under this framework, diverse resources of molecular and clinical data acquired

from prospective and retrospective studies can be integrated locally and remotely. These

resources are required to comply with information representation standards and formats

that make them compatible with a variety of software tools and applications. Software

resources that should be integrated range from data acquisition and tracking, through

data mining and management packages, to knowledge annotation engines.

Another important requirement is the incorporation ofworkflowmanagement systems

or automated design workbenches to assist researchers (with different specialization

backgrounds) in information-driven prediction model selection, implementation and

evaluation. Furthermore, integration at the prediction and hypothesis generation levels

will continue driving innovative advances. This goes beyond the physical or virtual

integration of bioinformatic resources. As shown in previous chapters, this also consists

of the combination of different information displays, predictions and interpretations

Figure 9.3 An example of an integrated, extensible bioinformatics infrastructure: Overview of a

typical software architecture
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using computational intelligence and advanced information visualization. The potential

outcomes facilitated by these infrastructures not only include the acceleration of routine

experimental research and the identification of new biomarkers. They are also valuable

tools to support training and learning in collaborative, cross-disciplinary and inter-

institutional environments. Bioinformatic resources can also be tailored to more specific

needs to facilitate translational biomedical research: Proof-of-concept, pre-clinical and

clinical studies of new devices, diagnostic kits, decision support systems and therapies.

Thus, bioinformatic infrastructures should be seen as backbone engines for the future of

translational biomedical research, which demands new and creative ways of integrating

resources, people and ideas.

Data sources Data analysis Data integration and modelling

Drug target and therapy research

Diagnostic and prognostic
decision support systems

Applications and
investigations

Biomarker discovery and
evaluation platform

Potential innovationPotential findings and outcomes

Functional characterisations

Novel biomarkers

Diagnostic models

Evaluation and independent
validation of models

Feasibility studies

Learning infrastructure and new
skills

Support for proof-of-concept, pre-
clinical and clinical studies

Diagnostic, prognostic and screening
biomarkers

New predictive capacity vs. traditional
biomarkers

Integrated disease prediction models

Extensible, integrated bioinformatics
infrastructures

Decision-support system prototypes

Translational applications

New collaborative approaches

Prospective and retrospective
studies

Gene expression

Exploratory visualisation Between-feature associations

Multi-source prediction models

Quantitative / qualitative relationships

Integrated classifiers

Multi-factor risk assessment

Predictive feature selection

Classification models

Statistical and machines
learning

Cross-validation and
independent evaluations

Genomic variation

Other “omic” data

Clinical data

Figure 9.4 A framework ofminimum resources, tools and outcomes required in a bioinformatics

infrastructure for supporting biomarker discovery and evaluation
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10 Challenges
and research
directions in
bioinformatics and
biomarker discovery

This chapter will discuss major research challenges and directions for bioinformatics in

disease biomarker discovery, with an emphasis on requirements and approaches for

prediction model development based on ‘omic’ data integration and analysis. Major

challenges regarding data and information sharing, computational evaluation of bio-

markers and prediction models, research reporting practices, research reproducibility

and validation of biomarkers and models will be introduced. This chapter also discusses

strategies for training researchers in ‘translational bioinformatics’ and for supporting

multi-disciplinary collaboration. Two guest commentaries accompany this chapter to

summarize alternative views on problems and challenges, as well as to expand discus-

sions on key computational methods and their applications.

10.1 Introduction

It is evident that bioinformatics, generally defined as the development and application of

computational technologies for supporting the understanding of biological systems,

plays a crucial role in biomedical translational research (Chapter 1). The area of

translational bioinformatics focuses on the objective of bridging the gap between

Bioinformatics and Biomarker Discovery: “Omic” Data Analysis for Personalized Medicine Francisco Azuaje
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biological research and clinical application. This is being accomplished through the

development of algorithms, methods and other information resources that bring the

bench closer to the bedside. Translational bioinformatics research plays an essential part

in disease biomarker discovery, across different clinical domains and using different

types of ‘omic’ data. Personalized approaches to prevent, detect and treat disease using

different types of biomarkers and computational tools is a major aspiration in the

evolution of modern medicine. These changes also offer promising avenues for

identifying more cost-effective and less invasive therapies.

Bioinformatics research supports and drives biomarker discovery investigations that

may result in potential novel clinical applications (Bellazzi and Zupan, 2008;Azuaje,

Devaux andWagner, 2009b). For instance, biomarkers can be used to classify patients on

the basis of risk categories, which can be used to guide preventive strategies, further

screenings or follow-ups. Screening biomarkers and models are used for the early

detection of disease in populations of healthy, at high risk, individuals. Also different

types of diagnostic applications are being developed to detect disease based on the

combination of different types of ‘omic’ and clinical data. The prediction of responses to

treatments or disease progression is another promising application.

Previous chapters reviewed concepts and resources relevant to the design,

implementation and evaluation of such applications. Chapter 1 introduced fundamental

definitions, problems, requirements and applications of biomarkers. Fundamental statis-

tical and data mining concepts, methods and tools were overviewed in Chapters 2 and 3,

which included discussions about technical advantages and limitations of computational

solutions and approaches. Chapters 4–8 focused on the analysis and application of

different types of ‘omic’ information in the design and implementation of disease

biomarker investigations. Important challenges, technological gaps and requirements

for the development of advanced bioinformatics approaches and the exploration of novel

clinical applications were presented. Chapter 9 expanded the review of software tools and

information resources, which are laying the groundwork for a new generation of

computational advances and systems-based approaches.

The greatest obstacles or challenges for bioinformatics and disease biomarker

discovery research can be grouped into two major areas: Those challenges that mainly

depend on technological changes and innovation, and those that comprise or require

major cultural changes. These two areas are clearly intertwined and inter-dependent. On

the one hand, changes in scientific culture drive new technological advances. On the

other hand, novel computational tools and resources have the potential to redefine

research goals and motivations, which in turn may fuel changes in attitudes and culture.

For instance, we will not be able to fully exploit advances in computational biology

and bioinformatics without dealingwith obstacles relating to open access to information,

standards and integrated bio-computing infrastructures. But such obstacles can be

eventually overcome by the promotion and development of a culture of sharing in a

global, interdisciplinary research environment. Other examples of technological

requirements are the availability of more and better data and analysis outcomes to

allow research repeatability and greater scrutiny by the scientific community. As

discussed below, there is still evidence of the need to improve the rigour of statistical

analyses and research reporting practices. The true test of any advance in ‘omic’

biomarker research will be to pass the filter of rigorous independent evaluations. This

also involves comparisons with ‘standard’ biomarkers or models routinely used in
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clinical practice on the basis of their classification or prediction performance. Progress in

these areaswill be constrained, in part, by our capacity to train,mentor and develop a new

generation of researchers in translational bioinformatics.

The next sections offer a more detailed discussion of some of the most pressing needs

and challenges in bioinformatics for translational biomedical research, in general, and

for biomarker discovery research, in particular. The list of problems and challenges

covered here complement the data- andmethod-specific discussions offered in preceding

chapters.

10.2 Better software

In translational bioinformatics, the success of a software development projectmay in part

be measured by the acceptance of its products and outcomes in a community of users or

by their impact in disease-driven research applications. However, above all bioinfor-

maticians should aim to deliver usable software tools that can generate consistent and

reproducible results, and that can be easily adapted and maintained in different

application contexts. Regardless of the specific requirements and complexity of the

tools and their applications, Baxter et al. (2006) argue that fundamental practices can be

recommended for successful software development: Careful requirement analysis and

design before implementation, better documentation of code and processes, the appli-

cation of quality control in all development phases, the application of community-based

standards for representing data and information where possible, and the use of project

management tools at all levels.

The typical outcomes of requirement analysis and design not only include documents

that synthesize the inputs, processing of the inputs and outputs of the programs, but also

specific strategies for testing and evaluating the software. Apart from giving careful

consideration to the selection of programming languages and development tools

according to specific needs and expectations, it is important to discuss maintenance

and release plans. This phase should also consider other quality factors for defining the

usefulness and acceptance of the software, such as usability requirements for interface

development. Software documentation consists of describing the processes and func-

tions of programmodules, aswell as in-line comments in the source code.Quality control

activities can be performed by ensuring that the programs produce the intended outputs

and results consistently, that is software testing, and by tracking and identifying software

bugs and potential future conflicts.Developers can ensure that the data inputs and outputs

of the software comply with standards for data and information representation, for

example XML-based formats for ‘omic’ data. Metadata documents describing the

characteristics of the data, encoding formats, definitions and functionality assumptions

could be useful when standards are not available for specific types of data or information

outputs (Baxter et al., 2006). Different software project management habits, processes

and strategies are needed to guarantee that development phases, deliverables and new

releases are completed as planned (Berkun, 2005).

Software usability refers to a set of properties that reflect the overall user satisfaction

with regard to their capacity to understand the software functionality, as well as the

perceived difficulty and complexity of the software. Usability assessment aims to answer

questions such as: Are users able to easily obtain information or to generate outputswhen
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they need them? Which difficulties are encountered when trying to complete browsing

and navigation tasks? Can users easily learn to interact with the system by inspecting its

interface? Recent studies focused on bioinformatic software and users, suggest that

usability factorsmay be hampering the capacity of users in different application domains

to effectively and efficiently obtain or process information in their day-to-day research

activities. For instance, Bolchini et al. (2009) found that browsing- and search-oriented

tasks in widely-used Web-based biological databases could be improved by addressing

important usability issues. These types of investigations indicate that software designers

should carefully consider the compliance of the software functional features with well-

defined usability factors relating to content quality and clarity, computing performance,

reliability and interface design. Bolchini et al. (2009) suggested that some of the biggest

challenges in bioinformatics software usability are: (a) users tend to have difficulties

when dealing with a long list of results (e.g. gene or document searches), and the visual

organization of result items may be directly contributing to this problem; (b) ranking

criteria used to organize program outputs may be difficult to understand; and (c) the

clarity and quality of the information used to summarize the content of large lists of

documents deserve significant improvement.

Other authors have argued that improvement in usability and the adoption of

bioinformatics software for large-scale, cross-disciplinary research will be possible

through architectures that can support rapid, bottom-up development and integration

(Boyle et al., 2008). The latter may comprise the definition ofmore flexible architectures

at a higher level of abstraction to facilitate re-use and adaptation.

10.3 The clinical relevance of new biomarkers

Despite the potential of disease biomarkers to improve health, quality of life and survival

and the increasing number of publications across different medical domains, there have

not beenmany examples of the successful adoption of novel ‘omic’ biomarkers in routine

clinical practice. The main factor restricting their use and wide acceptance is the lack of

conclusive evidence about their clinical relevance, including multi-marker diagnostic

and prognostic models.

The demonstration of the clinical relevance of new biomarkers is a critical step that

goes beyond the implementation of independent validations (Chapter 1). A clinically-

useful biomarker is one that, for instance, can be effectively applied to define the best

treatment for a patient, which may in turn improve the quality of life of the patient. The

latter can be measured by a reduction of the patient’s exposure to invasive interventions

or toxic treatments with harmful collateral effects. Apart from aiding in the selection of

optimum therapy, a biomarker or prediction model may demonstrate its clinical

relevance by allowing an early detection of risk, disease or complications, which can

enable a more personalized planning of additional treatments or monitoring strategies

(Hinestrosa et al., 2007; Thompson et al., 2008).

An important majority of new biomarkers, based on different types of ‘omic’ data and

computational prediction models, published to date have not produced conclusive

evidence of their clinical relevance (Hinestrosa et al., 2007; Contopoulos-Ioannidis

et al., 2008; Ledford, 2008; Wang, 2008). A significant proportion of those discoveries

have not even passed the threshold of independent replication and validation. Even in the
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case of independently validated biomarkers that have already influenced the way

treatment selection is performed, for example the oestrogen receptor and HER2

(human epidermal growth factor receptor 2) biomarkers for breast cancer, important

factors such as standards for measuring the biomarkers and reporting results can

represent major obstacles to their widespread acceptance and application (Hinestrosa

et al., 2007). Chapter 5 offers examples of multi-gene biomarkers approved for

clinical use.

Bioinformatics has an essential role and responsibility in the assessment of the clinical

relevance of new disease biomarkers. This can be achieved not only by providing bio-

computing infrastructures, tools and advanced computationalmethodologies, but also by

ensuring that such contributions comply with quality standards and best practice for

evaluating, reporting and documenting research findings (Section 10.7). Also there is a

need to foster methodological rigour and transparency and to strengthen the idea of open

collaboration and sharing of resources (e.g. data and well-documented computational

models). Moreover, employers, mentors and funding organizations should provide

researchers with support and recognition for their commitment to high-quality peer-

review, aswell as for their active involvement in community-based initiatives designed to

meet the challenges described here.

10.4 Collaboration

In the biological and clinical sciences there is little doubt about the importance of

bioinformatics to support the discovery and development of novel disease biomarkers.

Perhaps what is less clear, for some stakeholders in the public and private research

sectors, is the capacity or potential that computational researchers can offer to

lead knowledge discovery. Is this only about the provision of informatics and data

analysis services on demand? Is there widespread recognition for computational

research as a key force in the search for new knowledge and in the creation of new

biomedical-relevant research directions? Nevertheless, (almost) no one disputes the

evidence that inter-disciplinary collaboration is essential for ensuring the successful

identification of new technologies for detecting and treating disease in the post-human

genome era, independently of the specific roles and opportunities assigned to their

participants.

Mutual benefit and trust are essential guiding principles in any collaboration.

Computational scientists can contribute to the generation of answers to fundamental

biomedical questions through the insights, perspectives, predictions and interpretations

obtained from the application of advanced algorithms andmethodologies.Moreover, this

can drive the formulation of new questions for the consideration of life and clinical

scientists. These can be questions connected to the definition of strategies for generating

or validating new hypotheses, as well as for prioritizing biomarkers and prediction

models according to their potential clinical relevance. But in the end these and other

cultural changes needed to improve collaboration and the generation of new knowledge

will also depend on the capacity of all researchers, independently of their ‘original

background’, to embrace new ways to define and interpret problems. And this may

demand from all of us to abandon ‘old disciplines’ or mindsets for the creation of new

ones (Eddy, 2005).
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10.5 Evaluating and validating biomarker models

The main objectives of the evaluation of a disease biomarker model are: (a) to

demonstrate its computational and (potential) biomedical relevance and, (b) to estimate

“the true” diagnostic or prognostic ability of the model. The standard approaches to

achieving these objectives are model cross-validation and independent validations

(Azuaje, Devaux and Wagner, 2009b). Different quantitative quality indicators can be

applied, such as accuracy, sensitivity and AUC values (Chapter 2).

Model cross-validation involves the generation of disjoint, randomly selected training

and testing datasets, which are required for model building (training) and testing

independently (Chapter 3). This data sampling process is repeated several times using

different training-test partitions, and a global indicator ofmodel quality performance, for

example classification accuracy, can be computed by combining the performance

indicators derived from the different testing datasets. This evaluation principle, as well

as its different versions, has become an accepted practice to offer a more objective, exact

and less biased estimation of prediction or classification capability. However, it is also

important to remember that cross-validation procedures may overestimate performance

in the presence of small datasets (<50 samples) (Braga-Neto and Dougherty, 2004;

Molinaro, Simon and Pfeiffer, 2005), or when it is not properly implemented in specific

contexts, for example selection bias (Chapter 3) in wrapper-based feature selection and

classification.

An independent validation refers to the evaluation of the disease biomarker model

using new testing datasets (Chapter 2). The data should be obtained from biological

samples and patients that were not previously used during model building or cross-

validation (Azuaje, Devaux and Wagner, 2009b). An accepted approach is to have

different, independent research teams involved in the sample acquisition, data generation

and analysis tasks. Recent research has highlighted the importance of implementing

multi-centre studies as a basic condition for independent validation (Ghosh and Poisson,

2009).

Recent investigations have motivated misinterpretations in terms of the potential

improvement that newly discovered biomarkers may add to the detection of diseases or

clinical responses (Smulders, Thijs and Twisk, 2008). For instance, the INTERHEART

study (Yusuf et al., 2004) is a large control-case project (more than 15 000 cases from 52

countries) that concluded that nine conventional physiological risk factors can be used to

explain 90% of the cases of cardiovascular disease. A possible misinterpretation is to

assume that this result would leave little room for improving cardiovascular disease risk

assessment through the incorporation of emerging ‘omic’ biomarkers (Smulders, Thijs

andTwisk, 2008). First, it is important to clarify that new risk determinants can contribute

to a better understanding of the development of the disease independently of the

predictive power that it may add to an existing model. Risk determinants could be

either causal factors or indicators of early disease development. Second, there are many

other combinations of risk factors (including conventional or novel, or both) that could

achieve similar predictive performance as that reported by the INTERHEART study.

Third, it is important not to overemphasize the optimization of single indicators of

classification quality (e.g. the ROC AUC, Chapter 2). Although the AUC is a useful and

robust indicator for estimating classification performance, several authors have criticized

its assumptions, constraints and misuses. For example, Pepe, Cai and Longton (2007),
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Smulders, Thijs and Twisk (2008) and others have suggested that indicators such as

sensitivity, specificity, model calibration measures, and precision should also be

considered according to the specific clinical context under study, for example classi-

fication or risk prediction applications. Other authors have reported the theoretical

constraints (e.g. maximum values) of the AUC in domain- and population-specific

analyses. For example, it has been reported that in some applications and populations the

theoretical maximum AUC value of an optimal prediction model could be 0.80

(Smulders, Thijs and Twisk, 2008).

In contrast to these difficulties, recent research has also demonstrated how risk

assessment and disease detection models based on multiple biomarkers can outperform

established models based on traditional risk factors. One example was provided by

Zethelius et al. (2008), who reported the evaluation of multiple biomarkers for death risk

assessment caused by cardiovascular disease in elderly patients. In comparison to the

predictive performance offered by individual risk factors commonly applied in the

clinical setting, they showed how the combination of multiple biomarkers can improve

death prediction performance based on Cox-based models (Chapter 3) and different

evaluation indicators. The success of this study can be explained by different

design factors (de Lemosand Lloyd-Jones, 2008), such as the inclusion of powerful

individual biomarkers with validated roles in cardiac and renal damage, and the careful

selection and matching of patients (e.g. inclusion of white males of similar age only).

Moreover, in comparison to the majority of previous research in this and other

biomedical areas, this study applied amore comprehensive set of prediction performance

evaluation indicators, which cover different aspects: model fit, discrimination, calibra-

tion and reclassification properties of the prediction models (de Lemos et al., 2008;

Zethelius et al., 2008).

On the other hand, it is necessary to recognize that many of the claims about new

diagnostic and prognostic biomarkers reported in the literature may be exaggerated and

unjustified, and may lack adequate computational evaluations and independent exper-

imental validation (Ioannidis, 2007a; Contopoulos-Ioannidis et al., 2008).

Therefore, there is a need to continue improving our capacity to assess the scientific

quality and clinical relevance of new disease biomarker models. An accurate picture of

the scientific quality landscape in disease biomarker research can be very difficult to

obtain because of the lack of shared evaluation practices, the great diversity of data

sources and a publication bias culture. For example, there is empirical evidence

suggesting the widespread existence of study (or outcome) publication bias in the

scientific literature. That is, research that reports positive, ‘statistically significant’

results or large size effects are more likely to be published (Dwan et al., 2008).

Thus, it has been suggested that the grading of disease biomarker evidence should

consider a more integrated, context-dependent view and interpretation of different

‘credibility factors’. For example, Ioannidis (2006) recommended the careful exami-

nation of the following factors: Effect size, amount and reproducibility of evidence,

protection from bias, biological credibility and clinical relevance. Very small effect sizes

(e.g. relative risks or odd ratios<1.2) are very unlikely to represent relevant associations

in different research environments or clinical settings, even if such relationships or

differences are found to be ‘statistically significant’. The credibility of a discovery could

be augmented if the obtained effect sizes or associations can be replicated in several

independent studies, even in the case of small to moderate sizes. In other situations, large
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effects may simply reflect the presence of strong bias (e.g. demographic or other

phenotypic stratifications) in the population sample under investigation. The detection

of possible sources of bias in published studies may be complicated because many

research papers lack enough information about the characteristics of the population

sample, including clinical information that may explain the effect sizes observed. This

is one of the reasons to support efforts to improve scientific reporting practice

(Section 10.7). The biological credibility of a study can be established based on available

qualitative knowledge and empirical evidence, that is based on how a new finding fits or

changes a previously accepted understanding or logic. This factor is typically addressed

in the discussion and conclusion sections of research articles. The last critical factor

stressed by Ioannidis (2006) refers to the estimation of the clinical relevance of the

findings, which was introduced above.

Despite the diversity of requirements, goals and resources available for the develop-

ment of biomarker discovery and applications, it is possible to define other important

common factors to further characterize the usefulness of novel biomarkers in transla-

tional medicine. One of them is the development of good practice in evidence reporting

(Section 10.7). This does not only refer to the application of sound, consistent

experimental and analytical protocols, but also to the detailed and transparent docu-

mentation of the different development phases. This also requires a clear and compre-

hensive specification of resulting biomarkers and computational predictionmodels. This

should not induce inconsistent interpretations and should provide sufficient information

to allow the reproducibility of experiments and computational models (Ioannidis et al.,

2009). Selective or preferential reporting of ‘statistically significant’ results should also

be avoided (Ioannidis, 2007b).

The clinical efficacy and effectiveness of a new biomarker refers to its potential to

benefit patients in different clinical environments (also see Section 10.3). Disagreements

exist on whether or not these requirements should be assessed through clinical trials. In

some cases, for example the Oncotype DX cancer biomarker system (Chapter 5),

approval for clinical application may be granted on the basis of validations using

retrospective data. Randomized clinical trials are currently under development for a

handful of biomarkers, whichmostly fall into the cancer prognostics area.Moreover, it is

also important to acknowledge that an important proportion of diagnostic tests applied in

day-to-day clinical practice were not assessed in a traditional clinical trials framework

(Ioannidis, 2007b). Although it may not be possible to demonstrate the impact of a

prediction model on problems such as patient survival, some of these models may

contribute to the reduction of unnecessary treatments and the reduction of collateral risks

and drug toxicity. Nevertheless, it has been suggested that clinical trials may be useful to

estimate the potential effectiveness of biomarkers in specific clinical environments and

populations. Proof-of-concept studies, additional retrospective evaluations and carefully

designed prospective studies in relatively small populations are also options recom-

mended for assessing the potential clinical efficacy and effectiveness of new biomarkers.

These and other options should be seen as the natural continuation of the different

evaluation and validation strategies discussed above.

These factors also deal with the question of whether or not a novel biomarker system

could be fully deployed, maintained and sustained in a clinical environment. The

capacity of a hospital unit to obtain (and process) samples and implement computational

predictions in an integrated and efficient fashion are fundamental (Hinestrosa et al.,
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2007; Ioannidis, 2007b). A great challenge is to assess the capacity of such environments

to reproduce the predictive quality reported in previous development phases. Othermajor

challenges involve the training of new staff and the definition of objective standards for

quality assessment in specific environments.

The cost-effectiveness of a biomarker system is based on its cost, the overall savings

gained in clinical testing procedures, the prevention of unnecessary harms or complica-

tions, its support for refining screening strategies, and the reduction of costs incurred by

unnecessary treatments (Ioannidis, 2007b). Also it has been suggested that the cost-

effectiveness of new biomarkers may be estimated on the basis of their potential as

‘modulators’ of therapeutic interventions (Ioannidis, 2007b).

10.6 Defining and measuring phenotypes

The accurate and unambiguous definition of phenotypes (e.g. disease, prognostic

outcomes, conditions, responses to treatments) is a critical factor in the design of

biomedically-meaningful computational prediction and classification models. More

accurate ways to specify and measure phenotypes can reduce the amount of spurious

or false positive associations. It will allow a more controlled selection of patients or

biological samples and improve the power of statistical andmachine learning techniques.

It can aid in the specification or identification of new disease sub-groups and between-

group relationships. Moreover, standardized and accurate definitions of disease pheno-

types can facilitate the interpretation and reproducibility of methods and results.

In some biomedical areas the assignment of control-disease categories may still be

seen as a relatively subjective and non-standardized activity. This is because within the

same biomedical discipline there may be a variety of strategies that can be applied to

define clinical conditions or specific outcomes. This may depend on the protocols,

instruments or analyses (including those that rely on visual inspection) implemented.

These concerns are being addressed through the application of more advanced

technological platforms for identifying or estimating phenotypes, such as more

sophisticated imaging techniques, in vivo cell-specific assays and microscale analytical

systems. In parallel, different international initiatives will continue to foster the

development of standardized biomedical vocabularies, phenotype (non-molecular)

data and knowledge bases, together with automated tools for integrating and mining

these resources. Moreover, there is room for new community-driven methodologies

and resources to facilitate a more exact definition or identification of phenotypes,

which may be useful across different biomedical research fields (Freimer and Sabatti,

2003).

10.7 Documenting and reporting biomarker research

Researchers may be tempted to assume that the listing of the genes defining a diagnostic

biosignature, the summarized description of standard experimental protocols or the

presentation of statistical ‘significance’ probability values are sufficient to ensure an

accurate reporting of disease biomarker research. The reporting of disease biomarker

investigations requires a clear, rigorous and detailed specification of different qualitative
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and quantitative aspects, which should enable the reproducibility of computational

models and findings in different application settings or using datasets independently

generated.

Good reporting practices are required to help researchers, regulators and investors to

focus their efforts and resources on only those biomarkers and associated techniques

showing clinical relevance potential. By preventing premature (or unnecessary) efforts

and investments, researchers also contribute directly to the advancement of public trust in

scientific research. Insufficient or inaccurate reporting of results (including negative

findings), technology implementation and evaluation may motivate major misrepresen-

tations or misinterpretations of scientific research. An adequate reporting of biomarker

research can also enhance the quality and fairness of the peer-review system. Addi-

tionally, it creates disincentives tomake exaggerated claims and biased interpretations of

quantitative analysis results.

Several independent investigations (Sterneand Smith, 2001; Jafari and Azuaje,

2006; Ioannidis, 2007a, 2007b) have pointed out common methodological errors or

misinterpretations in studies presenting quantitative models and outcomes. A common

problem is the misuse of the expression ‘statistical significance’ (Chapter 2). Despite

advances in the specification of community-driven guidelines for reporting biomarker

research, there is still a need to improve the quality of the documentation of model

implementations and evaluation results. There is evidence to suggest that a significant

number of disease biomarker models, for example those based on gene expression

signatures, lack sufficient information to facilitate their external validation or re-

implementation (Kostka and Spang, 2008). Even a detailed specification of compu-

tational model learning parameters may not provide enough information for defining a

biomarker signature unambiguously. This may be explained in part by the incomplete

reporting of data pre-processing procedures (e.g. normalization and data transforma-

tion algorithms), tools used for model implementation and details about the cross-

validation approach applied. Furthermore, it is widely accepted that the selection of

normalization techniques may influence classification and prediction (Jafari and

Azuaje, 2006; Kostka and Spang, 2008) depending on the data and the application

context.

Computational scientists co-authoring research on disease biomarkers should ensure

that more careful attention is given to the reporting of software tools, statistical

assumptions, hypothesis-testing procedures, potential sources of model over-fitting and

the results derived from comparative analyses involving reference or benchmarkmodels.

It is crucial to prevent the over-use and misuse of statistical terminology or concepts,

such as ‘significant’ and ‘not significant’. Their use should at least be supported by

statistic scores and estimated probability values to allow researchers to make their own

interpretations. This can also be accompanied by information on assumptions, back-

ground knowledge and the potential implications of the differences or relationships

found to be statistically detectable. Bioinformatic researchers should also foster an

adequate reporting of evidence to show that computational prediction models were

trained and tested correctly based on standard data sampling and cross-validation

procedures (Chapter 3). This is also related to the problem of assessing potential sources

of model selection bias (Chapter 3) (Wood, Visscher and Mengersen, 2007). These

challenges and responsibilities should be seen as fundamental to our roles as authors,

advisors or peer-reviewers.
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The reporting of qualitative or interpretative aspects, as well as those related to the

organization of publications, also deserve careful consideration. For instance, many

journals have started to encourage authors to report the main limitations of biomedical

investigations, as part of their publication guidelines or even as specific formatting

instructions in these journals. An improvement in the acknowledgement of the limita-

tions ofmethodologies and results goes beyond the presentation of the ‘futurework’ to be

done. This could also involve a critical discussion of the influence of potential error

sources and possible problems in the design and evaluation ofmodels. The need to further

improve the quality of reporting of limitations has been stressed in different areas of the

life and physical sciences. For example, a recent survey of articles from journals that

received the highest impact factors in 2005 indicated that less than 20% of the articles

discussed the potential limitations of their studies (Ioannidis, 2007a, 2007b). Also

similar concerns have been recently raised in the area of cardiovascular disease

biomarkers research (Azuaje, Devaux andWagner, 2009a). Moreover, it has been shown

that many studies in this area can be improved in terms of information completeness and

clarity, and in relation to the application of more rigorous quantitative evaluations and

interpretations (Azuaje, Devaux and Wagner, 2009a).

Different international, community-driven initiatives have produced reporting guide-

lines relevant to disease biomarker research and translational bioinformatics. These

guidelines aim to address some of the concerns relating to the coverage, depth and quality

of information reported. These recommendations represent a valuable source of advice

on ‘what’ and ‘how’ to report biomarker research in scientific publications. They are

applicable to a wide range of biomedical domains and research goals (The Equator

Network, 2009): biomarker research for diagnostic and prognostic applications, clinical

trials and meta-analyses. In general, such guidelines or ‘standards’ promote a more

accurate, detailed and structured presentation of information (Azuaje, Devaux and

Wagner, 2009a).

These and related projects across different application domains have assisted authors

and reviewers in improving the readers’ confidence in the quality and potential

applications of published investigations. The adoption of some of these guidelines and

their endorsement by journals have shown to improve the quality of reporting practices

and a better understanding of research findings (Smidt et al., 2006a, 2006b).

Examples of guidelines with direct relevance to disease biomarker discovery research

are: Consolidated Standards of Reporting Trials (CONSORT), Standards for Reporting

of Diagnostic Accuracy (STARD), and Recommendations for Tumour Marker Prog-

nostic Studies (REMARK). CONSORT is a pioneering community-driven initiative

tailored to the reporting of clinical trials (The CONSORT Statement, 2009), which has

been endorsed by many journals and international publishing organizations.

The STARD focuses on the reporting of disease biomarkers (Bossuyt et al., 2003), and

has been endorsed by more than 200 scientific journals since its publication (STARD

Statement, 2009). STARD specifies a checklist for reporting diagnostic studies and

recommendations for describing study design and development using graphical flow

diagrams. The checklist gives specific recommendations on the technical content of the

typical main sections of a research paper, for example methods, statistical methods, and

results. The REMARK guidelines are an example of an international initiative for

improving the reporting of prognostic biomarker research in scientific journals

(McShane et al., 2005). These guidelines were recommended for aiding in the evaluation
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of the clinical relevance of tumour biomarkers with prognostic applications. REMARK

offers specific recommendations on the type of content and level of detail required in the

different typical sections of a biomedical research publication.

Other examples of guidelines relevant to disease biomarker research are: the QUA-

DAS tool (Quality Assessment of Diagnostic Accuracy Studies) (Whiting et al., 2003),

the QUORUM (Quality of Reporting of Meta-analyses) guidelines (Moher et al., 1999)

and MOOSE (Meta-analysis Of Observational Studies in Epidemiology) (Stroup et al.,

2000). Additional projects and guidelines are described on the EQUATOR Network

(2009) Web site. The EQUATOR network aims to improve the quality and reliability of

the health research literature by promoting good reporting practices and through the

dissemination of guidelines, resources and training activities.

The reporting and documentation of disease biomarkers research will be further

augmented by expanding the involvement of computing science and statistical re-

searchers in peer-review and editorial activities. Empirical evidence to support this idea

has been provided by a recent randomized trial, which showed that the inclusion of

reviewers with a relatively solid background in statistics can improve the quality of

research manuscripts presenting diagnostic and prognostic applications (Cobo et al.,

2007).

10.8 Intelligent data analysis and computational models

The most widely-applied computational methodologies for disease classification or

outcome prediction have been based onCox (proportional-hazards)models and different

versions of logistic regression. The former technique is probably the best-known

approach to building systems for prognostic studies (survival analysis, Chapter 2) and

the prediction of therapeutic responses. The latter technique has been the main approach

to diagnostic system development using different types of ‘omic’ data. However, as

Chapter 4–8 and some of the guest commentaries have shown, more advanced meth-

odologies based on different techniques originating from statistical learning and

computational intelligence are being explored for different classification problems and

biomedical domains (Fogel, Corne and Pan, 2008). For instance, applications based on

support vector machines, random forests, neural networks and Bayesian models are

becomingmore visible in the disease biomarker research literature (Azuaje, Devaux and

Wagner, 2009b).

Statistical and machine learning algorithms, such as linear discriminant analysis,

different versions of instance-based learning classifiers, variations of decision tree

models, neural networks, na€ıve Bayesian classifiers and support vector machines have

been investigated in comparative assessments mainly in the area of gene expression-

based biomarker classification (Chapters 3–5). Apart from the studies discussed in

Chapter 3, other authors have aimed to compare the predictive or classification

capabilities of these techniques in an application-independent context or across different

classification scenarios (Baek, Tsai and Chen, 2009). Most of these comparisons have

been mainly carried out using different types of public datasets, with an emphasis on

samples obtained from cancer studies. Different authors, such as Dudoit, Fridlyand and

Speed (2002) and Wang et al. (2006 ), have shown that relatively simple (in terms of

mathematical complexity) techniques, for examplemethods based on nearest neighbours,
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can perform as well or better than more sophisticated algorithms, for example support

vector machine classifiers. On the other hand, other studies (Lee et al., 2005;Baek, Tsai

and Chen, 2009) have concluded that relatively more complex classifiers, together with

different versions of wrapper-based feature selection approaches (Chapter 3), can provide

the highest classification performance across different data types. It is also unlikely that a

consensus on the predictive capacity of different feature selection techniques will be

reached (Saeys, Inza and Larrañaga, 2007).

Such a diversity of observations and suggestive evidence should be expected. The

main reason can be simplified in a single word: Context. Specific requirements,

constraints and goals of the problem investigated should be the main guiding criteria

for model selection, implementation and evaluation. Additionally, until now the dis-

crimination capacity of classification models, as measured by standard performance

metrics, have been probably overemphasized as the key criterion to estimate the

biomedical potential and computational relevance of new biomarkers and algorithms.

In close cooperation with bio-scientists and clinicians, computational intelligence and

data mining researchers developing applications for biomarker-based classification and

predictionmodels should consider other quality factors in amore context-dependent and

integrated fashion. Examples of other important quality dimensions in a translational

research context are: robustness and stability of the biomarker sets selected, biological

meaning and relevance of the biomarkers and models to explain underlying mechanisms

and prediction outcomes, reproducibility of models and prediction performance in

different application settings (Ioannidis et al., 2009), and the potential clinical relevance

of biomarkers and models (Sections 10.3 and 10.5). Finally, and independently of the

application domain and specific requirements, any solution or approach to meeting these

challenges will be constrained by common factors, such as insufficient amounts of data,

the curse of dimensionality, lack of adequate documentation of clinical variables,

unknown confounding factors, incomplete and evolving knowledge, and major

(cross-disciplinary) cultural differences in relation to what ‘relevance’ may mean in

a specific translational research setting.

10.9 Integrated systems and infrastructures for biomedical
computing

Important goals of translational bioinformatics and disease biomarker discovery will not

be accomplished in the absence of advanced, integrative computational infrastructures.

These infrastructures should allow researchers to go beyond the ‘single-biomarker’

research paradigm, and should consist of tools capable of performing data access and

analysis in a more integrated and user-friendly fashion (Azuaje, Devaux and Wagner,

2009b). The latter may also require the automated implementation of workflows and

intelligent explanations of findings and predictions.

Chapter 9 introduced examples of current initiatives for the development of bio-

computing infrastructures, platforms and tools for translational bioinformatics and

disease biomarker discovery. A recent example of a national, longer-term initiative is

the US National Centres for Biomedical Computing (NCBC, 2009), under the NIH

Roadmap for Bioinformatics and Computational Biology. These and other efforts being

developed elsewhere (Marcus, 2008) are opening new possibilities for the development
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of integrated and open software tools more suitable to disease biomarker discovery and

translational bioinformatics. In comparison with previous application-independent

solutions, the next generation of ‘generic’ bioinformatics tools will explicitly consider

the evolving nature of user and domain requirements. This means that advanced tools

will be more flexible, extensible and both user- and developer-friendly, which may

facilitate their adaptation to different requirements and constraints. In the long term, this

will further facilitate the integration and evolution of new tools and services to accelerate

translational research. Furthermore, the open access to integrated bio-computing infra-

structures, including high-performance computing resources, will make room for new

integrative approaches to discovering and validating disease biomarkers and ‘druggable’

molecular targets.

10.10 Open access to research information and outcomes

The open access to data, metadata, software and computational models and their

documentation in sufficient detail is important to support the goals of disease biomarker

research as a key engine for the advancement of personalized medicine. This also

comprises a sufficient and accurate annotation of biological specimens and samples, and

any evidence that can be used to assess the computational and clinical relevance of the

biomarkers under investigation.

The availability of well-annotated samples, including complete and accurate descrip-

tion of clinical variables and phenotypes, can also help researchers to group patients in

more meaningful phenotype categories and to identify potential sources of population

stratification. These tasks are fundamental to increase statistical power and reduce the

risk of detecting spurious or confounded associations (Chapter 2). Apart from their

support for open source software and open access to publications, the computational

biology and bioinformatics communities could expand and coordinate efforts to

harmonize practices or criteria for making data, models and other computational

resources more accessible.

Also it is expected that more research funding agencies and journals will require

researchers to deposit their ‘omic’ datasets and models into international repositories.

In the case of public funding organizations, this is also involving support for open

access publishing and requests to make papers freely available after a specific period

of time.

Many of the software tools for computational biology and biomarker discovery

are freely available or are the product of ongoing open-source software projects

(Chapter 9). Relevant examples are the SAM technique (Tusher, Tibshirani and Chu,

2001), the R and Bioconductor projects (Gentleman et al., 2005), Weka (Witten and

Frank, 2005) and Cytoscape (Shannon et al., 2003). Despite the prevalence of this culture

of sharing in the bioinformatics community, research in disease biomarkers will also

depend on a more open exchange of other types of resources and tools originating from

other areas, such as clinical informatics. This may comprise vocabularies, text-mining

applications and (de-identified) clinical data (Butte, 2008b). The latter should include

sufficient associatedmetadata or descriptions ofmethodologies to allow the replication of

the original analyses and outcomes by external, independent researchers.
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10.11 Systems-based approaches

The global, integrative characterization of biological systems at different levels of

organization based on the combination of different experimental ‘omic’ and computa-

tional approaches, that is systems biology, is already providing new insights into the

relation between molecular mechanisms, environment and disease. Over the past five

years, important progress has beenmade in the development of new techniques, tools and

theoretical findings that canguide the search for novel disease biomarker anddrug targets.

Chapters 7 and 8 presented examples of the application of different network-based and

integrative data analysis approaches to discovering potential clinically-relevant biomar-

kers and associations between genes, health, diseases or treatment responses.

Notwithstanding these advances, the success of the journey of systems biology from

bench andworkstation to ‘bedside’, that is a systemsmedicine (Auffray, Chen andHood,

2009),may take significant time to be realized. Some authors have suggested that, at least

for clinicians and the pharmaceutical industry, the deluge of ‘omic’ approaches piled-up

to represent a new era of systems biology is simply the ‘culmination of all delusions’

(Henney and Superti-Furga, 2008). This scepticism has perhaps been justified by a

relative lack of concrete results to suggest the usefulness of systems approaches to

support the development of newbiomarkers, targets and drugs, or by the impracticality of

many of the proposed approaches.

Other authors have suggested that the goals of systems medicine will have a better

chance of being achieved by enhancing the coupling of integrative data mining

techniques with the dynamic modelling and simulation of complex disease processes

beyond their representation as statistic, tissue-independent systems (Vodovotz et al.,

2008). This is motivated in part by the need to recognize diseases as dynamic processes,

and not as specific states. A system-based approach to understanding disease as an

evolving process will require physicians to move beyond the ‘single-point in time’

paradigm that has been traditionally applied to identify and treat disease (Liebman,

2005). Also, this combination of computational and mathematical knowledge should be

driven by the integration of inputs and expertise from diverse clinical and biological

fields all the way along the research development cycle, including the design and

evaluation of software tools (Section 10.2). One of the key challenges will be to improve

the quality and reliability of automated data and information processing tasks that

represent the core or starting points of many systems biology investigations. One such

task is the construction and refinement of network models of protein-protein (or gene-

protein) interactions and signalling pathways, which still demands a significant amount

of semi-automated annotation and extraction of information from the scientific literature.

The key to resolving some of these challenges may be a more flexible and context-

dependent combination of ‘bottom-up’ and ‘top-down’ approaches (Liebman, 2005; Noble,

2006b), that is a more balanced integration of engineering and ‘traditional science’

approaches. The bottom-up approach to understanding problems and systems is based on

theacquisitionof data and the search for potentially novel patterns andknowledge in thedata.

On the other hand, a top-down perspective is accomplished by interrogating the system for

clues on its collective function and on the specific role of its most relevant components. The

top-downapproach is closer to the ideaof problem-solving inengineeringand requires one to

consider a patient as a complex dynamic system (Liebman, 2005).
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10.12 Training a new generation of researchers for translational
bioinformatics

Translational bioinformatics and disease biomarker development will be greatly

benefitted by a new generation of computational researchers that can go beyond the

design and implementation of databases, algorithms and software tools. They should be

givenmore opportunities to contribute to the formulation of scientific questions together

with potential new answers, including new knowledge (i.e. the fundamental goal of

computational biology). The diversity of research backgrounds and experiences found in

these research areas will further demand a variety of scientific and communicational

skills. This also includes a solid understanding of fundamental concepts relating to

different biomedical domains, such as: molecular biology, clinical sciences, innovation

and research management, bio-ethical issues, research regulation policy, and commer-

cialization of research. However, the development of new research capacities and

leadership for translational bioinformatics cannot solely be driven by individual

motivation, initiatives restricted to a selected set of research laboratories or short-term

efforts. Innovative approaches to ‘formal’ training, including joint training programmes

across universities and departments, may be required to promote a more effective

cooperation and to enhance the potential roles of bioinformatics research in truly

multidisciplinary research environments (Butte, 2008b).Where joint, cross-departmental

training programmes are not available, it will be necessary to expand the level of exposure

of medical and biology students to fundamental computational concepts, tools and

applications. Similarly, computer science and bioinformatic students should be provided

with richer opportunities to investigate disease-driven resources and applications, and

with research experiences in the private and public sectors.

Taught and research-driven graduate courses for students with a primary background

in biology or medicine will need to further support the development of problem-solving,

mathematical and software development skills. This will contribute to the formation of

better users of bioinformatics tools and technologies, as well as to the development of

potential research partners in the design and evaluation of computational systems and

techniques. Different instances of the benefits of research training programs for

undergraduate students are also starting to be better known (Taraban and Blanton,

2008). Such programs can have a significant positive impact on the potential capacity of

future researchers to identify problems, design solutions and critically communicate

findings.

Apart from expanding training and multi-disciplinary contact opportunities, it is

important to encourage bioscientists and clinicians to embrace more open-minded

attitudes towards bioinformatics-driven research (Azuaje, Devaux and Wagner,

2009b). Similarly, researchers with stronger computational expertise should be allowed

to have a more active part in decision-making across all the phases of translational

research, including study design and hypothesis-generation tasks. Computational scien-

tists will continuemaking researchers from other disciplinesmore aware of the relevance

and opportunities offered by rigorous research of new algorithms, methods and tools. A

major challenge is to change the perception that many life and medical scientists have

about computational biology and bioinformatics as a ‘number crunching’ activity or as a

mere provider of data analysis services on demand.
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10.13 Maximizing the uses of public resources

The public availability of large collections of ‘omic’ datasets provides computational

biologists with more opportunities to formulate new questions relating to fundamental

biomedical problems, aswell as to generate potentially novel insights into the occurrence

and progression of disease. Amongst such data repositories, GEO (Barrett et al., 2007),

ArrayExpress (Brazma et al., 2003), the NCBI Database of Genotypes and Phenotypes

(dbGaP) (Mailman et al., 2007), and PRIDE (Martens et al., 2005) have become

important resources for depositing and sharing ‘omic’ data from published research.

GEO and ArrayExpress offer gene expression from hundreds of thousands of biological

samples and their sizes and content quality are expected to continue to increase. PRIDE

and dbGaP are Web-based databases that allow researchers to share mass spectra

(Chapter 6) and genome-wide association studies (Chapter 4) data respectively. A

review of these and other types of bioinformatic resources was given in Chapter 9.

These open-access data resources are also starting to provide the basis for new

integrative approaches to disease biomarker discovery and predictive modelling. For

example, Camargo and Azuaje (2008) combined different GEO datasets, information

from annotated protein-protein interaction networks and machine learning techniques to

proposed potentially novel biomarkers of dilated cardiomyopathy in humans. English

and Butte (2007) combined publicly-available datasets from gene expression, proteo-

mics and RNAi experiments, and identified known and potentially new associations

between some of these genes and obesity. As in Camargo and Azuaje’s investigation,

they demonstrated that prediction models based on the integration of multiple datasets

can outperform models built on single-source datasets independently. Chapters 7 and 8

review network-based and other integrative data analysis approaches to disease bio-

marker discovery.

10.14 Final remarks

Although this chapter, and the book as a whole, simply skims the surface of a large and

diverse collection of problems, challenges and opportunities, it is still possible to present

general conclusions and recommendations for guiding research in translational bioin-

formatics and disease biomarkers. Table 10.1 summarizes key challenges and potential

research directions for bioinformatics and disease biomarker discovery. Alternative or

more detailed discussions and recommendations, including those tailored to specific

biomedical areas, can be obtained in (Bellazzi and Zupan, 2008), (Thompson et al.,

2008) and (Azuaje, Devaux and Wagner, 2009b).

These challenges and recommendations are a reflection of the complexity and costs

associated with the discovery of potentially relevant disease biomarkers. Although an

exhaustive discussion of techniques, problems and applications are constrained by time

and publication space, we hope that the content of this book can at least offer the reader

alternative or broader perspectives for the design, implementation and interpretation of

disease biomarker studies. Progress and obstacles should equally provide us with the

motivation to envision new possibilities. Possibilities that can enable us to make a

difference, for people and the advancement of knowledge everywhere.
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Table 10.1 Key challenges and potential research directions for bioinformatics and disease

biomarker discovery

Challenge Needs and directions

Recommended additional

reading

Software development Reliability, rapid adaptability

and flexibility; ‘bottom-up’

development approaches;

open-source and extensible

solutions; meeting specific

biomarker research requirements

in industry and academic settings;

more attention to usability issues.

(Berkun, 2005); (Baxter

et al., 2006); (Boyle

et al., 2008); (Bolchini

et al., 2009); Chapter 9

of this book

Clinical relevance Clearer definitions and strategies;

community-wide dialogue; more

research on the role of pilot trials;

rigours study design; better

reporting practice; extensive

cross-validation and independent

validation.

(Hinestrosa et al., 2007);

(Thompson et al.,

2008); Loscalzo (2009)

Collaboration Innovative training schemes for

researchers and students; more

active participation at the interface

between the clinical, life and

computational sciences; policy,

funding and management actions

to promote scientific diversity, new

research approaches and

communication.

(Eddy, 2005); Vicens and

Bourne (2007); Nurse

(2008); (Butte, 2008b)

Evaluation methods Correct implementation of cross-

validation and independent

evaluations; addressing model

selection and publication bias;

more accurate reporting and

documentation of results and

models; diverse and application-

dependent quality indicators;

clinical relevance assessment.

(Ioannidis, 2006, 2007b);

(Hinestrosa et al.,

2007); (Pepe, Feng and

Gu, 2007); (Dwan et al.,

2008); (Smulders, Thijs

and Twisk, 2008),

Chapter 3 of this book

Phenotype definitions More accurate and unambiguous

definition of phenotypes;

community-based initiatives;

biocomputing resources and

infrastructure; incorporation of

new technologies to measure

physiological variables; new

semantic and terminological

platforms.

(Freimer and Sabatti,

2003); (Butte, 2008a)

Documenting and

reporting models

Community-based guidelines;

emphasis on the reporting of

sufficient information to enable

reproducibility and independent

evaluations; improvement of

multi-disciplinary communication

and training.

EQUATOR Network

(2009)
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Table 10.1 (Continued)

Challenge Needs and directions

Recommended additional

reading

Data analysis Knowledge-driven approaches;

computational intelligence; diverse

and application-dependent

predictive and classification

performance assessment

methodologies; integrated ‘omic’

models vs. traditional biomarkers.

(Fogel, Corne and Pan,

2008); (Bellazzi and

Zupan, 2008); (Baek,

Tsai and Chen, 2009),

Chapter 3 of this book

Integrated computing

infrastructures

Automated implementation of work

flows and intelligent explanations

of findings and predictions;

high-performance, Grid-based

platforms; projects demonstrating

the value of integrated

biocomputing infrastructures in

translational research; open

access; international funding and

cooperation.

(Marcus, 2008); (NCBC,

2009); Chapter 9 of this

book

Open access to research

information and

outcomes

Transparent and accurate reporting

of findings; tools and standards for

data and software sharing;

integration of ‘omic’ and

phenotype databases; more

participation and funding for

open-source and open-access

research.

Feller et al. (2005);

Willinsky (2006);

(Butte, 2008b); (NCBC,

2009)

Systems-based

approaches

Combination of hypothesis- and

discovery-drive research,

top-down and bottom-up

approaches; demonstration of the

application of systems biology to

develop new clinically relevant

biomarkers or identify novel

druggable; integrative

bioinformatic platforms.

(Loscalzo, Kohane and

Barabasi, 2007);

(Henney and Superti-

Furga, 2008); (Auffray,

Chen and Hood, 2009)

Training and education Translational bioinformatics training

at undergraduate, graduate and post-

doctoral levels; new recognition

mechanisms for public service and

outreach, mentoring and cross-

disciplinary training.

(Butte, 2008b); (Taraban

and Blanton, 2008)

Maximization of public

resource use

Integrative datamining of ‘omic’ and

clinical data repositories; new

methodologies for linking genes;

processes and phenotypes using

multiple, independent sources of

data; new research approaches and

support for sustaining public

resources.

Brazma, Krestyaninova

and Sarkans (2006);

(Butte, 2008b);

(Ioannidis et al., 2009);

Nucleic Acids Research

database issues

(nar.oxfordjournals.org)
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Guest commentary (1)
on chapter 10:
Towards building
knowledge-based
assistants for
intelligent data
analysis in biomarker
discovery
Riccardo Bellazzi
Dipartimento di Informatica e Sistemistica, Universit�a degli
Studi di Pavia, 27100, Pavia Italy

The key challenges and potential research directions for bioinformatics and disease

biomarker discovery highlighted in Chapter 10 of this book well describe the most

important issues that the field should face in the next few years. Amongst such

challenges, a very intriguing one for bioinformaticians is related to data analysismethods

to support biomarker discovery.As properly reported byFranciscoAzuaje, the extraction

of multivariate predictive models based on machine learning and statistical techniques

Bioinformatics and Biomarker Discovery: “Omic” Data Analysis for Personalized Medicine Francisco Azuaje

� 2010 John Wiley & Sons, Ltd.



may effectively provide tools for diagnosis and prognosis based on a panel of biomarkers,

or ‘omic’ signatures. Since the end of the last century several approaches based on gene

expression microarrays (Brown et al., 2000) and on mass spectrometry data have been

proposed (Yu et al., 2005). However, several of those approaches suffered from lack of

reproducibility; moreover different models with the same prediction capability starting

from the same data set were derived. As a matter of fact, this problem is related to both

experimental and data analysis pitfalls (Hu, Loo and Wong, 2006). As far as the data

analysis problems are concerned, the automated extraction of multivariate models is

heavily constrained by the intrinsic limitations of ‘large-m small-n’ data sets that are

frequently available in bioinformatics. High dimensional feature spaces are affected by

the problem known as the curse of dimensionality. The curse of dimensionality is related

to the ‘exponential increase in volume associated with adding extra dimensions to a

feature space’ (Wikipedia, 2009); in other words, the number ofmeasurements needed to

describe a feature spacewith the same accuracy increases exponentially with the number

of features. In the case of DNA microarrays and mass spectrometry data, the feature

space ranges from the order of ten thousands to hundred thousands. This number

increases to 1 million in the case of SNP microarrays. Building classification models

from such a kind of feature spaces is extremely difficult, as the greatest part of the space

will be ‘empty’, that is without any data point, and even the ‘dense’ regions may turn out

to be highly under-sampled. Unfortunately, given the sparseness of the data with respect

to the feature space, also the feature selection step may be prone to include irrelevant

variables. Therefore, a purely data-driven approach may have no chances to derive

‘robust models’, even if state-of-art validation approaches are applied, such as cross-

validation and bootstrap. This has two main side effects: the classifiers may have large

variance and several solutions to the same problemmay exist (Mramor et al., 2007), with

no guarantee that the selected features have biological relevance. As stated inChapter 10,

the remedy to this problem is using prior knowledge in the data analysis process; the

well known Gene Set Enrichment Analysis method is a first answer to these issues

(Subramanian et al., 2005). In bioinformatics, the number of knowledge-sources in

electronic formats is becoming huge. Together with biological databases, such as

GeneBank or SwissProt, a collection of secondary data resources are available, such

as Gene or MIPS, as well as knowledge repositories such as the Gene Ontology or

OMIM. Another important knowledge source is represented by the medical literature,

available in electronic format in PubMed. In the second part of this decade there have

been several papers dealing with information retrieval and knowledge mining of the

above mentioned resources. The available knowledge may be used in a variety of ways.

In feature selection it helps to extract variables related to the biological problem at hand

and/or to exclude redundant variables. When the predictive model is learnt, prior

knowledge is used to properly combine heterogeneous information through, for example,

Bayesian models or ensemble classifiers. It is important to note that the methods that are

designed to automatically incorporate prior knowledge in the learning process are able

to process, together with the available data (say genes, mass/charge ratios, SNPs, etc.),

also the available ‘annotations’, that is the information on the biomedical role and

biological nature of the measured features. To this end, it is possible to apply math-

ematical and probabilistic algorithms that work in the space of ‘annotations’, in order to

select multivariate biomarkers also on the basis of their potential usefulness and

meaningfulness.
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Thanks to the importance of prior knowledge, it is likely that in the future Artificial

Intelligence (AI) will provide increasingly important contributions to biomarker dis-

covery. The research area known as ‘Intelligent Data Analysis’ (IDA) deals with the

application of AI methods and tools to data analysis (Zupan, Keravnou and

Lavrac, 1997). IDA seems particularly suited to provide ways to automatically incor-

porate prior information to constrain the search of prediction and classificationmodels in

‘difficult’ feature spaces. AI approaches, however, will not only enable the data analysis

process to be significantly boosted, but also the support tools for the entire knowledge

discovery process to be built. A very interesting and challenging issue is to develop

software tools that are able at the same time to handle the huge amounts of heterogeneous

data produced, have access to the knowledge repositories and eventually facilitate the

biomarker selection workflow. Although several tools and workflow systems have been

developed to provide an efficient way of handling, integrating, manipulating and

exploring biological information, very few experiences exist in the area of supporting

the reasoning process underlying scientific discovery (King et al., 2009). To this end, it

seems very interesting to apply formal conceptual models as the basis of the design of

knowledge discovery support tools. In the late 1980s and early 1990s automated

reasoning was widely studied in the area of expert systems in medicine. Amongst

others, an epistemological model for scientific discovery, called Select and Test Model

(STModel), was proposed and successfully applied to model medical knowledge-based

systems (Ramoni et al., 1992). Very recently, Nuzzo et al. (2009) defined an instance of

the ST-model to provide a conceptual framework for genome-wide studies and to

facilitate the development of automated decision support systems for genomic studies.

The ST-Model structure is made of different inference steps: hypotheses generation

(or selection), which is divided into abstraction and abduction, while the testing phase

consists of hypotheses ranking, deduction and induction. Following this model, it is

possible (i) to model reasoning activities which underlie biomarker discovery; (ii) to

design and implement tools to assist the discovery process. In their paper, Nuzzo and

colleagues limited their analysis to genome-wide association studies. In this case,

abstraction consists of the definition of a phenotype of interest and the selection of

the individuals to be studied. The abduction step is performed by running standard

statistical association tests, which generate a set of candidatemarkers associatedwith the

phenotype, and therefore a set of hypotheses to be tested. Such hypotheses are of the kind

‘marker x is associated with the phenotype’. The deduction step considers each

hypothesis in turn and compares it with the knowledge available in knowledge

repositories. In particular, the deduction step is aimed at deriving the necessary

consequences that must hold in case the hypotheses were true. For example, this step

may entail determining whether a certain marker may be related to pathways or Gene

Ontology classes that are in some way related to the disease; this may also imply that

other measurable variables (say SNPs, genes, proteins) should be expected to be altered

in differential analysis. Additional evidence may allow the implementation of an

eliminative induction step that reduces the hypothesis space or the repetition of the

process in a more focused way by redefining the phenotype or changing the initial

markers set. Thanks to its high-level conceptualization, the model can be instantiated

also in other studies and could be thought of as a basis for a discovery support tool for

different kinds of biomarkers (e.g. transcription factor binding sites identification,

knock-out gene experiments).
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As brilliantly reported by F. Azuaje in Chapter 10, the discovery of biomarkers poses

challengeswhich are strongly interdisciplinary. The development of bioinformatics tools

to support this complex task requires a perfect understanding of the biomedical and

clinical problems and a tight communication between all actors involved, ranging from

clinicians to software developers. Such a goal may be achieved by improving training in

translational bioinformatics, designing and implementing new computational infra-

structures and, finally, exploiting allmethodswhich allow the representation, sharing and

reuse of knowledge in all phases of scientific discovery. The paradigm of expert systems

and decision support tools may unexpectedly find a new, important role in the area of

molecular biology as enablers of more efficient strategies to unravel the basic mechan-

isms of life and to help transfer the new knowledge into useful biomedical results.
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Accompanying
commentary on
‘challenges and
opportunities of
bioinformatics in
disease biomarker
discovery’
Gary B. Fogel
Natural Selection, Inc., San Diego, CA 92121, USA

Introduction

At no time in human history has there been a better opportunity to understand the basis of

disease and offer remediation to the patient. The last 50 years of growth in biotechnology

have provided us with an amazing understanding of the cell, the onset of disease, and
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patientmonitoring, all enabling rapid decisions about proper healthcare.Microarrays are

commonplace, measuring the expression of thousands of genes simultaneously. New and

innovative technologies allow us to monitor the growth of cells in continuous fashion,

and technology will soon arrive that allows us to sequence complete human genomes for

<$1000. These and other methods drastically increase our capability to explore and

examine the processes that lead to disease, and help us map systems biology. However,

these same approaches also generate terabytes or petabytes of datawith each experiment,

each with large dimensions of concern. Thus, it becomes ever more important that along

with these new technologies, we also seek to develop newmethods of data interpretation

to assist with proper data mining and decision making. Nowhere is this more true than

with translational medicine, given that biological systems are inherently nonlinear,

continuous, and dynamic.

Biocyberinfrastructure

In light of this requirement for better data collection andmining, theUSNational Science

Foundation has recently recognized the importance of ‘cyberinfrastructure’ (Atkins

et al., 2003) to the future of scientific discovery. The term cyberinfrastructure refers to

‘infrastructure based upon distributed computer, information and communication tech-

nology. . .required for a knowledge economy’ (Atkins et al., 2003). Thus, governments

are already aware of the importance of better storage, communication, and information

retrieval systems in light of exponential increases in the volume of data collection.While

high-throughput data continues to be generated, integration and curation of the data both

remain central issues (Stevens, 2006). Others have noted the importance of bioinfor-

matics in accelerating discovery, in amanner thought to be 10 to 100 timesmore efficient

than using wet lab experiments on their own (Stevens, 2006). While wet lab experiments

are still critical for evaluation of computational hypotheses, they are likely to remain

expensive. Personnel time only adds to this expense. While it is that computational tools

provide much higher-throughput solutions to problems, and can evaluate much larger

solution spaces than humans, perhaps one of the large hurdles that remains is the fear that

computers will replace the need for humans in the decision loop. A reasonable solution is

to provide computational tools as an assistant to clinician experts who will be charged

with the responsibility offinal healthcare decisions. Clinicians are not always eager to see

this eventuality.

Government regulations on biomarker discovery

Another significant challenge to biomarker discovery is government approval. If

translational medicine is really to succeed, then government agencies need to understand

the latest advancements in technology and be willing to leverage their contribution with

proper oversight. In the United States, the field of in vitro diagnostics is regulated by the

Food and Drug Administration (FDA). The FDA has recently issued guidance on

pharmacogenetic and genetic tests for heritable biomarkers, providing the community

with an understanding of how the government intends to regulate disease biomarkers that

make it to clinical practice. These guidelines are already affecting the way in which
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biomarkers are being accepted,with, in somecases, a negative effect on sales (Ray, 2009).

Moreover, these same guidelines might also affect the way in which the in vitro

diagnostic models such as artificial neural networks or other types of machine learning

approaches are to be accepted in decision support when using multiple biomarkers in

combination (Lisboa andTaktak, 2006). Clearly it is beneficial to have effective rules that

protect the end-user from alarming rates of false positive or false negative decisions.

However, much more needs to be done to raise awareness in the scientific and

government regulatory communities about the true utility of these approaches. And

while it may be that ‘black box’ approaches such as neural networks are not easily

approved, it may be that these methods can outperform linear methods for predicting

outcome from biomarkers. Should we not be translating the best decision processes

possible to treat human diseases even if wemay not fully understand how these decisions

are being reached? The computational intelligence community has a wide range

of possible machine learning approaches (and their hybridization) to offer that can

provide significant value for healthcare (Fogel, 2006; Fogel, Corne and Pan, 2008). One

significant hurdle in promoting the continued development of these computational tools

is to avoid needless overregulation while simultaneously protecting clinician and patient

rights to understand how healthcare decisions are being made from these models. The

validation of medical neural networks has been a long-standing concern that has yet to

have an adequate solution (Rodvold, 2001).

Computational intelligence approaches for biomarker discovery

The field of computational intelligence (artificial neural networks, fuzzy systems, and

evolutionary computation), provides tremendous opportunity for rapid identification of

novel biomarkers, in combination, for diagnosis or prognosis. With neural networks,

biomarkers are treated as features that can be input to amodel, and combined in nonlinear

combinations to produce an output decision (or set of decisions). The topology of the

neural network can either be predefined for the dataset at hand, or the topology of the

neural network can itself be optimized through a search of possible neural network

topologies using evolutionary algorithms (Fogel, 2008; Lamers et al., 2008). This

approach for simultaneous model optimization with feature selection results in rapid

learning without a requirement for expert user intervention. The simulated evolutionary

process literally searches themodel space using variation and selection to arrive at useful

models in light of the data at hand. In some cases the features themselves may not be

easily discretized. For example, the features may be with respect to a colour such as

orange, and it is difficult to knowwhere ‘orange’ precisely differs from yellow or red. For

such problems, a set of fuzzy rules can be generated without requiring the need for

arbitrary threshold placement on the data. All of these approaches are now being applied

to for biomarker discovery on a regular basis and promise to help revolutionize theway in

which large datasets can be evaluated.

Open source data, intellectual property, and patient privacy

Open-source solutions that help build cyberinfrastructure capabilities are valued highly

in both the academic and industrial communities. However, open source can itself
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provide some barriers and constraints for progress. For instance, in terms of patient data,

curators of open source datasets have to carefully remove any information that could be

used to tie health data back to specific patients when the data is made available to the

public. Open source datasets can contain errors, especially when multiple users have

helped generate the data, and constant curation is a requirement. Furthermore, phar-

maceutical companies may wish to develop their own datasets after having carefully

studied a particular cancer pathway for years, and in competition with other companies

interested in similar diagnostics. For these companies, development of intellectual

property in the area of biomarker discovery is a critical component of their future

success. Open source data and tools are not often viewed by companies as a viablemeans

of achieving a corporate advantage in a marketplace. Thus, another hurdle for trans-

lational medicine is the importance of successful advancement in clinical practice with a

desire (but not a requirement) for open source data, that still allows for the prospects of a

competitive marketplace while simultaneously advancing clinical practice and preserv-

ing company intellectual property and patient confidentiality. The importance of open

source solutions should not preclude the independent commercialization of technology.

Conclusions

Biological systems are inherently nonlinear, continuous, and dynamic processes.

Identification of disease biomarkers therefore, requires modelling approaches that

can model the system appropriately without assuming feature independence. As our

ability to generate biological data increases, interpretation of that data only becomes

more critical as we attempt to define a true system-level understanding. Translating

these discoveries to clinical practice requires appropriate controls for patient safety and

confidentiality. The balance of appropriate regulation, in light of useful tools to

enhance healthcare, is key to the successful application of modern machine learning

approaches such as computational intelligence in this domain. Without a doubt, our

understanding of themapping of genotype to phenotype in light of the environment will

increase rapidly over the next decade. It is indeed quite exciting to realize that we stand

at the threshold of an entirely new way of translating tremendous volumes of data into

better healthcare decisions. However, many significant challenges with data storage

and interpretation, model development and regulation, open source frameworks and

intellectual and patient privacy continue to affect our ability to produce this outcome.

While better computational methods such as computational intelligence approaches

are a start, a new level of thinking has to be applied at many levels simultaneously for

the translation to occur.
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Calvo, B., Larrañaga, P. and Lozano, J.A. (2007) Learning Bayesian classifiers from positive and

unlabeled examples. Pattern Recognition Letters, 28, 2375–2384.

Camargo, A. andAzuaje, F. (2007) Linking gene expression and functional network data in human

heart failure. PLoS One, 2 (12), e1347.

Camargo, A. and Azuaje, F. (2008) Identification of dilated cardiomyopathy signature genes

through gene expression and network data integration. Genomics, 92, 404–413.

Cannataro, M. (2008) Computational proteomics: management and analysis of proteomics data.

Briefings in Bioinformatics, 9, 97–101.

Cannataro, M., Cuda, G., Gaspari, M. and Veltri, P. (2007) An interactive tool for the management

and visualization of mass-spectrometry proteomics data, inWILF-07, LNCS (LNAI), 4578 (eds

F. Masulli, S. Mitra and G. Pasi), Springer, Heidelberg, pp. 635–642.

Carter, N.P. (2007) Methods and strategies for analyzing copy number variation using DNA

microarrays. Nature Genetics, 39, S16–S21.

Chen, D.P., Weber, S.C., Constantinou, P.S. et al. (2008a) Novel integration of hospital electronic

medical records and gene expression measurements to identify genetic markers of maturation.

Pacific Symposium on Biocomputing, 13, 243–254.

Chen, H. and Sharp, B.M. (2004) Content-rich biological network constructed by mining PubMed

abstracts. BMC Bioinformatics, 5, 147.

Chen, R., Li, L. and Butte, A.J. (2007) AILUN: reannotating gene expression data automatically.

Nature Methods, 4, 879.

Chen, R., Morgan, A.A., Dudley, J. et al. (2008b) FitSNPs: highly differentially expressed genes

are more likely to have variants associated with disease. Genome Biology, 9, R170.

Chen, T., Kao, M.Y., Tepel, M. et al. (2001) A dynamic programming approach to de novo peptide

sequencing via tandem mass spectrometry. Journal of Computational Biology: A Journal of

Computational Molecular Cell Biology, 8, 325–337.

Chittenden, T.W., Sherman, J.A., Xiong, F. et al. (2006) Transcriptional profiling in coronary artery

disease: indications for novelmarkers of coronary collateralization.Circulation, 114, 1811–1820.

Chuang, H.Y., Lee, E., Liu, Y.T. et al. (2007) Network-based classification of breast cancer

metastasis. Molecular Systems Biology, 3, 140.

Cleary, J.G. and Trigg, L. (1995) K�: an instance-based learner using an entropic distancemeasure.

Proc Machine Learning ’95, Lake Tahoe, USA, pp. 108–114.

Clifford, G.D., Azuaje, F. and McSharry, P.E. (eds) (2006) Advanced Methods and Tools for ECG

Analysis, Artech House Publishing, London, UK.

Cline, M.S., Smoot, M., Cerami, E. et al. (2007) Integration of biological networks and gene

expression data using Cytoscape. Nature Protocols, 2, 2366–2382.

206 REFERENCES



Cobo, E., Selva-O’Callagham, A., Ribera, J.M. et al. (2007) Statistical reviewers improve

reporting in biomedical articles: a randomized trial. PLoS ONE, 2 (3), e332.

Contopoulos-Ioannidis, D.G., Alexiou, G.A., Gouvias, T.C. and Ioannidis, J.P. (2008) Life cycle of

translational research for medical interventions. Science, 321, 1298–1299.

Cook, N.R. (2007) Use and misuse of the receiver operating characteristic curve in risk prediction.

Circulation, 115, 928–935.

Cook, N.R. (2008) Statistical evaluation of prognostic versus diagnostic models: beyond the ROC

curve. Clinical Chemistry, 54, 17–23.

Cordell,H.J. (2002)Epistasis: what itmeans,what it doesn’tmean, and statisticalmethods to detect

it in humans. Human Molecular Genetics, 11, 2463–2468.

Couzin, J. (2008) Human genetics. Interest rises in DNA copy number variations–along with

questions. Science, 322, 1314.

Cover, T.M. and Thomas, J.A. (1991) Elements of Information Theory, Wiley.

Cox, D.G. and Kraft, P. (2006) Quantification of the power of Hardy-Weinberg equilibrium testing

to detect genotyping error. Human Heredity, 61, 10–14.

Crawford, S.L. (2006) Correlation and regression. Circulation, 114, 2083–2088.

Csermely, P. (2006) Weak Links: Stabilizers of Complex Systems from Proteins to Social

Networks, Springer, Berlin, Germany.

Curtis, D. (2007) Comparison of artificial neural network analysis with othermultimarkermethods

for detecting genetic association. BMC Genetics, 8, 49.

Daemen, A., Gevaert, O., Ojeda, F. et al. (2009) A kernel-based integration of genome-wide data

for clinical decision support. Genome Medicine, 1, 39.

Dancik, V., Addona, T.A., Clauser, K.R. et al. (1999) De novo peptide sequencing via tandemmass

spectrometry. Journal of Computational Biology: A Journal of Computational Molecular Cell

Biology, 6, 327–342.

Davies, H.T., Crombie, I.K. and Tavakoli, M. (1998)When can odds ratiosmislead?BMJ (Clinical

Research Ed), 316, 989–991.

Davis, J. and Goadrich, M. (2006) The relationship between Precision-Recall and ROC

curves. Proceedings of the 23rd international conference on Machine learning, Pittsburgh,

Pennsylvania, pp. 233–240.

Davis, R.B. andMukamal, K.J. (2006)Hypothesis testing:means.Circulation, 114 (10), 1078–1082.

De Bie, T., Tranchevent, L.C., van Oeffelen, L.M.M. and Moreau, Y. (2007) Kernel-based data

fusion for gene prioritization. Bioinformatics (Oxford, England), 23, i125–i132.

De Jong, K.A. (2006) Evolutionary Computation: A Unified Approach, Bradford Book.

De Lemos, J.A. and Lloyd-Jones, D.M. (2008) Multiple biomarker panels for cardiovascular risk

assessment. The New England Journal of Medicine, 358, 2172–2174.

DePrimo, S.E.,Wong, L.M., Khatry, D.B. et al. (2003) Expression profiling of blood samples from

an SU5416 Phase III metastatic colorectal cancer clinical trial: a novel strategy for biomarker

identification. BMC Cancer, 3, 3.

Deschamps, A.M. and Spinale, F.G. (2006) Pathways of matrix metalloproteinase induction in heart

failure: bioactive molecules and transcriptional regulation.Cardiovascular Research, 69, 666–676.

Devarajan, K. (2008) Nonnegative matrix factorization: an analytical and interpretive tool in

computational biology. PLoS Computational Biology, 4, e1000029.

diBernardo,D.,Thompson,M.J.,Gardner,T.S. etal. (2005)Chemogenomicprofilingonagenome-

wide scale using reverseengineered gene networks. Nature Biotechnology, 23, 377–383.

D�ıaz-Uriarte, R. and Alvarez de Andr�es, S. (2006) Gene selection and classification of microarray

data using random forest. BMC Bioinformatics, 7, 3.

Dinov, I.D., Rubin, D., Lorensen, W. et al. (2008) iTools: a framework for classification,

categorization and integration of computational biology resources. PLoS ONE, 3, e2265.

Dobbin, K. and Simon, R. (2005) Sample size determination in microarray experiments for class

comparison and prognostic classification. Biostatistics, 6, 27–38.

REFERENCES 207



Domon, B. and Aebersold, R. (2006) Mass spectrometry and protein analysis. Science, 312,

212–217.

Donaldson, I., Martin, J., de Bruijn, B. et al. (2003) PreBIND and Textomy–mining the biomedical

literature for protein-protein interactions using a support vector machine. BMCBioinformatics, 4, 11.

Dong, J. and Horvath, S. (2007) Understanding network concepts in modules. BMC Systems

Biology, 1, 24.

Donnelly, P. (2008) Progress and challenges in genome-wide association studies in humans.

Nature, 456, 728–731.

Dos Remedios, C.G., Liew, C.C., Allen, P.D. et al. (2003) Genomics, proteomics and bioinfor-

matics of human heart failure. Journal of Muscle Research and Cell Motility, 24, 251–260.

Drake, T.A. and Ping, P. (2007) Thematic review series: systems biology approaches to metabolic

and cardiovascular disorders. Proteomics approaches to the systems biology of cardiovascular

diseases. Journal of Lipid Research, 48, 1–8.

Dudley, J.T. and Butte, A.J. (2009) Identification of discriminating biomarkers for human disease

using integrative network biology. Pacific Symposium on Biocomputing, 27–38.

Dudoit, S., Fridlyand, J. and Speed, T.P. (2002) Comparison of discrimination methods for the

classification of tumors using gene expression data. Journal of the American Statistical

Association, 97, 77–87.

Dudoit, S. and van der Laan, M.J. (2008) Multiple Testing Procedures with Applications to

Genomics, Springer, New York, USA.

Duncan, M.W. and Hunsucker, S.W. (2005) Proteomics as a tool for clinically relevant biomarker

discovery and validation. Experimental Biology and Medicine, 230, 808–817.

Dupont, W.D. and Plummer, W.D. (2008) PS: Power and Sample Size Calculation, version 2.1.31,

2004, http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize.

Dupuy, A. and Simon, R.M. (2007) Critical review of published microarray studies for cancer

outcome and guidelines on statistical analysis and reporting. Journal of the National Cancer

Institute, 99, 147–157.

Dwan, K., Altman, D.G., Arnaiz, J.A. et al. (2008) Systematic review of the empirical evidence of

study publication bias and outcome reporting bias. PLoS ONE, 3 (8), e3081.

Eady, J.J., Wortley, G.M., Wormstone, Y.M. et al. (2005) Variation in gene expression profiles of

peripheral blood mononuclear cells from healthy volunteers. Physiological Genomics, 22,

402–411.

Eddy, S.R. (2005) ‘Antedisciplinary’ science. PLoS Computational Biology, 1, e6.

EDRN (2008) The NCI’s Early Detection Research Network, [edrn.nci.nih.gov], 22 December

2008.

Efron, B. and Tibshirani, R.J. (1997) Improvements on cross-validation: the .632þ bootstrap

method. Journal of the American Statistical Association, 92, 548–560.

Efron, B. and Tibshirani, R. (1993) An Introduction to Bootstrap, Chapman and Hall, New York.

Efroni, S., Schaefer, C.F. and Buetow, K.H. (2007) Identification of key processes underlying

cancer phenotypes using biologic pathway analysis. PLoS ONE, 2, e425.

Ein-Dor, L., Kela, I., Getz, G. et al. (2005) Outcome signature genes in breast cancer: is there a

unique set? Bioinformatics (Oxford, England), 21, 171–178.

El-Omar, E.M., Ng, M.T. and Hold, G.L. (2008) Polymorphisms in Toll-like receptor genes and

risk of cancer. Oncogene, 27, 244–252.

Eng, J. (2003) Sample size estimation: how many individuals should be studied. Radiology, 227,

309–313.

Eng, J. (2006) ROC analysis: web-based calculator for ROC curves. Baltimore: Johns Hopkins

University. Available from: http://www.jrocfit.org.

English, S.B. andButte, A.J. (2007) Evaluation and integration of 49 genomewide experiments and

the prediction of previously unknownobesity-related genes.Bioinformatics (Oxford, England),

23, 2910–2917.

208 REFERENCES



Erg€un, A., Lawrence, C.A., Kohanski, M.A. et al. (2007) A network biology approach to prostate

cancer. Molecular Systems Biology, 3, 82.

Ernens, I., Rouy,D.,Velot, E. et al. (2006)Adenosine inhibitsmatrixmetalloproteinase-9 secretion

by neutrophils: implication of A2a receptor and cAMP/PKA/Ca2þ pathway. Circulation

Research, 99 (6), 590–597.

Ewens,W.J. and Grant, G.R. (2005) Statistical Methods in Bioinformatics, 2nd edn, Springer, NY.

Fan, C., Oh, D.S., Wessels, L. et al. (2006) Concordance among gene-expression-based predictors

for breast cancer. The New England Journal of Medicine, 355, 560–569.

Feezor, R.J., Baker, H.V., Mindrinos, M. et al. (2004) Whole blood and leukocyte RNA isolation

for gene expression analyses. Physiological Genomics, 19, 247–254.

Feller, J., Fitzgerald, B., Hissam, S.A. and Lakhani, K.R. (eds) (2005) Perspectives on Free and

Open Source Software, MIT Press, Cambridge, MA, USA.

Fern�andez-Su�arez, X.M. and Birney, E. (2008) Advanced genomic data mining. PLoS Compu-

tational Biology, 4 (9), e1000121.

Fogel, G.B., Corne, D.W. and Pan, Y. (eds) (2008) Computational Intelligence in Bioinformatics,

WileyBlackwell, Hoboken, NJ, USA.

Frank, A.M., Bandeira, N., Shen, Z. et al. (2008) Clustering millions of tandem mass spectra.

Journal of Proteome Research, 7, 113–122.

Frank, E., Hall, M., Trigg, L. et al. (2004) Data mining in bioinformatics using Weka. Bioinfor-

matics (Oxford, England), 20, 2479–2481.

Frankel, D.S., Piette, J.D., Jessup,M. et al. (2006) Validation of prognostic models among patients

with advanced heart failure. Journal of Cardiac Failure, 12, 430–438.

Freeman, J.L., Perry, G.H., Feuk, L. et al. (2006) Copy number variation: new insights in genome

diversity. Genome Research, 16, 949–961.

Freeman, T.C., Goldovsky, L., Brosch, M. et al. (2007) Construction, visualisation, and clustering of

transcription networks frommicroarray expression data.PLoSComputationalBiology,3, 2032–2042.

Freimer, N. and Sabatti, C. (2003) The human phenome project. Nature Genetics, 34, 15–21.

Frey, B.J. andDueck, D. (2007) Clustering by passingmessages between data points. Science, 315,

972–976.

Gadbury, G.L. Page, G.P., Edwards, J., Kayo, T., Weindruch, R., Permana, P.A., Mountz, J. and

Allison, D.B. (2004) Power analysis and sample size estimation in the age of high dimensional

biology. Stat Meth Med Res, 13, 325–338.

Ganesh, S.K., Sharma, Y., Dayhoff, J. et al. (2007) Detection of venous thromboembolism by

proteomic serum biomarkers. PLoS ONE, 2, e544. doi: 10.1371/journal.pone.0000544.

Gao,X.,Starmer, J. andMartin,E.R. (2008)Amultiple testingcorrectionmethod forgenetic association

studies using correlated single nucleotide polymorphisms. Genetic Epidemiology, 32, 361–369.

Gargalovic, P.S., Imura, M., Zhang, B. et al. (2006) Identification of inflammatory gene modules

based on variations of human endothelial cell responses to oxidized lipids. Proceedings of the

National Academy of Sciences of the United States of America, 103, 12741–12746.

Gauderman, W.J., Murcray, C., Gilliland, F. and Conti, D.V. (2007) Testing association between

disease and multiple SNPs in a candidate gene. Genetic Epidemiology, 31, 383–395.

Gauvreau, K. (2006) Hypothesis testing: proportions. Circulation, 114 (14), 1545.

Gentleman, R., Carey, V., Huber, W. et al. (eds) (2005) Bioinformatics and Computational

Biology Solutions Using R and Bioconductor, Springer, NY, USA.

Gentleman, R.C., Carey, V.J., Bates, D.M. et al. (2004) Bioconductor: open software development

for computational biology and bioinformatics. Genome Biology, 5 (10), R80.

GEO, Gene Expression Omnibus (2008) http://www.ncbi.nlm.nih.gov/geo/, last accessed 10 April

2009.

Gerszten, R.E. andWang, T.J. (2008) The search for new cardiovascular biomarkers. Nature, 451,

949–952.

Gewin, V. (2007) Missing the mark. Nature, 449, 770–771.

REFERENCES 209



geWorkbench (2008) [wiki.c2b2.columbia.edu/workbench], 22 December 2008.

Ghazalpour, A., Doss, S., Zhang, B. et al. (2006) Integrating genetic and network analysis to

characterize genes related to mouse weight. PLoS Genetics, 2, e130.

Ghosh, D. and Poisson, L.M. (2009) ‘Omics’ data and levels of evidence for biomarker discovery.

Genomics, 93, 13–16.

Ghosh, S., Grant, D.F., Dey,D.K. andHill, D.W. (2008)A semiparametricmodeling framework for

potential biomarker discovery and the development of metabonomic profiles. BMC Bioinfor-

matics, 9, 38.

Ginsburg, G.S., Seo, D. and Frazier, C. (2006) Microarrays coming of age in cardiovascular

medicine: standards, predictions, and biology. Journal of the American College of Cardiology,

48, 1618–1620.

Glantz, S.A. (2001) Primer of Biostatistics, 5th edn, McGraw-Hill/Appleton & Lange.

Glantz, S.A. and Slinker, B.K. (2001) Primer of Applied Regression and Analysis of Variance, 2nd

edn, McGraw-Hill.

Goeman, J.J. and B€uhlmann, P. (2007) Analyzing gene expression data in terms of gene sets:

methodological issues. Bioinformatics (Oxford, England), 23, 980–987.

Goh, K.I., Cusick, M.E., Valle, D. et al. (2007) The human disease network. Proceedings of the

National Academy of Sciences of the United States of America, 104, 8685–8690.

Golden Helix (2009) viewed 10 January 2009, http://www.goldenhelix.com/.

Good, P.I. (2006) Resampling Methods, 3rd edn, Birkh€auser, Boston.
Grzeskowiak, R., Witt, H., Drungowski, M. et al. (2003) Expression profiling of human idiopathic

dilated cardiomyopathy. Cardiovascular Research, 59, 400–411.

Guo, Z., Zhang, T., Li, X. et al. (2005) Towards precise classification of cancers based on robust

gene functional expression profiles. BMC Bioinformatics, 6, 58.

Guyon, I. and Elisseeff, A. (2003) An introduction to variable and feature selection. Journal of

Machine Learning Research, 3, 1157–1182.

Haider, N. (2008) http://merian.pch.univie.ac.at/�nhaider/cheminf/jdxview.html, last accessed 30

March 2009.

Hakes, L., Pinney, J.W., Robertson, D.L. and Lovell, S.C. (2008) Protein-protein interaction

networks and biology–what’s the connection? Nature Biotechnology, 26, 69–72.

Hall, M.A. (1999) Correlation-based Feature Subset Selection for Machine Learning. PhD thesis,

Department of Computer Science, University of Waikato.

Hanash, S.M., Pitteri, S.J. and Faca, V.M. (2008) Mining the plasma proteome for cancer

biomarkers. Nature, 452, 571–579.

Hanley, J.A. and McNeil, B.J. (1982) The meaning and use of the area under a receiver operating

characteristic (ROC) curve. Radiology, 143, 29–36.

Hanley, J.A. and McNeil, B.J. (1983) A method of comparing the areas under receiver operating

characteristic curves derived from the same cases. Radiology, 148, 839–843.

Hardy, J. and Singleton, A. (2008) The HapMap: charting a course for genetic discovery in

neurological diseases. Archives of Neurology, 65, 319–321.

Hastie, T., Tibshirani, R. andFriedman, J.H. (2001)TheElements of Statistical Learning, Springer,

NY, USA.

Hauskrecht, M., Pelikan, R., Valko, M. and Lyons-Weiler, J. (2006) Feature selection and dimension-

ality reduction in genomics and proteomics, in Fundamentals of Data Mining in Genomics and

Proteomics (eds D.P. Berrar, W. Dubitzky and M. Granzow), Springer, pp. 149–172.

Heidecker, B., Kasper, E.K., Wittstein, I.S. et al. (2008) Transcriptomic biomarkers for individual

risk assessment in new-onset hear failure. Circulation, 118, 238–246.

Henney, A. and Superti-Furga, G. (2008) A network solution. Nature, 455, 730–731.

Heredia-Langner, A., Cannon, W.R., Jarman, K.D. and Jarman, K.H. (2004) Sequence optimi-

zation as an alternative to de novo analysis of tandem mass spectrometry data. Bioinformatics

(Oxford, England), 20, 2296–2304.

210 REFERENCES



Hewett, M., Oliver, D.E., Rubin, D.L. et al. (2002) PharmGKB: the pharmacogenetics knowledge

base. Nucleic Acids Research, 30, 163–165.

Higdon, R., van Belle, G. and Kolker, E. (2008) A note on the false discovery rate and inconsistent

comparisons between experiments. Bioinformatics (Oxford, England), 24, 1225–1228.

Hilario, M. and Kalousis, A. (2008) Approaches to dimensionality reduction in proteomic

biomarker studies. Briefings in Bioinformatics, 9, 102–118.

Hilario, M., Kalousis, A., M€uller, M. and Pellegrini, C. (2003) Machine learning approaches to

lung cancer prediction from mass spectra. Proteomics, 3, 1716–1719.

Hindorff, L.A., Junkins, H.A., Mehta, J.P. and Manolio, T.A. (2008) A Catalog of Published

Genome-Wide Association Studies. www.genome.gov/26525384, Accessed 11 January 2009.

Hinestrosa, M.C., Dickersin, K., Klein, P. et al. (2007) Shaping the future of biomarker research in

breast cancer to ensure clinical relevance. Nature Reviews. Cancer, 7, 309–315.

Hirschhorn, J.N. andDaly,M.J. (2005)Genome-wide association studies for common diseases and

complex traits. Nature Reviews. Genetics, 6, 95–108.

Hoffmann, R. and Valencia, A. (2005) Implementing the iHOP concept for navigation of

biomedical literature. Bioinformatics (Oxford, England), 21 (Suppl. 2), ii252–ii258.

Holmes, E., Nicholls, A.W., Lindon, J.C. et al. Chemometric models for toxicity classification

based on NMR spectra of biofluids. Chemical Research in Toxicology, 13 (6), 471–478.

Hosking, L., Lumsden, S., Lewis, K. et al. (2004) Detection of genotyping errors by Hardy-

Weinberg equilibrium testing. European Journal of Human Genetics, 12, 395–399.

Hua, J., Xiong, Z., Lowey, J. et al. (2005) Optimal number of features as a function of sample size

for various classification rules. Bioinformatics (Oxford, England), 21, 1509–1515.

Huang, T., Tu, K., Shyr, Y. et al. (2008) The prediction of interferon treatment effects based on time

series microarray gene expression profiles. Journal of Translational Medicine, 6, 44.

Hull, D., Wolstencroft, K., Stevens, R. et al. (2006) Taverna: a tool for building and running

workflows of services. Nucleic Acids Research, 34, 729–732.

Ideker, T. and Sharan, R. (2008) Protein networks in disease. Genome Research, 18 (4), 644–652.

Ihmels, J., Friedlander, G., Bergmann, S. et al. (2002) Revealingmodular organization in the yeast

transcriptional network. Nature Genetics, 31, 370–377.

Ioannidis, J.P. (2006) Commentary: grading the credibility of molecular evidence for complex

diseases. International Journal of Epidemiology, 35, 572–578.

Ioannidis, J.P. (2007a) Limitations are not properly acknowledged in the scientific literature.

Journal of Clinical Epidemiology, 60, 324–329.

Ioannidis, J.P. (2007b) Ismolecular profiling ready for use in clinical decisionmaking?Oncologist,

12, 301–311.

Ioannidis, J.P., Allison, D.B., Ball, C.A. et al. (2009) Repeatability of published microarray gene

expression analyses. Nature Genetics, 41, 149–155.

IPA (2009) Ingenuity Pathway Analysis (IPA), http://www.ingenuity.com/ last time accessed: 3

May 2009.

Jafari, P. andAzuaje, F. (2006)An assessment of recently published gene expression data analyses:

Reporting experimental design and statistical factors. BMCMedical Informatics and Decision

Making, 6, 27.

Jansen, J.J., Hoefsloot, H.C., Boelens, H.F. et al. (2004) Analysis of longitudinal metabolomics

data. Bioinformatics (Oxford, England), 20, 2438–2446.

Jensen, F.V. and Nielsen, T. (2007) Bayesian Networks and Decision Graphs, Springer-Verlag,

New York.

Jiao, S. and Zhang, S. (2008) On correcting the overestimation of the permutation-based false

discovery rate estimator. Bioinformatics (Oxford, England), 24, 1655–1661.

Jonsson, P.F. and Bates, P.A. (2006) Global topological features of cancer proteins in the human

interactome. Bioinformatics (Oxford, England), 22, 2291–2297.

JPF (2008) [jpf.sourceforge.net], last accessed 21 May 2008.

REFERENCES 211



Kalorama Information (2007) Biomarkers: AMarket Briefing, [www.kaloramainformation.com].

Karolchik, D., Kuhn, R.M., Baertsch, R. et al. (2008) TheUCSCGenomeBrowser Database: 2008

update. Nucleic Acids Research, 36 (Database issue), D773–D779.

Kardys, I., Knetsch, A.M., Bleumink, G.S. et al. (2006) C-reactive protein and risk of heart failure.

The Rotterdam Study. 2006. American Heart Journal, 152, 514–520.

Karlebach, G. and Shamir, R. (2008) Modelling and analysis of gene regulatory networks. Nature

Reviews. Molecular Cell Biology, 9, 770–780.
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